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Abstract. This chapter introduces and discusses practically important concept of
non-smooth dynamical systems, which are very common in engineering applica-
tions. Mathematically, such systems can be considered as piecewise smooth and
therefore their global solutions are obtained by stitching local solutions, which are
easy to develop by standard methods. If a dynamical system is piecewise linear
then an implicit global analytical solution can be given, however the times when
non-smoothness occurs have to be determined first. This leads to a set of nonlin-
ear algebraic equations. To illustrate the non-smooth dynamical systems and the
methodology of solving them, three mechanical engineering problems were studied.
Firstly, a vibro-impact system in a form of moling device was modelled and anal-
ysed to understand how the progression rates can be maximised. For this system,
periodic trajectories can be reconstructed as they go through three linear subspaces
(no contact, contact with progression and contact without progression), and using
combination of analytical and numerical methods the optimal range of the system
parameters can be identified. In the second application the influence of opening and
closing of a fatigue crack on the system dynamics was investigated. Specifically, a
novel apparatus to induce aperiodic loading to a specimen with a fatigue crack was
studied. It was shown experimentally that fatigue life can be reduced few times if the
sample is loaded aperiodically. The analysis of the developed mathematical model
shown that as a crack grows linearly before reaching its critical value, the response
of the system remains periodic. When its size exceeds the critical value, the system
behaviour becomes chaotic and then the crack growth increases exponentially. This
phenomenon can be used in structural health monitoring. The last problem comes
from rotordynamics, where nonlinear interactions between the rotor and the snubber
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ring were studied. The influence of the preloading of the snubber ring on the system
behaviour was investigated and the range of the system parameters where chaotic
vibrations occur was identified. The results obtained from the developed mathemat-
ical model confronted with the experiments shown a good degree of correlation.

Keywords: Non-smooth dynamics, vibrations, mechanical systems, vibro-impact
moling, fatigue, rotor systems.

1 Non-smooth Dynamical Systems in Engineering Dynamics
[56, 60, 44, 58, 59]

Most of engineering systems are inherently nonlinear and their nonlinearities man-
ifest themselves in many different forms, where one of the most common is the
non-smoothness. One may think of the noise of a squeaking chalk on a blackboard,
or more pleasantly of a violin concert. Mechanical engineering examples include
squeal in brakes, impact print hammers, percussion drilling machines or chatter-
ing of machine tools. These effects are due to the non-smooth characteristics such
as clearances, impacts, intermittent contacts, dry friction, or combinations of them
[60].

Non-smooth dynamical systems have been extensively studied for nearly four
decades showing a huge complexity of dynamical responses even for a simple im-
pact oscillator or Chua’s circuit. The theory of non-smooth dynamical systems has
been rapidly developing and now we are in much better position to understand those
complexities occurring in the non-smooth vector fields and caused by generally dis-
continuous bifurcations. There are numerous practical applications, where the theo-
retical findings on nonlinear dynamics of non-smooth systems have been applied in
order to verify the theory and optimize the engineering performance. However, from
a mathematical point of view, problems with non-smooth characteristics are not easy
to handle as the resulting models are dynamical systems whose right-hand sides are
discontinuous [14], and therefore they require a special mathematical treatment and
robust numerical algorithms to produce reliable solutions. Therefore, we apply a
combination of numerical, analytical and semi-analytical methods to analyse such
systems and this particular aspect will be a focus in this chapter.

Many characteristics of mechanical systems can be non-smooth, and such sys-
tems mathematically can be described as so-called piecewise smooth dynamical
systems. Well-known examples include an impact oscillator (e.g. [49]), piecewise
linear oscillators (e.g. [46, 51, 41, 63]), mechanical ”bouncing ball” system [64],
Jeffcott rotor with bearing clearances [33, 45, 22], systems with Coulomb friction
(e.g. [13, 55]), gear-box systems [29, 38, 12] and metal cutting processes [23, 57]. A
general methodology proposed in [56, 44, 58] of describing and solving non-smooth
dynamical system which originates from the Fillipov’s approach [14] can be found
for example in [60] and [37]. It includes modelling of discontinuous systems by
discontinuous functions and by smooth functions. In the latter case extra care is
required as smoothing discontinuities can produce an artifact responses [32]. Here
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the first approach will be adopted, where a dynamical system is defined in global
hyperspaceΩ as continuous but not necessarily smooth autonomous system [56]

ẋ = f(x,p), (1)

where x = [x1,x2, . . . ,xn]T is the state space vector (xn is used to represent time), p =
[p1, p2, . . . , pm]T is a vector of the system parameters, and f(x,p) = [ f1, f2, . . . , fn]T

is the vector function which is dependent upon the system structure or the process
being modelled. Then we assume that the dynamical system (1) is smooth but only
within subspace Xi of the global hyperspace Ω (see Fig. 1). Therefore, for each
subspace Xi (x ∈ Xi), the right hand side of equation (1) may be described by a
different function, fi(x,p) where i ∈ [1,N]. Such system description will be used
throughout this chapter where for each individual problem we will specify global
and local subspaces which will define its regimes of operations.
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Fig. 1 Conceptual model of a piecewise smooth dynamical system, where thick lines (solid
and dash) denote trajectories within subspaces and thin lines – trajectories sliding on the
hypersurfaces [44]

The main aim of this chapter is to outline a general methodology of modelling
and analysing of non-smooth dynamical systems. The methodology will be illus-
trated through three case studies. Firstly, the dynamics of a drifting vibro-impact
system will be investigated through a novel semi-analytical method developed in
[46, 42, 48, 61, 43, 47, 44], which allows to determine the favourable operating
conditions. The model accounts for visco-elastic impacts and is capable to mimic
dynamics of progressive motion (a drift). Secondly, we will study the evolution of
a fatigue crack in a specimen subjected to aperiodic loading [18, 15, 16, 19, 17]. A
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unique experimental rig developed to investigate the dynamic crack growth under
aperiodic excitation will be briefly discussed and then the modelling of the crack
growth embedded into the mechanical model of the entire system will be shown. A
comparison between the theoretical and experimental results will verify the model.
Finally, we will examine the complex dynamics of a rotor system with bearing clear-
ances [33, 32, 30, 31, 45, 34], where a contact incident is modelled as a piecewise
smooth effect. Influence of the preloading of the snubber ring on the dynamic re-
sponses and the comparison with the experiments will be discussed.

2 Drifting Oscillator as an Effective Model of Vibro-impact
Moling [48]

Vibro-impact systems are strongly nonlinear and have been widely used in civil
and mechanical engineering applications. These include ground moling machines,
percussive drilling, ultrasonic machining and mechanical processing (cold and hot
forging). Let us focus here on a vibro-impact system driving a pile into the ground,
where during its operation the driving module moves downwards, and its motion
can be viewed as a superposition of a progressive motion and bounded oscilla-
tions. The simplest physical model exhibiting a such behaviour is comprised of a
mass loaded by a force having static and harmonic components, and a dry friction
slider, as shown in Fig. 2(a). This model was introduced and preliminary analysed
in [35, 36]. Despite its simple structure, a very complex dynamics was revealed.
The main result from that work was the finding that the best progression occurs
during period one responses. A more realistic model including viscoelastic prop-
erties of the ground and its optimal periodic regimes were studied extensively in
[46, 42, 48, 61, 43, 47, 44].

2.1 Mathematical Modelling and Experimental Study

A simple model of a vibro-impact moling system may be represented as an oscil-
lating mass with a frictional visco-elastic slider, as shown in Fig. 2(b). This model
defines the motion of the moling device (mass) and the soil (slider) which allows to
make a distinction between the motion of the mole head and the front face of the
hole.

The model of the soil represented by a frictional slider is depicted in Fig. 3(a).
The dependence of the soil resistance on the penetration of the tool for this model
is marked by a solid line in Fig. 3(b). This dependence is similar to one obtained
by Spektor [54], who approximated it by a piece-wise linear relationship. The other
approach used in the previous studies [50] considered the overall soil resistance as
a superposition of the frontal elasto-plastic force (dash line in Fig. 3(b)) and the
viscous damping force created by the fluidized soil.
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Fig. 2 Physical models of progressive impact systems; a simplest models [35, 36], b more
realistic model [46]

Fig. 3 Model of soil [48]; a physical model as a frictional slider with elasticity and viscous
damping, b soil resistance versus penetration characteristics

In order to gain some insight into the dynamics of vibro-impact moling systems,
a brief experimental study was carried out on the rig depicted in Fig. 4, which was
originally designed by Lok et al. [39]. It comprises a steel tube hosting an oscillatory
mass. The vibro-impact mechanism is comprised of a vibratory mass and a hammer
mass both supported by coil springs. The hammer mass impacts upon the nose cone.
The springs are precompressed in the tube and the excitation is provided by a cam
driven system with a variable rotational speed.

As can be seen from Fig. 4 the moling system is set to operate in a sand box. The
relative displacement of the mole with respect to the sand box was measured by an
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Fig. 4 Schematic of the experimental set-up to study the dynamics of vibro-impact ground
moling system [48]

LVDT. The recorded signal was passed through an amplifier and monitored by an
oscilloscope before being captured on a data storage system. A circular strain gauge
load-cell was fitted between the impacting mass and the nose cone to measure the
impact forces.

In spite of its very simple structure the model confirms the main phenomena
occurring during the soil-penetrator interactions. In Fig. 5 the experimental (a, c) and
the numerical (b, d) results are compared. As can be seen, there is a good qualitative
agreement between the time histories. This similarity allows us to draw a conclusion
that this simple model can be used to study the soil-mole dynamic interactions.

In the considered model shown in Fig. 2(b) a mass m is excited by an external
force comprised of a harmonic component of amplitude Pd , frequencyΩ and phase
shift ϕ ; and a static component, Ps. The slider has weightless top and bottom plates
connected to each other by a linear spring with stiffness k, and a viscous damper
with damping coefficient c. The progressive motion of the mass occurs when the
force acting on the slider exceeds the threshold of the dry friction force, Pf . Xm, Xt

and Xb represent the absolute displacements of the mass, slider top and slider bottom
respectively.

For the case when the mass and the slider move separately the dynamics of the
system is described by one second and two first order differential equations

⎧⎨
⎩

mẌm = Ps + Pd cos(Ω t +ϕ),
c
(
Ẋt − Ẋb

)
+ k (Xt −Xb) = 0,

Ẋb = 0.
(2)

The case when the mass and the slider are in contact, is described by one second
order and one first order differential equations, which can be either oscillatory



Engineering Applications of Non-smooth Dynamics 217

150 300 450 600 750

-1.5

0.0

1.5

4.00 4.25 4.50 4.75 5.00
2.5

3.0

3.5

4.0

8.4 8.6 8.8 9.0 9.2

1

250 500 750 1000 1250

0.0

0.5

1.0

1.5

2.0

(d)

D
is

p
la

ce
m

en
t,

x

Time, �

(a)

D
is

p
la

ce
m

en
t

(m
m

)

Time (s)

(c)

D
is

p
la

ce
m

en
t

(m
m

)

Time (s)

(b)

D
is

p
la

ce
m

en
t,

x

Time, �

Fig. 5 a, c Experimental data [48] obtained from the rig with a double cam of 4 mm lift
rotating at 7.75 Hz and effectively inducing a forcing frequency of a 15.5 Hz and c 13.2 Hz;
b, d Results of numerical simulation for b a = 0.5, ω = 0.11, ξ = 0.35, b = 0.456, and for
d a = 0.5, ω = 0.1, ξ = 0.11, b = 0.48

{
mẌm + c

(
Ẋt − Ẋb

)
+ k (Xt −Xb) = Ps + Pd cos(Ω t +ϕ),

Ẋb = 0,
(3)

or progressive {
mẌm = −Pf + Ps + Pd cos(Ω t +ϕ),
c
(
Ẋt − Ẋb

)
+ k (Xt −Xb) = Pf .

(4)

Note that for Eqs. (3) and (4) the displacement of the slider top, Xt is in phase with
the displacement of the mass, Xm, but differs by a gap, G (G is the distance between
the mass and the slider top at the initial point t = 0)

Xt = Xm −G.

The equations of motion (2) – (4) are transformed to a system of first order differ-
ential equations by using the following non-dimensional variables

τ =Ω0t, x =
k

Pmax
Xm, y =

dx
dτ

=
k

Ω0Pmax
Ẋm,

z =
k

Pmax
Xt , v =

k
Pmax

Xb,
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and parameters

ω =
Ω
Ω0

, Ω0 =

√
k
m

, a =
Pd

Pmax
, b =

Ps

Pmax
,

d =
Pf

Pmax
, ξ =

c
2mΩ0

, g =
k

Pmax
G.

The considered system can operate at any time in one of the following modes:

• No contact,
• Contact without progression,
• Contact with progression.

For the simplicity of further analysis, the dimensionless friction threshold force, d
is set to 1. We also assume the parameters g = 0.02 and ϕ = π/2 to be constant in
this study. Consequently, Eqs. (2) – (4) can be formulated for these specified modes
in the first order ODEs.

If the displacement of the mass is smaller than the displacement of the slider top
plus the gap,

x < z+ g, (5)

then the mass and the slider top move separately. The motion of the mass can be
determined from the following set of equations

{
x′ = y,
y′ = acos(ωτ+ϕ)+ b,

(6)

where ′ denotes d/dτ . The equations of motion for the top and the bottom of the
slider are

z′ = − 1
2ξ

(z− v) , (7)

v′ = 0. (8)

Contact without progression occurs when the relative displacement of the mass ex-
ceeds the displacement of the slider top plus the gap, i.e.

x ≥ z+ g, (9)

and the force acting on the mass from the slider is greater than zero but smaller than
the threshold of the dry friction force, which can be expressed as

0 < 2ξ z′ +(z− v) < 1. (10)

In this case the mass and the slider top move together but without progression, and
the second equation of (6) has additional elastic and viscous terms:

{
x′ = y,
y′ = −2ξ z′ − (z− v)+ acos(ωτ+ϕ)+ b.

(11)
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The velocity of the slider top is equal to the velocity of the mass, and the displace-
ment of the slider top is in phase with the mass displacement but differs by g in
position

z′ = x′, (12)

x = z+ g. (13)

When there is no progression, the bottom of the slider remains stationary, hence its
velocity is equal to zero

v′ = 0. (14)

When the displacement of the mass is equal or greater than the displacement of the
slider top plus the gap (see Eq.(9)), and the force acting on the mass is greater than
the threshold of dry friction force

2ξ z′ +(z− v) ≥ 1, (15)

then the mass and the top and the bottom of the slider are moving together, and
progression takes place. The equations of motion for mass are

{
x′ = y,
y′ = acos(ωτ+ϕ)+ b−1.

(16)

The displacement and the velocity of the slider top are described as before (see Eqs.
(12) and (13)). The velocity of the slider bottom motion can be calculated from the
expression below

v′ = z′ +
1

2ξ
(z− v−1). (17)

Fig. 6 Time histories [46] of the mass, x (solid curves) and slider bottom, v (dash curves)
calculated for a = 0.3, ω = 0.1, ξ = 0.05 and (a) b = 0.05; (b) b = 0.095; (c) b = 0.1; (d)
b = 0.15; (e) b = 0.19 and (f) b = 0.27
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Equations (5)–(17) were used to conduct an extensive nonlinear dynamic stud-
ies by means of numerical simulation using Dynamics software [65], and also to
develop an algorithm to determine periodic responses [46, 42].

Fig. 7 Time histories of steady-state responses [46] of the mass, x (solid curves) and slider
bottom, v (dash curves) for a = 0.3, ω = 0.1, ξ = 0.05 and a b = 0.05; b b = 0.095; c b = 0.1;
d b = 0.15; e b = 0.19 and f b = 0.27

Our study has revealed that the best progression (the largest drift) is achieved
for the period one motion, which can be clearly seen by examining displacement
of the slider bottom (dash lines) in Fig. 6. These steady-state responses are also
depicted in Fig. 7(a)-(e) for τ ∈ (800, 1200). Figure 7 shows an important se-
quence of subcritical bifurcations, where the system bifurcates from a period four
(Fig. 7(b)) to a period two (Fig. 7(c)), then from a period two to a period one (Fig.
7(d)). A transition from a period one to a chaotic motion with a high frequency
component (Fig. 7(e)) determines the interval of static force, b, for which the best
progression exists. The system can also exhibit chaos for a wide range of the system
parameters (e.g. see Fig. 8(a)).
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2.2 Determination of the Best Progression

Figure 8 demonstrates a number of bifurcation diagrams showing the velocity and
progression of the system as function of the static force for different values of the dy-
namic amplitude. As can be seen in Fig. 8(a)-(c) the system responds aperiodically
for small values of static force, b with some narrow windows of periodic motion.
This is followed by a large window of periodic motion marked by dash lines, which
is increasing for the larger values of dynamic force, a. Then a series of aperiodic and
periodic windows appear. It should be noted that if the dynamic force, a, is large the
system responds periodically for the most values of the static force, b (Fig. 8(c)).
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Fig. 8 Bifurcation diagrams [48] y = y(b) and progression during the first 50 periods respec-
tively for ξ = 0.05, ω = 0.1 and a, d a = 0.1; b, e a = 0.3; and c, f a = 0.9

The analysis of the bifurcation diagrams has also unveiled some insight regard-
ing the progression rates achieved by the system. It was obtained that the best pro-
gression is reached when system responds periodically with the period of external
excitation. As can be clearly seen from Fig. 8(d)-(f), the maximum penetration rate
coincides with the point where periodic regime becomes aperiodic. For a special
case of large dynamic force, a = 0.9, shown in Fig. 8(f), we have periodic regimes
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for all values of static force, b starting from b ≈ 0.225, and the progression rate
increases starting from this value of static force, b. In general, as the system is es-
sentially nonlinear, better progression rates are not necessarily achieved for larger
static forces.

The finding regarding the position of the maximum penetration rate (the end of
periodic regime) was used to develop a semi-analytical algorithm for determining
this point and details can be found in [42]. This method constructs a periodic re-
sponse assuming that each period is comprised of a sequence of distinct phases for
which analytical solutions are explicitly known. For example, a period may con-
sist of the following sequential phases: Contact with progression, Contact without
progression, No contact and Contact without progression. Using this information a
system of four piecewise linear first order differential equations is transformed to a
system of nonlinear algebraic equations. Then an accurate prediction of the range of
control parameters for which the best progression rates are obtained, can be made
without laborious numerical simulation.

Fig. 9 Four stages of a periodic response [46]; solid line – displacement of the mass, dash
line – displacement of the slider top, dotted line – displacement of the slider bottom. The
blow-up window shows the displacements of the mass, slider top and bottom at the beginning
and at the end of the period

As our system is piecewise linear, the periodic solutions can be constructed by
stitching linear solutions obtained in the subspaces at points of discontinuities. Ini-
tially, it is assumed that the displacement and velocity of the mass have certain (as
yet unknown) values. Starting from these values, the system operates in one of the
phases described earlier. For the period one motion it goes through a sequence of
four phases as presented in Fig. 9. As mentioned earlier a typical pattern is com-
prised of Contact with progression (Phase I), Contact without progression (Phase
II), No contact (Phase III) and again Contact without progression (Phase IV). The



Engineering Applications of Non-smooth Dynamics 223

solutions for each phase are constructed by allowing the final displacements and
velocities of the preceding phase to be the initial conditions for the next phase. The
initial conditions of the first phase are determined from the periodicity condition.

In order to simplify our consideration, the beginning of progression was chosen
as an initial point. Based on Eqs. (12), (13) and (15), the following relation between
the initial displacement and velocity can be written

2ξ y0 +(x0 −g− v0) = 1. (18)

As the initial displacement of the slider bottom, v0 does not influence the motion of
the mass, it is set to zero. Then we have

x0 = 1 + g−2ξ y0. (19)

The other unknown is a phase shift,ψ0, between the external force and the system
response at the beginning , τ = τ0

ψ0 = ϕ+ωτ0. (20)

Two periodic conditions for the mass displacement and velocity can be established
{

x(τ+ T ) = x(τ)+Δ ,
y(τ+ T ) = y(τ), (21)

where T is the period equal to the period of external forcing

T =
2π
ω

, (22)

and Δ is progression of the slider per period.
Thus three unknown functions ψ0, x0 and y0 can be determined from the equa-

tions (21) and (22). However an arbitrary solution of these equations cannot guar-
antee that x0 and y0 satisfy Eq.(19). For this reason we first substitute x0 by the
function of y0 (expression Eq.(19)), and then construct a special function F to mon-
itor a difference between the exact periodic solution and the one calculated for these
arbitrary initial conditions

F =
√

(x(τ + T)− x(τ)−Δ)2 +(y(τ+ T)− y(τ))2. (23)

If the minimum of this function is equal to zero, then the periodic regime exists,
and the durations of all four stages can be determined. More details can be found in
[42].

The results obtained using this method are presented in Fig. 10 showing the influ-
ence of the frequency, the dynamic force and the static force on the progression per
period. It can be deduced from Fig. 10(a) that a better progression can be achieved
for a smaller excitation frequency. Here a number of values of the dynamic am-
plitude was considered, and the monotonically decreasing curves indicate higher
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penetration rates for larger amplitudes. From Fig. 10(b), it is seen that the larger the
dynamic and static force are, the larger the progressions per period are obtained.
Figure 10(c) shows that the progression reaches a maximum value at some certain
values of static force and close to this maximum the periodic solution breaks down.
The parts of the curves represented by dash lines are calculated using the same al-
gorithm, however for these values of static force the motion detected is not periodic.

Fig. 10 Progression per period as a function of a frequency ω for ξ = 0.01, b = 0.15; b
dynamic force a for ω = 0.1, ξ = 0.01; c static force b for for ξ = 0.01, ω = 0.1. Adopted
from [61]



Engineering Applications of Non-smooth Dynamics 225

2.3 Separation of Bounded Oscillatory Motion from Drift [43]

The investigated system exhibits a non-stationary motion, which means that the dis-
placements of the mass and the slider are unbounded. In addition, the dynamics
of this system is very complex ranging from different types of periodic motion to
chaos [46]. These facts rise some difficulties in analysing the system dynamics in
a standard way. A simple co-ordinates transformation was proposed in [43], which
resolved the problem, and it is described below.

We introduce a new system of co-ordinates (p,q,v) instead of (x,z,v):

p = x− v, (24)

q = z− v.

The main aim of this transformation is to separate the oscillatory motion of the
system from the drift. In the new co-ordinates system, p and q are displacements
of the mass and the slider top relative to the current position of the slider bottom v.
We will demonstrate that the introduction of the new co-ordinates allows to study
a non-stationary motion shown in Fig. 11(a) as independent bounded oscillations
depicted in Fig. 11(b) and a dependent on them drift shown in Fig. 11(c).

Fig. 11 Time histories of a drifting displacement of the mass (solid line) and the slider
bottom (dash line); b bounded displacement of the mass p = x− v; and c progressive dis-
placement of the slider bottom v. Adopted from [43]

The equations of motion for each phase can be rewritten as follow:

No contact
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p′ = y,

y′ = acos(ωτ+ϕ)+ b, for p < q + g, (25)

q′ = − 1
2ξ

q,

v′ = 0.

Contact without progression

p′ = y,

y′ = −2ξ y−q + acos(ωτ+ϕ)+ b, for p = q + g and 0 < 2ξ y + q < 1,

q′ = y, (26)

v′ = 0.

Contact with progression

p′ = − 1
2ξ

(q−1),

y′ = acos(ωτ+ϕ)+ b−1, for p = q + g and 2ξ y + q ≥ 1, (27)

q′ = − 1
2ξ

(q−1),

v′ = y +
1

2ξ
(q−1).

As can be seen by closer examination of Eqs. (25), (26) and (27), the first three
equations of each set describing the mass and slider top motions do not depend
on the displacement of the slider bottom, v. Therefore, there is no influence of the
progression v on the bounded system dynamics. On contrary the motion of the slider
bottom depends on the mass velocity and the displacement of the slider top (see the
last equation of Eqs. (27)), hence the progression (drift) can be determined once the
oscillatory mass and the slider top motions are known.

The equations of motion describing bonded oscillations are linear for each phase,
and therefore the global solution can be constructed by stitching the local solutions
for each phase at the points of discontinuities (non-smoothness) in the same way as
it was done for the unbounded system. The set of initial values (τ0; p0,y0,q0) defines
in which phase the system will operate. If p0 < q0 + g, it will be No contact phase.
For p0 = q0 + g, it will be Contact without progression phase if 0 < 2ξ y0 + q0 < 1
or Contact with progression phase if 2ξ y0 + q0 ≥ 1. When the conditions in the
current phase fail, the next phase begins, and the final displacements and velocity
for the preceding phase define the initial conditions for the next one.

The progression v(τ) can be calculated separately if the dynamics of the bounded
system (p,y,q) is known (i.e. the sequence of the phases and the initial conditions
for them). By solving the forth part of Eqs. (25), (26) and (27), we learnt that during
the No contact and Contact without progression phases the progression does not
change its value and is equal to
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v(τ) = v0. (28)

The progression during the Contact with progression phase can be calculated as

v(τ) = v0 + p0 −g−1+(p0 −g−1)exp

(
− τ− τ0

2ξ

)
+y0(τ− τ0)+

b−1
2

(τ− τ0)2

− a

ω2 [cos(ωτ+ϕ)−cos(ωτ0 +ϕ)+ω(τ − τ0)sin(ωτ0 +ϕ)] . (29)

The introduced co-ordinate transformation allows to study dynamics of the systems
with drift in the same way as systems exhibiting bounded oscillations. Once the
drift is subtracted from the oscillatory motion the standard nonlinear dynamics tools
including the cell-to-cell mapping method [26] can be deployed to find co-existing
attractors and their basins. For example, an evolution of the strange attractor and
co-existing periodic orbits under increasing frequency ω is shown in Fig. 12 for
a = 0.3, b = 0.1, ξ = 0.1. The presented basins of attractions were constructed
using Dynamics software [65] adopting the following colour coding. The strange
chaotic attractor and its basin are marked in orange and yellow respectively. The
period four motion and its basin are coloured in black and purple. Red colour marks
the attractor for blue basin, and green colour marks the attractor for pink basin. All
presented cases have fractal boundaries of attractions. As can be seen from Fig. 12
co-existence of two (Fig. 12(a) and 12(d)) and three (Fig. 12(b), 12(c), 12(e) and
12(f)) attractors were found for this set of parameters.

2.4 Conclusions

In this section we presented the study of a drifting oscillator as an effective model for
a vibro-impact moling system. The detailed mathematical modelling of the drifting
oscillator was presented and the developed model was calibrated by the experiments.

The undertaken nonlinear dynamics analysis suggests the best progression rates
are achieved for a period one motion, which means the period of response is equal to
the period of excitation. Based on this finding a semi-analytical method to determine
the best progression rates was developed. The parametric studies unveiled the best
progression can be obtained for: (i) the ratio between the dynamic amplitude and
static force around 2 and (ii) low excitation frequencies when compared with the
natural frequency of the penetrated media.

To simplify the analysis further, a special coordinate transformation was pro-
posed in order to separate the bounded oscillations of the impacting mass from the
drifting motion. This transformation allows to use the standard nonlinear dynam-
ics tools to analyse the dynamics of the bounded motion first and then reconstruct
the drift (progression). After applying this transformation, the basins of attractions
were calculated for the bounded system, and a number of co-existing solutions were
observed for the higher excitation frequency.
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Fig. 12 Evolution of basins of attraction [43] for a = 0.3, b = 0.1, ξ = 0.1; a ω = 1.4, b
ω = 1.45, c ω = 1.56, d ω = 1.58, e ω = 1.60 and f ω = 1.70

3 Nonlinear Dynamics Caused by Fatigue Crack Growth
[18, 15, 16, 19, 17]

The main aim of this section is to study the effects of fatigue crack growth on the
dynamic responses of engineering components and structures [18, 15, 16, 19, 17].
Due to the fact that the dynamic responses of a standard cracked specimen are
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often constrained by the kinematics of the forcing mechanisms in the conventional
fatigue-testing machines, the natural response of the cracked specimen cannot be
easily obtained. Therefore, a novel fatigue-testing rig was designed and built as
detailed in [15, 16]. This novel rig consists of two base-excited oscillators, one po-
sitioned above and the other below a Single-Edge-Notched Beam (SENB) specimen
and being excited by an electro-dynamic shaker. The main operating principle of the
rig is that inertial forces generated by the oscillators act on the specimen, in which
crack opens and closes. The rig was modelled mathematically as a two mass and
one mass system, and the non-smoothness in these systems comes from the opening
and closing of a fatigue crack.

3.1 Fatigue-Testing Rig and Experimental Set-Up [16, 19]

The fatigue-testing rig as shown in Fig. 13 consists of two base-excited oscillators,
which are positioned above and below a SENB specimen. Each mass sandwiches a
pair of leaf springs, which are also sandwiched and bolted on tower 1. These two

pneumatic cylinder 1

pneumatic cylinder 2

mass 1

mass 2

tower 2

tower 1

base

specimen support

proximity sensor probe

leaf springs

mass 2
accelerometer

specimen

mass 1 accelerometer
force transducer

base accelerometer

Fig. 13 Fatigue-testing rig [19] developed at the Centre for Applied Dynamics Research of
the University of Aberdeen
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pairs of leaf springs prevent the masses from rotating during oscillations, hence, the
line of action of the applied force is perpendicular to the neutral axis of the speci-
men. The stiffness of the leaf springs can be adjusted by sliding tower 1 along the
slot on the base. The specimen is held by supports at both ends, which are adjustable
(by sliding along the slot on the base) to accommodate a range of specimen lengths.
The specimen is then in turn held in place on the supports by a means of loading
pins.

During experiments, both oscillators are kept in contact with the specimen by
the aid of the pre-loads from the pneumatic cylinders. In addition, the pneumatic
cylinders are used to set the prescribed mean load on the specimen by appropriately
adjusted pressures at the top and the bottom. With this loading arrangement fatigue
testing of positive (tension), negative (compression) or zero mean stresses can be
carried out.

The test rig has been mounted on an electro-dynamic shaker which provides the
base excitation causing the inertial forces of both oscillators to be generated and to
act on the specimen. During the downward motion, the inertia of mass 1 exerts a load
on the specimen causing the crack to open and the inertia of mass 2 is responsible for
closing the crack during the upward motion. The amount of inertial force induced
on a specimen is controlled by the adjustment of amplitude and frequency of the
base excitation. The excitation waveform used to drive the shaker can be periodic or
aperiodic (quasi periodic, chaotic or stochastic).

In the present studies, samples were made out of aluminium alloy 2024-T351
with the mechanical properties and chemical composition given in Tables 1 and 2,
respectively. For all experiments, the same sample type, SENB, was used as shown
in Fig. 14 having a width and thickness of W = 20mm and B = 10mm, respectively.
The size of the notch was 5mm long and 1.5mm wide, and the loading span was
270mm.

The rig was mounted on the electro-dynamic shaker, and the base excitation was
controlled by the data acquisition unit using Labview. The accelerations of the base
(ẍb), mass 1 (ẍm1 ), and mass 2 (ẍm2 ), were measured by calibrated accelerometers. A

Table 1 Material properties for aluminium alloy 2024-T351 [19]

Property Value
Tensile strength 454MPa
Yield strength 317MPa
Young’s modulus 72.4GPa
Density 2780kg/m3

Table 2 Chemical composition for aluminium alloy 2024-T351 [19]

AL Si Fe Cu Mn Mg Cr Zn Ti
93.63 0.09 0.21 4.06 0.47 1.37 0.01 0.14 0.02
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20mm

10mm

270mm

Fig. 14 Geometry of a Single-Edge-Notched Beam (SENB) specimen [19]

signal from each accelerometer and an output of each force transducer ( fc1 and fc2 )
were passed through a charge amplifier and monitored on an oscilloscope before
being captured on the data acquisition unit. A schematic of the measurement block
diagram is shown in Fig. 15.

The signal of the proximity sensor which represents the relative displacement (zs)
between the specimen and the base was passed through a 1kHz low pass filter to re-
move the high frequency noise. The output of the low pass filter was then connected
to a power supply before being registered on the data acquisition unit. Finally, the
signal from the ACPD crack growth monitor was fed to the data acquisition unit via
a power amplifier and an oscilloscope.

In addition to measuring the relative displacement between the test specimen and
the base, the proximity sensor was also used to set the dynamic load amplitude of
the specimen. For these reasons, the proximity sensor was calibrated to obtain the
displacement versus the sensor output voltage and the load versus the sensor output
voltage relationships. During the calibration procedure the central position of the
specimen was displaced by a known distance and, at each increment, the output
voltage of the proximity sensor was recorded.

To complete the calibration procedure, the compliance of the cracked specimen
was evaluated. The total compliance, Ctot , as a function of crack length of a through-
thickness cracked beam can be calculated as [3]

Ctot = Cnc +Cc, (30)

where Cnc is the compliance in the absence of a crack and Cc is the additional com-
pliance due to the crack. For the case of a three-point loaded crack-free beam, the
compliance, Cnc, is given as,

Cnc =
L3

span

48EI
, (31)
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Fig. 15 Experimental layout of the fatigue-testing device for inducing dynamic loading [19]

where Lspan is the loading span, E is Young’s modulus, I is the second moment of
area
(
BW 3/12

)
, B is the thickness and W is the width of the beam. The compliance,

Cc, of the three-point loaded SENB for any value of span-to-width ratio (e.g. β =
Lspan/W ) larger than 2.5 has been developed by Guinea et al. [25] in the following
form

Cc =
c1(α)+βc2(α)+β 2c3(α)

EB
, (32)

where

c1(α) = −0.378α3 ln(1−α)+α2 0.29 + 1.39α−1.6α2

1 + 0.54α−0.84α2 ,

c2(α) = 1.1α3 ln(1−α)+α2−3.22−16.4α+ 28.1α2 −11.4α3

(1−α)(1 + 4.7α−4α2)
,

c3(α) = −0.176α3 ln(1−α)+α2 8.91−4.88α−0.435α2 + 0.26α3

(1−α)2(1 + 2.9α)
,
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α = a/W is the crack ratio and a is the crack length. Substituting Eqs. (31) and (32)
into Eq. (30), and rearranging, the load versus sensor output voltage relationship as
a function of crack ratio is obtained:

P =

G f

1000
×Vso

L3
span

48EI
+

c1(α)+βc2(α)+β 2c3(α)
EB

, (33)

where G f is the gain factor (displacement versus sensor output voltage relationship
as obtained from above), Vso is the sensor output voltage and P is the load. It is

worth noting that
G f

1000
×Vso represents the deflection of the specimen.

A typical test was conducted in the following manner. Before a specimen was
pre-loaded, an initial value of the proximity sensor was offset to zero. The amplitude
of the proximity sensor output voltage corresponding to the load amplitudes acting
on the bending specimen was calculated using Eq. (33). The excitation frequency
was set to a value of interest and the base amplitude was varied gradually until
the amplitude of the output voltage from the proximity sensor coincided with the
calculated value.

3.2 Experimental Results [16]

To investigate the interactions between vibrations and crack growth by experimental
means an extensive experimental fatigue test programme was conducted. Fatigue
tests were carried out on SENB specimen shown in Fig. 14 and described earlier.

An example result of the measured time histories with the dynamic shaker driven
by a sinusoidal waveform is shown in Fig. 16, where the base acceleration (Fig.
16(a)), absolute acceleration of mass 1 (Fig. 16(b)), relative displacement of the
SENB specimen (Fig. 16(c)) and dynamic force between pneumatic cylinder 1 and
mass 1 (Fig. 16(d)) are presented. For this particular test, the sample was subjected
to a mean load of 100N and an amplitude of 100N. Examining time histories of Figs.
16(b) and 16(c), it is evident that the existence of a growing fatigue crack affects the
dynamic response of the system, by breaking the symmetry of both acceleration and
displacement with respect to their equilibrium positions. Fig. 17 shows the exper-
imental time histories with the shaker driven by a chaotic waveform. The chaotic
signal was obtained from the response of a forced Duffing oscillator. The test sam-
ple was subjected to zero mean load, in which the fatigue crack was opened and
closed (depending on the phase of oscillations) during vibrations. A close scrutiny
of the time histories (Fig. 17) shows that the pattern of the responses (Fig. 17(b))
are very similar to the base excitation (Fig. 17(a)).

The load parameters given in Table 3 were selected to compare the fatigue life
of the specimen for the effects of mean load and load amplitude under constant
amplitude loading.

The excitation frequency of all tests was fixed at 20Hz. Since in our tests ape-
riodic loading will be used (e.g. Fig. 17), instead of having a typical abscissa of
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Table 3 Loading parameters for harmonic excitation fatigue test

Test name Mean load Load amplitude R ratio Time to fracture
(N) (N) (secs)

hl0(78.5) 0 78.5 -1 39801
hl0(100) 0 100 -1 9191
hl0(273.5) 0 273.5 -1 1319
hl100(100) 100 100 0 1628
hl150(50) 150 50 0.5 2288
hl150(100) 150 100 0.2 547
hl200(50) 200 50 0.6 2037
hl200(100) 200 100 0.33 331

number of cycles, excitation time was used. The crack growth curves for the effect
of mean load are depicted in Fig. 18, and for the effect of load amplitude are shown
in Figs 19 and 20.

For the same load amplitude of 100N on each curve (Fig. 18), the fatigue life
decreases as the mean load increases. In Fig. 19, when the load amplitude increases
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Fig. 16 Time histories [16] under harmonic excitation: (a) base acceleration, (b) mass 1 ac-
celeration, (c) specimen displacement and (d) dynamic force between pneumatic cylinder 1
and mass 1.
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Fig. 18 Fatigue crack length [16] versus time for fixed load amplitude of 100N and with
mean load of (a) 0N, (b) 100N, (c) 150N and (d) 200N
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Fig. 19 Fatigue crack length [16] versus time for fixed mean load of 0N and with load am-
plitude of (a) 78.5N, (b) 100N and (c) 273.5N
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Fig. 20 Fatigue crack length [16] versus time: fixed mean load of 150N for load amplitude
of (a) 50N and (b) 100N

the fatigue life decreases for the same mean load of 0N applied on each curve. A
similar trend can be found for a fixed mean load of 150N in Fig. 20. The time to
fracture starting from a pre-cracked length of 6.4mm for each test are given in the
last column of Table 3. Time to fracture is longer for test hl150(50), which has a
lower load amplitude but a higher mean load when compared to test hl100(100) (in
which both tests have identical maximum load of 200N). A similar trend has been
found for tests hl150(100) and hl200(50) where both tests have the same maximum
load of 250N. Hence, it is not sensible to compare fatigue life by the maximum load,
but rather by the mean load and load amplitude.
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Fig. 21 Fatigue crack length [16] versus time for mean load of 0N: (a) Duffing excitation and
(b) harmonic excitation
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Fig. 22 Fatigue crack length [16] versus time for mean load of 150N: (a) Duffing excitation
and (b) harmonic excitation

The fatigue life of SENB specimen is compared between harmonic and chaotic
excitations for the same amount of elastic energy generated in the specimen. Prac-
tically, an equal amount of power was used to drive the dynamic shaker for both
excitations (harmonic and chaotic). The dominant frequency for the Duffing wave
is 20Hz (an example of the Duffing wave is shown in Fig. 17(a)). The excitation
frequency for harmonic wave is also 20Hz. Figs 21 and 22 show the crack growth
curves for the specimen subjected to mean load of 0N and 150N, respectively. On
both figures, the crack curves for harmonic loading are plotted using squares and
for chaotic loading uses circles. Referring to Fig. 21, for the same amount of en-
ergy the time to fracture for harmonic excitation requires 4 times more than chaotic
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excitation. A similar trend can be seen in Fig. 22 when the specimen is subjected
to a mean load of 150N, where the fatigue life of the specimen under harmonic
excitation is 56 times longer than chaotic excitation. These results indicate that for
the same amount of energy pumped in into a specimen chaotic excitation is much
more damaging than harmonic. The main reason for a much shorter fatigue life with
specimen undergoing chaotic excitation is that the loading contains high frequency
oscillations (see Fig. 17a).

3.3 Two Mass Model [18, 19]

The experimental rig shown in Fig. 13 can be described by a physical model de-
picted in Fig. 23, where the mass m1 is attached to two springs and two dashpot
dampers, in which kLs1 and cLs1 represent stiffness and damping of the top leaf
spring, respectively, and kp1 and cp1 are stiffness and damping of the top pneumatic
cylinder. The mass m2 is attached to the base in the same way as mass m1. Here,
kLs2 and cLs2 represent the stiffness and damping of the bottom leaf spring, kp2 and
cp2 are the stiffness and damping of the bottom pneumatic cylinder. All springs are
assumed to be linear and the dampers are assumed to be linearly viscous. Masses
of all springs and dampers are neglected. To ensure that both masses are kept in
contact with the specimen during operation, the pneumatic forces P1 and P2 act on
masses m1 and m2, respectively. The system is excited harmonically from the base
with amplitude Ab and frequencyΩ .
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Fig. 23 Two masses model of the fatigue-testing rig [19]

Due to the fact that the operating frequency range is much lower than the funda-
mental frequency of the crack-free specimen, its inertial effects affecting the dynam-
ics of the entire rig are considered to be negligible. As a consequence, the crack-free
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sample is modelled as a discrete linear spring ks with a viscous damping coefficient
cs. As can be seen in Fig. 23, the model of the specimen comprises of a rigid mass-
less beam attached to two massless springs of 0.5ks stiffness each together with two
massless dashpot dampers of 0.5cs viscous damping each.

Elastic deformations at the point of contacts between the pneumatic cylinders
and the surface of the specimen were assumed. The introduced contact stiffnesses
ksc1 and ksc2 as shown in Fig. 23, are much larger than the stiffness of the specimen
ks. These springs are needed to determine the change from Contact and No contact
phases.

Due to the pneumatic forces (P1 and P2) and also the gravitational forces (m1g and
m2g), the specimen is loaded from the top and the bottom by ksc1zst

sc1 and −ksc2zst
sc2,

respectively, where
zst

sc1 = xst
m1 − xst

s , zst
sc2 = xst

m2 − xst
s

and, xst
m1, xst

m2 and xst
s are the static displacements of masses m1, m2 and the specimen,

respectively.
Depending on the pre-loading forces (P1 + m1g and −P2 + m2g), the fatigue rig

may operate in one of the following phases: (i) Full contact of both masses with the
specimen, (ii) Partial contact where the mass m1 lost contact while the mass m2 is in
contact with the specimen, (iii) Partial contact where the mass m2 lost contact while
the mass m1 is in contact with the specimen, and finally (iv) No contact where both
masses lost contact with the specimen. When both masses are in contact with the
specimen (Phase (i)), the relative displacements of the masses, zm1 and zm2, and the
specimen, zs, are oscillating in phase. In addition, if ksc1 and ksc2 are equal and also
if the springs and the dampers that are attached to mass m1 are identical to those
on m2, then for the considered system the displacements of masses m1 and m2 are
equal, zm1 = zm2. For Phase (i) the equations of motion are

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1 + ksc1)zm1 − ksc1zs = m1AbΩ 2 sin(Ω t),

csżs +(ks + ksc1 + ksc2)zs − ksc1zm1 − ksc2zm2 = 0, (34)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2 + ksc2)zm2 − ksc2zs = m2AbΩ 2 sin(Ω t).

For Phase (ii) to occur, the following inequality zm1 < (zs − zst
sc1), has to be satisfied

and the force acting between m1 and the specimen needs to vanish; ksc1(zm1 − zs +
zst

sc1) = 0. Hence the equations of motion are as follows

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1)zm1 + kLs1xst
m1 = P1 + m1g

+m1AbΩ 2 sin(Ω t),
csżs +(ks + ksc2)zs − ksc2zm2 + ksx

st
s − ksc2zst

sc2 = 0, (35)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2 + ksc2)zm2 − ksc2zs = m2AbΩ 2 sin(Ω t).
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For Phase (iii) to occur, zm2 > (zs− zst
sc2) has to be satisfied and the forces acting be-

tween m2 and the specimen needs to vanish; ksc2(zm2 − zs + zst
sc2) = 0. The equations

of motion are

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1 + ksc1)zm1 − ksc1zs = m1AbΩ 2 sin(Ω t),

csżs +(ks + ksc1)zs − ksc1zm1 + ksx
st
s − ksc1zst

sc1 = 0, (36)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2)zm2 + kLs2xst
m2 = −P2 + m2g

+m2AbΩ 2 sin(Ω t).

Finally, for Phase (iv) to occur, zm1 < (zs − zst
sc1) and zm2 > (zs − zst

sc2) have to be
satisfied simultaneously. The equations of motion are

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1)zm1 + kLs1xst
m1 = P1 + m1g

+m1AbΩ 2 sin(Ω t),
csżs + kszs + ksx

st
s = 0, (37)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2)zm2 + kLs2xst
m2 = −P2 + m2g

+m2AbΩ 2 sin(Ω t).

The following simplifying assumptions were made

m1≈m2 = m, cLs1≈cLs2 = cLs, kLs1≈kLs2 = kLs, ksc1≈ksc2 = ksc.

The equations of motion, Eqs. (34)-(37), are now non-dimensionalised by introduc-
ing the following non-dimensional variables

τ = ωLst, X1 =
zm1

Ab
, X2 = X

′
1 =

˙zm1

AbωLs
, X3 =

zs

Ab
, X4 =

zm2

Ab
,

X5 = X
′
4 =

˙zm2

AbωLs
, Xb =

xb

Ab
= sin(ηLsτ),

and parameters

ωLs =

√
kLs

m
, ξLs =

cLs

2mωLs
, ωs =

√
ks

m
, ξs =

cs

2mωs
, ωp1 =

√
kp1

m
,

ξp1 =
cp1

2mωp1
, ωp2 =

√
kp2

m
, ξp2 =

cp2

2mωp2
, λ1 =

√
kp1

kLs
, λ2 =

√
kp2

kLs
,

ϑ =
√

ks

kLs
, ε =

kLs

ksc
, δ1 =

xst
m1

Ab
, δ2 =

xst
m2

Ab
, Δ1 =

zst
sc1

Ab
, Δ2 =

zst
sc2

Ab
,
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γs =
xst

s

Ab
, ηLs =

Ω
ωLs

, f1 =
P1 + mg

mAbω2
Ls

, f2 =
P2 −mg

mAbω2
Ls

,

where ′ denotes d/dτ .
Eqs. (34) to (37) are transformed to a set of the first order differential equations

which can be written for each phase as
Phase (i)

X
′
1 = X2,

X
′
2 = −

(
1 +λ 2

1 +
1
ε

)
X1 − (2ξLs + 2ξp1λ1)X2 +

1
ε

X3 +η2
Ls sin(ηLsτ),

X
′
3 =

1
2εϑξs

X1 −
(

1
εϑξs

+
ϑ

2ξs

)
X3 +

1
2εϑξs

X4, (38)

X
′
4 = X5,

X
′
5 =

1
ε

X3 −
(

1 +λ 2
2 +

1
ε

)
X4 − (2ξLs + 2ξp2λ2)X5 +η2

Ls sin(ηLsτ).

Phase (ii)

X
′
1 = X2,

X
′
2 = −(1 +λ 2

1 )X1 − (2ξLs + 2ξp1λ1)X2 − δ1 + f1 +η2
Ls sin(ηLsτ),

X
′
3 = −

(
1

2εϑξs
+
ϑ

2ξs

)
X3 +

1
2εϑξs

X4 +
Δ2

2εϑξs
− ϑγs

2ξs
, (39)

X
′
4 = X5,

X
′
5 =

1
ε

X3 −
(

1 +λ 2
2 +

1
ε

)
X4 − (2ξLs + 2ξp2λ2)X5 +η2

Ls sin(ηLsτ).

Phase (iii)

X
′
1 = X2,

X
′
2 = −

(
1 +λ 2

1 +
1
ε

)
X1 − (2ξLs + 2ξp1λ1)X2 +

1
ε

X3 +η2
Ls sin(ηLsτ),

X
′
3 =

1
2εϑξs

X1 −
(

1
2εϑξs

+
ϑ

2ξs

)
X3 +

Δ1

2εϑξs
− ϑγs

2ξs
, (40)

X
′
4 = X5,

X
′
5 = −(1 +λ 2

2 )X4 − (2ξLs + 2ξp2λ2)X5 − δ2 − f2 +η2
Ls sin(ηLsτ).
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Phase (iv)

X
′
1 = X2,

X
′
2 = −(1 +λ 2

1 )X1 − (2ξLs + 2ξp1λ1)X2 − δ1 + f1 +η2
Ls sin(ηLsτ),

X
′
3 = − ϑ

2ξs
X3 − ϑγs

2ξs
, (41)

X
′
4 = X5,

X
′
5 = −(1 +λ 2

2 )X4 − (2ξLs + 2ξp2λ2)X5 − δ2 − f2 +η2
Ls sin(ηLsτ).

To obtain a more elegant and compact formulation, we used the Heaviside step func-
tions to describe the piecewise linear nature of the considered system by defining a
set of switch functions G3 and G4,

G3 = G3(X1,X3) = H(X1 − (X3 −Δ1)),
G4 = G4(X3,X4) = H(−X4 +(X3 −Δ2)). (42)

In Eq. (42), when m1 loses contact with the specimen, X1 < (X3 −Δ1), the function
G3 is equal to 0. When m2 loses contact with the specimen, X4 > (X3 −Δ2), the
function G4 is equal to 0, otherwise G3 and G4 are equal to 1. The equations of
motion that describe all the possible phases are:

X
′
1 = X2,

X
′
2 = −(1 +λ 2

1 )X1 − (2ξLs + 2ξp1λ1)X2 − G3

ε
(X1 −X3 +Δ1)− δ1 + f1

+ η2
Ls sin(ηLsτ),

X
′
3 =

G3

2εϑξs
(X1 −X3 +Δ1)+

G4

2εϑξs
(−X3 + X4 +Δ2)

− ϑ
2ξs

X3 − ϑγs

2ξs
, (43)

X
′
4 = X5,

X
′
5 = −(1 +λ 2

2 )X4 − (2ξLs + 2ξp2λ2)X5 − G4

ε
(−X3 + X4 +Δ2)− δ2 − f2

+ η2
Ls sin(ηLsτ).

Equation (43) was used to compute the dynamic responses including the one
shown in Fig. 24 where four phases of motion can be clearly observed for the system
with a specimen without a crack. The displacements of mass 1, X1, and mass 2, X4,
are plotted by thick solid and dashed lines, respectively. The displacement of the
specimen, X3, is plotted in dotted line.

Referring to Fig. 24(b), at the instant when m1 hits m2 both masses are kept in
contact with the specimen for a very short time (labelled as Phase(i)). After this short
period of light impact, due to the energy transfer between m1 and m2, m2 starts to
separate while m1 still follows the trajectory of the specimen (labelled as Phase (iii)).
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Fig. 24 Time histories [19] computed for ηLs = 3, ξLs = 0.00255, ξs = 0.002, ξp1 = 0.4,
ξp2 = 0.4, λ1 = 2, λ2 = 2, ϑ = 7.828, ε = 0.002012, f1 = 3.75, f2 = 3.75. Thick solid line
represents X1, dotted line represents X3 and dash line represents X4
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When m1 moves upwards to the vicinity of the equilibrium point, Phase (iv) begins.
In this phase, the displacement of the specimen decays and remains stationary as at
the equilibrium position. When the position of m2 coincides with the position of the
specimen Phase (ii) occurs, in which m2 moves in phase with the specimen while
m1 is still away from the specimen.
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A comparison between numerical and experimental results is shown in Fig. 25.
The theoretical time histories for the base acceleration X

′′
b is shown in Fig. 25(a);

the accelerations of mass 1 X
′′
1 (thick solid line) and mass 2 X

′′
4 (thin solid line) are

depicted in Fig. 25(c). The displacements of mass 1 X1 (thick solid line), mass 2
X4 (thin solid line) and of the specimen X3 (dotted line) were plotted on the same
graph as shown in Fig. 25(e). The numerical integrations were performed with zero
initial conditions using the following values of the system parameters: ηLs = 2.5,
ξLs = 0.00255, ξs = 0.002, ξp1 = 0.4, ξp2 = 0.4, λ1 = 4.36, λ2 = 4.36, ϑ = 7.828,
ε = 0.002012, f1 = 5.44, f2 = 3.52. The experimental time histories acquired are
depicted in Figs. 25(b), (d) and (f). The excitation frequency and amplitude used for
this experiment were 19.15Hz and 2.8mm, respectively. In these figures, Fig. 25(b)
is the base acceleration ẍb, Fig. 25(d) depicts the relative accelerations z̈m1 (thick
solid line) and z̈m2 (thin solid line), and Fig. 25(f) shows the relative displacements
zm1 (thick solid line), zm2 (thin solid line) and zs (dotted line). The relative displace-
ments of m1 and m2 were obtained by a double numerical integration of the relative
accelerations, z̈m1 and z̈m2, respectively of Fig. 25(d). It can be concluded from Fig.
25 that a good qualitative and quantitative agreement between the theoretical and
the experimental results was obtained.

3.4 Reduction of Two Mass Model to a Single Degree-of-Freedom
System [18, 19]

The pre-loading forces from the pneumatic cylinders can be set to keep both masses
and the specimen always in contact. In this case the two masses system shown in
Fig. 23 can be described by Eq. (38). Consequently the model can be reduced to a
single degree-of-freedom by introducing the following variables,

y1 =
X1 + X4

2
, y2 =

X2 + X5

2
, y3 = X3, z1 =

X1 −X4

2
, z2 =

X2 −X5

2
,

and assuming that
λ1 = λ2 = λ , ξp1 = ξp2 = ξp.

Using the new variables Eq. (38) can be re-written as follows

y
′
1 = y2,

y
′
2 = −

(
1 +λ 2 +

1
ε

)
y1 − (2ξLs + 2ξpλ )y2 +

1
ε

y3 +η2
Ls sin(ηLsτ),

y
′
3 =

1
εϑξs

y1 −
(

1
εϑξs

+
ϑ

2ξs

)
y3, (44)

z
′
1 = z2

z
′
2 = −

(
1 +λ 2 +

1
ε

)
z1 − (2ξLs + 2ξpλ )z2.
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As can be seen from Eq. (44), the first three equations do not depend on variable z,
while the last two are independent of variable y. Hence, two independent systems
have been obtained and they can be solved separately. Assuming that X1 = X4 and
X2 = X5, we have z1 = z2≡0, which means that the displacements and the velocities
of both masses are equal. Furthermore, for the present system, ksc � kLs and thus
when ε→0, it has been assumed that the relative displacements and velocities of the
springs ksc1 and ksc2 are negligible. For this case, the displacements of both masses
and the specimen will be equal. Therefore, the two mass model given in Fig. 23 can
be simplified to a single degree-of-freedom model as shown in Fig. 26.
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Fig. 26 Simplified single degree-of-freedom model [19]

Consequently, the dynamics of both masses can be described by the following
equation of motion

Mz̈M + cMżM +(kM + ks)zM = MAbΩ 2 sin(Ω t), (45)

where,

zM =
zm1 + zm2

2
= zm1 = zm2, M = m1 + m2,

cM = (2cLs + cp1 + cp2 + cs), kM = (2kLs + kp1 + kp2).

Transforming Eq. (45) into the non-dimensional first order differential equations,
we have

y
′
1 = y2,

y
′
2 = −(1 +κM)y1 −2ξMy2 +η2

M sin(ηMτ), (46)
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whereby the non-dimensional parameters are defined as,

τ = ωMt, ωM =

√
kM

M
, ξM =

cM

2MωM
, κM =

ks

kM
, ηM =

Ω
ωM

,

where ′ denotes d/dτ .
As was demonstrated above, when both masses are in contact with the specimen,
the set of equations that represent the model in Fig. 23 can be simplified from five
first order equations ( Eq. (44)) to just two (Eq. (46)).

3.5 Stiffness of a Cracked Beam [19]

Many investigations have been conducted to study the nonlinear effects due to dis-
continuous stiffness characteristics. For example externally forced piecewise linear
oscillators were studied theoretically by Shaw and Holmes [51], and experimentally
by Wiercigroch et al. [62] and Sin and Wiercigroch [53]. Obtained results in [51, 62,
53] revealed complex dynamics including existence of periodic, subharmonic and
chaotic motion. The bilinear or piecewise oscillators have also been used to model
the dynamic behaviour of cracked structures [66, 27, 2, 28, 9, 10, 20, 52, 6, 1]. How-
ever, the work carried out in [66, 27, 2, 28, 9, 10, 20, 52, 6, 1] assumed a stationary
fatigue crack, in which, the restoring force of the cracked structure has a stiffness
characteristic as shown in Fig. 27(a). In the present work, taking into account a grow-
ing fatigue crack, the stiffness of the bending specimen decreases as a function of
crack length and time when crack opens. For a completely closed crack, the stiffness
of a crack-free specimen is assumed. The bilinear piecewise smooth restoring force
of this behaviour is shown in Fig. 27(b) for different lengthes of the crack. The main
rationale behind the assumption is that, unless the remaining material at the front of
the crack tip starts to yield, the decrease of the bending specimen stiffness is small
even though a significant fatigue crack has propagated. Furthermore, Gudmundson
[24] experimentally showed that the effect of the closing crack has a small influence
on the natural frequencies, and therefore, making the assumption justified.
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Fig. 27 Stiffness characteristics of the specimen [19]
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The stiffness of the specimen with a closed crack assumed as a simply supported
beam can be calculated from the formula

kcl
s =

48EI
L3

span
. (47)

When a crack opens, the stiffness kop
s can be computed from Eq. (33), which after a

simple rearrangement can take the following form

kop
s =

1

L3
span

48EI
+

c1(α)+βc2(α)+β 2c3(α)
EB

, (48)

where all parameters are as defined for Eq. (33). kop
s decreases in term of crack

length, a, which is modelled by an exponential function of time t, [18]

a = ao + a1exp

(
t −a2

a3

)
, (49)

where the constants ao, a1, a2 and a3 are obtained from experiments. Eq. (49) is
used to calculate the crack-depth ratio α = a/W in the functions c1(α), c2(α) and
c3(α) of Eq. (48).

During our fatigue tests, the two oscillating masses of the fatigue rig were kept in
contact with the specimen at all time. A model that represents the full contact case
was already presented in Fig. 26 and its equation of motion is given by Eq. (45).
Referring to Fig. 26, for crack opening, the kinematic condition, (zM + xst

M) > 0,
must be satisfied, and for crack closing, (zM + xst

M) ≤ 0. After including the static
forces into Eq. (45), the resulting equation was transformed to a set of two non-
dimensional first order differential equations,

y
′
1 = y2,

y
′
2 = −(1 +κM)y1 −2ξMy2 − (ρ+κM)γM + fM +η2

M sin(ηMτ), (50)

where

ρ =
2kLs

kM
, fM =

P1 + Mg−P2

MAbω2
M

,

and γM = xst
M/Ab. A Heaviside function H(y1 + γM), which is equal to 1 for crack

opening and 0 for crack closing is used to model the piecewise linear stiffness char-
acteristics κM in Eq. (50), in which

κM = H(y1 + γM)κop
M +(1−H(y1 + γM))κcl

M, (51)

where

κop
M =

kop
s

kM
, κcl

M =
kcl

s

kM
.
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Fig. 28 Phase portraits obtained for 0N mean load and load amplitude of 274N [19]; a the-
oretical 3-dimensional, b theoretical 2-dimensional, c experimental 3-dimensional and d ex-
perimental 2-dimensional

A three dimensional and a two dimensional phase portraits generated from Eq.
(50) representing the dynamic responses of a specimen under a growing breath-
ing crack (crack opens and closes) are depicted in Figs. 28(a) and (b), respectively.
The smallest to the largest orbits correspond to the growing crack ratio, α of 0.32,
0.5, 0.7 and 0.9, respectively. All orbits form close loops indicating period one
motion with clearly visible piecewise linear nature of the dynamic responses (see
Fig. 28(b)). This is due to the fact that when fatigue crack propagates, the stiffness
of the specimen decreases when the crack opens, and hence, causes a larger ampli-
tude of oscillations. In addition, the trajectories at different crack length follows the
same path as the crack closes (point A to B in Fig. 28(b)), which confirms that the
stiffness during the crack closure remains constant. These theoretical results were
validated by the experimental phase portraits as shown in Figs. 28(c) and d.

3.6 Strange Attractor [18]

The behaviour of the system was simulated using the one mass model and the re-
sults are shown in Figs. 29 and 30. Fig. 29 presents a crack growth curve obtained for
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ξM = 0.014, ηM = 1.1475, kcl
s = 14.327, kop

s = 4.245×10−3(20−a)3 [18]. As can
be seen from Fig. 29 it takes a significant time for a crack to be initiated and to
start propagating. To monitor the behaviour of the system, Poincaré maps for the
system with the specified crack length were constructed and they are superimposed
on the crack growth curve in Fig.29. As can be seen from this figure, while the crack
length remains around 5.0 mm, the system response is stable period one motion. As
the crack growths, the system response is changing and at a significantly larger
crack length it becomes chaotic (for example, shown strange attractors have been
identified at crack length of 12.09 and 13.03 mm). As the crack increases further, a
period four response was obtained at a crack length of 13.4 mm.

To observe the behaviour of the system due to the growing fatigue crack transient
Poincaré maps shown in Fig. 30 were also constructed. In contrast to the standard
Poincaré maps, these pictures do not reflect the steady response of the system, but
give a number of snap-shots showing different dynamic responses under a growing
crack. As can be seen from Fig. 30(a) when the crack length is smaller than 10.7 mm
(τ < 900,514), the response of the system remains period one and the location of
the attractor is changing with time and the growing crack in the direction shown by
the arrow. This periodic regime eventually changes into a chaotic regime for a rather
short time and then, when the crack length is about 12.0 mm, the system responds
with period two motion for some time as shown in Fig.30(b). Again the arrows
on the plot show how the location of the attractor is changing with the growing
time. Later for τ ≈ 915,662 we can distinguish period three motion (Fig.30(c)), for
τ ≈ 928,100 a period two motion (Fig.30(d)) and for τ ≈ 936,903 a period two
motion again (Fig.30(e)). All these regimes are separated by a chaotic behaviour of
the system and possibly other periodic regimes which the system experiences for
rather short periods of time. Thus the system with constant crack length allows us
to obtain the same responses (one for each particular crack length) as was observed
for the system with a growing crack.

3.7 Conclusions

In this section we presented a study on the nonlinear dynamics caused by a fatigue
crack growth in a beam specimen. Specifically we investigated the behaviour of the
system with a cracked specimen under periodic and chaotic loading, where the stiff-
ness of the specimen during crack opening and closing was modelled as piecewise
nonlinear function. The dynamic interactions in this system can be strongly nonlin-
ear resulting in aperiodic responses which have an influence on the fatigue crack
growth.

As conventional fatigue testing machine cannot easily generate a flexible aperi-
odic loading, we designed a new fatigue testing device, which was tested and mod-
elled. The conducted experimental study revealed that chaotic excitation is more
damaging for the system than the harmonic one as for the same amount of energy
pumped into a specimen, the fatigue life of the specimen subjected to the aperi-
odic loading was significantly reduced. We developed two mathematical models of
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Fig. 29 Crack growth curve with superimposed Poincaré maps calculated for the system
with the specified crack length obtained for ξM = 0.014, ηM = 1.1475, kcl

s = 14.327, kop
s =

4.245×10−3(20−a)3. Adopted from [18]

the testing device to forecast a fatigue crack growth in beam samples. Specifically
the experimental rig was modelled mathematically as a two mass and one mass
systems. Studying one mass system, we found that when the crack size reaches
a critical value, a strange attractor is born and this phenomenon can be used in
structural health monitoring. The numerical results compared with the experiments
show a good correspondence.

4 Regular and Chaotic Dynamics of a Rotor System with a
Bearing Clearance [33, 32, 30, 31, 45, 34]

In rotor systems a non-smoothness may appear due to bearing clearances. Phys-
ically speaking this results in piecewise nonlinear stiffness characteristics, which
can consequently lead to complex nonlinear behaviour including chaotic motion.
The appearance of such phenomena implies a possibility of an intermittent contact
between the components of the rotor system, which is difficult to predict. Rotor
systems with bearing clearances have been studied in the past, and some investiga-
tions concentrated primarily on the Jeffcott rotors. For example, Choy and Padovan
[5], Muszynska and Goldman [40], Childs [4] and Chu and Zhang [7, 8] examined
rubbing in rotating machinery. Ehrich [11] investigated spontaneous sidebanding,
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Fig. 30 Transient Poincaré maps [18] calculated for ξM = 0.014, ηM = 1.1475, kcl
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direction of appearance of new points with the growing time
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while Ganesan [21] looked at the stability analysis. Numerical investigations of the
model of the Jeffcott rotor with a snubber ring presented in [33] shown the exis-
tence of multiple attractors and fractal basins of attraction. Influence of the preload-
ing and viscous damping of the snubber ring was investigated in [31, 45], where
it was shown how the preloading of the snubber ring could stabilize the dynamic
responses. In this section we will discuss the work undertaken in the Centre for Ap-
plied Dynamics Research (CADR) at the University of Aberdeen. Specifically we
will focuss on the finding published in [33, 32, 30, 31, 45, 34].

4.1 Physical Model and Equations of Motion [45]

The most up to date two-degrees-of-freedom model of the rotor system with a
preloaded snubber ring developed by the CADR is shown in Fig. 31(a). During
operation the rotor of mass M makes intermittent contact with the preloaded snub-
ber ring and the excitation is provided by an out-of-balance rotating mass mρ . It
is assumed that contact is non-impulsive and that the friction between the snubber
ring and the rotor is neglected. Since the mass ratio between the snubber ring and
the mass of the rotor is small (for existing experimental rig it is equal to ≈ 1/17)
and the ratio between the stiffnesses of the snubber ring and the rotor is large, it
is assumed that the snubber ring itself is massless. The stiffness and the viscous
damping of the snubber ring are equal to ks and cs. The stiffness and the damping
of the rotor are respectively kr and cr. The springs supporting the snubber ring are
preloaded by Δx in horizontal and Δy in vertical directions respectively. There is a
gap γ between the rotor and the snubber ring. Also in the initial position, the centre
of the rotor is displaced from the centre of the snubber ring which is characterized
by the eccentricity vector ε .

The presented model can operate in one of two following regimes: (a) no con-
tact and (b) contact between the rotor and the snubber ring. In the latter regime, a
preloading makes the dynamics of the system more complicated as the force act-
ing from the snubber ring on the rotor depends on whether the displacement of the
snubber ring exceeds the preloadings (in one or both directions) or not. Thus the
following unique regimes can be distinguished as given in [45]:

I. No contact between the rotor and the snubber ring.
II. Contact between the rotor and the snubber ring, where the both displacements

of the snubber ring are smaller than the preloadings, i.e. |xs|� Δx and |ys|� Δy.
III. Contact between the rotor and the snubber ring, where the displacement of the

snubber ring in the horizontal direction is larger than the preloading, |xs| > Δx,
and in the vertical direction is smaller than preloading, |ys| � Δy.

IV. Contact between the rotor and the snubber ring, where the displacement of the
snubber ring in the horizontal direction is smaller than the preloading, |xs|� Δx,
and in the vertical direction is larger than preloading, |ys| > Δy.

V. Contact between the rotor and the snubber ring, where the displacements of the
snubber ring are larger than the preloadings, i.e. |xs| > Δx and |ys| > Δy.
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Fig. 31 a Physical model of the Jeffcott rotor with bearing clearance and b adopted co-
ordinate system [45]
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These four contact regimes were nesessary to be introduced as the results of our
earlier theoretical work [32, 31] not correlating well with the experiments [30].

The co-ordinate system adopted in this section is presented in Fig. 31(b). The
initial position of the rotor Or,0 differs from the initial position of the snubber
ring Os,0 by the eccentricity vector ε = (εx,εy). The vectors Rr = (xr,yr) and
Rs = (xs,ys) show the current positions of the rotor and the snubber ring, and
D =

√
(xr − xs)2 +(yr − ys)2 is the distance between the centres of the rotor and

the snubber ring at any given time. R =
√

x2
r + y2

r is the radial displacement of the
rotor.

For No contact regime the distance between the centres of the rotor and the snub-
ber ring is smaller than the gap, γ , that is R � γ , and the equations of motion for the
rotor and the snubber ring are

M ẍr + cr ẋr + kr(xr − εx) = mρ Ω 2 cos(ϕ0 +Ω t) ,
M ÿr + cr ẏr + kr(yr − εy) = mρ Ω 2 sin(ϕ0 +Ω t) , (52)

ksxs + csẋs = 0, ksys + csẏs = 0,

where ϕ0 is an initial phase shift and Ω is the shaft rotational velocity.
When D = γ , the rotor contacts the snubber ring and one of the specified contact

regimes occurs, for which the equations of motion can be written as

M ẍr + crẋr + kr(xr − εx)+ Fsx = mρ Ω 2 cos(ϕ0 +Ω t) ,
M ÿr + crẏr + kr(yr − εy)+ Fsy = mρ Ω 2 sin(ϕ0 +Ω t) , (53)

xs = xs(xr,yr), ys = ys(xr,yr).

Here the restraining force in the snubber ring Fs =
(
Fsx ,Fsy

)
, shown in Fig. 32,

varies for different contact regimes. The unknowns xs(xr,yr) and ys = ys(xr,yr) give
the current location of the snubber ring as a function of the current location of the
rotor. To determine these functions, the principle of minimum elastic energy of the
snubber ring is used.

It is worth noting that during any contact regime the distance between the centres
of the rotor and the snubber ring remains constant, D = γ , despite of the fact that
the force in the snubber ring, Fs may vary. In order to determine the moment when
the contact is lost the force Fs should be monitored. If the projection of this force Fs

on the vector n is positive (see Fig. 32), it is assumed that the rotor and the snubber
ring are still in contact. Thus the contact is lost when

n ·Fs � 0 or cos(ϕ−ψ) � 0, (54)

where

ψ = arccos

⎛
⎝ xr − xs√

(xr − xs)
2 +(yr − ys)

2

⎞
⎠ , ϕ = arctan

(
Fsy

/
Fsx

)
.
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Fig. 32 Position of the force in the snubber ring Fs relative to the normal vector to the surface
of contact [45]

Let us assume that the rotor and the snubber ring are in contact and the rotor
moves the snubber ring in the direction as indicated by an arrow in Fig. 33. The
forces F1, F2, F3 and F4 generated in the snubber ring as a result of the rotor and
the snubber ring contact can be described in vector form as

F1 =
{−j [ks (Δy + ys)+ csẏs] ,

0
ys > −Δy

ys ≤−Δy
(55)

F2 =
{

j [ks (Δy − ys)− csẏs] ,
0

ys < Δy

ys ≥ Δy
(56)

F3 =
{−i [ks (Δx + xs)+ csẋs] ,

0
xs > −Δx

xs ≤−Δx
(57)

F4 =
{

i [ks (Δx − xs)− csẋs] ,
0

xs < Δx

xs ≥ Δx
(58)

Now the force in the snubber ring Fs can be conveniently defined as the resultant
force taken with the opposite sign

Fs = −(F1 + F2 + F3 + F4) (59)

The formulae of this force for different regimes of operation are given in Table
4. These expressions for Fs should be substituted to Eq.(53) to obtain equations of
motion for different contact regimes and to Eq. (54) to determine the moments when
the contact is made or lost.
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Table 4 The force in the snubber ring Fs for various regimes

|xs| < Δx

|ys| < Δy
i [2ksxs +2csẋs]+ j [2ksys +2csẏs]

|xs| < Δx

|ys| ≥ Δy
i [2ksxs +2csẋs]+ j

[
sign (ys)ks

(
Δy + |ys|

)
+csẏs

]
|xs| ≥ Δx

|ys| < Δy
i [sign (xs)ks (Δx + |xs|)+csẋs]+ j [2ksys +2csẏs]

|xs| ≥ Δx

|ys| ≥ Δy
i [sign (xs)ks (Δx + |xs|)+csẋs]+ j

[
sign (ys)ks

(
Δy + |ys|

)
+csẏs

]

4.2 Location of the Snubber Ring and Contact Regimes

If the rotor and the snubber ring are in contact, the distance between their centres
remains constant and equal to the gap, so (xr − xs)2 +(yr − ys)2 = γ2. In order to
find the location of the snubber ring centre when it moves and is in contact with
the rotor, the following approach was adopted. It was assumed that the snubber ring
being in contact with the rotor finds its position through minimum energy principle.
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The potential (elastic) energy accumulated in the snubber ring at the position
(xs,ys) is equal to the work, which is spent to bring the snubber ring to this position:

E =
∫

(s)

Fs ·ds = −
xs∫

0

(F3 + F4) · idxs −
ys∫

0

(F1 + F2) · j dys (60)

Assuming that the dissipation of energy is negligible in comparison with the work of
elastic forces, the expressions for the energy of the snubber ring take forms listed in
Table 5. Consequently, the problem of finding the location of the snubber ring can be
reduced to determining the minimum of the energy E with the constraint condition
D = γ . This can be done using the Lagrange multipliers method by constructing
the Lagrange function L = E +λδ , where λ is Lagrange multiplier, E is the elastic
energy of the snubber ring, δ is the constraint function δ = (xr − xs)2 +(yr − ys)2 −
γ2. As E and δ are the continuous and differentiable functions, the current position
of the snubber ring (xs and ys) as a function of the of the current rotor position (xr

and yr) can be determined from the conditions of the extremum existence:

∂L
∂xs

= 0,
∂L
∂ys

= 0,
∂L
∂λ

= δ = 0 (61)

where L = E +λ
(
(xr − xs)2 +(yr − ys)2 − γ2

)
.

Then by minimising the energy E with respect to the constraint (xr − xs)2 +
(yr − ys)

2 = γ2, the functions xs (xr,yr) and ys (xr,yr) can be obtained (see Table 6).

Table 5 The elastic energy of the snubber ring E for various regimes

|xs| < Δx

|ys| < Δy
ksx2

s +ksy2
s

|xs| < Δx

|ys| ≥ Δy
0.5ks

(
(|xs|+Δx)2 −2Δ 2

x

)
+ksy2

s

|xs| ≥ Δx

|ys| < Δy
ksx2

s +0.5ks

((|ys|+Δy
)2 −2Δ 2

y

)
|xs| ≥ Δx

|ys| ≥ Δy
0.5ks

(
(|xs|+Δx)2 −2Δ 2

x

)
+0.5ks

(
(|ys|+Δx)2 −2Δ 2

y

)

As explained earlier the rotor can move either in or out of contact with the snub-
ber ring. When in contact, the force acting between the rotor and the snubber ring
depends on the strength of contact and four different regimes can occur. This can be
clearly explained using (xr,yr) plane, where each regime is mapped into an associ-
ated region as shown in Fig. 34. The boundaries between regions I, II, III, IV and
V are determined from the conditions listed at the top right quadrant in Fig. 34. The
equations describing these boundaries were developed and are graphically depicted



Engineering Applications of Non-smooth Dynamics 259

Table 6 The functions xs (xr,yr) and ys (xr,yr) for various regimes of operation

|xs| < Δx

|ys| < Δy
xs = xr

(√
x2

r +y2
r − γ
)/√

x2
r +y2

r ys = yr

(√
x2

r +y2
r − γ
)/√

x2
r +y2

r

|xs| < Δx

|ys| ≥ Δy
xs = sign (xr)

[
2ys(|xr |+Δx)

yr+ys
−Δx

] (yr −ys)2
(
(|xr|+Δx)2 +

(yr +ys)2
)

= γ2 (yr +ys)2

|xs| ≥ Δx

|ys| < Δy

(xr −xs)2
((|yr |+Δy

)2 +

(xr +xs)2
)

= γ2 (xr +xs)2
ys = sign (yr)

[
2xs(|yr |+Δy)

xr+xs
−Δy

]

|xs| ≥ Δx

|ys| ≥ Δy

xs = sign (xr)
[

(|xr |+Δx)(R̃−γ)
R̃

−Δx

]
,

R̃ =
√

(|xr|+Δx)2 +
(|yr|+Δy

)2 ys = sign (yr)
[

(|yr |+Δy)(R̃−γ)
R̃

−Δy

]

in Fig. 35, which shows one quadrant of (xr,yr) plane since the problem is symmetric.
A detailed explanation how all these regions were determined is given below.

Region I, or No contact region is realised inside the circle

x2
r + y2

r = γ2 (62)

When the rotor makes a contact with the snubber ring the contact regime II begins.
The boundaries of the corresponding region on (xr,yr) plane can be determined
as follows. The inner boundary is described by Eq. (62). The outer boundaries are
described by the conditions |xs| = Δx and |ys| = Δy. Substituting xs and ys as the
functions of xr and yr given in Table 6 for |xs| ≤Δx and |ys| ≤Δy, in the first quadrant
of (xr,yr) plane the outer boundaries are given by

yr =
xr

xr −Δx

√
γ2 − (xr −Δx)2, (63)

xr =
yr

yr −Δy

√
γ2 − (yr −Δy)

2. (64)

If the rotor pushes the snubber ring strongly enough in the horizontal direction,
i.e. its displacement, xs becomes larger than the preloading Δx, the regime III be-
gins. The inner (left) border for the region III is described by Eq. (63) and outer
(upper) border again is governed by the conditions |ys| = Δy. As this border is si-
multaneously the inner (lower) border for the region V, the explicit expression for
ys as function of xr and yr (Table 6) for |xs| > Δx and |ys| > Δy is used

xr = −Δx +
yr +Δy

yr −Δy

√
γ2 − (yr −Δy)

2. (65)



260 M. Wiercigroch and E. Pavlovskaia

I – No contact regime

II – ,s x s yx y� 	 � 	

III – ,s x s yx y
 	 � 	

IV – ,
s x s y

x y� 	 
 	

V – ,s x s yx y
 	 
 	

II

V

IV
V

IIIIII

IV

V

V

I
rx

r
y

Fig. 34 Regions of operation for a rotor system with a symmetrically preloaded snubber ring
in (xr,yr) plane [45]

IV

V

III

II

I

� �
22r

r r y

r y

y
x y

y
� � � 	

�	

� �
22r y

r x r y

r y

y
x y

y
�

�	
 �	 � � �	

�	

� �
22r x

r y r x

r x

x
y x

x
�

�	
 �	 � � � 	

�	

� �
22r

r r x

r x

x
y x

x
� � � 	

�	

2 2

r ry x� �

r
x

r
y

φ

Fig. 35 Regions of operation and their boundaries for the first quadrant of (xr,yr) plane [45]

In the same way for the rotor moving in the region IV, one can obtain the inner
(lower) border for the region IV as described by Eq. (64) and the outer (right) border
as

yr = −Δy +
xr +Δx

xr −Δx

√
γ2 − (xr −Δx)

2. (66)

Finally, the inner borders of the region V are described by Eq. (65) and (66).



Engineering Applications of Non-smooth Dynamics 261

4.3 Numerical Simulations

Numerical results presented in this section are to illustrate the use of the developed
analytical formulas and to show the influence of the preloading on the dynamics of
the rotor crossing different regions of operation. The calculations were performed
in the dimensionless domain by defining the following dimensionless variables

τ = ωnt, fs =
Fs

krγ
, x̂r =

xr

γ
, ŷr =

yr

γ
, x̂s =

xs

γ
, ŷs =

ys

γ
, vxs = x̂′s,

and parameters

η =
Ω
ωn

, ν1 =
cr

2
√

krM
, ν2 =

cs

2
√

krM
, ηm =

m
M

, ρ̂ =
ρ
γ

,

K̂ =
ks

kr
, ε̂x =

εx

γ
, ε̂y =

εy

γ
, Δ̂ x =

Δ x

γ
, Δ̂ y =

Δ y

γ
.

Fig. 36 Bifurcation diagrams showing the displacement of the rotor as function of frequency
x̂r(η) calculated for a Δ̂x = Δ̂y = 0; b Δ̂x = Δ̂y = 0.1; and ν1 = 0.125, ν2 = 0.002, K̂ = 30,
ηm = 0.0017, ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0. Adopted from [45]

In this study numerous bifurcation diagrams were constructed including the two
shown in Fig. 36 for the displacement of the rotor x̂r under varying the frequency
ratio η for the unpreloaded (Fig. 36(a)) and the preloaded (Fig. 36(b)) cases. The
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control parameter η was set to the leftmost value 2. Starting with zero initial condi-
tions first 300 cycles were disregarded to ensure that steady state solutions had been
reached. The displacement x̂r for the next 150 cycles was plotted. Then a small in-
crement was added to the control parameter and the procedure was repeated until the
control parameter reached the rightmost value η = 5. The parameters used in numer-
ical computations were as follows: ν1 = 0.125, ν2 = 0.002, K̂ = 30, ηm = 0.0017,
ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0. The preloading was set to zero in both directions
for Fig. 36(a), and Δ̂x = Δ̂y = 0.1 for Fig. 36(b). As can be clearly seen from Fig.
36 the preloading changes the bifurcation structure. Firstly, it shifts the bifurcation
points towards higher frequencies; dash lines in Fig. 36 point out such behaviour.
For instance, the period one observed in the beginning of the diagram bifurcates at
η = 2.165 for unpreloaded and at η = 2.213 for preloaded case. The bifurcation of
period four motion into period two motion moves from η = 2.717 to 2.824, and the
period two bifurcates into period four at η = 3.803 and 3.893 for unpreloaded and
preloaded cases respectively. Secondly, the introduction of the preloading changes
the character of bifurcations. For example, the period one motion marked by the
leftmost dash line, bifurcates into period three motion (see Poincaré map in Fig.
37(a)) for the unpreloaded case and into quasi-periodic motion (Fig. 37(b)) for the
preloaded case. Also the preloading changes the structure of the chaotic attractor
which be seen from Poincaré maps shown in Fig. 37(c) and 37(d) calculated at
η = 2.442 for the unpreloaded and the preloaded cases. Finally and most impor-
tantly the preloading introduces new bifurcations and new regimes. For example, an
additional bifurcation of the period two motion into quasi-periodic motion appears
at η ≈ 3.107 for the preloaded case.

The changes in dynamical behaviour are even more visible in (x̂s, v̂xs) plane. The
comparisons between trajectories of the snubber ring on the phase plane (x̂s, v̂xs) for
the system with and without preloading are presented in Fig. 38. The dynamics of
the snubber ring is shown in Figs. 38(a) and 38(c) for the case without preloading
(Δ̂x = Δ̂y = 0), and in Figs. 38(b) and 38(d) for the case with preloading (Δ̂x = Δ̂y =
0.05 and 0.03 respectively). As can be seen from the Fig. 38 in both cases, velocity
of snubber ring v̂xs experiences a jump at x̂s = 0, when the rotor hits the snubber
ring. For the systems with preloading there is an additional jump of velocity v̂xs ,
which appears at x̂s = Δ̂x. It can be also observed that the preloading reduces the
amplitude of the snubber ring vibrations.

4.4 Experimental Verification

The results of the mathematical modelling were verified on a purpose designed ex-
perimental rig. Figure 39(a) shows the rotor rig which comprises of essentially two
main parts, a rigid rotor (1), visco-elastically supported by four flexural rods (2) and
excited by the out-of-balance mass (3), and a snubber ring (4) also elastically sup-
ported using four compression springs. The rotor assembly consists of a steel rotor,
running in two angular contact bearings. Holes (5) were drilled and tapped in both
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Fig. 37 Poincaré maps v̂xr (x̂r) [45] calculated for a, c Δ̂x = Δ̂y = 0; b,d Δ̂x = Δ̂y = 0.1; and
ν1 = 0.125, ν2 = 0.002, K̂ = 30, ηm = 0.0017, ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0; and a η = 2.223,
b η = 2.181 and c, d η = 2.442

inner sleeves for the addition of imbalance weights. A pair of viscous dampers (6)
was attached to the rotor to provide the system with heavier damping.

Four flexural rods (2) are clamped symmetrically at one end to the outer bearing
housing and at the other to a large support block. The support block (7) is in turn
bolted to a large cast iron bed. The stiffness of the snubber ring is provided by four
compression springs (8), of much greater stiffness than that of the flexural rods. The
rotor ran inside the ring, with a radial clearance between the ring (4) and the outer
bearing housing (1). Two different outer rings were used in the experiments one
with a 0.5 mm and another with 0.75 mm gap.

The rotor is driven by a variable speed DC motor (9). The shaft speed monitoring
disc has a notch cut into it, which is aligned with the imbalance mass. As the notch
passes a light-emitting-diode optoswitch, a once-per-revolution phase signal is ob-
tained. The displacements of the rotor system are monitored by non-contacting eddy
current probes. The displacement and forcing frequency signals were collected by a
Labview data acquisition system with a custom written program controlling the rate
of sampling, the number of samples, calibration and computation of the rotational
frequency. The relative velocities of the rotor and the snubber ring ẋr, ẏr, ẋs and ẏs
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Fig. 38 Phase portraits v̂xs (x̂s) calculated for a Δ̂x = Δ̂y = 0; b Δ̂x = Δ̂y = 0.05; and ν1 =
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ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0. Adopted from [45]

were calculated from the displacements measured by the eddy current probes. The
data was collated on the computer, where it was scaled, plotted and analysed in the
form of Poincaré maps and bifurcation diagrams.

Now a sample of extensive experimental studies [30] conducted to verify the
mathematical model of Jeffcott rotor system with a preloaded snubber ring [45] is
presented here. The following values of the system parameters were chosen: the
rotor mass and mass of the out-of-balance were M = 9.7 kg and m = 0.028 kg
respectively. The combined stiffness of the rods supporting the rotor was krx = kry =
79 kN/m, which yields a natural frequency of 14.4 Hz. The snubber ring stiffness
was ks = 2354 kN/m and the equivalent viscous damping from the rods and the
dampers in the horizontal and vertical directions was the same and equal to crx =
cry = 1050 N/s. The out-of-balance radius, was ρ = 35 mm.

When constructing the bifurcation diagrams, the forcing frequency (the shaft ro-
tational speed) was varied between 7 and 30 Hz and for some tests up to 50 Hz to
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Fig. 39 Photograph of the experimental Jeffcott rotor [34]

examine the global bifurcations. The system responses were investigated by collect-
ing data with the forcing frequency steps of around 1 Hz. The continuation method
was applied, so for each frequency the initial conditions were taken from the previ-
ous examined frequency discarding about 400 cycles in order to ensure the steady-
state behaviour is reached.

The bifurcation diagrams presented in Fig. 40 give a comparison of the theoretical
(Fig. 40(a)) and the experimental (Fig. 40(b)) responses showing a good degree
of correspondence. In both figures a wide range of chaotic regimes is observed,
separated by period one, two and three regimes. Here chaotic attractors shown as
Poincaré maps were obtained for two different values of the frequency: f = 30.1
Hz, and f = 37.1 Hz keeping the remaining parameters constant: ks = 2354 kN/m,
krx = kry = 79 kN/m, crx = cry = 105 kg/s, cs = 3.5 kg/s, M = 9.7 kg, m = 0.028
kg, ρ = 35 mm, γ = 0.5 mm, εx = 0.5 mm, εy = 0 mm and Δx = Δy = 0.1 mm. It is
apparent that the theoretical and experimental attractors are topologically similar.

In the next presented experiment the eccentricity ratios were set up as εx = 0.45
mm and εy = 0.05 mm. The bifurcation diagrams constructed theoretically and ex-
perimentally for this case are presented in Fig. 41. Because only period one motion
regime exists in the interval f ∈ (30,50) Hz, the maximum forcing frequency for
these diagrams was reduced to 30 Hz. Comparing with the previously shown dia-
grams of Fig. 40, here the eccentricity change leads the transition from period one
motion to chaos through period doubling bifurcations. The experimental result of
Fig. 41(b) follows all the basic bifurcations observed theoretically such as the period
doubling bifurcation at f ≈ 14.74 Hz and the boundary crisis at f ≈ 26.1 Hz. Phase
portraits for the periodic and chaotic cross-sections were plotted for f = 17.6 Hz and
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Fig. 40 Bifurcation diagrams for the forcing frequency [30] a theoretical and b experimental;
ks = 2354 kN/m, krx = kry = 79 kN/m, crx = cry = 105 kg/s, cs = 3.5 kg/s, M = 9.7 kg,
m = 0.028 kg, ρ = 35 mm, γ = 0.5 mm, εx = 0.5 mm, εy = 0 mm and Δx = Δy = 0.1 mm
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Fig. 41 a Theoretical and b experimental bifurcation diagrams [34] for the forcing frequency
where ks = 2354 kN/m, krx = kry = 79 kN/m, crx = cry = 105 kg/s, cs = 3.5 kg/s, M = 9.7 kg,
m = 0.028 kg, ρ = 35 mm, γ = 0.5 mm, εx = 0.45 mm, εy = 0.05 mm and Δx = Δy = 0.04
mm
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Fig. 42 a, c Experimental and b, d theoretical phase portraits for periodic behaviour of the
Jeffcott rotor system in x− and y−directions for the cross-section f = 13.1 Hz. Adopted from
[34]

for f = 25 Hz showing also a good correspondence. Furthermore, the phase portraits
in the x and y directions for periodic trajectories were examined at f = 13.1 Hz and
are shown in Fig. 42. The experimental phase portraits in the x− and y−directions
are plotted in Fig. 42(a) and (c), and the corresponding to them theoretical graphs
are depicted in Fig. 42(b) and (d). As can be seen, again the theoretical predictions
correspond well to the experimental results.

Examining the system responses for different values of the forcing frequency
shown in Figs. 40 and 41, it is clear from the bifurcation diagrams and phase planes
that periodic regimes dominate at low and at high frequencies. The periodic regimes
for the low frequency are caused by insufficient excitation of the rotor and as a result
either there is no contact between the rotor and the snubber ring or just one contact
per period. As the forcing frequency is increased, and the amplitude of oscillations
rises the impacts between the rotor and the ring become stronger and the system
generates chaotic vibration. The periodic regimes observed for the high frequencies
have a wide range and lower amplitude of vibration than chaotic ones. In summary,
the experimental results correspond well with the theoretical predictions.

4.5 Conclusions

In this section a rotor system with bearing clearance was investigated in order to
gain understanding of its complex dynamic responses. First we discussed the math-
ematical model developed at the Centre for Applied Dynamics Research. The model
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which is a Jeffcott rotor with an elastic preloaded snubber ring was formulated as
a piecewise nonlinear system operating in one of five distinct regimes of opera-
tion: one of no contact and four of different types of contact. The boundaries be-
tween those regions were determined analytically and the equations of motion were
formulated.

The undertaken numerical simulation shows significant differences in the system
behaviour for the cases without and with preloading of the snubber ring. Specifi-
cally, the constructed bifurcation diagrams show the tendency to shift the bifurcation
points towards higher frequencies for the preloaded cases. It was also found that the
character of the bifurcations changes for the cases with preloading, and new bifur-
cations and regimes were observed in these cases. In particular, chaotic vibrations
within a wider range of excitation frequency were obtained. In addition, we found
that the periodic response tends to occur at the lower and higher frequencies.

The theoretical predictions were verified experimentally on the rig developed in
Aberdeen. A good degree of correlation was found for the wide range of system
parameters.

5 Conclusions

In this chapter we studied an important phenomenon of non-smoothness occurring
in dynamical systems, and very common in engineering applications. Mathemati-
cally, such systems can be described as piecewise smooth as suggested in Fig. 1.
Hence, their global solutions can be obtained by stitching local solutions, which are
easy to determine by standard methods. For example, a global solution for a piece-
wise linear smooth dynamical system often leads to a set of nonlinear algebraic
equations.

Three mechanical engineering systems were modelled and analysed in order to il-
lustrate an approach which has been developed by the Centre for Applied Dynamics
Research at Aberdeen to study non-smooth dynamical systems. Firstly, the vibro-
impact moling device was investigated in order to understand how to maximise its
progression rates. Applying the developed methodology, in this case periodic tra-
jectories were reconstructed as they go through three linear subspaces (No contact,
Contact with progression and Contact without progression), and using combination
of analytical and numerical methods the optimal range of the system parameters
was identified. The conducted analysis revealed that the best progression rates are
achieved for low frequencies and the ratio between the dynamic and static forces
around 2.

In the second considered application the influence of opening and closing of a
fatigue crack on the entire system dynamics was modelled and analysed. Specifi-
cally, we were interested in the aperiodic behaviour and therefore a novel apparatus
to induce aperiodic loading to a beam specimen with a fatigue crack was developed.
It was shown experimentally that fatigue life can be reduced few times if the sample
is loaded aperiodically. The experimental rig was modelled as two and one mass
system depending whether the contact between the loadings and the sample is lost
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or not. The analysis of the developed mathematical model shown that as a crack
grows linearly before reaching its critical value, the response of the system remains
periodic. When its size exceeds the critical value, the system behaviour becomes
chaotic and then the crack growth increases exponentially. This phenomenon can be
used in structural health monitoring.

Finally, we investigated a problem from rotordynamics, where nonlinear interac-
tions between the rotor and the snubber ring were studied. We discussed the most
up-to-date model and the experimental rig developed to understand the complex be-
haviour of this system. The rotor system can operate in one of five regimes, which
were determined analytically. The influence of the preloading of the snubber ring
on the system behaviour was investigated and the range of the system parameters
where chaotic vibrations occur was identified. The results obtained from the devel-
oped mathematical model confronted with the experiments shown a good degree of
correlation.
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(Aberdeen), N.Jaksic (Ljubljana), M.Boltežar (Ljubljana), M.P. Cartmell (Glasgow), R.D.
Neilson (Aberdeen), A.M. Krivtsov (St.Petersburg), C.Grebogi (Sao Paulo), K.C. Woo (Ab-
erdeen), A.A. Rodger (Aberdeen), B. de Kraker (Eindhoven), V.M.T. Sin (Aberdeen), K. Li
(Michigan).

References

1. Abraham, O.N.L., Brandon, J.: A piecewise linear approach for the modelling of a
breathing crack. In: 17th International Seminar on Modal Analysis, Leuven, Belgium,
pp. 417–431 (1992)

2. Actis, R.L., Dimarogonas, A.D.: Non-linear effects due to closing cracks in vibration
beams. In: 12th ASME Conference on Mechanical Engineering, Vibration and Noise,
Montreal, Canada, pp. 99–104 (1989)

3. Anderson, T.L.: Fracture mechanics - Fundamental and applications. CRC Press, Boca
Raton (1994)

4. Childs, D.W.: Fractional-frequency rotor motion due to nonsymmetric clearance effects.
Trans. ASME, Journal of Engineering for Power 104(3), 533–541 (1982)

5. Choy, F.K., Padovan, J.: Non-linear transient analysis of rotor-casing rub events. Journal
of Sound and Vibration 113(3), 529–545 (1987)

6. Chu, Y.C., Shen, M.-M.H.: Analysis of forced bilinear oscillators and the application to
cracked beam dynamics. AIAA Journal 30, 2512–2519 (1992)

7. Chu, F., Zhang, Z.: Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor
system supported on oil film bearing. International Journal of Engineering Sciences 35,
963–973 (1997)

8. Chu, F., Zhang, Z.: Bifurcation and chaos in a rub-impact jeffcott rotor system. J. Sound
Vibr. 210, 1–18 (1998)

9. Collins, K.R., Plaut, R.H., Wauer, J.: Detection of cracks in rotating Timoshenko shafts
using axial impulses. Journal of Vibration, Acoustics, Stress, and Reliability in Design,
Trans. ASME 113, 74–78 (1991)



Engineering Applications of Non-smooth Dynamics 271

10. Collins, K.R., Plaut, R.H., Wauer, J.: Free and forced longitudinal vibrations of a cantil-
vered bar with a crack. Journal of Vibration, Acoustics, Stress, and Reliability in Design,
Trans. ASME 114, 171–177 (1992)

11. Ehrich, F.F.: Spontaneous sidebanding in high-speed rotordynamics. Trans. ASME, J.
Vibr. Acoust. 114, 498–505 (1992)

12. Ebrahimi, S., Eberhard, P.: Rigid-elastic modeling of meshing gear wheels in multibody
systems. Multibody System Dynamics 16(1), 55–71 (2006)

13. Feeny, B.: A non-smooth Coulomb friction oscillator. Physica D 59, 25–38 (1992)
14. Filippov, A.F.: Differential equations with discontinuous right-hand side. American

Mathematical Society Translations 42(2), 199–231 (1978)
15. Foong, C.H.: Influence of fatigue crack growth on the dynamics of engineering compo-

nents and structures, PhD thesis, University of Aberdeen (2004)
16. Foong, C.H., Wiercigroch, M., Deans, W.F.: Novel dynamic fatigue-testing device: De-

sign and measurements. Measurement Science and Technology 17, 2218–2226 (2006)
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