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Abstract. This chapter is concerned with the problem of the large horizontal oscil-
lations induced on slender footbridges by the motion of pedestrians, a phenomenon
which involves the synchronization between the motion of walkers and that of
the bridge deck. We initially review the extensive technical and scientific litera-
ture, and then we focus on two models to detect numerically and analytically the
phenomenon. A continuous-time bridge-pedestrians model initially developed by
Strogatz et al. is improved to better understand some aspects of the underlying me-
chanical phenomena. We perform extensive parametric investigations by means of
many numerical simulations. This permits to highlight the parameters which mainly
affect the trigger and the development of the phenomenon of synchronous lateral
excitations, thus allowing a good understanding of the physical event and an evalu-
ation of the engineering reliability of the model. Then, in order to obtain analytical
instead of numerical predictions, a nonlinear discrete-time model based on an ap-
propriate 1D map is considered. It is able to provide a reliable value of the number
of pedestrians which trigger the synchronization, thus predicting the onset of insta-
bility which is also the onset of crowd synchronization. From a dynamical system
point of view, the main result is that the model highlights how the phenomenon can
be seen as a perturbation of a classical pitch-fork bifurcation, which is then shown
to be the underlying dynamical event.
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1 Introduction and Literature Review

In the last 10–20 years there has been a growing attention toward slender foot-
bridges by engineers and architects, also a consequence of renowned structures, such
as the London Millennium Bridge, built by worldwide reputation designers. Often,
footbridges are playing a central role in the urban renewal demanded by modern
society. It is clear that the beauty and elegance in the architectural concept must
spring from simplicity in the structural design, in order to achieve a sort of natural
harmony between the fairness of the structure, the physical configuration of the local
landscape and the social attractiveness and usefulness of the footbridge. Because of
all these social, aesthetic and technical requirements, the trend in footbridge design
is towards an increasing flexibility and lightness.

This tendency is supported by the fact that modern materials, thanks to both their
mechanical characteristics and their cost competitiveness, allow to consider a high
stress level and thus to conceive slender structures with small cross section and large
spans.

As a consequence, modern footbridges have small natural frequencies, and pos-
sibly have high sensitivity to dynamic loads induced by pedestrians. Excessive vi-
brations can be caused by resonance between pedestrian loading and one or more
natural frequencies of the structure. The reason is that the range of footbridge natural
frequencies, both vertical and lateral, often coincides with the dominant frequencies
of the pedestrians-induced load [54]: 1.4–2.4 Hz for pedestrian vertical forcing and
0.7–1.2 Hz for pedestrian lateral forcing. It is obvious that if footbridges are de-
signed for static loads only, they may be susceptible to vertical as well as horizontal
vibrations, thus confirming the necessity to pay attention to dynamic aspects with
a detailed analysis. As a matter of fact, very complex and partially unexpected dy-
namical phenomena may, and actually do, occur.

Several footbridges experiencing excessive lateral vibrations due to pedestrians-
induced loading have been reported in the last years; the most famous is the London
Millennium Bridge (a shallow suspension footbridge, Fig.1a) which experienced, on
its opening day, strong horizontal vibrations due to the synchronization of the pedes-
trians motion with the natural modes of the structure [12]–[16]. Other bridges which
suffered a similar problem are the Toda Park Bridge (a cable-stayed footbridge, best
known as T-Bridge) in Japan [34], [17], the Maple Valley Bridge (a great suspen-
sion footbridge, best known as M-Bridge) in Japan [34], the Solferino Footbridge
(a double arc steel structure, Fig.1b) in Paris [11] and the Alexandra Bridge in Ot-
tawa [12]. In all these cases, the natural frequency of the principal lateral mode was
mainly excited by pedestrians.

We can observe that the problem of the pedestrians-induced lateral vibrations oc-
curred on a range of different structural types (suspension, cable-stayed and steel
girder bridges) as well as on footbridges made of different materials (steel, com-
posite steel-concrete and reinforced and pre-stressed concrete) [54]. It is therefore
confirmed that a large enough crowd of pedestrians can induce strong lateral vibra-
tions on a footbridge of any structural form as well as of any material, although this
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requires the lateral mode to have a low enough natural frequency [12], approxi-
mately below 1.3 Hz and close to the range of 0.7–1.2 Hz typical of the pedestrian
lateral motion [54].

The theory behind pedestrians-induced lateral vibrations on footbridges is that
of synchronous lateral excitation [54], [12], [47]–[14]. People walking in a crowd
exhibit a random level of synchrony, and large enough crowds might produce lateral
forcing causing a bridge to vibrate laterally. This forcing is the sum of all lateral
forces applied to the bridge by the footsteps of each pedestrian. Even if the bridge
vibrations are initially very small, pedestrians tend spontaneously to walk in syn-
chrony with the bridge. This ensures an interaction with the bridge for each step
of the pedestrians. This instinctive behaviour causes the synchronized pedestrians’
footfall forces to be applied at the frequency of the vibration and with a phase such
as to increase the motion of the bridge, with each process pumping the other in
a sort of positive feedback loop [3]; the increase in oscillations amplitude causes
pedestrians to increase their lateral footfall forcing and their level of synchrony, by
following the movements of the deck in order to balance themselves [12]–[16], [31]:
the more the bridge moves, the more the crowd pushes it to move further.

It is recognized from observations that for potentially susceptible spans there
exists a critical number of pedestrians that will cause the vibrations to increase
suddenly to unacceptable levels. The nature of this problem, in terms of dynamic
response of the bridge, is clearly nonlinear (as it is for example confirmed by tests
performed on the London Millennium Bridge [12]): the oscillations are small until a
critical number of walking pedestrians Nc and then, due to the synchronization, they
increase rapidly until a final threshold. This number Nc is of practical engineering
interest and its reliable prediction is the final aim of all the theoretical studies.

Several research papers have recently investigated this topic, even if a standard
and generally accepted model of pedestrians-induced lateral dynamic loading and of
dynamical interaction with the bridge, especially in case of crowding, is missing and

Fig. 1 London Millennium Bridge a and Solferino Bridge in Paris b: two examples of foot-
bridges undergoing the phenomenon of synchronization induced lateral oscillations
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still under research. Zivanovic et al. [54] have performed a comprehensive review of
the existing literature on the topic until 2003, while an updated review can be found
in [51].

Early studies on pedestrians-induced vibrations of footbridges were carried out at
the end of the seventies by Blanchard et al. [6], Matsumoto et al. [29], and Wheeler
[53], but they concerned only the measurement and modelling of the vertical compo-
nent of pedestrian load on a motionless surface. It is worthy to note that Matsumoto
and co-workers first attempted to define the vertical dynamic load induced by a
crowd and to investigate its stochastic nature, but their approach did not account for
interaction with structure and could not describe synchronization.

To model pedestrians-induced lateral vibrations it is necessary to have some un-
derstanding of the mechanics which describes human walking, with special atten-
tion to the lateral component of the ground reaction force; therefore, some authors
(Bauby et al. [4], Belli et al. [5], Vaughan [50], Hof et al. [22], [23], Macdonald [28],
Trovato et al. [49]), especially in the area of biomechanical engineering, have re-
cently investigated this topic developing and reorganizing theories on bipedal walk-
ing, forcing and frequency of human footfall during walking and balance control.
The common observations we can draw from these researches are that: (i) locomo-
tion is the translation of the centre of gravity along a pathway requiring the least
expenditure of energy; (ii) walking biomechanical strategy is to minimize the risk
of falling; (iii) bipedal locomotion is generated through global real-time entrain-
ment of the neural system on the one hand, and the musculoskeletal system and
environment on the other. All these aspects obviously influence the gait pattern and
the ground reaction forces in the three directions: vertical, longitudinal horizontal
and lateral/transversal horizontal, and are useful to understand what happens when
we walk on a laterally moving surface.

Dallard et al. [12]–[16] have conducted a series of controlled crowd tests on the
Millennium Bridge and consequently they have proposed a load model based on an
empirical observation: during the transient, when bridge wobbling is growing up, the
crowd force can be assumed linearly dependent on the lateral oscillation velocity of
the deck; this means that pedestrians act like negative damping on the structure.
Also a formula has been obtained to evaluate the critical number of pedestrians; it
actually depends only on the modal damping of the bridge through a proportion-
ality constant which is strictly related to the specific real case-study (the Millen-
nium Bridge). This phenomenological approach assumes but does not explain the
observed synchronization effect, and cannot predict the steady state amplitude for
bridge motion, as it is due to not modelled nonlinearities.

Nakamura [33] has proposed an interactive forcing model analogous to the pre-
vious one, but which allows the schematization of the self-limiting nature of the
synchronization phenomenon and the prediction of the steady state amplitude. Also
this model is based on coefficients which have been estimated from experimental
tests [34], [17] and cannot easily be generalized to other footbridges.

Newland [36] has approached the problem by referring to the interaction phe-
nomenon between fluid flow and structures which is widely studied in wind en-
gineering (vortex-induced oscillations) and commonly known as lock-in [9], [43].
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His model includes the empirical assumption that the 40% of the pedestrians are
synchronized with bridge lateral frequency, independently on the amplitude of the
oscillations.

Fujino et al. [17] have adopted a model of harmonic forcing by empirically tuning
a synchronization parameter for the lateral vibrations of the T-Bridge (according to
their experimental data [17]). This model does not predict any sudden transition to
a vibrating state of the bridge but assumes a continuous increase in the vibration
amplitude as the number of pedestrians increases.

Roberts [38]–[40] has schematized the interaction between the pedestrians and
the footbridge assuming that synchronization occurs when the pedestrians motion is
larger than the bridge motion; from this critical condition, he obtains a limit number
of pedestrians.

Laboratory tests involving a single pedestrian walking on platforms or treadmills
forced to move laterally have been carried out by Dallard et al. [12] and McRobie
et al. [31] soon after the occurrence of the Millennium Bridge problem.

Ricciardelli and Pizzimenti [41], [42] have recently performed a systematic ex-
perimental campaign aimed at characterizing dynamically the lateral force exerted
by pedestrians on footbridges, both in case of still deck and in case of laterally
moving deck; deterministic and stochastic lateral loading models for the static case
have been provided and the bases for more sophisticated dynamic models includ-
ing crowd-structure interaction have been put. The mechanism of crowd synchro-
nization has been investigated only from the qualitative point of view, deferring its
quantitative study and modelling after further future measurements.

Blekherman [7] has explained the excessive lateral vibrations on the Solferino
Bridge in Paris on the basis of autoparametric resonance by using a double pendu-
lum model; the process of possible synchronization of pedestrian loading with the
relevant vibrational modes, which are nonlinearly coupled in the ratio 2:1 between
their frequencies, depends on the achievement of parametric resonance.

Piccardo and Tubino [37] have performed an interesting extensive critical analy-
sis of the excitation mechanisms identified in the literature and they have proposed a
new forcing model based on experimental tests carried out on harmonically moving
platforms [12], [42]: the force exerted by pedestrians is modelled as harmonic with
an amplitude depending on the deck lateral displacement, and a simple criterion
defining the limit pedestrian mass is introduced. They mainly ascribe to a mecha-
nism of parametric excitation the lateral sway motion induced by crowds in very
flexible, slowly damped footbridges, with a first lateral natural frequency around
0.5 Hz corresponding to a half of the first lateral walking frequency.

Very recently, Venuti et al. [52] have developed a first-order model based on the
mass conservation equation, in order to macroscopically describe the dynamics of
the crowd in the framework of hydrodynamic modelling: the crowd, considered as
pedestrian flow, is assumed to behave like a continuous compressible fluid. The
structural system is modelled by means of a generalized single degree of freedom
model. The two-way interaction between the crowd and the structure is studied.
This model permits to take into account the triggering of the lock-in and its self-
limited nature, previously explained only by Strogatz et al. [47]. The effects of two
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different kinds of synchronization, i.e. between pedestrians and structure and among
pedestrians, are introduced; the presence of different frequency components in the
overall force exerted by pedestrians is considered. Some parameters, used in the
formulation of the model, come from reasonable qualitative considerations about
pedestrian behaviour and they would require specific experimental tests to be
confirmed.

Bodgi et al. [8] have adopted a similar approach to simulate the mechanics of
synchronous lateral excitation induced by pedestrians on footbridges.

Strogatz et al. [47], [1] have been the first, up to our knowledge, to mathemati-
cally describe and predict the simultaneous growth of bridge movement and crowd
synchronization, an observation that was unexplained in previous models but that is
confirmed by analyses of video footages [2] recorded during overcrowding condi-
tions on lively footbridges [12], [17].

This continuous-time bridge-pedestrians model (called SAMEO in the following)
is particularly interesting for its contribution to the physical-mathematical explana-
tion of the underlying mechanical event, besides for the reasonable description of
the phenomenon itself. Moreover the model is quite simple in its formulation and
general in its application possibilities to any bridge at risk of synchronous lateral
excitation; obviously it includes some important simplifications which could affect
its predictions from a quantitative point of view. For this reason a consistent de-
tailed analysis can be worthwhile in order to evaluate the engineering reliability of
the SAMEO model, and is pursued in the first part of this chapter (Sect. 2).

Due to the large number of nonlinear equations, the analysis is numerical, and
is performed by means of a self-made code; extensive parametric investigations are
performed through wide numerical simulations and some modifications are intro-
duced with the aim of improving the understanding and the description of the main
aspects of the underlying mechanical phenomena. In particular the aim is to give a
deeper insight into the synchronization phenomena.

To overcome the limits of a completely numerical analysis, which is accurate
but not easy enough for ’immediate’ understanding of the involved phenomena, the
second main section of the chapter (Sect. 3) is dedicated to present and to analyze in
detail a nonlinear discrete-time model which allows to obtain analytical instead of
numerical predictions, and to give a dynamic interpretation of the synchronization
phenomenon. In this case the approach is therefore analytical by using the classical
tools of the discrete nonlinear dynamics.

Some concluding remarks (Sect. 4) about both models end this chapter, which is
completely dedicated to the synchronous lateral excitation phenomenon in slender
monodimensional civil structures; this is an example of both biological and mechan-
ical synchronization which can be cause of instability.

2 A Continuous-Time Model: The SAMEO Model

The SAMEO model [47]–[14] is able to describe the synchronization of pedestri-
ans motion with the lateral vibrations of footbridges, by adapting ideas originally
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developed to explain the collective synchronization of biological oscillators, such
as neurons and fireflies, or other nonlinear systems able to phase-lock to an external
periodic drive [44], [45]. The basic idea is just the observation that also human
walking is governed by unconscious rhythmic biological signals, so an analogy for
example with the rhythmic flashing of fireflies seems to be possible.

In the problem we are studying, the stimulus signal is given by the dynamic active
feedback between the two involved systems: the bridge and the crowd.

Here lateral synchronization is assumed to involve only one vibrational mode of
the structure; this hypothesis is true in non-pathological cases in which internal res-
onance conditions among different natural modes of vibration of the bridge itself do
not occur. This is acceptable, e.g., in the London Millennium Bridge case: the anal-
ysis of its vertical forces and lateral oscillations shows no correlation between such
quantities [12] and so internal resonance is not necessary to explain its lateral sway
motion. Moreover the pedestrian lateral excitation is supposed to have a dominant
frequency close to the bridge fundamental frequency, as it happens in most of the
real observed cases of wobbling footbridges. As a consequence it is sufficient to per-
form a mono-modal analysis, by projecting the equation of motion of the footbridge
on the relevant modal shape.

A footbridge span of length L, measured along the coordinate y, is modelled
as a linear mono-dimensional damped dynamical system. To obtain the reduced
order, single degree of freedom (SDOF) model, a modal analysis of the whole 3D
structure is performed in order to identify the eigenfunction ϕ(y) involving lateral
displacements and corresponding to a natural frequency f0 close to the range 0.7–
1.2 Hz typical of the pedestrian lateral excitation. Hence, the dynamics is projected
on ϕ(y) and the equation of motion along the selected lateral mode (usually the first)
is obtained (Fig.2):

MẌ(t)+ BẊ(t)+ KX(t) = Fped(t) , (1)

Fped(t) =
∫ L

0
Fp (y, t) ϕ (y)dy ≈ G∑N

i=1 sinΘi(t) . (2)

The overdots denote differentiation with respect to time t. X(t) is the generalized
displacement (amplitude) of the relevant lateral mode and M, B, K are the modal
mass, damping and stiffness, respectively. Fped(t) is the lateral modal force exerted
on the bridge by the pedestrians, projection of the forces on the relevant modal
shape, being Fp(y,t) the crowd-induced force per unit length. G is its amplitude and
Θi(t) is the phase in the walking cycle for each of the N pedestrians. It is assumed
thatΘi = 0 when the pedestrian’s left foot first touches the ground, andΘi = π when
the right foot is on the ground, interpolating for phases between these events (Fig. 3).
According to (2) the pedestrian load is approximated as sinusoidal with respect to
the pedestrians phases: it can be thought as the first term in the Fourier series of the
(obviously periodic) load function [48].
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Fig. 2 Mechanical model of the single mode dynamics of the bridge

The dynamical pedestrians-bridge interaction is introduced by assuming that

Θ̇i(t) =Ωi +CiA(t)sin(Ψ (t)−Θi(t)+α) . (3)

Therefore, the pedestrians are considered as limit-cycle phase oscillators with a ran-
dom distribution of native frequenciesΩi. Ci measures the pedestrians’ sensitivity to
bridge lateral vibrations and can be determined experimentally,α is a constant phase
lag. It is assumed α = π/2 in order to match the worst resonance condition in which
the instantaneous lateral excitation frequency is approximately equal to the natural
frequency of the bridge relevant lateral mode, Θ̇i/Ω0

∼= 1,Ω0 = 2π f0 =
√

K/M be-
ing the bridge natural (circular) frequency. A(t) andΨ(t) are the bridge vibrations
amplitude and phase (Fig. 3), which are defined by

X = AsinΨ , Ẋ =Ω0AcosΨ → A =

√
X2 +

Ẋ2

Ω 2
0

. (4)

The term f = CiAsin(Ψ −Θi +α), added to Ωi in (3), is chosen to be a function of
the bridge motion amplitude, of the bridge phase and of the walker phase through
a constant of proportionality. It is therefore evident that f has the effect of shifting
walkers to a phase closer to that of the bridge, thus modelling the active dynamical
bridge-pedestrians interaction and describing the natural tendency of the systems
to synchronize. In fact, when the phase difference (Ψ −Θi +α) is positive, i.e. the
stimulus is ahead in the cycle (Θi lagsΨ +α), f is globally positive and the pedes-
trian speeds up in an attempt to synchronize with the bridge. Conversely, when the
phase difference (Ψ −Θi +α) is negative, i.e. the stimulus is behind in the cycle
(Θi leadsΨ +α), f is globally negative and the pedestrian slows down his walking
frequency in order to lock to the bridge.
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Fig. 3 Definitions of X , A,Ψ andΘi

The constant of proportionality, which appears in f , is made of two terms which
take into account two different aspects: the effect of the oscillations amplitude and
the intrinsic capability of pedestrians to be affected by that amplitude. As A in-
creases, its influence on the pedestrian becomes stronger, according to the linear
relationship between f and A. The parameter Ci, on the other hand, quantifies the
effect on the pedestrian of the stimulus of amplitude A and phase Ψ , and in this
sense it acts like sensitivity to bridge motion.

In the absence of bridge-pedestrians interaction (Ci = 0) we have that Θ̇i =Ωi is
the governing equation for the walker dynamics [46], so that each pedestrian walks
unconditionally at his own natural constant frequencyΩi, which has a certain statis-
tical distribution across the population. Then,∑i sinΘi =∑i sin(Ωit) is a distribution
with zero mean value, and the bridge is practically still.

In general, from a biological point of view, it is realistic to consider a variation of
sensitivity among individuals in the population, and therefore a random distribution
of values Ci depending on a person’s age, size, health and so on; for sake of simplic-
ity, lacking a specific study in this direction in the literature, in the following it will
be used a single constant value for all walkers: Ci = C.

Finally it is worthy to note that the model is able to describe the real scenario
in which the number of people walking on the bridge deck varies with time: as a
new pedestrian enters the bridge, a new equation is added to the system; therefore
the number of equations in the model varies with time depending on the number
of pedestrians who are entering or leaving the bridge, so that the model can be
classified as a time varying system.

2.1 Parametric Investigations: Model Implementation and
Computational Aspects

The SAMEO model is governed by highly nonlinear ordinary differential equations;
therefore we have to solve them numerically. We use a self-made code which joins
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Fig. 4 Results of in situ tests on the north span of the Millennium Bridge (Arup figure from
[1], [35]): time histories of the number of walkers (staircase-like trace) and of the bridge deck
lateral acceleration

traditional numerical methods (the classical routines of Matlab© are used to numeri-
cally integrate the system of ODEs (1), (2) and (3) governing the phenomenon) with
self-developed algorithms aimed at capturing the main dynamical aspects. Despite
the generality of the model, we need data from a real case study and therefore we
refer to the Millennium Bridge, as it is the most famous case of wobbling footbridge
and also one of the most well-documented and studied in the literature. In fact, in
2000, during its temporary closure, researches were undertaken both through labo-
ratory tests on moving platforms (Imperial College and University of Southampton)
and in situ tests on the bridge itself (Arup), [12]–[16]. In particular, the latter allowed
determining the critical number of pedestrians necessary to destabilize a given span
of the bridge, which was found to be about 160 on the north span (Fig. 4).

Because the majority of published experimental data pertains to the fundamental
lateral mode of the north span, those numerical values are used as benchmark and
reference for our analysis: M = 113000 kg, B = 11000 kg/s, K = 4730000 kg/s2,
which imply ξ = B/2

√
MK = 0.0075 and Ω0 =

√
K/M = 6.47 rad/s, in turn

corresponding to 1.03 Hz. Furthermore, according to [47], we assume G = 30 N,
Ci = C = 16 m−1 s−1 and, as said, α = π/2.

We adopt for the native frequencies Ωi a Gaussian distribution (Fig. 5a) with
mean value 1.03 Hz (6.47 rad/s) and standard deviation 0.1 Hz (0.63 rad/s) [54]. The
initial phases (Fig. 5b) are supposed uniformly distributed in the interval [0,2π ].
We choose these phases randomly with the idea to reproduce the different moments
when each new individual enters the footbridge; these random constants are used
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180 pedestrians considered in our simulations
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Fig. 6 Number of walkers on the bridge a and amplitude of vibration b versus time

exclusively as initial conditions for numerically integrate the system of ordinary
nonlinear differential equations in the Monte Carlo simulations.

The initial position and velocity of the bridge are zero. Fig. 6 shows the pedes-
trians ramp and a typical plot of the oscillation amplitude: we consider a staircase
loading path in order to reproduce Arup test conditions on the Millennium Bridge
(see the upper staircase-like trace in Fig. 4) and the relevant results (see the lower
trace in Fig. 4).

For small crowds, the oscillation amplitude (Fig. 6b) as well as the bridge deck
lateral acceleration (Fig. 4) is near zero, with a fluctuating trend, as walkers are still
desynchronized and randomly phased. Then, as more and more people walk on the
deck, there is no hint of instability until the crowd reaches a critical size Nc, after
that wobbling and synchrony suddenly emerge simultaneously, as dual aspects of a
single instability mechanism.
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Fig. 7 Amplitude of vibra-
tion versus time for a first
group of 20 simulations
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The practical estimation of Nc from our simulations is made by an ad hoc nu-
merical procedure based on the identification of the onset time for the exponential
growth of the instability tc (see the following subsection 2.1.1): from the generic am-
plitude versus time curve (Fig. 6b), we determine this critical threshold tc, then with
this value we enter the staircase loading path graph and we read the corresponding
critical number of pedestrians Nc triggering the synchronization.

For the reference case we perform a Monte Carlo analysis with 200 simulations;
the results, in terms of crowd’s critical size Nc, are randomly distributed: we evaluate
its mean value Na = 155 and its standard deviation σN = 27.7. Our critical number
is practically coincident with the Arup’s results, and the predicted final amplitude
of the bridge motion is very close to the observed values of about 5–7 cm on the
opening day. For a reason of graphic readability we plot in Fig. 7 only a sample of
20 simulations, which is in any case visually representative of the global outcome
of the whole group of 200.

From Fig. 7 it clearly emerges that, despite the loading path is the same for all
the simulations, the response in terms of amplitude changes significantly: even if in
most simulations pedestrians synchronize, there are also some cases in which they
synchronize a little and others (only 3 in the sample of 20 simulations reported)
in which pedestrians do not synchronize at all in the considered time interval. The
variations from one run to the next depend on the initial values of Θi and on Ωi,
randomly assigned (Fig. 5) to pedestrians at each simulation; the consequence is a
dispersion of the critical values Nc, as confirmed by the quite large standard devia-
tion (σN = 27.7).

The results of Fig. 7 constitute the reference case with respect to which we de-
velop all the subsequent analysis.

In the following we perform 200 simulations for each tested case, in order to
obtain statistically reliable considerations, even if, as before, for readability reasons
we always plot only a sample of 20. For each group of simulations, the average
Na and the standard deviation σN of the critical numbers Nc are computed: they
summarize the outcome of the performed investigations.
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Fig. 8 Multi-phase linear regression: data points are divided into 3 segments on the x axis and
then a different straight line is fitted to each segment; the intersection points are not known a
priori

In order to perform an extensive parametric analysis, which is one of the aims of
this section, it is necessary to automate as much as possible the computation of Na

and σN . This is done in the next subsection.

2.1.1 Automatic Detection of Nc

To automatically detect the time tc for the onset of the instability, and consequently
the critical number Nc of pedestrians triggering the unwanted dynamical phenom-
ena, we develop a numerical technique to fit the oscillations amplitude versus time
curve, g(x), by a piecewise linear averaging curve. Actually, we use three straight
segments (Fig. 8), which are sufficient for our purposes. In fact, by observing the
SAMEO model results (Fig. 6 and Fig. 7), we can clearly identify three different
ranges, in each of them the data points having an approximately linear trend. This
three-linear regression is not so trivial, because it is, in fact, a nonlinear regression
problem due to the two unknown intersection points of the fitting segments; the
problem is continuous but not differentiable at those points and this messes up the
local linearization approach often used for weakly nonlinear problems. In partic-
ular, here we are interested in finding the intersection point between the first and
the second segment, as it corresponds to a reliable and automatic estimate of tc and
therefore, from the load path, of Nc.

The goal is to approximate our real rippled function g(x) with a tri-linear func-
tion f (3)(x) defined as follows (Fig. 8):
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f (3) (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y1

x1
x , for x < x1,

y1 +
y2 − y1

x2 − x1
(x− x1) , for x1 < x < x2,

y2 +
y f − y2

x f − x2
(x− x2) , for x2 < x.

(5)

We fix the first and the last point, respectively (0,0) and (x f ,y f ), as those of g(x),
so in Eq.(5) the unknown parameters are the four coordinates of the two intersection
points of the fitting lines: x1, y1, x2, y2. We determine them by minimizing the total
quadratic error between the original curve and our piecewise linear approximation:

ε (x1,y1,x2,y2) =

x f∫
0

(
g(x)− f (3) (x)

)2
dx ∝

M

∑
i=1

(
g
(

x(i)
)
− f (3)

(
x(i);x1,y1,x2,y2

))2
.

(6)
We underline that in the previous Eq. (6) we pass from the rigorous integral defi-

nition of total quadratic error to a discrete formulation, by simply integrating with
the trapeziums rule: M is the number of points, equally spaced in time, in which we
discretize the time-history. In the right hand side of (6) we omit to multiply for the
constant integration interval Δx because, when we minimize, it does not affect the
minimum point we are looking for.

To minimize the function ε with respect to the parameters x1, y1, x2 and y2 we
use the simplex method of Nelder and Mead [26], [18], which is a direct method
that does not use numerical or analytic gradients. From any ’initial’ guess of x1, y1,
x2 and y2 the algorithm runs and provides a ’minimum’ of the function. In our case
the parameters to initialize are only x1 and x2 since for sake of simplicity we choose
as initial guess y1 = g(x1) and y2 = g(x2). For particular situations the algorithm
can fail to converge or converge to a local minimum. When the global minimum
is not achieved, we solve the impasse by automatically (and randomly) changing
the initial guess. To improve the reliability of the results, we consider in any case
different initial guesses even when the solution does not show drawbacks.

This procedure, despite the thousands of function evaluations to determine the
optimum, is computationally efficient, and it takes only few seconds to give the
result. This aspect can be further improved if we filter the input data with a lowpass
filter and then resample the resulting smoothed signal at a lower rate; with this trick
we are also able to reduce the problem connected with multiple local minima. In
any case, for each group of simulations, a global visual supervision of the plotted
results is required in order to be sure of the correct prediction of Nc. In this sense
our code does not permit completely automated results.

Despite this limit, the method we use is able to detect in a sufficiently automatic
manner the number of pedestrians which trigger the synchronization, and it allows
us to perform a wide set of simulations with an acceptable CPU time, thus deriving
statistically reliable considerations.
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2.2 Numerical Simulations

We perform extensive parametric investigations with the following practical
motivations:

1. to test the robustness of the model;
2. to improve the understanding of some aspects of the underlying mechanical phe-

nomena (e.g. to give a deeper insight into the synchronization phenomena);
3. to increase the agreement of the model results to the effective behaviour of the

walkers, as observed in real conditions;
4. to highlight the role of the main parameters involved on the system dynamics.

We choose as parameters to be varied those which mainly affect the model behaviour
and which are sensitive with respect to the real situation to be modelled:

1. the initial phases and native frequencies for the walkers;
2. the constant phase-lag parameter α;
3. the amplitude of the pedestrian lateral forcing during walking;
4. the shape of the pedestrian loading wave;
5. the pedestrians’ sensitivity to the bridge motion, C;
6. the coherence of the model results with respect to an ‘inverse’ approach analysis;
7. the synchronization between pedestrians, D (to be introduced later);
8. the interaction between the two types of synchronization, through the tuning of

the respective parametric indicators C and D;
9. the effects of different loading paths, i.e. different modality and number of pedes-

trians introduced on the bridge deck per unit time.

We remark that we also introduce and test some modifications to the original
SAMEO model, maintaining unaltered its essence and plainness of description of
the physical event but improving its effectiveness. Our enhancements concern:

1. the addition of a further level of synchronization, between pedestrians;
2. a different, and more conservative, relationship between the amplitude of the

pedestrian lateral forcing and the amplitude of the bridge lateral vibrations, which
we determine according to experimental tests [12];

3. a more realistic square-type shape of the pedestrian loads on the bridge, accord-
ing to experimental evidences on treadmill [5].

2.2.1 Influence of Pedestrians Initial Phases and Native Frequencies

What happens if the pedestrians enter the bridge with some initial level of syn-
chrony, as it may occur in overcrowding conditions, or if they are a typologically
homogeneous group with native frequencies slightly spread around the mean value?

In Fig. 9 we analyze the influence of the initial conditions of the walkers on
the temporal course of the phenomenon: we assign random phases Θi uniformly
distributed in an interval [0,1] instead of [0,2π ] (see for comparison Fig. 5b), and
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Fig. 9 Effect of the initial level of synchrony among pedestrians: a phases distribution and b
amplitude of vibration versus time curves
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Fig. 10 Effect of the typological homogeneity level of the pedestrians: a native frequencies
distribution and b amplitude of vibration versus time curves

we keep all the other parameters unchanged with respect to the reference case. This
entails to admit an initial synchrony among pedestrians.

With these initial conditions, we obtain wobbling for an almost identical critical
value, Na = 160, which is affected by a similar dispersion, σN = 24.32. On the
other hand, if we compare the amplitude of vibration versus time curves reported
in Fig. 9b with those of the reference case (Fig. 7), we observe that substantial
differences do not exist. Here pedestrians enter the bridge next to the synchrony, so
their initial behaviour is less random than the previous one (Fig. 5b); but the point is
that they are synchronized among them, not with the bridge. Therefore, as they have
different native frequencies, after one step they will not be anymore synchronized,
and the phenomenon will proceed almost as in the reference case.

In Fig. 10 we analyze the influence of the intrinsic properties of the pedestrians:
we assign random native frequencies according to a Gaussian distribution with the
same mean value (6.47 rad/s), but with a smaller standard deviation (σΩ = 0.3 rad/s
instead of 0.63 rad/s) and we keep all the other parameters unchanged with respect
to the reference case.
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In general walkers tend to have a natural frequency of pacing that varies de-
pending on the height and weight of the individual, on his/her age, on the travel
purpose, on physical, social and psychological factors. Here we suppose that an
almost homogeneous group of pedestrians enter the bridge; this means they have
natural frequencies near the mean value for the population (1.03 Hz), which is near
the bridge resonant frequency. It is obvious that, in such situation, the synchrony
with the bridge lateral movements is fostered and sped up. In fact, as expected, we
obtain wobbling for a quite smaller critical value, Na = 84, which is affected by
a smaller dispersion, σN = 15.69. By observing the amplitude of vibration versus
time curves (Fig. 10b), we highlight that, unlike the other cases (Fig. 7 and Fig. 9),
in all the simulations pedestrians synchronize in a quite restricted time scale, inside
the considered time interval.

Since the reduction from Na = 160 (Fig. 9b) to Na = 84 (Fig. 10b) is very marked,
we conclude that the typological homogeneity degree of the crowd is a determining
factor both for the trigger point of instability and for the temporal probability of the
event to occur, while the initial level of synchrony among pedestrians does not affect
the onset of the phenomenon.

2.2.2 The Constant Phase-Lag Parameter α

The constant phase-lag parameter α is determined by a pedestrian’s desired phase
relationship with the moving surface. It is recognized that on a laterally moving
surface, the generic walking pedestrian tends to counterbalance the oscillations with
a snaking gait: this instinctive behaviour fosters the bridge lateral vibrations.

If we observe the typical variation of the dynamic amplification factor (DAF)
and of the phase angle (φ ) as a function of the frequency ratio β = Θ̇i/Ω0 (see
Fig. 11), we note that α = π/2 gives the worst-case scenario in which the bridge is
maximally destabilized because pedestrians drive it most ‘efficiently’, so that the re-
sulting prediction of the critical number of walkers is conservative. On the contrary
α = 0 corresponds practically to the ‘static’ case (DAF = 1) in which the synchro-
nized pedestrians are not effective in applying their force and in amplifying bridge
oscillations. Therefore α = π/2 is the correct value for human response to lateral
vibrations.

To confirm the previous interpretation we have reported in Fig. 12 the results
obtained for α = 0. We can observe that the bridge lateral vibrations remain in
the field of the little oscillations (in the order of mm): pedestrians are not able to
trigger wide lateral oscillations of the bridge, not even if we consider a longer time
of observation under the same maximum final value of pedestrian loading (Fig. 13).

2.2.3 Pedestrian Forcing Amplitude

In the previous simulations we have assumed G to be a constant independent of A, i.e.
independent of how much the bridge is wobbling. Its value (30 N) corresponds to the
mean amplitude of the lateral force by an average pedestrian during normal walking,
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Fig. 12 Number of walkers on the bridge a and amplitude of vibration b versus time for
α = 0
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Fig. 13 Number of walkers on the bridge a and amplitude of vibration b versus time for
α = 0; a longer time of observation under the same maximum final number of pedestrians is
considered here



On the Dynamics of Pedestrians-Induced Lateral Vibrations of Footbridges 81

Fig. 14 Lateral forcing
amplitude versus bridge
vibration amplitude (gait
function): experimental data
by Arup obtained at the
London Imperial College
tests (dots), Abrams’ model
(7) and our model (8)
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as experiments on a treadmill confirm [5]. It is known that the magnitude of this force
can increase when the pedestrian is on a laterally moving surface, because he widens
his stance and adopts a different gait in order to balance himself [12], [31], [4].

We consider this effect of changing gait by assuming a model of pedestrian force
proposed by Abrams [1] and motivated by the experiments of McRobie et al. [31]
(Fig. 14):

G(A) = (1/2)
(
Glow + Ghigh

)
+(1/2)(Glow−Ghigh) tanh [C2 (A−C1)] . (7)

Here Glow = 30 N and Ghigh = 60 N are the minimum and the maximum forcing am-
plitude; C1 = 1 cm and C2 = 10 cm−1 are the amplitude at which the force increases,
and the rate at which the force increases with the oscillation amplitude, respectively
[1].

Numerical results show that in this case the amplitude curves lift off for a number
of pedestrians, Na = 150, slightly smaller than that corresponding to constant G, but
the standard deviation is strongly reduced, σN = 14.65. Moreover, it is interesting
to note that the maximum final value of A is higher (14 cm against about 7 cm in
the reference case), according to the fact that the model is linear in the mechanical
part. We can then affirm that doubling G when oscillations reach only 1.3 cm, as it
happens with the expression (7), see Fig. 14, has the effect of doubling the bridge
final oscillation amplitude and of reducing the dispersion, while it does not affect
significantly the instability critical threshold (Fig. 15a).

We also implement a different and more conservative bilinear function G(A):

G(A) =
{

30 + 2500A, for A ≤ 0.016m,
70, for A > 0.016m.

(8)

This expression is chosen in order to overlay, for sake of security, the greatest pos-
sible number of laboratory tests’ data [12], as shown in Fig. 14. The simulations
provide a fairly lower critical number of pedestrians, Na = 130, and a larger standard
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Fig. 15 Amplitude of vibration versus time: simulations performed with G(A) according to
a Abrams’ model and b our model

deviation, σN = 24.28, according to the fact that the force applied to the bridge is
higher with respect to Abrams’ gait function (7). The same considerations of Eq. (7)
apply to the maximum final value of A (Fig. 15b).

Both the models assume G(A) increasing, more or less rapidly, until a certain
saturation threshold and then constant (Fig. 14); this trend is motivated by the obser-
vation that both the magnitude of the pedestrian lateral forcing and the phenomenon
itself are naturally self-limiting: in fact a human sensitivity limit to lateral vibrations
exists, after which pedestrians begin to have difficulty in walking and finally stop.

From Fig. 15 we also observe that incorporating in the model the dependence
G(A), with both the Eqs. (7) and (8), speeds up the time scale for the growth of
bridge oscillations towards the steady state, after the critical crowd size has been
exceeded.

2.2.4 Pedestrian Forcing Shape

In the original SAMEO model the pedestrian force is idealized as sinusoidal (2),
even though experiments on treadmill reveal a periodic trend more similar to a
square wave [5] (Fig. 16):

Fped,i = Gsign(sinΘi) . (9)

Our simulations show that in the case of square-type force (9), the phenomenon
triggers for a number of pedestrians Na = 125, smaller than that of the sinusoidal
wave case, while the standard deviation practically does not vary, σN = 24.55. The
maximum final value of A is fairly higher: about 8 cm (Fig. 17).

This behaviour was expected as for the square wave a higher force is applied to
the bridge (on the average the force is 1.41 times larger, since

∫ 2π
0 [sin(Θi)]2dΘi =

π while
∫ 2π

0 [sign(sin(Θi))]2dΘi = 2π ), thus strengthening the ’positive’ feedback
loop between synchrony and wobbling.
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Fig. 16 Pedestrian lateral forcing: a sinusoidal and b square-wave

Fig. 17 Amplitude curves
obtained in the case of
square-type force
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We can then conclude that the temporal shape of the pedestrian force plays a
more important role than the variation of G with A, being the decrement in the
critical crowd size more marked. Therefore, the square wave force shape is both
more realistic and more safe.

2.2.5 Pedestrian Sensitivity to Bridge Motion

The parameter C controls how fast a pedestrian, unconsciously, shifts the phase
of his walking cycle in response to the sideways oscillations of the platform on
which he is walking. There are both physical (related to its meaning of pedestrian
sensitivity) and mathematical reasons (related to its definition in (3)) to assume that
C is positive; in fact, since A is positive, the sine function in (3) is already able to
alter the instantaneous pedestrian frequency in the desired way, i.e. slowing down
the pedestrian if he is walking too early with respect to the bridge or speeding up
him otherwise.
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Fig. 18 Average critical number of pedestrians versus C: data points and fitted cubic curve

Apart from the previous one, we have no other overall information on C. In fact,
being the parameter which, in some sense, links the mechanical behavior of the
bridge, governed by the laws of the physics, with the human behavior of pedestrians,
which is not subjected to well-known and mathematically established governing
law, C is the most delicate parameter of the model, and actually the most difficult to
be determined; practically, it cannot be determined directly, but only indirectly by
comparing experimental and model outcomes. For this reason it is very important
to perform a parametric analysis with respect to C or, more precisely, to determine
how Na depends on C, beyond the value C = 16 m−1s−1 suggested by [47].

In Fig. 18 we report the average critical number of pedestrians corresponding to
values of C in the range 10− 100 m−1s−1: each point in the graph is the result, as
usual, of 200 simulations performed considering Arup loading path. The best (in the
least squares sense) cubic curve fitting the data is:

Na = −2.9×10−4×C3 + 7.6×10−2×C2 −6.7×C+ 240 . (10)

Values of C < 10 m−1s−1 are investigated but they are not plotted in Fig. 18, be-
cause in these cases the pedestrians are never able to synchronize and only small
oscillations are observed. In Fig. 19a we show a sample of 20 of the 200 simula-
tions performed with C = 10 m−1s−1: in only one case the system seems to be able
to synchronize in the considered time interval. In general only carrying forward the
simulations for unrealistically high values of time and number of pedestrians, syn-
chronization is a possible outcome. Thus, C = 10 m−1s−1 can be assumed as a lower
bound for the human sensitivity parameter to bridge lateral vibrations.

Going forward, values of C up to 14 m−1s−1 are of little practical interest as the
trigger of the phenomenon is still characterized by great uncertainty and only some
samples synchronize.
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C = 10 (1/ms)
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C = 50 (1/ms)

Fig. 19 Amplitude of vibration versus time: a curves obtained with C = 10 m−1s−1 and b
with C = 50 m−1s−1
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Fig. 20 Standard deviations a and maximum final amplitude of bridge vibrations b associ-
ated to the mean values of the pedestrians critical number triggering the synchronization:
simulations performed by varying C

Overall as C increases, the critical crowd size decreases (Fig. 18) and the maxi-
mum final amplitude of the bridge oscillations increases (Fig. 20b). Then, for val-
ues of C > 50 m−1s−1, the critical threshold keeps almost identical: synchronization
instantly occurs, when only the first loading step of 50 pedestrians is applied on
the bridge. This means that C = 50 m−1s−1 can be assumed as an upper bound for
the human sensitivity parameter to bridge lateral vibrations. In Fig. 19b we show
the result of simulations performed with C = 50 m−1s−1 (Na = 60 and σN = 10.89).

Thus we clearly define the limits for the pedestrians-bridge synchronization
parameter C: values lower than 10 m−1s−1 and higher than 50 m−1s−1 are not
meaningful; we highlight that the range of most practical interest is for C ∼=
14−25 m−1s−1, as these are the most realistic values of pedestrian sensitivity (this
range includes C = 16 m−1s−1, value for which the model results match the experi-
mental data for the north span of the Millennium Bridge) and also the most delicate
(in this range the average critical number Na decreases more quickly, see Fig. 18).

For completeness of investigation, in Fig. 20a we report also the standard devi-
ation σN associated to the mean value Na of the critical number of pedestrians, for
each group of simulations performed by varying C. If we neglect the irregularities
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of statistical nature, we can observe that σN starts from zero, follows an increas-
ing trend until a peak threshold for C ∼= 14− 25 m−1s−1 and then decreases again
to zero. A possible interpretation is that the more the pedestrians are sensitive to
bridge lateral vibrations, the more the initial values of phases and native frequen-
cies, randomly assigned at each simulation, influence the temporal evolution of the
phenomenon in terms of results dispersion; as a consequence the critical thresh-
old Na is affected by an increasing standard deviation, and this trend is maintained
until the peak threshold. Then when the sensitivity increases beyond that range, a
trend reversal occurs: pedestrians are so sensitive to bridge lateral vibrations that
they are progressively less and less influenced by the initial conditions, and the crit-
ical threshold Na is affected by a standard deviation which drops to zero. Therefore
C ∼= 14− 25 m−1s−1 is also the range in which the initial conditions are mainly
able to influence the phenomenon, with a resulting higher dispersion in our predic-
tion of Na. In addition, we observe that the maximum final amplitude of the bridge
oscillations increases rapidly in this range before reaching a plateau (Fig. 20b).

These considerations confirm that C ∼= 14−25 m−1s−1 is the most critical range
of values for C, and therefore our interest will be concentrated on it (see the follow-
ing subsection 2.2.8).

2.2.6 Inverse Approach Analysis: Coherence of the Model Results

With reference to the specific example of the Millennium Bridge, it may be interest-
ing to analyse also an ’inverse’ approach in the evaluation of the model behaviour.
Instead of investigating what happens to the crowd critical size when we vary the
model parameters or the description of the pedestrian load, we can study which is
the value of C able to give a model critical threshold coinciding with the experimen-
tal one. Actually, this is the way with which C can be determined for each ’variant’
of the SAMEO model.

With this aim we perform simulations by looking for the value of C such that
Na = Nc,exp, when:

1. G is assumed variable with the bridge oscillation amplitude according to Eq. (7)
(see the following Fig. 21);

2. the pedestrian force is assumed of ’square-type’ according to Eq. (9), instead of
sinusoidal (see Fig. 22 hereunder).

In this first case, if we compare our simulations results with data obtained from
crowd tests on the Millennium Bridge [12], we confirm the value C = 16 m−1s−1

obtained with G = constant = 30 N. This is not surprisingly, since in the subsection
2.2.3 we have shown that with (7) Na is only slightly smaller than that corresponding
to G = 30 N (150 vs 155), the difference being hidden by the statistical nature of the
problem.

In this second case, in order to match the model predictions to the Arup exper-
iment, the correct value for C is slightly smaller: 15 m−1s−1. This is a reasonable
result as in this case we put suddenly more energy into the system and therefore,
in order to obtain the same response of the reference case, we have to consider a
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Fig. 21 Number of walkers on the bridge a and amplitude of vibration b versus time
when G is variable with A according to Abrams’ model (7). Simulations performed with
C = 16 m−1s−1
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Fig. 22 Number of walkers on the bridge a and amplitude of vibration b versus time when the
pedestrian force is assumed of ’square-type’ instead of sinusoidal (9). Simulations performed
with C = 15 m−1s−1

lower value of the sensitivity parameter. These results are in full agreement with
those obtained in subsection 2.2.4, where for the case C = 16 m−1s−1 and with a
’square-type’ pedestrian force, we had obtained a fairly lower critical number Na.

Overall the SAMEO model seems to provide coherent results with respect to an
inverse approach analysis, in spite of the statistical data involved in its predictions.

2.2.7 Synchronization between Pedestrians

The original formulation of the SAMEO model considers only the bridge-pedestrians
interaction, and not an interaction between pedestrians. Since it was found that a
certain level of synchronization among people within the crowd exists [54], [20],
it should be considered also a correlation due to people falling into step with each
other, simply responding to visual clues such as the movement of people in front
of them [25]. There is experimental evidence that the brain’s control center syncs
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up to its visual center with high-frequency brain waves, directing attention to select
features of the visual world [19]. In a crowded bridge, lacking other external stimuli,
human attention is caught by the people who are walking ahead, with a tendency to
synchronize in order to minimize the reciprocal interferences and to achieve a more
comfortable and fluent gait [32]–[24].

To describe this phenomenon we add to the SAMEO relation for the bridge-
pedestrians interaction (3) a term which takes into account the pedestrian- to- pedes-
trian interaction. However, without complicating too much the model, we consider
that a pedestrian interacts only with the one who is in front of him (Fig. 23), who
is the one who mainly influences his motion. From a practical point of view, this
means to consider pedestrians walking ’in single file’ (i.e. lined up one behind an-
other): this is obviously a simplification of the real crowd interaction, although it
exactly corresponds to the Arup experiments on the Millennium Bridge [2]. It can
be considered as a rough preliminary proposal and additional features could be dealt
with after a fundamental understanding has been established. Indeed our modified
SAMEO model is very flexible in its present form, and the real effect on the sin-
gle individual of all the pedestrians who are ahead in his/her visual cone could be
easily introduced through an ’average effect coefficient’, determinable with proper
experimental analyses of human behavior.

Instead of (3) we then assume:

Θ̇i =Ωi +CiAsin(Ψ −Θi +α)+ Di sin(Θi−1 −Θi) . (11)

The new term g = Di sin(Θi−1−Θi) is chosen in analogy with the bridge-pedestrians
interaction term and on the basis of the following considerations:

1. it is a function of the phase difference between pedestrians ’in single file’, being
Θi−1 the phase of the generic leading pedestrian i− 1 which acts as stimulus
signal for the following pedestrian i walking just behind;

2. it has the effect of shifting each walker to a phase closer to that of the previous
one. Therefore, when the phase difference (Θi−1 −Θi) is positive, i.e. Θi lags
Θi−1, g must be globally positive, in order to increase the frequency of pedestrian
i, thus fostering synchrony with pedestrian i− 1; similarly when (Θi−1 −Θi) is
negative, i.e. Θi leads Θi−1, the term in question must be globally negative. Of
course g must be periodic in (Θi−1 −Θi), and the simplest periodic function that
satisfies these requirements is the sine function;

3. the constant of proportionality Di measures the effect of the pedestrian i− 1 on
the following pedestrian i. Since Di is the amplitude of the maximum phase shift
corrections between walkers, it can be considered as a sort of ’visual sensitivity’
of pedestrians to the crowd self-synchronization. Thus we will have g = 0 when
Di = 0, i.e. the pedestrians are visually insensitive. It is reasonable to consider
a certain variation of visual perception among individuals in the population. We
should in general use a random distribution Di for these sensitivities, but lacking
specific studies in this direction, we will later make the simplifying assumption
that Di = D, a single constant value for all walkers (similarly to what have been
done for the Ci).
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Fig. 23 Scheme of the vis-
ual pedestrian-to-pedestrian
interaction

Hence with this model, when pedestrian i sees pedestrian i− 1 walking near in
front of him, he is visually influenced and he slows down or speeds up so as to walk
more nearly in phase on the next step. This effect certainly contributes to speed up
the trigger of the bridge first lateral movements. It is obvious that if the visual stim-
ulus of the previous pedestrian i− 1 is too fast or too slow, the pedestrian i cannot
keep up and entrainment is lost. Therefore, this type of synchronization is certainly
fostered in the case of a typologically homogeneous crowd, i.e. with a Gaussian dis-
tribution of native frequencies characterized by a small standard deviation (Fig. 10).

Moreover the synchronization between pedestrians is clearly possible only if the
number of persons on the bridge is sufficiently large so that they are able to influ-
ence each other. For this reason our modification to SAMEO model applies only in
case of yet crowded bridge, with a density over 0.6 pers/m2 [15] (corresponding to
a relative distance between pedestrians of about 1 m or even less): over this density
value the single pedestrian is no longer able to walk with his individual undisturbed
step frequency and walking velocity. Within this limit, we have to detect the admis-
sible scale range for Di (i.e. to fix its lower and upper bounds) and to predict the
effects of Di on the model.

Some preliminary qualitative physical considerations allow affirming that:

1. Di cannot be negative both for a physical reason related to its meaning, and be-
cause the sine function already controls, in the mathematically right way, the in-
crease/decrease of the walking frequency due to ’self’-synchronization between
pedestrians;

2. as the visual sensitivity Di increases, we expect a decrease of the critical number
Nc, because the ’self’-synchronization between pedestrians tends to facilitate the
’global’ synchronization with the bridge;

3. large values of Di could mean that each pedestrian is so much influenced by
the previous one because of their minimal distance (crowd close to the densest
possible packing) that he doesn’t mind the bridge; namely the pedestrians could
synchronize each other on a frequency different from the bridge native one, thus
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the critical number Nc triggering the phenomenon can increase instead of de-
creasing. This is obviously a limit case.

On the basis of these qualitative physical considerations, Di = 0 s−1 can be assumed
as a lower bound for the visual sensitivity parameter to the ’self’- synchronization.

In order to determine also an upper bound for Di, hereafter we consider the
Eq. (11) with C = 0 m−1s−1, in order to deal with the effects of D on the model
only. The system, for N pedestrians, is made of N − 1 equations (note that the first
pedestrian has not a person ahead him and so it is not involved in the ’self’- syn-
chronization. It is just a leader of the crowd and its native frequency, Θ̇1 =Ω1 
= 0,
constitutes an initial condition for the problem):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ̇2 =Ω2 + D2 sin(Θ1 −Θ2) ,
...
Θ̇i =Ωi + Di sin(Θi−1 −Θi) ,
...
Θ̇N =ΩN + DN sin(ΘN−1 −ΘN).

(12)

The fixed points, corresponding to steady-states or equilibriums of the system, are
given by Θ̇i = 0, ∀ i = 2, . . . ,N. From a qualitative point of view this is the limit
situation, when overcrowding is such that pedestrians are packed and therefore they
are forced to stop: Θ̇i is nil and the maximum value of Di is achieved (it is the upper
bound we are looking for).

For the generic pedestrian i the solution for Θ̇i = 0 provides:

−Ωi

Di
= sin(Θi−1 −Θi) . (13)

We highlight that, in order to have the equilibrium position, the condition
∣∣−Ωi

/
Di
∣∣<

1, i.e. Di >Ωi, must be satisfied.
From (13) we have

Θi =Θi−1 + arcsin
Ωi

Di
, i = 2, . . . ,N . (14)

The first termΘ ∗
1 in this chain of equalities (14) is known, as the first pedestrian is

not influenced by anyone else on the bridge, while the second is visually influenced
by the first and so on. Thus we determine in cascade the solution of the system (12):
(Θ ∗

2 ,Θ ∗
3 , ...,Θ ∗

N ); the Jacobian matrix J evaluated at that point is:

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

−μ2 0 0 · · · 0
μ3 −μ3 0 0

0
. . .

. . .
. . .

...
...

. . . μN−1 −μN−1 0
0 · · · 0 μN −μN

⎤
⎥⎥⎥⎥⎥⎥⎦

, μi = Di

√
1− (Ωi

/
Di
)2

. (15)
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Fig. 24 Critical number of
pedestrians versus D: data
points, fitted quadratic curve
and graphical display of the
standard deviations associ-
ated to each mean value Na
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This matrix has negative eigenvalues λi = −Di

√
1− (Ωi/Di)

2, as it can be seen
by inspection (remember that Di > Ωi otherwise the equilibrium solution does not
exist); hence the fixed point (Θ ∗

2 ,Θ ∗
3 , ...,Θ ∗

N) is a stable node. In other words, as
Di increases, the phases tend towards those values (Θ ∗

2 ,Θ ∗
3 , . . . ,Θ ∗

N), equilibrium
solutions of system (12). Therefore we infer that to not have the phenomenon of
stable equilibrium, corresponding to overcrowding condition, we have to assume
Di <Ωi, and this constitutes an upper bound for Di.

It is important to remark that from a physical point of view, for equilibrium of
the system we mean the limit situation such that overcrowding is close to the dens-
est possible packing and therefore it prevents any further form of motion: pedes-
trians are obliged to stop and their relative phases are blocked; the fixed point
(Θ ∗

2 ,Θ ∗
3 , ...,Θ ∗

N) provides the pedestrian phases an instant before the packed con-
figuration. This equilibrium is also stable, if nobody leaves the bridge. We impose
that this equilibrium must be avoid because it is the upper possible limit for real
situations; in this sense it allows an estimation of the maximum value for Di: the
maximum visual sensitivity threshold occurs when overcrowding is maximum.

For sake of simplicity, as already mentioned, Di will be assumed constant, Di =
D, as it has been done with the other sensitivity parameter C (Sect. 2). Therefore,
the bounds we have just found can be rewritten as 0 ≤ D <Ωa = 1.03 s−1 (note that
we refer to the mean of the Gaussian distribution of pedestrian lateral frequencies).

Afterwards we reintroduce C = 16 m−1s−1 (original value from SAMEO model)
in the governing equation (11), and we investigate values of D in the interval [0,1]
s−1 in order to test the effects on the model. We obtain, as expected, a monotonically
decreasing trend of the critical number of pedestrians triggering the synchronization
versus D (Fig. 24).

We use once again the method of least squares to characterize data using a global
fit; we obtain the following quadratic correlation function:

Na = 41×D2−118×D+ 159 . (16)

In Fig. 24, for each group of simulations, we also report the standard deviation σN

associated to the mean value Na of the crowd critical number. We remark that for
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Fig. 25 Amplitude of vibration versus time: curves obtained with a D = 0 s−1, C =
16 m−1s−1 and with b D = 1 s−1 and C = 16 m−1s−1

D = 0 we are not actually considering pedestrian-to-pedestrian interaction and we
fall back in the reference case, thus obtaining Na = 155–160 and σN = 27.7–25.4;
for D = 1s−1, we obtain a strongly reduced critical number Na = 85 and σN = 29.93,
being increased the pedestrian sensitivity to visual clues. The amplitude versus time
curves for these two border cases are shown hereunder: Fig. 25a is the equivalent of
Fig. 7, re-proposed to facilitate the comparison with Fig. 25b.

We note an increase of the final predicted amplitude of the bridge motion, which
is, in any case, very close to the observed values on the Millennium Bridge.

It is evident, as expected, that this additional synchronization mechanism self-
excites the phenomenon, as the critical threshold almost halves (from 155–160 to
85) with respect to the reference model.

2.2.8 Effects of the Two Synchronization Parameters C and D

When does the pedestrian-pedestrian visual interaction become irrelevant with re-
spect to the interaction with the bridge lateral vibrations? How much Na is influ-
enced by C and D ? Unfortunately these remain partly open questions, lacking a
proper complementary experimental investigation.

The only thing we can do here is to perform a systematic numerical simulation
aimed at determining the joint effect of C and D on the model critical threshold
Na. We report in Fig. 26 the contour plot of Na as a function of C and D, which
just permits understanding the joint effect of the synchronization parameters on the
model behaviour.

This map is obtained by considering a grid of 12× 11 points: each of them is
the result of 200 simulations. The plot window is performed for D ranging in its
definition interval [0,1] s−1 (see subsection 2.2.7), and for C varying in a restricted
range of values, from 14 m−1s−1 up to 25 m−1s−1; this last choice is admissible in
the light of the observations drawn in subsection 2.2.5.

Figure 26 highlights the complementarity of C and D in describing the phe-
nomena. The simulations point out that as C and D increase, the critical number
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decreases, according to common sense; moreover the same number Na is obtained
for smaller D when C is larger and vice versa. This trend has an intuitive physical
confirmation; it is justified by the real difficulties pedestrians encounter when they
walk on a laterally moving surface: as C increases, their sensory system, both neural
and musculoskeletal, is so much involved in balance control that it does not care of
the visual stimuli due to the presence of other people and the natural consequence
is a lower D.

It is worthy of note that the two synchronization parameters, C and D, have dif-
ferent sensitivities, as we can see from their different scales of values (Fig. 26). By
fixing one parameter and varying the other, if we increase D of 0.1s−1 we obtain a
decrease of Na equal 10 pedestrians, but if we increase C of 0.1m−1s−1 we obtain
a decrease of Na equal 1 (i.e. fixed the decrement of Na, there is a ratio 10 : 1 in
the increase of C with respect to D). In mathematical terms, we can affirm that the
derivative of Na with respect to C is smaller than the derivative of Na with respect to
D, although care must be used in this comparison because these are not dimension-
less quantities. The direct consequence is that we have to pay more attention on the
correct evaluation of the visual sensitivity parameter D.

Another aspect to take into account is that, by definition, the parameter C depends
only on the pedestrians’ sensitivity to the bridge lateral movements; however in the
way it is used in the SAMEO model, actually it depends on the mode shape, even if,
for sake of simplicity, only one value of C is considered for all the pedestrians on the
bridge, independently of their position and distribution over the whole span. From
a practical point of view its numerical value, as defined in the model, is acceptable
only in the case of bridges having the same mode shape (sinusoidal) as the north
span of the Millennium Bridge: for other bridges, C should be different. On the
contrary, the parameter D, again by definition, depends only on the pedestrians’
visual sensitivity to the motion of the people who are walking ahead, within a certain
visual-psychological influence distance; therefore it is related to the crowd density
and it can be estimated also through experiments with pedestrians walking on a fixed
floor. Thus the numerical value of D is independent on the mode shape and it is valid
for every bridge.

Fig. 26 Contour map for Na
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In any case it is confirmed the need of tuning C and D through experimental tests,
taking into account the simultaneous existence of the two synchronization degrees
in relation to the crowd density and to the physical characteristics of the pedestrians
involved (e.g., we expect that senior people or pedestrians with slight difficulties
of locomotion are less prone to synchronize with the other persons, but are much
more sensitive to the synchronization with the bridge). Once performed such tests,
the contour plot in Fig. 26 could be a useful design map to evaluate Na, depending
on the expected predominant typology of pedestrian traffic.

2.2.9 Linear and Random Loading Paths

The reference (Arup’s) loading path (Fig. 6a) is useful to detect the onset of the
instabilities and to assess the model, but it is not general enough, and thus, for ex-
ample, it is useless to design a control device. Here we study different, in particular
linear, paths with the aim of investigating the variations of the critical threshold,
and the effects of a larger number of pedestrians walking on the bridge.

It was estimated that between 80000 and 100000 people crossed the Millennium
Bridge during the opening day, with a maximum of 2000 people on the deck at
any time (approximately 450 only on the north span), resulting in a density of 1.3–
1.5 persons/m2 [12]. Observations on crowd indicate that the upper limit density for
unconditioned free motion is only about 0.3 persons/m2, while normal walking be-
comes practically impossible for densities above 1.7 persons/m2 [54]. Therefore, in
the following simulations, we arrive at a maximum of 550 (= 1.7×324 square me-
ters [12]) pedestrians walking simultaneously on the bridge (Fig. 27a). However it
is important to mention that the number of pedestrians exciting the bridge is related
to their distribution over the whole span, so that the local amplitude of the oscilla-
tion is related to the mode shape amplitude at that point, and thus it is a fraction
of the amplitude of the excitation; moreover the theoretical limit numbers are for
people who are walking, while usually some people will stop on the bridge, possi-
bly contributing extra damping. This increases the practical critical threshold. Thus,
we have competing phenomena practically reducing/increasing the theoretical crit-
ical threshold, and therefore our simulations have to be considered as a first, non
systematic, study in this direction.

We consider five linear loading paths (Fig. 27) which differ in the number of
pedestrians introduced on the bridge deck per unit time (we refer to it as ’loading
velocity’); we identify them with a ramp factor, RF , defined as the inverse of their
average slope. We obtain:

1. RF = 0.5, i.e. 10ped/5sec,→ Na = 240,σN = 34.98;
2. RF = 1, i.e. 10ped/10sec,→ Na = 225,σN = 35.76;
3. RF = 3, i.e. 10ped/30sec,→ Na = 190,σN = 36.21;
4. RF = 6, i.e. 10ped/60sec,→ Na = 165,σN = 38.67;
5. RF = 12, i.e. 10ped/120sec,→ Na = 160,σN = 39.00.
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Fig. 27 Linear loading paths a and the corresponding crowd critical size b

For each of these RFs, the reported values of Na and σN are, as usual, the results
of 200 simulations. The best (in the least squares sense) cubic curve fitting the data
is (Fig. 27b):

Na = −0.079×RF3 + 2.5 ·RF2 −26×RF + 250 . (17)

From Fig. 27 and from Eq. 17 we can understand and quantify the influence of
the loading velocity on the instability threshold. For high loading velocities, i.e.
low RF, the system has not enough time to develop synchronization. Pedestrians
who enter the bridge will not be driven to adapt soon their footsteps to the slight
motion of the structure: the crowd critical size rises. Instead, if we decrease the
loading velocity, i.e. we consider high RF, when new pedestrians are introduced
on the bridge, they will find a situation in which probably the bridge is already
unstable and its wobbling is enough to force them to synchronize before the next
load package arrives. So the critical threshold will be lower.

We also observe that the loading paths 4 (which, after the initial transient, has
the same slope of the Arup’s ramp) and 5 are characterized by a critical crowd size
essentially identical; we can infer that by further decreasing the loading velocity
likely the critical threshold no longer decreases (Fig. 27 b): Arup’s critical threshold
can be considered a lower bound of critical thresholds for other deterministic paths,
thus being, in this respect, a conservative estimation.

We have also considered some random loading paths in order to test the gen-
eral validity of the model. For each of the 4 groups of simulations summarized in
Fig. 28, we have varied stochastically (inside fixed intervals) both the pedestrian
increment and the time step. These intervals have been chosen in order to obtain, on
average, loading paths comparable with those we have studied above. The numerical
simulations give:

1. RFa = 1, i.e. 5–15 pedestrians/5–15 sec (on average 10 ped/10 sec) → Na =
184,σN = 22.29;

2. RFa = 3, i.e. 5–15 pedestrians/10–50 sec (on average 10 ped/30 sec) → Na =
165,σN = 18.72;
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Fig. 28 Random loading paths (average trends) a and the corresponding crowd critical size
b: comparison with the results from the linear loading paths
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Fig. 29 Random loading paths with RFa = 3 a and corresponding amplitude curves b

3. RFa = 6, i.e. 5–15 pedestrians/40–80 sec (on average 10 ped/60 sec) → Na =
154,σN = 21.49;

4. RFa = 12, i.e. 5–15 pedestrians/70–170sec (on average 10 ped/120 sec) → Na =
141,σN = 29.19.

We use once again the method of least squares to characterize data using a global
fit; we obtain the following quadratic correlation function (see Fig. 28b):

Na = 0.39×RF2
a −8.8×RFa + 190 . (18)

We can observe that the decrease of Na with RF, previously observed in deter-
ministic ramps, is maintained, with the same qualitative behaviour. Passing from
deterministic to stochastic ramps we observe a systematic decrease of the critical
threshold of about 13% (Fig. 28b) which should be carefully considered by the de-
signer. In any case the values obtained are in quite reasonable agreement both with
the experimental and with the numerical results of the previous simulations.

It is interesting to show at least a sample of the output from our simulations, e.g.
for RFa = 3 (Fig. 29).
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Despite the dispersion due to the randomness of the loading paths (Fig. 29a),
the results are encouraging as the qualitative trend of the amplitude curves is main-
tained on average (Fig. 29b): the dynamic response of the bridge continues to be
stable until a critical threshold and then increases rapidly towards a final landing.
Furthermore, the predicted amplitude of the bridge motion is very close, on average,
to the observed value of about 5–7 cm (see Fig. 29b). This is a remarkable robust-
ness property of the SAMEO model, especially if we think to the many uncertainties
which affect this type of problems.

3 A Discrete-Time Model

The critical overview of the existing literature, presented in Sect. 1, highlights many
continuous-time models explaining the excessive lateral sway motion induced by
a crowd crossing a footbridge. They are governed by partial or ordinary nonlinear
differential equations (ODEs), and commonly cannot be solved in closed form but
require extensive numerical simulations to be utilized in practice [52], as shown in
the previous section. To overcome this drawback, in this second part of the chapter
we present a nonlinear discrete-time model able to describe the synchronous lateral
excitation without numerical simulations [27].

The basic idea is to work in the context of discrete dynamics, by an appropri-
ate choice of a Poincaré section, thus turning a continuous dynamical system into
a discrete one. If the Poincaré section is carefully chosen, no information is lost
concerning the qualitative behavior of the dynamics [44].

Some approximations and simplifications are assumed in order to obtain a model
which is as simple as possible and with the least possible number of parameters,
while keeping the description of the underlying mechanical event. Some of these
approximations can then be removed in order to have a model of more general va-
lidity. In spite of the approximations, however, the model is able to provide a reliable
value of the number of pedestrians which trigger the synchronization, thus predict-
ing the onset of instability which is also the onset of crowd synchronization.

From a dynamical system point of view, the main result is that the model high-
lights how the phenomenon can be seen as a perturbation of a classical pitchfork
bifurcation, which is then shown to be the underlying dynamical event. It is worth
to note that the proposed model is independent of the specific case of the Millen-
nium Bridge, which is considered as a reference (Sect. 3.4), so it is applicable to any
bridge where a similar problem is observed or expected to occur.

Besides improving the understanding of the physical phenomenon, our model
proves simple and reliable in its previsions; therefore, it may be useful for estimating
the damping needed to stabilize other exceptionally crowded footbridges against
synchronous lateral excitations by pedestrians, or for designing other technologies
aimed at eliminating the phenomenon in real structures.
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3.1 Single Degree of Freedom Oscillator and Discrete Dynamic
Model

According to the considerations made in Sect. 1, the dynamics of the bridge are
governed by the Eq. (1). Introducing the quantities

t =

√
M
K

t̄ =
t̄
Ω

, X (t) = x(t̄) , B = 2
√

MK ξ , Fped (t) = K f (t̄) , (19)

the Eq. (1) can be re-written in the dimensionless form:

ẍ+ 2ξ ẋ+ x = f (t̄) , (20)

where dots are derivatives with respect to the dimensionless time t̄. In the follow-
ing the hat is neglected for simplicity. Although equivalent, Eq. (20) is easier to
be analyzed than (1) (it has less parameters), and thus it will be considered in the
following.

3.1.1 Free Dynamics

In the unforced case f (t) = 0, the general solution of (20) is:

x(t) = c1e−ξ t sin
(√

1− ξ 2 t
)

+ c2e−ξ t cos
(√

1− ξ 2 t
)

, (21)

so that ω =
√

1− ξ 2 is the natural circular frequency and p = 2π/ω is the period,
i.e. the time distance between two successive relative maximum points of the system
motion.

We call xn the amplitude of the generic relative maximum of the motion (see
Fig. 30). We want to find an analytical relation, xn+1 = l(xn), between one peak and
the subsequent in time. This map describes the so-called peak-to-peak dynamics
(PPD) introduced by Lorenz in the study of chaos [10]. With this aim we assume
that the starting point is a peak: x(0) = xn and ẋ(0) = 0. With these initial conditions
we obtain:

x(t) = xne−ξ t

[
ξ√

1− ξ 2
sin
(√

1− ξ 2 t
)

+ cos
(√

1− ξ 2 t
)]

, (22)

which is depicted in Fig. 30 for ξ = 0.05.
From Fig. 30 we can see that the successive peak occurs after one period. Thus, if

we consider xn+1 = l(xn) we are actually considering a stroboscopic Poincaré map
sampled at each period. We then have:

xn+1 = x(p) = xne
−2πξ√

1−ξ2 = αxn , (23)
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Fig. 30 The solution x(t)/xn

of the damped harmonic os-
cillator with ξ = 0.05

where the parameter α ≤ 1 is defined by

α = e
− 2πξ√

1−ξ2 ∼= 1−2πξ+ . . . . (24)

Equation (23) is the simplest (it is linear) discrete-time dynamical system we are
considering. We exclude the value α = 1 because it corresponds to the unrealistic
case of absence of damping. Its dynamic behavior is trivial: by iterating the map we
obtain xn = αnx0, x0 being the initial condition. Thus, all initial conditions tend, as
expected, to the rest position x = 0.

3.1.2 Forced Dynamics: Single Pedestrian

We assume that a walking pedestrian acts as a periodic forcing on the oscillator. Here
we idealize the pedestrian force as sinusoidal, even though experiments on a tread-
mill reveal a periodic trend more similar to a square wave (see Sect. 2.2.4). Practi-
cally, we consider the first term in the Fourier series expansion of the generic peri-
odic function which approximates the experimental data concerning lateral walking
forces on a still surface [41], [42], [8]:

f (t) = g sin(ωpt +φ) , (25)

where:

1. g > 0 is the dimensionless force amplitude, such that G = gK = 30 N on average
[1]. G is the maximum lateral force exerted by a pedestrian. We remember that
we are focusing on the lateral component of pedestrian forcing, the only one
responsible for synchronous lateral excitation;

2. ωp is the pedestrian footstep native frequency and pp = 2π/ωp his/her period;
3. φ ∈ [0,2π ] is the pedestrian temporal phase.
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Substituting Eq. (25) into Eq. (20) we obtain the equation of motion for the case of
single pedestrian:

ẍ + 2ξ ẋ+ x = g sin(ωpt +φ) . (26)

The exact solution of Eq. (26), obtained with x(0) = xn and ẋ(0) = 0, calculated at
t = p (i.e. after one period) and then named xn+1 gives:

xn+1 = α xn + g [k1 sin (φ)+ k2 cos(φ)] , (27)

where

k1 =
(ω2

p −1)e
−2πξ√

1−ξ2 +(1−ω2
p)cos

(
2πωp√

1−ξ 2

)
+ 2ξωp sin

(
2πωp√

1−ξ 2

)

(1−ω2
p)2 + 4ξ 2ω2

p
,

k2 =
2ξωpe

−2πξ√
1−ξ2 +(1−ω2

p)sin

(
2πωp√

1−ξ 2

)
−2ξωp cos

(
2πωp√

1−ξ 2

)

(1−ω2
p)2 + 4ξ 2ω2

p
. (28)

Defining:

β = g
√

k2
1 + k2

2, sin(γ) =
k1√

k2
1 + k2

2

, cos(γ) =
k2√

k2
1 + k2

2

, (29)

we can re-write Eq. (27) in the simpler form:

xn+1 = l (xn) = αxn +β cos(φ − γ) . (30)

Comparing Eq. (30) with Eq. (23), we see that the influence of the single pedes-
trian’s motion on the map is described by the additional term on the right hand side.

We observe that if the pedestrian period is sufficiently close to the structure’s
natural period (i.e. ωp

∼= ω) it is possible a bridge-pedestrian interaction. In the
worst-case scenario of perfect resonance, ωp = ω =

√
1− ξ 2, it follows that:

k1 =
1− e

−2πξ√
1−ξ2

4−3ξ 2 =
1−α

4−3ξ 2 ,

k2 = −2

√
1− ξ 2

ξ
1− e

−2πξ√
1−ξ2

4−3ξ 2 = −2

√
1− ξ 2

ξ
1−α

4−3ξ 2 ,

β = g
1− e

−2πξ√
1−ξ2

ξ
√

4−3ξ 2
= g

1−α
ξ
√

4−3ξ 2
, tan(γ) = −1

2
ξ√

1− ξ 2
. (31)
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The problem becomes simpler, since being α and γ functions of ξ , the only pa-
rameters are φ , ξ and β (i.e. g). Furthermore, in this case, the peak-to-peak map
corresponds to the stroboscopic Poincaré map.

Also in this case the dynamics of the (discrete) Eq. (30) are trivial. All initial
conditions tend to the map fixed point

x =
β cos(φ − γ)

1−α , (32)

corresponding to a periodic oscillation of the real system. We have that 1−α =
2πξ + . . . is a small quantity, so that x is large, according to the fact that we are in
(perfect) resonance.

3.1.3 Forced Dynamics: Crowd of Pedestrians

When a crowd of N pedestrians is walking on the bridge, the force is:

f (t) =
N

∑
i=1

gi sin(ωp, it +φi) , (33)

where gi is the lateral force exerted by the ith pedestrian and pp,i = 2π/ωp,i is the
natural period of his/her footstep; both are stochastic variables depending on the
characteristics of the pedestrian himself. The pedestrian phase φi, still a stochastic
variable, depends instead on the instant of time in which the pedestrian enters the
bridge.

We consider a randomly walking crowd and we suppose a free entrance of pedes-
trians on the bridge. Therefore, φi is a stochastic variable uniformly distributed over
its interval of existence [0,2π ].

We instead introduce a simplification by assuming that all the pedestrians have
the same native frequency,ωp,i =ωp. This assumption corresponds to the worst-case
scenario, and actually occurs during synchronization because all the pedestrians
tend to walk with the same period by feedback modifications to their native period,
as shown by the SAMEO model in Sect. 2.

With the hypothesisωp,i =ωp the excitation Eq. (33) is a (2π/ωp)-periodic func-
tion, which can be re-written in the form:

f (t) = ḡsin
(
ωpt + φ̄

)
, (34)

with

ḡ =

√[
∑N

i=1 gi cos(φi)
]2

+
[
∑N

i=1 gi sin(φi)
]2

, tan
(
φ̄
)

=
∑N

i=1 gi sin(φi)
∑N

i=1 gi cos(φi)
. (35)

The expression (34) is formally similar to Eq. (25), so that we bring back the crowd’s
forcing to an equivalent pedestrian’s force:
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1. ḡ is the overall lateral force amplitude due to crowd’s motion;
2. φ̄ is the mean phase.

In the case of perfectly synchronous pedestrians, i.e. φi = φ ±2nπ , the expressions
(35) become:

ḡ =∑N
i=1 gi = Ngaverage , φ̄ = φ . (36)

In case of perfectly asynchronous pedestrians, i.e. for each pedestrian there is, on
average, another with opposite phase, we have ḡ = 0.

Therefore ḡ depends on the pedestrians’ degree of synchronization, an observa-
tion which is crucial for the following developments.

Comparing Eq. (34) with Eq. (25), the map (30) becomes:

xn+1 = l (xn) = αxn + β̄ cos
(
φ̄ − γ) , β̄ = ḡ

√
k2

1 + k2
2 , (37)

where k1, k2 and γ are unmodified.
The map (37) is formally identical to the previous one for single pedestrian.
Hereafter we will describe the crowd’s force only by the parameters ḡ (or β̄ ),

φ̄ and ωp. If we further assume, as done for the single pedestrian, the worst-case
scenario of perfect resonance ωp = ω =

√
1− ξ 2, we then have only the two pa-

rameters ḡ (or β̄ ) and φ̄ describing the excitation acting on the bridge.

3.2 Interaction Oscillator-Pedestrians

In order to model the dynamical bridge-pedestrians interaction and to describe the
natural tendency of the systems to synchronize, we must assume that they influence
each other. Therefore, not only the motion amplitude xn, but also the forcing char-
acteristics β̄ and φ̄ are assumed to vary on (discrete) time. Our state variables are
then xn, β̄n, φ̄n, and Eq. (37) becomes:

xn+1 = α xn + β̄n cos
(
φ̄n − γ

)
. (38)

We note that the argument of the cosine function, σn = φ̄n − γ , has a precise
meaning in terms of synchronization:

1. when σn = 0, i.e. φ̄n = γ , the crowd is perfectly synchronized with the bridge
motion and the force exerted on the bridge is maximum;

2. when σn = ±π/2, i.e. φ̄n = γ ±π/2, the crowd is perfectly asynchronous and
the net force on the bridge is zero; this means that the crowd does not alter the
bridge equilibrium state (x = 0) in this case.

On the basis of the previous observation we define σn to be the ’synchronization
parameter’. Equation (38) takes the form:

xn+1 = αxn + β̄n cos(σn) , (39)
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and the system state variables are xn, β̄n, σn.
The next step consists in finding the evolution laws for β̄n and σn.
By noting that pedestrians tend to synchronize with the bridge lateral motion, we

propose for σn the following evolution law:

σn+1 =
a

a + xn
σn , (40)

where a > 0 is a parameter measuring the pedestrians’ sensitivity to bridge lat-
eral vibrations; it has the dimension of a length, and its value can be determined
experimentally.

Equation (40) fulfils the following physical requirements which suggest its use:

1. the bridge-pedestrians system tends naturally to the maximally synchronous
state. In fact limn→∞ σn = 0;

2. for small vibration amplitudes xn, the pedestrians are not influenced by the
bridge. In fact limxn→0σn+1 = σn;

3. for large values of xn, the pedestrians quickly synchronize, in fact limxn→∞σn = 0.

It is worth to note that Eq. (40) is susceptible of extension in order to obtain a
more general theory. In fact, it is realistic to think that the synchronization is not
asymptotically perfect; in mathematical terms, this means that limn→∞ σn = η (η
close but different from 0), or better, limn→∞σn =ϒ , withϒ near but different from
γ . We can introduce this aspect by simply substituting γ with ϒ in the definition of
σn.

As regards β̄n, its evolution law is known once we know the law for ḡn, being β̄n =

ḡn

√
k2

1 + k2
2. Considering that ḡn depends on the bridge-pedestrians synchronization

level, we could relate it to the synchronization parameter σn and write ḡn = ḡn(σn)
such that:

1. if σn = 0, we should have ḡn(0) = Ngaverage (perfectly synchronous crowd);
2. if σn = ±π/2, we should have ḡn(±π/2) = 0 (perfectly asynchronous crowd).

At the same time, it is also true that synchronization depends on the oscillation
amplitude xn. Therefore we can assert that ḡn = ḡn(xn), and in particular:

1. if the oscillation amplitude is nil, i.e. xn = 0, we expect ḡn(0) = 0 (perfectly
asynchronous crowd);

2. if the oscillation amplitude becomes large, xn → ∞, we expect ḡn(xn = ∞) =
Ngaverage (perfectly synchronous crowd). This is of course only a mathematical
limit: from an engineering point of view we expect ḡn

∼= Ngaverage even for finite,
although ’large’, values of xn.

We observe that ḡn(xn) is a monotonically increasing function and it is easier to
be ’invented’ than ḡn(σn). Therefore, we propose for ḡn the following law which
satisfies the aforementioned requirements:

ḡn = Ngaverage tanh
(xn

δ
+ ε
)

. (41)
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δ > 0 is a parameter with the dimensions of a length. It can be determined exper-
imentally and it measures how fast the asymptotic value Ngaverage becomes satu-
rated while the oscillations amplitude is growing up. δ can also represent the bridge
displacement for which synchronization is almost completed, being tanh(1 + ε) ∼=
0.76− 0.80. As a consequence, its value can be estimated slightly lower than the
bridge maximum lateral displacement.
ε > 0 is a perturbation/imperfection dimensionless parameter with respect to the

limit ideal case ε = 0 (non-perturbed/perfect case) in which the bridge is still and
the crowd is perfectly asynchronous and therefore unable to exert any lateral net
force on the bridge itself. In real cases (ε > 0), even if the bridge is still, there
is a certain component of lateral force due exclusively to random synchronization
phenomena between pedestrians, which is assumed to be Ngaverage tanh(ε) in this
model. In general, however, this force is small, so that we assume ε to be small.

Substituting Eq. (41) into β̄n = ḡn

√
k2

1 + k2
2, we have:

β̄n =
√

k2
1 + k2

2 Ngaverage tanh
(xn

δ
+ ε
)

, (42)

and we note that, with the previous assumptions, β̄n is no longer an independent
variable.

Summarizing the previous developments, we have found that our discrete-time
model has only two independent variables, xn and σn, and it is described by the
two-dimensional map:

⎧⎪⎨
⎪⎩

xn+1 = f1 (xn,σn) = αxn +(1−α)δ
N

Ncr
tanh
(xn

δ
+ ε
)

cos(σn) ,

σn+1 = f2 (xn,σn) =
a

a + xn
σn .

(43)

The parameter Ncr appearing in (43) is of great practical interest and it is defined
by:

Ncr =
(1−α)δ

gaverage

√
k2

1 + k2
2

∼= 2δξ
gaverage

=
2ξδ K

Gaverage
. (44)

Equations (43) and (44) describe the phenomenon of synchronization of pedestrians’
motion with the lateral vibrations of footbridges. Note that in this model we consider
a global synchronization, without distinguishing between the two different levels
of synchronization observed in practice [15]: bridge-pedestrian and pedestrian-to-
pedestrian (see Sects. 2.2.7 and 2.2.8).

The model parameters are the damping ξ , the sensitivities a and δ , the imperfec-
tion ε , gaverage and, of course, the number N of pedestrians walking on the bridge.
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3.3 Fixed Points

The dynamic aspects of the map (43) of interest for the present chapter are the fixed
points

{
x = f1 (x,σ )
σ = f2 (x,σ ) , (45)

which corresponds to oscillation of the original (physical) system, and their stability.
They are investigated in the following by distinguish between the imperfect (ε > 0)
and the perfect (ε = 0) cases.

3.3.1 The Imperfect Case

We consider first the real case ε > 0. In this case the system of equations (45)
becomes

{
(1−α)x = (1−α)δ N

Ncr
tanh
(

x
δ + ε

)
cos(σ)

σ x = 0
. (46)

The second equation of (46) admits two solutions which, inserted in the first equa-
tion, give two different solutions:

A) :

{
x = 0
σ = ± π

2
, B) :

{
σ = 0
x
δ = N

Ncr
tanh
(

x
δ + ε

) . (47)

The two fixed points (47)A correspond to the condition of bridge in equilibrium
(motionless), with perfect bridge-pedestrians de-synchronization. We guess they are
only theoretical solutions, i.e. they are unstable.

The fixed point (47)B corresponds to perfect bridge-crowd synchronization with
non-vanishing oscillations of the bridge. As we will see later, they are stable solu-
tions and they are involved in the phenomenon of synchronous lateral excitation.

It is worth to note that the equilibrium points are independent of the pedestrian
sensitivity parameter a; therefore we don’t need to determine it experimentally, un-
like other models present in the literature [12], [47]. This is a worthy aspect of our
model. However, we expect that a will influence the rate of convergence towards the
equilibrium solutions.

To discuss the stability of the fixed points Eq. (47), we evaluate the eigenvalues
of the Jacobian matrix of the system (43):

J =

⎡
⎢⎢⎣
∂ f1

∂xn

∂ f1

∂σn

∂ f2

∂xn

∂ f2

∂σn

⎤
⎥⎥⎦ . (48)
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For the fixed points A the eigenvalues are both real:

λ1,2 =
1
2

{
1 +α±

√
(1−α)2 + 2(1−α)δ

π
a

N
Ncr

tanh(ε)
}

∼= 1−πξ±πξ
√

1 +
δ
a

N
Ncr

tanh(ε)
ξ

. (49)

We observe that λ1 > 1 and λ2 < 1, being ε > 0; therefore the fixed points (47)A are
saddles, and unstable as expected.

In correspondence of the fixed point B, the Jacobian matrix is diagonal and the
eigenvalues, both real, are:

λ1 = α+(1−α)
N

Ncr

1

cosh2 ( x
δ + ε

) = α+(1−α)
[

N
Ncr

−
( x
δ

)2 Ncr

N

]
,

λ2 =
a

a + x
, (50)

where x is the fixed point position, solution of the second equation of system (47)B.
We observe that λ2 < 1, while the condition λ1 < 1 corresponds to the inequality:

( x
δ

)2
>

N
Ncr

(
N

Ncr
−1

)
(51)

which is always satisfied. Therefore the solution (47)B is always stable, as expected.
It is shown in red (grey) in Fig. 31 for different values of the parameter ε .

3.3.2 The Perfect Case

Now we consider the unperturbed limit case ε = 0 and we determine likewise the
fixed points of the map (43). Again, there are two types of solutions of (45):

A) :

{
x = 0
∀σ , B) :

⎧⎨
⎩
σ = 0

x
δ

=
N

Ncr
tanh
( x
δ

) . (52)

The solutions (52)A are a manifold of fixed points non depending on the relative
phase crowd-bridge. They are all the points of the straight line x = 0. In the presence
of perturbations, ε > 0, they are reduced to the only two unstable fixed points x = 0,
σ = ±π/2 previously investigated.

The solutions (52)B are a curve of fixed points consisting of two branches: x = 0
and another one, N = Ncr(x/δ )/ tanh(x/δ ), bifurcating from the previous one at
N = Ncr. It is shown in blue (black) in Fig. 31.
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Fig. 31 Synchronized fixed
points x = x(N), for different
values of parameter ε: ε =
0.01, 0.05, 0.1 (red (grey)
curves); the solution for the
unperturbed limit case ε = 0
is also shown (blue (black)
curve)

To discuss the stability of the fixed points Eq. (52) we consider the eigenvalues
of the Jacobian matrix (48). For the fixed points A the eigenvalues are real and equal
to:

λ1 (σ) = α+(1−α)
N

Ncr
cos(σ) , λ2 = 1 . (53)

Therefore, all the fixed points of the manifold are non-hyperbolic. As regards their
stability, we can only affirm that they are certainly unstable when |λ1| > 1, i.e., for

N >
Ncr

cos(σ)
, for σ such that cos(σ) > 0 , (54)

and

N >
Ncr

−cos(σ)
1 +α
1−α , for σ such that cos(σ) < 0 . (55)

To further investigate the stability, we need to consider the nonlinear terms in the
equations. We omit the computations, which are heavy and of little interest for our
purposes; we show only the results, which are instead of great interest to improve
the understanding of the physical event and to actually use our model. We find that:

1. all the fixed points x = 0 and σ 
= 0 are unstable;
2. the fixed point x = 0 and σ = 0 is stable for N < Ncr and unstable for N > Ncr.

The eigenvalues of the fixed points B in Eq. (52) are given by Eq. (50) and thus
they are both real and lesser than 1, so that the corresponding equilibrium position
is always stable.

We can conclude that for N = Ncr, the bifurcating solution (52)B catches the
stability of x = σ = 0 and triggers the lateral synchronization. This is a pitchfork
bifurcation of degenerate type, as the fundamental branch is not made of hyperbolic
points (blue (black) lines in Fig. 31).

On the basis of these observations, the fixed points (47)B can be seen as pertur-
bations of the aforementioned pitchfork bifurcation.
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The meaning of Ncr, as defined in Eq. (44) is now clear: it is the theoretical point
where bifurcation occurs, the practical one being slightly smaller, as we can see
from the lift-off point of the red (grey) curves in Fig. 31. It corresponds to the theo-
retical number of pedestrians triggering the synchronization and thus it is the most
important information from an engineering point of view. Its relevance is underlined
by the fact that it has a simple analytical formula, which helps in understanding how
the various parameters influence the synchronization phenomenon.

In fact, Fig. 31 confirms that for small crowds, N/Ncr near zero, the amplitude ra-
tio x/δ is near zero too, as walkers are desynchronized and randomly phased. Then,
as more and more people walk on the deck, there is no hint of wide oscillations until
the crowd reaches the critical size Ncr, after that wobbling and synchrony suddenly
emerge simultaneously, as dual aspects of a single instability mechanism (Eq. (41)
associates the synchronization with the current state of the oscillator).

3.4 A Case-Study: The London Millennium Footbridge

To test the agreement of our model with the dynamical behaviour of real structures
we consider again as a benchmark the London Millennium Bridge, as it is the most
well-known and well-documented case of ’lively’ footbridge in the literature and in
this sense it is the most suitable for a detailed analysis of the model behaviour and
of the various aspects of the synchronous lateral excitation phenomenon.

With the data of the Millennium Bridge M = 113000 kg, B = 11000 kg/s, K =
4730000 kg/s2, Gaverage = 30 N, ξ = 0.0075 and gaverage = Gaverage/K = 6.34×
10−6 m (see Sect. 2.1) we have from Eq. (44)

Ncr =
2δξ

gaverage
= 2365δ . (56)

Assuming Ncr = 155 (see Sect. 2.1) we obtain δ = 0.0654m = 6.5 cm; this means
that the predicted amplitude of the bridge motion is very close to the observed values
of about 5–7 cm on the opening day. There is a good agreement of the model results
with the real behaviour of the bridge.

Another consideration can be drawn from Fig. 31 and from the second equation
of the system (47)B. They show that for large values of x and N the equation of the
bifurcated branch becomes

x ∼= δ
N

Ncr
. (57)

This linear trend is in good agreement with the SAMEO model results shown in
Fig. 32, where the oscillations amplitude versus time curves have a similar linear
trend in their final part. This observation allows a further estimate of the ratio δ/Ncr:
with reference to Fig. 32 we register an amplitude of oscillation x = 0.41 m for
N = 1000 pedestrians, namely, δ/Ncr = 4.1× 10−4. By assuming Ncr = 155, we
obtain δ ∼= 6.15 cm, which is comparable with the one previously calculated and
confirms its reliability.
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Fig. 32 Numerical results from the SAMEO model: a number of walkers on the bridge and
b amplitude of vibration versus time. The various amplitude curves differ for the initial con-
ditions randomly assigned to pedestrians’ motion [30]

Comparing our equilibrium solutions (Fig. 31) with the SAMEO model results
(Fig. 32), it is evident that our discrete-time model is able to describe accurately
the phenomenon of synchronous lateral excitation, even with a simpler analytical
formulation and, more important, without requiring numerical simulations.

4 Conclusions

After a focus on the problem of synchronous lateral excitation in slender footbridges
and a critical overview of the existing literature on the topics, in the first section
of this chapter a parametric study of the SAMEO model [47] for the pedestrians-
induced lateral vibrations of footbridges has been performed and some modifica-
tions have been introduced and checked. The application of this model to the case
of the London Millennium Bridge provides results in good agreement, both quali-
tatively and quantitatively, with observations and experiments. The model is able to
predict simultaneously both the onset of bridge instability and the onset of crowd
synchronization, providing a reliable value of the number of pedestrians which trig-
ger the synchronization, i.e., the critical threshold. The steady state amplitude for
bridge motion is also well predicted.

The extended numerical simulations permit to draw the following conclusions.

1. The initial distribution of pedestrians natural frequencies, i.e. their level of typo-
logical homogeneity, is decisive both for the trigger point of instability and for
the temporal probability of the event to occur (see the relative time scales for
onset of large bridge motion in Figs. 7, 9, 10 ) .

2. The shape of the pedestrian loading wave plays an important role. The ideal si-
nusoidal trend proposed in the original formulation of the model proves to be
quite different from the typical time series of lateral forcing as measured by ex-
periments on a treadmill [5]. The square-wave we introduce is more realistic and
more conservative, as the critical number of pedestrians decreases.
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3. The amplitude of lateral force due to pedestrians can increase dramatically when
they change their gate on a moving platform. Numerical results, both for Abrams’
relationship and for our bilinear relationship G(A), show the necessity to con-
sider this phenomenon. In fact, it affects the steady-state amplitude of the bridge
motion and the speed at which the large amplitude oscillations set up. In partic-
ular, our relationship provides a lower critical number of pedestrians. Both the
relationships share the same qualitative behaviour of the bridge-crowd system in
terms of amplitude versus time curves.

4. The additional pedestrian-to-pedestrian synchronization self-excites the phe-
nomenon, and accordingly the critical threshold considerably reduces. Although
the two considered types of synchronization are different in their nature, they
usually happen simultaneously and lead to the same result: an increase in the
response of the structure. It is clear the necessity to take into account both of
them.

5. Different loading paths (i.e. different numbers of pedestrians introduced on the
bridge deck per unit time) affect both the time-history of the event and the critical
number Nc. However, the phenomenon remains unaltered in its essence, thus
emphasizing the robustness of the model.

It is worthy to note that the model depends only on the modal characteristics of the
bridge, on the biological dynamics of human walking in a crowd, and on its dynam-
ical interaction with the deck. So, unlike other models described in the literature
[12], [11], [33], it is applicable to any bridge where a similar phenomenon is ob-
served or expected to occur. The unique ’weak’ point is the determination of the
two parameters C (originally introduced to measure pedestrian sensitivity to bridge
lateral oscillations) and D (we introduce here to measure the visual sensitivity to
the synchronization between a pedestrian and the previous one). However the gen-
erality of the model is not invalidated as actual distributions of C and D could be
determined through an ad hoc experimental campaign on a representative sample of
the population. Experiments in this sense would be welcome.

Finally, it is necessary to remark that the SAMEO model is pseudo-stochastic,
and it does not consider various (minor in our opinion) aspects. The perfect period-
icity of the lateral human-induced load is assumed only with respect to the pedes-
trians phases (initially randomly assigned), as walking is not a perfectly periodic
activity with respect to time, as wide experimental studies confirm [41], [42]; but
the adopted approach is deterministic in its evolution and it can be criticized due
to the random nature of walking forces, which would suggest the use of a really
stochastic approach. Furthermore subharmonic or superharmonic resonances are not
considered in the model.

All the previous observations, besides improving the understanding of the under-
lying physical phenomenon, allow us to state that the SAMEO model, despite some
limitations, is sufficiently simple and robust in its previsions; therefore it may prove
useful to estimate, e.g., the damping needed to stabilize other exceptionally crowded
footbridges against synchronous lateral excitation by pedestrians. In this sense, it
could constitute the basis to look for technical solutions aimed at limiting or avoid-
ing the phenomenon of the pedestrians-induced lateral vibrations of footbridges.
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As regards to the second section of this chapter, which is dedicated to the analysis
of the discrete-time model, the most important conclusions are summarized in the
following.

1. Also the proposed discrete-time model is independent of the specific real case-
study we have considered (i.e. the London Millennium Bridge). It depends only
on the modal characteristics of the bridge, on the biological dynamics of human
walking in a crowd, and on its dynamical interaction with the deck.

2. As regards the parameters ε and δ , they do not limit neither the generality of the
model nor its easiness and speed of application. In fact ε should be determined
experimentally, but its evaluation pertains exclusively the unconstrained human
walking dynamics (random synchronization phenomena) and not the footbridge
we are studying. δ is a value very close to the bridge maximum lateral displace-
ment and so we usually fix it in stage of project.

3. The stochastic aspects are put into account in the definition of the so-called
’equivalent pedestrian’ which resumes the characteristics of the pedestrians in
crowd, in terms of maximum exerted force, native frequency and random phase.

4. We assume that all the pedestrians have the same native frequency, even though
experiments on a statistical sample of the population reveal a Gaussian distribu-
tion [54]. This is not a real problem, because our assumption constitutes only an
analytical simplification which doesn’t influence the structure of the model and
its general validity.

5. Perfect periodicity of the lateral human-induced load is assumed. Actually, the
walking force is not perfectly periodic and it could be attenuated due to interac-
tion between the pedestrian and the structure. Moreover, we idealize again the
pedestrian forcing as sinusoidal, even if experiments on a treadmill reveal a trend
more similar to a square wave [5], as said.

The simple discrete-time model (2D map) is able to explain the main charac-
teristics of the phenomenon of synchronous lateral excitation, without numerical
simulations.

A simple analytical formula to compute the critical number of pedestrians trig-
gering the synchronization is proposed. Its application to a real case-study returns
reliable values, in good agreement both qualitatively and quantitatively with other
consolidated results [30] and with observations [12]. Moreover it shows that Ncr

depends only on the bridge damping and stiffness, on the average maximum lat-
eral force exerted by walking pedestrians and then on the bridge maximum lateral
displacement.

The main result, from a dynamical system point of view, is that the model high-
lights how the phenomenon is a perturbation of a classical (but degenerate) pitchfork
bifurcation, which is the underlying dynamical event. This observation permits an
improved understanding of the physical event underlying synchronization.

Finally, we can conclude that by the combined use of continuous- and discrete-
time models we achieved a good understanding of the synchronization induced large
lateral oscillations of footbridges, and reliable estimations of the triggering number
of pedestrians.
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