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Preface

Nonlinear phenomena should play a crucial role in the design and control of engi-
neering systems and structures as they can drastically change the prevailing dynam-
ical responses. For example, bifurcations or transitions to irregularity (chaos) may
completely alter intuitively expected behaviour. Dealing with nonlinear dynamic
phenomena requires special analytical treatment and dedicated control techniques
to harness the effects of unpredictable behaviour. In many cases, formulating an
appropriate nonlinear mathematical model of a real structure or system would be
essential to obtain a broad knowledge of the relevant response and the influence of
its parameters.

Nonlinear mechanics is classical in origin, however its applications are modern
and they are vast in science and engineering. In spite of the fact that linear models
are in common use, in many practical problems certain key effects can be explained
only by exploration of nonlinear models.

The origin of this book is a series of lectures given in the frame of the Trans-
fer of Knowledge Project led by Prof. Tomasz Sadowski of Lublin University of
Technology on ’Modern Composite Materials Applied in Aerospace, Civil and
Sanitary Engineering: Theoretical Modelling and Experimental Verification’ (con-
tract MTKD-CT-2004-014058) and the FP7 Project ’Centre of Excellence for
Modern Composites Applied in Aerospace and Surface Transport Infrastructure’
(CEMCAST, FP7-REGPOT-2009 1, grant agreement No: 245479). The mentioned
projects accommodated two groups of researchers: one, working in the field of mod-
ern materials mechanics, and the other, working in nonlinear dynamics, bifurcation,
chaos theory and control. Some of the results obtained by the latter are included
in this book, whose scope covers theoretical and applications-based problems of
nonlinear dynamics. In the presented chapters the newest methods of nonlinear me-
chanics are applied to elucidate a rich variety of features of system response and the
latest control techniques are used to enhance the dynamics or to reduce undesired
responses. Besides composite structures and systems with controllable and adap-
tive properties, flexible structures and non-smooth problems are addressed, paying
proper attention to real applications.
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So called small nonlinearities very often result in large qualitative and quan-
titative changes in structural dynamics. As a classical example we may mention
pendulum-like systems addressed in Chap. 1. In practice, a pendulum can be used
as a dynamic absorber mounted in high buildings, bridges or chimneys. Swings of
the pendulum can suppress oscillations of the primary structure which then oscil-
lates with a very small amplitude or not at all. However, geometrical nonlinearities
introduced by pendulum motion may change the system dynamics, and instead of
the expected response we can observe a rapid increase of the oscillations of both the
pendulum and the structure, leading to full pendulum rotation or chaotic dynamics.
The reason for such behaviour is related to autoparametric coupling resulting in the
occurrence of instability zones. To avoid such dangerous situations the proper selec-
tion of parameters or the introduction of semi-active magnetorheological damping is
proposed. On the basis of the analytical solutions of a nonlinear two DOF model the
resonance and instability regions are detected, and then chaotic oscillations, bifurca-
tion points and transition paths from regular to chaotic vibrations are determined by
numerical techniques. Theoretical results are validated by real experimental tests.

Nonlinear mechanics also has to be used to explain undesired response in slen-
der footbridges. Motivation for research in this topic was the famous example of
the London Millenium Bridge event. Strong horizontal vibrations, caused by syn-
chronisation of pedestrian motions, were induced on its opening day. The problem
of pedestrian induced lateral vibrations may occur in bridges of various structural
types and materials. The parametric study presented in Chap. 2 allows a better un-
derstanding of the structural mechanics and also the detection of regions of increas-
ing vibration. The observed phenomena can be explained by an analytical nonlinear
discrete-time model based on the stroboscopic Poincaré map which then enables
the location of instability regions and the prediction of the number of pedestrians
required to trigger synchronisation of the structure. The analytical formula gives
reliable values which are in good qualitative and quantitative agreement with real
examples and observations.

Smart active or semi-active elements, like for example: magnetorheological
dampers, piezoelectric patches or shape memory alloys actuators embedded inside
the structure, together with robust control algorithms, may eliminate regions of dan-
gerous behaviour. Also we may take advantage of the nonlinear phenomena to de-
sign an active structure to work more effectively. Shape memory alloys (SMAs)
exhibits very interesting nonlinear thermo- mechanical properties such as the shape
memory effect and superelasticity. Methodologies for integrating shape memory al-
loy elements are based on active property tuning (APT) and active strain energy
tuning (ASET). Chapter 3 presents details of the modelling of the SMA effect and
applications for SMA wires embedded in mechanical structures to control their dy-
namics. SMA elements integrated within composite beams or plates can be used for
active modification of structure properties e.g. by affecting their natural frequencies.
It is shown that the resonant characteristics of such hosts can be significantly altered
by activation of the embedded elements. This concept is extended to shell-like struc-
tures, specifically tubular bearing housings used to locate flexible rotors, and also



Preface VII

to more complex plate geometries in which the SMA is arranged in a periodic and
repeating structure in order to control multiple modes of vibration.

Recent advancements in the theoretical and experimental research on the finite
amplitude, resonant, forced dynamics of sagged, horizontal or inclined, elastic ca-
bles are presented in Chap. 4, by considering modelling, analysis, response, and, in
particular, nonlinear/nonregular phenomena. Asymptotic solutions and a rich vari-
ety of features of nonlinear multimodal interaction occurring in various resonance
conditions are comparatively discussed. Dynamical and mechanical characteris-
tics of some of the principal, experimentally observed, responses are summarized,
along with the relevant robustness, spatio-temporal features, and dimensionality.
Challenging issues arising in the characterization of involved bifurcation scenar-
ios resulting in transition to complex dynamics are addressed, and hints for proper
reduced-order modelling in cable nonlinear dynamics are obtained based on both
asymptotic solutions and experimental investigations, in the perspective of a prof-
itable cross-validation of the observed nonlinear phenomena.

The importance of non-smooth dynamical systems, which are very common in
engineering practice is discussed in Chap. 5. Mathematically, such systems can be
considered as locally smooth and therefore the global solution is obtained by stitch-
ing local solutions, which can be determined by standard methods. If the dynamical
system is piecewise linear then an implicit global analytical solution can be given,
however the occurrences of non-smoothness have first to be determined. This leads
to the necessity of solving a set of nonlinear algebraic equations. To illustrate non-
smooth problems and the methodology for solving them, three mechanical engineer-
ing examples are studied: (i) a vibro-impact system in the form of a moling device,
(ii) the influence of the opening and closing of a fatigue crack on the host system
dynamics, and (iii) nonlinear interactions between a rotor and snubber ring system.
The theoretical results have been obtained from the developed mathematical models
and confirmed by experimental tests, with a good degree of correlation.

This book is aimed at a wide audience of engineers and researchers working in
the field of nonlinear structural vibrations and dynamics, and undergraduate and
postgraduate students reading mechanical, aerospace and civil engineering.

Lublin, Ancona, Glasgow, Roma, Aberdeen Jerzy Warminski
December 2010 Stefano Lenci

Matthew Cartmell
Giuseppe Rega

Marian Wiercigroch
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Autoparametric Vibrations of a Nonlinear
System with a Pendulum and
Magnetorheological Damping

Jerzy Warminski and Krzysztof Kecik

Abstract. The chapter deals with autoparametric vibrations of a system composed
of a nonlinear oscillator with an attached pendulum. Dynamics of the mechanical
structure is studied analytically around the principal parametric resonance region,
numerically and experimentally for a wide range of parameters. The influence of
damping, nonlinear stiffness (hard and soft), amplitude and frequency of excitation
on the system’s behaviour is analysed in details. The obtained results show that the
pendulum can be applied as a dynamical absorber. However, for selected parame-
ters, near the main parametric resonance, instability, which transits the pendulum
to chaotic oscillations or to a full rotation, occurs. Therefore, the application of a
magnetorheological (MR) damper and a nonlinear spring is proposed to improve
the dynamics and to control the response online. Periodic vibrations, chaotic mo-
tions or a full rotation of the pendulum obtained numerically are confirmed by the
experiment. The chaotic nature of motion is determined from real signals by the at-
tractor reconstruction and the recurrence plot calculation. The results show that the
semi-active suspension may reduce dangerous motion and it also allows to maintain
the pendulum at a given attractor or to jump to another one.

Keywords: Autoparametric vibrations, control, stability, chaos, parametric reso-
nance, magnetorheological damping, nonlinearity, basins of attraction.
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2 J. Warminski and K. Kecik

1 Introduction to Autoparametric Vibrations

Systems with time-varying parameters belong to a very important class in the field
of structural dynamics. Many mechanical engineering problems are described by
differential equations with periodically changing parameters. Therefore, vibrations
generated by such systems are called parametric vibrations. Among many, as a clas-
sical example we can mention a pendulum with moving periodically point of sus-
pension. Its mathematical model leads to the Mathieu equation.

Autoparametric systems belong to a special subclass of nonlinear dynamical
structures of the broad group of parametrically induced vibrations. Their specific
feature is that vibrations are caused by internal coupling of at least two subsystems.
A pendulum attached to an oscillator subjected to vertical harmonic force is an ex-
ample of such a system. The two substructures: an oscillator and a pendulum are
coupled by inertia terms which play a role of parametric excitation. This specific
coupling can lead to energy transfer between different vibration modes [25], as well
as to resonances possible only in this specific problem [21]. Moreover, additional
types of resonances, internal or combination ones, are possible [8] and, under some
conditions, the system can transit to chaotic motion [5]. When a mechanical sys-
tem consists of two or more coupled vibrating subsystems, vibrations of one of the
components may destabilise the motion of the others.

In autoparametric vibrations, a small excitation can produce a large response ba-
sically when the frequency of excitation is close to one of the natural frequencies
of the system. In actual engineering problems, the loss of stability depends on fre-
quency tuning of the various components of the system, and on the interaction (the
coupling) between them. The oscillator with an attached pendulum represents an in-
teresting dynamical physical structure which is used in many mechanical and civil
engineering applications. In a large number of problems it is used to diminish the
vibration amplitudes. As an example of this we can mention a situation which oc-
curs in aeroplanes where the aeroplane’s engines are mounted under the wings by
elastic suspenders. Vertical vibrations of the wing can, under certain conditions, ini-
tiate the swinging motion of the suspended engines. Autoparametric excitation, with
the motion of the wings supplying the energy, can lead to violent vibrations of the
engines, resulting in a fatal failure of the suspenders [34]. Nowadays, pendulum ab-
sorber is applied also to helicopters as one of the vibration suppression devices of
helicopter’s blades [23]. Moreover, special dampers working against earthquake are
mounted in high buildings [29], mounted on bridges against river vortex [3] or on
high chimneys where they are designed to reduce vibration induced by the wind [4].

Autoparametric vibrations which may occur in many mechanical structures are
studied by many researchers. In paper [35] Vyas and Bajaj analyse dynamics of
a resonantly excited single-degree-of-freedom linear system coupled to an array
of non-linear autoparametric vibration absorbers (pendulums). They obtained, by
method of averaging, the first order approximation of the non-linear response of
the system. They showed that the frequency interval of the unstable single-mode
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response or the absorber bandwidth can be enlarged substantially, comparing it to
that of a single pendulum absorber, by adjusting individually the internal mistuning
of the pendulums. Their results show a significant enhancement in the performance
of autoparametric vibration absorbers. A rigid pendulum attached by a hinge joint
to a block-mass is studied by Hatwal et al. [11]. In this case, the restoring force of
the secondary system occurred due to gravity or a torsional spring. Both cubic and
quadratic nonlinearities are considered in the model. The method of the harmonic
balance is applied to find the solution of equations and to show suppression of vibra-
tions of the main system for taken configurations. However, in a later article Hatwal
et al. [12] showed interesting time responses for a pendulum with chaotic behaviour
in both numerical and experimental results. A stabilisation method for the 1/3 order
subharmonic resonance with an autoparametric vibration absorber is presented by
Yabuno et al. in [42]. The subharmonic resonance was created by a nonlinear spring
(cubic characteristic) and harmonic excitation. Damping of a pendulum subsystem
was selected as a control parameter while the natural frequency was about 1/2 that
of the main system.

The purpose of this chapter is to study possible dynamical phenomena of a cou-
pled oscillator-pendulum system for realistic data, and to present a method of semi-
active reduction of dangerous vibrations, mainly the chaotic oscillation and rotation.
First, we propose to use the magnetorheological damper (MR), which is installed be-
tween the oscillator and the ground to provide controllable damping for the system.
The effectiveness of the proposed smart base isolation system is studied numerically
and experimentally. The second way to eliminate vibrations is to apply a nonlinear
spring, mounted in the suspension of the autoparametric system. Experimental tests
which confirm theoretical results are performed on a specially prepared two-degree-
of-freedom physical model. The chaotic nature of the system is determined from real
signals based on the reconstruction of the attractor and the recurrence plots. The re-
sults of this study present new possibilities for designers, in particular. It is found
that magnetorheological fluids can be designed to be very effective for vibration
control, and used in the autoparametric systems to produce controllable response.

2 Model of the Nonlinear Oscillator with an Attached
Pendulum

The model of the autoparametric system is considered in two variants: with a classi-
cal linear spring and linear viscous damping, and with a nonlinear spring and mag-
netorheological (MR) damping. The nonlinear spring is introduced by a structural
modification while the MR damper behaviour can be modified on-line from viscous,
if the system is not activated, to mixed viscous with a dry friction component, when
the damper is activated. All considered variants are presented in this section.
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2.1 Differential Equations of Motion of a Model with a Viscous
Damper

First, let’s make a study of an autoparametric pendulum-like system with a typical
viscous damper. The considered mechanical model, presented in Fig.1, consists of
two subsystems. The main one, a nonlinear oscillator (I), is composed of the mass
m1 and a linear or nonlinear spring and a viscous damper. The second subsystem is
an attached pendulum (II) composed of two masses mp and m2. The pendulum is
attached at a pivot to the mass m1. A length of the pendulum’s arm is denoted by l,
and a coefficient of angular damping in the pivot by cϕ . Stiffness coefficients of a
linear and nonlinear part of the oscillator’s supporting spring are expressed by k and
k1. The oscillator is excited by a classical linear spring k2 due to harmonic vertical
motion of the base (kinematic excitation). Amplitude and frequency of excitation
are denoted Q and ω , respectively.

The motion of the autoparametric model is described by two generalized coordi-
nates namely the displacement of the oscillator in the vertical direction x, and the
angle of the pendulum rotation ϕ . Damping of the model is studied in two variants:
(a) as linear viscous and (b) nonlinear magnetorheological damping. The second
case is presented in Sect. 2.2. Differential equations of motion are derived by the
second kind of Lagrange equations and they are written as:

(m1 + m2 + mp) ẍ + cẋ+(k + k2)x + k1x3

+
(

m2 +
1
2

mp

)
l
(
ϕ̈ sinϕ+ ϕ̇2 cosϕ

)
= k2Qcosωt ,

(
m2 +

1
3

mp

)
l2ϕ̈+ cϕϕ̇+

(
m2 +

1
2

mp

)
l (ẍ + g) sinϕ = 0 . (1)

Fig. 1 Model of the au-
toparametric system
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The first of the Eqs. (1) represents the oscillator’s motion while the second – motion
of the pendulum. If the pendulum does not move, it becomes a part of the oscillator
mass, only. We call the solution of this state as the semi-trivial solution. Equations
(1) are typical of this type of a two-degrees-of-freedom autoparametric system ([7],
[36]). The nonlinear term k1 of the supporting spring is a new element which appears
in the model.

Introducing dimensionless time τ =ω0t, whereω0 =
√

(k + k2)/(m1 + m2 + mp)
is natural frequency of the oscillator, and dimensionless coordinates X = x/xst and
ϕ ≡ ϕ , where xst = (m1 +m2 +mp)g/(k+k2) is the static displacement of the linear
oscillator, we express the governing equations of motion in the dimensionless form:

Ẍ +α1Ẋ + X + γX3 + μλ (ϕ̈ sinϕ+ ϕ̇2 cosϕ) = qcosϑτ ,

ϕ̈+α2ϕ̇+λ
(
Ẍ + 1

)
sinϕ = 0 . (2)

Now, the natural frequency of the linear oscillator in Eq. (2) is reduced to one, while
the dimensionless parameters take definitions:

α1 =
c

(m1 + m2 + mp)ω0
, α2 =

cϕ(
m2 + 1

3 mp
)

l2ω0
,

ϑ =
ω
ω0

, μ =

(
m2 + 1

3 mp
)

l2

(m1 + m2 + mp)x2
st

, λ =
(m2 + 1

2 mp)xst

(m2 + 1
3 mp)l

,

q =
k2Q

(k + k2)xst
, γ =

k1

k + k2
x2

st . (3)

The autoparametric excitation in Eq. (2) is produced by coupling inertia term Ẍ in
the pendulum’s equation. If the oscillator motion X is periodic, then the inertia term
plays a role of a periodically changing coefficient. Because this phenomenon relies
on the internal coupling, therefore the system is called autoparametric. Of course the
first equation is also coupled by the second and the first derivative of the pendulum
coordinate ϕ . More detailed information can be found in [16].

2.2 Application of Magnetorheological (MR) Damper

Active and semi-active control provides an important new tool for a control engi-
neer. Many structures, such as automotive vehicles, tall buildings, robotic manipu-
lator arms and flexible spacecraft have already been designed using smart vibration
isolation as a part of the total design. Magnetorheological fluids (MRF) are a class
of smart materials whose rheological properties may be rapidly varied by supplying
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the magnetic field. When outside the influence of the magnetic field, particles float
freely, causing the material to behave like any colloidal mixture. Under the influence
of the magnetic field suspended magnetic particles interact to form a structure that
resists shear deformation or flow. Therefore, magnetorheological fluid devices are
the most promising for vibration control and for vibration isolation.

Magnetorheological dampers are highly nonlinear devices. Their force-velocity
relationship is not easy to describe. MR fluid behaves in two distinct modes: off
state and activated state. There are several models that describe highly nonlinear be-
haviour of magnetorheological dampers, generally divided into two categories: para-
metric and non-parametric ones. The parametric models are physics-based models
with parameters that have real physical meaning and carry engineering units (Bouc-
Wen, Spencer, Bingham, LuGre and Dahl models). The non-parametric models are
mostly empirical e.g. based on Artificial Neural Networks (ANN) or fuzzy logic
models [14].

The investigated nonlinear model of an autoparametric system with applied MR
damper is presented in Fig.2(a). Here, we propose to use a smooth function of mod-
ified Bingham’s model (Fig.2b) suggested in the paper [31]. The restoring force of
the MR damper with respect to the input velocity is represented by

Fd = d tanh
(
eẊ
)
+ cẊ , (4)

where d is the force related to the rheological behaviour coefficient, produced by the
fluid, ẋ is velocity of the MR damper piston. In Eq. (4) e is a constant. In our study
based on experimental tests, we assumed this value equals ten. In dimensionless
form equation (4) is expressed as:

Fd = α3 tanh
(
eẊ
)
+α1Ẋ , (5)

Fig. 2 Physical model of an autoparametric system with MR damper a, Bingham model of a
controllable fluid damper b
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Fig. 3 Nonlinear damping force characteristics for different parameters α3: a damping force
versus displacement, b damping force versus velocity; viscous damping α1 = 0.1

where α3 is a dimensionless coefficient of MR damping defined as:

α3 =
d

(m1 + m2 + mp)ω2
0 xst

. (6)

This model consists of a combination of viscous damping (α1) and Coulomb fric-
tion (α3) as shown in Fig.3. The Bingham model can be used successfully when the
width of hysteretic loop, Fig.3(a), in real characteristics of MR dampers is relatively
narrow [15]. However, if the hysteretic loop is wider, it is necessary to construct a
more complicated model.

The equations of motion of the system in Fig.2 that include the magnetorheolog-
ical damper, take the form:

Ẍ +α1Ẋ +α3 tanh(eẊ)+ X + γX3 + μλ (ϕ̈ sinϕ+ ϕ̇2 cosϕ) = qcosϑτ ,

ϕ̈+α2ϕ̇+λ
(
Ẍ + 1

)
sinϕ = 0 . (7)

If the parameter α3 in Eq. (5) equals zero, we get a classical linear viscous
damped model as in Eq. (2). Since in Eq. (5) hyperbolic tangential function occurs,
which is very difficult to solve analytically, the strict solutions of an autoparametric
pendulum-like system with MR damper are analysed by numerical methods.

3 Approximate Analytical Solutions and Their Stability

Understanding of the dynamics of the autoparametric pendulum-like system re-
quires a study of its mathematical model and then finding analytical solutions.



8 J. Warminski and K. Kecik

Because the system is strongly nonlinear the solution can be found by approximate
methods and only under assumed conditions. We often have to approximate nonlin-
ear terms by polynomials that are valid for limited values of amplitude. On the basis
of the analytical solution, bifurcations and stability analysis can be done giving in-
sight into the system dynamics and allowing to find the parameters influence. This
section deals with analytical results and their numerical validation.

3.1 Harmonic Balance Method

Because the equations of motions (2) include nonlinear terms, it is difficult to
find their strict solutions. Therefore, Harmonic Balance Method (HBM) is used
to find the approximated solution in the neighbourhood of the principal paramet-
ric resonance. The harmonic balance is a method effectively used to calculate the
steady-state response of different dynamical systems. The method assumes that the
solution can be represented by a linear combination of harmonic functions. Classi-
cal HBM assumes constant amplitudes and phases that represent steady state of the
system. Here, to get more general solutions, we assume that amplitudes and phases
are slowly varying functions of time. Around the principal parametric resonance
the mass m1 vibrates with frequency ϑ , which is equal to the excitation frequency,
while the pendulum oscillates with frequency ϑ/2 (1:2 subharmonic response). On
the basis of this assumption we seek solutions in the form:

x(τ) = A(τ)cos(ϑτ+φ1) ,

ϕ(τ) = B(τ)cos(
ϑ
2
τ+φ2) . (8)

Taking into account small oscillations of the pendulum around the equilibrium point
ϕ ≈ 0, the nonlinear terms sinϕ and cosϕ are expanded in Taylor’s series taking into
account terms up to the third-order

sinϕ = ϕ− ϕ3

6
+ 0(ϕ)5, cosϕ = 1− ϕ2

2
+ 0(ϕ)4 . (9)

Amplitudes A(τ), B(τ) and phases φ1(τ), φ2(τ) describe oscillator and pendu-
lum motions, respectively. In further analysis the abbreviated notation A(τ) ≡ A,
B(τ) ≡ B, φ1(τ) ≡ φ1, φ2(τ) ≡ φ2 is used. Introducing Eqs. (8) and (9) into (2), and
next balancing coefficients of corresponding sine and cosine terms, and neglecting
higher harmonics and small terms of a higher order, we get a set of the first order
approximate differential equations:
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α1Ȧ + μλ
ϑ
2

Ḃsin(φ1 −2φ2)
(

2B− 1
3

B3
)
−2ϑAφ̇1

−2
ϑ
2
μλB2φ̇2 cos(φ1 −2φ2)+

1
6

(
ϑ
2

)
μλB4φ̇2 cos(φ1 −2φ2)

+A(1−ϑ 2)+
3
4
γA3 −

(
ϑ
2

)2

μλB2 cos(φ1 −2φ2)

+
1

12

(
ϑ
2

)2

μλB4 cos(φ1 −2φ2)−qcos(φ1) = 0 ,

−2ϑ Ȧ+ μλ
ϑ
2

Ḃcos(φ1 −2φ2)
(
−2B +

1
3

B3
)
−α1Aφ̇1

−2
ϑ
2
μλB2φ̇2 sin(φ1 −2φ2)+

1
6

(
ϑ
2

)
μλB4φ̇2 sin(φ1 −2φ2)

−α1ϑA−
(
ϑ
2

)2

μλB2 sin(φ1 −2φ2)

+
1
12

(
ϑ
2

)2

μλB4 sin(φ1 −2φ2)−qsin(φ1) = 0 ,

α2Ḃ− φ̇1 cos(φ1 −2φ2)
(
ϑλAB− 1

8
λϑAB3

)

−2
ϑ
2

Bφ̇2 −B

((
ϑ
2

)2

−λ +
1
8
λB2

)

−
(

1
2
λϑ 2AB− 1

16
λϑ 2AB3

)
cos(φ1 −2φ2) = 0 ,

−2
ϑ
2

Ḃ + φ̇1 sin(φ1 −2φ2)
(
λϑAB− 1

8
λϑAB3

)
−α2Bφ̇2

−α2B

(
ϑ
2

)
+ sin(φ1 −2φ2)

(
1
2
λϑ 2AB− 1

16
λϑ 2AB3

)
= 0 . (10)

The above, so-called modulation equations, describe a change of amplitude and
phase of the oscillator and the pendulum. For the steady state, amplitudes and phases
are constant, thus their first order derivatives are equal zero

Ȧ = 0, Ḃ = 0, φ̇1 = 0, φ̇2 = 0 , (11)

and for small oscillations of the pendulum we may assume

B4/48 ≈ 0, B3/16 ≈ 0 . (12)
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Introducing (11), into (10) and taking into consideration (12) we receive a fol-
lowing set of algebraic equations:

(1−ϑ 2)A +
3
4
γA3 − μλ

(
ϑ
2

)2

B2 cos(2φ2 −φ1) = qcosφ1 ,

−ϑα1A + μλ
(
ϑ
2

)2

B2 sin(2φ2 −φ1) = qsinφ1 ,

(
ϑ
2

)2

−λ +
λ
8

B2 + A
λϑ 2

2
cos(2φ2 −φ1) = 0 ,

α2

(
ϑ
2

)
+ A

λϑ 2

2
sin(2φ2 −φ1) = 0 . (13)

Assumptions (12) are adopted in accordance with the work [28] in which analytical
results both with neglected and without neglected parts are compared. The obtained
results show that the influence of the terms (12) is very small.

Solutions of the nonlinear algebraic equations (13) represent amplitudes and
phases of the model response in the steady state. It is not possible to receive the
strict solutions of these equations in analytical form. However, if the nonlinearity
of a spring is neglected, γ = 0, the solution can be found. After some algebraic
manipulations we get the following equations:

tanφ1 =
4ϑ
(
4A2α1 + B2α2μ

)
16A2 (ϑ 2 −1)−B2μ ((B2 −8)λ + 2ϑ 2)

,

tan(2φ2 −φ1) =
α2
(ϑ

2

)
(ϑ

2

)2 −λ + λB2

8

,

A2 =
B4

16ϑ 4 +
B2(4λϑ 2 −16λ 2)

16λ 2ϑ 4 +
64λ 2 −32ϑ 2λ + 4ϑ 4 + 16ϑ 2α2

2

16λ 2ϑ 4 ,

A2 =
B4
(−λ 2μ2ϑ 4 + 2λμ

(
ϑ 2 −1

))
16
(
1 +
(−2 +α2

1

)
ϑ 2 +ϑ 4

)

+
B2
(
16λμ

(
1−ϑ 2

)
+ 4μϑ 2

(
ϑ 2 −1−2α1α2

))
16
(
1 +
(−2 +α2

1

)
ϑ 2 +ϑ 4

) +
q2

1 +ϑ 2(−2 +α2
1)+ϑ 4

B4

[
−λ 2μ2ϑ 4 + 2λμ

(−1 +ϑ 2
)

16
(
1 +
(−2 +α2

1

)
ϑ 2 +ϑ 4

) − 1
16ϑ 4

]

+B2

[
16λμ

(
1−ϑ 2

)
+ 4μϑ 2

(
ϑ 2 −1−2α1α2

)
16
(
1 +
(−2 +α2

1

)
ϑ 2 +ϑ 4

) +
16λ 2 −4λϑ 2

16λ 2ϑ 4

]

+
q2

1 +ϑ 2
(−2 +α2

1

)
+ϑ 4

− 64λ 2 −32λϑ 2 + 4
(
4α2

2ϑ
2 +ϑ 4

)
16λ 2ϑ 4 = 0 ,

(14)
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Fig. 4 Analytical resonance curve of the pendulum a and the oscillator b

which allow amplitudes and phases determination. For a full nonlinear case it is
necessary to solve a set of nonlinear algebraic equations (13) numerically.

Sample resonance curves of the pendulum and the oscillator representing solu-
tions of Eqs. (14) for data: α1 = 0.1, α2 = 0.01, μ = 15.2, λ = 0.25, q = 0.05 are
presented in Fig.4. The black dots denote the numerical verifications. It should be
noted that harmonic balance method is valid for relatively small angles of the pen-
dulum in the neighbourhood of the main parametric resonance (ϑ ≈ 1). The case
of resonance with a fixed, not oscillating pendulum is presented by black line in
Fig.4(b), while blue line corresponds to the case with a swinging pendulum. Close
to ϑ ≈ 1, the dynamical elimination of oscillator’s vibration caused by the swinging
pendulum is clearly visible.

If we assume that damping of the pendulum is equal to zero, α2 = 0 in Eq.(13),
we can find the condition of the full elimination of the oscillator’s vibrations

ϑ ∗ =

√
2λ +

√
2
√

2λ 2μ2 − μq
μ

, (15)

where ϑ ∗ is the frequency of the full vibrations absorption. For such a case the
amplitude of the pendulum is expressed

B∗ =
√

2

√
2−

√
2
√
λ 2μ (2λ 2μ−q)
λ 2μ

. (16)
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This state can be achieved only if the damping of the pendulum equals zero. We
can notice that nonlinear characteristic of the spring does not influence this condi-
tion. If the pendulum does not swing, which corresponds to the semi-trivial solu-
tion, we can determine the resonance curve of the nonlinear one degree of freedom
system with additional masses. Putting B=0 and assuming linear spring, γ = 0 in
Eq. (13), after rearrangements, we get the equation:

A∗ =
q√

1 +(−2 +α2
1)ϑ 2 +ϑ 4

(17)

which is the amplitude of the linear oscillator (the black line in Fig. 4(b)).

3.2 Stability of Analytical Solutions

Stability analysis of the harmonic solutions is carried out by using the approximate
equations (10). Determining derivatives Ȧ, φ̇1, Ḃ, φ̇2 from Eqs. (10) we get the am-
plitude modulation equations, which can be written in the shortened form:

Ȧ = f1(A, φ1, B, φ2)
φ̇1 = f2(A, φ1, B, φ2)
Ḃ = f3(A, φ1, B, φ2)
φ̇2 = f4(A, φ1, B, φ2) (18)

where

f1 =
WȦ

W
, f2 =

Wφ̇1

W
, f3 =

WḂ

W
, f4 =

Wφ̇2

W
.

Individual determinants in Eq. (18) are expressed in the form:

W =

∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
, WȦ =

∣∣∣∣∣∣∣∣

a0 a12 a13 a14

b0 a22 a23 a24

c0 a32 a33 a34

d0 a42 a43 a44

∣∣∣∣∣∣∣∣
, WḂ =

∣∣∣∣∣∣∣∣

a11 a0 a13 a14

a21 b0 a23 a24

a31 c0 a33 a34

a41 d0 a43 a44

∣∣∣∣∣∣∣∣
,

Wφ̇1
=

∣∣∣∣∣∣∣∣

a11 a12 a0 a14

a21 a22 b0 a24

a31 a32 c0 a34

a41 a42 d0 a44

∣∣∣∣∣∣∣∣
, Wφ̇2

=

∣∣∣∣∣∣∣∣

a11 a12 a13 a0

a21 a22 a23 b0

a31 a32 a33 c0

a41 a42 a43 d0

∣∣∣∣∣∣∣∣
(19)

Coefficients included in the determinants (19) are defined as:



Autoparametric Vibrations of a Nonlinear System 13

a11 = α1, a12 = −2ϑA, a13 = μλ
ϑ
2

BsinΩ
(

B2

3
−2

)
, a14 = −μλϑB2 cosΩ ,

a21 = −2ϑ , a22 = −α1A, a23 = μλ
ϑ
2

BcosΩ
(

B2

3
−2

)
, a24 = μλϑB2 sinΩ ,

a31 = 0, a32 = λϑABcosΩ
(

B2

8
−1

)
, a33 = α2, a34 = −ϑB,

a41 = 0, a42 = λϑABsinΩ
(

B2

8
−1

)
, a43 = −ϑ , a44 = −α2B,

a0 = qcosφ1 −A +ϑ 2A− 3
4
γA3 + μλB2

(
ϑ
2

)2

cosΩ ,

b0 = qsinφ1 +α1ϑA− μλB2

(
ϑ
2

)2

sinΩ ,

c0 = B

(
ϑ
2

)2

−λB +
λB3

8
+

1
2
λϑ 2ABcosΩ ,

d0 = α2B
ϑ
2

+
1
2
λϑ 2ABsinΩ , (20)

where Ω = 2φ2 − φ1. Perturbing the analysed solutions, A + δA, φ1 + δφ1, B +
δB, φ2 +δφ2, and next substituting them to (18), then subtracting from unperturbed
equations and taking into account a linear part of their power series expansions, we
get a set of linear differential equations in variations δA, δφ1, δB, δφ2:

⎡
⎢⎢⎣
δ Ȧ
δ φ̇1

δ Ḃ
δ φ̇2

⎤
⎥⎥⎦= [J]

⎡
⎢⎢⎣
δA
δφ1

δB
δφ2

⎤
⎥⎥⎦ , (21)

where Jacobian [J] takes the form:

[J] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂A
∂ f1

∂φ1

∂ f1

∂B
∂ f1

∂φ2
∂ f2

∂A
∂ f2

∂φ1

∂ f2

∂B
∂ f2

∂φ2
∂ f3

∂A
∂ f3

∂φ1

∂ f3

∂B
∂ f3

∂φ2
∂ f4

∂A
∂ f4

∂φ1

∂ f4

∂B
∂ f4

∂φ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

The stability of the approximate solutions depends on the eigenvalues of the Jaco-
bian (22). If at least one of the roots has a positive real part, the solution becomes
unstable.
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3.3 Model with the Inverted Pendulum

In this paragraph an autoparametric system with the inverted pendulum is presented.
An inverted pendulum is a state when the pendulum swings or stands above its
pivot point. Usually the pendulum hangs downwards, the inverted pendulum motion
is inherently unstable. But for certain conditions the upper equilibrium point of a
pendulum can become stable, especially if the pivot point is moving horizontally
or vertically with a properly selected frequency and amplitude. The equations of
motion for the system can be derived in a similar way as in Sect. 2.1 by using the
second kind of Lagrange equations. Taking a new coordinate ψ pointed in Fig.5 we
get differential equations of motion:

(m1 + m2 + mp) ẍ + cẋ+ kx + k1x3 +
(

m2 +
1
2

mp

)
l
(
ψ̈ sinψ+ ψ̇2 cosψ

)
= k2Qcosωt ,(

m2 +
1
3

mp

)
l2ψ̈+ cψψ̇+

(
m2 +

1
2

mp

)
l (ẍ−g)sinψ = 0 . (23)

Introducing dimensionless time τ = ω0t, the equations of motion can be written
in dimensionless form by using dimensionless parameters expressed earlier by (3).
This yields:

Ẍ +α1Ẋ + X + γX3 + μλ (ψ̈ sinψ+ ψ̇2 cosψ) = qcosϑτ ,

ψ̈+α2ψ̇+λ
(
Ẍ −1

)
sinψ = 0 . (24)

Fig. 5 Model of a system
with the inverted pendulum
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The equations of motion (24) are similar to those for a pendulum swinging about the
lower equilibrium with one exception of the sign of the term related to parameter λ
in the second equation. Analytical solutions of equations (24) are sought in a similar
way to those presented in Sect. 3.1 by using the harmonic balance method.

Assuming small oscillations near the upper position the solutions are sought in
the form:

x(τ) = C(τ)cos (ϑτ+φ3(τ)) ,

ψ(τ) = D(τ)cos

(
ϑ
2
τ+φ4(τ)

)
, (25)

where C(τ), φ3(τ) and D(τ), φ4(τ) are amplitude and phase of the oscillator and
the pendulum, respectively. Making similar simplifications as in Sect. 3.1 we get a
set of the nonlinear algebraic equations which allow to determine amplitudes and
phases in the steady state around the upper position:

(
1−ϑ 2)C +

3
4
γC3 − μλ

(
ϑ
2

)2

D2 cos(2φ4 −φ3) = qcosφ3 ,

−ϑα1C + μλ
(
ϑ
2

)2

D2 sin(2φ4 −φ3) = qsinφ3 ,

(
ϑ
2

)2

+λ − λ
8

D2 +C
λϑ 2

2
cos(2φ4 −φ3) = 0 ,

α2

(
ϑ
2

)
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The analytical solution of the above equations is possible to get only for a sys-
tem with a linear spring, γ = 0. This leads to the resonance curve equation of the
pendulum:
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and two equivalent equations for oscillator’s motion
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D2(16λ 2 + 4λϑ 2)
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64λ 2 + 32ϑ 2λ + 4ϑ 4 + 16ϑ 2α2

2

16λ 2ϑ 4 (28)
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or
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The phase angles φ3 and φ4 are defined as

tan(2φ4 −φ3) =
α2
(ϑ

2

)
λ − λD2

8 +
(ϑ

2

)2 ,

tanφ3 =
4ϑ
(
4C2α1 + D2α2μ

)
D2μ (λ (D2 −8)−2ϑ 2 + 16C2 (ϑ 2 −1))

. (30)

Differential equations of motion of the system with MR damper and the inverted
pendulum are expressed as:

Ẍ +α1Ẋ +α3 tanh
(
eẊ
)
+ X + γX3 + μλ (ψ̈ sinψ+ ψ̇2 cosψ)

= qcosϑτ
ψ̈+α2ψ̇+λ

(
Ẍ −1

)
sinψ = 0 (31)

These equations include strongly nonlinear terms therefore it is difficult to find their
solutions analytically. The equations are solved and analysed numerically.

4 Regular and Chaotic Dynamics Near the Main Parametric
Resonance

Analytical methods allow to find stable and unstable periodic solutions for specific
resonance regions. In spite of the fact that the results are valid only for limited values
of parameters and for limited amplitudes, they are very valuable. The determined
resonance regions and zones in which unstable solutions occur give the base for
further search by numerical methods. Chaotic vibrations, large regular oscillations
or rotation of the pendulum are investigated by advanced numerical methods.

4.1 Instability Region and Parameters Influence

The autoparametric system with an attached pendulum exhibits the resonance be-
haviour near the frequency ϑ ≈ 1. Approximate analytical resonance solutions
are presented in Sect. 3. We may take advantage of this phenomenon to use the
pendulum as a vibration dynamical absorber. However, the detailed checkup of
the solutions stability shows that for a certain set of parameters the instability
region occurs inside the resonance region. A similar result is observed by Song
et al. [28] for a system with pendulum and by Nayfeh and Zavodney [24] for a
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Fig. 6 Analytical resonance curves of a pendulum a and an oscillator b with marked unstable
regions (dashed line)

continuous autoparametric model. This unwanted area is usually located close to
the minimum of the pendulum’s resonance curve. Such instability may lead to rapid
increase of pendulum oscillations, finally resulting in rotation or irregular response.
This phenomenon is not desirable if the pendulum is to be a dynamical absorber.
Nevertheless, we can take advantage of this instability to use the pendulum as a
generator producing energy from see waves, for instance [40], [41]. Therefore the
detailed study of the stability and possible system’s response is the main purpose of
this section.

Sample resonance curves of the pendulum and the oscillator obtained on the basis
of Eq. (14) for data: α1 = 0.261354, α2 = 0.1, α3 = 0, μ = 17.2279, λ = 0.127213,
q = 2.45094 and γ = 0 are presented in Fig.6(a) and (b), respectively. The solution
stability analysis is carried out taking into account Eqs. (18)–(22).

This resonance is manifested by vibrations of the oscillator with frequencyϑ and
the pendulum with frequency ϑ/2. Figure 6 presents amplitudes of analytical solu-
tions, trivial one equals zero and nontrivial is greater than zero. The solid line points
stable, while the dashed line represents unstable solutions. The solution is unstable
if at least one real part of eigenvalues of the Jacobian matrix (22) is negative.

Inside the resonance zone the motion of the oscillator is reduced by the pendulum
oscillations which play a role of a dynamical absorber. Out of this region, this phe-
nomenon fades out, and then the oscillator’s amplitudes reach high values. As can be
seen in Fig.6, there exists an unstable region in the middle of the resonance, located
around the amplitude ‘well’. If the system works in this area, the periodic motion
becomes quasi-periodic, chaotic or the pendulum may rotate [28]. Transition to this
region can lead to unexpected increase of amplitude and eventually to destruction
of the system. Therefore, it is very important to avoid such situations. Additionally,
near the unstable area it is possible to observe the shift of the pendulum vibration
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Fig. 7 Bifurcation diagram of angular velocity ϕ̇ versus excitation frequency ϑ a and corre-
sponding Lyapunov exponent b for α1 = 0.261354, α2 = 0.1

centre [37]. If the system is to work in this region, one should know how to reduce
or control its response.

Figure 7(a) presents a numerical bifurcation diagram and the corresponding Lya-
punov exponents (Fig.7b) near the main parametric resonance. If the frequency of
excitation takes value from the range ϑ ≈ 0.6 to 0.72 or ϑ ≈ 0.98 to 1.19 then
chaotic motions appear. The chaotic attractors for four selected frequencies of exci-
tation ϑ are presented in Fig.8. It is interesting that at the beginning of the chaotic
zone, ϑ ≈ 0.6 to 0.62, the chaotic motion is represented by a strange attractor which
only consists of swings (Figs. 8 a and b). We call this motion chaotic swings. For
the frequency ϑ ≈ 0.63 to 0.72 and ϑ ≈ 0.98 to 1.19, chaotic motion is composed
of both rotation and swings of the pendulum, Fig.8(c) and (d). If the frequency of
excitation is located between 0.73 and 0.97, then the pendulum performs the full
rotation, negative or positive, depending on the initial conditions.

Considering that the system with an attached pendulum can be designed as a dy-
namical absorber, it is necessary to recognise the reason of the occurrence of the in-
stability region and to find the influence of system parameters on this phenomenon.
The set of parameters should be chosen carefully, to eliminate this instability, but
also not to reduce a range of active pendulum operation. The first possible intu-
itive solution is to increase the system damping. Figures 9 and 10 present influence
of damping on the pendulum amplitudes. Both graphs are plotted on the basis of
Eq. (14). From Fig.9 it results that we can reduce the instability area by increasing
damping of the oscillator (parameter α1).

The value of that damping coefficient α1 ≈ 0.6 causes total vanishing of the
instability region. The influence of this parameter is clearly visible on the surface
cross-sections in Fig.9(b). The disadvantage of such a solution is that the right side
of the resonance curve (at the higher frequency direction) is totally reduced. Also the
increase of the pendulum damping in the pivot, parameter α2, causes reduction in
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Fig. 8 Chaotic attractors for frequency ϑ = 0.6 a, ϑ = 0.61 b, ϑ = 0.7 c and ϑ = 1 d;
α1 = 0.261354, α2 = 0.1

both the right and the left sides of the resonance curve, which essentially decreases
effectiveness of the pendulum as a dynamical absorber (Fig.10). For damping in the
pivot of α2 ≈ 0.5, this instability does not exist at all, however, a very narrow region
of absorption is the price we pay for this solution.

Figure 11 presents the influence of the excitation amplitude q on the unstable
region. If the value of excitation amplitude increases, then the instability effect is
still present, and its width increases, too. Then pendulum’s oscillations increase
dangerously.

Because autoparametric systems are very sensitive to the system’s parameters,
therefore, instability region can also be sensitive to some of them.

The dynamics of the system strongly depends on the values of the nonlinear terms
which couple the main structure (the oscillator) and the pendulum. The response of
the system is very sensitive to a change of parameters λ and μ . Parameter λ cou-
ples the oscillator and the pendulum motion (Eq.7). Parameter μ appears only in the
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Fig. 9 Amplitude versus excitation frequency for chosen coefficients of oscillator’s damping,
3D graph a and cross-sections b

Fig. 10 Amplitude versus excitation frequency for chosen coefficients of pendulum’s damp-
ing, 3D graph a and cross-sections b

oscillator’s equation and plays a role of a gain in the product μλ . The influence of
both parameters μ and λ on the pendulum oscillation around the principal paramet-
ric resonance is presented in Figs.12 and 13, respectively. These plots allow one to
determine a proper selection of the pendulum parameters, according to the primary
structure (the oscillator). However, a modification of the parameter λ or μ while the
system vibrates in order to control the response online, could be rather difficult.

Another proposal to change the system dynamics is to include nonlinear stiffness
(parameter γ) or magnetorheological damping (parameter α3) to constitute a semi-
active suspension. Because it is not possible to solve strictly analytically such a
nonlinear model, the influence of the supporting spring stiffness and MR damping
is analysed in next sections by numerical methods, and then verified experimentally.
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Fig. 11 Pendulum’s amplitude versus excitation frequency for different excitation ampli-
tudes, 3D graph a and cross-sections b

Fig. 12 Pendulum’s amplitude versus excitation frequency for different μ parameter, 3D
graph a and cross-sections b

4.2 Upside-Down Pendulum

Stabilising a pendulum at the upright unstable position has become an interesting
object for physicists. Such stabilisation was first done using feed forward vertical
vibration of the pivot of a pendulum by Stephenson [30] at the beginning of 20th

century and it was analysed and demonstrated by Acheson [1], [2]. The inverted
pendulum is related to rocket or missile guidance, where thrust is actuated at the
bottom of a tall vehicle. If the support of the pendulum is caused to oscillate in
an appropriate manner by an external applied force, then a configuration of stable
equilibrium exists in which the pendulum remains upside-down. This solution char-
acterises by oscillations around the inverted position after its slight displacing.

The obtained numerical results are based on equations of motions (24). In order to
determine the ranges in which the pendulum can maintain the inverted equilibrium
position (ψ ≈ 0), two bifurcation diagrams are done. In Fig.14(a) the bifurcation
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Fig. 13 Pendulum’s amplitude versus excitation frequency for different λ parameter, 3D
graph a and cross-sections b

Fig. 14 Bifurcation diagrams of angle ψ a and angular velocity ψ̇ b versus excitation fre-
quency presenting stable inverted pendulum position

diagram of an angle of the pendulum ψ versus excitation frequency ϑ is presented,
while in Fig.14(b) the equivalent bifurcation diagram of angular velocity ψ̇ is plot-
ted. Numerical simulations are done for data: α1 = 0.26, α2 = 0.1, α3 = 0, q = 3,
γ = 0, μ = 17.2, λ = 0.12 and initial conditions ψ(0) = 0.1, ψ̇(0) = 0.1, x(0) = 0
and ẋ(0) = 0. Analysing the results in both diagrams we can precisely determine the
ranges of excitation frequency where the pendulum stands up and stays at rest, or
executes small vibrations in the inverted position.

A region in which a pendulum is upside down is marked by a circle. The tran-
sition to the vertical position occurs when the frequency of excitation is located
between ϑ ≈ 1.25−1.38. Figure 15(a) shows time history of the pendulum coming
to rest in the upper position.

However, for the range of ϑ ≈ 1.39− 1.40 a very narrow region of swinging
upside down pendulum exists (Fig.14). This swinging in the inverted position (see
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Fig. 15 Time responses of the pendulum for ϑ = 1.3 a and ϑ = 1.4 b

Fig. 16 Basins of attraction of the pendulum for ϑ = 1.3 a and ϑ = 1.4 b

time history in Fig.15b) may occur in two forms. These forms are characterised by
a positive or negative shift of the vibration centre. The direction of this centre shift
depends on initial conditions put on the pendulum.

Between frequency ϑ ≈ 1.18− 1.25 the pendulum executes irregular motion
composed of rotation and swinging. If the frequency of excitation is between
ϑ ≈ 0.62−1.17, then the pendulum rotates in negative or positive directions. After
crossing the value ϑ ≈ 1.41, the pendulum goes down and stops there. The same
situation occurs if frequency of excitation does not exceed ϑ ≈ 0.5.

A very interesting situation is observed for ϑ = 1.3 where the pendulum always
goes up to the inverted vertical position independently of its initial conditions. This
situation is clearly shown in Fig.16(a) presenting only one attractor at the upper
equilibrium position with the homogenous basin of attraction in light blue colour.
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This solution suddenly alters with a slight change of frequency to ϑ = 1.4. For
this data there are three different solutions dependent on initial conditions, three
double attractors in Fig.16(b). Attractor No.1 is responsible for chaotic swings in
the lower pendulum position (yellow colour of attractor and grey colour of its basin
of attraction). Attractor No.2 (in red with pink basins of attraction) denotes the rest
of the pendulum at a lower position at ψ = π and, attractor No. 3 (in blue with light
blue basins) corresponds to the swinging pendulum near a lower position, ψ ≈ π .

The obtained results show the sensitivity of the system both on initial conditions
and parameters. Therefore, in next sections, the study of the random initial condi-
tions is also carried out. Additionally, the received results show the need for the
application of semi-active element to control the system response.

5 Experimental Setup of the System with Active MR Damper

Results of theoretical analysis are tested on a real system which has been designed
and then produced to satisfy all required conditions. Nonlinear elements like non-
linear springs with different characteristics and MR damper with hardware and soft-
ware for its activation and control are taken into account.

5.1 Laboratory Rig

The experiment of the studied two-degree-of-freedom model is performed on a spe-
cially prepared test stand (Fig.17). The laboratory rig is composed of the pendulum

Fig. 17 General view of experimental setup and its main components
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(1) with possibility of full rotation and the mass of oscillator (2) together with ad-
ditional masses (13). The mass moment of inertia of the pendulum may be set for
required dynamical conditions by changing its mass (9) or length. The pivot of the
pendulum is connected with encoder MHK 40 (3). Motion of the system is gener-
ated by mechanisms: a motor (6), an inverter (10) and a system changing rotation of
the DC motor into translational motion (7). Amplitude of the kinematical excitation
is fixed by a pitch of the drive shaft. The spring (5) which connects mass of oscil-
lator with the foundation is considered as linear or nonlinear with different stiffness
characteristics. The spring (15) transmits motion from the motor to the oscillator.
An additional strain gauge (8) is mounted under the spring connecting the oscilla-
tor’s mass with the base. The angle of rotation ϕ of the pendulum and the displace-
ment x of the oscillator are measured by the encoder and special proximity detector
(14). Velocity and acceleration of the pendulum and the oscillator are calculated
from signals received by their numerical derivation. The application of additional
sensors also allows measuring the damping force and the force transmitted on the
foundation.

Dynamics of the system is investigated for a classical linear viscous damper (12)
which is controlled by a hydraulic valve connected to an oil tank (11), or a nonlinear
composite MR damper RD 1097-01 (4) with a suitable control system. The damper
(MR or viscous one) is mounted in a special holder (16) and fixed on the strain
gauge KMM30 (8) which allows the damping force measurement. This MR damper
may be effectively used to avoid unwanted situations and control the system motion.
National Instrument card NI-DAQPad 6015 with DasyLab version 9 and Measure-
ment Studio development environments, with features such as DAQ Assistant, and
a single programming interface for all device functions are used for data acquisition
and for the system control.

5.2 Characteristics of the Magnetorheological Damper and
Nonlinear Springs

Magnetorheological dampers are specific class components that may be used for a
semi-active suspension design. After the application of the magnetic field, the fluid
used in a MR damper changes in a few milliseconds from liquid to semi-solid state.
So, the result is an infinitely variable, controllable damper, capable of large damping
forces. MR dampers offer an attractive solution to energy absorption in mechanical
systems and structures. There are three main types of MR dampers: the mono tube,
the twin tube, the double-ended MR damper. Of the three types, the mono tube is
the most common since it can be installed in any orientation and is compact in size.

The used mono tube magnetorheological composite damper RD 1097-01
(Fig.18a), manufactured by Lord Corporation, may perform maximal damping force
Fmax = 100N and is suitable for low force, light duty suspension and isolation appli-
cations. Friction of the damper is controlled by the increase in yield strength of the
MR fluid in response to magnetic field strength. The MR damper is mounted ver-
tically between the mass of oscillator and the base. The key functional parameters
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Fig. 18 Magnetorheological composite damper RD 1097-01a and its characteristics - damp-
ing forces versus velocity of a piston b

Fig. 19 Nonlinear oscillator’s springs a and sample of hard and soft stiffness charact-
eristics b

of the damper RD-1097-01 listed by the manufacturer are: maximum force 100 N,
stroke 25 mm, response time less than 25 ms. The force in the passive-off mode (0 A
current) is about 9 N. Its construction is different from typical linear stroke dampers
filled with MR fluids and operating in the valve mode. The main difference lies in
the presence of an absorbent matrix saturated with an MR fluid in this damper. More
information about technical specification is provided on website www.lord.com.

In Fig.18(b) experimental characteristics of MR damper RD 1097-01 for three
different current intensity (0 A, 0.3 A, 0.5 A) are shown. The same damper is used in
[27] to control cables vibrations and in [20] for the active suspension of the body.

In the laboratory rig, the spring which connects the oscillator and the base is
considered in two variants, linear or nonlinear, with different soft or hard stiffness
characteristics. Nonlinearity of springs have been reached by designing a special
shape of springs e.g. barrel shape and spiral hourglass helical shape (Fig.19a). In
Fig.19(b) sample characteristic of nonlinear springs used in experimental system are
presented. The spring corresponding to the linear characteristics is denoted as No.1
(k = 103 N/m), the hard characteristics as No.2 (k = 103 N/m, k1 = 5× 106 N/m3)
and the soft characteristic as No.3 (k = 2.5×103 N/m, k1 = −9×106 N/m3).
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6 Dynamics of an Autoparametric System with MR Damper

To improve dynamics of the studied autoparametric system and to control its re-
sponse online, a magnetorheological damper, considered as a semi-active device,
mounted in the suspension is proposed. Variable MR force gives possibility to con-
trol the system. However, to get the desired response, it is necessary to know the
influence of MR damping when the system operates in regular or chaotic zones.
Therefore, intensive numerical and experimental analysis by a study of time series,
phase diagrams, Poincaré maps, Layapunov exponents, bifurcation diagrams, basins
of attraction and two-parameter plots supports the possible use of the semi-active
damper.

6.1 Regular Oscillations

As it is reported in Sect.4, for fixed values of parameters, without any control, the
pendulum can generate various types of motion, starting from simple periodic oscil-
lations to complex chaotic response. The motion depends on the initial conditions
and the system parameters. The objective of this part is to create an open-loop con-
trol strategy of the autoparametric system by application of the MR damper. The
open-loop control may be implemented easier and cost-effective comparing with a
closed-loop control. A schematic diagram of the control by the MR damper is shown
in Fig.20.

First, let us analyse the influence of two types of damping, the viscous and the
magnetorheological ones, on free vibrations of the pendulum and the oscillator. We
assume that the viscous damping of the pendulum is fixed α2 = 0.01, the other
parameters are: q = 0, γ = 0 (linear spring), μ = 14.6863, λ = 0.12342, and ini-
tial conditions ϕ(0) = 0.1, ϕ̇(0) = 0, x(0) = 0, ẋ(0) = 0. The influence of viscous
damping (α1 = 0.01, α3 = 0) on free vibrations is presented in Fig.21(a) and (b),
respectively, while MR damping for α3 = 0.1 and α1 = 0 is presented in Fig.21(c)
and (d). Analysing time series of the responses we note that the ratio of pendulum
and oscillator frequencies is equal to 1/2. Qualitative analysis shows that response
of the pendulum is generally almost the same, but the oscillator’s response is differ-
ent. The oscillator’s response in Fig.21(d) is evidently influenced by nonlinear part
of MR damping.

Fig. 20 Block diagram of open-loop control with the application of MR damper
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Fig. 21 Time histories of free vibrations of the pendulum and the oscillator without MR
damping α3 = 0 a, b and with activated MR damping α3 = 0.1 c, d

However, the magnetorheological damper can be used to reduce amplitude of the
forced pendulum motions. Sample results demonstrating this situation are shown in
Fig.22(a). In this case numerical investigations are done for the value of parameters
determined on the basis of experimental setup. The parameters take dimensionless
values: α1 = 0.3054, α2 = 0.1, μ = 14.6863, λ = 0.1342, q = 2.3239, γ = 0. To
reduce amplitude of the pendulum (Fig.22a) and oscillator (Fig.22b), the MR damp-
ing is activated at time τ = 1000, Fig.22(c), by setting value of α3 = 1.0. After the
activation of the MR damper, the angle of rotation of the pendulum ϕ is slightly
reduced by a significant reduction of the oscillator’s vertical displacement x. The
result shows that MR damping has direct influence on effective reduction of oscil-
lator’s motion and indirectly reduces oscillations of the pendulum. When the MR
damper is switched on to the level of α3 = 1.0, then the damping force increases
about twice (Fig.22d), and vibrations are successfully suppressed.
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Nevertheless, we have to remember that if the initial value of MR damping is
fixed on a high level while the system is operating, a rapid drop in damping value
may destabilise the system. Such a situation is presented in Fig.23(a). The rapid drop
in MR damping from α3 = 0.8 to α3 = 0 (Fig.23c) results in large oscillations of the
pendulum (Fig.23a). The necessary conditions of this increase are different than zero
initial conditions imposed for the pendulum, which is always satisfied in practice.
The activated MR damper suppresses the pendulum motion to small oscillations.
The result indicates that MR damper may be used to prevent a loss of stability of
the pendulum motion. Time histories of oscillator’s response, the dynamic force in
activated and inactivated MR damper are presented in Fig.23(b), Fig.23(d).

To check the influence of magnetorheological damping we observe the system
response in bifurcation diagrams in Fig.24. The excitation frequency is fixed taking
the value ϑ = 0.57. Fig.24(a) presents the angle of pendulum’s motion ϕ versus
varying α3, while initial condition of the pendulum is fixed ϕ(0) = 0.1 with the

Fig. 22 Regular motion of the pendulum a and oscillator b for excitation frequency ϑ = 0.57
and time histories of MR damper parameter α3 c and damping force Fd d
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Fig. 23 Regular motion of the pendulum a and oscillator b for excitation frequency ϑ = 0.57
and time histories of parameter α3 c and damping force Fd d

others equal zero. For a wide range of MR damping the response is periodic, but
after exceeding a certain critical value (α3 = 0.4, Fig.24a), the pendulum motion
vanishes. However, remembering that in nonlinear systems dynamic response de-
pends strongly on initial conditions, the bifurcation analysis is repeated for different
randomly chosen initial conditions. Figure 24(b) presents solutions obtained for ten
various initial conditions for each α3 parameter. The total range of the pendulum
swinging is much wider now, exceeding α3 = 1.2, that is three times greater than
the result obtained in bifurcation diagram for one fixed initial condition.

This example emphasises a very important aspect of the existence of possible
multiple solutions in nonlinear structures. This observation has practical meaning
in engineering and physical problems. Bearing in mind that for different initial con-
ditions MR damping may lead to a few steady solutions, their basins of attraction
also have to be determined. The basin of attraction is a set of points (domain of ini-
tial conditions) in the phase space which tend to the selected attractor. In Fig.25(a)
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Fig. 24 Bifurcation diagrams of angle ϕ vs. α3 for fixed initial condition ϕ(0) = 0.1 a and
for ten randomly selected initial conditions b

Fig. 25 The basins of attraction of the pendulum for ϑ = 0.57 and α3 = 0.5 a and
α3 = 1.0 b

we observe two possible solutions, represented by attractors No.1 and No.2 with
relevant basins of attraction and marked by two different colours.

The two points No.2 (in red) denote the double point attractor with basin of at-
traction in pink colour, responsible for swinging of the pendulum (Fig.26b). The
attractor No.1 with its basin of attraction in light green colour denotes semi-trivial
solution, with the oscillator vibrating only and without swinging of the pendulum.
If MR damping increases, up to α3 = 1 (Fig.25b), then the area of semi-trivial so-
lutions is much larger. The usage of a pendulum as a dynamical absorber is then
limited. Figure 26 presents time histories from numerical simulations for ϑ = 0.57,
α3 = 0.5 and for two different initial conditions. The result in Fig.26(a) represents
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Fig. 26 Numerical time responses of the pendulum for ϑ = 0.57, α3 = 0.5 and initial condi-
tions ϕ(0) = 0.1 a and ϕ(0) = 2 b

Fig. 27 Experimental time responses of the pendulum for ϑ = 0.57, α3 = 0.5 and initial
conditions ϕ(0) = 0.1 a and ϕ(0) = 2 b

attractor No.1, the pendulum motion vanishes, while in Fig.26(b) nontrivial solution
with the swinging pendulum is shown.

Experimental validation of the numerical results taken from model is given in
Fig.27(a) - vanishing pendulum’s motion, and Fig.27(b) - periodic motion. As can
be seen, numerical results are in good agreement with the experimental test in this
example. However, some disturbances in the experimental response can be seen, too.
Identification and analysis of experimental signals is presented later in Sect. 6.3.1.
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Fig. 28 Numerical and experimental rotation of the pendulum a and experimental vibrations
of the oscillator b for ϕ(0) = 0.1, ϕ̇(0) = 0, x(0) = 0, ẋ(0) = 0 and ϑ = 0.8

6.2 Influence of MR Damping on Pendulum’s Rotation

The parameters of an autoparametric system can be tuned in such a way that a small
perturbation of initial conditions transits its response to dangerous motion, like a
full rotation of the pendulum or chaotic dynamics. If the pendulum plays a role of a
dynamical absorber, this kind of motion is unwanted. But sometimes we may want
to generate the pendulum’s rotation, for example to produce energy. The concept
of energy extraction is based on the conversion of vertical motion of the oscillator
into rotational motion of the pendulum by means of a parametric pendulum oper-
ating in full rotational mode [13]. The existence of rotational attractors through the
parameter space and a robust method proposed for parameter identification of an
experimental pendulum rig is given in [40]. In addition, closed form analytical ex-
pressions for the primary bifurcations leading to the existence of oscillations and
rotations are presented in [41].

We propose to use a MR damper as a tool which fast and easily may prevent
dangerous dynamics or in specific situations can generate rotation of the pendulum.
The rotation is defined as a case when the pendulum amplitude exceeds φ =±π [6].
In Fig.28(a) we observe numerical time history (black line) and its experimental
verification (grey line) in case of full rotation of the pendulum. Parameters α1 =
0.3054, α2 = 0.1, α3 = 0, μ = 14.6863, λ = 0.1342, q = 2.3239, γ = 0, are used in
numerical and experimental tests. Both motions are very similar, and rotations have
the same direction. The clockwise angle is taken as positive. Figure 28(b) presents
oscillator’s vibration during rotations of the pendulum obtained experimentally. It
may be observed that after transition to the rotation (τ >∼ 1000), the amplitude of
oscillator motion has become much higher. Therefore, if the pendulum is to play the
role as a dynamical absorber, this kind of motion is unwanted.

The autoparametric system with pendulums belongs to strongly nonlinear mod-
els, in which, for the fixed system parameters, several different solutions depending
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Fig. 29 Basins of attraction of the pendulum for ϑ = 0.8, a α3 = 0 and b α3 = 0.4

on initial conditions may coexist. In order to verify the number of solutions, in-
cluding full rotation, the basins of attraction are calculated for ϕ ∈ [−π ,+π ]. In
Fig.29(a) we observe basins of attraction for initial conditions of pendulum for
ϑ = 0.8 and α3 = 0. Analysing the result we conclude that there are three stable
solutions, two one-point and one double-point attractors. For each attractor, its
basins of attraction are stated by a set of initial conditions approaching that attractor,
in long-time behaviour. The attractor No.1 is responsible for the upper stable posi-
tion of the pendulum. The corresponding solution of the inverted stable position is
presented in Fig.30(a). Due to a small size of these regions (grey colour in Fig.29a)
it is necessary to impose precise initial conditions to get the required attractor cor-
responding to the stable upper pendulum’s position. Moreover, the basins have a
strong fractal structure, therefore the weakly damped system is very sensitive to a
change of initial conditions. Increasing MR damping till α3 = 0.4, we may elimi-
nate the fractal nature and settle the position of basins, Fig.29(b). Now positive and
negative rotations of the pendulum exist for a small range but precisely located ini-
tial conditions of the pendulum (pink and grey colours in Fig.29b). However, a new
attractor No.3 (green colour) which has fractal structure, arises in this case. This
strange chaotic attractor has a very wide and well-established basins of attraction
marked by light green colour.

Trials of experimental verification of the numerical result of the stable inverted
pendulum position presented in Fig.29(a) and Fig.30(a), lead to the rotation of the
pendulum, (Fig.30(b). In a real object while operating, the external disturbances or
even small changes of parameters e.g. damping, lead to interferences that move the
system to the other dominating basin, the pendulum’s rotation in this case.

The solutions that represent rotations (attractors No.2 and No.3 in Fig.29a),
are reached numerically in Fig.31(a) and experimentally in Fig.31(b). For the ini-
tial condition ϕ(0) = 1 (light blue colour of basins of attraction) both numerical
and experimental results show positive, clockwise rotation of the pendulum. The
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Fig. 30 Time history of the pendulum for ϑ = 0.8, α3 = 0 and φ(0) = 3.13, a numerical, b
experimental

Fig. 31 Time histories of the pendulum for ϑ = 0.8, α3 = 0 representing attractors No.2 and
No.3, a numerical and b experimental results

negative rotation of the pendulum obtained for ϕ(0) = −1 (pink colour of basins of
attraction) agrees with experimental tests, too.

The motion starting in the vicinity of fractal basin boundaries, e.g. Fig.(29a),
behaves ’randomly’ along the boundary for a long time, therefore it is difficult to
predict which attractor is chosen. During this period of uncertainty the motion is
irregular and it has the fractal structure [32].

Time histories of attractors presented in Fig.29(b) are plotted in Fig.32. The re-
sponse of the pendulum in Fig.32(a) corresponds to the strange chaotic attractor
No.3 in Fig.29(b). We see that chaotic motion is composed of both rotations and
pendulum’s swings. Clockwise and anti-clockwise rotations are received by putting
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Fig. 32 The numerical time history of the pendulum for ϑ = 0.8, α3 = 0.4, ϕ(0) = 0.1 and
time responses for attractor a No.1 and b No.2

Fig. 33 The experimental time history of the pendulum a and the oscillator b for ϑ = 0.8,
α3 = 0.4 and initial conditions ϕ(0) = 0.1

initial conditions ϕ = 1 and ϕ = −1. The black line in Fig.32(b) denotes attractor
No.2, the grey line means attractor No.1 from Fig.29(b).

The experimental validation of numerical results is presented in Fig.33. Experi-
mental chaotic oscillations similarly to numerical results are composed of swinging
and rotation (Fig.33a). Chaotic nature of oscillator vibrations can be deduced from
Fig.33(b). However, to prove the oscillations’ irregularity, methods of chaos identifi-
cation have to be applied. A detailed description of time series analysis and methods
of chaos identification are presented in the next section.

Figure 34 presents influence of the magnetorheological damping on the rotation
of the pendulum. In Fig.34(a), starting from the full rotation of the pendulum, we
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Fig. 34 Bifurcation diagrams ϕ versus α3 parameter a for one initial condition ϕ(0) = 0.1
and b for ten random initial conditions of the pendulum, ϑ = 0.8

Fig. 35 The maximal Lyapunov exponent versus MR damping a and Poincaré map b for
α3 = 0.4 and ϑ = 0.8

observe transition of motion while MR damping is increased, and pendulum initial
conditions are fixed ϕ(0) = 0.1 and ϕ̇(0) = 0. For completeness the equivalent bi-
furcation diagram is plotted for ten randomly chosen initial conditions in Fig.34(b).
If the magnetorheological damping increases, after crossing the bifurcation point
α3 ≈ 0.36, the rotation transits to chaotic motion. Calculated maximal Lyapunov
exponent, shown in diagram Fig.35(a), as well as the Poincaré map in Fig.35(b)
confirm chaotic nature of the experimental signal. Further increase of MR damp-
ing leads to the cascade of inverse period doubling bifurcations resulting in regular
subharmonic response. Critical value, at which the pendulum motion disappears,
is equal α3 ≈ 1.74. It is interesting that in the neighbourhood of α3 ≈ 0.8 a very
narrow chaotic region appears (positive value of Lyapunov exponent in Fig. 35(a).
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Fig. 36 The numerical a and experimental b time response of the pendulum for ϑ = 0.8 with
impulse deactivation of MR damping α3 = 0.4

The obtained results show that the application of nonlinear damper may be an
effective method of the pendulum’s rotation elimination.

However, for some parameters magnetorheological damping may transit the pen-
dulum from rotation to chaotic motions. In Fig.36 we observe a change of the solu-
tion when MR damping is set to zero in selected time intervals. As we discussed in
Fig.29(b) for MR damping of α3 = 0.4 there are three attractors No.1 and No.2 re-
sponsible for two kinds of rotation and No.3 for chaotic motion. If the MR damping
is deactivated from α3 = 0.4 to α3 = 0, for a certain interval of time, short period
lasting τ ≈ 25, at time τ ≈ 1000, then chaotic motion changes into negative rotations
of the pendulum (Fig.36a). It means that solutions jump from attractor No.3 into at-
tractor No.2. A very similar result was obtained by experimental tests in Fig.36(b).

As results from this paragraph, after proper tuning of the structure its response
can be effectively transmitted from chaos to rotation. It is confirmed experimentally
that a simple open-loop technique, allows easy control of the system response and,
in case of emergency, reduction or escape from unwanted motion.

6.3 Chaotic Motion under MR Damping Influence

Chaotic dynamics which has been reached by numerical methods should be vali-
dated by experimental tests. Then the observed chaotic oscillations are subjected
to the influence of a real MR damper. Such a study shows real performance of the
structure under MR damping influence. Experimental time series which include ex-
ternal noise, need a special treatment to extract required information.

6.3.1 Experimental Verification of Chaotic Motion

The presence of chaos in physical systems is very common and is a key feature
of nonlinear systems. It is extensively demonstrated in mechanical engineering
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Fig. 37 Bifurcation diagram a and corresponding maximal Lyapunov exponent b, α3 = 0

applications, too. The regions of chaotic behaviour of the considered autoparametric
system are presented in Sect. 4.1. Chaos is a state where small variations in initial
conditions produce different results, in such a way that the long-term behaviour
of chaotic systems cannot be predicted. The trajectory remains in a bounded phase
space but it is unstable in the Lyapunov’s sense. A small disturbance of the trajectory
leads to its exponential divergence.

Chaotic motion can be useful in selected practical applications like percussion
drill systems, for example. In practice, however, it is often desired to avoid chaos
to improve a system performance. Therefore the structure and its parameters have
to be properly designed or, in emergency, changed on-line during operational time.
Chaotic oscillations of different pendulum-like structures, with one or multiple pen-
dulums and nonlinear damping are investigated in a large number of papers (for
example [33], [26]).

As it is pointed in Sect. 4.1 and in [28] the autoparametric system exhibits the
instability region near the main parametric resonance. If a system works in this re-
gion then, rotation or chaotic oscillations of the pendulum occur [38]. Therefore, in
such a situation efficient methods for chaotic motion elimination are desirable. One
of the proposed method which can be applied to chaotic motion elimination is semi-
active control by magnetorheological damping. This controllable damping has to
be properly selected in accordance with very important parameters which influence
the response of dynamical system i.e. the amplitude and frequency of excitation.
Therefore, the first bifurcation diagram versus frequency of excitation (Fig.37a) and
corresponding Lyapunow exponent (Fig.37b) are analysed for a system with classi-
cal viscous damping. Parameters: α1 = 0.3054,α2 = 0.1, μ = 14.6863, λ = 0.1342,
q = 2.3239, γ = 0 are taken in the bifurcation analysis.

Changing the bifurcation parameter ϑ , three separated regions with irregular
motion are obtained in Fig.37(a). Chaotic motion in these zones is confirmed by
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Fig. 38 Time response of the pendulum a numerical and b experimental for frequency ϑ =
1.25

positive values of the maximal Lyapunov exponent (Fig.37b). Between the first and
the second chaotic areas the rotation region is placed. Between the second and the
third chaotic zones, the pendulum goes to stable inverted equilibrium position. Time
history of this solution is presented in Fig.38(a). This result is confirmed by exper-
iment in Fig.38(b). The strange chaotic attractors determined in the three chaotic
regions are presented in Fig.39. Interestingly, that chaotic motion may occur in two
forms [38]. The first form of chaotic motion, occurring more frequently is composed
of irregular rotation and swings of the pendulum (Figs.39a, b and c).

The second form of chaos only consists of irregular swings (called ‘chaotic
swings’). The chaotic attractor of this kind of motion is split into two separate parts
(Fig.39d). Comparing the attractors’ set in Fig.39, we see that the pendulum mo-
tion reaches the highest velocity in the widest second chaotic region. The smallest
velocity of the pendulum is obtained in the first chaotic region. It follows that the
velocity of the pendulum during chaotic motion does not depend only on the fre-
quency of excitation. The time histories of experimental chaotic motion are shown
in the next part where the chaos is detected directly from experimental time series
by using methods of nonlinear time series analysis.

Some behaviours e.g. chaotic oscillations composed of swings are very difficult
to be detected by experiment due to a very small existence zone. It is caused by
dynamically changed damping in the pendulum pivot and in the oscillator. Slightly
dynamically varied parameters may sometimes eliminate a very narrow region of
chaotic swings, which is discovered numerically. As shown in the previous analysis,
the response of the autoparametric systems depends on the initial conditions. There-
fore, the influence of MR damping on chaotic motion is analysed simultaneously,
by the bifurcation diagrams calculated for one fixed or for ten randomly selected
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Fig. 39 Poincaré maps for the first a ϑ = 0.7, the second b ϑ = 1.1 and the third c ϑ = 1.32,
d ϑ = 1.35, chaotic regions; α3 = 0

initial conditions. In Fig.40 the first chaotic area is taken into consideration. MR
damping less than α3 ≈ 0.25, practically does not cause qualitative changes, which
is demonstrated in Fig.41 by the comparison of basins of attraction. There is chaotic
motion or rotation of the pendulum.

High value of α3 > 0.25 parameter leads to chaos exhibited only by chaotic
swings. However, apart from chaotic swings, by changing initial conditions regu-
lar rotation of pendulum is reached (Fig.40b). Magnetorheological damping over
value α3 ≈ 0.32 eliminates both the rotation and chaos phenomena. After the in-
verse period doubling bifurcation the system oscillates periodically. Regular motion
exists in a very wide range. Maximal value of α3 which allows the pendulum for
periodic oscillation is equal α3 = 1.8.

In Figs.41(a) and (b) basins of attraction of the pendulum are calculated for α3 =
0 and for relatively small MR damping α3 = 0.3. The attractor No.1 (in green)
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Fig. 40 Bifurcation diagrams for a one fixed initial condition ϕ(0) = 0.1 and b ten random
initial conditions of the pendulum, ϕ = 0.7

Fig. 41 Basin of attraction for ϑ = 0.7 and a α3 = 0, b α3 = 0.2

denotes a strange chaotic attractor composed of chaotic rotation and swings of the
pendulum, the light green colour represents its basin of attraction.

Attractors No.2 and No.3 correspond to negative and positive rotation of the
pendulum, respectively. Introducing MR damping the areas of rotation existence
are slightly reduced. In Fig.41(b), pink and grey colours cover smaller areas in
comparison to Fig.41(a). In the second chaotic region (found in Fig.37) magne-
torheological damping eliminates chaotic motion when the value of α3 ≈ 0.31 is
exceeded (Figs.42a and b). A very interesting effect was observed for a range of
MR coefficient α3 ∈ (0.32−0.38). After the initial conditions perturbation the pen-
dulum jumps from the lower equilibrium (ϕ(0) = 0.1) to the periodic swings around
the upper equilibrium point. (Fig.43a). Despite numerous attempts this result is not
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Fig. 42 Bifurcation diagrams for a one fixed initial condition ϕ(0) = 0.1 and b ten random
initial conditions; ϑ = 1.1

Fig. 43 Time history of the pendulum for ϑ = 1.1, a α3 = 0.35 and b α3 = 0.5

confirmed by experimental tests. For α3 ∈ (0.39− 0.73) the pendulum also jumps
into the upper position, but after transient time it goes to the upper equilibrium point
(Fig.43b). This effect is observed in the experiment.

For a narrow zone of α3 ∈ (0.74−0.78) chaotic motion consists of rotation and
oscillation of the pendulum. After crossing the value α3 ≈ 0.78, irregular motion
transits into regular one and then for α3 > 1.22 the pendulum does not oscillate.

The influence of MR damping on the smallest, the third chaotic region is pre-
sented in Fig.44. We observe that the parameter greater than α3 ≈ 0.24 eliminates
irregular motion. If α3 ∈ (0.14− 0.23), then chaotic motion consists of pendulum
swings only (Fig.45a), for α3 = 0.1 in chaotic response also rotation is included
(Fig.45b).
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Fig. 44 Bifurcation diagrams for a one fixed initial condition ϕ(0) = 0.1 (a) and b ten random
initial conditions for ϑ = 1.32

Fig. 45 Time response of the pendulum showing two forms of chaotic behaviour for ϑ =
1.32, a α3 = 0.2, b α3 = 0.1

For MR damping larger than α3 ≈ 0.37 pendulum’s oscillations decay and only
the oscillator vibrates. In conclusion to this analysis we may note that the reduction
of the pendulum motion is the most difficult in the first chaotic region, a very large
value of MR parameter is required at α3 ≈ 1.8.

The avoidance of chaotic motion is less difficult in the second area, because MR
damping at α3 ≈ 0.78 has to be given. In Fig.46 the evolution of attractors in all
chaotic regions is presented. We observe on Poincaré maps that in the second and
third chaotic regions (maps in the second and the third row in Fig.46) motion is the
most developed which is demonstrated by the most complex fractal structure.

To investigate how external excitation influences the system, two parameter plots,
amplitude q versus excitation frequency ϑ are calculated in Fig.47. The response of



Autoparametric Vibrations of a Nonlinear System 45

Fig. 46 Evolution of strange attractors in the three chaotic areas under MR damping influence

the system is marked by colours related to regular and chaotic dynamics taking into
account selected values of MR damping α3 = 0, α3 = 0.5, α3 = 0.8, α3 = 1.0 re-
spectively, presented in Fig. 47(a)–(d). In this way both small and large MR damping
on chaotic behaviour is analysed. The calculations are performed in such a way that
the first 500 solution periods are excluded from the time series. For each value of
the varied parameter the same initial conditions, ϕ(0) = 0.1, ϕ̇(0) = 0, x(0) = 0,
ẋ(0) = 0, are taken. Thus, the results for different system parameter values may
be directly compared. The dark blue, light blue and green colours indicate chaotic
regions estimated on the basis of positive value of the maximal Lyapunov expo-
nent. The dark blue colour is plotted if the value of Lyapunov exponent is between
+0.001 and +0.1, the green colour between +0.1 and +0.2, the light blue colour
between +0.2 and +0.3. White colour defines periodic motion, oscillation, rotation
or regions where the pendulum goes to the lower equilibrium state. As we may see,
chaotic response occurs near the main parametric resonance ϑ ≈ 1. Introducing MR
damping we move up chaotic tongues towards the axis of amplitude of excitation q.
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Fig. 47 Two-parameter space plots for different sets of MR damping, a α3 = 0, b α3 = 0.5,
c α3 = 0.8 and d α3 = 1.0

Additionally, small chaotic zones are reduced and part of chaotic areas are di-
vided into smaller domains (Fig.47d). The results of the two-parameter space plots
are tested by the bifurcation diagrams (cross-checks). For example Fig.48(a) is a
cross-check of Fig.47(a) for the value of q = 5 and α3 = 0, the colour of chaotic
region corresponds to the value of the maximal Lyapunov exponent (see Fig.48b),
where all Lyapunov exponents are plotted).

In Fig.49 we observe two-parameter space diagramsα3 versus q. These diagrams
present the influence of MR damping on chaotic motion versus amplitude of excita-
tion for two selected values of frequency excitation:ϑ = 0.8, (Fig.49a), and ϑ = 0.1
(Fig.49b). We can clearly observe that MR damping can both eliminate or give rise
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Fig. 48 The bifurcation diagram for a q = 5 and α3 = 0 and b corresponding Lyapunov
exponents

Fig. 49 Influence of MR damping on chaotic motion versus amplitude of excitation q for a
ϑ = 0.8 and b ϑ = 1

to chaotic motion. It means that the increase of MR damping may not guarantee
suppression of chaotic oscillations.

Summarising results of the analysis presented above we note that a change of
system dynamics must be preceded by an intensive numerical simulation with par-
ticular emphasis on the initial conditions and value of MR damping. Bearing it in
mind we can avoid dangerous situations and control chaotic dynamics of the au-
toparametric system by using MR damper. The semi-active MR device allows also
to control the system motion on-line by open or closed-loop control strategy.
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6.3.2 Experimental Time Series Analysis: Chaotic and Regular Dynamics

Experimentally observed behaviour, regular or chaotic one, may differ from that
obtained from the governing equations of motion. Therefore, showing that a mathe-
matical model exhibits chaotic dynamics is not a proof that chaos is also present in
the corresponding experimental system [19]. In order to unambiguously confirm the
irregular motion in a dynamic system, the chaos should be identified directly from
experimental data series. For this purpose, nonlinear time series analysis methods
are applied. The standard procedure to perform nonlinear analysis is the phase space
reconstruction. At first, we construct the delay vectors

s(i) =
(
xi,xi+d ,xi+2d, ...,xi+(m−1)d

)
, (32)

where parameter m is the embedding dimension and parameter d is the embedding
delay. Each unknown point of the phase space at time i is reconstructed by the de-
layed vector s(i) in an m-dimensional space called the reconstructed phase space.
To reconstruct the attractor successfully by using Eq. (32), appropriate values for
d and m have to be determined. For determining time delay d the mutual informa-
tion between xi and xi+d is introduced as a suitable quantity [10]. To determine the
proper embedding dimension m, we use the false nearest neighbour method (FNN)
introduced in [18]. This method relies on the assumption that an attractor folds and
unfolds smoothly with no sudden regulations in its structure. Therefore, all points
that are close in the reconstructed embedding space have to stay sufficiently close
also during forward iteration. Having calculated two parameters m and d, we are
able to successfully reconstruct the attractor. The reconstructed attractor and the
calculated largest Lyapunov exponent [39] are the key step towards establishing
whether the experimentally analysed time series originate from a chaotic system.

One of the newer methods to identify chaotic motion in pendulum-like system is
the recurrence plot (RP) method [17] introduced in [9] and developed by Marvan et
al. in [22]. Recurrence plots are a useful tool to identify a structure in a time data
set. A recurrence plot is a graph which shows all those time instants at which a state
of the dynamical system recurs. In other words, the RPs method reveals all the times
when the phase space trajectory visits roughly the same area in the phase space. A
recurrence plot can be described by computing the matrix Mi j

Mi j = θ
(
ε− ∣∣si − s j

∣∣) , (33)

where θ is the Heaviside step function, ε is a tolerance parameter (threshold), to be
chosen. If the trajectory in the reconstructed phase space returns at time i into the
neighbourhood of ε where it was j then Mi j = 1, otherwise Mi j = 0. This matrix
is symmetric by construction. In Fig.50(a) we show the method of determining the
proper embedding delay for the chaotic signal ϑ = 0.7 presented in Fig.39(a) and
in Fig.51. For the phase portrait reconstruction only one signal of angular velocity
of the pendulum, shown in Fig.51(a), is used. This choice of a signal makes the
analysis easier because in velocity domain a rotation of the pendulum is eliminated.
The mutual information has the first minimum at the time step d = 21.
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Fig. 50 The embedding delay a and minimal required embedding dimension b; chaotic mo-
tion ϑ = 0.7

Fig. 51 Time history a and its reconstructed phase space b obtained with the optimal embed-
ding parameters: d = 21, m = 5; chaotic motion, ϑ = 0.7

The results obtained with the False Nearest Neighbour (FNN) method are pre-
sented in Fig.50(b). It can be observed that the fraction of FNN convincingly
drops to zero for m = 5. This means that behaviour of the system requires a five-
dimensional phase-space. The obtained recurrence diagram in (Fig.52b) includes a
large number of short discontinuous lines. Their distance from the diagonal line is
varied and does not exhibit any symmetry. This indicates that the analysed signal
is irregular. The same conclusion can be drawn from the reconstructed attractor in
Fig.52(a) and the phase space in Fig.51(b). These results clearly indicate that the
motion is irregular.
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Fig. 52 Reconstructed attractor a and recurrence plot b obtained for embedding parameters:
d = 21, m = 5 and ε = 0.05; for chaotic motion for ϑ = 0.7

Fig. 53 Experimental time response a and recurrence plot b obtained with the optimal em-
bedding parameters: d = 9, m = 5 and ε = 0.01; rotation of the pendulum ϑ = 0.9

The recurrence analysis is repeated, for comparison, for the rotation of the pen-
dulum. Again, the angular velocity presented in Fig.53(b) is used as a representative
signal. For recurrence plot analysis 5000 data points are taken. The long lines, paral-
lel to the main diagonal, suggest that motion is regular. The experimental time series
and the recurrence plot for the periodically swinging pendulum, for ϑ = 0.58 are
presented in Fig.54(b). In this case the patterns of the plot are reflected by long and
non-interrupted diagonals. The vertical distance between these lines corresponds to
the period of oscillation. This distance between individual lines is larger compared
to those obtained in Fig.53(b) for rotation. It means that the period of the pendulum
rotation is smaller than the swinging period. The reconstructed Poincaré maps for
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Fig. 54 Experimental time response a and its recurrence plot b obtained with the optimal
embedding parameters: d = 15, m = 4 and ε = 0.05; regular motion ϑ = 0.58

Fig. 55 Reconstructed Poincaré maps for a rotation ϑ = 0.9 and b swings ϑ = 0.58 of the
pendulum

rotation and swinging of the pendulum are presented in Fig.55. The reconstructed
attractors agree with the recurrence diagrams.

It should be noted that the analysis of real signals is more difficult, owing to
various kinds of disturbances and an external noise. An inaccurate selection of de-
lay parameters significantly influences the obtained results. It is very important to
properly identify parameters from the real structure. In the considered autoparamet-
ric system the experimental results confirm those obtained from the mathematical
model.
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Fig. 56 Analytical resonance curve and its numerical verification with marked instability
region for a the pendulum and b the oscillator

7 Influence of a Nonlinear System’s Suspension on the
Instability Regions

The natural presence of the nonlinear terms in the considered system with a pendu-
lum can lead to a certain type of instability referred to autoparametric resonances.
The instability may result in various forms of dynamic phenomena, such as am-
plitude jumps and an energy exchange between modes. This dynamics cannot be
predicted by the classical theory of small linear oscillations. Apart from instability
of trivial solutions, unstable nontrivial solutions may also appear. The instability re-
gion near the main parametric resonance of the autoparametric system is analysed
in Sect. 4.1 and [28], [24]. An effective method of eliminating chaotic oscillations
or rotation of the pendulum is to apply magnetorheological damping (Sect. 6.3).
An alternative method of reducing unwanted vibrations is a change of stiffness in
suspension of the autoparametric system.

Figure 56 presents the resonance curve with the instability region near the main
parametric resonance obtained from Eq. (14) for parameters: α1 = 0.26, α2 = 0.1,
μ = 17.2, λ = 0.12, q = 3 and α3 = 0. The stability is determined analytically by
the eigenvalues of the Jacobian matrix (22). The solid line denotes stable, trivial
and nontrivial solutions, the dashed line represents the unstable solution. Black and
white circles mean selected points of the numerical verification of analytical results,
black for stable and white for unstable solutions.

The unstable region is also clearly visible in bifurcation diagram in Fig.57(a) and
the corresponding plot of Lyapunov exponent in Fig.57(b). The lines between the
two chaotic regions (dark areas) denote rotation of the pendulum.
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Fig. 57 Bifurcation diagram for linear spring a and corresponding Lyapunov exponent b,
obtained for the initial condition ϕ(0) = 0.1

To reduce or shift this unstable area we can apply semi-active MR damper (as
it is shown in Sect. 6.3) or to make a structural modification in the suspension. We
propose to consider additional structural nonlinearity in the system’s suspension
considering that spring may have a nonlinear part represented by parameter γ in
Eq.(7).

To check whether the introduction of nonlinearity is a promising method to im-
prove dynamical absorption and to eliminate the unstable region the parameter γ is
taken as the bifurcation parameter. The bifurcation diagrams for varying frequency
of excitation ϑ for hard nonlinear spring, γ > 0 is shown in Fig.58. Stiffness causes
mainly an increase in the second chaotic area and additionally, for nonlinearity
γ = 0.02 (Fig.58b), the stable inverted pendulum position vanishes. The first chaotic
zone is shifted towards the second. The advantage of this effect, caused by suspen-
sion stiffening, is a shift of the first chaotic zone out of possible working region.
The obtained results show that hard stiffness of a spring can be used for avoiding
unwanted dynamics. It should be remembered that the introduction of hard or soft
nonlinearity may lead to new attractors or areas of chaos.

The influence of a soft nonlinear spring is demonstrated in Fig.59. The soft non-
linearity slightly moves the resonance tongue to the left side. Additionally, near the
frequency ϑ ≈ 0.8, for γ = −0.002, a new bifurcation point arises. Therefore, it is
very important to check new attractors existence.

The two-parameter space plots of the pendulum for different stiffness are pre-
sented in Fig.60. The blue colour denotes chaotic motion estimated by a positive
value of the maximal Lyapunov exponent. Comparing the space plots for γ = 0.01
and γ = 0.02 (Fig.60) we observe that for greater value of hard characteristics γ the
first chaotic tongue is smaller and is moved to the right side, but the second zone is
merged with the small chaotic island. The same effect was observed in bifurcation
diagram (Fig.58).
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Fig. 58 Bifurcation diagram for hard nonlinear spring a γ = 0.01 and b γ = 0.02, obtained
for the initial condition ϕ(0) = 0.1

Fig. 59 Bifurcation diagram for soft nonlinear spring a γ = −0.001 and b γ = −0.002, ob-
tained for the initial condition ϕ(0) = 0.1

The influence of the spring’s stiff characteristics on the first chaotic region is
presented in Fig. 61 by varying the parameter γ while the system operates in the
chaotic zone. Figure 61(a) shows results for the fixed initial condition ϕ(0) = 0.1
and Fig.61(b) for ten randomly selected initial conditions. We observe that param-
eter γ ≈ 0.013 eliminates chaotic motion, which is confirmed for all taken initial
conditions.

The influence of γ in the second chaotic zone is presented in Fig.62, for one
or ten random initial conditions respectively. The nonlinearity value of γ ≈ 0.045
suppresses the chaotic behaviour. But a zone where the pendulum swings is very
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Fig. 60 Two-parameter space plot of the pendulum obtained for stiffness a γ = 0.01 and b
γ = 0.02 and the initial condition ϕ(0) = 0.1

Fig. 61 Bifurcation diagram ϕ versus parameter γ for a one initial condition ϕ(0) = 0.1 and
b ten random initial conditions (b), ϑ = 0.6

narrow, γ ∈∼ (0.04− 0.05), and for γ ∈∼ (0.05− 0.08) it stops in the inverted
position. For random initial conditions the rotation of the pendulum may be got as
well (the line emerging from a dark area in Fig.62(b).

The evolution of attractors under the influence of stiff characteristics of a spring
in the first and the second chaotic region is presented in Fig.63. In the second chaotic
region the nonlinearity strongly affects the shape of the attractor. The high nonlin-
earity reduces pendulum’s angular velocity.
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Fig. 62 Bifurcation diagram ϕ versus parameter γ for a one initial condition ϕ(0) = 0.1 and
b ten random initial conditions, ϑ = 1.2

Fig. 63 Evolution of attractor under the influence of nonlinear spring in two selected chaotic
regions (row 1 and 2 respectively)

It is very interesting that in the analysed range of γ from 0 to 0.2 hard nonlinearity
does not eliminate rotation of the pendulum. As shown in the bifurcation diagrams,
the response of the autoparametric system with nonlinear spring depends on initial
conditions.
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Fig. 64 Basin of attraction for frequency ϑ = 1.2 and nonlinearity a γ = 0 and b γ = 0.04

Fig. 65 Basin of attraction for frequency ϑ = 0.6 and nonlinearity a γ = 0 and b γ = 0.015

The increase in nonlinearity reduces the zone of chaotic motion (attractor No.1
in Fig.64 and Fig.65), but it forms the areas of positive and negative rotation of the
pendulum (attractor No.2 - positive, and No.3 - negative rotation). A change of the
patterns of basins of attraction is also evident in the presented basins of attraction.

It is worth pointing out another interesting phenomenon which may appear if the
system works near the resonance region. The pendulum’s vibration centre is shifted
from the lower neutral position. Depending on the initial conditions the centre of
the angle ϕ may be shifted in the positive (Fig.66a) or negative (Fig.66b) direction.
The two possible shifts are symmetric around the lower equilibrium position of the
pendulum. The shift of the pendulum’s vibration is detected in the real setup, too.
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Fig. 66 Time response of the pendulum for frequency ϑ = 0.6 and nonlinearity γ = 0.015
and the initial condition a ϕ(0) = 0.1 and b ϕ(0) = −0.1

8 Conclusions and Remarks

This chapter delivers a vibration analysis of a linear or nonlinear oscillator with
an attached pendulum constituting the so-called autoparametric system. Near the
parametric resonance zone the pendulum does not stay in the equilibrium point, but
oscillates. This phenomenon, under certain conditions, may be used for vibration
suppression of the oscillator treated as the main structure.

To determine the influence of the most essential parameters on the autoparamet-
ric system response, the harmonic balance method is applied. The obtained analyt-
ical solutions allow to find the main parametric resonance curves and to check the
stability by analysis of the eigenvalues of the Jacobian matrix system. The analyti-
cal results are verified by numerical calculations and experiment. They are in good
agreement if vibration amplitudes do not exceed large values. Therefore for larger
values of amplitude mainly numerical methods and experiment are used. The con-
sidered autoparametric system exhibits, for some sets of parameters, the instability
region near the principal parametric resonance. This phenomenon may lead to ro-
tation of the pendulum or its chaotic motion - chaotic swings or irregular motions
composed both of swings and rotation. The dynamic response is examined by con-
structing parameter plots which determine regular or irregular motions. Bifurcation
diagrams, Lyapunov exponents, time histories and basins of attractions are used to
check the nature of motion in regular and chaotic regions.

To eliminate unwanted vibrations two efficient methods are proposed. The first
method is to use a magnetorheological damper as a semi-active device. Activation
of MR damping reduces amplitudes in the resonance region. However, the area of
effective dynamical vibration absorption, generated by a swinging pendulum, is also
reduced. Therefore, a careful selection of the system parameters is required in this
approach. The second method is to apply a nonlinear spring in the system suspension.
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The nonlinear spring with hard stiffness characteristics shifts the instability region
to the right side of the resonance zone. But this new nonlinear structural element
involves additional attractors which exist for various initial conditions.

The received results show that semi-active suspension of the autoparametric sys-
tem, based on MR damper and the nonlinear spring, freely moves the chaotic regions
and also reduces or eliminates zones of unwanted pendulum’s rotation. This concept
allows the system, after proper tuning, to maintain on a regular or chaotic attractor,
or if necessary to change one attractor into another. Moreover, by applying simple
open-loop control, it is possible to fit on-line the structure response to the frequency
and amplitude of external excitation. The rotation, swings and chaotic motion, taken
from the experimental system are investigated on the basis of nonlinear time series
analysis. The experimental results confirm regular and chaotic nature of system’s
dynamics.

The next step of the investigations is to use a shape memory alloy (SMA) spring
together with a magnetorheological (MR) damper and apply a closed-loop control
to get a smart dynamical absorber.
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On the Dynamics of Pedestrians-Induced
Lateral Vibrations of Footbridges

Stefano Lenci and Laura Marcheggiani

Abstract. This chapter is concerned with the problem of the large horizontal oscil-
lations induced on slender footbridges by the motion of pedestrians, a phenomenon
which involves the synchronization between the motion of walkers and that of
the bridge deck. We initially review the extensive technical and scientific litera-
ture, and then we focus on two models to detect numerically and analytically the
phenomenon. A continuous-time bridge-pedestrians model initially developed by
Strogatz et al. is improved to better understand some aspects of the underlying me-
chanical phenomena. We perform extensive parametric investigations by means of
many numerical simulations. This permits to highlight the parameters which mainly
affect the trigger and the development of the phenomenon of synchronous lateral
excitations, thus allowing a good understanding of the physical event and an evalu-
ation of the engineering reliability of the model. Then, in order to obtain analytical
instead of numerical predictions, a nonlinear discrete-time model based on an ap-
propriate 1D map is considered. It is able to provide a reliable value of the number
of pedestrians which trigger the synchronization, thus predicting the onset of insta-
bility which is also the onset of crowd synchronization. From a dynamical system
point of view, the main result is that the model highlights how the phenomenon can
be seen as a perturbation of a classical pitch-fork bifurcation, which is then shown
to be the underlying dynamical event.

Keywords: Synchronization-induced lateral vibrations, continuous- and discrete-
time models, pedestrians-bridge interactions, Millennium Bridge.

Stefano Lenci · Laura Marcheggiani
Department of Architecture, Buildings and Structures, Polytechnic University of Marche,
via Brecce Bianche, Ancona, 60131, Italy
e-mail: {lenci,l.marcheggiani}@univpm.it

J. Warminski et al. (Eds.): Nonlinear Dynamic Phenomena in Mechanics, SMIA 181, pp. 63–114.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

{lenci,l.marcheggiani}@univpm.it


64 S. Lenci and L. Marcheggiani

1 Introduction and Literature Review

In the last 10–20 years there has been a growing attention toward slender foot-
bridges by engineers and architects, also a consequence of renowned structures, such
as the London Millennium Bridge, built by worldwide reputation designers. Often,
footbridges are playing a central role in the urban renewal demanded by modern
society. It is clear that the beauty and elegance in the architectural concept must
spring from simplicity in the structural design, in order to achieve a sort of natural
harmony between the fairness of the structure, the physical configuration of the local
landscape and the social attractiveness and usefulness of the footbridge. Because of
all these social, aesthetic and technical requirements, the trend in footbridge design
is towards an increasing flexibility and lightness.

This tendency is supported by the fact that modern materials, thanks to both their
mechanical characteristics and their cost competitiveness, allow to consider a high
stress level and thus to conceive slender structures with small cross section and large
spans.

As a consequence, modern footbridges have small natural frequencies, and pos-
sibly have high sensitivity to dynamic loads induced by pedestrians. Excessive vi-
brations can be caused by resonance between pedestrian loading and one or more
natural frequencies of the structure. The reason is that the range of footbridge natural
frequencies, both vertical and lateral, often coincides with the dominant frequencies
of the pedestrians-induced load [54]: 1.4–2.4 Hz for pedestrian vertical forcing and
0.7–1.2 Hz for pedestrian lateral forcing. It is obvious that if footbridges are de-
signed for static loads only, they may be susceptible to vertical as well as horizontal
vibrations, thus confirming the necessity to pay attention to dynamic aspects with
a detailed analysis. As a matter of fact, very complex and partially unexpected dy-
namical phenomena may, and actually do, occur.

Several footbridges experiencing excessive lateral vibrations due to pedestrians-
induced loading have been reported in the last years; the most famous is the London
Millennium Bridge (a shallow suspension footbridge, Fig.1a) which experienced, on
its opening day, strong horizontal vibrations due to the synchronization of the pedes-
trians motion with the natural modes of the structure [12]–[16]. Other bridges which
suffered a similar problem are the Toda Park Bridge (a cable-stayed footbridge, best
known as T-Bridge) in Japan [34], [17], the Maple Valley Bridge (a great suspen-
sion footbridge, best known as M-Bridge) in Japan [34], the Solferino Footbridge
(a double arc steel structure, Fig.1b) in Paris [11] and the Alexandra Bridge in Ot-
tawa [12]. In all these cases, the natural frequency of the principal lateral mode was
mainly excited by pedestrians.

We can observe that the problem of the pedestrians-induced lateral vibrations oc-
curred on a range of different structural types (suspension, cable-stayed and steel
girder bridges) as well as on footbridges made of different materials (steel, com-
posite steel-concrete and reinforced and pre-stressed concrete) [54]. It is therefore
confirmed that a large enough crowd of pedestrians can induce strong lateral vibra-
tions on a footbridge of any structural form as well as of any material, although this
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requires the lateral mode to have a low enough natural frequency [12], approxi-
mately below 1.3 Hz and close to the range of 0.7–1.2 Hz typical of the pedestrian
lateral motion [54].

The theory behind pedestrians-induced lateral vibrations on footbridges is that
of synchronous lateral excitation [54], [12], [47]–[14]. People walking in a crowd
exhibit a random level of synchrony, and large enough crowds might produce lateral
forcing causing a bridge to vibrate laterally. This forcing is the sum of all lateral
forces applied to the bridge by the footsteps of each pedestrian. Even if the bridge
vibrations are initially very small, pedestrians tend spontaneously to walk in syn-
chrony with the bridge. This ensures an interaction with the bridge for each step
of the pedestrians. This instinctive behaviour causes the synchronized pedestrians’
footfall forces to be applied at the frequency of the vibration and with a phase such
as to increase the motion of the bridge, with each process pumping the other in
a sort of positive feedback loop [3]; the increase in oscillations amplitude causes
pedestrians to increase their lateral footfall forcing and their level of synchrony, by
following the movements of the deck in order to balance themselves [12]–[16], [31]:
the more the bridge moves, the more the crowd pushes it to move further.

It is recognized from observations that for potentially susceptible spans there
exists a critical number of pedestrians that will cause the vibrations to increase
suddenly to unacceptable levels. The nature of this problem, in terms of dynamic
response of the bridge, is clearly nonlinear (as it is for example confirmed by tests
performed on the London Millennium Bridge [12]): the oscillations are small until a
critical number of walking pedestrians Nc and then, due to the synchronization, they
increase rapidly until a final threshold. This number Nc is of practical engineering
interest and its reliable prediction is the final aim of all the theoretical studies.

Several research papers have recently investigated this topic, even if a standard
and generally accepted model of pedestrians-induced lateral dynamic loading and of
dynamical interaction with the bridge, especially in case of crowding, is missing and

Fig. 1 London Millennium Bridge a and Solferino Bridge in Paris b: two examples of foot-
bridges undergoing the phenomenon of synchronization induced lateral oscillations
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still under research. Zivanovic et al. [54] have performed a comprehensive review of
the existing literature on the topic until 2003, while an updated review can be found
in [51].

Early studies on pedestrians-induced vibrations of footbridges were carried out at
the end of the seventies by Blanchard et al. [6], Matsumoto et al. [29], and Wheeler
[53], but they concerned only the measurement and modelling of the vertical compo-
nent of pedestrian load on a motionless surface. It is worthy to note that Matsumoto
and co-workers first attempted to define the vertical dynamic load induced by a
crowd and to investigate its stochastic nature, but their approach did not account for
interaction with structure and could not describe synchronization.

To model pedestrians-induced lateral vibrations it is necessary to have some un-
derstanding of the mechanics which describes human walking, with special atten-
tion to the lateral component of the ground reaction force; therefore, some authors
(Bauby et al. [4], Belli et al. [5], Vaughan [50], Hof et al. [22], [23], Macdonald [28],
Trovato et al. [49]), especially in the area of biomechanical engineering, have re-
cently investigated this topic developing and reorganizing theories on bipedal walk-
ing, forcing and frequency of human footfall during walking and balance control.
The common observations we can draw from these researches are that: (i) locomo-
tion is the translation of the centre of gravity along a pathway requiring the least
expenditure of energy; (ii) walking biomechanical strategy is to minimize the risk
of falling; (iii) bipedal locomotion is generated through global real-time entrain-
ment of the neural system on the one hand, and the musculoskeletal system and
environment on the other. All these aspects obviously influence the gait pattern and
the ground reaction forces in the three directions: vertical, longitudinal horizontal
and lateral/transversal horizontal, and are useful to understand what happens when
we walk on a laterally moving surface.

Dallard et al. [12]–[16] have conducted a series of controlled crowd tests on the
Millennium Bridge and consequently they have proposed a load model based on an
empirical observation: during the transient, when bridge wobbling is growing up, the
crowd force can be assumed linearly dependent on the lateral oscillation velocity of
the deck; this means that pedestrians act like negative damping on the structure.
Also a formula has been obtained to evaluate the critical number of pedestrians; it
actually depends only on the modal damping of the bridge through a proportion-
ality constant which is strictly related to the specific real case-study (the Millen-
nium Bridge). This phenomenological approach assumes but does not explain the
observed synchronization effect, and cannot predict the steady state amplitude for
bridge motion, as it is due to not modelled nonlinearities.

Nakamura [33] has proposed an interactive forcing model analogous to the pre-
vious one, but which allows the schematization of the self-limiting nature of the
synchronization phenomenon and the prediction of the steady state amplitude. Also
this model is based on coefficients which have been estimated from experimental
tests [34], [17] and cannot easily be generalized to other footbridges.

Newland [36] has approached the problem by referring to the interaction phe-
nomenon between fluid flow and structures which is widely studied in wind en-
gineering (vortex-induced oscillations) and commonly known as lock-in [9], [43].



On the Dynamics of Pedestrians-Induced Lateral Vibrations of Footbridges 67

His model includes the empirical assumption that the 40% of the pedestrians are
synchronized with bridge lateral frequency, independently on the amplitude of the
oscillations.

Fujino et al. [17] have adopted a model of harmonic forcing by empirically tuning
a synchronization parameter for the lateral vibrations of the T-Bridge (according to
their experimental data [17]). This model does not predict any sudden transition to
a vibrating state of the bridge but assumes a continuous increase in the vibration
amplitude as the number of pedestrians increases.

Roberts [38]–[40] has schematized the interaction between the pedestrians and
the footbridge assuming that synchronization occurs when the pedestrians motion is
larger than the bridge motion; from this critical condition, he obtains a limit number
of pedestrians.

Laboratory tests involving a single pedestrian walking on platforms or treadmills
forced to move laterally have been carried out by Dallard et al. [12] and McRobie
et al. [31] soon after the occurrence of the Millennium Bridge problem.

Ricciardelli and Pizzimenti [41], [42] have recently performed a systematic ex-
perimental campaign aimed at characterizing dynamically the lateral force exerted
by pedestrians on footbridges, both in case of still deck and in case of laterally
moving deck; deterministic and stochastic lateral loading models for the static case
have been provided and the bases for more sophisticated dynamic models includ-
ing crowd-structure interaction have been put. The mechanism of crowd synchro-
nization has been investigated only from the qualitative point of view, deferring its
quantitative study and modelling after further future measurements.

Blekherman [7] has explained the excessive lateral vibrations on the Solferino
Bridge in Paris on the basis of autoparametric resonance by using a double pendu-
lum model; the process of possible synchronization of pedestrian loading with the
relevant vibrational modes, which are nonlinearly coupled in the ratio 2:1 between
their frequencies, depends on the achievement of parametric resonance.

Piccardo and Tubino [37] have performed an interesting extensive critical analy-
sis of the excitation mechanisms identified in the literature and they have proposed a
new forcing model based on experimental tests carried out on harmonically moving
platforms [12], [42]: the force exerted by pedestrians is modelled as harmonic with
an amplitude depending on the deck lateral displacement, and a simple criterion
defining the limit pedestrian mass is introduced. They mainly ascribe to a mecha-
nism of parametric excitation the lateral sway motion induced by crowds in very
flexible, slowly damped footbridges, with a first lateral natural frequency around
0.5 Hz corresponding to a half of the first lateral walking frequency.

Very recently, Venuti et al. [52] have developed a first-order model based on the
mass conservation equation, in order to macroscopically describe the dynamics of
the crowd in the framework of hydrodynamic modelling: the crowd, considered as
pedestrian flow, is assumed to behave like a continuous compressible fluid. The
structural system is modelled by means of a generalized single degree of freedom
model. The two-way interaction between the crowd and the structure is studied.
This model permits to take into account the triggering of the lock-in and its self-
limited nature, previously explained only by Strogatz et al. [47]. The effects of two
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different kinds of synchronization, i.e. between pedestrians and structure and among
pedestrians, are introduced; the presence of different frequency components in the
overall force exerted by pedestrians is considered. Some parameters, used in the
formulation of the model, come from reasonable qualitative considerations about
pedestrian behaviour and they would require specific experimental tests to be
confirmed.

Bodgi et al. [8] have adopted a similar approach to simulate the mechanics of
synchronous lateral excitation induced by pedestrians on footbridges.

Strogatz et al. [47], [1] have been the first, up to our knowledge, to mathemati-
cally describe and predict the simultaneous growth of bridge movement and crowd
synchronization, an observation that was unexplained in previous models but that is
confirmed by analyses of video footages [2] recorded during overcrowding condi-
tions on lively footbridges [12], [17].

This continuous-time bridge-pedestrians model (called SAMEO in the following)
is particularly interesting for its contribution to the physical-mathematical explana-
tion of the underlying mechanical event, besides for the reasonable description of
the phenomenon itself. Moreover the model is quite simple in its formulation and
general in its application possibilities to any bridge at risk of synchronous lateral
excitation; obviously it includes some important simplifications which could affect
its predictions from a quantitative point of view. For this reason a consistent de-
tailed analysis can be worthwhile in order to evaluate the engineering reliability of
the SAMEO model, and is pursued in the first part of this chapter (Sect. 2).

Due to the large number of nonlinear equations, the analysis is numerical, and
is performed by means of a self-made code; extensive parametric investigations are
performed through wide numerical simulations and some modifications are intro-
duced with the aim of improving the understanding and the description of the main
aspects of the underlying mechanical phenomena. In particular the aim is to give a
deeper insight into the synchronization phenomena.

To overcome the limits of a completely numerical analysis, which is accurate
but not easy enough for ’immediate’ understanding of the involved phenomena, the
second main section of the chapter (Sect. 3) is dedicated to present and to analyze in
detail a nonlinear discrete-time model which allows to obtain analytical instead of
numerical predictions, and to give a dynamic interpretation of the synchronization
phenomenon. In this case the approach is therefore analytical by using the classical
tools of the discrete nonlinear dynamics.

Some concluding remarks (Sect. 4) about both models end this chapter, which is
completely dedicated to the synchronous lateral excitation phenomenon in slender
monodimensional civil structures; this is an example of both biological and mechan-
ical synchronization which can be cause of instability.

2 A Continuous-Time Model: The SAMEO Model

The SAMEO model [47]–[14] is able to describe the synchronization of pedestri-
ans motion with the lateral vibrations of footbridges, by adapting ideas originally
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developed to explain the collective synchronization of biological oscillators, such
as neurons and fireflies, or other nonlinear systems able to phase-lock to an external
periodic drive [44], [45]. The basic idea is just the observation that also human
walking is governed by unconscious rhythmic biological signals, so an analogy for
example with the rhythmic flashing of fireflies seems to be possible.

In the problem we are studying, the stimulus signal is given by the dynamic active
feedback between the two involved systems: the bridge and the crowd.

Here lateral synchronization is assumed to involve only one vibrational mode of
the structure; this hypothesis is true in non-pathological cases in which internal res-
onance conditions among different natural modes of vibration of the bridge itself do
not occur. This is acceptable, e.g., in the London Millennium Bridge case: the anal-
ysis of its vertical forces and lateral oscillations shows no correlation between such
quantities [12] and so internal resonance is not necessary to explain its lateral sway
motion. Moreover the pedestrian lateral excitation is supposed to have a dominant
frequency close to the bridge fundamental frequency, as it happens in most of the
real observed cases of wobbling footbridges. As a consequence it is sufficient to per-
form a mono-modal analysis, by projecting the equation of motion of the footbridge
on the relevant modal shape.

A footbridge span of length L, measured along the coordinate y, is modelled
as a linear mono-dimensional damped dynamical system. To obtain the reduced
order, single degree of freedom (SDOF) model, a modal analysis of the whole 3D
structure is performed in order to identify the eigenfunction ϕ(y) involving lateral
displacements and corresponding to a natural frequency f0 close to the range 0.7–
1.2 Hz typical of the pedestrian lateral excitation. Hence, the dynamics is projected
on ϕ(y) and the equation of motion along the selected lateral mode (usually the first)
is obtained (Fig.2):

MẌ(t)+ BẊ(t)+ KX(t) = Fped(t) , (1)

Fped(t) =
∫ L

0
Fp (y, t) ϕ (y)dy ≈ G∑N

i=1 sinΘi(t) . (2)

The overdots denote differentiation with respect to time t. X(t) is the generalized
displacement (amplitude) of the relevant lateral mode and M, B, K are the modal
mass, damping and stiffness, respectively. Fped(t) is the lateral modal force exerted
on the bridge by the pedestrians, projection of the forces on the relevant modal
shape, being Fp(y,t) the crowd-induced force per unit length. G is its amplitude and
Θi(t) is the phase in the walking cycle for each of the N pedestrians. It is assumed
thatΘi = 0 when the pedestrian’s left foot first touches the ground, andΘi = π when
the right foot is on the ground, interpolating for phases between these events (Fig. 3).
According to (2) the pedestrian load is approximated as sinusoidal with respect to
the pedestrians phases: it can be thought as the first term in the Fourier series of the
(obviously periodic) load function [48].
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Fig. 2 Mechanical model of the single mode dynamics of the bridge

The dynamical pedestrians-bridge interaction is introduced by assuming that

Θ̇i(t) =Ωi +CiA(t)sin(Ψ (t)−Θi(t)+α) . (3)

Therefore, the pedestrians are considered as limit-cycle phase oscillators with a ran-
dom distribution of native frequenciesΩi. Ci measures the pedestrians’ sensitivity to
bridge lateral vibrations and can be determined experimentally,α is a constant phase
lag. It is assumed α = π/2 in order to match the worst resonance condition in which
the instantaneous lateral excitation frequency is approximately equal to the natural
frequency of the bridge relevant lateral mode, Θ̇i/Ω0

∼= 1,Ω0 = 2π f0 =
√

K/M be-
ing the bridge natural (circular) frequency. A(t) andΨ(t) are the bridge vibrations
amplitude and phase (Fig. 3), which are defined by

X = AsinΨ , Ẋ =Ω0AcosΨ → A =

√
X2 +

Ẋ2

Ω 2
0

. (4)

The term f = CiAsin(Ψ −Θi +α), added to Ωi in (3), is chosen to be a function of
the bridge motion amplitude, of the bridge phase and of the walker phase through
a constant of proportionality. It is therefore evident that f has the effect of shifting
walkers to a phase closer to that of the bridge, thus modelling the active dynamical
bridge-pedestrians interaction and describing the natural tendency of the systems
to synchronize. In fact, when the phase difference (Ψ −Θi +α) is positive, i.e. the
stimulus is ahead in the cycle (Θi lagsΨ +α), f is globally positive and the pedes-
trian speeds up in an attempt to synchronize with the bridge. Conversely, when the
phase difference (Ψ −Θi +α) is negative, i.e. the stimulus is behind in the cycle
(Θi leadsΨ +α), f is globally negative and the pedestrian slows down his walking
frequency in order to lock to the bridge.
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Fig. 3 Definitions of X , A,Ψ andΘi

The constant of proportionality, which appears in f , is made of two terms which
take into account two different aspects: the effect of the oscillations amplitude and
the intrinsic capability of pedestrians to be affected by that amplitude. As A in-
creases, its influence on the pedestrian becomes stronger, according to the linear
relationship between f and A. The parameter Ci, on the other hand, quantifies the
effect on the pedestrian of the stimulus of amplitude A and phase Ψ , and in this
sense it acts like sensitivity to bridge motion.

In the absence of bridge-pedestrians interaction (Ci = 0) we have that Θ̇i =Ωi is
the governing equation for the walker dynamics [46], so that each pedestrian walks
unconditionally at his own natural constant frequencyΩi, which has a certain statis-
tical distribution across the population. Then,∑i sinΘi =∑i sin(Ωit) is a distribution
with zero mean value, and the bridge is practically still.

In general, from a biological point of view, it is realistic to consider a variation of
sensitivity among individuals in the population, and therefore a random distribution
of values Ci depending on a person’s age, size, health and so on; for sake of simplic-
ity, lacking a specific study in this direction in the literature, in the following it will
be used a single constant value for all walkers: Ci = C.

Finally it is worthy to note that the model is able to describe the real scenario
in which the number of people walking on the bridge deck varies with time: as a
new pedestrian enters the bridge, a new equation is added to the system; therefore
the number of equations in the model varies with time depending on the number
of pedestrians who are entering or leaving the bridge, so that the model can be
classified as a time varying system.

2.1 Parametric Investigations: Model Implementation and
Computational Aspects

The SAMEO model is governed by highly nonlinear ordinary differential equations;
therefore we have to solve them numerically. We use a self-made code which joins
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Fig. 4 Results of in situ tests on the north span of the Millennium Bridge (Arup figure from
[1], [35]): time histories of the number of walkers (staircase-like trace) and of the bridge deck
lateral acceleration

traditional numerical methods (the classical routines of Matlab© are used to numeri-
cally integrate the system of ODEs (1), (2) and (3) governing the phenomenon) with
self-developed algorithms aimed at capturing the main dynamical aspects. Despite
the generality of the model, we need data from a real case study and therefore we
refer to the Millennium Bridge, as it is the most famous case of wobbling footbridge
and also one of the most well-documented and studied in the literature. In fact, in
2000, during its temporary closure, researches were undertaken both through labo-
ratory tests on moving platforms (Imperial College and University of Southampton)
and in situ tests on the bridge itself (Arup), [12]–[16]. In particular, the latter allowed
determining the critical number of pedestrians necessary to destabilize a given span
of the bridge, which was found to be about 160 on the north span (Fig. 4).

Because the majority of published experimental data pertains to the fundamental
lateral mode of the north span, those numerical values are used as benchmark and
reference for our analysis: M = 113000 kg, B = 11000 kg/s, K = 4730000 kg/s2,
which imply ξ = B/2

√
MK = 0.0075 and Ω0 =

√
K/M = 6.47 rad/s, in turn

corresponding to 1.03 Hz. Furthermore, according to [47], we assume G = 30 N,
Ci = C = 16 m−1 s−1 and, as said, α = π/2.

We adopt for the native frequencies Ωi a Gaussian distribution (Fig. 5a) with
mean value 1.03 Hz (6.47 rad/s) and standard deviation 0.1 Hz (0.63 rad/s) [54]. The
initial phases (Fig. 5b) are supposed uniformly distributed in the interval [0,2π ].
We choose these phases randomly with the idea to reproduce the different moments
when each new individual enters the footbridge; these random constants are used
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Fig. 5 Distribution of a native frequencies Ωi and b initial phases Θi for a generic group of
180 pedestrians considered in our simulations
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Fig. 6 Number of walkers on the bridge a and amplitude of vibration b versus time

exclusively as initial conditions for numerically integrate the system of ordinary
nonlinear differential equations in the Monte Carlo simulations.

The initial position and velocity of the bridge are zero. Fig. 6 shows the pedes-
trians ramp and a typical plot of the oscillation amplitude: we consider a staircase
loading path in order to reproduce Arup test conditions on the Millennium Bridge
(see the upper staircase-like trace in Fig. 4) and the relevant results (see the lower
trace in Fig. 4).

For small crowds, the oscillation amplitude (Fig. 6b) as well as the bridge deck
lateral acceleration (Fig. 4) is near zero, with a fluctuating trend, as walkers are still
desynchronized and randomly phased. Then, as more and more people walk on the
deck, there is no hint of instability until the crowd reaches a critical size Nc, after
that wobbling and synchrony suddenly emerge simultaneously, as dual aspects of a
single instability mechanism.
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Fig. 7 Amplitude of vibra-
tion versus time for a first
group of 20 simulations
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The practical estimation of Nc from our simulations is made by an ad hoc nu-
merical procedure based on the identification of the onset time for the exponential
growth of the instability tc (see the following subsection 2.1.1): from the generic am-
plitude versus time curve (Fig. 6b), we determine this critical threshold tc, then with
this value we enter the staircase loading path graph and we read the corresponding
critical number of pedestrians Nc triggering the synchronization.

For the reference case we perform a Monte Carlo analysis with 200 simulations;
the results, in terms of crowd’s critical size Nc, are randomly distributed: we evaluate
its mean value Na = 155 and its standard deviation σN = 27.7. Our critical number
is practically coincident with the Arup’s results, and the predicted final amplitude
of the bridge motion is very close to the observed values of about 5–7 cm on the
opening day. For a reason of graphic readability we plot in Fig. 7 only a sample of
20 simulations, which is in any case visually representative of the global outcome
of the whole group of 200.

From Fig. 7 it clearly emerges that, despite the loading path is the same for all
the simulations, the response in terms of amplitude changes significantly: even if in
most simulations pedestrians synchronize, there are also some cases in which they
synchronize a little and others (only 3 in the sample of 20 simulations reported)
in which pedestrians do not synchronize at all in the considered time interval. The
variations from one run to the next depend on the initial values of Θi and on Ωi,
randomly assigned (Fig. 5) to pedestrians at each simulation; the consequence is a
dispersion of the critical values Nc, as confirmed by the quite large standard devia-
tion (σN = 27.7).

The results of Fig. 7 constitute the reference case with respect to which we de-
velop all the subsequent analysis.

In the following we perform 200 simulations for each tested case, in order to
obtain statistically reliable considerations, even if, as before, for readability reasons
we always plot only a sample of 20. For each group of simulations, the average
Na and the standard deviation σN of the critical numbers Nc are computed: they
summarize the outcome of the performed investigations.
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Fig. 8 Multi-phase linear regression: data points are divided into 3 segments on the x axis and
then a different straight line is fitted to each segment; the intersection points are not known a
priori

In order to perform an extensive parametric analysis, which is one of the aims of
this section, it is necessary to automate as much as possible the computation of Na

and σN . This is done in the next subsection.

2.1.1 Automatic Detection of Nc

To automatically detect the time tc for the onset of the instability, and consequently
the critical number Nc of pedestrians triggering the unwanted dynamical phenom-
ena, we develop a numerical technique to fit the oscillations amplitude versus time
curve, g(x), by a piecewise linear averaging curve. Actually, we use three straight
segments (Fig. 8), which are sufficient for our purposes. In fact, by observing the
SAMEO model results (Fig. 6 and Fig. 7), we can clearly identify three different
ranges, in each of them the data points having an approximately linear trend. This
three-linear regression is not so trivial, because it is, in fact, a nonlinear regression
problem due to the two unknown intersection points of the fitting segments; the
problem is continuous but not differentiable at those points and this messes up the
local linearization approach often used for weakly nonlinear problems. In partic-
ular, here we are interested in finding the intersection point between the first and
the second segment, as it corresponds to a reliable and automatic estimate of tc and
therefore, from the load path, of Nc.

The goal is to approximate our real rippled function g(x) with a tri-linear func-
tion f (3)(x) defined as follows (Fig. 8):
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f (3) (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y1

x1
x , for x < x1,

y1 +
y2 − y1

x2 − x1
(x− x1) , for x1 < x < x2,

y2 +
y f − y2

x f − x2
(x− x2) , for x2 < x.

(5)

We fix the first and the last point, respectively (0,0) and (x f ,y f ), as those of g(x),
so in Eq.(5) the unknown parameters are the four coordinates of the two intersection
points of the fitting lines: x1, y1, x2, y2. We determine them by minimizing the total
quadratic error between the original curve and our piecewise linear approximation:

ε (x1,y1,x2,y2) =

x f∫
0

(
g(x)− f (3) (x)

)2
dx ∝

M

∑
i=1

(
g
(

x(i)
)
− f (3)

(
x(i);x1,y1,x2,y2

))2
.

(6)
We underline that in the previous Eq. (6) we pass from the rigorous integral defi-

nition of total quadratic error to a discrete formulation, by simply integrating with
the trapeziums rule: M is the number of points, equally spaced in time, in which we
discretize the time-history. In the right hand side of (6) we omit to multiply for the
constant integration interval Δx because, when we minimize, it does not affect the
minimum point we are looking for.

To minimize the function ε with respect to the parameters x1, y1, x2 and y2 we
use the simplex method of Nelder and Mead [26], [18], which is a direct method
that does not use numerical or analytic gradients. From any ’initial’ guess of x1, y1,
x2 and y2 the algorithm runs and provides a ’minimum’ of the function. In our case
the parameters to initialize are only x1 and x2 since for sake of simplicity we choose
as initial guess y1 = g(x1) and y2 = g(x2). For particular situations the algorithm
can fail to converge or converge to a local minimum. When the global minimum
is not achieved, we solve the impasse by automatically (and randomly) changing
the initial guess. To improve the reliability of the results, we consider in any case
different initial guesses even when the solution does not show drawbacks.

This procedure, despite the thousands of function evaluations to determine the
optimum, is computationally efficient, and it takes only few seconds to give the
result. This aspect can be further improved if we filter the input data with a lowpass
filter and then resample the resulting smoothed signal at a lower rate; with this trick
we are also able to reduce the problem connected with multiple local minima. In
any case, for each group of simulations, a global visual supervision of the plotted
results is required in order to be sure of the correct prediction of Nc. In this sense
our code does not permit completely automated results.

Despite this limit, the method we use is able to detect in a sufficiently automatic
manner the number of pedestrians which trigger the synchronization, and it allows
us to perform a wide set of simulations with an acceptable CPU time, thus deriving
statistically reliable considerations.
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2.2 Numerical Simulations

We perform extensive parametric investigations with the following practical
motivations:

1. to test the robustness of the model;
2. to improve the understanding of some aspects of the underlying mechanical phe-

nomena (e.g. to give a deeper insight into the synchronization phenomena);
3. to increase the agreement of the model results to the effective behaviour of the

walkers, as observed in real conditions;
4. to highlight the role of the main parameters involved on the system dynamics.

We choose as parameters to be varied those which mainly affect the model behaviour
and which are sensitive with respect to the real situation to be modelled:

1. the initial phases and native frequencies for the walkers;
2. the constant phase-lag parameter α;
3. the amplitude of the pedestrian lateral forcing during walking;
4. the shape of the pedestrian loading wave;
5. the pedestrians’ sensitivity to the bridge motion, C;
6. the coherence of the model results with respect to an ‘inverse’ approach analysis;
7. the synchronization between pedestrians, D (to be introduced later);
8. the interaction between the two types of synchronization, through the tuning of

the respective parametric indicators C and D;
9. the effects of different loading paths, i.e. different modality and number of pedes-

trians introduced on the bridge deck per unit time.

We remark that we also introduce and test some modifications to the original
SAMEO model, maintaining unaltered its essence and plainness of description of
the physical event but improving its effectiveness. Our enhancements concern:

1. the addition of a further level of synchronization, between pedestrians;
2. a different, and more conservative, relationship between the amplitude of the

pedestrian lateral forcing and the amplitude of the bridge lateral vibrations, which
we determine according to experimental tests [12];

3. a more realistic square-type shape of the pedestrian loads on the bridge, accord-
ing to experimental evidences on treadmill [5].

2.2.1 Influence of Pedestrians Initial Phases and Native Frequencies

What happens if the pedestrians enter the bridge with some initial level of syn-
chrony, as it may occur in overcrowding conditions, or if they are a typologically
homogeneous group with native frequencies slightly spread around the mean value?

In Fig. 9 we analyze the influence of the initial conditions of the walkers on
the temporal course of the phenomenon: we assign random phases Θi uniformly
distributed in an interval [0,1] instead of [0,2π ] (see for comparison Fig. 5b), and
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Fig. 9 Effect of the initial level of synchrony among pedestrians: a phases distribution and b
amplitude of vibration versus time curves
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Fig. 10 Effect of the typological homogeneity level of the pedestrians: a native frequencies
distribution and b amplitude of vibration versus time curves

we keep all the other parameters unchanged with respect to the reference case. This
entails to admit an initial synchrony among pedestrians.

With these initial conditions, we obtain wobbling for an almost identical critical
value, Na = 160, which is affected by a similar dispersion, σN = 24.32. On the
other hand, if we compare the amplitude of vibration versus time curves reported
in Fig. 9b with those of the reference case (Fig. 7), we observe that substantial
differences do not exist. Here pedestrians enter the bridge next to the synchrony, so
their initial behaviour is less random than the previous one (Fig. 5b); but the point is
that they are synchronized among them, not with the bridge. Therefore, as they have
different native frequencies, after one step they will not be anymore synchronized,
and the phenomenon will proceed almost as in the reference case.

In Fig. 10 we analyze the influence of the intrinsic properties of the pedestrians:
we assign random native frequencies according to a Gaussian distribution with the
same mean value (6.47 rad/s), but with a smaller standard deviation (σΩ = 0.3 rad/s
instead of 0.63 rad/s) and we keep all the other parameters unchanged with respect
to the reference case.
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In general walkers tend to have a natural frequency of pacing that varies de-
pending on the height and weight of the individual, on his/her age, on the travel
purpose, on physical, social and psychological factors. Here we suppose that an
almost homogeneous group of pedestrians enter the bridge; this means they have
natural frequencies near the mean value for the population (1.03 Hz), which is near
the bridge resonant frequency. It is obvious that, in such situation, the synchrony
with the bridge lateral movements is fostered and sped up. In fact, as expected, we
obtain wobbling for a quite smaller critical value, Na = 84, which is affected by
a smaller dispersion, σN = 15.69. By observing the amplitude of vibration versus
time curves (Fig. 10b), we highlight that, unlike the other cases (Fig. 7 and Fig. 9),
in all the simulations pedestrians synchronize in a quite restricted time scale, inside
the considered time interval.

Since the reduction from Na = 160 (Fig. 9b) to Na = 84 (Fig. 10b) is very marked,
we conclude that the typological homogeneity degree of the crowd is a determining
factor both for the trigger point of instability and for the temporal probability of the
event to occur, while the initial level of synchrony among pedestrians does not affect
the onset of the phenomenon.

2.2.2 The Constant Phase-Lag Parameter α

The constant phase-lag parameter α is determined by a pedestrian’s desired phase
relationship with the moving surface. It is recognized that on a laterally moving
surface, the generic walking pedestrian tends to counterbalance the oscillations with
a snaking gait: this instinctive behaviour fosters the bridge lateral vibrations.

If we observe the typical variation of the dynamic amplification factor (DAF)
and of the phase angle (φ ) as a function of the frequency ratio β = Θ̇i/Ω0 (see
Fig. 11), we note that α = π/2 gives the worst-case scenario in which the bridge is
maximally destabilized because pedestrians drive it most ‘efficiently’, so that the re-
sulting prediction of the critical number of walkers is conservative. On the contrary
α = 0 corresponds practically to the ‘static’ case (DAF = 1) in which the synchro-
nized pedestrians are not effective in applying their force and in amplifying bridge
oscillations. Therefore α = π/2 is the correct value for human response to lateral
vibrations.

To confirm the previous interpretation we have reported in Fig. 12 the results
obtained for α = 0. We can observe that the bridge lateral vibrations remain in
the field of the little oscillations (in the order of mm): pedestrians are not able to
trigger wide lateral oscillations of the bridge, not even if we consider a longer time
of observation under the same maximum final value of pedestrian loading (Fig. 13).

2.2.3 Pedestrian Forcing Amplitude

In the previous simulations we have assumed G to be a constant independent of A, i.e.
independent of how much the bridge is wobbling. Its value (30 N) corresponds to the
mean amplitude of the lateral force by an average pedestrian during normal walking,
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Fig. 12 Number of walkers on the bridge a and amplitude of vibration b versus time for
α = 0
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Fig. 13 Number of walkers on the bridge a and amplitude of vibration b versus time for
α = 0; a longer time of observation under the same maximum final number of pedestrians is
considered here
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Fig. 14 Lateral forcing
amplitude versus bridge
vibration amplitude (gait
function): experimental data
by Arup obtained at the
London Imperial College
tests (dots), Abrams’ model
(7) and our model (8)
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as experiments on a treadmill confirm [5]. It is known that the magnitude of this force
can increase when the pedestrian is on a laterally moving surface, because he widens
his stance and adopts a different gait in order to balance himself [12], [31], [4].

We consider this effect of changing gait by assuming a model of pedestrian force
proposed by Abrams [1] and motivated by the experiments of McRobie et al. [31]
(Fig. 14):

G(A) = (1/2)
(
Glow + Ghigh

)
+(1/2)(Glow−Ghigh) tanh [C2 (A−C1)] . (7)

Here Glow = 30 N and Ghigh = 60 N are the minimum and the maximum forcing am-
plitude; C1 = 1 cm and C2 = 10 cm−1 are the amplitude at which the force increases,
and the rate at which the force increases with the oscillation amplitude, respectively
[1].

Numerical results show that in this case the amplitude curves lift off for a number
of pedestrians, Na = 150, slightly smaller than that corresponding to constant G, but
the standard deviation is strongly reduced, σN = 14.65. Moreover, it is interesting
to note that the maximum final value of A is higher (14 cm against about 7 cm in
the reference case), according to the fact that the model is linear in the mechanical
part. We can then affirm that doubling G when oscillations reach only 1.3 cm, as it
happens with the expression (7), see Fig. 14, has the effect of doubling the bridge
final oscillation amplitude and of reducing the dispersion, while it does not affect
significantly the instability critical threshold (Fig. 15a).

We also implement a different and more conservative bilinear function G(A):

G(A) =
{

30 + 2500A, for A ≤ 0.016m,
70, for A > 0.016m.

(8)

This expression is chosen in order to overlay, for sake of security, the greatest pos-
sible number of laboratory tests’ data [12], as shown in Fig. 14. The simulations
provide a fairly lower critical number of pedestrians, Na = 130, and a larger standard
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Fig. 15 Amplitude of vibration versus time: simulations performed with G(A) according to
a Abrams’ model and b our model

deviation, σN = 24.28, according to the fact that the force applied to the bridge is
higher with respect to Abrams’ gait function (7). The same considerations of Eq. (7)
apply to the maximum final value of A (Fig. 15b).

Both the models assume G(A) increasing, more or less rapidly, until a certain
saturation threshold and then constant (Fig. 14); this trend is motivated by the obser-
vation that both the magnitude of the pedestrian lateral forcing and the phenomenon
itself are naturally self-limiting: in fact a human sensitivity limit to lateral vibrations
exists, after which pedestrians begin to have difficulty in walking and finally stop.

From Fig. 15 we also observe that incorporating in the model the dependence
G(A), with both the Eqs. (7) and (8), speeds up the time scale for the growth of
bridge oscillations towards the steady state, after the critical crowd size has been
exceeded.

2.2.4 Pedestrian Forcing Shape

In the original SAMEO model the pedestrian force is idealized as sinusoidal (2),
even though experiments on treadmill reveal a periodic trend more similar to a
square wave [5] (Fig. 16):

Fped,i = Gsign(sinΘi) . (9)

Our simulations show that in the case of square-type force (9), the phenomenon
triggers for a number of pedestrians Na = 125, smaller than that of the sinusoidal
wave case, while the standard deviation practically does not vary, σN = 24.55. The
maximum final value of A is fairly higher: about 8 cm (Fig. 17).

This behaviour was expected as for the square wave a higher force is applied to
the bridge (on the average the force is 1.41 times larger, since

∫ 2π
0 [sin(Θi)]2dΘi =

π while
∫ 2π

0 [sign(sin(Θi))]2dΘi = 2π ), thus strengthening the ’positive’ feedback
loop between synchrony and wobbling.
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Fig. 16 Pedestrian lateral forcing: a sinusoidal and b square-wave

Fig. 17 Amplitude curves
obtained in the case of
square-type force
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We can then conclude that the temporal shape of the pedestrian force plays a
more important role than the variation of G with A, being the decrement in the
critical crowd size more marked. Therefore, the square wave force shape is both
more realistic and more safe.

2.2.5 Pedestrian Sensitivity to Bridge Motion

The parameter C controls how fast a pedestrian, unconsciously, shifts the phase
of his walking cycle in response to the sideways oscillations of the platform on
which he is walking. There are both physical (related to its meaning of pedestrian
sensitivity) and mathematical reasons (related to its definition in (3)) to assume that
C is positive; in fact, since A is positive, the sine function in (3) is already able to
alter the instantaneous pedestrian frequency in the desired way, i.e. slowing down
the pedestrian if he is walking too early with respect to the bridge or speeding up
him otherwise.
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Na = − 0.00029*C3 + 0.076*C2 − 6.7*C + 240

Fig. 18 Average critical number of pedestrians versus C: data points and fitted cubic curve

Apart from the previous one, we have no other overall information on C. In fact,
being the parameter which, in some sense, links the mechanical behavior of the
bridge, governed by the laws of the physics, with the human behavior of pedestrians,
which is not subjected to well-known and mathematically established governing
law, C is the most delicate parameter of the model, and actually the most difficult to
be determined; practically, it cannot be determined directly, but only indirectly by
comparing experimental and model outcomes. For this reason it is very important
to perform a parametric analysis with respect to C or, more precisely, to determine
how Na depends on C, beyond the value C = 16 m−1s−1 suggested by [47].

In Fig. 18 we report the average critical number of pedestrians corresponding to
values of C in the range 10− 100 m−1s−1: each point in the graph is the result, as
usual, of 200 simulations performed considering Arup loading path. The best (in the
least squares sense) cubic curve fitting the data is:

Na = −2.9×10−4×C3 + 7.6×10−2×C2 −6.7×C+ 240 . (10)

Values of C < 10 m−1s−1 are investigated but they are not plotted in Fig. 18, be-
cause in these cases the pedestrians are never able to synchronize and only small
oscillations are observed. In Fig. 19a we show a sample of 20 of the 200 simula-
tions performed with C = 10 m−1s−1: in only one case the system seems to be able
to synchronize in the considered time interval. In general only carrying forward the
simulations for unrealistically high values of time and number of pedestrians, syn-
chronization is a possible outcome. Thus, C = 10 m−1s−1 can be assumed as a lower
bound for the human sensitivity parameter to bridge lateral vibrations.

Going forward, values of C up to 14 m−1s−1 are of little practical interest as the
trigger of the phenomenon is still characterized by great uncertainty and only some
samples synchronize.
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C = 10 (1/ms)
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C = 50 (1/ms)

Fig. 19 Amplitude of vibration versus time: a curves obtained with C = 10 m−1s−1 and b
with C = 50 m−1s−1
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Fig. 20 Standard deviations a and maximum final amplitude of bridge vibrations b associ-
ated to the mean values of the pedestrians critical number triggering the synchronization:
simulations performed by varying C

Overall as C increases, the critical crowd size decreases (Fig. 18) and the maxi-
mum final amplitude of the bridge oscillations increases (Fig. 20b). Then, for val-
ues of C > 50 m−1s−1, the critical threshold keeps almost identical: synchronization
instantly occurs, when only the first loading step of 50 pedestrians is applied on
the bridge. This means that C = 50 m−1s−1 can be assumed as an upper bound for
the human sensitivity parameter to bridge lateral vibrations. In Fig. 19b we show
the result of simulations performed with C = 50 m−1s−1 (Na = 60 and σN = 10.89).

Thus we clearly define the limits for the pedestrians-bridge synchronization
parameter C: values lower than 10 m−1s−1 and higher than 50 m−1s−1 are not
meaningful; we highlight that the range of most practical interest is for C ∼=
14−25 m−1s−1, as these are the most realistic values of pedestrian sensitivity (this
range includes C = 16 m−1s−1, value for which the model results match the experi-
mental data for the north span of the Millennium Bridge) and also the most delicate
(in this range the average critical number Na decreases more quickly, see Fig. 18).

For completeness of investigation, in Fig. 20a we report also the standard devi-
ation σN associated to the mean value Na of the critical number of pedestrians, for
each group of simulations performed by varying C. If we neglect the irregularities
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of statistical nature, we can observe that σN starts from zero, follows an increas-
ing trend until a peak threshold for C ∼= 14− 25 m−1s−1 and then decreases again
to zero. A possible interpretation is that the more the pedestrians are sensitive to
bridge lateral vibrations, the more the initial values of phases and native frequen-
cies, randomly assigned at each simulation, influence the temporal evolution of the
phenomenon in terms of results dispersion; as a consequence the critical thresh-
old Na is affected by an increasing standard deviation, and this trend is maintained
until the peak threshold. Then when the sensitivity increases beyond that range, a
trend reversal occurs: pedestrians are so sensitive to bridge lateral vibrations that
they are progressively less and less influenced by the initial conditions, and the crit-
ical threshold Na is affected by a standard deviation which drops to zero. Therefore
C ∼= 14− 25 m−1s−1 is also the range in which the initial conditions are mainly
able to influence the phenomenon, with a resulting higher dispersion in our predic-
tion of Na. In addition, we observe that the maximum final amplitude of the bridge
oscillations increases rapidly in this range before reaching a plateau (Fig. 20b).

These considerations confirm that C ∼= 14−25 m−1s−1 is the most critical range
of values for C, and therefore our interest will be concentrated on it (see the follow-
ing subsection 2.2.8).

2.2.6 Inverse Approach Analysis: Coherence of the Model Results

With reference to the specific example of the Millennium Bridge, it may be interest-
ing to analyse also an ’inverse’ approach in the evaluation of the model behaviour.
Instead of investigating what happens to the crowd critical size when we vary the
model parameters or the description of the pedestrian load, we can study which is
the value of C able to give a model critical threshold coinciding with the experimen-
tal one. Actually, this is the way with which C can be determined for each ’variant’
of the SAMEO model.

With this aim we perform simulations by looking for the value of C such that
Na = Nc,exp, when:

1. G is assumed variable with the bridge oscillation amplitude according to Eq. (7)
(see the following Fig. 21);

2. the pedestrian force is assumed of ’square-type’ according to Eq. (9), instead of
sinusoidal (see Fig. 22 hereunder).

In this first case, if we compare our simulations results with data obtained from
crowd tests on the Millennium Bridge [12], we confirm the value C = 16 m−1s−1

obtained with G = constant = 30 N. This is not surprisingly, since in the subsection
2.2.3 we have shown that with (7) Na is only slightly smaller than that corresponding
to G = 30 N (150 vs 155), the difference being hidden by the statistical nature of the
problem.

In this second case, in order to match the model predictions to the Arup exper-
iment, the correct value for C is slightly smaller: 15 m−1s−1. This is a reasonable
result as in this case we put suddenly more energy into the system and therefore,
in order to obtain the same response of the reference case, we have to consider a
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Fig. 21 Number of walkers on the bridge a and amplitude of vibration b versus time
when G is variable with A according to Abrams’ model (7). Simulations performed with
C = 16 m−1s−1
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Fig. 22 Number of walkers on the bridge a and amplitude of vibration b versus time when the
pedestrian force is assumed of ’square-type’ instead of sinusoidal (9). Simulations performed
with C = 15 m−1s−1

lower value of the sensitivity parameter. These results are in full agreement with
those obtained in subsection 2.2.4, where for the case C = 16 m−1s−1 and with a
’square-type’ pedestrian force, we had obtained a fairly lower critical number Na.

Overall the SAMEO model seems to provide coherent results with respect to an
inverse approach analysis, in spite of the statistical data involved in its predictions.

2.2.7 Synchronization between Pedestrians

The original formulation of the SAMEO model considers only the bridge-pedestrians
interaction, and not an interaction between pedestrians. Since it was found that a
certain level of synchronization among people within the crowd exists [54], [20],
it should be considered also a correlation due to people falling into step with each
other, simply responding to visual clues such as the movement of people in front
of them [25]. There is experimental evidence that the brain’s control center syncs
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up to its visual center with high-frequency brain waves, directing attention to select
features of the visual world [19]. In a crowded bridge, lacking other external stimuli,
human attention is caught by the people who are walking ahead, with a tendency to
synchronize in order to minimize the reciprocal interferences and to achieve a more
comfortable and fluent gait [32]–[24].

To describe this phenomenon we add to the SAMEO relation for the bridge-
pedestrians interaction (3) a term which takes into account the pedestrian- to- pedes-
trian interaction. However, without complicating too much the model, we consider
that a pedestrian interacts only with the one who is in front of him (Fig. 23), who
is the one who mainly influences his motion. From a practical point of view, this
means to consider pedestrians walking ’in single file’ (i.e. lined up one behind an-
other): this is obviously a simplification of the real crowd interaction, although it
exactly corresponds to the Arup experiments on the Millennium Bridge [2]. It can
be considered as a rough preliminary proposal and additional features could be dealt
with after a fundamental understanding has been established. Indeed our modified
SAMEO model is very flexible in its present form, and the real effect on the sin-
gle individual of all the pedestrians who are ahead in his/her visual cone could be
easily introduced through an ’average effect coefficient’, determinable with proper
experimental analyses of human behavior.

Instead of (3) we then assume:

Θ̇i =Ωi +CiAsin(Ψ −Θi +α)+ Di sin(Θi−1 −Θi) . (11)

The new term g = Di sin(Θi−1−Θi) is chosen in analogy with the bridge-pedestrians
interaction term and on the basis of the following considerations:

1. it is a function of the phase difference between pedestrians ’in single file’, being
Θi−1 the phase of the generic leading pedestrian i− 1 which acts as stimulus
signal for the following pedestrian i walking just behind;

2. it has the effect of shifting each walker to a phase closer to that of the previous
one. Therefore, when the phase difference (Θi−1 −Θi) is positive, i.e. Θi lags
Θi−1, g must be globally positive, in order to increase the frequency of pedestrian
i, thus fostering synchrony with pedestrian i− 1; similarly when (Θi−1 −Θi) is
negative, i.e. Θi leads Θi−1, the term in question must be globally negative. Of
course g must be periodic in (Θi−1 −Θi), and the simplest periodic function that
satisfies these requirements is the sine function;

3. the constant of proportionality Di measures the effect of the pedestrian i− 1 on
the following pedestrian i. Since Di is the amplitude of the maximum phase shift
corrections between walkers, it can be considered as a sort of ’visual sensitivity’
of pedestrians to the crowd self-synchronization. Thus we will have g = 0 when
Di = 0, i.e. the pedestrians are visually insensitive. It is reasonable to consider
a certain variation of visual perception among individuals in the population. We
should in general use a random distribution Di for these sensitivities, but lacking
specific studies in this direction, we will later make the simplifying assumption
that Di = D, a single constant value for all walkers (similarly to what have been
done for the Ci).
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Fig. 23 Scheme of the vis-
ual pedestrian-to-pedestrian
interaction

Hence with this model, when pedestrian i sees pedestrian i− 1 walking near in
front of him, he is visually influenced and he slows down or speeds up so as to walk
more nearly in phase on the next step. This effect certainly contributes to speed up
the trigger of the bridge first lateral movements. It is obvious that if the visual stim-
ulus of the previous pedestrian i− 1 is too fast or too slow, the pedestrian i cannot
keep up and entrainment is lost. Therefore, this type of synchronization is certainly
fostered in the case of a typologically homogeneous crowd, i.e. with a Gaussian dis-
tribution of native frequencies characterized by a small standard deviation (Fig. 10).

Moreover the synchronization between pedestrians is clearly possible only if the
number of persons on the bridge is sufficiently large so that they are able to influ-
ence each other. For this reason our modification to SAMEO model applies only in
case of yet crowded bridge, with a density over 0.6 pers/m2 [15] (corresponding to
a relative distance between pedestrians of about 1 m or even less): over this density
value the single pedestrian is no longer able to walk with his individual undisturbed
step frequency and walking velocity. Within this limit, we have to detect the admis-
sible scale range for Di (i.e. to fix its lower and upper bounds) and to predict the
effects of Di on the model.

Some preliminary qualitative physical considerations allow affirming that:

1. Di cannot be negative both for a physical reason related to its meaning, and be-
cause the sine function already controls, in the mathematically right way, the in-
crease/decrease of the walking frequency due to ’self’-synchronization between
pedestrians;

2. as the visual sensitivity Di increases, we expect a decrease of the critical number
Nc, because the ’self’-synchronization between pedestrians tends to facilitate the
’global’ synchronization with the bridge;

3. large values of Di could mean that each pedestrian is so much influenced by
the previous one because of their minimal distance (crowd close to the densest
possible packing) that he doesn’t mind the bridge; namely the pedestrians could
synchronize each other on a frequency different from the bridge native one, thus
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the critical number Nc triggering the phenomenon can increase instead of de-
creasing. This is obviously a limit case.

On the basis of these qualitative physical considerations, Di = 0 s−1 can be assumed
as a lower bound for the visual sensitivity parameter to the ’self’- synchronization.

In order to determine also an upper bound for Di, hereafter we consider the
Eq. (11) with C = 0 m−1s−1, in order to deal with the effects of D on the model
only. The system, for N pedestrians, is made of N − 1 equations (note that the first
pedestrian has not a person ahead him and so it is not involved in the ’self’- syn-
chronization. It is just a leader of the crowd and its native frequency, Θ̇1 =Ω1 
= 0,
constitutes an initial condition for the problem):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ̇2 =Ω2 + D2 sin(Θ1 −Θ2) ,
...
Θ̇i =Ωi + Di sin(Θi−1 −Θi) ,
...
Θ̇N =ΩN + DN sin(ΘN−1 −ΘN).

(12)

The fixed points, corresponding to steady-states or equilibriums of the system, are
given by Θ̇i = 0, ∀ i = 2, . . . ,N. From a qualitative point of view this is the limit
situation, when overcrowding is such that pedestrians are packed and therefore they
are forced to stop: Θ̇i is nil and the maximum value of Di is achieved (it is the upper
bound we are looking for).

For the generic pedestrian i the solution for Θ̇i = 0 provides:

−Ωi

Di
= sin(Θi−1 −Θi) . (13)

We highlight that, in order to have the equilibrium position, the condition
∣∣−Ωi

/
Di
∣∣<

1, i.e. Di >Ωi, must be satisfied.
From (13) we have

Θi =Θi−1 + arcsin
Ωi

Di
, i = 2, . . . ,N . (14)

The first termΘ ∗
1 in this chain of equalities (14) is known, as the first pedestrian is

not influenced by anyone else on the bridge, while the second is visually influenced
by the first and so on. Thus we determine in cascade the solution of the system (12):
(Θ ∗

2 ,Θ ∗
3 , ...,Θ ∗

N ); the Jacobian matrix J evaluated at that point is:

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

−μ2 0 0 · · · 0
μ3 −μ3 0 0

0
. . .

. . .
. . .

...
...

. . . μN−1 −μN−1 0
0 · · · 0 μN −μN

⎤
⎥⎥⎥⎥⎥⎥⎦

, μi = Di

√
1− (Ωi

/
Di
)2

. (15)
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Fig. 24 Critical number of
pedestrians versus D: data
points, fitted quadratic curve
and graphical display of the
standard deviations associ-
ated to each mean value Na
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This matrix has negative eigenvalues λi = −Di

√
1− (Ωi/Di)

2, as it can be seen
by inspection (remember that Di > Ωi otherwise the equilibrium solution does not
exist); hence the fixed point (Θ ∗

2 ,Θ ∗
3 , ...,Θ ∗

N) is a stable node. In other words, as
Di increases, the phases tend towards those values (Θ ∗

2 ,Θ ∗
3 , . . . ,Θ ∗

N), equilibrium
solutions of system (12). Therefore we infer that to not have the phenomenon of
stable equilibrium, corresponding to overcrowding condition, we have to assume
Di <Ωi, and this constitutes an upper bound for Di.

It is important to remark that from a physical point of view, for equilibrium of
the system we mean the limit situation such that overcrowding is close to the dens-
est possible packing and therefore it prevents any further form of motion: pedes-
trians are obliged to stop and their relative phases are blocked; the fixed point
(Θ ∗

2 ,Θ ∗
3 , ...,Θ ∗

N) provides the pedestrian phases an instant before the packed con-
figuration. This equilibrium is also stable, if nobody leaves the bridge. We impose
that this equilibrium must be avoid because it is the upper possible limit for real
situations; in this sense it allows an estimation of the maximum value for Di: the
maximum visual sensitivity threshold occurs when overcrowding is maximum.

For sake of simplicity, as already mentioned, Di will be assumed constant, Di =
D, as it has been done with the other sensitivity parameter C (Sect. 2). Therefore,
the bounds we have just found can be rewritten as 0 ≤ D <Ωa = 1.03 s−1 (note that
we refer to the mean of the Gaussian distribution of pedestrian lateral frequencies).

Afterwards we reintroduce C = 16 m−1s−1 (original value from SAMEO model)
in the governing equation (11), and we investigate values of D in the interval [0,1]
s−1 in order to test the effects on the model. We obtain, as expected, a monotonically
decreasing trend of the critical number of pedestrians triggering the synchronization
versus D (Fig. 24).

We use once again the method of least squares to characterize data using a global
fit; we obtain the following quadratic correlation function:

Na = 41×D2−118×D+ 159 . (16)

In Fig. 24, for each group of simulations, we also report the standard deviation σN

associated to the mean value Na of the crowd critical number. We remark that for
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Fig. 25 Amplitude of vibration versus time: curves obtained with a D = 0 s−1, C =
16 m−1s−1 and with b D = 1 s−1 and C = 16 m−1s−1

D = 0 we are not actually considering pedestrian-to-pedestrian interaction and we
fall back in the reference case, thus obtaining Na = 155–160 and σN = 27.7–25.4;
for D = 1s−1, we obtain a strongly reduced critical number Na = 85 and σN = 29.93,
being increased the pedestrian sensitivity to visual clues. The amplitude versus time
curves for these two border cases are shown hereunder: Fig. 25a is the equivalent of
Fig. 7, re-proposed to facilitate the comparison with Fig. 25b.

We note an increase of the final predicted amplitude of the bridge motion, which
is, in any case, very close to the observed values on the Millennium Bridge.

It is evident, as expected, that this additional synchronization mechanism self-
excites the phenomenon, as the critical threshold almost halves (from 155–160 to
85) with respect to the reference model.

2.2.8 Effects of the Two Synchronization Parameters C and D

When does the pedestrian-pedestrian visual interaction become irrelevant with re-
spect to the interaction with the bridge lateral vibrations? How much Na is influ-
enced by C and D ? Unfortunately these remain partly open questions, lacking a
proper complementary experimental investigation.

The only thing we can do here is to perform a systematic numerical simulation
aimed at determining the joint effect of C and D on the model critical threshold
Na. We report in Fig. 26 the contour plot of Na as a function of C and D, which
just permits understanding the joint effect of the synchronization parameters on the
model behaviour.

This map is obtained by considering a grid of 12× 11 points: each of them is
the result of 200 simulations. The plot window is performed for D ranging in its
definition interval [0,1] s−1 (see subsection 2.2.7), and for C varying in a restricted
range of values, from 14 m−1s−1 up to 25 m−1s−1; this last choice is admissible in
the light of the observations drawn in subsection 2.2.5.

Figure 26 highlights the complementarity of C and D in describing the phe-
nomena. The simulations point out that as C and D increase, the critical number
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decreases, according to common sense; moreover the same number Na is obtained
for smaller D when C is larger and vice versa. This trend has an intuitive physical
confirmation; it is justified by the real difficulties pedestrians encounter when they
walk on a laterally moving surface: as C increases, their sensory system, both neural
and musculoskeletal, is so much involved in balance control that it does not care of
the visual stimuli due to the presence of other people and the natural consequence
is a lower D.

It is worthy of note that the two synchronization parameters, C and D, have dif-
ferent sensitivities, as we can see from their different scales of values (Fig. 26). By
fixing one parameter and varying the other, if we increase D of 0.1s−1 we obtain a
decrease of Na equal 10 pedestrians, but if we increase C of 0.1m−1s−1 we obtain
a decrease of Na equal 1 (i.e. fixed the decrement of Na, there is a ratio 10 : 1 in
the increase of C with respect to D). In mathematical terms, we can affirm that the
derivative of Na with respect to C is smaller than the derivative of Na with respect to
D, although care must be used in this comparison because these are not dimension-
less quantities. The direct consequence is that we have to pay more attention on the
correct evaluation of the visual sensitivity parameter D.

Another aspect to take into account is that, by definition, the parameter C depends
only on the pedestrians’ sensitivity to the bridge lateral movements; however in the
way it is used in the SAMEO model, actually it depends on the mode shape, even if,
for sake of simplicity, only one value of C is considered for all the pedestrians on the
bridge, independently of their position and distribution over the whole span. From
a practical point of view its numerical value, as defined in the model, is acceptable
only in the case of bridges having the same mode shape (sinusoidal) as the north
span of the Millennium Bridge: for other bridges, C should be different. On the
contrary, the parameter D, again by definition, depends only on the pedestrians’
visual sensitivity to the motion of the people who are walking ahead, within a certain
visual-psychological influence distance; therefore it is related to the crowd density
and it can be estimated also through experiments with pedestrians walking on a fixed
floor. Thus the numerical value of D is independent on the mode shape and it is valid
for every bridge.

Fig. 26 Contour map for Na

obtained by varying C and D C [1/ms]
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In any case it is confirmed the need of tuning C and D through experimental tests,
taking into account the simultaneous existence of the two synchronization degrees
in relation to the crowd density and to the physical characteristics of the pedestrians
involved (e.g., we expect that senior people or pedestrians with slight difficulties
of locomotion are less prone to synchronize with the other persons, but are much
more sensitive to the synchronization with the bridge). Once performed such tests,
the contour plot in Fig. 26 could be a useful design map to evaluate Na, depending
on the expected predominant typology of pedestrian traffic.

2.2.9 Linear and Random Loading Paths

The reference (Arup’s) loading path (Fig. 6a) is useful to detect the onset of the
instabilities and to assess the model, but it is not general enough, and thus, for ex-
ample, it is useless to design a control device. Here we study different, in particular
linear, paths with the aim of investigating the variations of the critical threshold,
and the effects of a larger number of pedestrians walking on the bridge.

It was estimated that between 80000 and 100000 people crossed the Millennium
Bridge during the opening day, with a maximum of 2000 people on the deck at
any time (approximately 450 only on the north span), resulting in a density of 1.3–
1.5 persons/m2 [12]. Observations on crowd indicate that the upper limit density for
unconditioned free motion is only about 0.3 persons/m2, while normal walking be-
comes practically impossible for densities above 1.7 persons/m2 [54]. Therefore, in
the following simulations, we arrive at a maximum of 550 (= 1.7×324 square me-
ters [12]) pedestrians walking simultaneously on the bridge (Fig. 27a). However it
is important to mention that the number of pedestrians exciting the bridge is related
to their distribution over the whole span, so that the local amplitude of the oscilla-
tion is related to the mode shape amplitude at that point, and thus it is a fraction
of the amplitude of the excitation; moreover the theoretical limit numbers are for
people who are walking, while usually some people will stop on the bridge, possi-
bly contributing extra damping. This increases the practical critical threshold. Thus,
we have competing phenomena practically reducing/increasing the theoretical crit-
ical threshold, and therefore our simulations have to be considered as a first, non
systematic, study in this direction.

We consider five linear loading paths (Fig. 27) which differ in the number of
pedestrians introduced on the bridge deck per unit time (we refer to it as ’loading
velocity’); we identify them with a ramp factor, RF , defined as the inverse of their
average slope. We obtain:

1. RF = 0.5, i.e. 10ped/5sec,→ Na = 240,σN = 34.98;
2. RF = 1, i.e. 10ped/10sec,→ Na = 225,σN = 35.76;
3. RF = 3, i.e. 10ped/30sec,→ Na = 190,σN = 36.21;
4. RF = 6, i.e. 10ped/60sec,→ Na = 165,σN = 38.67;
5. RF = 12, i.e. 10ped/120sec,→ Na = 160,σN = 39.00.
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Fig. 27 Linear loading paths a and the corresponding crowd critical size b

For each of these RFs, the reported values of Na and σN are, as usual, the results
of 200 simulations. The best (in the least squares sense) cubic curve fitting the data
is (Fig. 27b):

Na = −0.079×RF3 + 2.5 ·RF2 −26×RF + 250 . (17)

From Fig. 27 and from Eq. 17 we can understand and quantify the influence of
the loading velocity on the instability threshold. For high loading velocities, i.e.
low RF, the system has not enough time to develop synchronization. Pedestrians
who enter the bridge will not be driven to adapt soon their footsteps to the slight
motion of the structure: the crowd critical size rises. Instead, if we decrease the
loading velocity, i.e. we consider high RF, when new pedestrians are introduced
on the bridge, they will find a situation in which probably the bridge is already
unstable and its wobbling is enough to force them to synchronize before the next
load package arrives. So the critical threshold will be lower.

We also observe that the loading paths 4 (which, after the initial transient, has
the same slope of the Arup’s ramp) and 5 are characterized by a critical crowd size
essentially identical; we can infer that by further decreasing the loading velocity
likely the critical threshold no longer decreases (Fig. 27 b): Arup’s critical threshold
can be considered a lower bound of critical thresholds for other deterministic paths,
thus being, in this respect, a conservative estimation.

We have also considered some random loading paths in order to test the gen-
eral validity of the model. For each of the 4 groups of simulations summarized in
Fig. 28, we have varied stochastically (inside fixed intervals) both the pedestrian
increment and the time step. These intervals have been chosen in order to obtain, on
average, loading paths comparable with those we have studied above. The numerical
simulations give:

1. RFa = 1, i.e. 5–15 pedestrians/5–15 sec (on average 10 ped/10 sec) → Na =
184,σN = 22.29;

2. RFa = 3, i.e. 5–15 pedestrians/10–50 sec (on average 10 ped/30 sec) → Na =
165,σN = 18.72;
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3. RFa = 6, i.e. 5–15 pedestrians/40–80 sec (on average 10 ped/60 sec) → Na =
154,σN = 21.49;

4. RFa = 12, i.e. 5–15 pedestrians/70–170sec (on average 10 ped/120 sec) → Na =
141,σN = 29.19.

We use once again the method of least squares to characterize data using a global
fit; we obtain the following quadratic correlation function (see Fig. 28b):

Na = 0.39×RF2
a −8.8×RFa + 190 . (18)

We can observe that the decrease of Na with RF, previously observed in deter-
ministic ramps, is maintained, with the same qualitative behaviour. Passing from
deterministic to stochastic ramps we observe a systematic decrease of the critical
threshold of about 13% (Fig. 28b) which should be carefully considered by the de-
signer. In any case the values obtained are in quite reasonable agreement both with
the experimental and with the numerical results of the previous simulations.

It is interesting to show at least a sample of the output from our simulations, e.g.
for RFa = 3 (Fig. 29).
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Despite the dispersion due to the randomness of the loading paths (Fig. 29a),
the results are encouraging as the qualitative trend of the amplitude curves is main-
tained on average (Fig. 29b): the dynamic response of the bridge continues to be
stable until a critical threshold and then increases rapidly towards a final landing.
Furthermore, the predicted amplitude of the bridge motion is very close, on average,
to the observed value of about 5–7 cm (see Fig. 29b). This is a remarkable robust-
ness property of the SAMEO model, especially if we think to the many uncertainties
which affect this type of problems.

3 A Discrete-Time Model

The critical overview of the existing literature, presented in Sect. 1, highlights many
continuous-time models explaining the excessive lateral sway motion induced by
a crowd crossing a footbridge. They are governed by partial or ordinary nonlinear
differential equations (ODEs), and commonly cannot be solved in closed form but
require extensive numerical simulations to be utilized in practice [52], as shown in
the previous section. To overcome this drawback, in this second part of the chapter
we present a nonlinear discrete-time model able to describe the synchronous lateral
excitation without numerical simulations [27].

The basic idea is to work in the context of discrete dynamics, by an appropri-
ate choice of a Poincaré section, thus turning a continuous dynamical system into
a discrete one. If the Poincaré section is carefully chosen, no information is lost
concerning the qualitative behavior of the dynamics [44].

Some approximations and simplifications are assumed in order to obtain a model
which is as simple as possible and with the least possible number of parameters,
while keeping the description of the underlying mechanical event. Some of these
approximations can then be removed in order to have a model of more general va-
lidity. In spite of the approximations, however, the model is able to provide a reliable
value of the number of pedestrians which trigger the synchronization, thus predict-
ing the onset of instability which is also the onset of crowd synchronization.

From a dynamical system point of view, the main result is that the model high-
lights how the phenomenon can be seen as a perturbation of a classical pitchfork
bifurcation, which is then shown to be the underlying dynamical event. It is worth
to note that the proposed model is independent of the specific case of the Millen-
nium Bridge, which is considered as a reference (Sect. 3.4), so it is applicable to any
bridge where a similar problem is observed or expected to occur.

Besides improving the understanding of the physical phenomenon, our model
proves simple and reliable in its previsions; therefore, it may be useful for estimating
the damping needed to stabilize other exceptionally crowded footbridges against
synchronous lateral excitations by pedestrians, or for designing other technologies
aimed at eliminating the phenomenon in real structures.
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3.1 Single Degree of Freedom Oscillator and Discrete Dynamic
Model

According to the considerations made in Sect. 1, the dynamics of the bridge are
governed by the Eq. (1). Introducing the quantities

t =

√
M
K

t̄ =
t̄
Ω

, X (t) = x(t̄) , B = 2
√

MK ξ , Fped (t) = K f (t̄) , (19)

the Eq. (1) can be re-written in the dimensionless form:

ẍ+ 2ξ ẋ+ x = f (t̄) , (20)

where dots are derivatives with respect to the dimensionless time t̄. In the follow-
ing the hat is neglected for simplicity. Although equivalent, Eq. (20) is easier to
be analyzed than (1) (it has less parameters), and thus it will be considered in the
following.

3.1.1 Free Dynamics

In the unforced case f (t) = 0, the general solution of (20) is:

x(t) = c1e−ξ t sin
(√

1− ξ 2 t
)

+ c2e−ξ t cos
(√

1− ξ 2 t
)

, (21)

so that ω =
√

1− ξ 2 is the natural circular frequency and p = 2π/ω is the period,
i.e. the time distance between two successive relative maximum points of the system
motion.

We call xn the amplitude of the generic relative maximum of the motion (see
Fig. 30). We want to find an analytical relation, xn+1 = l(xn), between one peak and
the subsequent in time. This map describes the so-called peak-to-peak dynamics
(PPD) introduced by Lorenz in the study of chaos [10]. With this aim we assume
that the starting point is a peak: x(0) = xn and ẋ(0) = 0. With these initial conditions
we obtain:

x(t) = xne−ξ t

[
ξ√

1− ξ 2
sin
(√

1− ξ 2 t
)

+ cos
(√

1− ξ 2 t
)]

, (22)

which is depicted in Fig. 30 for ξ = 0.05.
From Fig. 30 we can see that the successive peak occurs after one period. Thus, if

we consider xn+1 = l(xn) we are actually considering a stroboscopic Poincaré map
sampled at each period. We then have:

xn+1 = x(p) = xne
−2πξ√

1−ξ2 = αxn , (23)
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Fig. 30 The solution x(t)/xn

of the damped harmonic os-
cillator with ξ = 0.05

where the parameter α ≤ 1 is defined by

α = e
− 2πξ√

1−ξ2 ∼= 1−2πξ+ . . . . (24)

Equation (23) is the simplest (it is linear) discrete-time dynamical system we are
considering. We exclude the value α = 1 because it corresponds to the unrealistic
case of absence of damping. Its dynamic behavior is trivial: by iterating the map we
obtain xn = αnx0, x0 being the initial condition. Thus, all initial conditions tend, as
expected, to the rest position x = 0.

3.1.2 Forced Dynamics: Single Pedestrian

We assume that a walking pedestrian acts as a periodic forcing on the oscillator. Here
we idealize the pedestrian force as sinusoidal, even though experiments on a tread-
mill reveal a periodic trend more similar to a square wave (see Sect. 2.2.4). Practi-
cally, we consider the first term in the Fourier series expansion of the generic peri-
odic function which approximates the experimental data concerning lateral walking
forces on a still surface [41], [42], [8]:

f (t) = g sin(ωpt +φ) , (25)

where:

1. g > 0 is the dimensionless force amplitude, such that G = gK = 30 N on average
[1]. G is the maximum lateral force exerted by a pedestrian. We remember that
we are focusing on the lateral component of pedestrian forcing, the only one
responsible for synchronous lateral excitation;

2. ωp is the pedestrian footstep native frequency and pp = 2π/ωp his/her period;
3. φ ∈ [0,2π ] is the pedestrian temporal phase.
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Substituting Eq. (25) into Eq. (20) we obtain the equation of motion for the case of
single pedestrian:

ẍ + 2ξ ẋ+ x = g sin(ωpt +φ) . (26)

The exact solution of Eq. (26), obtained with x(0) = xn and ẋ(0) = 0, calculated at
t = p (i.e. after one period) and then named xn+1 gives:

xn+1 = α xn + g [k1 sin (φ)+ k2 cos(φ)] , (27)

where

k1 =
(ω2

p −1)e
−2πξ√

1−ξ2 +(1−ω2
p)cos

(
2πωp√

1−ξ 2

)
+ 2ξωp sin

(
2πωp√

1−ξ 2

)

(1−ω2
p)2 + 4ξ 2ω2

p
,

k2 =
2ξωpe

−2πξ√
1−ξ2 +(1−ω2

p)sin

(
2πωp√

1−ξ 2

)
−2ξωp cos

(
2πωp√

1−ξ 2

)

(1−ω2
p)2 + 4ξ 2ω2

p
. (28)

Defining:

β = g
√

k2
1 + k2

2, sin(γ) =
k1√

k2
1 + k2

2

, cos(γ) =
k2√

k2
1 + k2

2

, (29)

we can re-write Eq. (27) in the simpler form:

xn+1 = l (xn) = αxn +β cos(φ − γ) . (30)

Comparing Eq. (30) with Eq. (23), we see that the influence of the single pedes-
trian’s motion on the map is described by the additional term on the right hand side.

We observe that if the pedestrian period is sufficiently close to the structure’s
natural period (i.e. ωp

∼= ω) it is possible a bridge-pedestrian interaction. In the
worst-case scenario of perfect resonance, ωp = ω =

√
1− ξ 2, it follows that:

k1 =
1− e

−2πξ√
1−ξ2

4−3ξ 2 =
1−α

4−3ξ 2 ,

k2 = −2

√
1− ξ 2

ξ
1− e

−2πξ√
1−ξ2

4−3ξ 2 = −2

√
1− ξ 2

ξ
1−α

4−3ξ 2 ,

β = g
1− e

−2πξ√
1−ξ2

ξ
√

4−3ξ 2
= g

1−α
ξ
√

4−3ξ 2
, tan(γ) = −1

2
ξ√

1− ξ 2
. (31)
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The problem becomes simpler, since being α and γ functions of ξ , the only pa-
rameters are φ , ξ and β (i.e. g). Furthermore, in this case, the peak-to-peak map
corresponds to the stroboscopic Poincaré map.

Also in this case the dynamics of the (discrete) Eq. (30) are trivial. All initial
conditions tend to the map fixed point

x =
β cos(φ − γ)

1−α , (32)

corresponding to a periodic oscillation of the real system. We have that 1−α =
2πξ + . . . is a small quantity, so that x is large, according to the fact that we are in
(perfect) resonance.

3.1.3 Forced Dynamics: Crowd of Pedestrians

When a crowd of N pedestrians is walking on the bridge, the force is:

f (t) =
N

∑
i=1

gi sin(ωp, it +φi) , (33)

where gi is the lateral force exerted by the ith pedestrian and pp,i = 2π/ωp,i is the
natural period of his/her footstep; both are stochastic variables depending on the
characteristics of the pedestrian himself. The pedestrian phase φi, still a stochastic
variable, depends instead on the instant of time in which the pedestrian enters the
bridge.

We consider a randomly walking crowd and we suppose a free entrance of pedes-
trians on the bridge. Therefore, φi is a stochastic variable uniformly distributed over
its interval of existence [0,2π ].

We instead introduce a simplification by assuming that all the pedestrians have
the same native frequency,ωp,i =ωp. This assumption corresponds to the worst-case
scenario, and actually occurs during synchronization because all the pedestrians
tend to walk with the same period by feedback modifications to their native period,
as shown by the SAMEO model in Sect. 2.

With the hypothesisωp,i =ωp the excitation Eq. (33) is a (2π/ωp)-periodic func-
tion, which can be re-written in the form:

f (t) = ḡsin
(
ωpt + φ̄

)
, (34)

with

ḡ =

√[
∑N

i=1 gi cos(φi)
]2

+
[
∑N

i=1 gi sin(φi)
]2

, tan
(
φ̄
)

=
∑N

i=1 gi sin(φi)
∑N

i=1 gi cos(φi)
. (35)

The expression (34) is formally similar to Eq. (25), so that we bring back the crowd’s
forcing to an equivalent pedestrian’s force:
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1. ḡ is the overall lateral force amplitude due to crowd’s motion;
2. φ̄ is the mean phase.

In the case of perfectly synchronous pedestrians, i.e. φi = φ ±2nπ , the expressions
(35) become:

ḡ =∑N
i=1 gi = Ngaverage , φ̄ = φ . (36)

In case of perfectly asynchronous pedestrians, i.e. for each pedestrian there is, on
average, another with opposite phase, we have ḡ = 0.

Therefore ḡ depends on the pedestrians’ degree of synchronization, an observa-
tion which is crucial for the following developments.

Comparing Eq. (34) with Eq. (25), the map (30) becomes:

xn+1 = l (xn) = αxn + β̄ cos
(
φ̄ − γ) , β̄ = ḡ

√
k2

1 + k2
2 , (37)

where k1, k2 and γ are unmodified.
The map (37) is formally identical to the previous one for single pedestrian.
Hereafter we will describe the crowd’s force only by the parameters ḡ (or β̄ ),

φ̄ and ωp. If we further assume, as done for the single pedestrian, the worst-case
scenario of perfect resonance ωp = ω =

√
1− ξ 2, we then have only the two pa-

rameters ḡ (or β̄ ) and φ̄ describing the excitation acting on the bridge.

3.2 Interaction Oscillator-Pedestrians

In order to model the dynamical bridge-pedestrians interaction and to describe the
natural tendency of the systems to synchronize, we must assume that they influence
each other. Therefore, not only the motion amplitude xn, but also the forcing char-
acteristics β̄ and φ̄ are assumed to vary on (discrete) time. Our state variables are
then xn, β̄n, φ̄n, and Eq. (37) becomes:

xn+1 = α xn + β̄n cos
(
φ̄n − γ

)
. (38)

We note that the argument of the cosine function, σn = φ̄n − γ , has a precise
meaning in terms of synchronization:

1. when σn = 0, i.e. φ̄n = γ , the crowd is perfectly synchronized with the bridge
motion and the force exerted on the bridge is maximum;

2. when σn = ±π/2, i.e. φ̄n = γ ±π/2, the crowd is perfectly asynchronous and
the net force on the bridge is zero; this means that the crowd does not alter the
bridge equilibrium state (x = 0) in this case.

On the basis of the previous observation we define σn to be the ’synchronization
parameter’. Equation (38) takes the form:

xn+1 = αxn + β̄n cos(σn) , (39)
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and the system state variables are xn, β̄n, σn.
The next step consists in finding the evolution laws for β̄n and σn.
By noting that pedestrians tend to synchronize with the bridge lateral motion, we

propose for σn the following evolution law:

σn+1 =
a

a + xn
σn , (40)

where a > 0 is a parameter measuring the pedestrians’ sensitivity to bridge lat-
eral vibrations; it has the dimension of a length, and its value can be determined
experimentally.

Equation (40) fulfils the following physical requirements which suggest its use:

1. the bridge-pedestrians system tends naturally to the maximally synchronous
state. In fact limn→∞ σn = 0;

2. for small vibration amplitudes xn, the pedestrians are not influenced by the
bridge. In fact limxn→0σn+1 = σn;

3. for large values of xn, the pedestrians quickly synchronize, in fact limxn→∞σn = 0.

It is worth to note that Eq. (40) is susceptible of extension in order to obtain a
more general theory. In fact, it is realistic to think that the synchronization is not
asymptotically perfect; in mathematical terms, this means that limn→∞ σn = η (η
close but different from 0), or better, limn→∞σn =ϒ , withϒ near but different from
γ . We can introduce this aspect by simply substituting γ with ϒ in the definition of
σn.

As regards β̄n, its evolution law is known once we know the law for ḡn, being β̄n =

ḡn

√
k2

1 + k2
2. Considering that ḡn depends on the bridge-pedestrians synchronization

level, we could relate it to the synchronization parameter σn and write ḡn = ḡn(σn)
such that:

1. if σn = 0, we should have ḡn(0) = Ngaverage (perfectly synchronous crowd);
2. if σn = ±π/2, we should have ḡn(±π/2) = 0 (perfectly asynchronous crowd).

At the same time, it is also true that synchronization depends on the oscillation
amplitude xn. Therefore we can assert that ḡn = ḡn(xn), and in particular:

1. if the oscillation amplitude is nil, i.e. xn = 0, we expect ḡn(0) = 0 (perfectly
asynchronous crowd);

2. if the oscillation amplitude becomes large, xn → ∞, we expect ḡn(xn = ∞) =
Ngaverage (perfectly synchronous crowd). This is of course only a mathematical
limit: from an engineering point of view we expect ḡn

∼= Ngaverage even for finite,
although ’large’, values of xn.

We observe that ḡn(xn) is a monotonically increasing function and it is easier to
be ’invented’ than ḡn(σn). Therefore, we propose for ḡn the following law which
satisfies the aforementioned requirements:

ḡn = Ngaverage tanh
(xn

δ
+ ε
)

. (41)
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δ > 0 is a parameter with the dimensions of a length. It can be determined exper-
imentally and it measures how fast the asymptotic value Ngaverage becomes satu-
rated while the oscillations amplitude is growing up. δ can also represent the bridge
displacement for which synchronization is almost completed, being tanh(1 + ε) ∼=
0.76− 0.80. As a consequence, its value can be estimated slightly lower than the
bridge maximum lateral displacement.
ε > 0 is a perturbation/imperfection dimensionless parameter with respect to the

limit ideal case ε = 0 (non-perturbed/perfect case) in which the bridge is still and
the crowd is perfectly asynchronous and therefore unable to exert any lateral net
force on the bridge itself. In real cases (ε > 0), even if the bridge is still, there
is a certain component of lateral force due exclusively to random synchronization
phenomena between pedestrians, which is assumed to be Ngaverage tanh(ε) in this
model. In general, however, this force is small, so that we assume ε to be small.

Substituting Eq. (41) into β̄n = ḡn

√
k2

1 + k2
2, we have:

β̄n =
√

k2
1 + k2

2 Ngaverage tanh
(xn

δ
+ ε
)

, (42)

and we note that, with the previous assumptions, β̄n is no longer an independent
variable.

Summarizing the previous developments, we have found that our discrete-time
model has only two independent variables, xn and σn, and it is described by the
two-dimensional map:

⎧⎪⎨
⎪⎩

xn+1 = f1 (xn,σn) = αxn +(1−α)δ
N

Ncr
tanh
(xn

δ
+ ε
)

cos(σn) ,

σn+1 = f2 (xn,σn) =
a

a + xn
σn .

(43)

The parameter Ncr appearing in (43) is of great practical interest and it is defined
by:

Ncr =
(1−α)δ

gaverage

√
k2

1 + k2
2

∼= 2δξ
gaverage

=
2ξδ K

Gaverage
. (44)

Equations (43) and (44) describe the phenomenon of synchronization of pedestrians’
motion with the lateral vibrations of footbridges. Note that in this model we consider
a global synchronization, without distinguishing between the two different levels
of synchronization observed in practice [15]: bridge-pedestrian and pedestrian-to-
pedestrian (see Sects. 2.2.7 and 2.2.8).

The model parameters are the damping ξ , the sensitivities a and δ , the imperfec-
tion ε , gaverage and, of course, the number N of pedestrians walking on the bridge.
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3.3 Fixed Points

The dynamic aspects of the map (43) of interest for the present chapter are the fixed
points

{
x = f1 (x,σ )
σ = f2 (x,σ ) , (45)

which corresponds to oscillation of the original (physical) system, and their stability.
They are investigated in the following by distinguish between the imperfect (ε > 0)
and the perfect (ε = 0) cases.

3.3.1 The Imperfect Case

We consider first the real case ε > 0. In this case the system of equations (45)
becomes

{
(1−α)x = (1−α)δ N

Ncr
tanh
(

x
δ + ε

)
cos(σ)

σ x = 0
. (46)

The second equation of (46) admits two solutions which, inserted in the first equa-
tion, give two different solutions:

A) :

{
x = 0
σ = ± π

2
, B) :

{
σ = 0
x
δ = N

Ncr
tanh
(

x
δ + ε

) . (47)

The two fixed points (47)A correspond to the condition of bridge in equilibrium
(motionless), with perfect bridge-pedestrians de-synchronization. We guess they are
only theoretical solutions, i.e. they are unstable.

The fixed point (47)B corresponds to perfect bridge-crowd synchronization with
non-vanishing oscillations of the bridge. As we will see later, they are stable solu-
tions and they are involved in the phenomenon of synchronous lateral excitation.

It is worth to note that the equilibrium points are independent of the pedestrian
sensitivity parameter a; therefore we don’t need to determine it experimentally, un-
like other models present in the literature [12], [47]. This is a worthy aspect of our
model. However, we expect that a will influence the rate of convergence towards the
equilibrium solutions.

To discuss the stability of the fixed points Eq. (47), we evaluate the eigenvalues
of the Jacobian matrix of the system (43):

J =

⎡
⎢⎢⎣
∂ f1

∂xn

∂ f1

∂σn

∂ f2

∂xn

∂ f2

∂σn

⎤
⎥⎥⎦ . (48)
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For the fixed points A the eigenvalues are both real:

λ1,2 =
1
2

{
1 +α±

√
(1−α)2 + 2(1−α)δ

π
a

N
Ncr

tanh(ε)
}

∼= 1−πξ±πξ
√

1 +
δ
a

N
Ncr

tanh(ε)
ξ

. (49)

We observe that λ1 > 1 and λ2 < 1, being ε > 0; therefore the fixed points (47)A are
saddles, and unstable as expected.

In correspondence of the fixed point B, the Jacobian matrix is diagonal and the
eigenvalues, both real, are:

λ1 = α+(1−α)
N

Ncr

1

cosh2 ( x
δ + ε

) = α+(1−α)
[

N
Ncr

−
( x
δ

)2 Ncr

N

]
,

λ2 =
a

a + x
, (50)

where x is the fixed point position, solution of the second equation of system (47)B.
We observe that λ2 < 1, while the condition λ1 < 1 corresponds to the inequality:

( x
δ

)2
>

N
Ncr

(
N

Ncr
−1

)
(51)

which is always satisfied. Therefore the solution (47)B is always stable, as expected.
It is shown in red (grey) in Fig. 31 for different values of the parameter ε .

3.3.2 The Perfect Case

Now we consider the unperturbed limit case ε = 0 and we determine likewise the
fixed points of the map (43). Again, there are two types of solutions of (45):

A) :

{
x = 0
∀σ , B) :

⎧⎨
⎩
σ = 0

x
δ

=
N

Ncr
tanh
( x
δ

) . (52)

The solutions (52)A are a manifold of fixed points non depending on the relative
phase crowd-bridge. They are all the points of the straight line x = 0. In the presence
of perturbations, ε > 0, they are reduced to the only two unstable fixed points x = 0,
σ = ±π/2 previously investigated.

The solutions (52)B are a curve of fixed points consisting of two branches: x = 0
and another one, N = Ncr(x/δ )/ tanh(x/δ ), bifurcating from the previous one at
N = Ncr. It is shown in blue (black) in Fig. 31.
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Fig. 31 Synchronized fixed
points x = x(N), for different
values of parameter ε: ε =
0.01, 0.05, 0.1 (red (grey)
curves); the solution for the
unperturbed limit case ε = 0
is also shown (blue (black)
curve)

To discuss the stability of the fixed points Eq. (52) we consider the eigenvalues
of the Jacobian matrix (48). For the fixed points A the eigenvalues are real and equal
to:

λ1 (σ) = α+(1−α)
N

Ncr
cos(σ) , λ2 = 1 . (53)

Therefore, all the fixed points of the manifold are non-hyperbolic. As regards their
stability, we can only affirm that they are certainly unstable when |λ1| > 1, i.e., for

N >
Ncr

cos(σ)
, for σ such that cos(σ) > 0 , (54)

and

N >
Ncr

−cos(σ)
1 +α
1−α , for σ such that cos(σ) < 0 . (55)

To further investigate the stability, we need to consider the nonlinear terms in the
equations. We omit the computations, which are heavy and of little interest for our
purposes; we show only the results, which are instead of great interest to improve
the understanding of the physical event and to actually use our model. We find that:

1. all the fixed points x = 0 and σ 
= 0 are unstable;
2. the fixed point x = 0 and σ = 0 is stable for N < Ncr and unstable for N > Ncr.

The eigenvalues of the fixed points B in Eq. (52) are given by Eq. (50) and thus
they are both real and lesser than 1, so that the corresponding equilibrium position
is always stable.

We can conclude that for N = Ncr, the bifurcating solution (52)B catches the
stability of x = σ = 0 and triggers the lateral synchronization. This is a pitchfork
bifurcation of degenerate type, as the fundamental branch is not made of hyperbolic
points (blue (black) lines in Fig. 31).

On the basis of these observations, the fixed points (47)B can be seen as pertur-
bations of the aforementioned pitchfork bifurcation.



108 S. Lenci and L. Marcheggiani

The meaning of Ncr, as defined in Eq. (44) is now clear: it is the theoretical point
where bifurcation occurs, the practical one being slightly smaller, as we can see
from the lift-off point of the red (grey) curves in Fig. 31. It corresponds to the theo-
retical number of pedestrians triggering the synchronization and thus it is the most
important information from an engineering point of view. Its relevance is underlined
by the fact that it has a simple analytical formula, which helps in understanding how
the various parameters influence the synchronization phenomenon.

In fact, Fig. 31 confirms that for small crowds, N/Ncr near zero, the amplitude ra-
tio x/δ is near zero too, as walkers are desynchronized and randomly phased. Then,
as more and more people walk on the deck, there is no hint of wide oscillations until
the crowd reaches the critical size Ncr, after that wobbling and synchrony suddenly
emerge simultaneously, as dual aspects of a single instability mechanism (Eq. (41)
associates the synchronization with the current state of the oscillator).

3.4 A Case-Study: The London Millennium Footbridge

To test the agreement of our model with the dynamical behaviour of real structures
we consider again as a benchmark the London Millennium Bridge, as it is the most
well-known and well-documented case of ’lively’ footbridge in the literature and in
this sense it is the most suitable for a detailed analysis of the model behaviour and
of the various aspects of the synchronous lateral excitation phenomenon.

With the data of the Millennium Bridge M = 113000 kg, B = 11000 kg/s, K =
4730000 kg/s2, Gaverage = 30 N, ξ = 0.0075 and gaverage = Gaverage/K = 6.34×
10−6 m (see Sect. 2.1) we have from Eq. (44)

Ncr =
2δξ

gaverage
= 2365δ . (56)

Assuming Ncr = 155 (see Sect. 2.1) we obtain δ = 0.0654m = 6.5 cm; this means
that the predicted amplitude of the bridge motion is very close to the observed values
of about 5–7 cm on the opening day. There is a good agreement of the model results
with the real behaviour of the bridge.

Another consideration can be drawn from Fig. 31 and from the second equation
of the system (47)B. They show that for large values of x and N the equation of the
bifurcated branch becomes

x ∼= δ
N

Ncr
. (57)

This linear trend is in good agreement with the SAMEO model results shown in
Fig. 32, where the oscillations amplitude versus time curves have a similar linear
trend in their final part. This observation allows a further estimate of the ratio δ/Ncr:
with reference to Fig. 32 we register an amplitude of oscillation x = 0.41 m for
N = 1000 pedestrians, namely, δ/Ncr = 4.1× 10−4. By assuming Ncr = 155, we
obtain δ ∼= 6.15 cm, which is comparable with the one previously calculated and
confirms its reliability.
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Fig. 32 Numerical results from the SAMEO model: a number of walkers on the bridge and
b amplitude of vibration versus time. The various amplitude curves differ for the initial con-
ditions randomly assigned to pedestrians’ motion [30]

Comparing our equilibrium solutions (Fig. 31) with the SAMEO model results
(Fig. 32), it is evident that our discrete-time model is able to describe accurately
the phenomenon of synchronous lateral excitation, even with a simpler analytical
formulation and, more important, without requiring numerical simulations.

4 Conclusions

After a focus on the problem of synchronous lateral excitation in slender footbridges
and a critical overview of the existing literature on the topics, in the first section
of this chapter a parametric study of the SAMEO model [47] for the pedestrians-
induced lateral vibrations of footbridges has been performed and some modifica-
tions have been introduced and checked. The application of this model to the case
of the London Millennium Bridge provides results in good agreement, both quali-
tatively and quantitatively, with observations and experiments. The model is able to
predict simultaneously both the onset of bridge instability and the onset of crowd
synchronization, providing a reliable value of the number of pedestrians which trig-
ger the synchronization, i.e., the critical threshold. The steady state amplitude for
bridge motion is also well predicted.

The extended numerical simulations permit to draw the following conclusions.

1. The initial distribution of pedestrians natural frequencies, i.e. their level of typo-
logical homogeneity, is decisive both for the trigger point of instability and for
the temporal probability of the event to occur (see the relative time scales for
onset of large bridge motion in Figs. 7, 9, 10 ) .

2. The shape of the pedestrian loading wave plays an important role. The ideal si-
nusoidal trend proposed in the original formulation of the model proves to be
quite different from the typical time series of lateral forcing as measured by ex-
periments on a treadmill [5]. The square-wave we introduce is more realistic and
more conservative, as the critical number of pedestrians decreases.
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3. The amplitude of lateral force due to pedestrians can increase dramatically when
they change their gate on a moving platform. Numerical results, both for Abrams’
relationship and for our bilinear relationship G(A), show the necessity to con-
sider this phenomenon. In fact, it affects the steady-state amplitude of the bridge
motion and the speed at which the large amplitude oscillations set up. In partic-
ular, our relationship provides a lower critical number of pedestrians. Both the
relationships share the same qualitative behaviour of the bridge-crowd system in
terms of amplitude versus time curves.

4. The additional pedestrian-to-pedestrian synchronization self-excites the phe-
nomenon, and accordingly the critical threshold considerably reduces. Although
the two considered types of synchronization are different in their nature, they
usually happen simultaneously and lead to the same result: an increase in the
response of the structure. It is clear the necessity to take into account both of
them.

5. Different loading paths (i.e. different numbers of pedestrians introduced on the
bridge deck per unit time) affect both the time-history of the event and the critical
number Nc. However, the phenomenon remains unaltered in its essence, thus
emphasizing the robustness of the model.

It is worthy to note that the model depends only on the modal characteristics of the
bridge, on the biological dynamics of human walking in a crowd, and on its dynam-
ical interaction with the deck. So, unlike other models described in the literature
[12], [11], [33], it is applicable to any bridge where a similar phenomenon is ob-
served or expected to occur. The unique ’weak’ point is the determination of the
two parameters C (originally introduced to measure pedestrian sensitivity to bridge
lateral oscillations) and D (we introduce here to measure the visual sensitivity to
the synchronization between a pedestrian and the previous one). However the gen-
erality of the model is not invalidated as actual distributions of C and D could be
determined through an ad hoc experimental campaign on a representative sample of
the population. Experiments in this sense would be welcome.

Finally, it is necessary to remark that the SAMEO model is pseudo-stochastic,
and it does not consider various (minor in our opinion) aspects. The perfect period-
icity of the lateral human-induced load is assumed only with respect to the pedes-
trians phases (initially randomly assigned), as walking is not a perfectly periodic
activity with respect to time, as wide experimental studies confirm [41], [42]; but
the adopted approach is deterministic in its evolution and it can be criticized due
to the random nature of walking forces, which would suggest the use of a really
stochastic approach. Furthermore subharmonic or superharmonic resonances are not
considered in the model.

All the previous observations, besides improving the understanding of the under-
lying physical phenomenon, allow us to state that the SAMEO model, despite some
limitations, is sufficiently simple and robust in its previsions; therefore it may prove
useful to estimate, e.g., the damping needed to stabilize other exceptionally crowded
footbridges against synchronous lateral excitation by pedestrians. In this sense, it
could constitute the basis to look for technical solutions aimed at limiting or avoid-
ing the phenomenon of the pedestrians-induced lateral vibrations of footbridges.
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As regards to the second section of this chapter, which is dedicated to the analysis
of the discrete-time model, the most important conclusions are summarized in the
following.

1. Also the proposed discrete-time model is independent of the specific real case-
study we have considered (i.e. the London Millennium Bridge). It depends only
on the modal characteristics of the bridge, on the biological dynamics of human
walking in a crowd, and on its dynamical interaction with the deck.

2. As regards the parameters ε and δ , they do not limit neither the generality of the
model nor its easiness and speed of application. In fact ε should be determined
experimentally, but its evaluation pertains exclusively the unconstrained human
walking dynamics (random synchronization phenomena) and not the footbridge
we are studying. δ is a value very close to the bridge maximum lateral displace-
ment and so we usually fix it in stage of project.

3. The stochastic aspects are put into account in the definition of the so-called
’equivalent pedestrian’ which resumes the characteristics of the pedestrians in
crowd, in terms of maximum exerted force, native frequency and random phase.

4. We assume that all the pedestrians have the same native frequency, even though
experiments on a statistical sample of the population reveal a Gaussian distribu-
tion [54]. This is not a real problem, because our assumption constitutes only an
analytical simplification which doesn’t influence the structure of the model and
its general validity.

5. Perfect periodicity of the lateral human-induced load is assumed. Actually, the
walking force is not perfectly periodic and it could be attenuated due to interac-
tion between the pedestrian and the structure. Moreover, we idealize again the
pedestrian forcing as sinusoidal, even if experiments on a treadmill reveal a trend
more similar to a square wave [5], as said.

The simple discrete-time model (2D map) is able to explain the main charac-
teristics of the phenomenon of synchronous lateral excitation, without numerical
simulations.

A simple analytical formula to compute the critical number of pedestrians trig-
gering the synchronization is proposed. Its application to a real case-study returns
reliable values, in good agreement both qualitatively and quantitatively with other
consolidated results [30] and with observations [12]. Moreover it shows that Ncr

depends only on the bridge damping and stiffness, on the average maximum lat-
eral force exerted by walking pedestrians and then on the bridge maximum lateral
displacement.

The main result, from a dynamical system point of view, is that the model high-
lights how the phenomenon is a perturbation of a classical (but degenerate) pitchfork
bifurcation, which is the underlying dynamical event. This observation permits an
improved understanding of the physical event underlying synchronization.

Finally, we can conclude that by the combined use of continuous- and discrete-
time models we achieved a good understanding of the synchronization induced large
lateral oscillations of footbridges, and reliable estimations of the triggering number
of pedestrians.
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Applications for Shape Memory Alloys in
Structural and Machine Dynamics

Matthew P. Cartmell, Arkadiusz J. Żak and Olga A. Ganilova

Abstract. This chapter presents a review of some of the fundamental science behind
applications for shape memory alloys (SMAs) in mechanical engineering structures
and machines in the context of an inexhaustive review of the literature. Following
this three well known literature models are considered in some detail after which a
summary investigation of the effect of SMAs on the dynamics of beams and plates
is given. This leads into a discussion of applications in rotor dynamics for which
SMA elements are shown to have considerable uses in the modification of resonant
behaviour within the rotor. The chapter concludes with further work on plates, and
the concept of antagonism as a means for the approximate equalisation of heating
and cooling time constants.

Keywords: Shape memory alloys, vibration, dynamics, resonance, nonlinearity.

1 Review of the Literature and Introduction

Shape memory alloys (SMAs) exhibit very interesting and useful mechanical prop-
erties, particularly two unique effects known as the shape memory effect and supere-
lasticity. An SMA which is initially deformed recovers its original low temperature
shape during heating, a demonstration of the shape memory effect. This effect can
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also generate large internal recovery stresses. In addition, at higher temperatures
the superelastic phenomenon may be seen; an effect associated with large nonlin-
ear loading and unloading recovery strains. According to Otsuka and Wayman [47]
the first reported steps made in categorizing and understanding the shape memory
effect were taken in the 1930s, firstly by Ölander who discovered the pseudoelastic
behaviour of Au-Cd alloys, and then by Greninger and Mooradian who observed the
formation and disappearance of the martensitic phase by decreasing and increasing
the temperature of a Cu-Zn alloy in 1938. The phenomenon of memory as governed
by martensitic thermoelasticity was widely reported a decade later by Kurdjumov
and Khandros in 1949, and then in 1951 when Chang and Read [15] discovered
the shape memory effect in an Au-Cd alloy, after which Buehler et al. [12] found
it in the now ubiquitous Ni-Ti alloys. Shape memory properties have since been
found in In-Tl [13], [2] Cu-Zn [27] and Cu-Al-Ni [16], and many new forms of al-
loys, polymers, and ceramics, are all actively being researched. Amongst the many
different SMAs that are available the Ni-Ti alloys are of significant practical in-
terest because of their unique and pragmatic mechanical properties, particularly in
comparison with Cu-Zn-Al or Cu-Al-Ni alloys [30]. Ni-Ti SMAs exhibit very high
ultimate tensile strengths of up to 1000 MPa, with elongations to failure of 50%,
recovery stresses up to 800 MPa, and exceptional damping properties [30]. Because
the Young’s modulus [47], [30], damping characteristics [49], [23] and the capa-
bility for large internal forces [51] can all be influenced precisely, SMAs can be
applied to various problems in civil and mechanical engineering.

Rapidly emerging engineering applications for SMAs have led to the develop-
ment of effcient and robust mathematical models for shape memory and supere-
lastic behaviour. In-depth studies of SMA behaviour account for the complexity of
the multi-axial stress and strain fields, and also include plasticity due to the shape
memory transformations. This phenomenology is discussed in detail by Boyd and
Lagoudas [7], Lexcellent et al. [37], Brocca et al. [11], Liew et al. [40], Zhu et
al. [65] and Govindjee and Hall [25]. One-dimensional models are commonly used
such as those proposed by Tanaka [58], Raniecki et al. [50], Liang and Rogers [39],
Boyd and Lagoudas [7] and Brinson [10]. Nishimura et al. [42] investigated macro-
scopic shape recoverability in a Fe-Cr-Ni-Mn polycrystalline SMA during heating
by applying the Tanaka model, whereas Lexcellent et al. [38] studied the pseudoe-
lastic behaviour of a Ni-Ti SMA in connection with the growth of the martensite
phase from the parent austenite phase during loading. Wu et al. [64] constructed a
simple model using that of Liang and Rogers [39] and studied the repeated stress-
temperature cycling of SMAs. Ford and White [22] researched the thermomechan-
ical behaviour of Ni-Ti SMA wires based on the work of Brinson [10], and then
Bekker and Brinson [5] looked at the evolution of the martensite fraction during the
thermoelastic phase transformation when induced by a generalised thermomechan-
ical load. Bo and Lagoudas [6] undertook an interesting comparison of the Tanaka
[58] and Liang and Rogers [39] models and their own model.

A critical study of the literature on the superelastic behaviour of SMAs was com-
pleted by Epps and Chopra [21] in which the model developed by Brinson [10] was
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included. The results obtained from each model were compared against experimen-
tal findings.

Applications invariably utilise SMAs in wire or strip form, where such elements
are integrated in some manner within composite material structures, and a com-
prehensive study of the dynamics of Ni-Ti wire reinforced plates has been given
by Rogers et al. [52] in which two basic concepts for SMA component operation
in situ have been defined. These are the active modal modification method (also
known as active property tuning (APT)) and the active strain energy tuning method
(ASET). These theoretical predictions were justified by experiments carried out on
Ni-Ti wire-reinforced composite beams. Related work was carried out by Baz et al.
[4], who used Ni-Ti SMA wires for adjusting the natural frequencies of composite
beams.

The application of integrated SMA wires for affecting the natural frequencies of
composite plates has also been proposed by Ostachowicz et al. [45], and Birman
[8] who took sandwich panels reinforced by SMA wires to test their thermal buck-
ling. Further work on the thermal bucking and post-bucking behaviour of composite
beams and plates when reinforced by SMA components was completed by Choi
et al. [19], Thompson and Loughlan [60], Ostachowicz et al. [46] and Tawfik et
al. [59]. Lee and Lee [35] discussed the characteristics of certain SMA actuators
and Song et al. [55] and Oh et al. [43] also carried out interesting work in which
they applied SMA wires to the active shape control of composite beams and plates,
respectively. Ostachowicz and Kaczmarczyk [44] investigated the vibrations of de-
laminated composite plates reinforced by SMA wires and in a gas stream, and Roh
and Kim [53] looked at the activation of SMA wires in composite plates undergoing
low velocity impacts.

It is important to emphasise that the results summarised above have principally
been based on experimentally obtained SMA characteristics for which no spe-
cific SMA models were used. Many papers generally discuss various SMA rein-
forced composite structures, frequently applying the well known literature models
of Raniecki et al., Tanaka, Liang and Rogers, and Brinson. As a case in point Chen
and Levy used the Tanaka model in their work on beams with SMA layers in which
they controlled the vibration [17] and damping characteristics [18]. This model was
applied by Birman et al. [9] to test the local stresses found in composite material
structures reinforced with Ni-Ti SMAs and subjected to isothermal loading and un-
loading cycles. Armstrong and Lilgholt [1] presented a summary of superelastic
Ni-Ti wire-reinforced polymer matrix composite, and also certain time-dependent
responses. Baz et al. [3] made analytical and experimental studies of the capabil-
ity of SMAs for the shape control of composite beams with integrated Ni-Ti alloy
wires, and Epps and Chandra [20] reported on the active frequency tuning of com-
posite beams reinforced by SMA wires, by employing the Liang and Rogers [39]
model.

Additionally, Tsai and Chen [61] used the same Liang and Rogers [39] model as
a basis for understanding the dynamic stability of composite beams with Ni-Ti SMA
wires, and Lee and Lee [34] summarised the thermal buckling and post-buckling be-
haviour of laminated composite shells with integrated SMA wires. Lau [32] and Lau
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et al. [33] used the Liang and Rogers [39] model to study the vibration characteris-
tics of composite beams fitted with SMA wires, and Su et al. [56] investigated the
thermomechanical behaviour of composite laminates reinforced by Ni-Ti wires by
adopting the work of Liang and Rogers [39]. Sun et al. [57] used the Brinson [10]
model to examine the thermomechanical deformation of an SMA wire-reinforced
elastic beam, and Pae et al. [48] utilised SMA wires to control higher deformation
modes in beams. Icardi [28] used the Brinson [10] model to study the deformation
of a composite cantilever beam actuated by SMA wires, and Shu et al. [54] applied
the Boyd and Lagoudas model to investigate a flexible beam with SMA wires. By
using the models developed by Tanaka [58] and Boyd and Lagoudas [7], Kwai [31]
usefully uncovered the strain-stress behaviour of Ni-Ti reinforced composites.

This brief summary shows the general activity of the field and confirms that many
researchers have used various phenomenological models for SMAs in order to reveal
the static and dynamic capabilities of different composite material structures with
embedded SMA components. Because of this it is necessary to consider in some
detail the differences and similarities between the literature models so as to ensure
the accuracy of subsequent simulations.

2 Modelling of the Shape Memory Effect

The main objective of work undertaken by Żak et al. [70] was to generate a compar-
ative study of SMA phenomena. That work is summarised here and is based on the
use of the three most popular one-dimensional models, according to Tanaka [58],
Liang and Rogers [39], and Brinson [10]. Major differences between these mod-
els and their respective accuracies are considered against results from experimental
measurements of the performance of a Ni-Ti SMA wire.

The thermomechanical properties of a Ni-Ti alloy were obtained from systematic
experimental measurements on a Flexinol actuator wire. A Ni-Ti actuator wire of
1 m long, operating at a high temperature of 94 °C was used with properties as given
as follows: wire diameter 0.4 mm, martensitic wire resistance 7.87Ω/m, maximum
pulling force of 2 kgf, 4% contraction, 2.75 A activation current at room tempera-
ture, 1 s contraction time at room temperature, 10 s off-time. A special experimental
test rig was constructed to determine the shape memory and superelastic character-
istics, as illustrated in Fig.1.

The test system used two linear bearing carriage plates and a low friction slide-
way system. An SMA wire was fixed to the carriage plates and electrically insulated
from the rest of the mechanical parts so that it could be resistively heated during the
tests and then naturally cooled down to room temperature. The upper carriage plate
stayed attached to a lead screw throughout the tests, and this enabled the initial
displacement, or strain, to be precisely applied and measured. The lower carriage
plate was unconstrained during all the tests. In order to investigate the superelastic
behaviour of the wire a dead weight load was applied to the lower carriage plate
with displacement control over the transformations. The shape memory effect of the
wires was investigated by arranging for the lower carriage plate to act against a force
sensor and then the internal stress state of the wire was measured as it contracted.
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Fig. 1 Experimental test rig schematic, a plan, b side elevation, after [70]

Thermocouple sensors monitored the temperature of the wire during the tests
and the purpose of the initial tests was to determine the start (S) and finish (F)
transformation temperatures using the martensite (M) to austenite (A) phase of the
Flexinol wire. It is known that the characteristic transformation temperatures are
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Fig. 2 Experimental results for length as a function of temperature for a Flexinol wire, after
[70]

stress-dependent, and so they were found at four different initial stress levels asso-
ciated with dead weight loads of 0.5, 1.0, 1.5 and 2.0 kg respectively. Changes in the
length of the wire during each measurement were noted, with these changes being
a function of its temperature over the transformations. Therefore, a set of four char-
acteristic transformation temperatures for the wire was found for each load case.
The values of the characteristic transformation temperatures MS, MF and AS , AF

could be found by extrapolation for the wire at ’zero’ stress conditions, also taking
the weight of the lower carriage plate into account. Typical test results are given in
Fig.2.

The characteristic transformation temperatures obtained from the results shown
in Fig.2 are plotted and so the temperature-stress characteristics of the wire can be
determined, and the four lines which indicate changes in the characteristic transfor-
mation temperatures of the wire, MS, MF and AS, AF , as a function of stress, are
found, as given in Fig.3. Therefore, the characteristic transformation temperatures
of the wire are determined at ’zero’ stress conditions by linear extrapolation from
the known levels of stresses down to the ’zero’ stress conditions.

Further experiments yield other thermomechanical properties of the wire and the
martensitic and austenitic Young’s modulus of the Flexinol wire were extracted from
strain-stress characteristics, these being obtained by loading and unloading the wire
at constant temperature. Furthermore the critical stresses for the start of the a-m
transformation from austenite to martensite σAM, and the start of the transformation
from martensite to austenite σMA, were deduced and are given in Fig.4.
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Fig. 3 Experimental temperature - stress characteristics for a Flexinol wire, after [70]

Fig. 4 Experimental stress - strain, ’loading and unloading’, results for a Flexinol wire, after
[70]

Each test was carried out at a constant applied voltage across the SMA wire,
so the electrical power was affected primarily by changes in the resistivity of the
wire during the transformations, and obviously the temperature of the wire changed
correspondingly. The temperature changes were continuously monitored throughout
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Fig. 5 Experimentally obtained martensitic and austenitic Young’s Moduli, after [70]

the tests. Loading and unloading tests were undertaken in order to determine the
Young’s moduli of the martensite and austenite phases of the wire, and are presented
in Fig.5.

A loading test was performed for the wire remaining in the austenite phase at a
constant temperature of 94 °C. In the case of the martensite phase the loading and
unloading test was carried out at 24 °C and this generated a value for the maximum
residual strain εL, as well as the critical stresses for the start σS and finish σF of the
transformation from temperature-induced martensite to stress-induced martensite,
see [70] for full details. These loading and unloading tests were undertaken for
constant voltage levels of 4.0, 4.25, 4.5, 4.75 and 5.0 V. The values of the critical
stresses for the start of the transformation from austenite to martensite σAM were
determined from the results obtained, and as a function of wire temperature.

Similarly, the critical stresses for the start of the transformation from martensite
to austenite σMA were recorded throughout the tests, and are reproduced in detail in
[70]. The stress influence coefficients cM and cA of the wire can be easily found by
using the same results in [70]. They are defined by the slopes of the lines for the
critical stresses σAM and σMA as functions of the temperature of the wire, as shown
in Fig.6.

It is important to note that the constitutive equations for the Tanaka [58], Liang
and Rogers [39] and Brinson [10] models all assume that the total change in stress
within the candidate SMA consists of three components, namely an elastic compo-
nent proportional to the Young’s modulus E and a change in strain ε , also a trans-
formational component proportional to the phase transformation coefficientΩ and a
certain change in the martensite volume fraction ξ , and finally a thermal component
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Fig. 6 Experimental results showing the dependence of critical stresses on temperature, after
[70]

proportional to the thermoelastic coefficient and the change in temperature T . In
the case of the Tanaka [58] and Liang and Rogers [39] models the transformational
component is assumed to be proportional to the total martensite volume fraction ξ .
The constitutive equation for both these models is given by Eq. (1):

(σ −σ0) = E(ξ )(ε− ε0)+Ω(ξ )(ξ − ξ0)+Θ(ξ )(T −T0). (1)

In contrast, the Brinson [10] model introduces additional stress-induced ξS and the
temperature-induced ξT martensite volume fractions so that the overall martensite
volume fraction ξ during the transformations is defined as being the sum of these
two fractions. On this basis the constitutive equation in the Brinson [10] model takes
a modified form, as shown in Eq. (2):

(σ −σ0) = E(ξ )(ε− ε0)+Ω(ξ )(ξS − ξ0S)+Θ(ξ )(T −T0) ,
ξ = ξS + ξT . (2)

Generally speaking, the Young’s modulus E and the phase transformation coeffi-
cient Ω , as well as the thermoelastic coefficientΘ , can all be assumed to be linear
functions of the martensite volume fraction ξ in each model:

E(ξ ) = EA + ξ (EM −EA) ,

Ω(ξ ) = −εLE(ξ ) ,

Θ(ξ ) = ΘA + ξ (ΘM −ΘA) = α(ξ )E(ξ ) . (3)
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Fig. 7 Stress as a function of temperature for heating and cooling at constant initial strain,
after [70]

It should be noted that the functions used to describe the martensite volume frac-
tions ξ , ξS, and ξT are different from model to model, but are usually chosen to
be functions of the stress σ and the temperature T . The effectiveness of the Tanaka
[58], Liang and Rogers [39] and Brinson [10] models are demonstrated by means
of a comparative study. To this end the shape memory and superelastic behaviour
are investigated for a Ni-Ti SMA. All the necessary materials properties are pre-
sented in [70] for the wire as previously determined from the experimental testing.
The shape memory behaviour of the Ni-Ti alloy is investigated in the first numerical
example, assuming that at a constant temperature of T0 (20 °C) below the martensite
finish temperature MF a sample composed of Ni-Ti alloy is elongated up to its initial
strain value ε0, and then the heating and cooling of the sample occurs. It is assumed
in this numerical test that the sample heating continues until completion of the full
transformation from martensite to austenite. A similar assumption is made for the
cooling in which the cooling of the sample continues until the transformation from
austenite to martensite concludes. Numerical results obtained for the Tanaka [58],
Liang and Rogers [39], and Brinson [10] models are given in Fig.7 for a constant
initial strain of ε0 = 0.005.

It can be deduced from Fig.7 that considerable differences exist between the re-
sults from the Brinson [10] model and the models of Tanaka [58], and Liang and
Rogers [39]. This arises from the three constitutive equations. The Tanaka [58], and
Liang and Rogers [39] models show in equation (1) that the increase in alloy stress
during initial loading is due purely due to the elastic component, and is therefore
linearly proportional to the Young’s modulus. Because the entire alloy stays in the
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Fig. 8 Martensite volume fraction as a function of loading stress at constant temperature,
after [70]

martensite phase during loading no contribution is made by the transformational
component of stress. The Brinson [10] model requires that the increase in stress
within the alloy during initial loading should consist of two components, elastic and
transformational, as defined in equation (2). The stress increases in the same elastic
way during initial loading as it does in the Tanaka [58] and Liang and Rogers [39]
models. However, this is only until the stress reaches the critical stress value for
the start of the transformation from temperature- to stress-induced martensite. At
this point the transformational component of stress then increases and reaches its
maximum value at the point when the transformation to stress-induced martensite
is completed, as illustrated in Fig.8 for a constant temperature of T0 = 20 °C below
the martensite finish temperature.

From this we see that the stress within the alloy is lower when compared with the
stress calculated from equation (1). Moreover, the total ranges of stress observed
for both the Tanaka [58] and Liang and Rogers [39] models are much greater than
the corresponding total range of stress seen in the Brinson [10] model. This feature
can also be explained by recourse to the constitutive equations for the three models.
Equation (1) shows that for the Tanaka [58] and the Liang and Rogers [39] models
the increase in alloy stress during heating and cooling is because of the transforma-
tional component of stress. Because the entire sample is in the martensite state prior
to heating, and then the full transformation from martensite to austenite takes place,
we find that the stress proportional to the full residual strain is subsequently recov-
ered during heating. This effect is not observed in the Brinson [10] model despite the
fact that the change in stress is also entirely due to the transformational component,
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as stated in Eq. (2). So, the transformational component in (2) is not proportional
to the change in the total martensite volume fraction within the sample, but merely
to the stress-induced martensite volume fraction, which is in contrast to the im-
plication of Eq. (1). During the initial loading of the sample prior to heating, it is
seen that a fraction of the martensite phase is transformed from temperature-induced
martensite to stress-induced martensite, and so the remaining fraction of the stress,
proportional to the residual strain, can be recovered during heating.

The changes in stress in the case of the Brinson [10] model are much lower
because of that than the changes in stress for the Tanaka [58], and the Liang and
Rogers [39] models. It is useful to note an interesting numerical test concerning the
superelastic behaviour in the Ni-Ti alloy during loading and unloading of the same
sample at constant temperature T0, below the martensite finish temperature MF [30],
[21]. From this we see that because the entire loading and unloading process of the
sample stays in the fully martensite phase no superelastic behaviour can be observed
in the case of the Tanaka [58] and Liang and Rogers [39] models during the test.
This is because of the fact that changes in stress within the alloy are due purely to
the elastic component from equation (1) and this is similar to the results in Fig.7.

Clearly, no transformation either way takes place. Changes in stress within the al-
loy, according to the Brinson [10] model, are due to the elastic and transformational
components as given in Eq. (2). In this case the stress within the alloy increases un-
til its value reaches the value of the critical stress for the start of the transformation
from temperature- to stress-induced martensite in a manner similar to the previous
explanation. When this point is reached the transformational component of stress in-
creases, and achieves its maximum value when the transformation to stress-induced
martensite is complete and the full residual strain has been recovered. Results for
changes in the martensite volume fraction within the alloy during loading are given
in Fig.9, again for a constant temperature of T0 = 20 °C below the martensite finish
temperature.

In the numerical example that follows the superelastic behaviour of a Ni-Ti SMA
is also considered. In distinction to the previous numerical test it is assumed now that
the Ni-Ti sample is heated up to an initial temperature T0, above the austenite finish
temperature AF , and then the loading and unloading process for the sample takes
place. Results for the Tanaka [58], the Liang and Rogers [39], and the Brinson [10]
models are all given in Fig.10, this time for a constant temperature of T0 = 50 °C
above the martensite finish temperature.

Figure 10 confirms that the three models agree well in this context and this is
a simple consequence of the fact that for each model the changes in stress during
loading and unloading are driven by the same processes, under chosen conditions,
and constitutive Eqs. (1) and (2) confirm that. The initial changes in alloy stress are
driven by the elastic component of stress as long as it remains below the critical
stress for the inverse transformation (austenite to martensite). Until this point is
reached the entire sample stays in the austenite phase, and then when the critical
value of stress for the inverse transformation is reached the transformation from
austenite to martensite begins, and the residual strain is gradually recovered because
of the transformational components.
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Fig. 9 Stress as a function of loading and unloading strain at constant temperature of 20°C,
after [70]

Fig. 10 Stress as a function of loading and unloading strain at constant temperature of 50°C,
after [70]
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It should be noted, however, that the residual strain recovery for the Brinson
[10] model is associated with an increase in stress-induced martensite, whereas
the Tanaka [58] and the Liang and Rogers [39] models only recognise one type
of martensite. The transformation finishes when the full residual strain is recovered
and the sample is fully within the martensite phase. From thereon the martensite
phase loading process occurs, and changes in the alloy stress are only due to the
elastic components given in the constitutive equations.

Inverse behaviour is observed during the unloading process of the sample. The
discrepancies shown in Fig.10 between the results for the models are mostly likely
to be due to differences in the actual functions which define the transformation be-
haviour of the alloy, as well as to some differences in the constitutive equations
themselves. An interesting adjunct to this was presented by the authors in which it
was found to be advantageous to supplement the Brinson [10] model with temper-
ature dependent critical stresses, and modified equations defining this by means of
the temperature-induced martensite volume fraction over the austenite to martensite
transformation, are given in [66].

The preceding discussion offers an inexhaustive summary of some of the well-
known studies published on the modeling of SMAs and should be used as a basis
for further and wider reading.

3 Dynamics of Composite Beams and Plates with Integrated
SMA Elements

It has already been proposed that there can be two practical implementations for
SMAs within composite hosts, namely Active Property Tuning (APT) and Active
Strain Energy Tuning (ASET), and in order to exploit SMA action within structures
it is important to distinguish practically between these two approaches. In APT the
active SMA element, possibly in the form of a wire, strip, or foil is bonded within
the structure in a zero residual strain state. This means that a continuous bond be-
tween SMA and host is implied, with no unactivated traction forces exerted by the
SMA onto the host. In the case of ASET the SMA is fitted into the host in a nonzero
residual strain state, and this requires a fixturing technology which allows the ends
of the SMA element to be rigidly attached to the host, and for some means to in-
troduce the required residual strain in the SMA. Various technological solutions for
each method can be envisaged, the simplest being uniform adhesion by means of a
high-temperature epoxy in the case of APT and sleeved SMAs with end-point at-
tachments in the case of ASET. An integrated SMA foil is shown schematically in
Fig.11, noting that this configuration is for APT rather than ASET.

Vinson and Sierakowski [63] derived the governing equation for a composite
beam of length L, width B, and thickness H, and with SMA layering due to wires or
foils as shown in Fig.11, as follows:

BD11
∂ 4w
∂x4 −Px

∂ 2w
∂x2 = p(x)B−ρS

∂ 2w
∂ t2 (4)
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Fig. 11 Schematic of a composite beam with equidistant SMA element layers fitted across
the width and along the length and applying the method of Active Property Tuning (APT),
after [66]

where B, D11, w, Px, p(x), ρ , and S are defined as beam width, elastic coefficient,
lateral displacement, in-plane beam load (SMA), lateral load, density, and cross-
sectional area, respectively. The solution to equation (4) can be expressed in the
usual way by means of modal functions based on chosen boundary conditions, and
from this the equations for the natural frequency and critical buckling load can be
obtained, noting that the critical buckling load is defined at ωn = 0:

w(x,t) =
∞

∑
n=1

An sin(
n
L
πx)cos(ωnt) , n = 1,2,3, . . . , (5)

ωn =

√
π2BD11

(
n
L

)4 + Px
(

n
L

)2
4ρS

, (6)

Pcrit = −
(

BD11

(π
L

)2
+ Px

)
. (7)

The maximum static deflection can also be calculated by recourse to the Navier
method and Fourier series modelling for the deflection of the beam, for some given
pressure load. Therefore the maximum static deflection is given by:

w(x) =
∞

∑
n=1

qn

Dn
sin(

nπx
L

) , n = 1,3,5, . . . (8)

where qn = 4Bp0/nπ and Dn = π4BD11 (n/L)4 +π2Px (n/L)2, n = 1,3,5, . . ..
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Fig. 12 Relative maximum
beam deflection as a func-
tion of relative location on
the cross-section, after [66],
note RVF=30% and α = 0°

Fig. 13 Relative maximum
beam deflection as a func-
tion of relative SMA vol-
ume fraction, after [66], note
h/H = 0.458 and α = 0°

Żak and Cartmell [66] used Eqs. (5)–(8) to explore the performance of a test
beam for a range of test data to show how the SMA can profoundly influence the
load bearing capacity of the beam and its overall dynamic performance, for arbi-
trarily chosen simply supported boundary conditions. The beam is symmetrical and
of length 500 mm, width 10 mm and thickness 6 mm, and is composed of 12 layers
of an epoxy/nitinol SMA composite for which the epoxy has a Young’s modulus of
3.43 GPa, a Poisson’s ratio of 0.35, and a density of 1250 kg/m3. The Nitinol SMA
alloy itself has a martensitic Young’s modulus of 26.3 GPa and an austenitic Young’s
modulus of 67.0 GPa, a constant Poisson’s ratio of 0.3, and a density of 6448 kg/m3.

Figure 12 shows that the relative maximum deflection of the composite beam, this
being the ratio of the maximum deflection of the beam when the SMA is activated
to the maximum deflection of the beam without SMA, (and this definition applies
to all subsequent Figures in this section) plotted against the relative cross-sectional
location of the two layers each side of the central axis. The effect of the SMA is
clearly visible in Figure 12 for which the relative maximum deflection reduces to
< 0.4 for h/H > 0.45. The effect of relative volume fraction (RVF) of SMA can be
seen in Fig.13 and how that this levels off after the RVF exceeds 50%, ending up
with a relative maximum deflection of < 0.3 for the an RVF of 50% and above.

Figure 14 shows very clearly indeed the significance of the orientation angle of
the active SMA elements from effectively operating along the length of the beam
(with an orientation angle of zero) to the case where the wires are oriented across
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Fig. 14 Relative maximum
beam deflection as a func-
tion of SMA orientation
angle along the length of
the beam, after [66], note
h/H = 0.458 and α = 0°

Fig. 15 Relative natural
frequency as a function
of relative location on the
cross-section, after [66],
note RVF=30% and α = 0°

Fig. 16 Relative critical
buckling load as a function
of relative location on the
cross-section, after [66],
note RVF=30% and α = 0°

Fig. 17 Relative natural fre-
quency as a function of rel-
ative volume fraction, after
[66], note h/H = 0.458 and
α = 0°
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Fig. 18 Relative critical
buckling load as a function
of relative volume fraction,
after [66], note h/H = 0.458
and α = 0°

Fig. 19 Relative natural fre-
quency as a function of
SMA orientation angle, after
[66], note h/H = 0.458 and
RVF=30%

the width of the beam (orientation angle of 90%). In Fig.15 the dynamic case is con-
sidered and it can be seen there how the relative natural frequency of the first mode
can be affected by the relative location across the cross-section, with an increase of
around 1.6 in the natural frequency of this mode when h/H > 0.45. Higher modes
show similar characteristics [66].

The effect of moving the SMA layers outwards from the central axis on the rel-
ative critical bucking load is really emphasised in Fig.16, showing a three-fold in-
crease for h/H > 0.45. Figure 17 illustrates the case for the natural frequency of the
first mode as a function of RVF, with a doubling of the natural frequency for a RVF
exceeding 70%. Lesser, more realistic RVFs still clearly affect the relative natural
frequency, as can be seen from the Figure.

Figure 18 shows an almost linear relationship between the relative critical load
and the RVF, with an increase of over four times for the critical load for RVFs of
50% and above. In the case of the relative natural frequency of the first mode it can
be seen in Fig.19 that this tails off to around 70% of its unactivated value for ori-
entation angles in excess of around 55°. The ASET configuration is more difficult
to set up experimentally but can be done with a suitable arrangement of insulated
clamps and a calibrated pre-tensioner, with relative changes in the fundamental nat-
ural frequency slightly in excess of 2.7 for h/H = 0.458, RVF=30%, α = 0°, and
Px = 549.4 N. This consolidates general findings that although somewhat difficult to
set up in practice, the ASET configuration for a beam can result in generally supe-
rior modification performance of the static and dynamic responses of the beam over
the simpler APT methodology. The interested reader is directed to Żak and Cartmell
[66] for further details.
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Fig. 20 Schematic of a composite plate with equidistant SMA element layers fitted across
the width and along the length and applying the method of Active Property Tuning (APT),
after [66]

This approach can also be extended to plates, for which an appropriate governing
equation is given as follows [63]:

D11
∂ 4w
∂x4 + 2(D12 + 2D66)

∂ 4w
∂x2∂y2 + D22

∂ 4w
∂y4 −Nx

∂ 2w
∂x2 = p(x,y)−ρH

∂ 2w
∂ t2 (9)

noting that L is the length of the plate, B is the width, and H is the thickness, as
shown in Fig.20.

Equation (9) can be solved by classical means to lead to a solution for the vibra-
tion of the plate in the following form:

w(x,y,t) =
∞

∑
n=1

∞

∑
m=1

Anm sin(
nπx

L
)sin(

mπy
B

)cosωnt , n,m = 1,2,3, . . . (10)

The natural frequencies and critical buckling load of a plate with arbitrarily chosen
simply supported boundary conditions are given by the following relations:

ωnm =

√
π2D11

(
n
L

)4 + 2π2(D12 + 2D66)
(

n
L

)2 (m
B

)2 +π2D22
(

m
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(

n
L

)2
4ρH

n,m = 1,2,3, . . . (11)
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Ncrit = −L2
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(12)
Once again, the critical buckling load given by Eq. (12) corresponds to the case
where, ωn = 0 and it also relates specifically to the x-direction on the plate. The
maximum static deflection can also be obtained analytically for the plate, and this is
given by:

w(x,y) =
∞

∑
n=1

∞

∑
m=1

qnm

Dnm
sin(

nπx
L

)sin(
nπy
B

) , n,m = 1,3,5, . . . (13)

where qnm = 16p0/nmπ2 and

Dnm = π4D11
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(n
L
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)2
,

n,m = 1,3,5, . . ..

Equations (9)–(13) are utilized by Żak and Cartmell [66] to investigate the static and
dynamic performance of a composite test plate with APT configured SMA element
layers in the same basic configuration as the previous beam problem, and for a
range of test data, notably where the length and width are equal at 500 mm and the
thickness is the same as the beam at 6 mm. The plate comprises exactly the same
make-up and mechanical characteristics as the beam, as previously described. The

Fig. 21 Relative maximum
deflection as a function of
relative volume fraction, af-
ter [66], note h/H = 0.458
and α = 0°

Fig. 22 Relative maximum
deflection as a function of
SMA orientation angle, after
[66], note h/H = 0.458 and
RVF=30%
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Fig. 23 Relative natural
frequency of the first plate
mode as a function of
relative location on the
cross-section, after [66],
note RVF=30% and α = 0°

Fig. 24 Relative critical
buckling mode as a function
of relative location on the
cross-section, after [66],
note RVF=30% and α = 0°

significant influence of the SMA layers on the response of the plate both to static
and dynamic conditions could then be confirmed, once again for arbitrarily chosen
simply supported boundary conditions.

In the case of the plate the relative maximum deflection for h/H = 0.458 and
SMA orientation angle α = 0°is plotted in Fig.21 as a function of the RVF and it
can be seen that this is a shallow nonlinear decline down to around 0.5 for 50%
RVF. Figure 22 depicts the relationship between relative maximum deflection and
SMA orientation angle for a RVF of 30% and the same cross-sectional location.
This interesting result confirms that the relative maximum deflection is symmetrical
about a minimum of just over 80% at an orientation angle of 45°.

It is interesting to note in Fig.23 that the relative natural frequency of the first
plate mode is reasonably insensitive to the location of the SMA layers on the cross-
section of the plate, noticeably less so that than in the case of the beam in Fig.15.
This is clearly due to the two dimensional nature of the plate mode as opposed to
the one dimensional beam mode which will obviously be very directly influenced by
the presence of the SMA layers running in the same direction. Figure 24 illustrates
the static case in which relative critical buckling load is plotted also as a function
of the relative location of the SMAs on the plate cross-section, and a significant
increase in this load is evident, at 1.7, for h/H of around 0.45. This could clearly
have important applications in safety critical systems where static buckling in plates
and panels needs a maximised margin for control.

Figure 25 summarises the relationship between the relative natural frequency of
the first plate mode and the RVF, and this is virtually linear up to approximately
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Fig. 25 Relative natural fre-
quency of the first plate
mode as a function of rel-
ative volume fraction, after
[66], note h/H = 0.458 and
α = 0°

Fig. 26 Relative critical
buckling mode as a function
of relative volume fraction,
after [66], note h/H = 0.458
and α = 0°

60% RVF, corresponding with a relative natural frequency for the fundamental plate
mode of 1.4, after which the effect rises more steeply. The plate is relatively in-
sensitive to more pragmatic lower RVF values up to 30% or so. A similar trend is
observed for the relative critical buckling load as a function of RVF in Fig.26 but the
range of relative critical buckling load is very much greater than the corresponding
range for the same dependence in the relative natural frequency of the fundamental
plate mode. Linearity generally prevails up to RVFs of about 45%, but with a large
increase in the relative critical buckling load for RVFs above 80%.

Figure 27 confirms that the relative natural frequency of the fundamental mode of
the plate is quite insensitive to the SMA orientation angle, with the two-
dimensionality of the plate mode clearly at the root of this phenomenon. The relative

Fig. 27 Relative natural
frequency of the first plate
mode as a function of SMA
orientation angle, after
[66], note h/H = 0.458 and
RVF=30%
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Fig. 28 Relative critical
buckling mode as a function
of SMA orientation angle,
after [66], note h/H = 0.458
and RVF=30%

critical buckling load of the plate shows somewhat limited sensitivity to the orienta-
tion angle with symmetry about a maximum in excess of 1.2 at an orientation angle
of 45°as depicted in Fig. 28.

It should be noted that further details for responses in higher plate modes can be
found in Żak and Cartmell [66] and a description of a conjectured ASET configura-
tion for the plate is also given. In this case the results are computed for h/H = 0.458,
RVF=30%, α = 0°, and in-plane load Nx = 51.8kN/m2. This investigation suggested
that for the ASET method the relative change in the maximum deflection of the plate
would reach 3.7, confirming the superiority of the ASET configuration as a means
for modifying the static and dynamic response characteristics of a simply supported
plate. It can be confirmed that such performance enhancements are generic across
the various possible boundary conditions.

General conclusions are that the greatest modifications to the beam’s perfor-
mance are obtained when the SMA elements run along the longitudinal axis of the
beam. The SMA elements should be located as far from the central axis as possible
for maximum benefit in both beams and plates, and ideally forming the outer layers.
In the case of the plate analysis it has been shown that the most effective SMA ori-
entation angle depends somewhat on the plate’s aspect ratio and also on the mode in
operation, but in the case of the fundamental mode and the critical buckling mode
maximum effect is obtained when the orientation angle is at 45°. Furthermore, the
functionality of embedded SMA elements of this sort depends on their relative vol-
ume fraction (RVF) and that one of the advantages to an ASET based system is that
good performance can be obtained for relatively lower RVFs than for APT, thereby
saving on SMA costs.

Finite element modeling can be used to calculate the beam and plate modes for
a range of different boundary conditions, and specialised elements were created in
order to do this accurately [69]. The beam element, designated 3N4D due to three
nodes and four degrees of freedom per node, consists of N layers made of unidirec-
tional composite material, with arbitrarily orientated reinforcing fibres within the
layers. The elemental displacement field is constructed on the basis of first order
shear deformation theory and the nodal degrees of freedom assumed for the ele-
ment provide a good approximation for the transverse displacement of the element.
The plate element is of the form 8N7D comprising eight nodes and seven degrees
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Fig. 29 Calculated modes 2, 3, 5, and 6 for a simply supported and fully clamped square plate
with unactivated SMA layers, activated lower and upper layers, and both layers activated,
adapted from [69]

of freedom per node, and contains N layers and similarly arranged reinforcing fi-
bres. The nodal degrees of freedom define two longitudinal in-plane displacements,
a transverse displacement, two rotations due to the transverse displacement, and two
independent rotational corrections due to shearing effects. It is shown in [69] that
the displacement and strain fields of the plate element are as given by Kirchhoff
plate theory for small thickness to length ratios, whilst the shearing strain influence
emerges for higher ratios, and this leads to a good prediction of the static and dy-
namic behaviour of the plate, with no locking-in effects occurring.
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Figure 29 shows some of the calculated modes for a square plate in which two
SMA wire layers have been introduced. It can be seen that in both boundary condi-
tion configurations the chosen mode shapes corresponding to the unactivated SMA
layers and the mode shapes for both layers activated are broadly similar, but the
modal natural frequencies for the two cases increase noticeably, by 2.7% in the case
of modes 2 and 3 for the simply supported plate to almost 3.6% in the case of modes
5 and 6. The fully clamped plate shows even more natural frequency shift with 3.5%
for modes 2 and 3 to 3.9% in the case of modes 5 and 6. Asymmetrical SMA ac-
tivations show the same tendencies for nodal line reorientations in each boundary
condition for modes 2, 3, and 5, but mode 6 shows a reversal of the nodal line struc-
ture for the upper and lower layer activation cases, respectively, for the two sets of
boundary conditions.

4 Applications to Flexible Rotors

A further interesting application of SMA elements has been explored in some de-
tail by Żak and Cartmell [67], in the form of specialised sub-systems which can
be introduced into rotating systems in order to modify their dynamics responses. In
this application the sub-system comprises a cylindrical shell with a closed end, onto
which SMA elements are integrated so that the stiffness properties of the structure
are modified when the SMAs are activated. The shell forms a specialised bearing
housing inside which a shaft-end, terminating in a ball bearing, is fitted. The net
effect of this is to provide a dynamically variable end condition on the shaft pre-
dominantly through the housing stiffness change due to SMA activation. One can
apply APT, where the material property changes through activation are exploited,
or ASET by which high recovery stresses and material property changes are applied
accordingly.

In practice it is much easier to implement APT integrations where the need for
calibrated preloads can be avoided, and it can be shown that useful resonant fre-
quency shifts can be achieved this way. This could be particularly important in
highly resonant machines that run close to an otherwise unavoidable critical whirl
speed for some reason. A controllable bearing housing then offers the possibility of
moving the resonance and potentially greatly reducing the associated whirl ampli-
tude. A schematic of the geometry of a bearing housing, shown as a sleeve-ring type
of shell component, is given in Fig.30.

Results are given by Żak and Cartmell [67] for aluminium, glass/epoxy and
graphite components, al fitted with SMAs as shown in Fig.30, and finite element
calculations were carried out for both the APT and ASET configurations under
different conditions of static and dynamic load. The greatest changes, defined in
terms of relative modifications to static and dynamics characteristics, come from
the glass/epoxy component under ASET, and the least effects are predicted for the
aluminium version operating when configured with APT. SMA activation reveals
considerable modifications to the distributions of the displacement and stress fields,
particularly uz and σφz, and this is linked to the orientation of the SMA strips within
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Fig. 30 Geometry of a sleeve-ring shell in the form of a bearing housing for a high speed
flexible rotor, a front elevation, b side elevation, after [67]

the component. It is important to note that in some configurations static loads can
generate shear stresses between SMA and host that exceed the elastic limit of the
host material particularly when this is composite material. The activation of the
SMA strips can significantly alter natural frequencies and response amplitudes un-
der forced vibration. Predictions at the highest levels of performance indicate ASET
controlled changes in natural frequency approaching 20% and fundamental vibra-
tion mode amplitude reductions exceeding five times, with corresponding APT fig-
ures of 10% and up to five times amplitude reduction. On this basis, judicious com-
ponent design could achieve very high levels of performance from relatively easily
configured APT installations. Having conjectured that a suitable shell structure can
be designed Żak and Cartmell [68] showed that it could be usefully fitted into an
experimental flexible rotor, based along the lines of Fig.31.

The mechanical properties are as shown in Fig.31 with the SMA/Composite
sleeve-ring shell component fitted to the right hand end of the rotor shaft. It can
be seen that the shaft end fits into a ball-race and that this is press-fitted into the left
hand end of the housing. The right hand side of the housing is rigidly attached to
the mechanical support. The left hand end of the rotor shaft is belt driven by a speed
controlled motor and the vibration of the overall system is measured at the disk in
the centre of the shaft.

Predictive modelling assumptions were made on the basis that the mechanical
properties (other than the density) for the bearing are the same as for the disk, that
the glass/epoxy version’s properties were Young’s moduli of 65.5/3.43 GPa respec-
tively, Poisson ratios of 0.23/0.35, and densities of 2250/1250 kg/m3 respectively.
The graphite version had a Young’s modulus of 275.6 GPa, Poisson ratio of 0.20,
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and a density of 1900 kg/m3 for the same grade of epoxy. A finite element model
of the whole system was used to determine the possible responses of the system
under passive (unactivated) operation and also under SMA activation. Tabulated
natural frequencies are given in [68] for unactivated responses of the rotor for both
glass/epoxy and graphite/epoxy configurations and different numbers of layers in
the sleeve/ring shell. Layering schemes from 2 to 10 layers can affect the natural
frequencies by nearly 14% for the glass/epoxy variant and just over 12% in the case
of the graphite/epoxy design. This is summarised in Fig.32.

Numerical analysis of the system also shows that the amplitudes of the rotor
under forced vibration of the first whirl mode vary considerably dependent on the
sleeve/ring material thickness in both material cases, as shown in Figs.33 and 34.

As has been shown in Fig.30 the SMA elements are introduced into the system
in the form of strips laid symmetrically onto the outer surface of the sleeve/ring
component based on the APT methodology, and that any thermally induced soft-
ening of the composite can be neglected, on the basis of short heating times. The
Ni-Ti alloy chosen for this study had a martensite finish temperature of 20.7°C, a
martensite start temperature of 26.8°C, an austenite start temperature of 37.2°C,
an austenite finish temperature of 47.0°C, a martensite stress influence coefficient
value of 10.6 MPa/°C, an austenite stress influence coefficient value of 9.7 MPa/°C,
a maximum residual strain of 0.058, martensitic Young’s modulus of 33.1 GPa, an
austenitic Young’s modulus of 69.6 GPa, a martensitic coefficient of thermal ex-
pansion of 6.6× 10−6 °C−1, and an austenitic coefficient of thermal expansion of
1.1×10−5 °C−1. The finite element model was based on 34000 degrees of freedom
and a two-step process was applied in which modes and natural frequencies were
initially extracted, followed by a forced vibration frequency sweep.

Modelling experiments were conducted in which the quantities and widths of the
SMA strips laid onto the sleeve/ring surface were varied and also where quantities

Fig. 31 Schematic of an experimental flexible rotor with SMA/Composite sleeve-ring shell
fitted to the right hand end, after [68]
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Fig. 32 First mode natural frequencies of the flexible rotor plotted against layers converted
to sleeve/ring material thickness, for glass/epoxy and graphite/epoxy variants, with damping
0.05 of critical, after [68]

Fig. 33 Displacement amplitude of the rotor measured at the disk against sleeve/ring thick-
ness, for glass/epoxy and graphite/epoxy variants, with damping 0.05 of critical, after [68]

of the host material were removed symmetrically from the lands in between the
strips. The differences between the unactivated and activated responses, in terms of
natural frequency shift and relative amplitude reduction, were calculated. Broadly
speaking the more material that is removed, consistent with a maximum number
of elements (noting that four strips of width 5.1 mm are more effective than three
strips 6.8 mm wide, despite having the same overall total area for the same length
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Fig. 34 Displacement amplitude of the rotor measured at the sleeve/ring bearing housing
against sleeve/ring thickness, for glass/epoxy and graphite/epoxy variants, with damping 0.05
of critical, after [68]

of 50 mm, indicating that the way in which the SMA elements are distributed is also
highly significant) then the higher the general performance in terms of control of
frequency and amplitude. Numerical calculations suggest that in the last case a 7%
increase in the natural frequency of the first whirl mode is attainable, commensu-
rate with a 45% reduction in the amplitude of the vibration measured at the disk
[68]. One has also to bear in mind that the layering/thickness issue continues to be
significant in this model, with thinner sleeve/ring host material offering the highest
degree of SMA influence, and that shear stresses can readily reach critical levels for
the host material, requiring careful design if longevity is the aim and degredation,
cracking, and delamination is to be avoided.

Further work on critical speed control in rotors has been reported by Nagaya et
al. [41], Viderman and Porat [62], and latterly by Lees et al. [36]. All three works
considered the use of SMAs in various guises in different configurations for bearing
stiffness control. Lees et al. [36] proposed a pedestal bearing in which an elastomeric
o-ring is fitted within a pair of clamped semi-circular clamps put under compression
by the action of symmetrically positioned SMA wires on each side. In practice the
wires are configured as a single multi-loop wire so that precisely set pre-loads could
be set with both sides absolutely symmetrically balanced. The o-ring is fitted within
the clamps and surrounds a rolling element bearing, as shown in the prototype test
system in Fig.35.

The installation of Fig.35 effectively uses the bracket, o-ring elastomer and the
SMA as three stiffnesses in series, such that the overall bearing housing stiffness is
given by:
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Fig. 35 Prototype SMA
loaded bearing housing for
a disk-less rotor fitted with
a rigid bearing housing 250
mm down the rotor shaft,
after [36]

Fig. 36 Experimental impact test results for the o-ring/SMA assembly in the frequency do-
main, after [36]

k =
1

1
kb

+ 1
ke

+ 1
ks

(14)

When this is integrated into a finite element model a very major change in the am-
plitude response can be achieved during run up when the SMA is activated, for
suitably chosen data [36]. Corresponding laboratory tests on the test rig shown in
Fig.35 in which impact testing was used to investigate the cross-inertance between
the shaft and the bearing system reveal that SMA activation does indeed lead to pro-
found changes in the dynamic response of the system. Impact test results are given
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in Fig.36, with a change of the order of 45% attainable in the natural frequency of
the first whirl mode. This suggests the potential for superior performance to that of
the previous sleeve/ring configuration but optimisations of each design still remain
to be completed.

5 Antagonistic Actuation Control of Vibration in Plates

Previous sections have already shown that large SMA strains of 8–10% can be
achieved, by the thermal shape memory effect or superelasticity. The control of char-
acteristic phase transition temperatures by altering the amount of nickel present, is
easily accomplished by exploiting the inverse proportionality between nickel con-
tent and the temperature at which the transition takes place. This is highly significant
because optimal control of the nickel content means that the temperature threshold
can be optimally tailored for the application, also with energy conservation in mind.
Degredation over many heating and cooling cycles can readily cause problems but
this can be minimized at the outset by raising the level of the volume fraction of
SMA used in the application. This can be traded off economically against the cost
of energy required to heat (and cool) the SMA across the transformation temperature
point.

In this section we consider the problem caused by the very different time con-
stants involved in SMA heating and cooling and pose a possible solution, with an
associated analytical model and proposals for experimental verification. The funda-
mental issue here is that SMAs do no work when cooling, unlike during the heating
phase, and so the basic time constants differ dramatically in most installations. In
some cases this does not matter but in any installation requiring reasonable levels
of adaptivity the cooling phase time constant must really be brought approximately
into line with the time constant associated with heating.

One proposal for this has been to harness the idea of antagonism, as summarised
by Inman et al. [29], whereby a double-acting actuator is proposed so that one side
is actively heated while the other passively cools, and vice versa, so that the changes
in traction forces during the passive cooling phase are forced to work more at the
pace of the adjacent active heating side. This was tested in a further development of
the prototype sleeve/ring shell assembly applied to the flexible rotor and discussed
previously, and in more detail by Cartmell et al. [14]. The most recent development
of this concept has been applied to a composite plate by Ganilova and Cartmell
[24] and the rudiments of that work are summarised and discussed henceforth. In
the work of Ganilova and Cartmell [24] a special actuator plate is postulated, in
which three principal layers are employed in sandwich form. A host layer of bulk
composite material, in this case glass-epoxy is located centrally with square SMA
plate elements laid out in chequer-board fashion over the surface of the plate, as
shown in Fig.37.

The SMA elements are laid out identically on both sides of the composite host
and configured for electrically resistive heating in such a way that three different
zones are defined, somewhat arbitrarily in the case of this demonstrator system. The
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Fig. 37 Glass-epoxy composite and SMA sandwich plate in which the square plate-like SMA
elements are laid out and zoned as shown, after [24]

Fig. 38 Side elevation of the
glass-epoxy composite and
SMA sandwich plate show-
ing the layer thickness di-
mensions, after [24]

element zones are denoted by FC, SC, and AC and are switched in or out of circuit
sequentially in order to demonstrate the antagonistic effect, and also to show that
grouped elements may be advantageous for the control of multiple modes of vibra-
tion for which highly complex patterns of nodal and antinodal lines can occur. The
APT configuration has been investigated to date [24]. In an attempt to demonstrate
roughly equalised heating and cooling time constants a typical time constant Δ t is
taken as the basic unit of time. The acronyms FC, SC, and AC were originally asso-
ciated with operations denoted by ’first cooling’, ’second cooling’, and ’activated’
labels, and although these meanings have become less significant as the research
has developed they are retained here for consistency with [24]. The process works
in principle like this: the FC elements are heated through the martensite-to-austenite
transformation during and then they are cooled whilst the SC elements are heated
through a further Δ t. During the 2Δ t period the FC elements have cooled for Δ t
and the AC elements have remained cool for the whole time. At the end of 2Δ t the
AC elements are heated and the SC elements enter the cooling phase for a further
period of Δ t. This represents one basic system cycle, as shown in Fig.39, during
which each zone sequentially heats over Δ t whilst the two others are cooling. The
antagonism effect is embedded in such a way that two zones are always cooling
whilst one is heating, ensuring that continuous useful work is done by the plate in
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Fig. 39 Heating and cooling
cycle for an antagonistically
actuated SMA/Composite
plate

sequentially activated zones and reducing the passive cooling time constant accord-
ingly to somewhere between Δ t and 2Δ t, dependent on the precise physical con-
figuration. Ganilova and Cartmell [24] also proposed an analytical model for the
dynamics of the plate under forced vibration and APT. This is summarised here
with some theoretical results shown for chosen physical data.

The governing equation of motion for a plate with integrated SMA layers and
any chosen boundary conditions is given by Żak et al. [66]:

D11
∂ 4w
∂x4 +2(D12 + 2D66)

∂ 4w
∂x2∂y2 +D22

∂ 4w
∂y4 −Nx

∂ 2w
∂x2 = q(x,y,t)−ρh

∂ 2w
∂ t2 (15)

noting that this is the same as equation (9) except for slightly revised notation on
the right hand side. We persevere with the version given as equation (15) in order
to maintain consistency with [66]. A generalised excitation is applied to the plate as
follows:

q(x,y,t) = q0(t)sin
πx
a

sin
πy
b

(16)

The density quantity in Eq. (15) is given by ρ =
3
∑

i=1
ρihi/h, in which hi is the ith

layer thickness and h is the whole plate thickness. The in-plane load Nx depends
on the SMA elements and therefore on time given that elements switch in and out
cyclically, therefore Nx = Nx(t). This has the additional effect of varying the bending
stiffnesses, D jk, so that they each assume three different values for the scenario
here, effectively leading to D jk(t) instead, but as the transformation time is to be
kept arbitrary we drop the time argument henceforth and stay with D jk. A further
feature of this analysis is the inclusion of time variant damping which may be a
partial side-effect of the phased activation of the zoned SMA elements as well as
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something additionally included within a generalised version of the problem, as
discussed in [66]. This leads to a further re-statement of the governing equation of
motion, whereby we obtain:

D11
∂ 4w
∂x4 + 2(D12 + 2D66)

∂ 4w
∂x2∂y2 + D22

∂ 4w
∂y4 −Nx(t)

∂ 2w
∂x2

= q(x,y, t)−2ρε(t)h
∂w
∂ t

−ρh
∂ 2w
∂ t2 . (17)

The right hand side of Eq. (17) contains the damping term in which a scaled time-
variant damping parameter ε(t) is included, providing a variable form of classical
linear viscous damping. Simply supported boundary conditions are accommodated
by means of the following deflection expression in which a and b are the length and
width, respectively, of the plate:

w(x,y,t) = f (t)sin
(πx

a

)
sin
(πy

b

)
(18)

Previous work by Żak and Cartmell [66] and Gristchak and Ganilova [26] led to an
analytical definition for the bending stiffnesses of a laminated composite plate:

D jk =
2
3

[
BN/2

jk h3
N/2 +

N/2−1

∑
i=1

Bi
jk

(
h3

i −h3
i+1

)]
(19)

where the Bi
jk represents the ith layer’s elastic coefficients and N is the number of

layers. This can be re-stated in a form applicable to the specific case of Fig.38 for
which this results:

D jk =
2
3

[
B0

jkδ
3
0 + B jk

(
δ 3 − δ 3

0

)]
. (20)

The outer layers comprise composite/SMA and it is assumed that they are identical
dimensionally and physically, leading to B1

jk = B2
jk = B jk. The top, middle, and

bottom layers are δ1 −δ0, 2δ0, and δ2 −δ0, respectively, and it should also be noted
that i is intentionally defined as zero for the middle layer, 1 for the top, and 2 for
the bottom layer, and as top and bottom are identical then δ1 = δ2 = δ . In order to
apply equation (20) we require the Bi

jk value for each layer. For the middle layer the
appropriate values are found to be,

B0
11 =

E0
11

1−ν0
12ν

0
21

, B0
22 =

E0
22

1−ν0
12ν

0
21

, B0
12 =

ν0
12E0

12

1−ν0
12ν

0
21

, B0
66 = G0

12 ,

and in the case of the identical top and bottom layers, for which the superscripts are
subsequently dropped, one obtains [66],

B11 =
E11

1−ν12ν21
, B22 =

E22

1−ν12ν21
, B12 =

ν12E12

1−ν12ν21
, B66 = G12 .
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It is also necessary to define the Young’s moduli appropriately and in [66] these are
shown to be in the following forms, in which the relative volume fraction of the ith

layer SMA is defined by V , and subscripts f and m describe the SMA fibre and host
composite material, respectively,

E11=E fV + Em (1−V) , E22 = Em
E f +Em+(E f −Em)V

E f +Em−(E f −Em)V
, G12 = Gm

Gf +Gm+(Gf −Gm)V

Gf +Gm−(Gf −Gm)V
,

ν12 = ν fV +νm(1−V), ρ̂ = ρ fV +ρm(1−V).

From these forms it is possible to construct an expression which defines the den-
sity of the whole plate, and this is given by [66]:

ρ =
3

∑
i=1

ρihi

h
=

2
h

[ρ̂(δ − δ0)+ρ0δ0] (21)

noting that ρ0 is the density of the middle layer in which there is no SMA.
Equation (17) can now be re-expressed in the following form after the substitu-

tion of Eq. (18), and the use of Eqs. (19)–(21):

λ 2 f ′′(t)+ 2ε̄(t) f ′(t)+ ˜̃D(t) f (t) = q̃(t) (22)

Further definitions are required such that λ 2 = h/a, ε̄(t) = (h/a)ε(t) , and

˜̃D(t) =
1
ρa

[
D̃+ N̄(t)

]
, q̃(t) =

q(t)
ρa

,

and noting that the following are also required,

D̃ = π4
(

D11

a4 + 2
D12 + 2D66

a2b2 +
D22

b4

)
,

and N̄(t) = (π/a)2 Nx(t).
Equation (22) is a nonhomogeneous linear ordinary differential equation with

variable coefficients and is solved in [66] by means of the two-stage hybrid Wentzel-
Kramers-Brillouin-Galerkin method [26]. The first stage determines the comple-
mentary solution of the homogenous problem and this is of the form,

f (t,λ ) = exp

⎡
⎣

t∫
a

(
1
λ

f0(t)+ f1(t)
)

dt

⎤
⎦ (23)

where

f0 = ±i

⎡
⎣2
∫ e2 ∫ ˜̃D(t)

ε̄(t) dt

ε̄(t)
dt

⎤
⎦
−1/2

, and f1 = −1
2

d
dt

(ln f0) .
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Determination of the appropriate particular integral is summarised in detail by
Ganilova and Cartmell [24] for these chosen forms for the physical and scaled damp-
ing and SMA in-plane load terms, respectively, ε(t)=Ct leading to ε̄(t)= (h/a)Ct,
and Nx(t) = st leading to N̄(t) = (π/a)2 st. The quantities s and C are constants cho-
sen to accord with a specific experimental system design and these relations clearly
define simple linear proportionalities with time for both damping and in-plane load-
ing, both of which are predominantly attributable to SMA activation over Δ t. The
general solution to Eq. (22) is given in [24] as:

f (t) = e
−δ02

t∫
ā

f̄0(t)dt

⎡
⎣(s1 +c1)sin

⎛
⎝δ01

t∫
ā

f̄0(t)dt

⎞
⎠+(s2 +c2)cos

⎛
⎝δ01

t∫
ā

f̄0(t)dt

⎞
⎠
⎤
⎦
(24)

for which we require forms for s1 and s2, as follows,

s1 =
∫ q̃(t)e

δ02
t∫

ā
f̄0(t)dt

cos

(
δ01

t∫
ā

f̄0(t)dt

)

λ 2δ01
d
dt

(
t∫

ā
f̄0(t)dt

) dt and s2 = −∫ q̃(t)e
δ02

t∫
ā

f̄0(t)dt
sin

(
δ01

t∫
ā

f̄0(t)dt

)

λ 2δ01
d
dt

(
t∫

ā
f̄0(t)dt

) dt.

Definitions of the quantities δ01, δ02, and ā are given in full by Gristchak and
Ganilova [26] and quantities c1 and c2 are obtained from initial conditions [26]. A
numerical example is considered next from which an experimental test system has
evolved in parallel. Although the experimental system is undergoing preliminary
testing at the time of writing it can be seen in Fig.43. The plate is of dimensions
a = 0.5 m and b = 0.214 m, with an epoxy middle layer of thickness 9 mm and
identical top and bottom layers of 1.5 mm in thickness. The top and bottom layers
are composed of the chequer-boarded SMA squares filled in with epoxy composite.
From these layer thicknesses we can calculate that δ0 = 4.5,mm and δ1 = δ2 =
δ = 6 mm. The Young’s moduli, bending stiffnesses, Poisson’s ratio, and density
are defined and calculated for the epoxy middle layer, as appropriate, to yield the
following, E0

11 = E0
22 = E0

12 = 3.43 GPa, B0
66 = G0

12 = 1.27 GPa, ν = 0.35, ρ0 =
1250 kg/m3.

The activated, austenitic phase, SMA elements have the following properties
E f = EA = 69.6 GPa, G f = GA = 26.77 GPa, ν = 0.3, ρ f = ρSMA = 6448.1 kg/m3.
The density of the top and bottom layers is given by ρ̂ for a volume fraction of
V=0.5238, hence ρ̂ = 3972.8 kg/m3, and from this the density of the whole plate
can be evaluated, in this case as ρ = 1930.7 kg/m3. In the process already described
the FC, SC, AC phases comprise 5, 3, and 3 elements, as shown in Fig.37, and so the
relative volume fractions change accordingly to be 0.24, 0.14, and 0.14, requiring
updated calculations each time for E11, E22, G12, ν12, and ρ̂ , as needed for the top
and bottom layers.

In order to provide some validation of the analytical solution the results from this
are compared with those obtained by numerically integrating Eq. (22). Initially Nx(t)
and ε(t) are held constant at 0.1N and unity, respectively, with initial conditions
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Fig. 40 Analytical-hybrid responses a and numerical responses b for Nx(t) = 0.1N, ε(t) = 1,
f (0.00001) = 0.1, ḟ (0.00001) = 1, q(t) = 0, after [24]
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Fig. 41 Analytical-hybrid responses a and numerical responses b for Nx(t)= 0.1 N, ε(t) = 1,
f (0) = 0, ḟ (0) = 0, q(t) = 500N, after [24]

f (0.00001) = 0.1 and ḟ (0.00001) = 1 and q(t) = 0, with analytical hybrid and
numerical responses as given in Fig.40 in the time domain.

It is immediately evident that despite the sparseness at some points in the plot in
Fig. 40(a), the dynamics of the system are captured to a remarkably similar extent
for in both cases. Note that the initial conditions are given for time close to zero
in order to ease the burden of numerical calculation. A second case is shown in
Fig. 41 in which the in-plane SMA force and damping are maintained at the same
constant values but the excitation force is increased from zero to 500 N, and the
initial conditions are set to zero.

Once again the dynamics of the system are faithfully reproduced by the hybrid
analytical solution and show very similar transient trends about a closely similar dc
offset, representative of the particular integral part of the hybrid-analytical solution
which, in turn, is commensurate with the constant excitation load. A final case is
given in Fig.42 for which time variant damping is introduced, along with an os-
cillating excitation, such that ε(t) = t, and q(t) = cost N, again with zero initial
conditions.
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Fig. 42 Analytical-hybrid responses a and numerical responses b for Nx(t) = 0.1 N, ε(t) = t,
f (0) = 0, ḟ (0) = 0, q(t) = cos t N, after [24]

The two solutions show similar tendencies for the mean of the response, with
identical drift properties in time, but a far more persistent envelope in the case of
the numerical solution which suggests that the hybrid-analytical model may not
consolidate the dissipative properties of the system in the same way as the numer-
ical solution. This is because of the numerical calculation required for s1 and s2 in
equation (24) and the fact that for some data cases simplifications have to be im-
plemented in order to reach convergent solutions, with consequences for solution
accuracy. A new programme of experimental work has been initiated in order to
validate the model further, and a precursor test system is shown in Fig.43.

Fig. 43 Laboratory test rig system, showing the composite/SMA plate and resistive heating
wiring
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The plate is simply supported, and associated wiring and high current bus bars for
resistive heating of zones FC, SC, and AC can be seen. Three thermocouples can also
be seen fitted to right hand side elements associated with all three zones. Sequential
connections are provided so that the heating current can be applied, sequentially,
and in a controlled manner, to all the elements in each zone. The experiment has
been designed and built in order to test further the theoretical results and results will
be presented separately in a forthcoming publication.

6 Conclusions

The main aim of this chapter has been to give a reasonable grounding in SMA mod-
elling and immediately to place that within the context of the literature so that the
main models are clarified for the reader. The chapter then summarises appropri-
ate notions of structural integration, where SMA elements can be embedded within
composite hosts, initially in the form of beams and plates, then in cylindrical shells.
This is tackled by assuming two different embedding technologies as a starting
point, Active Property Tuning (APT) and Active Strain Energy Tuning (ASET), and
then including appropriate terms, including an ASET-based in-plane SMA load, so
that natural frequencies, critical loads, and modal response amplitudes can be cal-
culated, firstly for beams, and then for plates, each with equi-positioned layers of
SMA each side of the neutral axis.

Extensive numerical results are provided for both generic structures for varia-
tions in the principal physical parameters principally for APT installations because
these are simpler to set up in practice than ASET configurations which require ar-
rangements for ensuring precise in-plane preloading, but still give reasonable to
good performance. In the case of the plate a finite element model is used to calcu-
late four different modal responses for two different boundary conditions (SSSS and
CCCC) and for four different activation scenarios (both layers activated, upper layer
activated, lower layer activated, neither layer activated), and this shows clearly the
profound qualitative changes that are introduced by active elements embedded in
this way, and it also complements the previously discussed quantitative results for
responses under different conditions.

The chapter continues with a section on flexible rotors in which a similar tech-
nology extended to cylindrical shells is exploited to create active bearing housings
in order to modify the vibrational response of a flexible rotor when whirling due to
mass unbalance. Finite element models are used to predict the changes in both the
first whirl mode natural frequencies and the disk amplitude in the first whirl mode
for different bearing housing thickness for two composite materials, and the effects
of SMA activation are also discussed within the text.

Further designs for active rotor bearings are presented, and once again the ef-
fectiveness of SMA activation is demonstrated. The chapter concludes with a novel
proposal for larger scale integration of active SMA elements in a composite plate so
that a repeating chequerboard structure is obtained. This is utilised both for so-called
antagonistic action, where the cooling phase of one subset of elements is speeded up



154 M.P. Cartmell, A.J. Żak, and O.A. Ganilova

by direct mechanical action from a neighbouring subset undergoing activation heat-
ing, and also as an effective means for reducing the amplitude of two-dimensional
plate modes. A candidate three layer plate comprising an inner glass-epoxy host
plate with chequerboard distributions of SMA on the upper and lower surfaces is
modelled and a generalised differential equation of motion is obtained for such a
structure, with an approximate analytical solution obtained by recourse to a two
stage hybrid Wentzel-Kramers-Brillouin-Galerkin methodology. Time domain re-
sponses are given for some pragmatic cases. This section concludes the chapter with
proposals for an extensive experimental investigation of this system with a view to
obtaining operational data from which further nonlinear models may be tested in the
future.
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27. Hornbogen, E., Wassermann, G.: Über den Einfluβ von Spannungen und das Auftret-
ten von Umwandlungsplastizitt bei Beta1-Beta-Umwandlung des Messings. Zeitschrift
fr Metallkunde 47, 427–433 (1956)

28. Icardi, U.: Large bending actuator made with SMA contractile wires: theory numerical
simulation and experiments. Composites B 32, 259–267 (2001)

29. Inman, D.J., Cartmell, M.P., Lees, A.W., Leize, T., Atepor, L.: Proposals for controlling
flexible rotor vibration by means of an antagonistic SMSA/composite smart bearing. In:
Proc. MPSVA 2006, Bath, UK (September 2006)



156 M.P. Cartmell, A.J. Żak, and O.A. Ganilova
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67. Żak, A.J., Cartmell, M.P.: Statics and dynamics of a sleeve-ring component with SMA
strips. 3rd Research Report, Department of Mechanical Engineering, University of Glas-
gow (2002)



158 M.P. Cartmell, A.J. Żak, and O.A. Ganilova
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Theoretical and Experimental Nonlinear
Vibrations of Sagged Elastic Cables

Giuseppe Rega

Abstract. The chapter presents a comprehensive overview of recent advancements
in the theoretical and experimental research on modelling, analysis, response, and
nonlinear/nonregular phenomena in the finite amplitude, resonant, forced dynamics
of sagged, horizontal or inclined, elastic cables. Asymptotic solutions and a rich va-
riety of features of nonlinear multimodal interaction occurring in various resonance
conditions are comparatively discussed. Dynamical and mechanical characteris-
tics of some main experimentally observed responses are summarised, along with
the relevant robustness, spatio-temporal features, and dimensionality. Challenging
issues arising in the characterisation of involved bifurcation scenarios to complex
dynamics are addressed, and hints for proper reduced-order modelling in cable
nonlinear dynamics are obtained from both asymptotic solutions and experimen-
tal investigations, in the perspective of a profitable cross-validation of the observed
nonlinear phenomena.

Keywords: Suspended cable, resonant nonlinear dynamics, asymptotic solution,
experimental analysis, bifurcation and chaos, reduced-order modelling.

1 Introduction

Suspended cables are lightweight, flexible structural elements used in several ap-
plications in mechanical, civil, electrical, ocean and space engineering, due to their
capability of transmitting forces, carrying payloads and conducting signals across
large distances. At the same time, the sagged cable is a basic element of theoretical
interest in applied mechanics, as well as an archetypal model of various phenomena
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in the nonlinear dynamics of elastic systems with initial curvature, for being prone
to large amplitude vibrations.

Classical analyses of cable linear vibrations ([25], [74]) have been recently com-
plemented by further achievements, which include, e.g., experimental validation of
theoretical phenomena [60], derivation of approximate formulae useful for design
purposes [77], consideration of the effects of damage [38] or bending stiffness [59],
unified treatment of shallow and non-shallow cables [31]. However, major research
effort has been devoted in the last few decades to cable nonlinear dynamics, with
the attention being paid to finite amplitude vibrations of sagged elastic cables under
a variety of conditions of planar and nonplanar, internal, external and/or parametric,
resonances. Variably refined theoretical models, and purely analytical, numerical or
mixed treatments have been considered in handling the problem. In fact, owing to
the inherent combination of system quadratic and cubic nonlinearities, occurring for
sagged cables, their finite amplitude response exhibits an extremely rich variety of
nonlinear dynamic phenomena, as highlighted by many research achievements. The
relevant state of art and the available results on modelling, solutions, and ensuing
dynamic phenomena are comprehensively documented in a few recent review arti-
cles concerned with both deterministic ([50], [51]) and stochastic [24] regimes of
cable nonlinear dynamics.

Yet, in the last few years, further meaningful research has been accomplished,
both theoretically and experimentally. It has been aimed at highlighting, and pos-
sibly overcoming, a number of existing modelling and analysis limitations which
affect the description and understanding of finite amplitude dynamics, as well as
at throwing light on some specific, yet interesting, features of system nonlinear re-
sponse. Limitations can be schematically summarised as follows:

• consideration (i) of only approximate continuous cable models, (ii) of quite low-
dimensional finite representations and analysis of such models, and (iii) of solely
shallow horizontal or nearly taut inclined cables, with the ensuing incomplete
and/or unsatisfactory description of actual cable dynamics;

• solely partial description of the many involved (in-plane or in-plane/out-of-plane)
interaction phenomena possibly occurring in various internal/external/parametric
resonance conditions, along with limited knowledge on possible transition sce-
narios to non-regular dynamics;

• incomplete cross-validation of analytical and numerical solutions, and lack of
experimental description and understanding of the actual nonlinear response of
sagged cables.

This chapter does not aim at comprehensively reporting on all advances recently
made on the above mentioned issues. Yet, it is intended at providing an overview
on a number of meaningful theoretical and experimental achievements obtained on
some of them by the writer and co-authors, in the last few years. They are concerned
with both modelling and analysis, as well as with the description of the diverse
phenomenology of system response occurring in different dynamical situations.
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The chapter is organised as follows. Modelling and theoretical analysis are ad-
dressed in Sect. 2, by discussing different approximate continuous models, by sum-
marising the distinguishing dynamic features of horizontal versus inclined sagged
cables, and by introducing the multimode discretization aimed at obtaining low-
dimensional cable models to be tackled via asymptotic techniques in different in-
ternal resonance conditions. A summary of the ensuing information is provided as
regards the actual resonance activation, the expectable response features – with spe-
cial reference being paid to the extent of nonlinear modal interaction –, the contri-
bution of non-resonant modes to cable response, and the reduced-order models to be
possibly formulated for reliably highlighting the main aspects of resonant nonlinear
dynamic response of the underlying infinite-dimensional system. Typical nonlinear
phenomena occurring in cable forced dynamics are exemplified in Sect. 3, by dis-
tinguishing and comparing the responses of horizontal and inclined cables in differ-
ent internal resonance conditions, by showing cases of non-regular multi-harmonic
responses, and by discussing features of nonlinear dynamic displacements and ten-
sion as obtained with different cable models. In turn, Sect. 4 is entirely devoted
to the experimental characterisation of cable nonlinear dynamics. Upon generally
dwelling on the issue of dimensionality of system nonlinear response – to be ad-
dressed via rather sophisticated techniques of nonlinear experimental analysis and
dynamical system theory –, attention is focused on different bifurcation scenarios
of transition to complex dynamics observed for a reference experimental cable/mass
system. They include quasi-periodic transition to chaos and a global codimension-
two bifurcation which organises involved regimes of regular nonlinear response and
the ensuing homoclinic chaos. The possibility of a profitable feedback between ex-
periments and theory is also highlighted by reporting features of on-going research
aimed at formulating low-dimensional phenomenological models of sagged cables
suitable for theoretical/numerical investigations and aimed at overcoming some per-
sisting limitations of cable modelling, which may prevent us from correctly repro-
ducing the experimentally observed features of response scenario. The chapter ends
(Sect. 5) with a short summary on other topics of cable nonlinear dynamics, which
have been meaningfully addressed in the last few years within the relevant scientific
community, and on further expected research developments.

2 Cable Modelling and Theoretical Analysis

2.1 Continuous Modelling

The continuous model most widely used in the literature for analysing large am-
plitude, forced, damped, three-dimensional vibrations of a suspended cable refers
to a perfectly flexible, homogeneous, linearly elastic system, with negligible tor-
sional, bending and shear rigidities. It is based on the assumption of quasi-static ax-
ial stretching (also called static condensation), and considers a horizontally hanging
shallow cable with two supports at the same level ([50], [51]). Any of the previous
assumptions is somehow relaxed in more recent continuous formulations.
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Still keeping the elastic material assumption and accounting for the sole axial
rigidity, a more general model of suspended cable considers an arbitrarily sagged
[70] and possibly inclined [69] system, and is based on a refined kinematical de-
scription of the cable element deformation. Figure 1 displays a suspended cable
with arbitrary inclination angle θ in a fixed Cartesian coordinate (X ,Y,Z) system.
Three different configurations of the cable element in the natural (dsn), static (ds)
and final dynamic (dsf ) states are considered, with the function y(x) describing the
planar static equilibrium of the cable under its own gravity g. Keeping the horizon-
tal span XH fixed, the vertical span YH is varied to attain a desired inclination, and
the horizontal component H of cable static tension is adjusted to attain a desired
cable sag value d. The cable in-plane (out-of-plane) dynamics is described by the
horizontal u and vertical v (w) displacement components measured from the static
configuration. Here, x is the spatially independent variable, and t denotes time.

Fig. 1 Different configurations of an arbitrarily sagged and inclined cable

Based on the so-called engineering strain measure, the total strain of an infinites-
imal cable element is given by:

e f =
ds f

dsn
−1 =

1 + e√
1 + y′2

√
(1 + u′)2 +(y′ + v′)2 + w′2 −1, (1)

where e = (ds− dsn)/dsn is the initial static strain. The governing exact nonlinear
partial differential equations (PDEs) of 3D coupled, forced, damped motion of the
cable about static equilibrium read:
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E , A and wC are the cable Young modulus, uniform cross-sectional area and self-
weight per unit unstretched length, respectively, cu, cv, cw are viscous damping co-
efficients, and Fu, Fv, Fw are components of uniformly distributed harmonic external
forcing. A prime (dot) represents partial differentiation with respect to the horizontal
space coordinate x (time t).

In conditions of moderately large vibration amplitudes and assuming small static
strain (ds ≈ dsn), the total strain (Eq. (1)) becomes

e f = e + ed = e +
1

1 + y′2

(
u′ + y′v′ +

1
2

(
u′2 + v′2 + w′2)) , (3)

where ed is the extensional dynamic strain expressed through its Lagrangian mea-
sure. The ensuing, approximate, third-order nonlinear PDEs of motion read, in non-
dimensional form [71]:
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where α = EA/H, ρ =
√

1 + y′2. The corresponding homogeneous boundary con-
ditions are u(0, t) = u(1,t) = v(0,t) = v(1,t) = w(0, t) = w(1,t) = 0.

System (4) exhibits quadratic and cubic geometrical nonlinearities associated
with cable initial curvature (only the former) and axial stretching; however, due to
the interaction between longitudinal and transverse dynamics – which ensues from
accounting for the overall inertia effects – quadratic nonlinearities occur even in
the absence of initial sag, namely, in the taut string case. The extensional dynamic
strain (see Eq. (3)) turns out to be spatially non-uniform and, accordingly, the non-
linear dynamic tension (Td = EAed) exhibits a spatio-temporal variation along the
cable. As the exact model, the approximate one nonlinearly couples the longitudi-
nal and transverse (in-plane or out-of-plane) cable dynamics, thus being referred
to as a kinematically non-condensed model to distinguish it from the above men-
tioned condensed model, typically considered in the cable literature ([50], [66]).
Besides further kinematical assumptions, the latter basically results from neglect-
ing the inertia and viscous damping effects in the longitudinal PDE of motion (41),
which corresponds to assuming that the cable nonlinearly stretches in a quasi-static
manner in the absence of longitudinal external loading. Accounting for the cable
boundary conditions, the dynamic strain in Eq. (3) becomes

ed(t) =
∫ 1

0

(
y′v′ +

1
2

v′2 +
1
2

w′2
)

dx (5)

and entails a space-independent dynamic tension, averaged over the spatial inte-
gral. Accordingly, the governing integro-PDEs of motion accounting for the solely
transverse (vertical and out-of-plane) cable dynamics read

v̈ + cvv̇ = v′′ +α
(
y′′ + v′′

) 1∫
0

(
y′v′ +

1
2

(
v′2 + w′2))dx+ Fv,

ẅ+ cwẇ = w′′ +αw′′
1∫

0

{
y′v′ +

1
2

(
v′2 + w′2)}dx + Fw (6)

with the u displacement component depending on v and w.
The exact cable model described by Eq. (2) is solely referred to in purely nu-

merical treatments of a given nonlinear dynamic problem based on, e.g., the space-
time finite difference method coupled with a predictor-corrector iteration algorithm
([69], [70]) for the inclined and horizontal cable, respectively) or on a finite element
procedure. The major advantage of a numerical treatment stands in allowing to cap-
ture the spatial richness of cable nonlinear response and its time-varying content,
and in obtaining information about the possibly significant involvement of higher-
order modes which is allowed by the considered multidegree-of-freedom model.
In contrast, if the interest is in highlighting the characterising features of system
nonlinear dynamics in different external/internal resonance conditions, anyone of
the solely handable approximate models, whose analysis can be pursued via ana-
lytical (symbolic) or mixed analytical-numerical approaches, are referred to. The
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ensuing static and nonplanar/planar linear and nonlinear dynamic results can be
thoroughly validated against those of the exact model via numerical techniques
(Runge-Kutta/shooting, finite elements, finite differences, see [71]), thus allow-
ing for a proper approximate continuous model selection in different technical
situations.

2.2 Static Equilibrium and Planar Linear Free Dynamics

As far as cable sag is concerned, shallowness is usually assumed in the nonlin-
ear dynamics literature, by considering the non-dimensional parabolic, symmetric,
static equilibrium profile y(x) = 4dx(1− x) – which adequately describes cables
with values of the sag-to-span ratio up to about 1/8 – both in the classical case of
small sag horizontal cables [50] and for the nearly taut inclined cables addressed
in recent studies [79]. In the linearised planar dynamics [25], denoting with S the
cable equilibrium length, this entails the occurrence of the classical crossover phe-
nomenon of the in-plane natural frequencies ω depending on the Irvine parameter
λ/π = (1/π)

√
(wCS)2EA/H3 which accounts for the cable elastic and geometric

properties: see the points λ/π ≈ 2n (n = 1,2, . . .) in the frequency spectrum of Fig.
2a, which displays, based on the non-condensed model, the first six planar frequen-
cies ω/π (dimensionalised with respect to the fundamental frequency of the corre-
sponding taut string) versus λ/π . With increasing λ , the i-th crossover (i = 1,2, . . .)
marks the transition of the corresponding couple of i-th symmetric and antisymmet-
ric in-plane modes from a sequence where the former is lower to a sequence where
the former is higher, along with the increase by two of the number of nodal points
of the symmetric modes along the cable span [26].

Fig. 2 Planar frequency spectrum of sagged, horizontal a or inclined b, cables. Several
combinations of 2:1 internally resonant high-frequency (s) and low-frequency (r) modes are
identified
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In contrast, for arbitrarily inclined cables with moderate sag (i.e., with values of
the sag-to-span ratio somehow larger than the limiting value of the parabolic profile),
a closed-form solution of the cable static equilibrium configuration, approximate
up to cubic order, allows us to account for the actual system asymmetry [25]. In
the linearised planar dynamics, to be addressed via a numerical procedure (e.g.,
Galerkin or finite elements [71]), this entails a qualitative modification from the
crossover phenomenon occurring in the frequency spectrum of symmetric cables to
the frequency avoidance (or veering) phenomenon [37] occurring in the spectrum
of inclined cables (Fig. 2b) for increasing values of the generalised cable parameter
λ/π = (1/π)

√
(wCS cosθ )2EA/T 3

a ([73], [74]), where Ta is the static tension at the
cable point where the local inclination angle is approximately equal to θ .

A veering phenomenon of the same nature actually characterises the linear free
dynamics of other asymmetric mechanical systems [49]. Avoidance is associated
with the occurrence of cable hybrid, i.e. asymmetric, modes [74], which result from
a mixture of symmetric and antisymmetric modal shapes, as exemplified in Fig.
3, whose underlying linear eigenvalue problem of free undamped planar motion,
derivable from Eqs. (41,2), has been solved via the Galerkin method based on an
assumed sine-based series [71].

The distinguishing and contrasting linear dynamics features of crossover vs
avoidance, or symmetric/antisymmetric vs hybrid modes, also somehow affect the
system nonlinear dynamic behaviour, as it will be discussed in Sect. 3.

Of course, when dealing with actually non-shallow horizontal or inclined cables,
the exact catenary solution of the static equilibrium configuration based on the hy-
perbolic function [25] has to be used, and the ensuing linear frequencies can be
again obtained via a numerically-based (Galerkin or finite element) procedure (see,
e.g., [62]).

Fig. 3 Low-frequency (r) a and high-frequency (s) b modes for θ = 45o and λ/π ≈ 2: u
(dashed) and v (continuous) displacement components
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2.3 Multimode Discretization for Nonlinear Dynamics

Aiming at obtaining a low-dimensional reduced cable model, suitable for analytical
solutions of the sole nonlinear temporal problem, a multimode discretization of the
PDEs of the non-condensed approximate infinite-dimensional model is pursued, and
then an asymptotic analysis of the ensuing system of nonlinearly coupled ODEs is
developed through any perturbation technique, typically, the multiple time scales
method [43].

Focusing on the solely planar nonlinear cable vibrations, for the sake of sim-
plicity, and casting the PDEs of motion in state-space (displacement and velocity)
first-order format, multimode discretization involves two main steps ([33], [71]).

(i) Projecting the first-order PDEs onto the infinite-dimensional orthonormal eigen-
basis of cable linear modes, as follows,

UJ (x,t) =
∞

∑
m=1

fm (t)ζ J
m (x) , V J (x, t) =

∞

∑
m=1

pm (t)ζ J
m (x) , (7)

where J = 1,2, U1 = u, U2 = v, V 1 = u̇, V 2 = v̇, ζ 1
m = φm, ζ 2

m = ϕm, fm and pm

are the displacement and velocity modal coordinates associated with both the
horizontal ϕm and vertical φm shape functions of the m-th in-plane mode;

(ii) obtaining the infinite set of nonlinearly coupled ODEs in the unknown time
dependent displacement and velocity coordinates via the Galerkin method, as
follows,

ḟm − pm = 0,

ṗm+2μmpm+ω2
m fm =

∞

∑
i=1

∞

∑
j=1
Λmi j fi f j +

∞

∑
i=1

∞

∑
j=1

∞

∑
k=1

Γmi jk fi f j fk + Zm cosΩ t, (8)

In Eq. (8), ωm is the m-th natural frequency, μm and Zm are modal damping and
external forcing terms, respectively,Λmi j andΓmi jk are quadratic and cubic nonlinear
coefficients depending on the modal shape functions and governing the (m,i, j,k)
overall displacement coupling: see [71], where the qualitative difference between
the sets of nonlinear coefficients as obtained with the non-condensed and condensed
models is also highlighted.

Of course, for all practical computations, a finite number of terms has to be
considered in the infinite-dimensional discretization, and a reduced-order model
properly suited to deal with the specific dynamic problem has to be identified via
convergence analyses. In this respect, it is worth noting that, provided enough modes
are retained in the discretization, the relevant outcomes turn out to be substantially
equivalent to those furnished by the direct application of the asymptotic method to
the original approximate PDEs, with no a priori assumptions of the displacement
solution form ([27], [33]).
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2.4 Internal Resonances and Asymptotic Solutions

Depending on the generalised Irvine elasto-geometric parameter governing the
dynamic behaviour of horizontal/inclined cables and due to the coexistence of
quadratic and cubic nonlinearities in the cable equations of motion, a very rich pat-
tern of internal resonance conditions (1:1, 2:1, and/or 3:1) involving different modes
occurs at both crossover (avoidance) frequencies of horizontal (inclined) cables and
away from them.

Internal resonances can be (i) single or multiple, respectively involving a couple
or a combination of modes, as well as (ii) planar or non-planar, with the latter
involving both in-plane and out-of-plane modes; moreover, (iii) they can involve
either mixed (symmetric and antisymmetric) or solely symmetric or antisymmetric
modes, as well as hybrid modes (for inclined cables). 1:1 planar or multiple
internal resonances typically, but not exclusively, occur at crossover/avoidance
points, the former involving symmetric and antisymmetric modes (horizontal cable)
or hybrid modes (inclined cable), the latter possibly involving a variety of modes
with different combinations of resonant frequencies. Yet, all internal resonances can
take place over the whole in-plane/out-of-plane frequency spectrum of the cable,
with a variable involvement of modes and frequency ratios: by way of example,
in Fig. 2, a number of planar 2:1 resonances involving different couples of high-
frequency (s) and low-frequency (r) modes are identified for both the horizontal
and the inclined cable.

It is important to note that not all of the nominally activable internal resonance
conditions are actually activated, because the involved modes may be nonlinearly
orthogonal with each other, and the vanishing nonlinear orthogonality of modes
may represent a necessary and sufficient condition for actual activation of an in-
ternal resonance [29]. This automatically precludes a number of internal resonance
situations from actually taking place, as discussed in [29]. Anyway, if internal res-
onances are activated, they entail a strong modal interaction and energy exchange
between the involved modes, to an extent which depends on the specific resonance
condition and on the nature of modes (as it will be discussed in Sect. 2.5.2). These
phenomena eventually result in harmful undesirable motions of the system, mostly
if the internal resonance condition already affecting the system nonlinear free dy-
namics is complemented by the external, primary or secondary, resonance of anyone
of the involved modes possibly occurring in a forced dynamics problem, or by the
fundamental or principal resonance associated with a parametric excitation.

In the framework of a multiple scale analysis ([43], [44]) of the weakly nonlin-
ear periodic solutions of Eq. (8), attention has to be paid to a suitable ordering of
the internal resonance relationships specifically concerned, as well as to the order-
ing of external resonance, damping and excitation. Moreover, the analysis has to be
accomplished up to the second order (ε3-order, ε being a small bookeeping param-
eter), with the aim of capturing the combined effects due to higher-order quadratic
and cubic nonlinearities [33]. Primary resonance of a high-frequency (s) mode and
its 1:1 or 3:1 internal resonances with a low-frequency (r) mode are suitably dealt
with via the frequency relationship orderings
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Ω = ωs + ε2σ f , ωs = ωr + ε2σ or ωs = 3ωr + ε2σ ,

whereas primary resonance and 2:1 internal resonance are expressed as

Ω = ωs + εσ f , ωs = 2ωr + εσ ,

where σ f and σ are external and internal detuning parameters, respectively. At the
same time, damping and excitation amplitude have to be ordered in such a way to
balance with the nonlinearities and the internal resonance at the same ε3-order, in
both resonance cases, namely μm → ε2μm and Zm → ε2Zm.

Referring to various internal resonance cases and to the set of perturbation
equations typically occurring in the multiple scale analysis of the sole free vibration
problem at various ε-orders, in the 1:1 and 3:1 resonances – which are associated
with cubic nonlinearities – the secular effects directly appear at the ε3-order,
whereas in the 2:1 resonance – associated with quadratic nonlinearities – they are
split between the ε2-order (due to quadratic nonlinearities only) and the ε3-order
(due to higher-order quadratic as well as cubic nonlinearities). Upon imposing the
solvability conditions at various ε-orders of the perturbation analysis, using the
method of reconstitution of the complex amplitudes ([44], [57]) and moving to
the amplitudes polar form, the multiple scale analysis provides the amplitude and
phase modulation equations (APMEs) of the involved resonant modes, whose fixed
points correspond to periodic motions of the ODEs (8) governing the dynamics of
the reduced-order model.

Analysis of the APMEs with the associated nonlinear interaction coefficients,
as provided by the multiple scale analyses of various (1:1, 2:1, 3:1) internal res-
onance conditions ([29], [78], [66], [55]) allows to draw a general description of
various possible resonant solutions occurring for horizontal (symmetric) and in-
clined (asymmetric) cables, in the case of forced planar vibrations under uniformly-
distributed vertical harmonic excitation at primary resonance with some internally
resonant mode. Depending on (i) the generalised elasto-geometric parameter λ/π ,
(ii) the kind of activated internal resonance, and (iii) the primary resonance of ei-
ther a high-frequency (s) or low-frequency (r) mode, a summary on the existence of
uncoupled (UC) and/or coupled (C) mode planar solutions for horizontal (inclined)
cables at crossover (avoidance), or away from it, is reported in Table 1.

In whatever internal resonance condition, the uncoupled (UC) solutions only in-
volve the directly excited resonant mode whereas coupled (C) solutions also involve
the non excited mode which is indirectly driven into the response via an internal res-
onance enhanced mechanism of energy transfer. Both UC and C solutions coexist for
1:1 resonant crossover cables, whereas only C solutions exist for avoidance cables,
regardless of the mode being directly excited. This also occur for other asymmetric
systems, e.g. [30]. In turn, as regards 2:1 and 3:1 resonances, UC and C (only C)
solutions exist when directly exciting a high-frequency (low-frequency) mode, irre-
spective of the considered horizontal (inclined) cable being at crossover (avoidance)
or away from it. This implies that 2:1 and 3:1 (1:1) resonant solutions do (do not)
depend on the mode being directly excited, while they do not (do) depend on the
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cable geometry being symmetric or asymmetric. It is thus evident how moving from
horizontal to inclined cables – with the associated modification from purely sym-
metric/antisymmetric modes at crossover to hybrid modes at avoidance – is expected
to entail a different scenario of nonlinear response at 1:1 internal resonance [55].

Table 1 A summary of regular planar solutions in horizontal/inclined cables at various in-
ternal resonances. UC (C), uncoupled-mode (coupled-mode) solution, CR (AV), crossover
(avoidance)

horizontal (sym.) cables inclined (asym.) cables
s : r λ/π n Ω = ωs + εnσ f Ω = ωr + εnσ f Ω = ωs + εnσ f Ω = ωr + εnσ f

1:1 CR vs. AV 2 UC/C UC/C C C
2:1 CR vs. AV 1 UC/C C∗ UC/C C

non-CR vs. non-AV
3:1 non-CR vs. non-AV 2 UC/C C UC/C C

∗ At CR, only with non-vanishing excitation on the low-frequency mode.

The multiple scale analysis in various internal resonance conditions also fur-
nishes the cable coupled dynamic configurations associated with their nonlinear
normal modes, which meaningfully account for the spatial corrections, with re-
spect to the reference linearly resonant modes, due to the quadratic nonlinearity
effects of all infinite modes of the discretization or, in practical terms, of the non-
resonant modes considered in a finite-dimensional discretization ([33], [65]). By
way of example, the second-order coupled dynamic configurations associated with
the u (J = 1) and v (J = 2) displacement components of a 1:1 resonant horizon-
tal/inclined cable are expressed as

UJ (x, t) ≈ ar cos(Ω t − γr)ζ J
r (x)+ as cos(Ω t − γs)ζ J

s (x)

+
1
2

a2
s

[
cos(2Ω t −2γs)ψJ

ss (x)+κJ
ss (x)
]

+
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a2
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[
cos(2Ω t −2γr)ψJ

rr (x)+κJ
rr (x)
]

+asar
[
cos(2Ω t − γr − γs)ψJ

rs (x)+ cos(γr − γs)κJ
rs (x)
]

(9)

whereas those of a 2:1 resonant horizontal/inclined cable read

UJ (x,t) ≈ ar cos
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In Eqs. (9) and (10), ar and as are real-value amplitudes of the low-frequency and
high-frequency mode, respectively, γr and γs are corresponding phases, κJ

ss and κJ
rr

are static drift effects due to quadratic nonlinearities, and the second-order shape
functions ψJ

ss, ψJ
rr, ψJ

rs, κJ
rs govern the spatial displacement corrections to the hor-

izontal (J = 1) and vertical (J = 2) shape functions ζ J
r , ζ J

s of the two resonant (r,
s) modes, due to quadratic effects of all resonant/non-resonant modes. These spatial
corrections are also of major importance as regards the evaluation of cable nonlinear
dynamic tension and of its actual space-time modifications (see Sect. 3.3 forward).

Of course, the accomplished multiple scale analytical predictions can be val-
idated against the numerical outcomes of finite element [17] or finite difference
([65], [68]) solutions of the original, exact or approximate PDEs of motion, under
specified initial conditions.

2.5 Modal Interaction Coefficients as Predictive Tools for
Reliable Nonlinear Dynamic Response

Still focusing on planar nonlinear dynamics, the analysis of the nonlinear interaction
coefficients of multiple scale solution at various ε-orders highlights a number of im-
portant phenomenological aspects which play a different role for diverse, horizontal
or inclined, cables.

2.5.1 Internal Resonance Activation

As already mentioned, there are restrictions as to the nature of the involved cable
modes (e.g., symmetric and/or antisymmetric) in order for their internal resonance
to be actually activated [29]. In fact, activation of a specific resonance depends on
the condition that the governing nonlinear interaction coefficients be different from
zero, which is in turn associated with the involved normal modes being nonlinearly
non-orthogonal. A systematic discussion on the conditions for actual activation of
2:1, 3:1 and 1:1 internal resonances for a wide class of shallow symmetric structural
systems also including horizontal cables is made in [29].

When considering also asymmetric systems, differences occur as regards vanish-
ing or non-vanishing of some nonlinear interaction coefficients for horizontal and
inclined cables, respectively, just based on the existence or non-existence of nonlin-
ear orthogonality properties.

The relevant effects become apparent in the 2:1 internal resonance case. Indeed,
for horizontal cables, 2:1 internal resonance is activated only when the involved
high-frequency (s) mode is symmetric. This occurs regardless of the low-frequency
(r) mode being symmetric or antisymmetric, so that, e.g., the 2:1 resonance of
all non-crossover cables (λ/π ≈ 1.28, 2.95, 3.23, 5.48) in Fig. 2a is indeed acti-
vated, along with that of the second crossover cable (λ/π ≈ 4) which involves the
high-frequency symmetric mode – out of the two therein coexisting – and the low-
frequency (1st antisymmetric) mode. In contrast, for inclined cables, owing to the
asymmetry effects of inclined sagged configurations which entail modal hybridity
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and non-vanishing of the governing first-order quadratic coefficient [55], the 2:1
resonance with the low-frequency mode is activated for the second avoidance ca-
ble (λ/π ≈ 4, see Fig. 2b) irrespective of the involved high-frequency (3rd or 4th)
mode, since both of them are now hybrid. Depending on frequency-tuning and hy-
bridity capacity, such activation feature persists over a rather wide range of system
parameters. Overall, this also gives broad hints about the most likely involvement of
a larger number of modes within a multiple internal resonance for avoidance cables
than for crossover cables, owing to the non-satisfied nonlinear orthogonality of the
relevant modes.

In contrast, for the 1:1 internal resonance cases at crossover/avoidance – whose
activation is governed by the non-vanishing of a few second-order nonlinear inter-
action coefficients – no practical differences exist between horizontal and inclined
cables in this respect, even though the former exhibit a larger number of vanishing
coefficients due to the nonlinear orthogonality of eigenfunctions of mixed modal
type at crossovers. Accordingly, nearly tuned 1:1 resonances are activable near both
crossovers and avoidances.

2.5.2 Resonant/Non-resonant Modal Contributions and Reduced-Order
Modelling

A major issue is concerned with the evaluation of the variable contribution of res-
onant and non-negligible non-resonant modes to cable overall response, with the
involvement of the latter (of either low-order or higher-order) strongly depending
on the role played by the second-order effects of quadratic nonlinearities, which
come into play just owed to the accomplished second-order perturbation analysis
([65], [66], [55], [32]).

The importance of quadratic modal contributions depends on the combination of
the effects (i) of the elasto-geometric parameter and the static equilibrium configura-
tion, (ii) of the modal characteristics of horizontal/vertical displacements (see, e.g.,
Fig. 3), and (iii) of the system frequencies commensurability. Some or all of these
dependencies also affect the outcomes of cubic interaction coefficients, as well as
those of the second-order displacement shape functions given by Eqs. (9) and (10).
In the sequel, some distinguishing items of non-resonant modal contributions for
horizontal and inclined cables are discussed by addressing 2:1 and 1:1 resonances
separately. In view of a finite-dimensional analysis of cable nonlinear dynamics,
which is the solely pursuable numerical treatment of the infinite-dimensional dis-
cretization of the original PDEs, comparison of contributions from various resonant
and non-resonant modes to the interaction coefficients, as determined by the gov-
erning nonlinearities, allows us to get important predictive hints about the proper
identification of variable reduced-order models (ROMs) needed to reliably describe
the nonlinear dynamics of various resonant cables.
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2:1 internal resonance: horizontal vs inclined cables

Analysis of second-order quadratic modal contributions in 2:1 resonance shows
that, besides the two resonant modes, only symmetric non-resonant modes affect
the solution of horizontal cables away from crossover ([8], [70]), whereas all non-
resonant modes – irrespective of their order or spatial character – do contribute
for inclined cables. For cables with a quite low sag below crossover/avoidance, i.e.
λ/π ≈ 1.28 (see Fig. 2), the quadratic effects due to non-resonant modes are very
small compared with those produced by the two resonant modes. Therefore, in the
nonlinear dynamic analysis of these cables, it makes sense to consider the minimal
(two-degree-of-freedom) reduced-order model accounting for the sole two resonant
modes.

However, this is no more the case for larger-sagged cables with λ/π ≈ 5.48
(Fig. 2), for which the higher-order effects of quadratic nonlinearities become pro-
nounced, and a number of non-resonant modes, e.g., the intermediate-order 4th (3rd

and 4th) and higher-order 7th, 9th, 11th (6th, 7th, 9th and 11th) ones play a meaningful
role, too, in all quadratic coefficients of the horizontal (inclined) cable.

In other cases, some non-resonant modes play a role even greater than the reso-
nant ones. This may happen, for instance, for inclined cables at avoidances (Fig.
2b), where multiple internal resonances are actually realised when considering,
e.g., the coupled 1st and 4th modes or the coupled 1st and 3rd modes nearly be-
low (λ/π ≈ 3.84) or above (λ/π ≈ 4.14) second avoidance, respectively. In fact,
in these cases, the major influence of non-resonant (i.e., non-modelled) modes sub-
stantially results from the contribution of the 3rd (4th) hybrid mode nearly coexisting
with the modelled 4th (3rd) one near avoidance for λ/π ≈ 3.84 (λ/π ≈ 4.14). Yet,
other non-resonant modes, of either intermediate or higher order, can also play a
significant role, as it occurs, e.g., for the horizontal cable with λ/π ≈ 5.48).

1:1 internal resonance: horizontal vs inclined cables

For horizontal cables at crossover, the 1:1 resonance plays the major role and the
effects of the second-order quadratic modal contributions are substantially in agree-
ment with those due to 2:1 resonances away from crossovers. They confirm the
importance of accounting for both resonant and non-resonant (higher-order, mostly
symmetric) modes in the asymptotic solution of even relatively shallow cables. In
turn, symmetric non-resonant modal contributions become as more important as
higher-order crossovers are considered, whereas antisymmetric non-resonant con-
tributions are nearly always negligible in view of a proper reduced-order model
selection.

For inclined cables at avoidances, due to the system high modal density and
strong coupling, the non-modelled hybrid mode – out of the two modes therein
coexisting with nearby frequencies – may contribute to the response even greater
than the directly-modelled hybrid mode, as already mentioned. This highlights the
need to account for both of them and the possible involvement of a larger num-
ber of coupled modes in avoidance cables than in crossover cables. For cables at
first (λ/π ∼= 2) or second (λ/π ∼= 4) avoidance with different inclinations (θ ), the
bar charts in Fig. 4 schematically show the percent contributions of each resonant
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(encircled) and non-resonant modes to the second-order quadratic terms embedded
in various nonlinear interaction coefficients K of the asymptotic solution [55]. All
charts in Fig. 4 highlight significant contributions of both resonant and non-resonant
(lower- and/or higher-order) modes for 1:1 resonant avoidance cables, confirming
the already summarised outcomes of the companion analyses of 1:1 (2:1) reso-
nant crossover (non-crossover/non-avoidance) cables ([66], [65]). For instance, the
increasing importance of non-resonant modal contributions with increasing sag is
confirmed by the higher order modal truncation (up to m ≈ 9) required for θ = 30◦
by the second-avoidance cable, which involves higher-order (r = 3, s = 4) hybrid
modes (Fig. 4c), with respect to the first-avoidance cable in Fig. 4a (up to m ≈ 5).

(a)

(b)

(c)

Fig. 4 Mode contributions to various nonlinear interaction coefficients K: θ = 30◦ a, c, 45◦
b; λ/π ∼= 2 a, b, λ/π ∼= 4 c

However, in contrast with a 1:1 resonant first-crossover cable, whose non-trivial
contributions of non-resonant antisymmetric modes (m = 4,6, . . .) to some coeffi-
cients (Krs or K3) are negligible [66], the 1:1 resonant first-avoidance cables in Figs.
4a (θ = 30◦) and 4b (θ = 45◦) reveal meaningful contributions of the m = 4 mode
to Krs, which are mainly due to the high modal density of asymmetric resonant/non-
resonant shape functions entering that coefficient. The remarkable role played by
asymmetric modal contributions of non-resonant modes is also apparent in the K3

contributions of 3rd and 5th modes in Figs. 4a and 4b, as well as in the contributions
of 5th and higher-order modes in Fig. 4c for the second-avoidance cable.



Nonlinear Vibrations of Sagged Elastic Cables 175

Overall, comparison of the effective interaction coefficients reveals quantitative
as well as qualitative differences in the nonlinear contributions (values and/or sign)
to different avoidance cables, which affect in a variable way their nonlinear dynam-
ics and stability under given control parameters.

In general, it can be stated that in the 1:1 resonance at avoidance (crossover), the
asymmetry (symmetry) features of inclined (horizontal) cables make the contribu-
tion from non-resonant modes greater (lower).

Overall, based on the results of both considered internal resonances, the quadratic
modal contributions put into evidence the significance of accounting for both res-
onant and non-resonant (higher-order) modes in the resonant dynamic solutions of
cables with significant sags and/or remarkable asymmetry features due to inclination.
Meaningful effects of non-resonant modes have been overlooked in several papers
that investigated modal interactions near crossovers by accounting for only resonant
modes in the second-order perturbation analysis or by constraining the analysis to just
the first order [51]. Based on the method of multiple scales, the lowest-dimensional
discretisation may yield quantitatively-inaccurate and/or qualitatively-crude results
with respect to the coinciding infinite-dimensional discretisation [65] or direct ([47],
[57]) perturbation analysis.

The selection of the proper reduced-order model to be referred to for captur-
ing the main response features of the actual underlying infinite-dimensional sys-
tem depends on system parameter values and coupled amplitudes with a variety of
inherent options. For instance, as regards 2:1 resonance, it has been said that the
minimal (two-degree-of-freedom) model involving only the resonant modes shows
capable of providing reliable results for very low-sagged cables. When increasing
the sag, for relatively low-sagged cables it may be sufficient to account for also non-
resonant modes in the sole evaluation of the nonlinear amplitudes and frequencies,
thereby developing an improved first-order multiple scale solution [65]. In contrast,
non-resonant modes have to be accounted for in also the evaluation of nonlinear
dynamic displacements (thus developing the full second-order multiple scale solu-
tion) – where they provide possibly meaningful spatial corrections – as the cable sag
and/or inclination become significant.

Of course, the higher-order modal contributions become less important when the
order of modal truncation is increased up to finally yielding converging results. In
this respect, sample results in terms of resonantly coupled amplitudes and frequen-
cies can be found in [65]. Anyway, it is worth noting how a two-mode resonant
solution is also capable of properly signaling the breakdown of the minimal reduced-
order modelling, whether embedded within an infinite-dimensional Galerkin expan-
sion. In such a case, it is mandatory to account in the reduced-order model for also
the modes identified as responsible for the breakdown of the minimal one.
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3 Nonlinear Phenomena in Forced Dynamic Response

Features of cable nonlinear modal interaction and ensuing finite amplitude vibra-
tions primarily depend on whether considering solely planar or actually non-planar
cable dynamics. In general, the latter can be hardly addressed via analytical or
mixed analytical-numerical treatments because of the need to consider reduced-
order models accounting for a proper number of in-plane and out-of-plane modes
possibly involved in internal/external resonance conditions such as those occurring
at crossover/avoidance points or away from them. Accordingly, just a relatively
small number of studies have been devoted to analysing cable non-planar dynamics
via asymptotic solutions of cable reduced-order models. These include classical dis-
cretised models, like the two-d.o.f. and three-d.o.f. ones by ([34], [36]) and the four-
d.o.f. model by [11] used to analyse the nonlinear vibrations of horizontal cables
at first crossover under multiple internal resonance, or the companion four-mode
model obtained by directly applying the asymptotic treatment to the original PDEs
([57], [46]). In contrast, actual multidegree-of-freedom models of large-order, to be
dealt with via purely numerical (finite element, finite difference) space-time treat-
ments, have been used in, e.g., ([80], [69], [70], [17]). Yet, the great amount of in-
formation on nonlinear dynamic response made available by these models somehow
prevents the interested reader from a clear understanding of their most basic features
associated with the occurrence of specific conditions of mechanical/dynamical inter-
est (small vs larger sag, horizontal vs inclined, crossover vs avoidance, comparative
role of internal/external resonances).

Thus, most of the research effort in the recent literature on cable nonlinear dy-
namics has been devoted to analysing solely planar nonlinear vibrations in various
possible situations, allowing us to attain a relatively general and systematic under-
standing of a few basic features of cable response, which are common to different
situations or distinguish them from each other. A sample is represented by the com-
parative summary of regular nonlinear solutions possibly exhibited by the sagged
cable in different technical conditions, already reported in Table 1.

Accordingly, we restrict ourselves to considering planar nonlinear dynamics,
where the accomplished second-order analysis allows us to refer to minimal reduced-
order models accounting for the sole two internally resonant modes, if these are
well tailored to describe specific situations of mechanical/dynamical interest. These
minimal ROMs can be deemed reliable to describe the actual system dynamics, at
least in principle, based on the information provided by the asymptotic analysis (see
Sect. 2.5.2) as regards the comparative importance of resonant/non-resonant modal
contributions and the frequency ranges where they are expected to fail. Yet, notwith-
standing the restricted framework of solely planar cable dynamics, the features of
the highlighted regular and non-regular nonlinear vibrations strongly depend on a
large number of items, which include considering (i) horizontal or inclined cables,
as well as crossover (avoidance) or non-crossover (non-avoidance) frequencies, and
comparing (ii) different conditions of internal/external resonance, with the associ-
ated cable modes, as well as (iii) different approximate continuous models underly-
ing the reduced-order ones.
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In the sequel, based on non-condensed/condensed models, multimode discretiza-
tion and second-order multiple scale analyses, the nonlinear interactions and non-
linear/complex phenomena characterising the resonantly forced planar vibrations of
various horizontal/inclined cables under different internal resonance conditions are
summarised. Reference is made to a number of paradigmatic cases of resonant re-
sponse, obtained by considering the non-condensed continuum, which is the more
general approximate model. However, comparisons with the response furnished by
the condensed model are also reported. In all of the results, fixed-point (i.e., equi-
librium or steady-state) solutions of the APMEs (written in Cartesian form, see,
e.g., [55]), corresponding to periodic responses of the underlying ODEs of motion,
are evaluated by the Newton-Raphson procedure, whereas their limit cycle (i.e., dy-
namic) solutions, corresponding to periodically modulated responses of the ODEs,
are evaluated by the shooting application. Overall response paths are traced out via
the continuation approach ([61], [45] upon quasi-statically varying a control pa-
rameter (external frequency detuning σ f or excitation amplitude F) within a small
incremental and adaptive step-size. Stability of fixed points, and the ensuing bifurca-
tions, are examined based on the eigenvalues of the relevant (4x4) Jacobian matrix,
whereas those of limit cycles are based on Floquet multipliers.

Depending on initial conditions, direct numerical simulation of the APMEs via
the fourth-order Runge-Kutta scheme is utilised to validate continuation results
and to characterise the post-bifurcation dynamics in terms of possibly non-regular
responses, by also using phase-plane projections, Fourier power spectral density
(PSD) and Poincaré maps (sampled at each forcing period) to characterise responses
after decayed transient states. Note that if one is interested in validating the ROM
ensuing from the perturbation analysis, simulations should actually affect the origi-
nal PDEs (4) governing the actual nonlinear system.

In all continuation diagrams, solid lines indicate stable fixed points, whereas
dashed and dotted lines indicate unstable fixed points whose stability is exchanged
through saddle-node (SN) or pitchfork (PF), and Hopf (HF) bifurcations, respec-
tively. The latter play a crucial role in the onset of periodic, quasi-periodic and
chaotic responses, which are established via different mechanisms including period
doubling (PD) and intermittency. Filled (open) symbols indicate stable (unstable)
limit cycles of amplitude and phases.

3.1 Multimodal Interaction and Resonant Vibrations

Representative cases of multimodal interaction and resonant vibrations of horizontal
and inclined cables are selected to properly highlight the effects of a number of items
on the system response. Sample frequency-response diagrams are presented. More
complete scenarios of multimodal interaction and resonant vibrations can be found
in ([66], [55]) in terms of both frequency-response and force-response diagrams.
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3.1.1 Horizontal Cables

First, we consider a horizontal cable at nearly crossover in either 1:1 or 2:1 inter-
nal resonance with XH = 850m, A ≈ 0.1159m2, wC ≈ 9.48kN/m, E = 1.794×
108 kN/m2 [66] and a relatively large sag. Second crossover (λ/π ≈ 4.03) is con-
sidered, where EA/H = 1018.26 and the sag-to-span ratio is about 1/20. Therein,
both internal resonances involve a higher-order symmetric and a lower-order anti-
symmetric mode, being the 4th (ωs = 12.544) and 3rd (ωr = 12.537) modes in the
1:1 resonance, and the 4th and 1st (ωr = 6.223) modes in the 2:1 resonance, respec-
tively (see Fig. 2a). The external excitation is assumed to put energy into the system
via the symmetric higher-order (s) mode, with the companion mode being driven
into the response via the relevant internal resonance. As already reported in Table 1,
both coupled (ar,as) and uncoupled (as) solutions exist in both 1:1 and 2:1 reso-
nance cases. Small damping c such that μr = 0.005 and μs = 0.006 is considered in
both cases, along with perfect internal tuning σ = 0.

1:1 internal resonance

The frequency-response curve obtained with the non-condensed continuous model
in the 1:1 internal resonance case is shown in Fig. 5a for a small value of the har-
monic forcing amplitude F = 0.002 [66]. It exhibits stable/unstable coupled solu-
tion (ar, as) curves on both sides of the zero-σ f axis, which ensue from the uncou-
pled as branches via PF1 and PF2 bifurcations. In particular, the diagram exhibits a
softening-type nonlinearity, with the stable coupled solutions persisting over a wide
σ f range. The directly excited as amplitude prevails left of perfect external tuning
(σ f = 0), whereas the internally-resonant excited ar amplitude slightly prevails right
of it.

The dynamic characteristics of the overall response are similar to those occur-
ring at first crossover, under a comparable 1:1 resonance involving the first two

(a) (b)

Fig. 5 Frequency-response curves a and dynamic solution branches after Hopf bifurcations
b of 1:1 resonant second crossover cable (λ/π ≈ 4.03). σ = 0, F = 0.002
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antisymmetric (lower-order) and symmetric (higher-order) modes, as also pre-
dictable by the analysis of the nonlinear interaction coefficients [66]. Minor quanti-
tative differences are herein represented by the larger range of coupled solution with
no coexisting stable uncoupled solution (in between SN2 −PF1 in Fig. 5a), and by
some major extent of energy transfer from the directly excited as mode to the driven
ar mode. Yet, there are also some qualitative differences. At first crossover, there
are branches of coupled solution always stable, whereas at second crossover (Fig.
5a) two Hopf bifurcations occur in the coupled branches before they experience the
jump via SN1 to the uncoupled branches, when σ f is swept up. The HF1 and HF2

points occurring around σ f = 0 are responsible for coupled-mode periodic solution.
A comparison of dynamic solution branches emerged from HF1 and HF2 is depicted
in Fig. 5b, where HF1 is seen to be sub-critical because the ensuing limit cycle is
unstable, and a jump from the stable branch onto the steady response via cyclic-fold
bifurcation occurs when sweeping σ f down, whereas HF2 is super-critical because
the ensuing limit cycle is stable.

To verify the existence of amplitude-steady or -modulated solutions and to better
characterise the modal interactions, as distinguished by the stability, continuation
results are complemented by numerical integrations of the APMEs with initial con-
ditions of the fixed points. Associated with Fig. 5b in which F = 0.002, the time
histories showing the coupled ar (solid lines) and as (dashed lines) amplitudes are
illustrated in Figs. 6a and 6b for σ f = −0.1 and σ f = 0, respectively. Considering
still σ f = 0 but a larger F (0.005), the associated time histories are shown in Figs. 6c.

(a) (b)

(c)

Fig. 6 Amplitude time histories from numerical integration of 1:1 resonant second crossover
cable (λ/π ≈ 4.03). σ = 0 and a σ f = −0.1, F = 0.002, b σ f = 0, F = 0.002, c σ f = 0,
F = 0.005. Solid (dashed) lines denote ar (as)
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For σ f = −0.1, it is seen how, after experiencing initial short-interval transient
dynamics, the time response settles down onto a steady-state coupled response, as
predicted by continuation. Analogously, for σ f = 0, the predicted coupled-mode
dynamic solution after the Hopf bifurcation HF1 (Fig. 5a) is confirmed by the pe-
riodically amplitude-modulated time histories established in Fig. 6b upon imposing
the unstable fixed-point solution as initial conditions. However, when increasing F
at σ f = 0, with unchanged initial conditions, more marked amplitude-dependent
limit cycles and stronger interaction features are seen to occur in Fig. 6c with re-
spect to Fig. 6b. Overall, numerical results validate the continuation outcomes, yet
providing a further comparison in terms of nonlinear temporal behaviours.

It is worth commenting on whether and how the response changes when using the
condensed model [66] instead of the non-condensed one. The overall pattern of the
frequency-response diagram is substantially confirmed apart from a more softening
nonlinear response (also predictable by looking at the relevant interaction coeffi-
cients), which entails differences of the ar, as amplitude values, slight shifts of the
SN, PF and HF bifurcation points, quantitative differences in the stationary and non-
stationary amplitudes, and a few qualitative differences of non-regular responses
(e.g., chaoticity instead of quasi-periodicity for the case corresponding to Fig. 6c).

2:1 internal resonance

Let’s now consider the two-d.o.f model suitable to describe the 2:1 internal res-
onance dynamics of the same cable at second crossover. The relevant frequency-
response curve obtained with the non-condensed model is shown in Fig. 7 [64] for
the same values of forcing amplitude (F = 0.002), modal damping (μr = 0.005
and μs = 0.006) and perfect internal detuning (σ = 0). Of course, the mechanical
meaning of the two internally resonant modes is different with respect to the 1:1
resonance case, i.e., the higher-order (s) mode is still the 4th one whereas the lower-
order (r) mode is now the 1st one, however still being the former symmetric and the
latter antisymmetric, as requested by the conditions to be satisfied for actual internal
resonance activation.

There is an overall resemblance of the frequency-response diagram with that at
1:1 resonance (Fig. 5a) as regards the softening behaviour, the onset of the coupled
(ar, as) solution in the neighbourhood of σ f = 0, and the occurrence of a small range
of dynamic solutions along the relevant stable branches. However, the coupled solu-
tion is seen to persist (stable) in a range of forcing frequencies wider than that in the
1:1 case and, mostly, to exhibit indirectly excited ar amplitudes definitely prevailing
with respect to the directly excited as amplitudes, due to modal interaction effects
and energy transfer from higher-order to lower-order mode. These dynamic charac-
teristics are in qualitative agreement with the cable response results shown in ([48],
[34]) for the 2:1 internal resonance involving the first symmetric in-plane (higher-
order) and out-of-plane (lower-order) modes at first crossover and, more generally,
they appear to be typical of many other two-d.o.f systems at 2:1 internal resonance.
Again, using the condensed model leads to results with quantitative and some minor
qualitative differences [64].
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If one considers a non-crossover cable (λ/π ≈ 2.95) in between first and second
crossover points, with the symmetric 2:1 internally resonant modes being the 2nd

and 5th, respectively (see Fig. 2a), considerable differences occur with respect to the
response of the 2:1 resonant cable at second crossover, as shown by the frequency-
response diagram in Fig. 8. The uncoupled as solution now exhibits a hardening
nonlinearity, while the indirectly excited ar amplitudes play a dominant – or com-
parable – role in the coupled responses, with respect to the directly excited as am-
plitudes, only in a small range around perfect detuning.

For all considered cases, the analyses and comparisons can of course be extended
to force-response diagrams, where quantitative – and also some qualitative (as re-
gards stability and bifurcations) – differences may occur when varying the internal
resonance, the involved modes, the crossover/non-crossover condition, and the con-
tinuous model in the background.

3.1.2 Inclined Cables

For inclined cables, attention is solely focused on the 1:1 resonance at avoidance
[55] in order to highlight the differences due to the occurrence of hybrid (instead of
symmetric and antisymmetric) modes, with respect to the 1:1 resonance at crossover
of companion horizontal cables. Indeed, the nonlinear response at 2:1 internal reso-
nance does not exhibit meaningful differences with respect to what already observed
for horizontal cables. In particular, uncoupled and coupled responses do coexist both
at avoidances (as in Fig. 7 for the second crossover cable) and away from them (see
Table 1).

Fig. 7 Frequency-response curves of 2:1 resonant second crossover cable (λ/π ≈ 4.03), σ =
0, F = 0.002
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Fig. 8 Frequency-response curves and bifurcations of 2:1 resonant non-crossover cable
(λ/π ≈ 2.95), σ = 0, F = 0.002

This is no more the case for 1:1 resonant avoidance cables, as also summarised
in Table 1, where the solely coupled (ar, as) mode solution exists. The same values
of excitation amplitude (F = 0.002) and damping coefficients (μr = 0.005 and μs =
0.006) as those considered for the horizontal cables are referred to, whereas herein
the internal detuning σ is only allowed to be positive, and the value σ = 0.04 is
considered. An additional parameter is here represented by the inclination angle.

The first avoidance cable with θ = 45◦ is considered, whose frequency-response
curves of ar and as amplitudes are reported in Fig. 9. Overall, the responses are seen
to exhibit two coupled-mode solutions isolated from each other: the main one (B1)
entirely spanning the frequency σ f range in the neighbourhood of nearly perfect
primary resonance, with predominant ar amplitudes, whereas the other one (B2)
exhibiting the so-called frequency island phenomenon, with predominant as ampli-
tudes. Note that such kind of coupled-mode isolated solutions also occur at lower
inclinations or higher avoidances [55], even though the range of existence of B1
becomes larger and that of B2 variably moves towards left of the zero-σ f axis.
Generally speaking, these dynamic characteristics notably differ from those of 1:1
resonant horizontal cables at crossovers (see Fig. 5 as well as [66]), wherein the B1
and B2 branches merge together giving rise to both uncoupled- and coupled-mode
responses, with the latter originating from the former via pitchfork bifurcations and
with Hopf bifurcations being found only in the coupled-mode branch. It is worth
mentioning that coupled-mode responses and frequency islands have been docu-
mented also for other systems exhibiting avoidances, e.g. in [30], who considered
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1:1 resonant imperfect beams at first avoidance with primary resonance of a low-
frequency mode.

In Figs. 9a (ar) and 9b (as), overall jump phenomena are seen to occur through
turning points, and there are three Hopf bifurcations, HF1 and HF2 located on the
main B1 branch, and a single HF3 occurring in the B2 island along with a connec-
tion of unstable foci and saddles (having two positive real eigenvalues). The two
isolated solutions overlap with each other, with meaningful ranges of two unstable
foci coexisting in a particular σ f range nearly centred at the zero-σ f axis.

The solutions emerged from each HF point are traced out in Figs. 9c (ar) and
9d (as), which reveal individual routes of continuation results. All HF1−3 bifurca-
tions are supercritical because the born limit cycles are stable. All dynamic solu-
tion branches lose stability via period doubling (PD1−3) bifurcations, each of which
having one critical Floquet multiplier that crosses the unit circle at -1 [45]. Such
PD bifurcations pave the way to quasi-periodic or chaotic oscillations, depending
on given σ f values and initial conditions (see Sect. 3.2).

Fig. 9 Frequency-response curves (a, b) and dynamic solution branches after Hopf bifurca-
tions (c, d) of 1:1 resonant inclined cable at first avoidance. θ = 45◦, σ = 0.04, F = 0.002
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3.2 Modulated, Non-regular, and Multi-harmonic Responses

Overall, depending on the considered resonance cases, system control parameters,
and initial conditions, a multiplicity of (stable/unstable) equilibrium and periodic so-
lutions may occur, along with meaningful transitions from periodic to quasi-periodic
and chaotic responses. Upon Hopf bifurcations, limit cycles may undergo cyclic-
fold as well as direct period doubling bifurcations. A cornucopia of nonlinear phe-
nomena are observed: sequences of period doubling bifurcations to chaos, funnel-
shaped chaos, on-off intermittency mechanisms, sudden switching of solutions via
boundary crises, with also competing effects of dynamic solutions. Multi-harmonic
response features occur mainly due to contributions from higher-order non-resonant
modes. The dynamic deflections occurring in chaotically resonant vibrations ex-
hibit non-periodic multi-mode features, with time-varying amplitudes which may
become significantly large.

In the sequel, for representative purposes, the non-regular responses of the 1:1
resonant inclined cable at first avoidance, established in Figs. 9c, 9d upon the vari-
ous Hopf bifurcations, are reported. They have been obtained via direct numerical
integration of the APMEs written in the Cartesian variables p, q [55], aimed at val-
idating the continuation prediction and showing rich nonlinear dynamics after HF
and PD bifurcations.

Along the branch starting from HF2, a sequence of period doublings leading to
chaos is highlighted by the (pr, qr) phase portraits in Fig. 10, where σ f is slowly
decreased with fixed initial conditions corresponding to the PD2 solution at σ f =
0.02357. It is seen that as the limit cycle (Fig. 10a) experiences two-cycle (Fig.
10b), four-cycle (Fig. 10c) and multiple-cycle (Fig. 10d) closed loops generated by
consecutive PD bifurcations, the last trajectory undergoes a chaotically-modulated
response at σ f = 0.0225 (Fig. 10e), thereby giving rise to aperiodic time histories.
Further slightly decreasing σ f (Fig. 10f), transient chaos appears and then the
orbit undergoes a likely boundary crisis, where the chaotic set is destroyed and
the post-bifurcation state suddenly escapes to the bounded fixed-point B1 solution
(Figs. 9a, 9b).

A route to chaos via PD is also detected when continuing the solution from HF1

with a slow increment in σ f . By assigning initial conditions corresponding to the
PD1 solution (σ f = −0.00735), the (pr, qr) and (ps, qs) phase planes which exhibit
a funnel-shaped chaotic attractor [45] at σ f =−0.004812 are shown in Figs. 11a and
11b. The associated Poincaré (ar, as) section reveals a collection of points spreading
out over the limited region in Fig. 11c. Increasing σ f thereafter, a crisis occurs at
σ f = −0.004312 and the resulting response ends up with a stable fixed point of the
overlapped B2 branch in Figs. 9a and 9b.

Qualitative differences occur regarding the route to chaos when continuing the
dynamic solution from HF3 of B2 branch in Figs. 9c and 9d. Since neither fixed
point nor periodic stable solutions take place in the region between PD3 and the
saddle node SN* of B1 branch, one would expect either quasi-periodic or aperi-
odic response, depending on initial conditions. By initiating with the PD3 solution
and slowly increasing σ f towards σ f ≈ 0.0035, the ensuing nonlinear time histories
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Fig. 10 Phase portraits showing the transition from periodically to chaotically modulated
dynamic response and boundary crisis of inclined cable in Fig. 9 (from HF2)

Fig. 11 Phase portraits and Poincaré map showing chaotically funnel-shaped dynamic re-
sponse of inclined cable in Fig. 9 with σ f = −0.004812 (from HF1)

exhibit intermittently chaotic outbursts, as shown in Fig. 12. Thus, the PD3 bifur-
cation may be subcritical, and the ensuing intermittency may be of type III (on-off
intermittency) [45]. Applying the same initial conditions and varying σ f further,
the nonlinear dynamics may be quasi-periodic as well as chaotic. The occurrence
of quasi-periodic motion is exemplified by the time histories and Poincaré map of
(ar, as) amplitudes in Fig. 13 for σ f = 0.006. Figs. 13a and 13b highlight multi-
frequency responses, whereas Fig. 13c exhibits a closed-loop map. Of course, when
σ f meets a critical value, a crisis finally occurs (σ f ≈ 0.011) and the response jumps
onto the stable fixed point of B1 branch. Thus, the mentioned sudden changes in
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(a) (b)

(d)(c)

Fig. 12 Time histories of the Cartesian components p, q of the APMEs showing the inter-
mittent chaotic response of inclined cable in Fig. 9 with σ f = 0.0035 (from HF3)

Fig. 13 Time response histories and Poincaré map showing the quasi-periodic response of
inclined cable in Fig. 9 with σ f = 0.006 (from HF3)

nonlinear response via the crisis may lead to switching between dynamic and equi-
librium solutions of the two overlapping branches.

Examples of power spectral density (PSD) corresponding to qs responses in Figs.
10d, 10e, 11 and 13 are shown in Figs. 14a-d, respectively. The PSD of Fig. 14a
illustrates how, when period doubling takes place, the dominant sharp peak and
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its sub-harmonics simultaneously occur along with their integer multiples, justify-
ing the multiple closed-loop orbit in Fig. 10d. On the contrary, due to chaotically-
modulated oscillations (Figs. 10e, 11), the PSDs of Figs. 14b and 14c highlight a
major spike associated with the excitation frequency and many side-banding com-
ponents distributed continuously over a broad frequency band with high density.
Differently, the PSD of Fig. 14d exhibits many harmonics whose frequencies are
not commensurate in perfectly integer ratios, which confirms how the response in
Fig. 13 is quasi-periodic.

(a)

(c) (d)

(b)

Fig. 14 PSDs of qs-response histories corresponding to Figs. 10d a, 10e b, 11 c and 13 d

3.3 Nonlinear Dynamic Displacements and Tensions

As already anticipated in Sect. 2.4, the availability of the coupled dynamic config-
urations of the cable associated with the relevant nonlinear normal modes – which
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ensue from accomplishing the multiple scale analysis up to the second order – al-
lows us to account for the spatial corrections, with respect to the reference linearly
resonant modes, due to the quadratic nonlinearity effects of all non-resonant modes
considered in a finite discretization. In turn, this is of major importance as regards
the evaluation of cable nonlinear dynamic tension. Let’s now address the matter for
both the horizontal and the inclined cable.

The 2:1 resonant horizontal cable at second crossover, already addressed in Sect.
3.1.1, is considered, whose results obtained with the reference continuous model
of non-condensed cable are also compared with those furnished by the condensed
cable model most commonly used in the cable dynamics literature: this allows us to
highlight important dynamic effects taken into account by the former (and instead,
neglected by the latter) in terms of longitudinal dynamics and space-dependent dy-
namic tension. Based on Eq. (10), the nonlinear spatio-temporal variation of cou-
pled vertical dynamic displacement profiles (with σ = 0, σ f = −0.2, F = 0.002,
see Fig. 7) is visualised in Fig. 15. The solid (dashed) lines denote time-varying
spatial distributions over a half period (t = 0−0.5Tf ) of forced vibrations furnished
by the non-condensed (condensed) model [64]. It is evident how, due to the inter-
actions between symmetric and antisymmetric modes at second crossover, some of
the 2:1 resonant combined dynamic displacements are actually asymmetric with re-
spect to cable midspan, e.g., at t = 0 and 0.4 Tf . These results are in qualitative
agreement with the numerical finite difference results of a second-crossover cable
in [70], which highlighted the 2:1 resonant normal modes and their spatial transition
from nearly antisymmetric (t = 0.2Tf ) to nearly symmetric (t = 0.5Tf ), in the non-
linear free vibration responses. Since the corresponding (ar, as) stable amplitudes
of non-condensed and condensed models are quantitatively different, quantitative
discrepancies occur in the time-varying second-order coupled displacements, along
with some qualitative differences occurring in small portions of the superimposed
shapes, e.g., at t = 0.

With reference to Fig. 15, the space-time varying distributions of nonlinear dy-
namic tension (Td = EAed) of the non-condensed model (Fig. 16a) accounting for
both modal coupling and contributions of longitudinal/vertical displacements are
evaluated through the dynamic strain ed given in Eq. (3), whereas the approximate,
spatially-constant, nonlinear dynamic tensions of the condensed model (Fig. 16b)
are evaluated based on Eq. (5). All nonlinear dynamic tension values – which can
be either positive (tensile-type) or negative (compression-type) – are normalised
with respect to the maximum static tension TH , and they are displayed with time
sequence following the given arrow direction. Overall, the spatially asymmetric
character of the coupled (ar, as) 2:1 resonant configurations associated with the
non-condensed model, (see, e.g., Fig. 15 at t = 0), entails a remarkable asymmetric
feature of the nonlinear dynamic tension profiles shown in Fig. 16a, whereas the
condensed model, besides overlooking this essential character, provides – based on
strain average – a spatially-constant dynamic tension at each time (Fig. 16b). From
a dynamic design point of view, the maximum tensile or compressive Td/TH val-
ues of the non-condensed model in the half period t = 0− 0.5Tf are considerably
larger than those of the condensed model, with percent differences up to about 80%.
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Fig. 15 Nonlinear coupled vertical dynamic displacements of 2:1 resonant second crossover
cable over a half period of forced vibration, with non-condensed (solid) and condensed
(dashed) models

Fig. 16 Nonlinear dynamic tension distributions associated with coupled responses of 2:1
resonant second crossover cable over a half period of forced vibration: a non-condensed and
b condensed models

Therefore, the latter considerably underestimates the nonlinear dynamic, both ten-
sile and compressive, stresses in the resonantly coupled response of a suspended
cable with even low extensibility and sag-to-span ratio.

Along the same line, displacement and tension results as well as model compar-
isons for the 1:1 resonant horizontal cable at first or second crossover and for a 2:1
resonant non-crossover cable are reported in [66].

Moving to the inclined cable, the space-time distribution governing steady and
chaotically-modulated dynamic displacements and tensions due to 1:1 resonant in-
teractions is highlighted [55]. Depending on the obtained amplitudes (ar, as) and
phases (γr, γs), the second-order (u, v) coupled dynamic deflections are constructed
through Eq. (9), whereas the relevant dynamic tensions (Td = EAed) are evaluated
based on displacement gradients through the strain ed in Eq. (3). Again, the Td value
is normalised with respect to the associated maximum static tension TH .

The first comparison of steady responses is illustrated in Fig. 17 for first-
avoidance cables having different stable fixed points. The u, v and Td/TH responses
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Fig. 17 Space-time varying coupled dynamic (u, v) configurations and tension distributions
(Td/TH ) of 1:1 resonant inclined cable at first avoidance (θ = 45◦), based on fixed-point
amplitudes at σ f = −0.02, over a half period of forced oscillation, corresponding to B1 a–c
and B2 d–f solutions in Figs. 9a and 9b

at σ f = −0.02 of the B1 and B2 solutions for the θ = 45◦ cable in Figs. 9a and 9b
are visualised in Figs. 17a-c and 17d-f, respectively, over a half period of harmonic
excitation. Here, empty (filled) circles indicate the initial (half-period) responses.
With regard to the B1 solution, the u and v asymmetric profiles exhibit predomi-
nance of the indirectly-excited r mode (see Fig. 3) according to the fact that the ar

amplitude (0.00134) is significantly greater – by an order of magnitude – than the
as amplitude (0.000475). The spatially asymmetric feature of Td/TH responses, due
to the strain variation effect, is already visible in Fig. 17c.

With respect to B1 responses, the associated B2 (frequency-island) responses in
Figs. 17d and 17e exhibit the predominance of the directly-excited s mode (see Fig.
3) because the as amplitude (0.00347) is now much greater than the ar one (0.0006).
Accordingly, the second-order spatial corrections from resonant and non-resonant
(higher-order) modes are significant due to quadratic nonlinear effects, thereby lead-
ing to some essential multi-mode responses. Apart from the induced Td/TH re-
sponses being greater, both spatial and temporal variation of tensile/compressive
forces are considerably important (Fig. 17f).

Next, the comparison of two coexisting periodic and chaotic responses is shown
in Fig. 18. At σ f = 0.0225, either the single-valued, steady-state amplitudes (phases)
of stable B1 solution (Figs. 9a and 9b) or the multi-valued, chaotically modulated
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amplitudes (phases) based on numerical integrations of modulation equations (Fig.
10e) are considered. The associated periodic and non-periodic (u, v, Td/TH) re-
sponses are depicted in Figs. 18a-c and 18d-f, respectively, the latter being recorded
over five periods of excitation.

Unlike the θ = 45◦ case with σ f = −0.02 (Figs. 17a and 17b), the steady u and
v responses at σ f = 0.0225 (Figs. 18a and 18b) exhibit the predominant s-mode
profiles because as (0.001156) is greater than ar (0.000252). This highlights how,
depending on the control parameter, one given solution (e.g., B1) may, of course, be
dominated by either the directly-excited or indirectly-excited mode. On the contrary,
the multi-modal asymmetric spatial responses become evident when the cable ex-
periences chaos, as shown in Figs. 18d and 18e. Since the varying ar, as amplitudes
may have the same order of magnitudes, from a modal superimposition viewpoint
contributions from the two resonant modes are comparatively important, with also
meaningful second-order spatial corrections from all retained modes. Consequently,
in Fig. 18f, the induced dynamic tensile/compressive tensions are outstandingly in-
creased, with the associated non-periodic non-uniform spatial distribution, whereas
in Fig. 18c, the small-amplitude responses show rather spatially-uniform dynamic
tensions. Thus, in cable design, one has to worry about remarkable asymmetric fea-
tures of spatially non-uniform, strongly time-varying, tensile/compressive dynamic
tensions induced by chaotic oscillations, as shown herein for the 1:1 resonant cable
at first avoidance.

4 Experimental Characterisation of Cable Nonlinear Dynamics

As exemplified in Sect. 3, flexible continuous (infinite-dimensional) systems as
the sagged cables are prone to finite amplitude vibrations involving several spa-
tial modes in many different regular or non-regular response regimes. Their reliable
and possibly complete description in control parameters space is of paramount im-
portance from both the theoretical and practical point of view, and should be ac-
complished by constructing systematic, yet demanding, response charts allowing
us to highlight the occurrence of rich and varied classes of motion, which are also
dependent on the realisation of meaningful external/internal resonance conditions.
It is apparent how this is indeed a hard issue for systems with a high modal con-
tent, both if working in a substantially analytical context and via purely numerical
techniques: in the former case, due to the need to preliminarily select a number of
ROMs capable to reliably describe the nonlinear response of the actual underlying
system in different dynamical situations, in the latter case owed to the great diffi-
culties encountered in handling and classifying a possibly huge amount of available
results.

A fundamental role is played in this respect by the nonlinear experimentation on
physical models, which is mandatory for getting information on the actual nonlinear
response of flexible systems, by properly sustaining, validating and/or driving com-
panion theoretical and numerical investigations. As a matter of fact, confirmation
of, e.g., the features of a regular response obtained in a certain parameter range, or



192 G. Rega

Fig. 18 A comparison of space-time varying coupled dynamic (u, v) configurations and ten-
sion distributions (Td/TH ) of 1:1 resonant inclined cable at first avoidance (θ = 45◦), based on
fixed-point a–c and time-varying d–f amplitudes at σ f = 0.0225, over a half period of forced
oscillation: corresponding to B1 in Figs. 9a and 9b a–c, and to Fig. 10e with t ≈ 211.2−216.2
d–f, respectively

information about the possible occurrence and characterisation of new/complex phe-
nomena associated with the governing nonlinearities but often un-modelled in the
theoretical analyses, can be solely provided by careful experimental investigations.

For the sagged cable, it has been already mentioned (Sect. 3) how a large amount
of meaningful nonlinear phenomena recently highlighted in the literature have been
concerned with the sole, or prevailing, planar nonlinear response of the system, often
addressed via models which are also rather sophisticated. Yet, the role played in the
actual response scenario by the system out-of-plane behaviour, as well as the extent
of the likely ensuing modifications in the highlighted phenomena, become apparent
only when dealing with a physical model of sagged cable.

Apart from former experimental investigations mainly devoted to analysing the
system response in regular regimes [35] or more recent ones focused on specific
response features of nearly taut [12] or sagged, horizontal [18] or inclined [58],
cables, a quite systematic investigation of cable nonlinear experimental dynam-
ics has been accomplished in about the last decade by referring to a horizontal
elastic cable/mass system hanging at vertically and harmonically moving supports
(Fig. 19), and realising, for relatively low excitation frequencies, a fairly reliable
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model of bare suspended cable [15]. As mandatory in highly flexible systems, no-
contact devices (optical cameras) have been used to measure the two, in-plane and
out-of-plane, components of motion of a few masses located at different positions
along the cable, produced by the in-phase or out-of-phase motion of the supports.
System parameters have been adjusted to produce two different conditions of mul-
tiple internal resonances involving either all first four in-plane (vertical, V) and
out-of-plane (horizontal, H), symmetric and antisymmetric, modes (2:2:1:2) or only
three of them (2:2:1, first in-plane and out-of-plane antisymmetric, first out-of-plane
symmetric), for a cable at first crossover or a slightly slacker cable, respectively.
Nonlinear dynamics have been investigated in various excitation frequency ranges,
which include meaningful external (primary and subharmonic) resonance condi-
tions of either modes. Former studies were devoted to analysing and classifying the
local and overall system response – in either a regular or non-regular regime – in
a control parameter plane ([10], [56]). More recent studies have been dealing with
the systematic characterisation of some main features of complex response, and of
the relevant bifurcation mechanisms, accomplished by properly reconstructing the
system nonlinear dynamics from experimental measurements ([3], [52], [53]).

As a matter of fact, based on both theoretical/numerical analyses and experimen-
tal investigations, quasi-periodic and chaotic motions are often seen to occur in the
cable response, mostly in between regions of clearly dominating low-dimensional
regular motions. Accordingly, one major effort has to be devoted to investigat-
ing possible finite dimensionality in the complex dynamics of the actual infinite-
dimensional system, and to detecting minimum numbers and features of the spatial
configuration variables which take meaningful part in its complex motions.

This can be done via a number of sophisticated experimental techniques, which
allow us, among others, (i) to characterise the response dimensionality in terms of
both time and spatial complexity, and (ii) to unveil actual low-dimensionality, if
any, of both regular and non-regular response, with the ensuing identification of
suitably reduced, and possibly minimal, theoretical models able to describe the sys-
tem dynamics in a certain control parameter range. Experimental analyses may also
provide important information about robust bifurcation features of regular responses
towards complex dynamics.

In the sequel, attention is solely focused to the characterisation of complex dy-
namics, by shortly referring to the relevant techniques, by summarising interesting
features of a number of experimentally observed scenarios of transition to chaos,
which are also discussed against canonical bifurcation scenarios from dynamical
systems theory, and by dwelling on the hints provided by the experimental investi-
gation as regards formulation of proper ROMs.

4.1 System Dimensionality and Reduced-Order Models

Upon analysing and classifying local and overall system responses in regular
or non-regular regimes, based on various dynamical systems tools ([42], [45]),
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(a)

(b)

Fig. 19 Mechanical model with slacker system parameters and dynamic characteristics a;
experimental setup: the hanged nylon wire carrying eight concentrated masses, the shakers
and the two movable optical cameras b

attention is focused on characterising some main features of complex response, and
of the relevant bifurcation mechanisms, by means of proper reconstruction tech-
niques of the dynamics from experimental measurements. The dimensionality of
the response is characterised in terms of both time and spatial complexity. Time
complexity is evaluated by calculating invariant measures of the dynamics through
the delay embedding procedure ([41], [72]). Besides Poincaré map inspection and
power spectra analysis, information about the dimension of the quasi-periodic and
chaotic attractors is obtained from correlation dimension evaluations ([21], [1]) car-
ried out on time-delay reconstructed phase spaces. In turn, spatial complexity is
tackled via two approaches: (i) by relating the embedding dimension of the recon-
structed attractors to the dimension of the linear phase space, which gives infor-
mation on the involved number of dynamical degrees of freedom; (ii) by analysing
the spatial structure of the non-regular flow through the proper orthogonal decom-
position [23], which allows the identification of the dominant experimental eigen-
functions (proper orthogonal modes, POMs) corresponding, from the mechanical
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viewpoint, to the configurations most visited by the system, on average, during its
spatio-temporal evolution.

Classification of motions is made based on topological dimension of the mani-
folds where they develop (growing, in regular regime, from one to three torus) and
on correlation dimension of the attractors (from one to three in regular regime, coin-
ciding with their local topological dimension; non integer in chaotic regime). In the
following, regular motions are labelled Pm-Mk, periodic, QPm-Mk, quasi-periodic,
with the labels giving information on the attractor periodicity (m) and on the num-
ber of involved POMs (k), the latter coinciding with the dimension of the invariant
manifold where the motion develops unless the manifold is resonant.

Though being the experimental system potentially infinite-dimensional, not only
its regular response but also the complex one are shown to be low-dimensional in
several cases. Indeed, more than 90% of the non-regular signal power can be rep-
resented by using up to three or four POMs, among those already responsible for
the higher-dimensional coupled regular dynamics. In addition, an overall heuristic
correspondence is seen to occur between the main POMs and the main linear phys-
ical modes of the system, so that the former are often labelled by referring directly
to the corresponding in-plane (vertical), Vn, or out-of-plane (horizontal), Hn, cable
modes (n =odd, symmetric; n =even, antisymmetric).

These low-dimensionality features are of notable interest to the aim of associ-
ating to each class of complex response of the experimental system, a class of re-
duced order theoretical models able to describe the observed dynamics. Within the
framework of a reduction procedure, these can be built specifically in each region of
control parameters space either by using just the identified POMs, or – getting hints
from them – by projecting the system infinite-dimensional dynamics on the known
sub-optimal basis of corresponding linear modes [4].

4.2 Bifurcation Scenarios and Complex Dynamics

Major efforts in experimental analysis of non-regular dynamics are devoted to prop-
erly characterising (i) the bifurcation paths leading to complex attractors, (ii) the
extent of the relevant regions of occurrence, and (iii) the robustness of transition
mechanisms in parameter space. The most challenging task consists of satisfacto-
rily characterising the various possible bifurcation scenarios to complex response,
as well as the response itself. Generally speaking, this can be done by realising a
profitable feedback between experiments and theory which allows us: (i) to possibly
trace preliminary experimental results back to a canonical scenario from dynamical
systems theory, (ii) to exploit hints from the latter to improve and steer the exper-
imental analysis, (iii) to systematically pursue ahead the physical investigation by
detailing the most robust features of system response and by clarifying to which
extent they can be referred to theoretical scenarios, (iv) to improve cable modelling,
and (v) to identify and analyse a proper reduced-order cable model aimed at (par-
tially) reproducing the highlighted experimental scenarios.

A general overview of the richness and robustness of different global bifurca-
tion scenarios to chaos, occurring with different support motion in various regions
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of the excitation control parameter space, is reported in Table 2. Two main routes
to chaos, possibly coexisting and competing with each other, do occur, namely a
quasi-periodic, QP, scenario and a scenario involving the global bifurcation of an
homoclinic, HOM, (or heteroclinic, HET) invariant set of the flow [52].

Table 2 Transition to non-regular dynamics. A summary of bifurcation scenarios to non-
regular responses for different cables and support motions, in various ranges of V1-resonant
excitation frequency, with the involved configuration variables (POMs)

support motion
cable in-phase anti-phase

external resonance condition external resonance condition
primary subharmonic-½ primary subharmonic-½

scenario POMs scenario POMs scenario POMs scenario POMs
slacker QP V1 H1 H2 HOM V5 H5 HOM V2 H2 HOM V4 H4

(HET) V3 H3 (QP) (+H1TH2)
crossover no chaos HOM V5 H5 HOM V2 H2 HOM V4 H4

V3 H3

4.2.1 Quasi-periodic Transition to Chaos

Quasi-periodic transition to chaos via breakdown of regular dynamics on 3-Tori is
robust for the slacker cable excited by in-phase support motion at primary resonance
with the first symmetric in-plane mode (V1) (Table 2). This scenario looks rich
and involved due to complicated interaction between internally resonant and non-
resonant modes, motion on a 2- or 3-Torus, and phase locked three-mode motions
on 3-Tori [3].

In the QP transition to chaos, a close and intertwined sequence of regular and
non-regular response classes occurs, as shown by the schematic bifurcation diagram
of Fig. 20, obtained by varying the excitation frequency. Therein, the additional
label nT, n = 2,3, is used to distinguish between quasi-periodic motions with a
number n of incommensurate frequencies (equal to correlation dimension) different
from – due to a resonant torus –, or equal to, the dimension of the manifold where
they develop, the label Mk being omitted in the latter case for the sake of simplic-
ity. Moving from the reference period 1 response dominated by the V1 mode, the
following response classes are identified: (i) two-frequency quasi-periodic motions
on two-dimensional manifolds (2T-QP1); (ii) two-frequency phase-locked quasi-
periodic motions on three-dimensional manifolds (2T-QP2-M3); (iii) stable three-
frequency quasi-periodic motions (3T-QPm); (iv) chaotic motions (CH1, CH2); (v)
phase-locked periodic motions which are invariant sets of dimension 1 on three-
dimensional manifolds (PmM3). Various kinds of bifurcation (Fig. 20) mark the
passage from one response class to another.
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Fig. 20 Schematic bifurcation diagram (in-phase support motion, primary resonance). H:
Hopf, PL: phase-locking, TB: torus breakdown, SC: saddle cycle. The highlighted motion
classes refer to periodic (Pm-M3), quasi-periodic (nT-QPm-Mk) and chaotic (CH1, CH2)
attractors

Though being quite rich and involved, the experimental transition mechanism
is substantially traceable, from a qualitative viewpoint, to a canonical scenario of
bifurcation of flows via breakdown of regular dynamics on 3-Tori known from dy-
namical systems theory and numerics (see the response chart in Fig. 21, where the
thick vertical line corresponds to the bifurcation path followed by the experimen-
tal cable/mass system when varying the excitation frequency). Yet, not all of the
experimental response features can be explained according to the torus breakdown
paradigm, due to the occurrence of intermittent synchronisation on high-periodicity
solutions and competing complex phase-modulated regimes which are conjectured
to represent toroidal chaos. This is a case showing how a possible interplay between
sophisticated experimental investigations and theoretical/numerical achievements
can indeed allow for a proper modelling and understanding of the characterising
nonlinear phenomena.

The various classes of motion taking part in the transition to chaos involve
well identified experimental eigenfunctions (POMs). Specifically, the meaningful
involvement in the system dynamics of two more modes, besides the underlying
first symmetric in-plane one (V1), is associated with some closeness of the first
symmetric out-of-plane mode H1 to its order ½-subharmonic resonance and of the
first antisymmetric out-of-plane mode H2 to its primary resonance. The latter, in
particular, is seen to play a decisive role as regards transition to chaos.

In a theoretical/numerical framework, the identified prevailing POMs constitute
the optimal basis for a decomposition of the spatio-temporal flow aimed at repro-
ducing the bifurcation features and the responses highlighted in the experimental
investigation. Indeed, a three-mode mathematical model including the linear modes
V1, H1 and H2 – like the one in [11], containing also a fourth mode, here unneces-
sary, – is sufficient to capture the important non-regular dynamics of the system in
the considered frequency range [4].

Going back to the experimental investigation, it is worth noting how, with the
same primary resonance excitation condition, the quasi-periodic scenario to chaos
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Fig. 21 Sketch of the qualitative two-parameter bifurcation chart for the breakdown of 3-
Torus following [7]. (H: Hopf bifurcation, TB: torus breakdown, PL: phase locking)

does not occur for the crossover cable. Indeed, in this case, the existence of a nearly
perfect 2:2:1:2 internal resonance involving all first four in-plane and out-of-plane,
symmetric and antisymmetric, modes is likely to make periodic coupled responses
more robust, while preventing quasi-periodicity and chaos from actual occurrence.

Finally, for the slacker cable at ½-subharmonic resonance under out-of-phase
motion, the quasi-periodic scenario is seen to compete with the homoclinic bifurca-
tion scenario. Herein, the main role in the transition to chaos seems to be played by
the first torsional symmetric out-of-plane mode (H1T), which somehow contributes
to the overall response of the experimental system owing to the presence of the
(though small) concentrated masses; of course, such a role cannot be reproduced
by a companion ROM unless properly enriching the underlying continuous cable
model with a rotational degree-of-freedom.

4.2.2 A Global Bifurcation Organising Regular Nonlinear Dynamics and
Homoclinic Chaos

Homoclinic bifurcation involves just two main – though variable – POMs, and
shows to be quite a robust scenario with respect to variations of both cable
geometrical-mechanical parameters and excitation conditions (see Table 2), thus
being of general interest [52].

To characterise in-depth the features of this seemingly paradigmatic scenario, the
attention is focused on the homoclinic bifurcation of the slacker cable under anti-
phase support motion at primary resonance of the antisymmetric in-plane mode V2,
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which ensues from the passage from the corresponding unimodal antisymmetric
motion to a ballooning-type (both in-plane and out-of-plane, V2 and H2, modes)
antisymmetric motion evolving from periodic to quasi-periodic up to chaotic. Yet,
the systematic experimental investigation needed for in-depth characterisation of
both the classes of motion and the transition scenario has been feasibly and reliably
accomplished only working with a proper, thermally conditioned and controllable,
experimental setup [53]. Indeed, guaranteeing a steady temperature all along the
experimental investigation, this has the advantage of stabilising the response of the
very flexible cable/mass system and of making it mechanically accessible without
the cable loosening effects possibly entailed by too high values of the excitation
amplitude, while at the same time allowing to consider the temperature as a control-
lable parameter in addition to the excitation amplitude and frequency. Varying the
temperature as a further ”external” control allows to highlight the strong role likely
played by the material damping (which depends on temperature) in the unfolding of
the experimental dynamics.

Based on systematic construction of bifurcation diagrams and spectra of singular
values of the covariance matrix of measurements results, the various classes of motion
arecharacterisedbothqualitativelyandquantitativelyintermsofperiodicity(P),quasi-
periodicity (QP) – and their degree – or chaoticity (CH), of dimension of the manifold
(M) where the motion develops, of correlation dimension (DC) of the attractor, of
dimension of the possibly resonant (R) invariant torus (D-T), of number (typically
corresponding to manifold dimension) of contributing POMs that provide more than
90% of the experimental signal power and, finally, of mechanical meaning of the
corresponding, vertical (V) or horizontal (H), linear modes (see tables in Fig. 22).

The analysis shows how the regular cable dynamics possibly ending up with
homoclinic chaos is organised by a codimension-two divergence-Hopf (d-H) bifur-
cation point where two (a Hopf and a pitchfork) bifurcation loci of the Poincaré
map of the experimental attractor cross with each other in the excitation frequency-
amplitude parameter plane. Indeed, for growing frequency at temperatures T ≥ 6 ◦C,
two most robust experimental bifurcation paths occur in the neighbourhood of the
d-H point, for forcing levels respectively higher and lower than the critical value
(Fig. 22a):

(i) P1M1 −−−→
H

QP1M1 −−−−→
p f

QP1M2(S) −−−→
global

QP1M2(SC) −−−→
global

P1M1

(ii) P1M1 −−−−→
p f

P1M2(SC) −−−→
H

QP1M2(SC) −−−→
global

P1M1

Focusing on the initial part of the two paths, below the critical value (path (ii)) the
period 1 response P1M1, characterised by the sole antisymmetric in-plane mode
V2, bifurcates through pitchfork to a symmetric couple P1M2(SC) of coexisting
(clockwise and anti-clockwise) two-mode ballooning responses also involving the
antisymmetric out-of-plane experimental eigenfunction H2. Thereafter, P1M2(SC)

bifurcates through Hopf to a quasi-periodic symmetric couple QP1M2(SC). In con-
trast, above the critical value (path (i)), P1M1 is lost through a Hopf bifurcation,
where a quasi-periodic response QP1M1 settles down. Then, a pitchfork bifurcation
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(a)

(b)

Fig. 22 At two different temperatures, T = 12◦C a and T = 4◦C b: Response charts with
zones of periodic (P), quasi-periodic (QP) and chaotic (CH) response (left), qualitative and
quantitative characterisation of the relevant classes (right)

is trespassed and the out-of-plane antisymmetric experimental eigenfunction H2 is
driven into the self-symmetric two-mode quasi-periodic response QP1M2(S).

In summary, due to the external (anti-phase primary resonance of first antisym-
metric in-plane mode) and internal (1:1 resonance between antisymmetric in-plane
and out-of-plane modes) resonances, the system dynamics is essentially traceable
to participation of two spatial shapes closely resembling the first two antisymmet-
ric linear modes V2 and H2. A substantially invariant bifurcation scheme persists
over the whole range of temperature variation, thus allowing to refer the experi-
mental response in the Poincaré map to the theoretical unfolding provided by the
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low-dimensional bifurcation system represented by the d-H normal form ([53]; see
also Sect. 4.2.3 forward).

However, investigations made at different values of setup temperature high-
light (i) a substantial decrease of the excitation amplitude value at which the
codimension-two bifurcation occurs, along with (ii) meaningful changes in the pic-
ture of the ensuing classes of regular and/or non-regular motion extending up to
regions relatively far away from the organising centre. This is clearly observable
by comparing the response chart in Fig. 22a for T = 12 ◦C with that in Fig. 22b
for T = 4 ◦C. Each subfigure, and the corresponding table, shows the most robust
classes of motion occurring in the various zones, along with the possibly competing
classes (denoted by lower case labels and arrows in the second column of the table)
alternatively attained for, e.g., T = 12 ◦C when considering different initial condi-
tions and/or sweeping directions of the control parameter value, herein represented
by the excitation frequency.

Besides lowering the critical forcing amplitude corresponding to d-H codimension-
two bifurcation, lowering the temperature – which indirectly induces a material
damping decrease – progressively entails a clearer scenario of regular response, along
with the possibility to distinguish between the chaotic motions CHM2 and CHM3
characterised by two (the reference in-plane V2 and out-of-plane H2 antisymmet-
ric modes) or three (also the out-of-plane symmetric mode H1) basic POMs, re-
spectively. Overall, with decreasing temperatures, the CHM2 class of motion – into
which quasi-periodic two-mode motions (QP1M2) end up at also low excitation am-
plitudes – becomes structurally stable and robust, and exhibits a clear evidence of
low-dimensional homoclinic chaos, as shown by the results of a delay embedding
reconstruction of phase space from a relevant time series. As a matter of fact, the
dynamics in the second order Poincaré section of the reconstructed attractor is or-
ganised by an unstable fixed point characterised by a two-dimensional focus-stable
manifold W s and a one-dimensional saddle-unstable manifold W u, and an invariant
of the flow responsible for re-injection toward the fixed point. The fixed point on the
second order Poincaré section corresponds to an unstable two-dimensional invari-
ant of the flow resembling the formerly stable quasi-periodic solution QP1M2(SC).
In Fig. 23, besides the time series (a), two of the recorded homoclinic orbits are re-
ported (b,c), showing the ejection along the two opposite directions of the unstable
manifold (w direction), and the re-injection onto the stable manifold (the local uv
plane), respectively.

Overall, the availability of the temperature as a third control parameter shows to
be fundamental: (i) to qualitatively refer the experimental unfolding of regular and
non-regular cable dynamics in the considered frequency range to the theoretical
unfolding of the divergence-Hopf bifurcation normal form; (ii) to unfold the system
dynamics not only in the strict neighbourhood of the organising d-H bifurcation but
also in the ensuing post-critical regions where the dependence of material damping
on temperature affects secondary bifurcations to homoclinic chaos; (iii) to show
the variable involvement, in either quasi-periodic or chaotic responses, of a further
POM with respect to the reference two-mode normal form scenario ending up with
an homoclinic chaos [53].



202 G. Rega

This gives hints about the likely suitability of a two-d.o.f. ROM accounting for
the sole two resonant in-plane and out-of-plane antisymmetric modes to the aim of
possibly reproducing the homoclinic chaos via an analytical-numerical procedure,
as well as on the likely need to include also a third d.o.f. accounting for the reso-
nant contribution of the out-of-plane symmetric mode in order to possibly obtain,
in different ranges of control parameter values, the enriched response scenario also
exhibited by the experimental system in the post-critical range.

4.2.3 A Low-Dimensional Phenomenological Model of the Experimental
Bifurcation Scenario

The accomplished unfolding of both the regular dynamics associated with the oc-
currence of a divergence-Hopf bifurcation and the ensuing non-regular dynamics
exhibiting features of homoclinic chaos allows to qualitatively trace them back to a
few bifurcation scenarios known from dynamical system theory and numerics.

In the context of a fruitful feedback between experiments and theory, this calls
for developing a phenomenological bifurcation model of the experimental dynamics
aimed at reproducing some relevant intrinsic features mostly as regards the transi-
tion scenario. Such a model relies on the normal form of the recognised bifurcation
mechanism, which is well-known to the theory, while properly modifying it to ac-
count for the specific features of the underlying experimental system and for its
response. The model should allow to recognise the mechanical meaning of mathe-
matical terms playing a role in the bifurcation mechanism, and to gain insight into
limitations, if any, possibly associated with any assumption made in ”classical” the-
oretical modelling of cables. In such a case, it should also pave the way towards the
independent formulation of a refined theoretical reduced-order cable model having
all the necessary pre-requisites for possibly and reliably reproducing the experimen-
tally observed phenomena.

Fig. 23 Time delay reconstruction: a time series, b and c homoclinic orbits due to homoclinic
tangency
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Within this general perspective, a complete phenomenological model embedding
the experimental bifurcation scenario but also having a discrete mathematical struc-
ture profitably comparable with the existing cable models, has been recently pro-
posed ([5], [6]). It is based on (i) considering an equation set of order corresponding
to the observed dimensionality of the experimental response, and (ii) respecting the
symmetry properties of the forced experimental system, which is solely Z2 sym-
metric instead of being O(2) symmetric as the unforced system in the background.
The model is built by reproducing the bifurcation scenario as highlighted in the ex-
perimental Poincaré section; yet, the set of equations governing the dynamics of
the flow are obtained, too. The model appears suitable: (i) to analyse the interaction
between the system parameters (linear frequency σ and dissipation μ) governing
the unfolding of the normal form of the codimension-two bifurcation playing a role
in the experimental response, and the applied excitation amplitude; (ii) to highlight
the symmetry breaking effect induced in the unforced system by the asymmetric
boundary conditions (sole in-plane support motion) of the experimental system.

Overall, the approach consists of building a model having not only a higher di-
mensionality with respect to that of the sole divergence-Hopf bifurcation but also
a more convenient structure where terms and coefficients preserve a direct physical
meaning.

To this aim, first an O(2) symmetric highly degenerated nilpotent double zero
bifurcation set is produced. Indeed, if the cable sag-to-span ratio is small, as in the
experiment, the unforced physical system has O(2) symmetry properties, and the
same features are required to the unforced theoretical model in the invariant space
spanned by the first two antisymmetric modes (corresponding to the V2, H2 physi-
cal POMs) where the experimental dynamics to be possibly reproduced is confined.
The highly degenerated bifurcation set is produced starting from the unfolding of
the O(2) symmetric nilpotent double-zero (Takens-Bogdanov) normal form [9], and
considering a dependence on temperature of the dissipation terms – which include
viscous and hysteretic damping – just as in the experimental setup, where the tem-
perature has indeed been used as an essential third control parameter to detect the
divergence-Hopf bifurcation and the ensuing transition to homoclinic chaos.

Then, in order to reproduce the effect of the supports motion in the experimental
setup, the symmetry of the highly degenerated bifurcation set (playing the role of a
map) is broken down to Z2, as in the forced physical system, in two steps. (i) By im-
posing non-homogeneous non-O(2) symmetric time-periodic boundary conditions
(i.e., forcing) to the autonomous evolution set of equations (i.e., the flow) which
stays in the background of the map. This furnishes a periodically excited highly de-
generated set of evolution equations, approximate up to third order and exhibiting
parametric as well as inertial and viscous terms owing to the support harmonic mo-
tion. (ii) By applying the multiple time scale method to this equation set at primary
external and 1:1 internal resonance between in-plane and out-of-plane antisymmet-
ric modes, to obtain the amplitude and phase modulation equations which govern
the solution of the forced flow in the Poincaré section. They represent a perturbed
normal form of the canonical O(2) symmetric nilpotent double-zero bifurcation set,
with respect to which they exhibit a reduced symmetry (D4) but are indeed enriched
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by the contribution of parametric forcing terms. The symmetry of the perturbed nor-
mal form is further reduced to the Z2 one of the experimental case by considering
solely vertical motion of the supports.

The obtained Z2 symmetric normal form constitutes a complete phenomenologi-
cal model of suspended cable able, in principle, to exhibit the same bifurcation sce-
nario as the experimental one in the post-critical range of the periodically excited
highly degenerated double zero bifurcation set. A partial unfolding of the ensuing
nonlinear dynamics, with the relevant variable bifurcations, has been accomplished
in ([5], [6]) by analysing the stability of the trivial and non-trivial solutions of the
APMEs, which depend on three control parameters as in the experiment, namely the
excitation amplitude and frequency plus the temperature, whose effects are taken
into account via the hysteretic damping.

Fig. 24 shows a response chart in the external frequency detuning (σ )–support
motion amplitude ( f ) plane, with motion classes and bifurcation loci, as obtained
for a fixed temperature value greater than the reference one where the effects of
hysteretic damping vanish. The chart shows the occurrence of a divergence-Hopf
bifurcation along a pattern qualitatively similar to the one (variable with tempera-
ture) exhibited by the experimental system. Yet, the chart also highlights precursor
bifurcational events, for it is associated with a model having a higher dimensionality
with respect to that of the sole divergence-Hopf bifurcation. In particular, the gray
region, delimited by saddle node bifurcations, shows the existence range of the one-
mode P1M1 solution, stable in a small region on the left. The Takens-Bogdanov
(σ , f ) = (−0.02,0.11) and divergence-Hopf (σ , f ) = (0.035,0.05) codimension-
two bifurcation points affect the trivial and periodic (P1M1) solutions, respectively.
The divergence and Hopf loci of the trivial solution (labelled pf1and H1, respec-
tively) are reported in the behaviour chart, which also summarises the stability anal-
ysis results of the P1M1 solution by showing the corresponding divergence (pf2) and
Hopf (H2) loci, and their intersection. With increasing frequency, the divergence in-
volves the second mechanical mode (antisymmetric out-of-plane H2) responsible
of the onset of the P1M2 motion class in the experiment, whereas the Hopf corre-
sponds to the onset of the experimental quasi-periodic QP1M1 motion class. The

Fig. 24 Response chart in
the external frequency de-
tuning (σ )–support motion
amplitude ( f ) plane, with
motion classes and bifurca-
tion loci
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intersection of the two loci furnishes the searched codimension-two divergence-
Hopf bifurcation.

Preliminary, non-systematic, results obtained for different temperature values
highlight how the value of the support motion amplitude corresponding to the
divergence-Hopf bifurcation occurrence decreases with decreasing hysteretic damp-
ing, i.e. with decreasing temperature. Again, this is qualitatively consistent with the
decrease of the d-H bifurcation point which occurs in the experimental system with
decreasing temperature (Fig. 22), up to its practical disappearance from the experi-
mental behaviour chart.

This has important consequences from the theoretical modelling point of view,
meaning that there is no practical hope to reproduce the experimentally observed
phenomena and response features if considering a cable continuous model which
does not include hysteretic damping. It is indeed the case of nearly all (though re-
fined) models considered in the cable dynamics literature, including those discussed
and used in the previous sections. This adds to the already made points concerned
with the need to build a cable ROM which properly accounts for the cable lin-
ear modes, or other approximating functions (e.g., POMs [4] or nonlinear normal
modes), taking meaningful part in the nonlinear dynamics scenario.

In summary, it is apparent how considering a further controllable parameter (ma-
terial damping or, equivalently, temperature) besides the excitation amplitude and
frequency allows us to interpret the response scenario of the experimental cable-
mass system in the neighbourhood of a divergence-Hopf bifurcation in the frame-
work of the symmetry breaking of a highly degenerated bifurcation set describing
an O(2) symmetric Takens-Bogdanov bifurcation.

More generally, in the perspective of a fruitful cross-correlation between exper-
imental and theoretical/numerical investigations, the construction of phenomeno-
logical models based on results of experimental nonlinear dynamics can meaning-
fully help to interpret them and further steer the experimental investigation, by also
clarifying the extent to which any highlighted behaviour can possibly be referred
to a bifurcation/response canonical scenario known from dynamical system theory.
Moreover, it can pave the way for improving the cable continuous modelling and
for building ROMs aimed at cross-validating and partially reproducing the observed
experimental scenarios, to be implemented in a numerical procedure.

5 Further Developments and Research Topics

Notwithstanding the existing amount of available knowledge on cable nonlinear dy-
namics, further research developments are going on as regards several of the topics
addressed in the previous sections. Just a few of them are mentioned herein, along
with sample references.

(i) Concerned with modelling, attention is being paid to introducing material non-
linear constitutive laws and/or hysteretic behaviour, as well as cable bending
and/or torsion capacities ([19], [40], [28]), also in view of specific analyses and
applications.
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(ii) Theoretical/numerical/experimental solutions for nonlinear vibration analysis
of suspended cables, as obtained with different models and approaches, are
being the object of further validation and comparisons ([68], [2]).

(iii) More complete descriptions of nonlinear multimodal interaction phenomena in
the fully 3D cable dynamics are being accomplished, along with the analyses
of the effects of further resonance conditions [76].

(iv) Improving the theoretical/numerical understanding of bifurcation scenarios to
complex dynamics [14] is a topic of major interest, along with the development
of properly tailored reduced-order models.

Further challenging issues are concerned with a large number of companion topics
of both theoretical and practical importance. In fact, even restricting the attention to
topics concerned with the solely isolated cable (i.e. leaving apart systems like, e.g.,
cable-stayed structures or suspension bridges, where the cable is just one, though
fundamental, system component), the list of topics of interest is rather long. Com-
prehensively dwelling on them by giving proper credit to the research work accom-
plished in the last few years would require extended analyses. Herein, these further
topics are just mentioned to give the reader a feeling, with no attempt of complete-
ness, by grouping them in some main classes, and by providing sample references.

• Suspended cables in air under wind loads [39], stochastic excitations [82], or
moving masses [75].

• Features of cable nonlinear dynamics in fluids ([20], [63]), with consideration of
all important nonlinearities [54].

• Control of cable nonlinear vibrations through a variety of passive, active or hy-
brid control techniques ([81], [16], [13]).

Acknowledgements. Proper credit has to be given to Dr. Narakorn Srinil, University of
Strathclyde, Glasgow, Scotland, UK and Dr. Rocco Alaggio, University of L’Aquila, Italy,
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Engineering Applications of Non-smooth
Dynamics

Marian Wiercigroch and Ekaterina Pavlovskaia

Abstract. This chapter introduces and discusses practically important concept of
non-smooth dynamical systems, which are very common in engineering applica-
tions. Mathematically, such systems can be considered as piecewise smooth and
therefore their global solutions are obtained by stitching local solutions, which are
easy to develop by standard methods. If a dynamical system is piecewise linear
then an implicit global analytical solution can be given, however the times when
non-smoothness occurs have to be determined first. This leads to a set of nonlin-
ear algebraic equations. To illustrate the non-smooth dynamical systems and the
methodology of solving them, three mechanical engineering problems were studied.
Firstly, a vibro-impact system in a form of moling device was modelled and anal-
ysed to understand how the progression rates can be maximised. For this system,
periodic trajectories can be reconstructed as they go through three linear subspaces
(no contact, contact with progression and contact without progression), and using
combination of analytical and numerical methods the optimal range of the system
parameters can be identified. In the second application the influence of opening and
closing of a fatigue crack on the system dynamics was investigated. Specifically, a
novel apparatus to induce aperiodic loading to a specimen with a fatigue crack was
studied. It was shown experimentally that fatigue life can be reduced few times if the
sample is loaded aperiodically. The analysis of the developed mathematical model
shown that as a crack grows linearly before reaching its critical value, the response
of the system remains periodic. When its size exceeds the critical value, the system
behaviour becomes chaotic and then the crack growth increases exponentially. This
phenomenon can be used in structural health monitoring. The last problem comes
from rotordynamics, where nonlinear interactions between the rotor and the snubber
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ring were studied. The influence of the preloading of the snubber ring on the system
behaviour was investigated and the range of the system parameters where chaotic
vibrations occur was identified. The results obtained from the developed mathemat-
ical model confronted with the experiments shown a good degree of correlation.

Keywords: Non-smooth dynamics, vibrations, mechanical systems, vibro-impact
moling, fatigue, rotor systems.

1 Non-smooth Dynamical Systems in Engineering Dynamics
[56, 60, 44, 58, 59]

Most of engineering systems are inherently nonlinear and their nonlinearities man-
ifest themselves in many different forms, where one of the most common is the
non-smoothness. One may think of the noise of a squeaking chalk on a blackboard,
or more pleasantly of a violin concert. Mechanical engineering examples include
squeal in brakes, impact print hammers, percussion drilling machines or chatter-
ing of machine tools. These effects are due to the non-smooth characteristics such
as clearances, impacts, intermittent contacts, dry friction, or combinations of them
[60].

Non-smooth dynamical systems have been extensively studied for nearly four
decades showing a huge complexity of dynamical responses even for a simple im-
pact oscillator or Chua’s circuit. The theory of non-smooth dynamical systems has
been rapidly developing and now we are in much better position to understand those
complexities occurring in the non-smooth vector fields and caused by generally dis-
continuous bifurcations. There are numerous practical applications, where the theo-
retical findings on nonlinear dynamics of non-smooth systems have been applied in
order to verify the theory and optimize the engineering performance. However, from
a mathematical point of view, problems with non-smooth characteristics are not easy
to handle as the resulting models are dynamical systems whose right-hand sides are
discontinuous [14], and therefore they require a special mathematical treatment and
robust numerical algorithms to produce reliable solutions. Therefore, we apply a
combination of numerical, analytical and semi-analytical methods to analyse such
systems and this particular aspect will be a focus in this chapter.

Many characteristics of mechanical systems can be non-smooth, and such sys-
tems mathematically can be described as so-called piecewise smooth dynamical
systems. Well-known examples include an impact oscillator (e.g. [49]), piecewise
linear oscillators (e.g. [46, 51, 41, 63]), mechanical ”bouncing ball” system [64],
Jeffcott rotor with bearing clearances [33, 45, 22], systems with Coulomb friction
(e.g. [13, 55]), gear-box systems [29, 38, 12] and metal cutting processes [23, 57]. A
general methodology proposed in [56, 44, 58] of describing and solving non-smooth
dynamical system which originates from the Fillipov’s approach [14] can be found
for example in [60] and [37]. It includes modelling of discontinuous systems by
discontinuous functions and by smooth functions. In the latter case extra care is
required as smoothing discontinuities can produce an artifact responses [32]. Here
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the first approach will be adopted, where a dynamical system is defined in global
hyperspaceΩ as continuous but not necessarily smooth autonomous system [56]

ẋ = f(x,p), (1)

where x = [x1,x2, . . . ,xn]T is the state space vector (xn is used to represent time), p =
[p1, p2, . . . , pm]T is a vector of the system parameters, and f(x,p) = [ f1, f2, . . . , fn]T

is the vector function which is dependent upon the system structure or the process
being modelled. Then we assume that the dynamical system (1) is smooth but only
within subspace Xi of the global hyperspace Ω (see Fig. 1). Therefore, for each
subspace Xi (x ∈ Xi), the right hand side of equation (1) may be described by a
different function, fi(x,p) where i ∈ [1,N]. Such system description will be used
throughout this chapter where for each individual problem we will specify global
and local subspaces which will define its regimes of operations.
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Fig. 1 Conceptual model of a piecewise smooth dynamical system, where thick lines (solid
and dash) denote trajectories within subspaces and thin lines – trajectories sliding on the
hypersurfaces [44]

The main aim of this chapter is to outline a general methodology of modelling
and analysing of non-smooth dynamical systems. The methodology will be illus-
trated through three case studies. Firstly, the dynamics of a drifting vibro-impact
system will be investigated through a novel semi-analytical method developed in
[46, 42, 48, 61, 43, 47, 44], which allows to determine the favourable operating
conditions. The model accounts for visco-elastic impacts and is capable to mimic
dynamics of progressive motion (a drift). Secondly, we will study the evolution of
a fatigue crack in a specimen subjected to aperiodic loading [18, 15, 16, 19, 17]. A
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unique experimental rig developed to investigate the dynamic crack growth under
aperiodic excitation will be briefly discussed and then the modelling of the crack
growth embedded into the mechanical model of the entire system will be shown. A
comparison between the theoretical and experimental results will verify the model.
Finally, we will examine the complex dynamics of a rotor system with bearing clear-
ances [33, 32, 30, 31, 45, 34], where a contact incident is modelled as a piecewise
smooth effect. Influence of the preloading of the snubber ring on the dynamic re-
sponses and the comparison with the experiments will be discussed.

2 Drifting Oscillator as an Effective Model of Vibro-impact
Moling [48]

Vibro-impact systems are strongly nonlinear and have been widely used in civil
and mechanical engineering applications. These include ground moling machines,
percussive drilling, ultrasonic machining and mechanical processing (cold and hot
forging). Let us focus here on a vibro-impact system driving a pile into the ground,
where during its operation the driving module moves downwards, and its motion
can be viewed as a superposition of a progressive motion and bounded oscilla-
tions. The simplest physical model exhibiting a such behaviour is comprised of a
mass loaded by a force having static and harmonic components, and a dry friction
slider, as shown in Fig. 2(a). This model was introduced and preliminary analysed
in [35, 36]. Despite its simple structure, a very complex dynamics was revealed.
The main result from that work was the finding that the best progression occurs
during period one responses. A more realistic model including viscoelastic prop-
erties of the ground and its optimal periodic regimes were studied extensively in
[46, 42, 48, 61, 43, 47, 44].

2.1 Mathematical Modelling and Experimental Study

A simple model of a vibro-impact moling system may be represented as an oscil-
lating mass with a frictional visco-elastic slider, as shown in Fig. 2(b). This model
defines the motion of the moling device (mass) and the soil (slider) which allows to
make a distinction between the motion of the mole head and the front face of the
hole.

The model of the soil represented by a frictional slider is depicted in Fig. 3(a).
The dependence of the soil resistance on the penetration of the tool for this model
is marked by a solid line in Fig. 3(b). This dependence is similar to one obtained
by Spektor [54], who approximated it by a piece-wise linear relationship. The other
approach used in the previous studies [50] considered the overall soil resistance as
a superposition of the frontal elasto-plastic force (dash line in Fig. 3(b)) and the
viscous damping force created by the fluidized soil.
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Fig. 2 Physical models of progressive impact systems; a simplest models [35, 36], b more
realistic model [46]

Fig. 3 Model of soil [48]; a physical model as a frictional slider with elasticity and viscous
damping, b soil resistance versus penetration characteristics

In order to gain some insight into the dynamics of vibro-impact moling systems,
a brief experimental study was carried out on the rig depicted in Fig. 4, which was
originally designed by Lok et al. [39]. It comprises a steel tube hosting an oscillatory
mass. The vibro-impact mechanism is comprised of a vibratory mass and a hammer
mass both supported by coil springs. The hammer mass impacts upon the nose cone.
The springs are precompressed in the tube and the excitation is provided by a cam
driven system with a variable rotational speed.

As can be seen from Fig. 4 the moling system is set to operate in a sand box. The
relative displacement of the mole with respect to the sand box was measured by an
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Fig. 4 Schematic of the experimental set-up to study the dynamics of vibro-impact ground
moling system [48]

LVDT. The recorded signal was passed through an amplifier and monitored by an
oscilloscope before being captured on a data storage system. A circular strain gauge
load-cell was fitted between the impacting mass and the nose cone to measure the
impact forces.

In spite of its very simple structure the model confirms the main phenomena
occurring during the soil-penetrator interactions. In Fig. 5 the experimental (a, c) and
the numerical (b, d) results are compared. As can be seen, there is a good qualitative
agreement between the time histories. This similarity allows us to draw a conclusion
that this simple model can be used to study the soil-mole dynamic interactions.

In the considered model shown in Fig. 2(b) a mass m is excited by an external
force comprised of a harmonic component of amplitude Pd , frequencyΩ and phase
shift ϕ ; and a static component, Ps. The slider has weightless top and bottom plates
connected to each other by a linear spring with stiffness k, and a viscous damper
with damping coefficient c. The progressive motion of the mass occurs when the
force acting on the slider exceeds the threshold of the dry friction force, Pf . Xm, Xt

and Xb represent the absolute displacements of the mass, slider top and slider bottom
respectively.

For the case when the mass and the slider move separately the dynamics of the
system is described by one second and two first order differential equations

⎧⎨
⎩

mẌm = Ps + Pd cos(Ω t +ϕ),
c
(
Ẋt − Ẋb

)
+ k (Xt −Xb) = 0,

Ẋb = 0.
(2)

The case when the mass and the slider are in contact, is described by one second
order and one first order differential equations, which can be either oscillatory
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Fig. 5 a, c Experimental data [48] obtained from the rig with a double cam of 4 mm lift
rotating at 7.75 Hz and effectively inducing a forcing frequency of a 15.5 Hz and c 13.2 Hz;
b, d Results of numerical simulation for b a = 0.5, ω = 0.11, ξ = 0.35, b = 0.456, and for
d a = 0.5, ω = 0.1, ξ = 0.11, b = 0.48

{
mẌm + c

(
Ẋt − Ẋb

)
+ k (Xt −Xb) = Ps + Pd cos(Ω t +ϕ),

Ẋb = 0,
(3)

or progressive {
mẌm = −Pf + Ps + Pd cos(Ω t +ϕ),
c
(
Ẋt − Ẋb

)
+ k (Xt −Xb) = Pf .

(4)

Note that for Eqs. (3) and (4) the displacement of the slider top, Xt is in phase with
the displacement of the mass, Xm, but differs by a gap, G (G is the distance between
the mass and the slider top at the initial point t = 0)

Xt = Xm −G.

The equations of motion (2) – (4) are transformed to a system of first order differ-
ential equations by using the following non-dimensional variables

τ =Ω0t, x =
k

Pmax
Xm, y =

dx
dτ

=
k

Ω0Pmax
Ẋm,

z =
k

Pmax
Xt , v =

k
Pmax

Xb,
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and parameters

ω =
Ω
Ω0

, Ω0 =

√
k
m

, a =
Pd

Pmax
, b =

Ps

Pmax
,

d =
Pf

Pmax
, ξ =

c
2mΩ0

, g =
k

Pmax
G.

The considered system can operate at any time in one of the following modes:

• No contact,
• Contact without progression,
• Contact with progression.

For the simplicity of further analysis, the dimensionless friction threshold force, d
is set to 1. We also assume the parameters g = 0.02 and ϕ = π/2 to be constant in
this study. Consequently, Eqs. (2) – (4) can be formulated for these specified modes
in the first order ODEs.

If the displacement of the mass is smaller than the displacement of the slider top
plus the gap,

x < z+ g, (5)

then the mass and the slider top move separately. The motion of the mass can be
determined from the following set of equations

{
x′ = y,
y′ = acos(ωτ+ϕ)+ b,

(6)

where ′ denotes d/dτ . The equations of motion for the top and the bottom of the
slider are

z′ = − 1
2ξ

(z− v) , (7)

v′ = 0. (8)

Contact without progression occurs when the relative displacement of the mass ex-
ceeds the displacement of the slider top plus the gap, i.e.

x ≥ z+ g, (9)

and the force acting on the mass from the slider is greater than zero but smaller than
the threshold of the dry friction force, which can be expressed as

0 < 2ξ z′ +(z− v) < 1. (10)

In this case the mass and the slider top move together but without progression, and
the second equation of (6) has additional elastic and viscous terms:

{
x′ = y,
y′ = −2ξ z′ − (z− v)+ acos(ωτ+ϕ)+ b.

(11)
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The velocity of the slider top is equal to the velocity of the mass, and the displace-
ment of the slider top is in phase with the mass displacement but differs by g in
position

z′ = x′, (12)

x = z+ g. (13)

When there is no progression, the bottom of the slider remains stationary, hence its
velocity is equal to zero

v′ = 0. (14)

When the displacement of the mass is equal or greater than the displacement of the
slider top plus the gap (see Eq.(9)), and the force acting on the mass is greater than
the threshold of dry friction force

2ξ z′ +(z− v) ≥ 1, (15)

then the mass and the top and the bottom of the slider are moving together, and
progression takes place. The equations of motion for mass are

{
x′ = y,
y′ = acos(ωτ+ϕ)+ b−1.

(16)

The displacement and the velocity of the slider top are described as before (see Eqs.
(12) and (13)). The velocity of the slider bottom motion can be calculated from the
expression below

v′ = z′ +
1

2ξ
(z− v−1). (17)

Fig. 6 Time histories [46] of the mass, x (solid curves) and slider bottom, v (dash curves)
calculated for a = 0.3, ω = 0.1, ξ = 0.05 and (a) b = 0.05; (b) b = 0.095; (c) b = 0.1; (d)
b = 0.15; (e) b = 0.19 and (f) b = 0.27
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Equations (5)–(17) were used to conduct an extensive nonlinear dynamic stud-
ies by means of numerical simulation using Dynamics software [65], and also to
develop an algorithm to determine periodic responses [46, 42].

Fig. 7 Time histories of steady-state responses [46] of the mass, x (solid curves) and slider
bottom, v (dash curves) for a = 0.3, ω = 0.1, ξ = 0.05 and a b = 0.05; b b = 0.095; c b = 0.1;
d b = 0.15; e b = 0.19 and f b = 0.27

Our study has revealed that the best progression (the largest drift) is achieved
for the period one motion, which can be clearly seen by examining displacement
of the slider bottom (dash lines) in Fig. 6. These steady-state responses are also
depicted in Fig. 7(a)-(e) for τ ∈ (800, 1200). Figure 7 shows an important se-
quence of subcritical bifurcations, where the system bifurcates from a period four
(Fig. 7(b)) to a period two (Fig. 7(c)), then from a period two to a period one (Fig.
7(d)). A transition from a period one to a chaotic motion with a high frequency
component (Fig. 7(e)) determines the interval of static force, b, for which the best
progression exists. The system can also exhibit chaos for a wide range of the system
parameters (e.g. see Fig. 8(a)).
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2.2 Determination of the Best Progression

Figure 8 demonstrates a number of bifurcation diagrams showing the velocity and
progression of the system as function of the static force for different values of the dy-
namic amplitude. As can be seen in Fig. 8(a)-(c) the system responds aperiodically
for small values of static force, b with some narrow windows of periodic motion.
This is followed by a large window of periodic motion marked by dash lines, which
is increasing for the larger values of dynamic force, a. Then a series of aperiodic and
periodic windows appear. It should be noted that if the dynamic force, a, is large the
system responds periodically for the most values of the static force, b (Fig. 8(c)).
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Fig. 8 Bifurcation diagrams [48] y = y(b) and progression during the first 50 periods respec-
tively for ξ = 0.05, ω = 0.1 and a, d a = 0.1; b, e a = 0.3; and c, f a = 0.9

The analysis of the bifurcation diagrams has also unveiled some insight regard-
ing the progression rates achieved by the system. It was obtained that the best pro-
gression is reached when system responds periodically with the period of external
excitation. As can be clearly seen from Fig. 8(d)-(f), the maximum penetration rate
coincides with the point where periodic regime becomes aperiodic. For a special
case of large dynamic force, a = 0.9, shown in Fig. 8(f), we have periodic regimes



222 M. Wiercigroch and E. Pavlovskaia

for all values of static force, b starting from b ≈ 0.225, and the progression rate
increases starting from this value of static force, b. In general, as the system is es-
sentially nonlinear, better progression rates are not necessarily achieved for larger
static forces.

The finding regarding the position of the maximum penetration rate (the end of
periodic regime) was used to develop a semi-analytical algorithm for determining
this point and details can be found in [42]. This method constructs a periodic re-
sponse assuming that each period is comprised of a sequence of distinct phases for
which analytical solutions are explicitly known. For example, a period may con-
sist of the following sequential phases: Contact with progression, Contact without
progression, No contact and Contact without progression. Using this information a
system of four piecewise linear first order differential equations is transformed to a
system of nonlinear algebraic equations. Then an accurate prediction of the range of
control parameters for which the best progression rates are obtained, can be made
without laborious numerical simulation.

Fig. 9 Four stages of a periodic response [46]; solid line – displacement of the mass, dash
line – displacement of the slider top, dotted line – displacement of the slider bottom. The
blow-up window shows the displacements of the mass, slider top and bottom at the beginning
and at the end of the period

As our system is piecewise linear, the periodic solutions can be constructed by
stitching linear solutions obtained in the subspaces at points of discontinuities. Ini-
tially, it is assumed that the displacement and velocity of the mass have certain (as
yet unknown) values. Starting from these values, the system operates in one of the
phases described earlier. For the period one motion it goes through a sequence of
four phases as presented in Fig. 9. As mentioned earlier a typical pattern is com-
prised of Contact with progression (Phase I), Contact without progression (Phase
II), No contact (Phase III) and again Contact without progression (Phase IV). The
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solutions for each phase are constructed by allowing the final displacements and
velocities of the preceding phase to be the initial conditions for the next phase. The
initial conditions of the first phase are determined from the periodicity condition.

In order to simplify our consideration, the beginning of progression was chosen
as an initial point. Based on Eqs. (12), (13) and (15), the following relation between
the initial displacement and velocity can be written

2ξ y0 +(x0 −g− v0) = 1. (18)

As the initial displacement of the slider bottom, v0 does not influence the motion of
the mass, it is set to zero. Then we have

x0 = 1 + g−2ξ y0. (19)

The other unknown is a phase shift,ψ0, between the external force and the system
response at the beginning , τ = τ0

ψ0 = ϕ+ωτ0. (20)

Two periodic conditions for the mass displacement and velocity can be established
{

x(τ+ T ) = x(τ)+Δ ,
y(τ+ T ) = y(τ), (21)

where T is the period equal to the period of external forcing

T =
2π
ω

, (22)

and Δ is progression of the slider per period.
Thus three unknown functions ψ0, x0 and y0 can be determined from the equa-

tions (21) and (22). However an arbitrary solution of these equations cannot guar-
antee that x0 and y0 satisfy Eq.(19). For this reason we first substitute x0 by the
function of y0 (expression Eq.(19)), and then construct a special function F to mon-
itor a difference between the exact periodic solution and the one calculated for these
arbitrary initial conditions

F =
√

(x(τ + T)− x(τ)−Δ)2 +(y(τ+ T)− y(τ))2. (23)

If the minimum of this function is equal to zero, then the periodic regime exists,
and the durations of all four stages can be determined. More details can be found in
[42].

The results obtained using this method are presented in Fig. 10 showing the influ-
ence of the frequency, the dynamic force and the static force on the progression per
period. It can be deduced from Fig. 10(a) that a better progression can be achieved
for a smaller excitation frequency. Here a number of values of the dynamic am-
plitude was considered, and the monotonically decreasing curves indicate higher
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penetration rates for larger amplitudes. From Fig. 10(b), it is seen that the larger the
dynamic and static force are, the larger the progressions per period are obtained.
Figure 10(c) shows that the progression reaches a maximum value at some certain
values of static force and close to this maximum the periodic solution breaks down.
The parts of the curves represented by dash lines are calculated using the same al-
gorithm, however for these values of static force the motion detected is not periodic.

Fig. 10 Progression per period as a function of a frequency ω for ξ = 0.01, b = 0.15; b
dynamic force a for ω = 0.1, ξ = 0.01; c static force b for for ξ = 0.01, ω = 0.1. Adopted
from [61]
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2.3 Separation of Bounded Oscillatory Motion from Drift [43]

The investigated system exhibits a non-stationary motion, which means that the dis-
placements of the mass and the slider are unbounded. In addition, the dynamics
of this system is very complex ranging from different types of periodic motion to
chaos [46]. These facts rise some difficulties in analysing the system dynamics in
a standard way. A simple co-ordinates transformation was proposed in [43], which
resolved the problem, and it is described below.

We introduce a new system of co-ordinates (p,q,v) instead of (x,z,v):

p = x− v, (24)

q = z− v.

The main aim of this transformation is to separate the oscillatory motion of the
system from the drift. In the new co-ordinates system, p and q are displacements
of the mass and the slider top relative to the current position of the slider bottom v.
We will demonstrate that the introduction of the new co-ordinates allows to study
a non-stationary motion shown in Fig. 11(a) as independent bounded oscillations
depicted in Fig. 11(b) and a dependent on them drift shown in Fig. 11(c).

Fig. 11 Time histories of a drifting displacement of the mass (solid line) and the slider
bottom (dash line); b bounded displacement of the mass p = x− v; and c progressive dis-
placement of the slider bottom v. Adopted from [43]

The equations of motion for each phase can be rewritten as follow:

No contact
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p′ = y,

y′ = acos(ωτ+ϕ)+ b, for p < q + g, (25)

q′ = − 1
2ξ

q,

v′ = 0.

Contact without progression

p′ = y,

y′ = −2ξ y−q + acos(ωτ+ϕ)+ b, for p = q + g and 0 < 2ξ y + q < 1,

q′ = y, (26)

v′ = 0.

Contact with progression

p′ = − 1
2ξ

(q−1),

y′ = acos(ωτ+ϕ)+ b−1, for p = q + g and 2ξ y + q ≥ 1, (27)

q′ = − 1
2ξ

(q−1),

v′ = y +
1

2ξ
(q−1).

As can be seen by closer examination of Eqs. (25), (26) and (27), the first three
equations of each set describing the mass and slider top motions do not depend
on the displacement of the slider bottom, v. Therefore, there is no influence of the
progression v on the bounded system dynamics. On contrary the motion of the slider
bottom depends on the mass velocity and the displacement of the slider top (see the
last equation of Eqs. (27)), hence the progression (drift) can be determined once the
oscillatory mass and the slider top motions are known.

The equations of motion describing bonded oscillations are linear for each phase,
and therefore the global solution can be constructed by stitching the local solutions
for each phase at the points of discontinuities (non-smoothness) in the same way as
it was done for the unbounded system. The set of initial values (τ0; p0,y0,q0) defines
in which phase the system will operate. If p0 < q0 + g, it will be No contact phase.
For p0 = q0 + g, it will be Contact without progression phase if 0 < 2ξ y0 + q0 < 1
or Contact with progression phase if 2ξ y0 + q0 ≥ 1. When the conditions in the
current phase fail, the next phase begins, and the final displacements and velocity
for the preceding phase define the initial conditions for the next one.

The progression v(τ) can be calculated separately if the dynamics of the bounded
system (p,y,q) is known (i.e. the sequence of the phases and the initial conditions
for them). By solving the forth part of Eqs. (25), (26) and (27), we learnt that during
the No contact and Contact without progression phases the progression does not
change its value and is equal to
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v(τ) = v0. (28)

The progression during the Contact with progression phase can be calculated as

v(τ) = v0 + p0 −g−1+(p0 −g−1)exp

(
− τ− τ0

2ξ

)
+y0(τ− τ0)+

b−1
2

(τ− τ0)2

− a

ω2 [cos(ωτ+ϕ)−cos(ωτ0 +ϕ)+ω(τ − τ0)sin(ωτ0 +ϕ)] . (29)

The introduced co-ordinate transformation allows to study dynamics of the systems
with drift in the same way as systems exhibiting bounded oscillations. Once the
drift is subtracted from the oscillatory motion the standard nonlinear dynamics tools
including the cell-to-cell mapping method [26] can be deployed to find co-existing
attractors and their basins. For example, an evolution of the strange attractor and
co-existing periodic orbits under increasing frequency ω is shown in Fig. 12 for
a = 0.3, b = 0.1, ξ = 0.1. The presented basins of attractions were constructed
using Dynamics software [65] adopting the following colour coding. The strange
chaotic attractor and its basin are marked in orange and yellow respectively. The
period four motion and its basin are coloured in black and purple. Red colour marks
the attractor for blue basin, and green colour marks the attractor for pink basin. All
presented cases have fractal boundaries of attractions. As can be seen from Fig. 12
co-existence of two (Fig. 12(a) and 12(d)) and three (Fig. 12(b), 12(c), 12(e) and
12(f)) attractors were found for this set of parameters.

2.4 Conclusions

In this section we presented the study of a drifting oscillator as an effective model for
a vibro-impact moling system. The detailed mathematical modelling of the drifting
oscillator was presented and the developed model was calibrated by the experiments.

The undertaken nonlinear dynamics analysis suggests the best progression rates
are achieved for a period one motion, which means the period of response is equal to
the period of excitation. Based on this finding a semi-analytical method to determine
the best progression rates was developed. The parametric studies unveiled the best
progression can be obtained for: (i) the ratio between the dynamic amplitude and
static force around 2 and (ii) low excitation frequencies when compared with the
natural frequency of the penetrated media.

To simplify the analysis further, a special coordinate transformation was pro-
posed in order to separate the bounded oscillations of the impacting mass from the
drifting motion. This transformation allows to use the standard nonlinear dynam-
ics tools to analyse the dynamics of the bounded motion first and then reconstruct
the drift (progression). After applying this transformation, the basins of attractions
were calculated for the bounded system, and a number of co-existing solutions were
observed for the higher excitation frequency.
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Fig. 12 Evolution of basins of attraction [43] for a = 0.3, b = 0.1, ξ = 0.1; a ω = 1.4, b
ω = 1.45, c ω = 1.56, d ω = 1.58, e ω = 1.60 and f ω = 1.70

3 Nonlinear Dynamics Caused by Fatigue Crack Growth
[18, 15, 16, 19, 17]

The main aim of this section is to study the effects of fatigue crack growth on the
dynamic responses of engineering components and structures [18, 15, 16, 19, 17].
Due to the fact that the dynamic responses of a standard cracked specimen are
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often constrained by the kinematics of the forcing mechanisms in the conventional
fatigue-testing machines, the natural response of the cracked specimen cannot be
easily obtained. Therefore, a novel fatigue-testing rig was designed and built as
detailed in [15, 16]. This novel rig consists of two base-excited oscillators, one po-
sitioned above and the other below a Single-Edge-Notched Beam (SENB) specimen
and being excited by an electro-dynamic shaker. The main operating principle of the
rig is that inertial forces generated by the oscillators act on the specimen, in which
crack opens and closes. The rig was modelled mathematically as a two mass and
one mass system, and the non-smoothness in these systems comes from the opening
and closing of a fatigue crack.

3.1 Fatigue-Testing Rig and Experimental Set-Up [16, 19]

The fatigue-testing rig as shown in Fig. 13 consists of two base-excited oscillators,
which are positioned above and below a SENB specimen. Each mass sandwiches a
pair of leaf springs, which are also sandwiched and bolted on tower 1. These two

pneumatic cylinder 1

pneumatic cylinder 2

mass 1

mass 2

tower 2

tower 1

base

specimen support

proximity sensor probe

leaf springs

mass 2
accelerometer

specimen

mass 1 accelerometer
force transducer

base accelerometer

Fig. 13 Fatigue-testing rig [19] developed at the Centre for Applied Dynamics Research of
the University of Aberdeen
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pairs of leaf springs prevent the masses from rotating during oscillations, hence, the
line of action of the applied force is perpendicular to the neutral axis of the speci-
men. The stiffness of the leaf springs can be adjusted by sliding tower 1 along the
slot on the base. The specimen is held by supports at both ends, which are adjustable
(by sliding along the slot on the base) to accommodate a range of specimen lengths.
The specimen is then in turn held in place on the supports by a means of loading
pins.

During experiments, both oscillators are kept in contact with the specimen by
the aid of the pre-loads from the pneumatic cylinders. In addition, the pneumatic
cylinders are used to set the prescribed mean load on the specimen by appropriately
adjusted pressures at the top and the bottom. With this loading arrangement fatigue
testing of positive (tension), negative (compression) or zero mean stresses can be
carried out.

The test rig has been mounted on an electro-dynamic shaker which provides the
base excitation causing the inertial forces of both oscillators to be generated and to
act on the specimen. During the downward motion, the inertia of mass 1 exerts a load
on the specimen causing the crack to open and the inertia of mass 2 is responsible for
closing the crack during the upward motion. The amount of inertial force induced
on a specimen is controlled by the adjustment of amplitude and frequency of the
base excitation. The excitation waveform used to drive the shaker can be periodic or
aperiodic (quasi periodic, chaotic or stochastic).

In the present studies, samples were made out of aluminium alloy 2024-T351
with the mechanical properties and chemical composition given in Tables 1 and 2,
respectively. For all experiments, the same sample type, SENB, was used as shown
in Fig. 14 having a width and thickness of W = 20mm and B = 10mm, respectively.
The size of the notch was 5mm long and 1.5mm wide, and the loading span was
270mm.

The rig was mounted on the electro-dynamic shaker, and the base excitation was
controlled by the data acquisition unit using Labview. The accelerations of the base
(ẍb), mass 1 (ẍm1 ), and mass 2 (ẍm2 ), were measured by calibrated accelerometers. A

Table 1 Material properties for aluminium alloy 2024-T351 [19]

Property Value
Tensile strength 454MPa
Yield strength 317MPa
Young’s modulus 72.4GPa
Density 2780kg/m3

Table 2 Chemical composition for aluminium alloy 2024-T351 [19]

AL Si Fe Cu Mn Mg Cr Zn Ti
93.63 0.09 0.21 4.06 0.47 1.37 0.01 0.14 0.02
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20mm

10mm

270mm

Fig. 14 Geometry of a Single-Edge-Notched Beam (SENB) specimen [19]

signal from each accelerometer and an output of each force transducer ( fc1 and fc2 )
were passed through a charge amplifier and monitored on an oscilloscope before
being captured on the data acquisition unit. A schematic of the measurement block
diagram is shown in Fig. 15.

The signal of the proximity sensor which represents the relative displacement (zs)
between the specimen and the base was passed through a 1kHz low pass filter to re-
move the high frequency noise. The output of the low pass filter was then connected
to a power supply before being registered on the data acquisition unit. Finally, the
signal from the ACPD crack growth monitor was fed to the data acquisition unit via
a power amplifier and an oscilloscope.

In addition to measuring the relative displacement between the test specimen and
the base, the proximity sensor was also used to set the dynamic load amplitude of
the specimen. For these reasons, the proximity sensor was calibrated to obtain the
displacement versus the sensor output voltage and the load versus the sensor output
voltage relationships. During the calibration procedure the central position of the
specimen was displaced by a known distance and, at each increment, the output
voltage of the proximity sensor was recorded.

To complete the calibration procedure, the compliance of the cracked specimen
was evaluated. The total compliance, Ctot , as a function of crack length of a through-
thickness cracked beam can be calculated as [3]

Ctot = Cnc +Cc, (30)

where Cnc is the compliance in the absence of a crack and Cc is the additional com-
pliance due to the crack. For the case of a three-point loaded crack-free beam, the
compliance, Cnc, is given as,

Cnc =
L3

span

48EI
, (31)
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Fig. 15 Experimental layout of the fatigue-testing device for inducing dynamic loading [19]

where Lspan is the loading span, E is Young’s modulus, I is the second moment of
area
(
BW 3/12

)
, B is the thickness and W is the width of the beam. The compliance,

Cc, of the three-point loaded SENB for any value of span-to-width ratio (e.g. β =
Lspan/W ) larger than 2.5 has been developed by Guinea et al. [25] in the following
form

Cc =
c1(α)+βc2(α)+β 2c3(α)

EB
, (32)

where

c1(α) = −0.378α3 ln(1−α)+α2 0.29 + 1.39α−1.6α2

1 + 0.54α−0.84α2 ,

c2(α) = 1.1α3 ln(1−α)+α2−3.22−16.4α+ 28.1α2 −11.4α3

(1−α)(1 + 4.7α−4α2)
,

c3(α) = −0.176α3 ln(1−α)+α2 8.91−4.88α−0.435α2 + 0.26α3

(1−α)2(1 + 2.9α)
,



Engineering Applications of Non-smooth Dynamics 233

α = a/W is the crack ratio and a is the crack length. Substituting Eqs. (31) and (32)
into Eq. (30), and rearranging, the load versus sensor output voltage relationship as
a function of crack ratio is obtained:

P =

G f

1000
×Vso

L3
span

48EI
+

c1(α)+βc2(α)+β 2c3(α)
EB

, (33)

where G f is the gain factor (displacement versus sensor output voltage relationship
as obtained from above), Vso is the sensor output voltage and P is the load. It is

worth noting that
G f

1000
×Vso represents the deflection of the specimen.

A typical test was conducted in the following manner. Before a specimen was
pre-loaded, an initial value of the proximity sensor was offset to zero. The amplitude
of the proximity sensor output voltage corresponding to the load amplitudes acting
on the bending specimen was calculated using Eq. (33). The excitation frequency
was set to a value of interest and the base amplitude was varied gradually until
the amplitude of the output voltage from the proximity sensor coincided with the
calculated value.

3.2 Experimental Results [16]

To investigate the interactions between vibrations and crack growth by experimental
means an extensive experimental fatigue test programme was conducted. Fatigue
tests were carried out on SENB specimen shown in Fig. 14 and described earlier.

An example result of the measured time histories with the dynamic shaker driven
by a sinusoidal waveform is shown in Fig. 16, where the base acceleration (Fig.
16(a)), absolute acceleration of mass 1 (Fig. 16(b)), relative displacement of the
SENB specimen (Fig. 16(c)) and dynamic force between pneumatic cylinder 1 and
mass 1 (Fig. 16(d)) are presented. For this particular test, the sample was subjected
to a mean load of 100N and an amplitude of 100N. Examining time histories of Figs.
16(b) and 16(c), it is evident that the existence of a growing fatigue crack affects the
dynamic response of the system, by breaking the symmetry of both acceleration and
displacement with respect to their equilibrium positions. Fig. 17 shows the exper-
imental time histories with the shaker driven by a chaotic waveform. The chaotic
signal was obtained from the response of a forced Duffing oscillator. The test sam-
ple was subjected to zero mean load, in which the fatigue crack was opened and
closed (depending on the phase of oscillations) during vibrations. A close scrutiny
of the time histories (Fig. 17) shows that the pattern of the responses (Fig. 17(b))
are very similar to the base excitation (Fig. 17(a)).

The load parameters given in Table 3 were selected to compare the fatigue life
of the specimen for the effects of mean load and load amplitude under constant
amplitude loading.

The excitation frequency of all tests was fixed at 20Hz. Since in our tests ape-
riodic loading will be used (e.g. Fig. 17), instead of having a typical abscissa of
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Table 3 Loading parameters for harmonic excitation fatigue test

Test name Mean load Load amplitude R ratio Time to fracture
(N) (N) (secs)

hl0(78.5) 0 78.5 -1 39801
hl0(100) 0 100 -1 9191
hl0(273.5) 0 273.5 -1 1319
hl100(100) 100 100 0 1628
hl150(50) 150 50 0.5 2288
hl150(100) 150 100 0.2 547
hl200(50) 200 50 0.6 2037
hl200(100) 200 100 0.33 331

number of cycles, excitation time was used. The crack growth curves for the effect
of mean load are depicted in Fig. 18, and for the effect of load amplitude are shown
in Figs 19 and 20.

For the same load amplitude of 100N on each curve (Fig. 18), the fatigue life
decreases as the mean load increases. In Fig. 19, when the load amplitude increases
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Fig. 16 Time histories [16] under harmonic excitation: (a) base acceleration, (b) mass 1 ac-
celeration, (c) specimen displacement and (d) dynamic force between pneumatic cylinder 1
and mass 1.
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Fig. 18 Fatigue crack length [16] versus time for fixed load amplitude of 100N and with
mean load of (a) 0N, (b) 100N, (c) 150N and (d) 200N
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Fig. 19 Fatigue crack length [16] versus time for fixed mean load of 0N and with load am-
plitude of (a) 78.5N, (b) 100N and (c) 273.5N
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Fig. 20 Fatigue crack length [16] versus time: fixed mean load of 150N for load amplitude
of (a) 50N and (b) 100N

the fatigue life decreases for the same mean load of 0N applied on each curve. A
similar trend can be found for a fixed mean load of 150N in Fig. 20. The time to
fracture starting from a pre-cracked length of 6.4mm for each test are given in the
last column of Table 3. Time to fracture is longer for test hl150(50), which has a
lower load amplitude but a higher mean load when compared to test hl100(100) (in
which both tests have identical maximum load of 200N). A similar trend has been
found for tests hl150(100) and hl200(50) where both tests have the same maximum
load of 250N. Hence, it is not sensible to compare fatigue life by the maximum load,
but rather by the mean load and load amplitude.
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Fig. 21 Fatigue crack length [16] versus time for mean load of 0N: (a) Duffing excitation and
(b) harmonic excitation
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Fig. 22 Fatigue crack length [16] versus time for mean load of 150N: (a) Duffing excitation
and (b) harmonic excitation

The fatigue life of SENB specimen is compared between harmonic and chaotic
excitations for the same amount of elastic energy generated in the specimen. Prac-
tically, an equal amount of power was used to drive the dynamic shaker for both
excitations (harmonic and chaotic). The dominant frequency for the Duffing wave
is 20Hz (an example of the Duffing wave is shown in Fig. 17(a)). The excitation
frequency for harmonic wave is also 20Hz. Figs 21 and 22 show the crack growth
curves for the specimen subjected to mean load of 0N and 150N, respectively. On
both figures, the crack curves for harmonic loading are plotted using squares and
for chaotic loading uses circles. Referring to Fig. 21, for the same amount of en-
ergy the time to fracture for harmonic excitation requires 4 times more than chaotic
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excitation. A similar trend can be seen in Fig. 22 when the specimen is subjected
to a mean load of 150N, where the fatigue life of the specimen under harmonic
excitation is 56 times longer than chaotic excitation. These results indicate that for
the same amount of energy pumped in into a specimen chaotic excitation is much
more damaging than harmonic. The main reason for a much shorter fatigue life with
specimen undergoing chaotic excitation is that the loading contains high frequency
oscillations (see Fig. 17a).

3.3 Two Mass Model [18, 19]

The experimental rig shown in Fig. 13 can be described by a physical model de-
picted in Fig. 23, where the mass m1 is attached to two springs and two dashpot
dampers, in which kLs1 and cLs1 represent stiffness and damping of the top leaf
spring, respectively, and kp1 and cp1 are stiffness and damping of the top pneumatic
cylinder. The mass m2 is attached to the base in the same way as mass m1. Here,
kLs2 and cLs2 represent the stiffness and damping of the bottom leaf spring, kp2 and
cp2 are the stiffness and damping of the bottom pneumatic cylinder. All springs are
assumed to be linear and the dampers are assumed to be linearly viscous. Masses
of all springs and dampers are neglected. To ensure that both masses are kept in
contact with the specimen during operation, the pneumatic forces P1 and P2 act on
masses m1 and m2, respectively. The system is excited harmonically from the base
with amplitude Ab and frequencyΩ .
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Fig. 23 Two masses model of the fatigue-testing rig [19]

Due to the fact that the operating frequency range is much lower than the funda-
mental frequency of the crack-free specimen, its inertial effects affecting the dynam-
ics of the entire rig are considered to be negligible. As a consequence, the crack-free
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sample is modelled as a discrete linear spring ks with a viscous damping coefficient
cs. As can be seen in Fig. 23, the model of the specimen comprises of a rigid mass-
less beam attached to two massless springs of 0.5ks stiffness each together with two
massless dashpot dampers of 0.5cs viscous damping each.

Elastic deformations at the point of contacts between the pneumatic cylinders
and the surface of the specimen were assumed. The introduced contact stiffnesses
ksc1 and ksc2 as shown in Fig. 23, are much larger than the stiffness of the specimen
ks. These springs are needed to determine the change from Contact and No contact
phases.

Due to the pneumatic forces (P1 and P2) and also the gravitational forces (m1g and
m2g), the specimen is loaded from the top and the bottom by ksc1zst

sc1 and −ksc2zst
sc2,

respectively, where
zst

sc1 = xst
m1 − xst

s , zst
sc2 = xst

m2 − xst
s

and, xst
m1, xst

m2 and xst
s are the static displacements of masses m1, m2 and the specimen,

respectively.
Depending on the pre-loading forces (P1 + m1g and −P2 + m2g), the fatigue rig

may operate in one of the following phases: (i) Full contact of both masses with the
specimen, (ii) Partial contact where the mass m1 lost contact while the mass m2 is in
contact with the specimen, (iii) Partial contact where the mass m2 lost contact while
the mass m1 is in contact with the specimen, and finally (iv) No contact where both
masses lost contact with the specimen. When both masses are in contact with the
specimen (Phase (i)), the relative displacements of the masses, zm1 and zm2, and the
specimen, zs, are oscillating in phase. In addition, if ksc1 and ksc2 are equal and also
if the springs and the dampers that are attached to mass m1 are identical to those
on m2, then for the considered system the displacements of masses m1 and m2 are
equal, zm1 = zm2. For Phase (i) the equations of motion are

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1 + ksc1)zm1 − ksc1zs = m1AbΩ 2 sin(Ω t),

csżs +(ks + ksc1 + ksc2)zs − ksc1zm1 − ksc2zm2 = 0, (34)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2 + ksc2)zm2 − ksc2zs = m2AbΩ 2 sin(Ω t).

For Phase (ii) to occur, the following inequality zm1 < (zs − zst
sc1), has to be satisfied

and the force acting between m1 and the specimen needs to vanish; ksc1(zm1 − zs +
zst

sc1) = 0. Hence the equations of motion are as follows

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1)zm1 + kLs1xst
m1 = P1 + m1g

+m1AbΩ 2 sin(Ω t),
csżs +(ks + ksc2)zs − ksc2zm2 + ksx

st
s − ksc2zst

sc2 = 0, (35)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2 + ksc2)zm2 − ksc2zs = m2AbΩ 2 sin(Ω t).
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For Phase (iii) to occur, zm2 > (zs− zst
sc2) has to be satisfied and the forces acting be-

tween m2 and the specimen needs to vanish; ksc2(zm2 − zs + zst
sc2) = 0. The equations

of motion are

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1 + ksc1)zm1 − ksc1zs = m1AbΩ 2 sin(Ω t),

csżs +(ks + ksc1)zs − ksc1zm1 + ksx
st
s − ksc1zst

sc1 = 0, (36)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2)zm2 + kLs2xst
m2 = −P2 + m2g

+m2AbΩ 2 sin(Ω t).

Finally, for Phase (iv) to occur, zm1 < (zs − zst
sc1) and zm2 > (zs − zst

sc2) have to be
satisfied simultaneously. The equations of motion are

m1z̈m1 +(cLs1 + cp1)żm1 +(kLs1 + kp1)zm1 + kLs1xst
m1 = P1 + m1g

+m1AbΩ 2 sin(Ω t),
csżs + kszs + ksx

st
s = 0, (37)

m2z̈m2 +(cLs2 + cp2)żm2 +(kLs2 + kp2)zm2 + kLs2xst
m2 = −P2 + m2g

+m2AbΩ 2 sin(Ω t).

The following simplifying assumptions were made

m1≈m2 = m, cLs1≈cLs2 = cLs, kLs1≈kLs2 = kLs, ksc1≈ksc2 = ksc.

The equations of motion, Eqs. (34)-(37), are now non-dimensionalised by introduc-
ing the following non-dimensional variables

τ = ωLst, X1 =
zm1

Ab
, X2 = X

′
1 =

˙zm1

AbωLs
, X3 =

zs

Ab
, X4 =

zm2

Ab
,

X5 = X
′
4 =

˙zm2

AbωLs
, Xb =

xb

Ab
= sin(ηLsτ),

and parameters

ωLs =

√
kLs

m
, ξLs =

cLs

2mωLs
, ωs =

√
ks

m
, ξs =

cs

2mωs
, ωp1 =

√
kp1

m
,

ξp1 =
cp1

2mωp1
, ωp2 =

√
kp2

m
, ξp2 =

cp2

2mωp2
, λ1 =

√
kp1

kLs
, λ2 =

√
kp2

kLs
,

ϑ =
√

ks

kLs
, ε =

kLs

ksc
, δ1 =

xst
m1

Ab
, δ2 =

xst
m2

Ab
, Δ1 =

zst
sc1

Ab
, Δ2 =

zst
sc2

Ab
,



Engineering Applications of Non-smooth Dynamics 241

γs =
xst

s

Ab
, ηLs =

Ω
ωLs

, f1 =
P1 + mg

mAbω2
Ls

, f2 =
P2 −mg

mAbω2
Ls

,

where ′ denotes d/dτ .
Eqs. (34) to (37) are transformed to a set of the first order differential equations

which can be written for each phase as
Phase (i)

X
′
1 = X2,

X
′
2 = −

(
1 +λ 2

1 +
1
ε

)
X1 − (2ξLs + 2ξp1λ1)X2 +

1
ε

X3 +η2
Ls sin(ηLsτ),

X
′
3 =

1
2εϑξs

X1 −
(

1
εϑξs

+
ϑ

2ξs

)
X3 +

1
2εϑξs

X4, (38)

X
′
4 = X5,

X
′
5 =

1
ε

X3 −
(

1 +λ 2
2 +

1
ε

)
X4 − (2ξLs + 2ξp2λ2)X5 +η2

Ls sin(ηLsτ).

Phase (ii)

X
′
1 = X2,

X
′
2 = −(1 +λ 2

1 )X1 − (2ξLs + 2ξp1λ1)X2 − δ1 + f1 +η2
Ls sin(ηLsτ),

X
′
3 = −

(
1

2εϑξs
+
ϑ

2ξs

)
X3 +

1
2εϑξs

X4 +
Δ2

2εϑξs
− ϑγs

2ξs
, (39)

X
′
4 = X5,

X
′
5 =

1
ε

X3 −
(

1 +λ 2
2 +

1
ε

)
X4 − (2ξLs + 2ξp2λ2)X5 +η2

Ls sin(ηLsτ).

Phase (iii)

X
′
1 = X2,

X
′
2 = −

(
1 +λ 2

1 +
1
ε

)
X1 − (2ξLs + 2ξp1λ1)X2 +

1
ε

X3 +η2
Ls sin(ηLsτ),

X
′
3 =

1
2εϑξs

X1 −
(

1
2εϑξs

+
ϑ

2ξs

)
X3 +

Δ1

2εϑξs
− ϑγs

2ξs
, (40)

X
′
4 = X5,

X
′
5 = −(1 +λ 2

2 )X4 − (2ξLs + 2ξp2λ2)X5 − δ2 − f2 +η2
Ls sin(ηLsτ).
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Phase (iv)

X
′
1 = X2,

X
′
2 = −(1 +λ 2

1 )X1 − (2ξLs + 2ξp1λ1)X2 − δ1 + f1 +η2
Ls sin(ηLsτ),

X
′
3 = − ϑ

2ξs
X3 − ϑγs

2ξs
, (41)

X
′
4 = X5,

X
′
5 = −(1 +λ 2

2 )X4 − (2ξLs + 2ξp2λ2)X5 − δ2 − f2 +η2
Ls sin(ηLsτ).

To obtain a more elegant and compact formulation, we used the Heaviside step func-
tions to describe the piecewise linear nature of the considered system by defining a
set of switch functions G3 and G4,

G3 = G3(X1,X3) = H(X1 − (X3 −Δ1)),
G4 = G4(X3,X4) = H(−X4 +(X3 −Δ2)). (42)

In Eq. (42), when m1 loses contact with the specimen, X1 < (X3 −Δ1), the function
G3 is equal to 0. When m2 loses contact with the specimen, X4 > (X3 −Δ2), the
function G4 is equal to 0, otherwise G3 and G4 are equal to 1. The equations of
motion that describe all the possible phases are:

X
′
1 = X2,

X
′
2 = −(1 +λ 2

1 )X1 − (2ξLs + 2ξp1λ1)X2 − G3

ε
(X1 −X3 +Δ1)− δ1 + f1

+ η2
Ls sin(ηLsτ),

X
′
3 =

G3

2εϑξs
(X1 −X3 +Δ1)+

G4

2εϑξs
(−X3 + X4 +Δ2)

− ϑ
2ξs

X3 − ϑγs

2ξs
, (43)

X
′
4 = X5,

X
′
5 = −(1 +λ 2

2 )X4 − (2ξLs + 2ξp2λ2)X5 − G4

ε
(−X3 + X4 +Δ2)− δ2 − f2

+ η2
Ls sin(ηLsτ).

Equation (43) was used to compute the dynamic responses including the one
shown in Fig. 24 where four phases of motion can be clearly observed for the system
with a specimen without a crack. The displacements of mass 1, X1, and mass 2, X4,
are plotted by thick solid and dashed lines, respectively. The displacement of the
specimen, X3, is plotted in dotted line.

Referring to Fig. 24(b), at the instant when m1 hits m2 both masses are kept in
contact with the specimen for a very short time (labelled as Phase(i)). After this short
period of light impact, due to the energy transfer between m1 and m2, m2 starts to
separate while m1 still follows the trajectory of the specimen (labelled as Phase (iii)).
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Fig. 24 Time histories [19] computed for ηLs = 3, ξLs = 0.00255, ξs = 0.002, ξp1 = 0.4,
ξp2 = 0.4, λ1 = 2, λ2 = 2, ϑ = 7.828, ε = 0.002012, f1 = 3.75, f2 = 3.75. Thick solid line
represents X1, dotted line represents X3 and dash line represents X4
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When m1 moves upwards to the vicinity of the equilibrium point, Phase (iv) begins.
In this phase, the displacement of the specimen decays and remains stationary as at
the equilibrium position. When the position of m2 coincides with the position of the
specimen Phase (ii) occurs, in which m2 moves in phase with the specimen while
m1 is still away from the specimen.
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Fig. 25 a, c, e Theoretical time histories for ηLs = 2.5, ξLs = 0.00255, ξs = 0.002, ξp1 = 0.4,
ξp2 = 0.4, λ1 = 4.36, λ2 = 4.36, ϑ = 7.828, ε = 0.002012, f1 = 5.44, f2 = 3.52 ; b, d, f
Experimental time histories for excitation frequency of 19.15Hz and an amplitude of 2.8mm.
Thick solid line represents X

′′
1 , z̈m1, X1 and zm1 and thin solid line represents X

′′
4 , z̈m2, X4 and

zm2 in Figs. 25 c, d, e and f. Dotted line represents X3 and zs in Figs. 25 e and f. Adopted
from [19]
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A comparison between numerical and experimental results is shown in Fig. 25.
The theoretical time histories for the base acceleration X

′′
b is shown in Fig. 25(a);

the accelerations of mass 1 X
′′
1 (thick solid line) and mass 2 X

′′
4 (thin solid line) are

depicted in Fig. 25(c). The displacements of mass 1 X1 (thick solid line), mass 2
X4 (thin solid line) and of the specimen X3 (dotted line) were plotted on the same
graph as shown in Fig. 25(e). The numerical integrations were performed with zero
initial conditions using the following values of the system parameters: ηLs = 2.5,
ξLs = 0.00255, ξs = 0.002, ξp1 = 0.4, ξp2 = 0.4, λ1 = 4.36, λ2 = 4.36, ϑ = 7.828,
ε = 0.002012, f1 = 5.44, f2 = 3.52. The experimental time histories acquired are
depicted in Figs. 25(b), (d) and (f). The excitation frequency and amplitude used for
this experiment were 19.15Hz and 2.8mm, respectively. In these figures, Fig. 25(b)
is the base acceleration ẍb, Fig. 25(d) depicts the relative accelerations z̈m1 (thick
solid line) and z̈m2 (thin solid line), and Fig. 25(f) shows the relative displacements
zm1 (thick solid line), zm2 (thin solid line) and zs (dotted line). The relative displace-
ments of m1 and m2 were obtained by a double numerical integration of the relative
accelerations, z̈m1 and z̈m2, respectively of Fig. 25(d). It can be concluded from Fig.
25 that a good qualitative and quantitative agreement between the theoretical and
the experimental results was obtained.

3.4 Reduction of Two Mass Model to a Single Degree-of-Freedom
System [18, 19]

The pre-loading forces from the pneumatic cylinders can be set to keep both masses
and the specimen always in contact. In this case the two masses system shown in
Fig. 23 can be described by Eq. (38). Consequently the model can be reduced to a
single degree-of-freedom by introducing the following variables,

y1 =
X1 + X4

2
, y2 =

X2 + X5

2
, y3 = X3, z1 =

X1 −X4

2
, z2 =

X2 −X5

2
,

and assuming that
λ1 = λ2 = λ , ξp1 = ξp2 = ξp.

Using the new variables Eq. (38) can be re-written as follows

y
′
1 = y2,

y
′
2 = −

(
1 +λ 2 +

1
ε

)
y1 − (2ξLs + 2ξpλ )y2 +

1
ε

y3 +η2
Ls sin(ηLsτ),

y
′
3 =

1
εϑξs

y1 −
(

1
εϑξs

+
ϑ

2ξs

)
y3, (44)

z
′
1 = z2

z
′
2 = −

(
1 +λ 2 +

1
ε

)
z1 − (2ξLs + 2ξpλ )z2.



246 M. Wiercigroch and E. Pavlovskaia

As can be seen from Eq. (44), the first three equations do not depend on variable z,
while the last two are independent of variable y. Hence, two independent systems
have been obtained and they can be solved separately. Assuming that X1 = X4 and
X2 = X5, we have z1 = z2≡0, which means that the displacements and the velocities
of both masses are equal. Furthermore, for the present system, ksc � kLs and thus
when ε→0, it has been assumed that the relative displacements and velocities of the
springs ksc1 and ksc2 are negligible. For this case, the displacements of both masses
and the specimen will be equal. Therefore, the two mass model given in Fig. 23 can
be simplified to a single degree-of-freedom model as shown in Fig. 26.
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Fig. 26 Simplified single degree-of-freedom model [19]

Consequently, the dynamics of both masses can be described by the following
equation of motion

Mz̈M + cMżM +(kM + ks)zM = MAbΩ 2 sin(Ω t), (45)

where,

zM =
zm1 + zm2

2
= zm1 = zm2, M = m1 + m2,

cM = (2cLs + cp1 + cp2 + cs), kM = (2kLs + kp1 + kp2).

Transforming Eq. (45) into the non-dimensional first order differential equations,
we have

y
′
1 = y2,

y
′
2 = −(1 +κM)y1 −2ξMy2 +η2

M sin(ηMτ), (46)
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whereby the non-dimensional parameters are defined as,

τ = ωMt, ωM =

√
kM

M
, ξM =

cM

2MωM
, κM =

ks

kM
, ηM =

Ω
ωM

,

where ′ denotes d/dτ .
As was demonstrated above, when both masses are in contact with the specimen,
the set of equations that represent the model in Fig. 23 can be simplified from five
first order equations ( Eq. (44)) to just two (Eq. (46)).

3.5 Stiffness of a Cracked Beam [19]

Many investigations have been conducted to study the nonlinear effects due to dis-
continuous stiffness characteristics. For example externally forced piecewise linear
oscillators were studied theoretically by Shaw and Holmes [51], and experimentally
by Wiercigroch et al. [62] and Sin and Wiercigroch [53]. Obtained results in [51, 62,
53] revealed complex dynamics including existence of periodic, subharmonic and
chaotic motion. The bilinear or piecewise oscillators have also been used to model
the dynamic behaviour of cracked structures [66, 27, 2, 28, 9, 10, 20, 52, 6, 1]. How-
ever, the work carried out in [66, 27, 2, 28, 9, 10, 20, 52, 6, 1] assumed a stationary
fatigue crack, in which, the restoring force of the cracked structure has a stiffness
characteristic as shown in Fig. 27(a). In the present work, taking into account a grow-
ing fatigue crack, the stiffness of the bending specimen decreases as a function of
crack length and time when crack opens. For a completely closed crack, the stiffness
of a crack-free specimen is assumed. The bilinear piecewise smooth restoring force
of this behaviour is shown in Fig. 27(b) for different lengthes of the crack. The main
rationale behind the assumption is that, unless the remaining material at the front of
the crack tip starts to yield, the decrease of the bending specimen stiffness is small
even though a significant fatigue crack has propagated. Furthermore, Gudmundson
[24] experimentally showed that the effect of the closing crack has a small influence
on the natural frequencies, and therefore, making the assumption justified.
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Fig. 27 Stiffness characteristics of the specimen [19]
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The stiffness of the specimen with a closed crack assumed as a simply supported
beam can be calculated from the formula

kcl
s =

48EI
L3

span
. (47)

When a crack opens, the stiffness kop
s can be computed from Eq. (33), which after a

simple rearrangement can take the following form

kop
s =

1

L3
span

48EI
+

c1(α)+βc2(α)+β 2c3(α)
EB

, (48)

where all parameters are as defined for Eq. (33). kop
s decreases in term of crack

length, a, which is modelled by an exponential function of time t, [18]

a = ao + a1exp

(
t −a2

a3

)
, (49)

where the constants ao, a1, a2 and a3 are obtained from experiments. Eq. (49) is
used to calculate the crack-depth ratio α = a/W in the functions c1(α), c2(α) and
c3(α) of Eq. (48).

During our fatigue tests, the two oscillating masses of the fatigue rig were kept in
contact with the specimen at all time. A model that represents the full contact case
was already presented in Fig. 26 and its equation of motion is given by Eq. (45).
Referring to Fig. 26, for crack opening, the kinematic condition, (zM + xst

M) > 0,
must be satisfied, and for crack closing, (zM + xst

M) ≤ 0. After including the static
forces into Eq. (45), the resulting equation was transformed to a set of two non-
dimensional first order differential equations,

y
′
1 = y2,

y
′
2 = −(1 +κM)y1 −2ξMy2 − (ρ+κM)γM + fM +η2

M sin(ηMτ), (50)

where

ρ =
2kLs

kM
, fM =

P1 + Mg−P2

MAbω2
M

,

and γM = xst
M/Ab. A Heaviside function H(y1 + γM), which is equal to 1 for crack

opening and 0 for crack closing is used to model the piecewise linear stiffness char-
acteristics κM in Eq. (50), in which

κM = H(y1 + γM)κop
M +(1−H(y1 + γM))κcl

M, (51)

where

κop
M =

kop
s

kM
, κcl

M =
kcl

s

kM
.
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Fig. 28 Phase portraits obtained for 0N mean load and load amplitude of 274N [19]; a the-
oretical 3-dimensional, b theoretical 2-dimensional, c experimental 3-dimensional and d ex-
perimental 2-dimensional

A three dimensional and a two dimensional phase portraits generated from Eq.
(50) representing the dynamic responses of a specimen under a growing breath-
ing crack (crack opens and closes) are depicted in Figs. 28(a) and (b), respectively.
The smallest to the largest orbits correspond to the growing crack ratio, α of 0.32,
0.5, 0.7 and 0.9, respectively. All orbits form close loops indicating period one
motion with clearly visible piecewise linear nature of the dynamic responses (see
Fig. 28(b)). This is due to the fact that when fatigue crack propagates, the stiffness
of the specimen decreases when the crack opens, and hence, causes a larger ampli-
tude of oscillations. In addition, the trajectories at different crack length follows the
same path as the crack closes (point A to B in Fig. 28(b)), which confirms that the
stiffness during the crack closure remains constant. These theoretical results were
validated by the experimental phase portraits as shown in Figs. 28(c) and d.

3.6 Strange Attractor [18]

The behaviour of the system was simulated using the one mass model and the re-
sults are shown in Figs. 29 and 30. Fig. 29 presents a crack growth curve obtained for
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ξM = 0.014, ηM = 1.1475, kcl
s = 14.327, kop

s = 4.245×10−3(20−a)3 [18]. As can
be seen from Fig. 29 it takes a significant time for a crack to be initiated and to
start propagating. To monitor the behaviour of the system, Poincaré maps for the
system with the specified crack length were constructed and they are superimposed
on the crack growth curve in Fig.29. As can be seen from this figure, while the crack
length remains around 5.0 mm, the system response is stable period one motion. As
the crack growths, the system response is changing and at a significantly larger
crack length it becomes chaotic (for example, shown strange attractors have been
identified at crack length of 12.09 and 13.03 mm). As the crack increases further, a
period four response was obtained at a crack length of 13.4 mm.

To observe the behaviour of the system due to the growing fatigue crack transient
Poincaré maps shown in Fig. 30 were also constructed. In contrast to the standard
Poincaré maps, these pictures do not reflect the steady response of the system, but
give a number of snap-shots showing different dynamic responses under a growing
crack. As can be seen from Fig. 30(a) when the crack length is smaller than 10.7 mm
(τ < 900,514), the response of the system remains period one and the location of
the attractor is changing with time and the growing crack in the direction shown by
the arrow. This periodic regime eventually changes into a chaotic regime for a rather
short time and then, when the crack length is about 12.0 mm, the system responds
with period two motion for some time as shown in Fig.30(b). Again the arrows
on the plot show how the location of the attractor is changing with the growing
time. Later for τ ≈ 915,662 we can distinguish period three motion (Fig.30(c)), for
τ ≈ 928,100 a period two motion (Fig.30(d)) and for τ ≈ 936,903 a period two
motion again (Fig.30(e)). All these regimes are separated by a chaotic behaviour of
the system and possibly other periodic regimes which the system experiences for
rather short periods of time. Thus the system with constant crack length allows us
to obtain the same responses (one for each particular crack length) as was observed
for the system with a growing crack.

3.7 Conclusions

In this section we presented a study on the nonlinear dynamics caused by a fatigue
crack growth in a beam specimen. Specifically we investigated the behaviour of the
system with a cracked specimen under periodic and chaotic loading, where the stiff-
ness of the specimen during crack opening and closing was modelled as piecewise
nonlinear function. The dynamic interactions in this system can be strongly nonlin-
ear resulting in aperiodic responses which have an influence on the fatigue crack
growth.

As conventional fatigue testing machine cannot easily generate a flexible aperi-
odic loading, we designed a new fatigue testing device, which was tested and mod-
elled. The conducted experimental study revealed that chaotic excitation is more
damaging for the system than the harmonic one as for the same amount of energy
pumped into a specimen, the fatigue life of the specimen subjected to the aperi-
odic loading was significantly reduced. We developed two mathematical models of
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Fig. 29 Crack growth curve with superimposed Poincaré maps calculated for the system
with the specified crack length obtained for ξM = 0.014, ηM = 1.1475, kcl

s = 14.327, kop
s =

4.245×10−3(20−a)3. Adopted from [18]

the testing device to forecast a fatigue crack growth in beam samples. Specifically
the experimental rig was modelled mathematically as a two mass and one mass
systems. Studying one mass system, we found that when the crack size reaches
a critical value, a strange attractor is born and this phenomenon can be used in
structural health monitoring. The numerical results compared with the experiments
show a good correspondence.

4 Regular and Chaotic Dynamics of a Rotor System with a
Bearing Clearance [33, 32, 30, 31, 45, 34]

In rotor systems a non-smoothness may appear due to bearing clearances. Phys-
ically speaking this results in piecewise nonlinear stiffness characteristics, which
can consequently lead to complex nonlinear behaviour including chaotic motion.
The appearance of such phenomena implies a possibility of an intermittent contact
between the components of the rotor system, which is difficult to predict. Rotor
systems with bearing clearances have been studied in the past, and some investiga-
tions concentrated primarily on the Jeffcott rotors. For example, Choy and Padovan
[5], Muszynska and Goldman [40], Childs [4] and Chu and Zhang [7, 8] examined
rubbing in rotating machinery. Ehrich [11] investigated spontaneous sidebanding,
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Fig. 30 Transient Poincaré maps [18] calculated for ξM = 0.014, ηM = 1.1475, kcl
s = 14.327,

kop
s = 4.245 × 10−3(20 − a)3, a = 5 + 10−3 exp(τ/54734 − 7.8). The arrows indicate the

direction of appearance of new points with the growing time



Engineering Applications of Non-smooth Dynamics 253

while Ganesan [21] looked at the stability analysis. Numerical investigations of the
model of the Jeffcott rotor with a snubber ring presented in [33] shown the exis-
tence of multiple attractors and fractal basins of attraction. Influence of the preload-
ing and viscous damping of the snubber ring was investigated in [31, 45], where
it was shown how the preloading of the snubber ring could stabilize the dynamic
responses. In this section we will discuss the work undertaken in the Centre for Ap-
plied Dynamics Research (CADR) at the University of Aberdeen. Specifically we
will focuss on the finding published in [33, 32, 30, 31, 45, 34].

4.1 Physical Model and Equations of Motion [45]

The most up to date two-degrees-of-freedom model of the rotor system with a
preloaded snubber ring developed by the CADR is shown in Fig. 31(a). During
operation the rotor of mass M makes intermittent contact with the preloaded snub-
ber ring and the excitation is provided by an out-of-balance rotating mass mρ . It
is assumed that contact is non-impulsive and that the friction between the snubber
ring and the rotor is neglected. Since the mass ratio between the snubber ring and
the mass of the rotor is small (for existing experimental rig it is equal to ≈ 1/17)
and the ratio between the stiffnesses of the snubber ring and the rotor is large, it
is assumed that the snubber ring itself is massless. The stiffness and the viscous
damping of the snubber ring are equal to ks and cs. The stiffness and the damping
of the rotor are respectively kr and cr. The springs supporting the snubber ring are
preloaded by Δx in horizontal and Δy in vertical directions respectively. There is a
gap γ between the rotor and the snubber ring. Also in the initial position, the centre
of the rotor is displaced from the centre of the snubber ring which is characterized
by the eccentricity vector ε .

The presented model can operate in one of two following regimes: (a) no con-
tact and (b) contact between the rotor and the snubber ring. In the latter regime, a
preloading makes the dynamics of the system more complicated as the force act-
ing from the snubber ring on the rotor depends on whether the displacement of the
snubber ring exceeds the preloadings (in one or both directions) or not. Thus the
following unique regimes can be distinguished as given in [45]:

I. No contact between the rotor and the snubber ring.
II. Contact between the rotor and the snubber ring, where the both displacements

of the snubber ring are smaller than the preloadings, i.e. |xs|� Δx and |ys|� Δy.
III. Contact between the rotor and the snubber ring, where the displacement of the

snubber ring in the horizontal direction is larger than the preloading, |xs| > Δx,
and in the vertical direction is smaller than preloading, |ys| � Δy.

IV. Contact between the rotor and the snubber ring, where the displacement of the
snubber ring in the horizontal direction is smaller than the preloading, |xs|� Δx,
and in the vertical direction is larger than preloading, |ys| > Δy.

V. Contact between the rotor and the snubber ring, where the displacements of the
snubber ring are larger than the preloadings, i.e. |xs| > Δx and |ys| > Δy.
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These four contact regimes were nesessary to be introduced as the results of our
earlier theoretical work [32, 31] not correlating well with the experiments [30].

The co-ordinate system adopted in this section is presented in Fig. 31(b). The
initial position of the rotor Or,0 differs from the initial position of the snubber
ring Os,0 by the eccentricity vector ε = (εx,εy). The vectors Rr = (xr,yr) and
Rs = (xs,ys) show the current positions of the rotor and the snubber ring, and
D =

√
(xr − xs)2 +(yr − ys)2 is the distance between the centres of the rotor and

the snubber ring at any given time. R =
√

x2
r + y2

r is the radial displacement of the
rotor.

For No contact regime the distance between the centres of the rotor and the snub-
ber ring is smaller than the gap, γ , that is R � γ , and the equations of motion for the
rotor and the snubber ring are

M ẍr + cr ẋr + kr(xr − εx) = mρ Ω 2 cos(ϕ0 +Ω t) ,
M ÿr + cr ẏr + kr(yr − εy) = mρ Ω 2 sin(ϕ0 +Ω t) , (52)

ksxs + csẋs = 0, ksys + csẏs = 0,

where ϕ0 is an initial phase shift and Ω is the shaft rotational velocity.
When D = γ , the rotor contacts the snubber ring and one of the specified contact

regimes occurs, for which the equations of motion can be written as

M ẍr + crẋr + kr(xr − εx)+ Fsx = mρ Ω 2 cos(ϕ0 +Ω t) ,
M ÿr + crẏr + kr(yr − εy)+ Fsy = mρ Ω 2 sin(ϕ0 +Ω t) , (53)

xs = xs(xr,yr), ys = ys(xr,yr).

Here the restraining force in the snubber ring Fs =
(
Fsx ,Fsy

)
, shown in Fig. 32,

varies for different contact regimes. The unknowns xs(xr,yr) and ys = ys(xr,yr) give
the current location of the snubber ring as a function of the current location of the
rotor. To determine these functions, the principle of minimum elastic energy of the
snubber ring is used.

It is worth noting that during any contact regime the distance between the centres
of the rotor and the snubber ring remains constant, D = γ , despite of the fact that
the force in the snubber ring, Fs may vary. In order to determine the moment when
the contact is lost the force Fs should be monitored. If the projection of this force Fs

on the vector n is positive (see Fig. 32), it is assumed that the rotor and the snubber
ring are still in contact. Thus the contact is lost when

n ·Fs � 0 or cos(ϕ−ψ) � 0, (54)

where

ψ = arccos

⎛
⎝ xr − xs√

(xr − xs)
2 +(yr − ys)

2

⎞
⎠ , ϕ = arctan

(
Fsy

/
Fsx

)
.
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Let us assume that the rotor and the snubber ring are in contact and the rotor
moves the snubber ring in the direction as indicated by an arrow in Fig. 33. The
forces F1, F2, F3 and F4 generated in the snubber ring as a result of the rotor and
the snubber ring contact can be described in vector form as

F1 =
{−j [ks (Δy + ys)+ csẏs] ,

0
ys > −Δy

ys ≤−Δy
(55)

F2 =
{

j [ks (Δy − ys)− csẏs] ,
0

ys < Δy

ys ≥ Δy
(56)

F3 =
{−i [ks (Δx + xs)+ csẋs] ,

0
xs > −Δx

xs ≤−Δx
(57)

F4 =
{

i [ks (Δx − xs)− csẋs] ,
0

xs < Δx

xs ≥ Δx
(58)

Now the force in the snubber ring Fs can be conveniently defined as the resultant
force taken with the opposite sign

Fs = −(F1 + F2 + F3 + F4) (59)

The formulae of this force for different regimes of operation are given in Table
4. These expressions for Fs should be substituted to Eq.(53) to obtain equations of
motion for different contact regimes and to Eq. (54) to determine the moments when
the contact is made or lost.
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Table 4 The force in the snubber ring Fs for various regimes

|xs| < Δx

|ys| < Δy
i [2ksxs +2csẋs]+ j [2ksys +2csẏs]

|xs| < Δx

|ys| ≥ Δy
i [2ksxs +2csẋs]+ j

[
sign (ys)ks

(
Δy + |ys|

)
+csẏs

]
|xs| ≥ Δx

|ys| < Δy
i [sign (xs)ks (Δx + |xs|)+csẋs]+ j [2ksys +2csẏs]

|xs| ≥ Δx

|ys| ≥ Δy
i [sign (xs)ks (Δx + |xs|)+csẋs]+ j

[
sign (ys)ks

(
Δy + |ys|

)
+csẏs

]

4.2 Location of the Snubber Ring and Contact Regimes

If the rotor and the snubber ring are in contact, the distance between their centres
remains constant and equal to the gap, so (xr − xs)2 +(yr − ys)2 = γ2. In order to
find the location of the snubber ring centre when it moves and is in contact with
the rotor, the following approach was adopted. It was assumed that the snubber ring
being in contact with the rotor finds its position through minimum energy principle.
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The potential (elastic) energy accumulated in the snubber ring at the position
(xs,ys) is equal to the work, which is spent to bring the snubber ring to this position:

E =
∫

(s)

Fs ·ds = −
xs∫

0

(F3 + F4) · idxs −
ys∫

0

(F1 + F2) · j dys (60)

Assuming that the dissipation of energy is negligible in comparison with the work of
elastic forces, the expressions for the energy of the snubber ring take forms listed in
Table 5. Consequently, the problem of finding the location of the snubber ring can be
reduced to determining the minimum of the energy E with the constraint condition
D = γ . This can be done using the Lagrange multipliers method by constructing
the Lagrange function L = E +λδ , where λ is Lagrange multiplier, E is the elastic
energy of the snubber ring, δ is the constraint function δ = (xr − xs)2 +(yr − ys)2 −
γ2. As E and δ are the continuous and differentiable functions, the current position
of the snubber ring (xs and ys) as a function of the of the current rotor position (xr

and yr) can be determined from the conditions of the extremum existence:

∂L
∂xs

= 0,
∂L
∂ys

= 0,
∂L
∂λ

= δ = 0 (61)

where L = E +λ
(
(xr − xs)2 +(yr − ys)2 − γ2

)
.

Then by minimising the energy E with respect to the constraint (xr − xs)2 +
(yr − ys)

2 = γ2, the functions xs (xr,yr) and ys (xr,yr) can be obtained (see Table 6).

Table 5 The elastic energy of the snubber ring E for various regimes

|xs| < Δx

|ys| < Δy
ksx2

s +ksy2
s

|xs| < Δx

|ys| ≥ Δy
0.5ks

(
(|xs|+Δx)2 −2Δ 2

x

)
+ksy2

s

|xs| ≥ Δx

|ys| < Δy
ksx2

s +0.5ks

((|ys|+Δy
)2 −2Δ 2

y

)
|xs| ≥ Δx

|ys| ≥ Δy
0.5ks

(
(|xs|+Δx)2 −2Δ 2

x

)
+0.5ks

(
(|ys|+Δx)2 −2Δ 2

y

)

As explained earlier the rotor can move either in or out of contact with the snub-
ber ring. When in contact, the force acting between the rotor and the snubber ring
depends on the strength of contact and four different regimes can occur. This can be
clearly explained using (xr,yr) plane, where each regime is mapped into an associ-
ated region as shown in Fig. 34. The boundaries between regions I, II, III, IV and
V are determined from the conditions listed at the top right quadrant in Fig. 34. The
equations describing these boundaries were developed and are graphically depicted



Engineering Applications of Non-smooth Dynamics 259

Table 6 The functions xs (xr,yr) and ys (xr,yr) for various regimes of operation

|xs| < Δx

|ys| < Δy
xs = xr

(√
x2

r +y2
r − γ
)/√

x2
r +y2

r ys = yr

(√
x2

r +y2
r − γ
)/√

x2
r +y2

r

|xs| < Δx

|ys| ≥ Δy
xs = sign (xr)

[
2ys(|xr |+Δx)

yr+ys
−Δx

] (yr −ys)2
(
(|xr|+Δx)2 +

(yr +ys)2
)

= γ2 (yr +ys)2

|xs| ≥ Δx

|ys| < Δy

(xr −xs)2
((|yr |+Δy

)2 +

(xr +xs)2
)

= γ2 (xr +xs)2
ys = sign (yr)

[
2xs(|yr |+Δy)

xr+xs
−Δy

]

|xs| ≥ Δx

|ys| ≥ Δy

xs = sign (xr)
[

(|xr |+Δx)(R̃−γ)
R̃

−Δx

]
,

R̃ =
√

(|xr|+Δx)2 +
(|yr|+Δy

)2 ys = sign (yr)
[

(|yr |+Δy)(R̃−γ)
R̃

−Δy

]

in Fig. 35, which shows one quadrant of (xr,yr) plane since the problem is symmetric.
A detailed explanation how all these regions were determined is given below.

Region I, or No contact region is realised inside the circle

x2
r + y2

r = γ2 (62)

When the rotor makes a contact with the snubber ring the contact regime II begins.
The boundaries of the corresponding region on (xr,yr) plane can be determined
as follows. The inner boundary is described by Eq. (62). The outer boundaries are
described by the conditions |xs| = Δx and |ys| = Δy. Substituting xs and ys as the
functions of xr and yr given in Table 6 for |xs| ≤Δx and |ys| ≤Δy, in the first quadrant
of (xr,yr) plane the outer boundaries are given by

yr =
xr

xr −Δx

√
γ2 − (xr −Δx)2, (63)

xr =
yr

yr −Δy

√
γ2 − (yr −Δy)

2. (64)

If the rotor pushes the snubber ring strongly enough in the horizontal direction,
i.e. its displacement, xs becomes larger than the preloading Δx, the regime III be-
gins. The inner (left) border for the region III is described by Eq. (63) and outer
(upper) border again is governed by the conditions |ys| = Δy. As this border is si-
multaneously the inner (lower) border for the region V, the explicit expression for
ys as function of xr and yr (Table 6) for |xs| > Δx and |ys| > Δy is used

xr = −Δx +
yr +Δy

yr −Δy

√
γ2 − (yr −Δy)

2. (65)
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In the same way for the rotor moving in the region IV, one can obtain the inner
(lower) border for the region IV as described by Eq. (64) and the outer (right) border
as

yr = −Δy +
xr +Δx

xr −Δx

√
γ2 − (xr −Δx)

2. (66)

Finally, the inner borders of the region V are described by Eq. (65) and (66).
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4.3 Numerical Simulations

Numerical results presented in this section are to illustrate the use of the developed
analytical formulas and to show the influence of the preloading on the dynamics of
the rotor crossing different regions of operation. The calculations were performed
in the dimensionless domain by defining the following dimensionless variables

τ = ωnt, fs =
Fs

krγ
, x̂r =

xr

γ
, ŷr =

yr

γ
, x̂s =

xs

γ
, ŷs =

ys

γ
, vxs = x̂′s,

and parameters

η =
Ω
ωn

, ν1 =
cr

2
√

krM
, ν2 =

cs

2
√

krM
, ηm =

m
M

, ρ̂ =
ρ
γ

,

K̂ =
ks

kr
, ε̂x =

εx

γ
, ε̂y =

εy

γ
, Δ̂ x =

Δ x

γ
, Δ̂ y =
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Fig. 36 Bifurcation diagrams showing the displacement of the rotor as function of frequency
x̂r(η) calculated for a Δ̂x = Δ̂y = 0; b Δ̂x = Δ̂y = 0.1; and ν1 = 0.125, ν2 = 0.002, K̂ = 30,
ηm = 0.0017, ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0. Adopted from [45]

In this study numerous bifurcation diagrams were constructed including the two
shown in Fig. 36 for the displacement of the rotor x̂r under varying the frequency
ratio η for the unpreloaded (Fig. 36(a)) and the preloaded (Fig. 36(b)) cases. The
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control parameter η was set to the leftmost value 2. Starting with zero initial condi-
tions first 300 cycles were disregarded to ensure that steady state solutions had been
reached. The displacement x̂r for the next 150 cycles was plotted. Then a small in-
crement was added to the control parameter and the procedure was repeated until the
control parameter reached the rightmost value η = 5. The parameters used in numer-
ical computations were as follows: ν1 = 0.125, ν2 = 0.002, K̂ = 30, ηm = 0.0017,
ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0. The preloading was set to zero in both directions
for Fig. 36(a), and Δ̂x = Δ̂y = 0.1 for Fig. 36(b). As can be clearly seen from Fig.
36 the preloading changes the bifurcation structure. Firstly, it shifts the bifurcation
points towards higher frequencies; dash lines in Fig. 36 point out such behaviour.
For instance, the period one observed in the beginning of the diagram bifurcates at
η = 2.165 for unpreloaded and at η = 2.213 for preloaded case. The bifurcation of
period four motion into period two motion moves from η = 2.717 to 2.824, and the
period two bifurcates into period four at η = 3.803 and 3.893 for unpreloaded and
preloaded cases respectively. Secondly, the introduction of the preloading changes
the character of bifurcations. For example, the period one motion marked by the
leftmost dash line, bifurcates into period three motion (see Poincaré map in Fig.
37(a)) for the unpreloaded case and into quasi-periodic motion (Fig. 37(b)) for the
preloaded case. Also the preloading changes the structure of the chaotic attractor
which be seen from Poincaré maps shown in Fig. 37(c) and 37(d) calculated at
η = 2.442 for the unpreloaded and the preloaded cases. Finally and most impor-
tantly the preloading introduces new bifurcations and new regimes. For example, an
additional bifurcation of the period two motion into quasi-periodic motion appears
at η ≈ 3.107 for the preloaded case.

The changes in dynamical behaviour are even more visible in (x̂s, v̂xs) plane. The
comparisons between trajectories of the snubber ring on the phase plane (x̂s, v̂xs) for
the system with and without preloading are presented in Fig. 38. The dynamics of
the snubber ring is shown in Figs. 38(a) and 38(c) for the case without preloading
(Δ̂x = Δ̂y = 0), and in Figs. 38(b) and 38(d) for the case with preloading (Δ̂x = Δ̂y =
0.05 and 0.03 respectively). As can be seen from the Fig. 38 in both cases, velocity
of snubber ring v̂xs experiences a jump at x̂s = 0, when the rotor hits the snubber
ring. For the systems with preloading there is an additional jump of velocity v̂xs ,
which appears at x̂s = Δ̂x. It can be also observed that the preloading reduces the
amplitude of the snubber ring vibrations.

4.4 Experimental Verification

The results of the mathematical modelling were verified on a purpose designed ex-
perimental rig. Figure 39(a) shows the rotor rig which comprises of essentially two
main parts, a rigid rotor (1), visco-elastically supported by four flexural rods (2) and
excited by the out-of-balance mass (3), and a snubber ring (4) also elastically sup-
ported using four compression springs. The rotor assembly consists of a steel rotor,
running in two angular contact bearings. Holes (5) were drilled and tapped in both
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Fig. 37 Poincaré maps v̂xr (x̂r) [45] calculated for a, c Δ̂x = Δ̂y = 0; b,d Δ̂x = Δ̂y = 0.1; and
ν1 = 0.125, ν2 = 0.002, K̂ = 30, ηm = 0.0017, ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0; and a η = 2.223,
b η = 2.181 and c, d η = 2.442

inner sleeves for the addition of imbalance weights. A pair of viscous dampers (6)
was attached to the rotor to provide the system with heavier damping.

Four flexural rods (2) are clamped symmetrically at one end to the outer bearing
housing and at the other to a large support block. The support block (7) is in turn
bolted to a large cast iron bed. The stiffness of the snubber ring is provided by four
compression springs (8), of much greater stiffness than that of the flexural rods. The
rotor ran inside the ring, with a radial clearance between the ring (4) and the outer
bearing housing (1). Two different outer rings were used in the experiments one
with a 0.5 mm and another with 0.75 mm gap.

The rotor is driven by a variable speed DC motor (9). The shaft speed monitoring
disc has a notch cut into it, which is aligned with the imbalance mass. As the notch
passes a light-emitting-diode optoswitch, a once-per-revolution phase signal is ob-
tained. The displacements of the rotor system are monitored by non-contacting eddy
current probes. The displacement and forcing frequency signals were collected by a
Labview data acquisition system with a custom written program controlling the rate
of sampling, the number of samples, calibration and computation of the rotational
frequency. The relative velocities of the rotor and the snubber ring ẋr, ẏr, ẋs and ẏs
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Fig. 38 Phase portraits v̂xs (x̂s) calculated for a Δ̂x = Δ̂y = 0; b Δ̂x = Δ̂y = 0.05; and ν1 =
0.06, ν2 = 0.002, η = 2.5, K̂ = 30, ηm = 0.00289, ρ̂ = 70, ε̂x = 0.4 and ε̂y = 0.5; and c
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ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0. Adopted from [45]

were calculated from the displacements measured by the eddy current probes. The
data was collated on the computer, where it was scaled, plotted and analysed in the
form of Poincaré maps and bifurcation diagrams.

Now a sample of extensive experimental studies [30] conducted to verify the
mathematical model of Jeffcott rotor system with a preloaded snubber ring [45] is
presented here. The following values of the system parameters were chosen: the
rotor mass and mass of the out-of-balance were M = 9.7 kg and m = 0.028 kg
respectively. The combined stiffness of the rods supporting the rotor was krx = kry =
79 kN/m, which yields a natural frequency of 14.4 Hz. The snubber ring stiffness
was ks = 2354 kN/m and the equivalent viscous damping from the rods and the
dampers in the horizontal and vertical directions was the same and equal to crx =
cry = 1050 N/s. The out-of-balance radius, was ρ = 35 mm.

When constructing the bifurcation diagrams, the forcing frequency (the shaft ro-
tational speed) was varied between 7 and 30 Hz and for some tests up to 50 Hz to
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Fig. 39 Photograph of the experimental Jeffcott rotor [34]

examine the global bifurcations. The system responses were investigated by collect-
ing data with the forcing frequency steps of around 1 Hz. The continuation method
was applied, so for each frequency the initial conditions were taken from the previ-
ous examined frequency discarding about 400 cycles in order to ensure the steady-
state behaviour is reached.

The bifurcation diagrams presented in Fig. 40 give a comparison of the theoretical
(Fig. 40(a)) and the experimental (Fig. 40(b)) responses showing a good degree
of correspondence. In both figures a wide range of chaotic regimes is observed,
separated by period one, two and three regimes. Here chaotic attractors shown as
Poincaré maps were obtained for two different values of the frequency: f = 30.1
Hz, and f = 37.1 Hz keeping the remaining parameters constant: ks = 2354 kN/m,
krx = kry = 79 kN/m, crx = cry = 105 kg/s, cs = 3.5 kg/s, M = 9.7 kg, m = 0.028
kg, ρ = 35 mm, γ = 0.5 mm, εx = 0.5 mm, εy = 0 mm and Δx = Δy = 0.1 mm. It is
apparent that the theoretical and experimental attractors are topologically similar.

In the next presented experiment the eccentricity ratios were set up as εx = 0.45
mm and εy = 0.05 mm. The bifurcation diagrams constructed theoretically and ex-
perimentally for this case are presented in Fig. 41. Because only period one motion
regime exists in the interval f ∈ (30,50) Hz, the maximum forcing frequency for
these diagrams was reduced to 30 Hz. Comparing with the previously shown dia-
grams of Fig. 40, here the eccentricity change leads the transition from period one
motion to chaos through period doubling bifurcations. The experimental result of
Fig. 41(b) follows all the basic bifurcations observed theoretically such as the period
doubling bifurcation at f ≈ 14.74 Hz and the boundary crisis at f ≈ 26.1 Hz. Phase
portraits for the periodic and chaotic cross-sections were plotted for f = 17.6 Hz and



266 M. Wiercigroch and E. Pavlovskaia

Fig. 40 Bifurcation diagrams for the forcing frequency [30] a theoretical and b experimental;
ks = 2354 kN/m, krx = kry = 79 kN/m, crx = cry = 105 kg/s, cs = 3.5 kg/s, M = 9.7 kg,
m = 0.028 kg, ρ = 35 mm, γ = 0.5 mm, εx = 0.5 mm, εy = 0 mm and Δx = Δy = 0.1 mm
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Fig. 41 a Theoretical and b experimental bifurcation diagrams [34] for the forcing frequency
where ks = 2354 kN/m, krx = kry = 79 kN/m, crx = cry = 105 kg/s, cs = 3.5 kg/s, M = 9.7 kg,
m = 0.028 kg, ρ = 35 mm, γ = 0.5 mm, εx = 0.45 mm, εy = 0.05 mm and Δx = Δy = 0.04
mm
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Fig. 42 a, c Experimental and b, d theoretical phase portraits for periodic behaviour of the
Jeffcott rotor system in x− and y−directions for the cross-section f = 13.1 Hz. Adopted from
[34]

for f = 25 Hz showing also a good correspondence. Furthermore, the phase portraits
in the x and y directions for periodic trajectories were examined at f = 13.1 Hz and
are shown in Fig. 42. The experimental phase portraits in the x− and y−directions
are plotted in Fig. 42(a) and (c), and the corresponding to them theoretical graphs
are depicted in Fig. 42(b) and (d). As can be seen, again the theoretical predictions
correspond well to the experimental results.

Examining the system responses for different values of the forcing frequency
shown in Figs. 40 and 41, it is clear from the bifurcation diagrams and phase planes
that periodic regimes dominate at low and at high frequencies. The periodic regimes
for the low frequency are caused by insufficient excitation of the rotor and as a result
either there is no contact between the rotor and the snubber ring or just one contact
per period. As the forcing frequency is increased, and the amplitude of oscillations
rises the impacts between the rotor and the ring become stronger and the system
generates chaotic vibration. The periodic regimes observed for the high frequencies
have a wide range and lower amplitude of vibration than chaotic ones. In summary,
the experimental results correspond well with the theoretical predictions.

4.5 Conclusions

In this section a rotor system with bearing clearance was investigated in order to
gain understanding of its complex dynamic responses. First we discussed the math-
ematical model developed at the Centre for Applied Dynamics Research. The model
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which is a Jeffcott rotor with an elastic preloaded snubber ring was formulated as
a piecewise nonlinear system operating in one of five distinct regimes of opera-
tion: one of no contact and four of different types of contact. The boundaries be-
tween those regions were determined analytically and the equations of motion were
formulated.

The undertaken numerical simulation shows significant differences in the system
behaviour for the cases without and with preloading of the snubber ring. Specifi-
cally, the constructed bifurcation diagrams show the tendency to shift the bifurcation
points towards higher frequencies for the preloaded cases. It was also found that the
character of the bifurcations changes for the cases with preloading, and new bifur-
cations and regimes were observed in these cases. In particular, chaotic vibrations
within a wider range of excitation frequency were obtained. In addition, we found
that the periodic response tends to occur at the lower and higher frequencies.

The theoretical predictions were verified experimentally on the rig developed in
Aberdeen. A good degree of correlation was found for the wide range of system
parameters.

5 Conclusions

In this chapter we studied an important phenomenon of non-smoothness occurring
in dynamical systems, and very common in engineering applications. Mathemati-
cally, such systems can be described as piecewise smooth as suggested in Fig. 1.
Hence, their global solutions can be obtained by stitching local solutions, which are
easy to determine by standard methods. For example, a global solution for a piece-
wise linear smooth dynamical system often leads to a set of nonlinear algebraic
equations.

Three mechanical engineering systems were modelled and analysed in order to il-
lustrate an approach which has been developed by the Centre for Applied Dynamics
Research at Aberdeen to study non-smooth dynamical systems. Firstly, the vibro-
impact moling device was investigated in order to understand how to maximise its
progression rates. Applying the developed methodology, in this case periodic tra-
jectories were reconstructed as they go through three linear subspaces (No contact,
Contact with progression and Contact without progression), and using combination
of analytical and numerical methods the optimal range of the system parameters
was identified. The conducted analysis revealed that the best progression rates are
achieved for low frequencies and the ratio between the dynamic and static forces
around 2.

In the second considered application the influence of opening and closing of a
fatigue crack on the entire system dynamics was modelled and analysed. Specifi-
cally, we were interested in the aperiodic behaviour and therefore a novel apparatus
to induce aperiodic loading to a beam specimen with a fatigue crack was developed.
It was shown experimentally that fatigue life can be reduced few times if the sample
is loaded aperiodically. The experimental rig was modelled as two and one mass
system depending whether the contact between the loadings and the sample is lost
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or not. The analysis of the developed mathematical model shown that as a crack
grows linearly before reaching its critical value, the response of the system remains
periodic. When its size exceeds the critical value, the system behaviour becomes
chaotic and then the crack growth increases exponentially. This phenomenon can be
used in structural health monitoring.

Finally, we investigated a problem from rotordynamics, where nonlinear interac-
tions between the rotor and the snubber ring were studied. We discussed the most
up-to-date model and the experimental rig developed to understand the complex be-
haviour of this system. The rotor system can operate in one of five regimes, which
were determined analytically. The influence of the preloading of the snubber ring
on the system behaviour was investigated and the range of the system parameters
where chaotic vibrations occur was identified. The results obtained from the devel-
oped mathematical model confronted with the experiments shown a good degree of
correlation.
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