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Introduction

In this chapter, we seek to develop a specific account of scientific reasoning, its role,
and its value in science education. One of the defining characteristics of science (and
scientists) is the critical spirit that is central to science as a practice. Such reasoning
is essential for the construction of claims to knowledge which are based on data
and warrants which are then used to justify a claim. Typically, arguments may be
either deductions about the world from a set of a priori premises such as those used
in the development of kinetic theory; inductive generalizations about what patterns
may exist typified by laws such as the law of conservation of energy; or inferences
to the best explanation such as those used by Darwin in developing his argument
for evolutionary theory. As important as the use of reasoning for the construction of
knowledge is its use for critical review and evaluation for, as Ford (2008) argues, it is
“critique which motivates authentic construction of scientific knowledge.” Claims
must be defended against arguments that question either the validity or reliability
of the data, the warrant that justifies the significance of the data to the claim, or
the background theoretical assumptions. The formal embodiment of this process is
peer review and it is through this practice of discourse and argument that science
maintains its objectivity (Longino, 1990).

However, whilst all might concur that such discursive practices are characterized
by the use of reasoning, what are the salient features that distinguish scientific rea-
soning? Some conceptual clarity is needed if we are to distinguish good reasoning
from that which is weak, wanting, or simply erroneous. In this chapter, therefore,
we seek to explore briefly what are the some common characterizations of scientific
reasoning. Our goal here is to suggest that all of these fail to capture an account of
scientific reasoning which captures how individuals really reason. Instead, our main
argument is that it is a form of Bayesian reasoning that offers the most compre-
hensive articulation of reasoning in a scientific context. As we will show, not only
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does it explain existing controversies that exist within the body of empirical research
but it also offers an explanatory account of why critique is an essential element of
scientific practice and effective pedagogy in science.

Scientific Reasoning

Historically, there have been three fundamental perspectives on the nature of sci-
entific reasoning—the psychological, the philosophical, and the sociological. The
psychological perspective is probably most strongly associated with the work of
Jean Piaget (Inhelder & Piaget, 1958; Piaget, 1929, 1953) who saw reasoning
in science as a practice dominated by a set of logico-mathematical operations
such as compensation, seriation, classification, and logical reasoning typified by
hypothetico-deductive arguments of the form “if. . .then. . .therefore.” Such reason-
ing required the ability to identify and control variables and manipulate abstract
representations. Children were seen as progressing through a set of stages of men-
tal development, attaining the highest level, formal reasoning, in adolescence.
The apotheosis of the influence of this perspective on the classroom was Shayer
& Adey’s curriculum intervention for middle school science—Thinking Science
(Michael Shayer, 1999; Michael Shayer & Adey, 1992). This was a two-year course
consisting of interventions once every two weeks that were designed to cognitively
accelerate children’s ability to undertake these operations. Much of the research
has focused specifically on developing children’s capability to identify and control
variables as this is seen as a cognitive operation which is core to the process of
inquiry. Zimmerman offers a good summary of much of this work (Zimmerman,
1999, 2007). Clearly, this form of reasoning is an essential feature of experimental
design as experiments where all the relevant variables are not identified, or where
there is more than one dependent variable produce results which are confounded
and cannot make claims to knowledge. The use of this reasoning strategy is very
much at the core of double-blind trials of new pharmaceutical products.

There are many well-known objections to the Piagetian account—most notably
those summarized by Metz (1995). However, the substance of the critique is that
while such reasoning is required by science, the common interpretation of an
implied deterministic developmental pathway is simply flawed and not supported
by the evidence. Children, it is argued, are much more capable than the Piagetian
account would suggest. Our critique, however, is somewhat different. Essentially, a
focus on a specific set of logico-mathematical operations as the principal forms of
reasoning in science offers only a narrow and incomplete vision of scientific reason-
ing. In short, reasoning is always situated in a context and only makes sense when
judged within that context. Judgments about what constitute good data depend crit-
ically on well-established “concepts of evidence” (Gott & Duggan, 1996) such as
whether the data are valid, are subject to random or systematic error, how reliable
they are, and what the degree of error might be. Further, reasoning is also con-
text dependent in that judgments about the validity of any scientific argument are
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reliant on the construction of meaning from scientific texts or discourse (Norris &
Phillips, 2003). Only an individual who has an appropriate level of scientific knowl-
edge is able to construct the meaning necessary to reason with. Scientific reasoning,
therefore, does not take place in some contextual vacuum. This is the essence of
the critique mounted by Koslowski and her co-workers that individual performance
varies significantly when subjects have credible theoretical justifications for why
two variables might co-vary (Koslowski, 1996; Koslowski, Marasia, Chelenza, &
Dublin, 2008). Finally, research in psychology has focused overwhelmingly on stu-
dent’s capability to achieve an agreed performance. Little of the work has examined
student’s capability to detect erroneous reasoning and justify why it is flawed. Given
that the ability to engage in critique is a major element of scientific reasoning, this
omission is surprising. Thus, our view of this perspective on scientific reasoning is
not so much that it is wrong or flawed but rather it offers a partial or incomplete
view of the edifice.

A somewhat different perspective is offered by philosophical accounts of sci-
entific reasoning. These have ranged through Baconian descriptions of science as
a process of generalizations emerging from empirical enquiry; Popperian notions
of science as a process of conjecture and refutation; Kuhn’s view that science was
a community of practice governed by internal norms that framed the paradigm in
which scientists work; and to the more radical views of Feyerabend that there was
no common, identifiable method that could characterize science (Chalmers, 1999).
All of these have attempted to describe the normative criteria used by science in
its search for knowledge which would help distinguish science from other forms
of cultural activity. To date, most would agree that this has been a failed project.
Rather, each of these descriptions captures some but not all elements of scientific
practice and each have been individually questioned and found incomplete (Fuller,
1997; Nowotny & Scott, 2001; Taylor, 1996). Siegel, for instance, in response to
some of the common criticisms has attempted to argue that a central commitment
of science is to evidence as the basis of belief (Siegel, 1989). Whilst that is gener-
ally unquestioned, it is also the basis of belief, at least to some extent in the social
sciences and history. Donnelly, for instance, takes a different tack arguing that it is
not the epistemic but the ontic nature of science which is its distinguishing feature
(Donnelly, 2005). The best that the philosophy of science can offer for an account
of scientific reasoning is the distinction between the three forms of argument that
are commonly used in science—abductive, deductive, and inductive. Whilst school
science arguably overemphasizes the inductive and deductive form of argument,
philosophical analysis of this form has little substantive to offer science education
in helping to identify the forms of detailed practice that would help students to
develop their skill and aptitude with such forms of reasoning. Rather, it offers a
meta-language for describing the broadest features of the argument and a rationale
for the importance of certain activities such as modeling (Nercessian, 2008). But
whereas the teacher of science needs a detailed picture of the scientific landscape
and how it is mapped, the philosophy of science offers a picture sketched only in
the broadest of brush strokes.
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One philosopher who has been influential in this field is Toulmin. His attempt to
capture the nature of informal argument as used in everyday life, as opposed to the
strict requirements of logic, has helped the field to recognize that argumentation is a
form of reasoning which is central to all forms of human activity (Toulmin, 1958).
His field-independent notion that the essential elements of argument consist of a
claim, albeit qualified, supported by data and a warrant where the warrant justifies
the relevance of the data to the claim has led to an enhanced emphasis for this form
of reasoning in science education (Driver, Newton, & Osborne, 2000; Duschl &
Osborne, 2002; Kuhn, 1993). Its importance has been lent additional significance
by work conducted in the field of science studies which has portrayed science as
a practice where scientists marshal resources gathered from “inscription devices”
that transform data to commonly recognized forms. This evidence is then used as
a resource in developing arguments to persuade other scientists of the validity of a
range of differing ontological entities and causal mechanisms (Latour & Woolgar,
1986; Traweek, 1988). Such an analysis of the practice of science has offered edu-
cation a rationale for the significance of argument as a form of reasoning and its
study. In addition, it provides a meta-language for describing its essential features.
In that sense, the analysis of the detail of discursive practice has been useful in
foregrounding the essential elements that are necessary to any account of scientific
reasoning. Conjoined with the analysis offered by psychology of particular forms of
argument/reasoning used within science such as the control of variables, it might be
said to offer a good account of the major elements of scientific reasoning.

However, we would contend that there is still an essential element missing in
all of these descriptions of scientific reasoning. This is that such accounts fail to
account for the importance of criticism in the practice of science and why it is so
central to scientific reasoning. Essentially, constructing an argument for the validity
of a scientific claim depends as much on knowing why the wrong answers are wrong
as much as it does knowing why the right answer is right. Such a position, we will
show, has clear implications both for our conception of the nature of scientific rea-
soning and for pedagogy within science education. The substance of our argument
is drawn from Bayesian accounts that see reasoning as a process not of constructing
an infallible argument but rather one of drawing inferences based on the assessment
of relative probabilities.

A Bayesian Perspective on Scientific Reasoning

The distinguishing feature of Bayesian inference is that it is a system of describing
the certainty of knowledge. The degree of this certainty is reflected in probabilities
assigned to a given hypothesis or event. As new evidence emerges, these probabili-
ties are updated. Sometimes, the new evidence strongly favors the target hypothesis
over rival hypothesis and sometimes it does not. Bayes’ theorem describes mathe-
matically how this balance of evidence changes the assigned probabilities. In other
words, Bayes’ theorem describes how the certainty of knowledge is updated given
the new data. In this regard, Bayesian inference shares many aspects with scientific
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reasoning and argumentation. Both involve evaluating uncertain hypotheses and
both involve weighing new evidence against target and alternative theories. In cer-
tain ways, the very process of science can be viewed as the repeated application of
Bayes’ theorem as data and evidence gradually change the probabilities in the minds
of scientists, “convincing” them of the truth or falsity of a given hypothesis.

Bayesian inference offers a means of characterizing an individual’s assessment
of a hypothesis. Its tenets are derived from Bayesian probability, which is typically
used to describe random, well-defined systems. Examples of such systems include
gambling outcomes, gene assortment, and many quantum phenomena. However,
whereas Bayesian inference is still developing as a model for scientific reason-
ing (Howson & Urbach, 2006), Bayesian probability is widely accepted as an
interpretation for probabilistic systems.

Origins and an Intuitive Explanation

Bayesian probability was named after Thomas Bayes (1702–1761), an English
clergyman and mathematician. Pierre-Simon Laplace (1749–1827) subsequently
elaborated and popularized the field into what is known today as Bayesian prob-
ability theory (Stigler, 1986). The logic of Bayesian probabilities can be justified
directly from certain requirements of rationality and internal consistency (see Cox’s
theorem in Cox, 1961).

An Intuitive Explainer

One of the problems confronting the wider adoption of Bayesian reasoning as a
model for scientific reasoning is its expression in a mathematical formalism which
is somewhat opaque. In its original mathematical form, Bayes’ theorem appears as
follows:

P (h|e) = P (e|h) P (h)

P (e)

In this formula, P (h|e) is the probability of a hypothesis h given that some evidence
e is true. This is referred to as the posterior probability as it is the new, updated
probability assessment given the evidence e. P (e|h) is the probability of the evidence
e occurring given that hypothesis h is true. This is referred to as the likelihood of h
on e because it reflects how determinate h is to explaining e. P(h) is the probability
of hypothesis h being true by itself. This is called the prior probability since it
reflects the probability of h independent of the new evidence e. Finally, P(e) is the
probability of evidence e being true by itself.

This abstract formulation is the typical presentation for Bayes’ theorem and while
it has the advantage of being mathematically concise, the heavy use of logical sym-
bolism does not facilitate an intuitive grasp of the meaning of the theorem. Without
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this, it is difficult to judge its implications or utility as a conceptual framework. It is
this lack of transparency that has hindered the acceptance of Bayesian inference as a
framework for science educators. To address this, we turn instead to a more intuitive
example to explain how Bayesian probabilities work: the likelihood of breast cancer
and mammogram tests. Both events have some associated randomness. Importantly
though, the two systems are inter-related: when a woman receives a positive mam-
mogram, her likelihood of breast cancer increases. Bayes’ theorem describes how
much that likelihood changes. Put differently, it explains how knowledge of the
probabilities in one system changes the probabilities of a system which is related,
yet distinct.

The updated probability of breast cancer (called the posterior probability) can
be determined from three pieces of information. The first is that 1% of women, say
in their 50s, have breast cancer (the prior probability, labeled “Info A” in Fig. 4.1).
The second is that for women who definitively have breast cancer, mammograms
are positive 80% of the time (the true positives, labeled “Info B”). The third is that
for women without cancer, mammograms are still positive 10% of the time (the
false positives, labeled “Info C”). Before continuing, we recommend the reader to
estimate an answer: given a positive mammogram, what is the likelihood of cancer?

When phrased in this way, an alarming six out of seven doctors arrive at the
wrong answer (Casscells, Schoenberger, & Graboys, 1978; Eddy, 1982). Most vastly
overestimate the likelihood. The most typical error is to assume that a positive test
implies that the individual has an 80% chance of cancer. However, this is mistaken
because it neglects the large number of false positives that happen for normal indi-
viduals without cancer who are routinely tested. The correct calculation begins with
the prior probability: since 1% of women have breast cancer, when testing a 1000
people, 990 will not have cancer. Of those 990, 99 will have a positive result and
do not actually have cancer. Of this sample of 1000, only 10 individuals actually
do have cancer and only 8 of them will be detected by the test. Therefore, given
a positive test, the actual chance of having cancer is only 8 out of the 107 (99 +
8) positive results, that is, 7.5%. Whilst the answer might seem surprising, it is a

Fig. 4.1 Graphical
representation of
probabilityupdate calculation
with Bayes’ Theorem
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Fig. 4.2 Simplified Bayesian
probability update model

common error of logic that neglects the fact that most cases of positive mammo-
grams actually occur when there is no cancer, that is, the false positives. A graphical
demonstration of how this probability is calculated is offered in Fig. 4.1.

Bayes’ theorem can be further simplified into its key conceptual components.
Figure 4.2 captures the essence of what Bayes’ theorem postulates: new evidence is
used to update prior probabilities to what are now posterior probabilities, a change
in the degree of certainty that depends on the likelihood ratio (how strongly the
evidence pertains to true versus false positives). In Bayesian epistemology, this is
referred to as the Simple Principle of Conditionalization (Adams, 1965).

What these examples mean is that all decisions have to be weighed not solely
in terms of what information or evidence there is that they are correct but also in
terms of what the likelihood is that they might be wrong. To do otherwise is to
engage in faulty reasoning and logic and to misinterpret the inferences that can be
drawn from the evidence. A patient might still opt for aggressive cancer treatment
given a positive mammogram, but this is because their likelihood of a cancer has
increased a little over sevenfold, and not to the commonly mistaken 80%. In reality,
the unreliability of the test requires a more reliable test—a biopsy. However, it is
because of the large number of false positives in women under 50 and the associated
emotional turmoil that the United States Preventive Task Force recommended in its
new guidelines that most women start regular screening at age 50 and not age 40
which has been the practice until now (US Dept of Health and Human Services,
2009).

Applications to the Reasoning Process

This Bayesian probability model is a widely accepted interpretation for external,
objectively probabilistic systems. What is less established is using this model to
describe the assessments of hypotheses by individuals. This is the key leap that
characterizes the debate about the value of Bayesian inference as a model of scien-
tific reasoning. In other words, can a probabilistic model that characterizes external,
random systems be used to describe the cognitive process of belief assessment?

This application of Bayesian notions to personal degrees of belief is sometimes
called the subjectivist view (De Finetti, 1974) and has been developed by cer-
tain authors such as Howson & Urbach (2006). The subjectivist use of Bayesian
ideas shares the same fundamental concepts and calculus with the example above
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of breast cancers and mammograms. However, instead of the likelihood of cancer,
Bayesian inference replaces this with an individual’s likelihood assessment that a
given hypothesis is correct. Such a hypothesis could be scientific such as the likeli-
hood that the theory of dark matter is correct, or something more mundane such as
the likelihood that some car mechanic is trustworthy. The subjectivist view there-
fore acknowledges the subjective beliefs of the individual while also claiming that
updating those beliefs should follow certain elements of logic and reason.

As a model of informal reasoning, Bayesian inference provides a useful analog.
When we are considering a theory, we tend to have some preconceived notions (i.e.,
prior probabilities). Using the car mechanic example above, we may feel that a car
mechanic is trustworthy for any number of preconceived reasons. When new evi-
dence arises, such as a friend recommending the mechanic, we are apt to update our
assessment (i.e., posterior probability). That new probability, however, depends on
both true and false positive considerations. If our friend is reliable and is mechan-
ically knowledgeable, then that increases the strength of our certainty. However, if
our friend is shifty and owns a stake in the mechanic’s shop, it has the opposite
effect enhancing the evidence of false positives. In Bayesian inference, the degree
that the new data supports our target hypothesis versus alternative hypothesis is the
likelihood ratio.

Bayesian inference does not explain all aspects of human thinking. Instead, it
is meant as a model for rational thinking, namely an attempt at one’s best objec-
tive assessment in contrast to a stubbornly prejudiced or capricious one. Degrees of
belief are clearly individual and subjective. Nonetheless, Bayesian inference sug-
gests that these beliefs must be updated according to the axioms of probability in
order to be optimal (Maher, 1993). Support for this claim comes from the Dutch
Book theorem, developed in the 1920s and 1930s by Frank Ramsey and Bruno de
Finetti. They showed that violating the axioms of probability resulted in belief prob-
abilities that were incoherent, meaning the beliefs are demonstrably irrational (De
Finetti, 1937). A simple example of this theorem is a belief held that there is 70%
expectation of rain which is also held conjointly with a 40% expectation of no-rain.
These beliefs are incoherent when taken together because the probabilities add to
110%. If a bookie took both bets together, the combined odds would guarantee a
loss of 10%. This situation, where a set of odds guarantees a loss regardless of
the outcome, is known as a “Dutch Book.” To prevent getting swindled by Dutch
Books, wiser bookmakers are trained to build and update their odds using the rules
of Bayesian calculus. These examples simply highlight the damage that irrational
beliefs can have. Put another way, judging whether you will be right without judging
the probability of whether you will be wrong will lead to poor assessments which
are incoherent and pragmatically self-defeating: that is actions that, based on log-
ical inconsistency alone, are guaranteed to make things worse than they otherwise
would have been (Talbott, 2008).

The appeal then of Bayesian inference is that, in two different ways, it juxtaposes
a mathematical model with intuitive experience. In one sense, it combines subjective
likelihood assessments (i.e., prior probabilities) with an objective set of procedures
and formula for updating those assessments (Bayes’ formula). In another sense, it



4 Scientific Reasoning and Argumentation from a Bayesian Perspective 63

offers a kind of “independent opinion” about scientific reasoning since its notions
are derived logically from the axioms of probability mathematics. If corroborated
by empirical evidence then, Bayesian inference offers a take on scientific reasoning
that arises from an independent, non-empirical source. We turn now to that empirical
evidence.

Empirical Findings

In this section, we examine empirical findings about scientific reasoning from the
areas of science education and psychology. Our objective is to see if the key con-
ceptual components of Bayesian inference fit with the findings of these fields. We
consider three groups of empirical results: (1) misconceptions research on stu-
dents’ alternative explanations; (2) findings on argumentation in classrooms; and
(3) studies on coordination of theory and evidence.

Misconception Research on Students’ Alternative Explanations

Numerous findings in science education have shown that providing students with
correct explanations alone is inferior to also explaining why misconceptions are
incorrect. For instance, Hynd & Alvermann (1986) found that physics texts that
contained “refutation text” addressing common misconceptions resulted in signif-
icantly better conceptual gains. Likewise, Ames & Murray (1982) found greater
learning gains among discussion groups with differing preconceptions versus those
with more similar ones, even if those differences were based on incorrect premises.
In short, providing information about both negative and positive cases significantly
improves conceptual learning in the sciences.

These findings are consistent with Bayesian conceptions of probability updates,
namely that it is not possible to develop a posterior probability without a con-
sideration of competing alternative hypotheses. According to this view, correct
explanations only provide half of the picture. They explain why the target hypoth-
esis is right, increasing the likelihood of the true positives. However, they provide
no information about why other alternative hypotheses are incorrect. This is critical
because in the Bayesian model, the strength of the true positive information does not
stand alone; it is always relative to strength of the false positive alternatives (Royall,
1997). As such, students need both target and competing explanations to construct
assessments of the presented material. Good teachers of science recognize this need
intuitively, attempting to contrast the scientific explanation with the common intu-
itive notions addressing why they are wrong as much as why the scientific idea
is correct (Ogborn, Kress, Martins, & McGillicuddy, 1996). Likewise, the French
philosopher Bachelard understood this concept when he argued that “two people
must first contradict each other if they really wish to understand each other. Truth
is the child of argument, not of fond affinity” (Bachelard, 1968). What both are
pointing to is that it is difference which enables conceptual understanding because,
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as we would argue, from a Bayesian perspective it provides the individual with
evidence both for the proposition and the false positives.

Argumentation in Classrooms

Whereas explanations presume truth, arguments establish it by a process of claims,
counterarguments, and rebuttals (Toulmin, 1958). When utilized in the classroom,
this process has been shown to result in greater conceptual learning gains (Asterhan
& Schwarz, 2007; Zohar & Nemet 2001). However, the use of argument in class-
rooms is still not a common pedagogical practice in science education (Newton,
Driver, & Osborne, 1999).

The benefits observed from argumentation for learning are also consistent with
Bayesian notions of scientific reasoning. With Bayesian inference, evaluating the
likelihood ratio lies at the heart of assessing a posterior probability. Therefore,
evaluating a hypothesis rests critically on weighing true positive and false positive
perspectives that are both consistent with the new evidence. Yet, studies have shown
that individual scientists have difficulty generating alternative inductions (i.e., false
positives) from data; in comparison, groups of scientists engaged in collaborative
discussion are more able to do so (Dunbar, 1997). Group discussion may, there-
fore, enhance scientific reasoning by facilitating the otherwise difficult process of
generating and evaluating false positives individually. Similar evidence comes from
the work of Johnson on the history of the development of one specific engineering
product—ABS braking (Johnson, 2009). In her historical account of the develop-
ment of this technology, Johnson shows how knowledge sharing was essential to the
process. Those who did not contribute any knowledge to the community, predomi-
nantly American engineers (regardless of whether it was right or wrong), simply did
not have the information necessary to make a good judgment about the Bayesian
likelihood ratio, which resulted in a loss to their European counterparts. Similar
arguments can be made about Crick and Watson’s development of their model for
DNA. The critical pieces of information were as much the evidence why certain
of their proposed structures were wrong, as it was the evidence from Rosalind
Franklin’s X-ray crystallography suggesting that the structure was a helix.

Coordination of Theory and Evidence

Several studies have evaluated the capability of individuals to coordinate theory
and evidence (Kanari & Millar, 2004; Koslowski, 1996; Kuhn, 1991, 1993). A
particularly interesting finding in this field was a study by Koslowski (Koslowski,
1996; Koslowski, Marasia, Chelenza & Dublin 2008). Koslowski and her colleagues
found that information was more likely to be considered as evidence when a causal
explanation was provided. In this study, subjects were provided two plausible expla-
nations for some phenomenon. Data were presented that supported one explanation
over the other. The authors observed that subjects were more likely to consider the
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data as evidence when given a causal framework that permitted its incorporation.
Without this explanatory framework, subjects were more likely to disregard the data
and did not change their evaluation of which hypothesis was better.

The results of this study can be interpreted with a Bayesian notion of likelihood
ratios. By pointing out explicitly a possible explanatory framework, the likelihood
of the data supporting the target hypothesis over the rival hypothesis increases. From
this perspective, the data that subjects considered irrelevant may have had an evi-
dentiary basis. However, without an explanatory framework which identifies why
the data are salient to the hypothesis, the evidence is not so much discounted as
simply not counted. Thus, it is not just data that matters for updating probabilities.
Providing an explanatory framework which helps the individual see why the data
supports the positive hypothesis enables the individual to reassess the likelihood
ratio from one where the probabilities may be evenly balanced toward the target
hypothesis. Such an interpretation would predict a greater change to the posterior
probabilities in the subjects who were provided explanations versus those that were
not, an effect that was indeed observed in the study.

Framework Comparison

In addition to empirical congruence, Bayesian inference can also be used to address
problems with existing models of scientific reasoning. In this section, we com-
pare Bayesian inference to Popper’s model of falsification as well as the model of
hypothesis testing known as the Frequentist probabilities.

Popperian Falsification

Falsification is a well-known concept in science and scientific reasoning developed
by Karl Popper (1959). The theory of falsification states that theories can never be
confirmed. Instead, confirming data merely allows a given theory to survive discon-
firmation. In contrast, disconfirming data negates the theory and new theories must
subsequently be developed that encompass the disconfirming case. In this way, sci-
ence progressively accumulates theories of greater explanatory power. However,
even theories that have survived multiple disconfirmations are never decisively
proven as true.

Several aspects of Popper’s model are in conflict with actual experience. The
first is that falsification classifies all current theories as only having survived dis-
confirmation. However, scientists clearly have different certainties about different
theories. No reasonable scientist would consider the theory of dark matter to be as
certain as the atomic theory of matter. Popper attempts to address this by introducing
the notion of “corroborated” theories. However, this effectively adds gradations
in certainty, an interpretation that begins to look more like one associated with
Bayesian probabilities. In fact, the very notion of degrees of corroboration is what
Bayesian inference formalizes as belief probabilities (Sokal & Bricmont, 1998).
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The falsification model has the additional problem of making a fundamental
distinction between confirming and disconfirming evidence. With falsification, con-
firming evidence is not utilized in any meaningful way while disconfirming evidence
has the effect of negating the theory. In actual experience, however, confirming
evidence does increase the strength of a theory and multiple disconfirmations are
typically needed before discarding a theory, particularly if the theory was well
established (Collins & Pinch, 1993). The Bayesian model reflects both of these
realities more accurately. Confirming evidence raises posterior probabilities and
disconfirming evidence decreases it, reflecting the changes in certainty produced
by new evidence. In addition, with Bayesian inference, no single disconfirmation
is ever likely to reduce a posterior probability to zero. Instead, multiple disconfir-
mations are typically needed, a pattern that is more consistent with actual scientific
practice.

Finally, the Bayesian model reflects a key observation of Popperian falsification,
namely that disconfirmation has a more profound effect than confirmation. However,
it does so under a broader explanatory framework that does not resort to fundamen-
tal distinctions between the two. In Bayesian calculus, the strength of evidence is
reflected in the likelihood ratio. The numerator of this ratio is the probability that
the evidence would be observed if the target theory was correct (i.e., true positives).
The denominator is the probability that the evidence would be observed if some
alternative theory was correct (i.e., false positives). However, in the sciences, there
is almost always some alternative theory consistent with the evidence. For instance,
even though Newton’s theory of gravity had been confirmed by vast amounts of
evidence, this evidence was also consistent with an alternative theory: general rel-
ativity, which ultimately subsumed it. As a result, the denominator for any given
likelihood ratio in the sciences will always be sizeable. This limits the effect of
confirming evidence: the target theory may have predicted the observed evidence,
but so would various alternative theories. As a result, scientists often must address
competing hypotheses when making their case.

Disconfirming evidence, however, has the opposite outcome. If a theory pre-
dicts some evidence, but that evidence is not observed, this results in a very
small numerator. The sizeable denominator then results in a tiny likelihood ratio,
amplifying the effect of disconfirming evidence. In this way, the Bayesian model
reflects the Popperian observation that disconfirmation is stronger than confirma-
tion. However, it does so by treating both of them probabilistically in contrast to
the Popperian model, which treats each of them fundamentally in a different way
(Yudkowsky, 2010).

Frequentist Inference

For probability mathematics, the Frequentist perspective is the other major
competing notion to Bayesian probabilities. Mathematicians and statisticians
consider both methods as having strong merits. However, the Frequentist approach
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has become the dominant approach to inferring results from data containing
variability (Hacking, 1965). The Frequentist perspective presumes that multiple
sampling of some phenomenon results in a distribution of possible values. The
spread of these values can be estimated and compared to a null hypothesis. If the
distribution of values within some confidence interval (typically 95%) does not con-
tain the null value, the null hypothesis is said to be rejected at a certain significance
level.

Proponents of Bayesian inference—as a model for reasoning—have sometimes
tried to support their positions by attacking the Frequentist perspective (Howson &
Urbach, 1991). This turns out to be unnecessary. The Frequentist approach to prob-
abilities is generally used to characterize well-defined random experiments only
(Hacking, 1965). It is not typically used to characterize assessment of hypothesis
by individuals. The distinction lies in the Bayesian interpretation of probabilities as
“a measure of a state of knowledge” (Jaynes & Bretthorst, 2003). This allows prob-
abilities to be assigned to any statement, even one that does not involve a random
process. Frequentists, on the other hand, make no such claims. The statement “I
trust this car mechanic” can therefore be assigned a Bayesian probability. However,
since it involves no random sampling, it cannot be assigned a Frequentist probabil-
ity. An active debate may exist between Frequentist and Bayesians over probabilities
for external random systems, but not over applications to individual assessments of
hypothesis.

Discussion

Bayesian inference, we believe, offers a promising putative framework for scientific
reasoning. It provides an alternative lens for explaining many of the empirical find-
ings in science education and educational psychology. Yet, it arises independently
from mathematical derivations that are neither empirical nor normative. Bayesian
inference also addresses the shortcomings of alternative frameworks for scientific
reasoning such as Popperian falsification.

Given these findings, what implications does Bayesian inference have for the
practice of science education and instruction? From a curricular perspective, one
immediate implication is that if individuals are to behave rationally, they need to
see judgments about data and evidence being an assessment not only of the proba-
bility of the hypothesis being correct but also of it being wrong. Such evidence is
essential to making an assessment of the Bayesian likelihood ratio. Within the field
of argumentation, Nussbaum (2010) has proposed that Bayesian inference could
be used to provide a mathematical structure to Toulmin’s model for argument. For
instance, he suggests that when evaluating a social issue—such as hunger—students
could conduct on-line research to complete actual probability trees such as those
provided in Fig. 4.1. This sort of instruction is likely to be particularly useful for
students entering scientific research and practice. As mentioned earlier, most doc-
tors are unable to make the correct assessment of risks in the breast cancer example.
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More generally, Bayesian inference can also be taught as a model for the reasoning
process of science. Highlighting the importance of false negatives, for instance, can
improve awareness of common pitfalls to rational reasoning. In this way, Bayesian
inference can help bring increased use of statistical reasoning into real-world appli-
cations. For instance, Goldacre showed the fallacy of engaging in data mining as a
means of identifying terrorists simply because of the large number of false negatives
identified (Goldacre, 2009).

Bayesian inference also has several potential implications for classroom peda-
gogy. First, it adds further emphasis to the significance of findings that alternative
misconceptions must be addressed if students are to gain secure understandings of
scientific concepts. Teachers need to be aware that lowering the likelihood of false
positives (i.e., alternative “wrong” ideas) is as instructionally powerful as raising
the likelihoods of true positives (the “correct” idea). Second, if learning does indeed
occur though a Bayes-like process of data weighing and integration, this reinforces
constructivist notions of knowledge acquisition. From this perspective, simply pro-
viding the correct answer is not sufficient. Students must be given evidence and
allowed to grapple with assessing likelihoods in order to properly update their belief
assessments (i.e., posterior probabilities). Specifically, acceptance of new concepts
is a function not only of how well the teacher presents the case for a new idea
(i.e., strength of the likelihood ratios), but also the extent to which they address the
strength of the student’s misconceptions (i.e., strength of individual prior probabil-
ities). For students with strongly held prior misconceptions, it may take multiple
exposures to evidence to change these beliefs. The Bayesian model suggests this
is normal, even when the learner is evaluating the evidence rationally. Therefore,
even if a student does not initially accept a new concept, instruction can still be
considered a success as long as the learner is more open to the idea than they were
before.

Perhaps most fundamentally, this account of scientific reasoning from a Bayesian
perspective offers a rationale for why argument and critique are central and core
to scientific activity. If, as we have suggested, beliefs are transformed not solely
by confirming evidence but by negating alternative hypotheses, it suggests a cen-
tral role for critique to the construction of knowledge both for the scientist and the
learner of science. It also suggests why the few merchants of doubt who wish to cast
aspersions on the scientific evidence for climate change have been so successful.
In their absence, the likelihood ratio is virtually unitary. In their presence, particu-
larly when they have scientific credibility, the existence of an alternative hypothesis
which seems plausible substantially diminishes the likelihood ratio and therefore
the certainty of individuals in the main hypothesis. A Bayesian perspective would
suggest that the case for climate change would be made much more successfully
not by asserting the validity of the scientific evidence but rather by undermining the
validity of the naysayer’s case. Or to put it another way, knowing why the wrong
answer is wrong matters as much as knowing why the right answer is right.
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