Chapter 9
Recent Landform Evolution in Hungary
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Gyorgy Sipos, Laszlé Siit6, Jozsef Szabé, and Marton Veress

Abstract Fluvial geomorphic processes (channel and floodplain evolution) are
widespread in the extensive lowlands of Hungary. Since flow regulation in the nine-
teenth century, river channels have shown adjustments of considerable degree. Some
agricultural areas in hills and low mountain basins are seriously affected by water
erosion, particularly gully development on loess. Although all sand dunes have been
stabilized by now, historically wind erosion has also been a major geomorphic agent
in blown-sand areas. The areas affected by mass movements and karst processes are
limited but their processes still operate — partly in function of the changing climatic
conditions. Applied geomorphological research focuses on ever intensifying human
impact on the landscape (particularly in mining districts), which has become the

primary driver of recent geomorphic evolution in Hungary, too.
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9.1 History of Geomorphological Research in Hungary

Dénes Loczy

Hungarian geomorphological research has developed in close association with
Central European geomorphology (Ldczy and Pécsi 1989; Pécsi et al. 1993; Pécsi
1999). Its first major representative was J. Hunfalvy (1820-1888), who published a
Description of the Physical Conditions of Hungary in three volumes between 1863
and 1865. The first systematic research into the physical geography of a region, in a
true Humboldtian conception, was conducted by a populous group of scientists in
the Lake Balaton basin under the guidance of L. Léczy Sen. (1849—-1920), the most
eminent figure in Hungarian geology and geography. The findings, summarized in a
monograph series of 32 volumes, include observations related to the origin and
evolution of the lake basin. Loczy’s student, J. Cholnoky (1870-1950) was primar-
ily engaged in geomorphology, particularly in the investigation of fluvial (river
mechanisms, terrace formation) and aeolian action (blown-sand movements, traces
of arid conditions in the Carpathian Basin), karst, and periglacial processes as well
as long-term landform evolution. Cholnoky was a prolific writer, who published 53
books (mostly popularizing science at high standards) and 160 academic papers in
physical geography. Gy. Prinz (1882-1973) put forward the first coherent theory
(the Tisia concept) for the evolution of the structure of the Carpathian Basin, which
had been prevalent in geosciences until the advent of plate tectonics.

In the post-war period B. Bulla (1906-1962) was an outstanding investigator of
fluvial and glacial processes, loess formation, and chronological problems. His
climatogenetic approach to geomorphology, similar to J. Biidel’s, is manifested in
his concept of rhythmical geomorphic evolution, which explains landform evolution
on the basis of contemporary theories of Tertiary climatic and Pleistocene glaciation
cycles. He described the geomorphology of Hungarian landscapes in his book
The Physical Geography of Hungary (1964).

In the late 1950s and 1960s geomorphological investigations are performed in the
framework of complex landscape research at mesoregion scale (Marosi 1979). In
the monograph series Landscapes of Hungary the geomorphic evolution of the six
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macroregions were presented in detail along with the assessment of utilization oppor-
tunities of landforms for various purposes. For the detailed field survey of topo-
graphic features a uniform legend for geomorphological mapping was proposed in
1963 and detailed geomorphological maps were drawn at 1:10,000 and 1:25,000
scales for a number of meso- and microregions. Hungarian geomorphologists had a
prominent role in compiling the Geomorphological Map of the Carpathian and
Balkan Region (Pécsi 1977) and the geomorphological sheet in the Atlas of Danubian
Countries (Pécsi 1980). In the 1970s applied research was encouraged and engineer-
ing geomorphological maps for construction purposes were prepared and the areas of
Hungary endangered by mass movements were surveyed. The physical environments
of settlements were first studied at Pécs (F. Erdési, Gy. Lovasz).

Loess studies, led by M. Pécsi, have been central in Hungarian geomorphology.
They are concerned with the definition, classification, origin, dating, and geomorpho-
logical significance of loess deposits (Pécsi and Richter 1996). In addition to loess-
paleosol sequences, Quaternary research also involved the study of river terraces,
travertines, and vertebrate fauna in order to solve chronological problems like identi-
fying the Plio-Pleistocene boundary. From the analysis of finely laminated slope
deposits with seasonal cycles, it was deduced that in the Pleistocene glacials perigla-
cial processes (gelisolifluction, sheet wash, creep and deflation) operated over exten-
sive surfaces and were collectively described by M. Pécsi as derasion (Pécsi 1967).
He pointed out the significance of derasional processes in the transformation of the
slopes of mountains, foothills and loess hill regions in Hungary (Mez0si 2011).

The reconstruction of long-term relief evolution has long been in the focus of
geomorphological research (Pécsi and Loczy 1986). The climatic conditions favor-
ing the formation of erosional surfaces (summit planated surfaces, pediments, and
glacis) were identified in the 1960s and 1970s and the polygenetic models of planation
were applied to the mountains of Hungary by M. Pécsi (1970a) and his co-workers
(J. Szilard, L. Adam, F. Schweitzer and A. Juhdsz). Recently, geomorphological sur-
faces are reconstructed by GIS methods (e.g., Bugya and Kovacs 2010).

Quantitative methods were first introduced into Hungarian geomorphology in the
1970s. Morphometric analyses and modelling of geomorphic processes based on field
and laboratory experiments were pioneered at all the most important geomorphologi-
cal schools in Hungary. Soil erosion investigations on experimental plots were
launched by L. Géczan and A. Kertész at the Transdanubian field stations of the
Geographical Research Institute of the Hungarian Academy of Sciences and now con-
tinued by Z. Szalai and G. Jakab. At the University of Debrecen experiments were
initiated by L. Kddar (to solve problems of river mechanism transitions, sediment
transport, meandering and terrace formation) and his students, Z. Borsy (blown-sand
movements, introduction of new dating techniques), Z. Pinczés (frost shattering),
complemented by field surveys led by A. Kerényi (splash erosion and sheet wash), J.
Szabd (mass movements) and J. Loki (wind action). Through such investigations
landscape ecological research was founded (A. Kerényi, P. Csorba). At the Eotvos
Lorand University of Budapest the comparative volcano-morphological investigations
of A. Székely from the 1960s to the 1980s have been further developed using remote
sensing, morphometric and stratigraphic methods by his students (A. Nemerkényi, D.
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Karatson). Drainage system evolution was reconstructed by Gy. Gébris applying vari-
ous approaches. At the University of Szeged geoecological mapping (G. Mezdsi) and
fluvial geomorphology (T. Kiss) are predominant. Karst morphological research has
several centers: Szeged (L. Jakucs, 1. Kevei-Barany), Budapest (L. Zambo6), Miskolc
(A. Hevesi), Pécs (P.Z. Szabd, Gy. Lovasz), and Szombathely (M. Veress).

The new generation of geomorphologists, who began their career after 1990, are
engaged in both fundamental (novel techniques in landform dating; river, wind and
soil erosion measurements; floodplain accumulation investigations; volcanic recon-
structions; field surveys of anthropogenic and karst processes) and applied geomor-
phological research (GIS applications for landscape analyses and geomorphological
hazards assessment; land reclamation and site selection for waste disposal and other
infrastructural projects) — often in international cooperation. A collection of papers
on the rates of active geomorphic processes have recently been published (Kiss and
Mez6si 2008-2009).

9.2 Tectonic Setting

Dénes Loczy

Hungary (93,030 km?) is a landlocked country, located in the central Carpathian
(Pannonian or Middle Danubian) Basin, which is surrounded by the Alpine,
Carpathian, and Dinaric mountain ranges (Kocsis and Schweitzer 2009). The basin
is a Tertiary depression, formed as a consequence of plate tectonic movements and
the uplift of the encircling mountains. Naturally, the tectonic setting of the country,
briefly treated here, can only be described in the context of the entire Carpatho—
Balkan—Dinaric region (see Chap. 1 in this volume).

The first plate tectonic models for the evolution of the Carpathian Basin emerged
in the 1970s and 1980s (treated in Pécsi 1999). The basement is made up of two
basic components: the ALCAPA (Alpine-Carpathian-Pannonian) Mega-unit of
African origin and the Tisza-Dacia Mega-unit of European origin (Haas and Péré
2004). According to a generally accepted concept, the indentation of the Adria
Microplate of African origin and the subduction of the European plate margin led to
the extension and eastward rotational movement (“escape’) of ALCAPA and the
opposite rotation of the Tisza-Dacia Mega-units during the Paleogene (Horvéth and
Royden 1981; Balla 1982; Kazmér and Kovacs 1985; Csontos et al. 1992; Marton
1997; Fodor et al. 1999). The juxtaposition of the two mega-units completed by the
Early Miocene. In the Middle Miocene synrift stage of the back-arc basin forma-
tion, the crustal extension resulted in andesitic and partly dacitic volcanism (Horvéth
1993). The Late Miocene post-rift stage involved accelerated subsidence, high-rate
sedimentation, and locally alkali basalt volcanism (Fodor et al. 1999). In the Pliocene
north-to-south compression resulted in the termination of subsidence and even
caused uplift in some parts of the basin (Horvath 1993; Horvith et al. 2006). The
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Quaternary activity and geomorphological significance of the main tectonic lines
and the subordinate fault patterns are strongly debated (Sikhegyi 2002).

9.3 Geomorphological Units

Dénes Loczy

On the basis of the overall character of topography (elevation, relative relief), struc-
ture (lithology and tectonics), and geomorphic processes traditionally six geomor-
phological macroregions are identified (Bulla and Mendol 1947; Pécsi and Somogyi
1969; Pécsi 1970b — Fig. 9.1):

. The Great Hungarian or Middle Danubian Plain (Alf6ld or Nagyalfold);
. The Little Hungarian or Little Danubian Plain (Kisalfold);

. The Alpine foothills or Western Transdanubia (Alpokalja);

. The Transdanubian Hills;

. The Transdanubian Mountains;

. The North-Hungarian Mountains with its intramontane basins.
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With the exception of the Transdanubian Mountains, all the geomorphological
units continue beyond the country’s borders and their boundaries closely follow
those of the highest-level landscape units (Hajdd-Moharos and Hevesi 2002).
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The Great Hungarian Plain occupies two-thirds of the country’s territory
(62,300 km?) and extends in all directions over the territory of neighboring coun-
tries (including the Danube Lowland, the East Croatian Plain, the Vojvodina Plain,
the West-Romanian Plain, the Transcarpathian Lowland of the Ukraine, and the
Eastern Slovakian Plain) with a total area of more than 100,000 km? and average
elevation around 100 m. Along its margins there is a usually gradual transition to
foothill areas. The surface was produced by Pleistocene and Holocene fluvial and
aeolian accumulation and is subdivided accordingly to three types: alluvial plains,
loess-mantled alluvial fans, and alluvial fans with blown-sand dunes. The protected
floodplains and loess-mantled fans are presently shaped by human action (mainly
arable farming), the blown-sand areas by seasonal wind action, and the active flood-
plains by fluvial processes.

In northwestern Hungary the Little Plain (5,300 km?) encompasses the double
Pleistocene alluvial fan and the right-bank terrace system of the Danube. Its subsid-
ence and filling history resembles the evolution of the Great Hungarian Plain with
the difference that most alluvial fans extended towards the center from the north-
western-northern direction. The main landscape types are cultivated floodplains and
terraced plains. Today the impacts of cultivation and river deposition determine the
character of the landscape.

Only a fraction of the Alpine foreland (750 km?) belongs to Hungary. This is the
geomorphological region with the smallest extension and the only one that — strictly
speaking — falls outside of the Carpatho-Balkan-Dinaric region. Its landscapes are
mostly formed on metamorphic rocks and the sediments from their erosion as well
as on alluvial gravel fans. A large proportion of the vegetation cover is coniferous
and deciduous forests and pastures with some arable land. Over the rock surfaces
weathering and slow hillslope processes are predominant, while streams incise into
the fan surfaces.

The Transdanubian Hills (10,200 km?) include lowland as well as mountainous
areas (Mecsek Mountains) but most of it is locally minutely dissected, loess-
mantled, or sand hills of asymmetric topography and 200-300 m elevation with
broad river valleys. The hill region is subdivided into independent hills and foothill
areas both predominantly under crop cultivation. Sheet wash, intense rill, and local
gully erosion as well as soil creep are the main geomorphic agents. Cultivation
accelerates the removal of loose soil.

The Transdanubian Mountains (6,400 km?) are a series of block-faulted and
slightly folded-imbricated horsts of southwest to northeast general strike, separat-
ing two subbasins of the Carpathian Basin. The mountains were planated in the
Mesozoic and a dense network of fractures dismembered them during the Tertiary
into numerous plateaus at 300-700 m elevation (planated surfaces buried and
exhumed on several occasions) separated by basins and grabens at various levels.
Sparse drainage is typical with gorge-like valleys. Most of the forested, plateau-like
Mesozoic and Cenozoic limestone mountains are affected by karstic processes,
while surfaces of dolomite and andesite rocks show characteristic weathering
phenomena and mass movements. The individual members are separated by
tectonic valleys with present-day seismic activity.
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Beyond the Danube Bend, the continuation of the Transdanubian Mountains of
8,000 km? area is called the North-Hungarian Mountains. It is a range of highly
variable geological structure (member of the Inner Carpathian Range) and elevation
(the only mountains reaching above 1,000 m), equally including mountains of
Mesozoic-Paleogene sedimentary and Miocene-Pliocene volcanic rocks (rhyolites
and andesites). The volcanic landforms are in various stages of erosional destruc-
tion. An almost continuous broad belt of pediments, glacis, and alluvial fans have
formed along the southern margin of the range. The higher surfaces are forested,
while foothills are used as arable land, southern slopes as gardens and vineyards.
The present-day geomorphic processes also vary on a wide range: hillslope pro-
cesses, mass movements, karstification, and all types of erosion by surface runoff.
The members of the range are separated by broad fluvial valleys, draining to the
south, towards the Tisza River.

9.4 Recent Geomorphic Processes

9.4.1 River Channel Processes

Gyorgy Sipos
Timea Kiss

The whole territory of Hungary belongs to the drainage basin of the Danube (total
area: 817,800 km?). Arriving in the Carpathian Basin, the Danube channel slope drops
to 35 cm km™' (0.00035). During the Pleistocene and Holocene, the river built a dou-
ble alluvial fan with anastomosing (braided and meandering) channels. Except for the
Danube Bend, where the river turns from a west-east to a north-south direction, river
gradient is further diminished and to the south of Budapest the Danube forms another
large sandy alluvial fan, the Kiskunsag (Little Cumania) fan with sparse drainage and
aeolian landforms (Mez6si 2011). The discharge of the Danube is influenced by the
fact that it has no major tributary on either bank between the Ipoly (Ipel’) and the 749-
km long Drava in Croatia.

The eastern half of Hungary is part of the catchment of the Tisza River
(157,135 km?), the largest left-bank tributary of the Danube and the hydrological
axis of the Great Hungarian Plain. The Tisza in Hungary is a typical meandering
lowland river of 2 cm km™" gradient (0.00002). The nineteenth-century flow regula-
tions were even more drastic interventions into the life of the river than those on the
Danube. As a consequence of numerous cut-offs river length was reduced from
1,419 to 966 km. The passage of flood waves was accelerated but the highly fluctu-
ating river regime still causes serious problems of flood control (Szabé et al. 2008).
Prolonged rainfalls or rapid snowmelt in the Slovak, Ukrainian, and Romanian
Carpathians result in flood waves on both right-bank (like the Bodrog, Hernad/
Hornad, Bédva and Saj6/Sland) and left-bank tributaries (like the Szamos/Somes,
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Kraszna/Crasna, Koros/Crisul, Berettyé/Barcau and Maros/Mures). In addition to
flow regulation, the greatest human interventions are the dams of Tiszalok and
Kiskore on the Tisza.

In Hungary the evolution of river channels has been investigated since the
mid-nineteenth century, the main period of channelization. The studies of river
channel change rely on cross-section surveys made at every river kilometer (rkm) in
20-25 year time interval since the 1890s and on measurements of sediment dis-
charge starting in the late nineteenth century. In the 1950s, river channel stabilization
works gave a new impulse to hydrological mapping and analysis. Results were sum-
marized in a series of atlases published by the VITUKI (Research Institute for Water
Management) and river channel processes were described quantitatively (Szlavik
and Szekeres 2003). The rates of processes like meander evolution and migration,
width change, channel aggradation and incision, finally channel pattern metamor-
phosis are all influenced by variables of the fluvial system (water and sediment
discharge, valley slope, sediment grain size, vegetation, human impact).

Before flow regulation Hungarian rivers generally flowed in anastomosing-
braided-meandering channels on their gently sloping alluvial fans along mountain
fronts and meandered in the flat central lowlands of the Carpathian Basin.
Channelization works in the nineteenth century involved morphological changes.
Comparing archive maps, Z. Kérolyi (1960a) determined the changes in sinuosity
and the downstream migration of meanders. The highest rate of migration between
1890 and 1951 was detected on the Upper Tisza (100-1,700 m, 1.6-27.9 m year™")
with no bank stabilization. As pointed out by Csoma (1973) and Laczay (1982)
from the analysis of hydrological maps, meanders with convex-bank point-bar
formation migrate in a downstream direction. They also introduced to the Hungarian
literature a meander classification scheme, which is still widely used. Somogyi
(1974) investigated meander migration between 1783 and 1900 along the southern
Hungarian section of the Danube River. By overlaying maps, he found that the lateral
shifting and downstream migration rates of meanders were 1650 and 20-38 m
year™!, respectively. Along the Hungarian upper and middle sections of the Tisza
River meanders take ca 150 years to form and to be cut off (Somogyi 1978). Mike
(1991) summarized the data on meander evolution on Hungarian rivers by using the
VITUKI atlas series. Unfortunately, the studied parameters are not the same, and
probably this is the reason why no conclusion is drawn in his study.

Meander evolution is intensive even on regulated rivers. On the Middle Tisza cross-
section data indicate channel shifts of 200 m since flow regulations (rate: 1.8 m year™)
and meander development increasing channel length by 16 km (Nagy et al. 2001).
On the Lower Tisza the analyses of several cross-sections, maps, and aerial photo-
graphs (Fiala and Kiss 2005, 2006) showed that the length of a 25 rkm long study
reach had increased by 6 m year™! from the time of cut-offs (1860s) till the construc-
tion of revetments (1950s) (0.25 m rkm™' year™), but from the 1970s this value
dropped to 0.8 m year~! (0.03 m rkm™! year™"). In the meantime the planform of some
meanders has become distorted (sharpening, radius decrease). Along the Hungarian
section of River Maros (Mures) dendrogeomorphological and GIS studies (Blanka
et al. 2006; Blanka and Kiss 2006; Sipos 2006) of quasi naturally developing and
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artificially stabilized meanders suggested that since channelization in the 1850s the
apex of some unregulated meanders migrated 250-300 m (1.7-2.1 m year™') down-
stream. Over the past 50-60 years the formation of point bars was also intensive
(10 m year™"), while concave banks only retreated at a rate of 2 m year™' (Blanka et al.
2006). On a 30 rkm section of the river, lacking bank stabilization the length of the
center-line has grown at a rate of 2.5 m year™' (0.08 m rkm~! year™) since the regula-
tions. On the River Herndd (Hornad) the length of an originally 5.7 tkm section has
increased by 1.6 rkm between 1937 and 2002 (Blanka and Kiss 2006). In this case
the change of meander parameters can partly be explained by tectonics. Exceptionally
large floods are of increasing frequency since the 1990s (Kiss et al. 2009) and may
cause bank shifting up to 16.7 m along the Hernad (as it happened in 2010), particu-
larly along the high bluffs of overmatured meanders.

As opposed to meander evolution, channel width changes, partly due to natural chan-
nel development processes and partly to regulation measures, have rarely been investi-
gated on Hungarian rivers. As consequence of the nineteenth-century artificial cut-offs,
the width of regulated reaches decreased (Ihrig 1973), but after a decade the new chan-
nels began to broaden (Marton 1914; Téry 1952; Lasz16ffy 1982). Along some reaches
of the Hungarian Upper Danube and channel width has generally decreased and islands
coalesced with the banks parallel with riverbed aggradation (Laczay 1968). Recent stu-
dies report general width decrease along the Lower Tisza (16% since 1842, i.e., a 0.2
m year™! rate) (Fiala and Kiss 2006) and Maros Rivers (Sipos 2006; Sipos et al. 2007).
Channel narrowing results from bank protection and also from incision. The Maros
channel broadened after regulations, but since the 1950s has narrowed by 18-20%
(0.3 m year™) along sections not affected by bank stabilization (Kiss and Sipos 2003,
2004; Sipos 2006). The process is driven by the stabilizing effect of vegetation, as also
observed by M. Szabd (2006) on the Szigetkoz section of the Danube.

Changes in channel depth and cross-section shape are primarily related to incision,
aggradation, or change of slope. Kvassay (1902) investigated vertical channel change
along the Danube, Tisza, and their tributaries. According to his calculations, flood
levels on the Lower Tisza increased by 250-300 cm, while the level of low waters
decreased by around 110 cm between 1830 and 1895 (rate 1.6-1.8 cm year™). This
explains cross-section alterations. Fekete (1911) compared cross-sectional surveys at
three dates (1842, 1891, and 1906-1909) along the entire Tisza and found that mean
depth increased by 140 cm on the Lower Tisza (2.2 cm year™'), meanwhile the area of
cross-sections at certain reaches changed (decreased or increased) by 100 m?. He also
calculated a riverbed aggradation of 5.1 million m? in 15 years (3,400 m® rkm™! year™)
for the Lower Tisza (now in Serbia). Félegyhazi (1929) claims that in many cases the
low stage cross-sectional area increased as the channel incised. Kérolyi (1960a, b)
identified up to 300 cm incision (a 2.6 cm year™! rate in extreme cases) from low stage
water level drop. Repeated channel surveys were applied by Laczay (1967) to investi-
gate morphological change induced by the 1965 flood on the Hungarian Upper
Danube. He found that during the flood certain riffles rose to the water level suitable
for navigation during low stage periods. He also emphasized the role of low and
medium stages in redistributing bedload. On the longer term, between 1903 and 1967,
at same site 58,000 m? year™' sediment accumulation was observed (Laczay 1968).
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Dredging became necessary and resulted in 10% growth of cross-section area
(a sediment loss of 1,650 m?® rkm~! year~! — Csoma and Kovécs 1981). From stage-
discharge curves analyses Csoma (1987) identified a 30—40 cm incision for the Danube
upstream of Budapest as a result of dredging. The Hungarian Lower Danube expe-
rienced scouring to 3 m depth locally since channelization.

Along a 25-km section of the Lower Tisza the consequences of various river man-
agement strategies between 1890 and 2001 were assessed by Kiss et al. (2002, 2008b).
Varying with the morphological situation and the intensity of human intervention,
the area of bankfull cross-sections decreased by 4-21% while depth increased by
5-45% due to building bank revetments. Novel technology (seismic measurements
of river bed morphology) applied to establish the rate of alluviation on the Middle
Tisza yielded no evidence of significant sedimentation and at several locations even
large pools were observed (Nagy et al. 2006). In the meantime, channel capacity on
the Middle Tisza at Szolnok decreased significantly (Illés et al. 2003a), since, at the
same stage and water surface slope, the river channel conveyed 250-300 m® s7! less
discharge in 1998 than during the 1979 flood. By analyzing the 100-year-long data
series of the Szolnok gauge station Dombradi (2004) claims that cross-section change
is no ready explanation for the recent increase of flood stages.

Riverbed morphology is associated with sediment waves moving through the
channel. For the Hungarian Maros section, repeated channel surveys (Sipos 2006;
Sipos et al. 2007), made at both similar and very different water stages, resulted
in 55,000 and 89,000 m* sediment accumulations in two consequent years during
spring floods and no variation in accumulation during low stages. From the analy-
sis of a 15-year data series of low-water cross-sections on River Maros no channel
incision could be identified (Kiss and Sipos 2007) — although the studied reach
became narrower (Sipos 2006). Studied by analyzing daily cross-sectional data at
gauges on the Tisza and on the Maros, the response of the riverbed to the 2000
flood event is very similar — in spite of different morphological and hydrological
characteristics (Sipos and Kiss 2003; Sipos et al. 2008).

Channel pattern is a complex indicator of alluvial river behavior (Gabris et al.
2001) as itis closely related to the climate and geology of the catchment. (discharge,
slope, sediment amount and type, vegetation). The issue of drivers was first raised
in Hungary by Kddar (1969). Recently, Gébris et al. (2001) determined channel pat-
tern changes over the past 20,000 years through the planimetric analyses of palaeo-
channels, palynology, and radiocarbon dating. Transitions between braided and
meandering patterns were caused twice by climatic (water and sediment discharge)
and once by tectonic (slope) change. Particularly in the K6ros Basin tectonic move-
ments could overwrite climatic changes (Gédbris and Nddor 2007). The impact of
neotectonic movements on channel parameters are considerable along the Tisza
(Timéar 2000, 2003). The reaches of high sinuosity coincide with areas of intensive
subsidence, increasing local slope. At certain cross-sections the increase of flood
levels is partly caused by uneven tectonic subsidence.

On the Hungarian section of the Maros River Auman impact remarkably modi-
fied natural processes (Sipos 2006; Sipos and Kiss 2006; Kiss and Sipos 2007). Due
to numerous nineteenth century cut-offs the slope of the riverbed doubled and
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meandering-anastomosing was replaced by braiding. Where further bank
stabilization did not involve channel narrowing, decrease in mid-channel island
number, i.e., reduction in braided character, is observed. The recovery of a meander-
ing pattern cannot be expected sooner than in 1,000 years.

9.4.2 Floodplain Evolution

Dénes Loczy

Floodplain areas are the most extensive geomorphological units of the Carpathian
Basin (Fig. 9.2). During the Quaternary both hydrological axes of the Carpathian Basin,
the Danube (Pécsi 1959) and the Tisza (Bulla 1962), suffered major shifts in their
courses that involved far-reaching consequences for the geomorphic evolution of
the Great Plain. There have been several attempts at the reconstruction of the com-
plete paleo-drainage network and, thus, the location of floodplains, for the various
stages of the Quaternary (Borsy 1990; Mike 1991; Félegyhazi et al. 2004). (It is
interesting to note a marked extremity of opinion: the creationist or ‘intelligent
design’ thought, popular internationally, under a mystic varnish also emerged con-
cerning drainage evolution — Burucs 2006) The most often applied methods of sci-
entific reconstructions are palynological and sedimentological analyses of channel

T, vdnieg

(& ; ',;../“\4

[ Wateriagged area for mast of
— the year

| inurdsted area during floods

Fig. 9.2 Map of regularly inundated and seasonally waterlogged areas in Hungary before flow
regulations
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fills for the northeastern Great Hungarian Plain (Fig. 9.3 — Borsy and Félegyhazi
1983; Félegyhazi 2001); estimation of one-time water discharge from radioactive
isotope dating and also palynological investigations for the Middle Tisza region
(Gébris et al. 2001); application of remote sensing data, field surveys using GPS and
dendrochronology (Sipos and Kiss 2001); GIS interpetation of archive data and
channel profiling by radar (Sipos and Kiss 2003).

Channelized watercourses, flood-control dykes, and drainage ditches attest to the
largest scale of human transformation of floodplains. Channel alterations over
historical time have been recorded on the map sheets of the Research Institute for
Water Management (VITUKI) Hydrographical Atlas series since the 1970s. For
instance, along the Bodrog River (VITUKI 1974), the impacts of damming at Tiszalok
on the channel were analyzed on the basis of maps from 1979 to 1986. The results did
not show significant rates of alluviation or horizontal channel shift (Szeibert and
Zellei 2003). Surveying continued along the Hungarian-Slovak joint section in 1990
and 70 cross-sections were completed. Recently, investigations resumed in order to
support the hydrological modeling necessary to assess the changes that occurred dur-
ing the 1998 and 1999 floods. However, the geomorphological interpretation of the
data collected by hydrologists and flood control experts is usually lacking.

The monitoring of hydrological conditions is indispensable for the study of flood-
plain evolution. Water discharge measurements of scientific precision began along
the Danube in the 1950s. From 1999 on discharge at extreme water levels was repeat-
edly recorded along all the tributaries of the Tisza. At flood stages experts of the
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Eotvos Jozsef College at Baja investigated sediment transport along the Middle and
Lower Tisza (Zellei and Sziebert 2003) and the Bodrog (Szeibert and Zellei 2003).
During the March 2001 flood wave the concentration of suspended load was found
to be as high as 1,372 mg L! at Kiskore and 1,195 mg L' in the Szolnok section
(Szlavik and Szekeres 2003). The difference proves deposition in the Lake Tisza
reservoir. It is a remarkable observation that sediment transport in suspension — at
least along this river reach — attains its maximum before bankfull stage and, there-
fore, most of the material transported is deposited in point bars and — in spite of
previous expectations — relatively small proportions serve the accretion of natural
levees and more remote floodplain sections (Szlavik et al. 1996; Szlavik and Szekeres
2003; Palfai 2003). The impact of individual floods on floodplains resulted in both
accumulation and erosion in the Szatmar plain (Borsy 1972); along the Koros rivers
(Rakonczai and Sarkozi-Lorinczi 1984) and the Maros and Middle Tisza (Oroszi
et al. 2006). Recently, the hydrological, geomorphological and soil conditions of
flash floods are intensively studied using GIS modeling (e.g., Czigany et al. 2010).

Human impact has been observed on all the rivers of Hungary (Somogyi 1978,
2000; Csoma 1968). Channel dredging, gravel extraction, confluence replacement,
and, along the Danube, even flow diversion (Laczay 1989) brought about major
channel and floodplain changes (Léczy 2007). Since channelization in the nineteenth
century sedimentation in study areas on the active Tisza floodplain amounts to 2-3 m
for natural levees (Nagy et al. 2001; Schweitzer 2001), the average rate of sedimenta-
tion is ca. 3.8 mm year' (Gdbris et al. 2002), for a flood year 18.9 mm year' (Sdndor
and Kiss 2006, 2008 — Fig. 9.4), while along the Maros it was 6.3 mm year~' in back-
swamps and 2.3 mm year™' on inactive natural levees (Oroszi and Kiss 2004; Oroszi
et al. 2006) and 1.5-1.8 m on the Ko6ros floodplains since regulations (Babdk 2006).
New techniques also serve this kind of research, like magnetic susceptibility analysis
and x-ray measurements (Sdndor and Kiss 2006). Mapping projects show that over
the flood-free alluvial terrain large-scale farming gradually obliterates the traces of
fluvial processes from the surface (Kis and Loczy 1985; Balogh and Loczy 1989;
Lo6czy and Gyenizse 2011). Recently available digital terrain models, however, pres-
ent a still highly variable microtopography of floodplains, also useful for practical
purposes like the identification of the capacity of designed emergency reservoirs
along the Tisza River (Illés et al. 2003a, b; Gabris et al. 2004).

9.4.3 Soil Erosion by Water

Adam Kertész

Soil erosion is a major environmental problem in agricultural landscapes. In Hungary
about 35% of agricultural land is affected (8.5% severely, 13.6% moderately and
13.2% slightly eroded — Stefanovits and Varallyay 1992) as first shown on a soil ero-
sion map at 1:75,000 scale (Stefanovits and Duck 1964), established according to the
percentage of soil eroded from an intact soil profile (100%). For large-scale farming
50 million m® of annual soil removal from hillslopes in Hungary was estimated (Erddi
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et al. 1965). Erosion-generating extreme (>30 mm day™) rainfall recurs 4—12 times
a year during the growing season (Stefanovits and Varallyay 1992).

Water erosion mostly involves sheet wash, rill, and gully erosion on agricultural
land left barren after crops are harvested (Kertész 2008). Limited infiltration due to
surface compaction, sealing, crusting and subsurface pan formation intensify sheet
and rill erosion on large arable fields (Kertész 1993; Kertész et al. 1995a, b, 2000,
2001, 2002). Gully erosion can reach development rates of 0.5 m per rainfall event
and may supply half of sediment delivery from a catchment. Soils formed on loose
deposits, such as loess or loess-like sediments in two-thirds of the area, are generally
highly erodible. Even lowlands covered by deep loess mantles are prone to gully
formation. Large gullies cut into riverbank bluffs (e.g., along the Danube). Loess hill
regions with high relative relief (e.g., the Somogy, Tolna, and Szekszard Hills), par-
ticularly if deforested and cultivated, also have dense gully and ravine networks (Jakab
et al. 2010). Forest roads make even forested mountains prone to gully erosion.
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Soil erosion research, which began in the 1950s (Mattyasovszky 1953, 1956)
with the application of the Universal Soil Loss Equation (USLE), was continued
with soil erosion mapping projects in the 1960s and 1970s within the framework of
landscape studies (Marosi 1979). Fieldwork of landscape ecological approach was
combined with laboratory experiments at the University of Debrecen, focused on
rainsplash erosion (Kerényi 1991). Complex soil erosion mapping of test areas,
primarily the vineyards of the Tokaj-Hegyalja region (Kerényi 1984, 1991; Boros
1996, 2003; Marosi et al. 1992), the Lake Balaton catchment (Dezsény 1984;
Kertész et al. 1995a, b; Kertész and Richter 1997), and in Velence Hills (Mezdsi
et al. 2002) provided data on erosion rates for soils on weathered igneous rocks.

Soil erosion hazard is usually associated with slope inclination categories. In
addition to large-scale arable fields of 5—-12% slope, most endangered are deforested
and cultivated slopes in the 17-25% and 12-17% classes, representing 3.4% and
4.2% of the country, respectively. The local rate of soil erosion is estimated at plot,
hillslope, or small catchment scales (Kertész and Géczan 1988; Kertész 1993;
Kertész et al. 1995a, b, 2000, 2001, 2002; Kerényi 1984, 1985, 1991; Krisztidn
1998; Marosi et al. 1992; Jakab et al. 2010) with the help of rainfall simulation
(Csepinszky and Jakab 1999; Centeri 2002a), pioneered in Hungary by B. Kazé
(1966). Among the various factors influencing soil erosion, rainfall erosivity, soil
erodibility and vegetation (Centeri 2002a, b), and land cover and tillage (Pinczés
et al. 1978; Kertész 2008) were investigated.

The types and rates of hillslope erosion are studied at test areas, at first near the
villages of Szomdd and Bakonynéna in northern Transdanubia (G6czén et al. 1973),
then at Pilismardét in the Danube Bend (Kertész and Géczan 1988). Runoff, soil loss,
redeposition on slope, and nutrient, fertilizer and pesticide losses (Farsang et al.
2006) were measured. Erosion rates under traditional and minimum tillage are studied
in the Zala Hills and the efficiency of geotextiles is investigated at Abaujszanto
(Northeast-Hungary).

Recently erosion models like EUROSEM (Barta 2001), EPIC (Mezdsi and
Richter 1991; Huszar 1999) and WEPP are applied (Laszl6 and Rajkai 2003).
Satellite images are also interpreted for estimating soil erosion rates on the catch-
ment of Lake Velence (Ver6-Wojtaszek and Baldzsik 2008). The Soil Conservation
Information and Monitoring System (TIM) operates 18 measurement sites for prac-
tical purposes (Novdky 2001). Splash, sheet, rill, and gully erosion are equally
intense in the dissected hill regions of Hungary (in the Tolna Hills studied by Balogh
and Schweitzer 1996 and in Tokaj-Hegyalja by Kerényi 2006). Detailed investiga-
tions of microrill, rill, and gully erosion have begun recently (Jakab et al. 2005;
Jakab 2006; Kerényi 2006; Marton-Erdds 2006). The rate of gully erosion is studied
using ¥’C isotope (Jakab et al. 2005).

The rate of soil loss is characterized by the following categories: The average
rate of soil formation (2 tons ha™! year! — Stefanovits 1977) is regarded the upper
threshold of sustainable farming and ca 80% of Hungary’s area falls within this
category. The next limit is 11 tons ha™! year~!, which involves the highest still allow-
able nutrient loss, based on US experience (14% of Hungary). In areas (6% of
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Hungary) with soil loss higher than that arable farming is only possible observing
strict regulations (Kertész and Centeri 2006).

9.4.4 Mass Movements

Jozsef Szabo

The first geological, stratigraphical, and geomorphological study of mass movements
in Hungary was the description of the 1877 landslide at Doérdcske in the Somogy
loess hills (Inkey 1877). In gentle valley slope segments the remnants of former land-
slides were recognized. In his stratigraphic descriptions he mentions more than half
a dozen collapses, landslides and the resulting heaps, dislocated slices, and rolling
surfaces. Mass movements can be decisive in the geomorphic evolution of a region
and can significantly influence human activities (Cholnoky 1926).

The disastrous nature of rapid movements along rivers and lakeshores has been
long known (at Lake Balaton — Berndth 1881 and in Buda, the hilly part of Budapest
— Schafarzik 1882). When the industrial town Sztdlinvaros (now: Dunatjvaros) was
built on the loess bluff of the Danube major constructions and settlements were
found to be threatened by landslides (Domjan 1952; Kézdi 1952). Along the right
bank of the almost 200 km long Danube section south of Budapest, steep and
20-50 m high bluffs rise (Loczy et al. 2007). The stratigraphic analyses of Pannonian
(Upper Miocene) sediments and loess sequences in the bluffs provided valuable
information on landslide generation and pointed out relationships between move-
ments and the water levels of the Danube (Kézdi 1970; Horvath and Scheuer 1976;
Pécsi et al. 1979, 1987; Scheuer 1979; Pécsi and Scheuer 1979; Fodor et al. 1983;
Fodor and Kleb 1986). The Dunaf6ldvar landslide served as a textbook example of
rotational (“sliced”) slides (Pécsi 1971a, b, 1979). Based on the truncated ground-
plans of Roman structures built right on the Danube bluff, a rate of bluff retreat of
5-15 m per 100 years over the last 2,000 years can be estimated (Ldczy et al. 1989).
In the unusually wet year of 2010 loess bluff collapses became more frequent at
several locations (Kulcs, Dunaszekesé-Ujvari et al. 2009). Undercut high bluffs are also
located along the Hernad/Hornad (Szab6 1995, 1996b, 1997) and Réba/Raab rivers.

Movements in unconsolidated Tertiary sediments are common in the Outer
Somogy Hills (Szildrd 1967) and appear in even larger numbers in the Tolna Hills
(Adam 1969), where they are decisive agents of geomorphic evolution. In the 1950s
Gy. Peja made observations in the northern foreland of Biikk Mountains of Tertiary
sediments and set up a classification system based on age and landform (identifying
“branch,” “sister,” twinned, and other types) as well as revealing the landslide-
inducing impact of brown coal mining (Peja 1956, 1975). In Northern Hungarian
landslide-modeled hill regions were studied by J. Szabd (the Sajo-Bdodva Interfluve —
Szabo6 1971; the Cserehat Hills — Szabd 1978, 1985a).

In 1972 a large-scale mass movement inventory project was launched. It was
coordinated by the Central Geological Office (KFH) and involving broad coopera-
tion in earth sciences. By 1980 as many as 987 localities with mass movements had
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Fig. 9.5 Mass movement hazard in the microregions of Hungary. 1, negligible; 2, slight; 3, moderate;
4, serious; 5, partial areas with extremely high risk (Data from the KFH national inventory processed
by Szabé et al. (2008))

been surveyed (Fodor and Kleb 1986; Pécsi and Juhdsz 1974; Pécsi et al. 1976),
but only a fraction of the collected data have been evaluated (Szab6 1996a, b). The
inventory has provided ample evidence for landslide hazard of human origin and for
the significance of recent or presently active processes. In the North Hungarian
Mountains man-induced movements amount to ca 29% of total (Fodor 1985). Their
share reaches 50% in 14 landscape units (mostly in industrial or mining regions),
while 15% of movements were inventoried as of mixed origin and 29% still active
at the time of the survey (Fig. 9.5). In remote regions still unknown (mostly fossil)
landslides were assumed (Szab6 1996a) and subsequently further areas of surface
instability have been described from northern (Adém and Schweitzer 1985) and
southern Transdanubia (Juhdsz 1972; Lovéasz 1985; Fabidn et al. 2006). The spatial
distribution of rapid mass movement hazard can be established with high reliability
today (Table 9.1).

In mountains of volcanic origin landslide features, only sporadically described
before (Lang 1955, 1967; Székely 1989), are found to be decisive elements of the
landscape in certain topographical positions — along mountain margins, in fossil
caldera rims and valleys (Szab6d 1991, 1996b). In addition to fossil landslides on
weathered tuffs interbedded between hard lava beds or on unconsolidated bedrocks
under volcanics, recent mass movements also occur in considerable number. In the
heavily affected North Hungarian Mountains numerous movements are asso-
ciated with roadcuts, mining, or irresponsible settlement development — as in the
case of Holl6hdza, North-Hungary (Zelenka et al. 1999; Szab6 2004).
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The new mass movement map of Hungary (Szabé et al. 2008 — Fig. 9.3) describes
the risk of these processes by microregions. Among all movements 20% are consid-
ered completely inactive (Fodor and Kleb 1986). Even in microregions with the
lowest risk mass movements used to be important in landform evolution (e.g.,
Danube Bend, Borzsony and Matra Mountains of andesite or basalt regions). Also
in regions of low relative relief serious risk of mass movements is limited to narrow
belts, almost negligible in size (e.g., high bluffs along the Danube and Hernad
rivers). Such zones are marked by a V symbol (Fig. 9.3).

M. Pécsi’s idea that in landslide classification the slip plane should be the funda-
mental criterion (Pécsi 1975) was elaborated into a complete system by J. Szabd
(1983, 1985b). The system covers the origin of the slip plane (preformed or synge-
netic), its position relative to the base of the slope, its angle with the slope surface,
and the consistency of slope material, and thus achieves a natural classification.

For the purposes of prediction the dates of landslides are compared with precipita-
tion amounts and the alternation of dry and wet spells (Juhdsz and Schweitzer 1989;
Juhdsz 1999). The results from the Herndd valley and from hill regions (Szabd 2003)
also support the claim that in Hungary mostly winter half-years of extraordinarily
high precipitation generate major movements. Although according to the most prob-
able climate change scenario for the country a trend towards Mediterranean condi-
tions is expected, the predicted more arid climate does not reduce landslide hazard
since precipitation — and particularly rainfall — will be higher in the winter half-year.

Recently, new methods have been introduced into landslide research.
Stratigraphical analyses (Juhdsz 1972) are complemented by the palynological and
radiocarbon dating of Holocene movements (Szab6é 1997; Szab6 and Félegyhdzi
1997). They indicate that — particularly in mountains of volcanic origin — the tran-
sitional warming period from the Late Pleistocene to Preboreal (the thawing of
permafrost) significantly increased landslide activity. Most recent applied research
is concerned with the complex monitoring of landslide evolution (e.g., Ujvri et al.
2009), environmental impact assessment of engineering structures built in land-
slide-prone areas (Kleb and Schweitzer 2001) and the analysis of the relationship
between landslide disasters and social responsibility (Szabd 2004).

9.4.5 Aeolian Processes

Jozsef Loki

In Hungary, there are three major blown-sand regions, located on Pleistocene
alluvial fans: Inner Somogy southwest of Lake Balaton (Marosi 1970; Léki 1981),
the Kiskunsdg (Little Cumania) on the Danube-Tisza Interfluve (Bulla 1951), and
the Nyirség (Borsy 1961) in the northeastern corner of the country (Fig. 9.6).
There are considerable variations in their physical environments and, conse-
quently, in their landforms. In the most humid of the sand regions, the lower-lying
Inner Somogy, the depth of alluvial sand accumulation and the maximum height of
sand landforms is 5-8 m. Numerous stabilized rounded blowouts of less than 40 m
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Fig. 9.6 Blown-sand regions in Hungary. 1, Inner Somogy; 2, Kiskunsag; 3, Nyirség

diameter, formed on alluvial fans with shallow groundwater table, are most typical.
Residual ridges between wind furrows, protected by vegetation from erosion, are
also relatively common. Their maximum height does not reach 10 m. (The investi-
gation of sand regions and wind erosion started with papers on wind furrow/blow-
out dune assemblages and separating residual ridges — Cholnoky 1902 — and on
river bank dunes along the Tisza River — Cholnoky 1910). Extensive sand sheets
also occur (Marosi 1970). In the Kiskunsdg even more extensive flat sand sheets
and narrow stripes of sand accumulation are characteristic. Wind furrows are deep-
ened into blown sands redeposited in several stages of the Last Glaciaton. Blowout
dunes of longitudinal type (accumulations of sand arranged in winding ridges of up
to 1,500 m length and occasionally 10 m high — Kadar 1935) are common alternating
with deflation flats (locally with saline ponds). In the northeastern Nyirség the
greatest variety of landforms occurs: markedly elongated wind furrows and blow-
out dunes (up to 18 m height) (Borsy 1961), while in the deep sand accumulation
of the southern Nyirség, asymmetric dunes and marginal dunes are predominant.
The most widespread landforms are parabolic dunes, developed around blowouts
of oval shape and regarded the counterparts of desert barchans in sand regions of
the temperate belt (Kadar 1938). Regular parabolic dunes are rather rare, they are
mostly asymmetric with poorly developed western horns. Their shape is equally
controlled by wind, topographic and vegetation conditions (Léki 2004). The abun-
dant recharge of sand promotes the formation of regular parabolic dunes. In the
case of reduced recharge and wind blowing out sand sideways from oval blowouts
asymmetric dunes with longer horns develop. The largest landforms of blown-sand
regions are irregular closed deflational flats of locally more than 2 km diameter
(mostly in the northern Nyirség).
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Sand dune surfaces are artificially kept vegetation-free by the staff of the
Kiskunsdg National Park in the environs of Fiilophdza in order to present sand
movement to visitors. Elsewhere dunes are afforested by Robinias and Austrian
pines as well as by the plantation of orchards (apricot) and vineyards.

Sand mobilization occurred in several phases in Hungary (Gdbris 2003; Kiss in
Mez6si 2011). Marosi (1967) claimed that alluvial fan building in the Carpathian
Basin first ended in the Inner Somogy sand region, where aeolian action was the
most enduring. In the driest spells of the Wiirm glaciation wind was the predomi-
nant agent of geomorphic evolution. The age of landforms is confirmed by perigla-
cial features, ice wedge cast filled by sands with ‘kovdrvany’ bands (Marosi 1966,
1967, 1970). In the Nyirség “C dating and on the northern Danube-Tisza Interfluve
malacological and stratigraphical dating from fluvial deposits rich in shells revealed
that blown sand was mobilized in the Upper Pleniglacial and again in the Dryas
(Borsy et al. 1985; Loki et al. 1993; Loki 2004). Sand movements induced by human
activities have been assumed for the Preboreal, Boreal, and Atlantic phases (Kadar
1956; Marosi 1967; Borsy 1977, 1991; Gabris 2003; Loki 2004; Nydri and Kiss
2005; Ujhazy et al. 2003). Subboreal wind erosion was also confirmed (Kiss et al.
2008a, b). Archaeological and OSL datings (Gabris 2003; Ujhdzy et al. 2003; Nyari
and Kiss 2005, Kiss et al. 2006; Nydri et al. 2006, 2007) support the view that sand
was blown on several occasions in the early Subatlantic Phase, in the Iron Age and
during the Migrations. Bronze Age movements were caused by overgrazing (Loki
and Schweitzer 2001; Gabris 2003; Nydri and Kiss 2005). Historical sand move-
ments in the eighteenth and nineteenth centuries are related to deforestation and
arable farming (Marosi 1967; Borsy 1977, 1991).

In the mid-twentieth century, large-scale farming and improper agrotechno-
logy led to increased wind damage on fields (Bodolay 1966). At present, wind
erosion is limited to dry surfaces uncovered by vegetation, i.e., it takes place
primarily on ploughed surfaces in spring or autumn as well as on surfaces without
a snow cover in winter (Kiss et al. 2008a, b). At wind velocities of 5.5-6.0 ms™,
sand motion reaches surprisingly high intensity (Borsy 1991). Deflation also
affects dried marshes as well as heavier soils, which become dusty during tillage
(Loki 2004).

Wind erosion hazard affects 16% of Hungary (Stefanovits and Duck 1964). Not
only sand and peat surfaces but even more humous and fertile soils are also affected
(Stefanovits and Varallyay 1992). In soil conservation, environment-friendly solu-
tions, optimal irrigation, vegetation cover, and tillage methods are sought (Loki
2004). The erosion on berms of alkali flats in grasslands is also remarkable
(Rakonczai and Kovécs 2006). On the basis of measurements (e.g., on the Danube—
Tisza Interfluve — Szatmari 1997) and experiments (Loki and Négyesi 2003) the
soils are referred to grades of wind erosion hazard (Fig. 9.7):

— Insignificant hazard (0): on silt-clay and clay soils, where >10.5 ms™' wind
speeds are necessary to generate sand motion (30.2% of the area of Hungary);

— Moderate hazard (1): on loam and silty loam soils with critical wind speeds
between 8.6 and 10.5 ms™' (43.3%);
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Fig. 9.7 Wind erosion hazard in Hungary (by J. Loki). For explanation see the text

— Medium hazard (2): on sandy loam soils with thresholds of 6.5-8.5 ms™! wind
speeds (9.4%) and

— Serious hazard (3): on sand and loamy sand soils as well as peat and muck sur-
faces from which more than threefold more soil is removed by wind than in the
“insignificant hazard” category. Critical wind speed here is below 6.5 ms™.

Global warming involves aridification and increasing weather extremities in
Hungary. It is reflected in the alternation of spells of intensive rainfall with periods
of severe drought, when wind erosion is expected to intensify.

9.4.6 Karstification

Marton Veress

Karstic rocks appear on 1.5% of Hungary’s area: in the Biikk and Aggtelek Mountains
in North-Hungary, in some members of the Transdanubian Mountains (Bakony,
Vértes, Gerecse, Pilis and Buda Mountains), in the Mecsek Mountains and Villany
Hills in Southern Transdanubia, and in the Balf Hills (Fig. 9.8). Significant parts of the
Transdanubian Mountains and Mecsek Mountains are covered karst, both autogenic
and allogenic, and there are also patches in the Biikk and Aggtelek Mountains.

The origin of karst features like dolines, ponors, and poljes were first explained
by J. Cholnoky (1926) and the significance of climatic and biogenic factors in
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Fig. 9.8 Karst areas in Hungary (1-10) and the localities mentioned in the text (11-13). 1, Bakony;
2, Vértes; 3, Gerecse; 4, Pilis; 5, Buda Mountains; 6, Mecsek Mountains; 7, Villany Hills; 8, Balf Hills;
9, Biikk; 10, Aggtelek Mountains; 11, Készeg Mountains; 12, Kal Basin; 13, Biik thermal bath

karstification was underlined by L. Jakucs (1977, 1980). Based on decades of field
measurements in the Aggtelek Mountains, L. Zambo (1985) set up a hydrogeo-
chemical model for the corrosional behavior of clay doline fills with different rates
of solution in zones identified in cross-section. D. Balazs (1991) conducted labora-
tory experiments on karst corrosion and classified tropical karst processes and land-
forms observed on all continents.

Recent karst development involves primary or secondary processes. Primary
processes are solution, mechanical erosion (in caves) and precipitation. Solution is
the most diverse: it can be caused by rainwater or thermal water and it can take
place subsoil and under the karstwater table (due to mixing corrosion or turbulent
flow). In erosion caves, however, solution is only a secondary karst process. Non-
karstic processes induced by primary karstification are collapses (in caves, on cov-
ered karsts), sediment transport, reworkings (in caves or on covered karst by pluvial
erosion), accumulations and piping in sedimentary cover (in depressions of covered
karst).

Among surface features, dolines occur in high density on the Biikk Plateau and
in the Mecsek Mountains, where two generations of them are distinguished (Szabd
1968). On the planated surface of the Balf Hills, near Lake Fertd/Neusiedlersee,
there are shallow uvalas of a few 100 m diameter, developed on the porous Leitha
limestone. The uvalas are still growing today as the roofs of minor cavities in doline
walls cave in (Prodan and Veress 2006). Locally, there are canyon-like epigenetic
valleys in limestone. Ponors (swallow holes) developed at junctions are connected
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to erosional caves, mainly in the Biikk and Aggtelek Mountains (Baradla Cave —
Jakucs 1977). Karren are less typical in Hungary. Grike karren and kamenitzas are
produced by subsoil solution. Veress et al. (1998) claim that notches develop on any
rock with calcareous minerals (e.g., in KOszeg Mountains). Kamenitzas are also
found on sandstones with amorphous silica (in the Kél Basin, Balaton Uplands).

Secondary karst landforms include “transformed” ponors (swallow dolines) in
valley junctions. With the stream incising into the rock, the junction is retreating
and a new ponor develops by solution and the former ponor becomes a doline
(Hevesi 1980). Such forms predominate in the epigenetic valleys of the Biikk and
Aggtelek Mountains. Today some of the epigenetic valleys are blind valleys and
develop further by corrosion (e.g., in the Aggtelek Mountains). Collapse dolines do
not often occur in the Hungarian karsts. Small-sized features due to collapse, how-
ever, are developing at present as the thin roofs of cavities close to the surface cave
in. Such dolines are a few meters in diameter (in the Bakony Mountains — Veress
2000; in the Balf Hills — Prodan and Veress 2006).

Infiltrating waters mainly cause solution in the epizone of uncovered karst. The
rock mass is fragmented by the solution of the water which percolates along crev-
ices (Veress and Péntek 1996). As the debris is gradually dissolving, the surface is
subsiding. Solution dolines develop in sites where the process takes place more
rapidly. Pits develop on the limestone floor of covered karst where the sedimentary
cover is thin. The void created at the pits is translated to the limestone floor and
covered karst depressions develop (Veress 2000). Karst gorges occur on the covered
karst of the Bakony Mountains (Kerteské Gorge, Orddgarok). The gorge floors are
above the karstwater table and function like ponors: the throughflowing waters
partly seep into the karst. Solution by seepage contributes to their present incision
(Veress 1980, 2000). Broad covered karst depressions develop in the sedimentary
cover (like on the floor of Téabla Valley, Bakony Mountains, Veress 2006,
2007 — Fig. 9.9).

In the epiphreatic and phreatic zones, cavities of various size develop by mixing
corrosion and turbulent flow under the karst water table, while effluent caves develop
along the karst margin. The mode of cave development varies with to the position of
the karstwater table. In Hungary there are almost 3,000 caves (cavities longer than
2 m): the longest is the Baradla Cave (25 km, Aggtelek Karst, with the highest
chamber of 60 m) and the deepest is the Istvan-lipa Shaft (250 m, Biikk
Mountains).

Calcareous precipitations may develop from water flow on the surface or in caves
(calcareous sinter), from dripping water in the epiphreatic zone (dripstones) and in
the stagnant karst water zone. In Hungary major travertine mounds and rimstone
bars are the Veil Waterfall (in the Szalajka Valley, Biikk Mountains), the Szinva
Waterfall (in Szinva Valley, Biikk Mountains), at the Bolyamér Spring, at the
Kecskekdt Spring, at the J6sva Spring and along the bank of the Jésva stream
(Aggtelek Mountains, Sdsdi 2005), and the rimstone bars of the Melegmany Valley
(Mecsek Mountains). Human-induced precipitation from the thermal (57°C) water
of Biik spa (Vas County) with high Ca?* and Na* ion concentrations (Veress 1998) is
observed on the walls and pipes of the basins of the public bath.
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— Veress 2006). (a) Vertical Electric Sounding (VES) profile. 1, contour line; 2, site of VES mea-
surement; 3, location of profile; 4, mark of the covered karst feature; 5, covered karst feature.
(b) Geological and morphological profile. 1, limestone; 2, limestone debris; 3—4, loess with debris;
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Fig.9.10 Landscape transformation in the Borsod Coal Mining Area (Siit6 2000). The disturbance
index shows how thick a layer was removed from the surface

9.4.7 Human Impact of Mining

Laszlo Siit6
Péter Rozsa

Human activity has become an immanent part of landscape evolution (Szabd et al.
2010). In 2005 there were 1217 listed mining sites in Northern Hungary alone
(Farkas 2006). Major landscape transformation has been caused by the 250-year
old brown coal mining (Fig. 9.10). During the “heroic age” of the coal mining —
from the mid-eighteenth to the mid-twentieth century — manual chamber excava-
tion with wood securing was applied. In the Borsod Coal Mining Area, near Arlé
village (south of Ozd town), a lake was formed by landslides as early as 1863, i.e.,
11 years after the beginning of large-scale forest clearance for mining (Peja 1956;
Leél-Ossy 1973). After World War II self-securing mechanized frontal excavation
technology was introduced in most mines. It was more productive, but much
larger connected cavities resulted.

Undermining is another great problem, for example, in Lyukébdnya and
Pereces (near Miskolc (Siit6 et al. 2004)), where the total length of the mine gal-
leries is almost 50 km (equal to that of the underground tunnels in Budapest).
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Similarly, in the Salgétarjdan—Medves Hill area (northern part of the Négrad Coal
Mining Area) 268 of 543 depressions are attributed to coal mining. Prolonged
subsidence is typical in the foothills of the North-Hungarian, Transdanubian, and
Mecsek Mountains, where mines are closed now. In the vicinity of the huge open
lignite pits in the Métra and Biikk forelands ca 0.2 m ground subsidence has been
recorded until the early 1980s (Fodor and Kleb 1986) and subsidence areas are
also mapped in the Transdanubian Mountains (near Dorog, Tokod, Oroszlany, and
Tatabanya — Juhdsz 1974). Above the northern mining field at Nagyegyhdza,
99.9% of the total subsidence happened 8 years after mines were closed. For
another mine (Many I/a) 99.9% of subsidence is estimated to happen in 12 years
after closing (Ladai 2002).

To eliminate water inrush risk, from 1965 to 1988, 300 and 600 m? min~' of water
was pumped out of coal and the bauxite mines, respectively. The discharge of many
streams decreased, springs dried out, the water level of the Héviz Lake and Tapolca
Cavern Lake (both are well-known tourism attractions) dropped. This led to heated
public discussion, which contributed to the decline of bauxite mining. Now the
opencast bauxite mine near Gant (southern Vértes Mountains) displays 28 m high
walls with tropical cone karst (Dudich 2002).

According to F. Erddsi (1987), in the environs of Mecsek Mountains, 135 mil-
lions m? of earth was moved by hard coal mining activities since World War II. The
biggest, almost 200 m deep opencast pits are now being reclaimed at Vasas and in
Karolina Valley in Pécs. The largest subsidence in Mecsek is the Pécs-Somogy
trough of 13.5 km? area and 27 m depth — sevenfold larger than the undermined
area. In the Juhdsz Hill, near Nagymanyok, sinkholes formed (Erddsi 1987). In
some cases the surface may rise locally after mine closure. Near Pécs and Koml6
rises of up to 12 cm resulted from the hydration of near-surface clays and replenish-
ment of confined water reservoirs (Somosvari 2002).

Among accumulation landforms, from 1950 to 1980, 248 spoil heaps of ca 200
million m? total volume were built in five mining counties of Hungary (Baranya,
Borsod-Abadj-Zemplén, Heves, Komdrom-Esztergom, Noégrad) (Egerer and
Namesanszky 1990). For instance, the total volume of the terraced twin tips of Béke
and Istvan Shafts near Pécs is 11.2 millions m?, their maximum height is 67 m, and
they cover a triangular area, 750 m long and 550 m wide (Erd6si 1987). Spoil heaps
are affected by physical and chemical weathering, burning, deflation, intensive mass
movements, and gully erosion. One of the largest in the Borsod Coal Mining Area
is more than 100 m high and accommodates 1.2 million m? spoil (Siit6 2000, 2007 —
Fig. 9.11). Slides cause 8 m high ruptures on its slopes (Homoki et al. 2000).

In Hungary ore mining (copper, iron, lead, zinc, uranium, and bauxite) induced
locally significant landscape changes (at Recsk, Rudabdnya, Gyodngyosoroszi,
Telkibanya, K6vagdszolds, Gant, Kincsesbanya, Nyirdd). At Kévagdszolds (Mecsek
Mountains), to obtain 20,300 tons of uranium, 46 million tons of rock had to be
moved. The subsidence area is almost 42 km? and the groundwater regime is also
altered. Nine 17-m high percolation prisms are under reclamation.

Stone quarrying is practiced around almost every settlement in the mountains of
Hungary. In Matra Mountains 57 major quarries of 240 ha are listed, and less than
10 of them are reclaimed (Ddvid 2000). On Medves Hill (its area is a mere 32 km?)
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Fig.9.11 Sketch of a spoil heap (in the Addm Valley near Kazincbarcika) showing the geomorphic
processes operating on them (Siité 2000)

basalt quarries and their wastes cover 27 and 24 ha, respectively (Karancsi 2002;
Rézsa and Kozak 1995). Quarry walls develop like natural cliffs: debris fans, gorges,
block slopes, and, in pits, ponds can form. The lubrication of bedding planes by
water may result in sagging (Karancsi 2002). Ponds in the abandoned quarries are
often spectacular tourist attractions (like the “Tarn” in a former millstone quarry of
Megyer Hill near Sarospatak town). Some quarries expose geological features and
are sources of scientific information (e.g., Kalvaria Hill of Tata, Sdg Hill near
Celldomolk, Hegyestli near Lake Balaton, Nagy Hill of Tokaj) (Rézsa and Kozak
1995; Pap 2008), presented by nature trails. Some quarries have almost demolished
entire hills. (Esztramos Hill in North-Hungary was reduced from 380 to 340 m; the
basalt hill near Zalahaldp was totally removed and 7 million m? of limestone was
quarried from the Bél-kd within a century (Hevesi 2002)).

Following land reclamation, part of the abandoned open pits serve as recreation
or exhibition areas (Pap 2008). Elsewhere rehabilitation takes place spontaneously
(Szebényi 2002; Gasztonyi 2002; Kalmar and Kuti 2005). Opportunities for the
complex rehabilitation and use of spoil heaps were investigated, among others, by
Z. Karancsi (2002) for the Medves Hill area; by Hahn and Siska—Szilasi (2004),
E. Homoki and co-workers (2000) and L. Siité (2000, 2007) for the Borsod Coal
Mining Area; by L. David (2000) for Matra Mountains and by P. Csorba (1986) for
the Tokaj Mountains. The Tokaj Nagy Hill of 20 km? area is one of the best
preserved volcanic cones in Hungary, is built up of locally several hundred meters
thick pyroxene dacite lava flows, exposed in several quarries. A volcanological
nature trail and a tourist resort next to the pond in the center of the quarry pit are
proposed (Rézsa and Kozdk 1995).
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9.5 Conclusions

Dénes Loczy

In the present-day Hungary of lowland nature fluvial geomorphic processes (channel
and floodplain evolution) are of particular significance and intensively studied. Along
some rivers significant adjustments of channel geometry have been observed since
flow regulation in the nineteenth century. Almost all the area of hills and low moun-
tains (if not forested) is affected by water erosion, particularly gully development in
loess regions. The topography of the three major blown-sand regions and some other
sand-covered alluvial fans and terraces is mostly due to aeolian erosion and deposi-
tion. All sand dunes, however, have been stabilized. Although the areas affected by
mass movements and karst processes are limited in extension, they offer a variety of
landforms for geomorphologists — some still actively evolving today. The modeling
of such processes and the precise measurement of the rate of landform evolution is a
central task of geomorphological research. Applied studies are directed at the estima-
tion of the significance of ever intensifying human impact on the landscape, which
has become the primary driver of recent geomorphic evolution in Hungary, too.
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