
Chapter 7
Uncertainty Quantification

Andrew D. Richardson, Marc Aubinet, Alan G. Barr, David Y. Hollinger,
Andreas Ibrom, Gitta Lasslop, and Markus Reichstein

7.1 Introduction

There are known knowns. These are things we know that we know. There are known
unknowns. That is to say, there are things that we know we don’t know. But there are also
unknown unknowns. These are things we don’t know we don’t know. (Donald Rumsfeld,
February 12, 2002)

Despite our best efforts, measurements are never perfect, and thus all measure-
ments are subject to errors or uncertainties (Taylor 1991). Sources of uncertainty
include operator errors (insufficient vigilance, blunders), population sampling errors
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(poor sampling design), instrument errors (glitches or bugs), calibration errors
(zero and span), instrument limitations (limited resolution or an inappropriate
application), and measurement conditions that are in conflict with the underlying
theory. While errors are unavoidable and inevitable, to some degree they can always
be reduced, as for example through improvements in design and greater attention to
calibration.

Identifying sources and quantifying the nature and magnitude of error is essential
for two reasons. First, the largest sources of error can be targeted for efforts at
error reduction; second, the uncertainties can be taken into consideration during
data analysis and interpretation. For example, is a measurement 10.0 ˙ 0.1, 10 ˙ 1,
or 10 ˙ 10 g? – the size of the uncertainty may influence how we perceive the data,
or the questions to which the data are applied, as larger uncertainties (or in other
words, limited information content) reduce the usefulness of the data.

There is a long history in physics and engineering (e.g., Kline and McClintock
1953) of conducting and reporting detailed error analyses. In environmental and
earth sciences, it is only now being recognized that greater attention should be
paid to quantifying uncertainties, especially given potential applications of these
data to management strategies and policy decision-making (Ascough et al. 2008).
Examples of policy-relevant issues where this is essential include carbon accounting
and climate change mitigation efforts, and quantification of water balances under
climate change or land-use change.

With respect to eddy covariance measurements of surface-atmosphere fluxes,
particularly of CO2, there are specific applications where uncertainty information
is needed. Three examples are as follows:

1. Uncertainty estimates are needed to make statistically valid comparisons between
two sets of measurements (comparing “site A” and “site B”), or between
measurements and models (model “validation” or “evaluation”; Hollinger and
Richardson 2005; Medlyn et al. 2005; Ibrom et al. 2006). Only if the data
uncertainties are known can confidence limits, at a particular level of statistical
significance, be generated for individual observations, or can statistics (e.g., X2)
be calculated for a set of observation. Even in a less formal sense, knowledge of
uncertainty can also guide our interpretation of the data; we should have more
confidence in measurements with smaller uncertainties, and less confidence in
measurements with larger uncertainties.

2. Although scaling of data in space (regional-to-continental extrapolation) or time
(calculating flux integrals at annual or decadal time scales) does not strictly
require uncertainty estimates, this information is critical if the resulting data
products are to be used to set policy or for risk analysis. As an example, the
question “what are realistic confidence intervals on the estimated regional C
sink strength?” cannot be answered without a full accounting of uncertainty, and
propagation of this forward in the scaling analysis.

3. Flux data are commonly being used in “data-model fusion,” which refers to
the systematic and rigorously quantitative means by which observational data,
including flux and stock measurements, can be used to constrain process models
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(Raupach et al. 2005; Williams et al. 2009; Wang et al. 2009). To conduct such
an analysis in a statistically defensible manner, information about uncertainties
in all data streams must be incorporated into the objective function (or “cost
function”) specified as the basis for optimization of data-model agreement.
Thus, what is known or assumed about the data uncertainties directly influences
the posterior distributions of parameter estimates and model predictions, as
demonstrated in the recent OptIC (Trudinger et al. 2007) and REFLEX (Fox
et al. 2009) experiments. On this basis, Raupach et al. (2005) suggested that
“data uncertainties are as important as the data values themselves.”

7.1.1 Definitions

The Cooperation on International Traceability in Analytical Chemistry (CITAC)
initiative maintains an Internet-based guide (http://www.measurementuncertainty.
org/) to quantifying uncertainty in analytical measurements, where a distinction
is drawn between “error” and “uncertainty.” Here, we follow these definitions:
Error is a single value indicating the difference between an individual measurement
and the actual or true quantity being measured, whereas uncertainty is a range of
values characterizing the limits within which the quantity being measured could be
expected to fall. If the error is known, a correction for this error can be applied.
On the other hand, the uncertainty estimate cannot be used as the basis for such a
correction, because uncertainty is a range and not a single number.

7.1.2 Types of Errors

Measurement errors have traditionally been classified into two groups with fun-
damentally different intrinsic properties: Random errors and systematic (or bias)
errors. In this approach, these errors propagate in different ways when measure-
ments are combined or aggregated. A direct consequence of this is that random and
systematic errors have very different effects on our interpretation of data.

The International Organization for Standardization (ISO) takes a different ap-
proach (ISO/IEC 2008), classifying uncertainty into errors that can be determined
by statistical measures (type “A”) and those that are evaluated by other means (type
“B”), but then treating (propagating) them together in a similar fashion. Because
systematic errors in flux measurements may not be constant, we prefer to follow the
traditional approach and propagate them separately. As an example, consider our
measurement (x) of a particular quantity ( Ox); note that x ¤ Ox, because measured x
incorporates both random (©) and systematic (ı) errors, that is, we actually observe
x D Ox C " C ı: The random error, ©, is stochastic and thus unpredictable, and is
characterized by a probability distribution function (pdf), commonly assumed to be

http://www.measurementuncertainty.org/
http://www.measurementuncertainty.org/
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Gaussian (normal) with a standard deviation of � . Random errors cause “noise” or
“scatter” in the data, and reduce the precision of measurements; because they are
random, it is impossible to correct for them. Repeated measurements can be used to
characterize the pdf of the total random error (e.g., what is the standard deviation of
10 measurements of the diameter of a particular tree?). In addition, averaging over n
measurements improves the precision by a factor of 1=

p
n, resulting in the so-called

standard error of the mean.
On the other hand, the systematic error, ı, is a bias that is considered to remain

constant but is unknown (Abernethy et al. 1985). It thus must be estimated based
on judgment and experience (often the direction of the error is known, but there is
uncertainty about its magnitude), theoretical considerations, or with complementary
measurements (e.g., comparing tower-based and inventory estimates of ecosystem
C storage). Unlike random errors, systematic errors cannot be identified through
statistical analysis of the measurements themselves, nor can they be reduced through
averaging. Systematic errors are an important consideration in flux measurement
because they may differ between day and night (Moncrieff et al. 1996) and thus
often have a significant impact on the annual net flux estimate.

Comments above about the impact of averaging on random and systematic errors
imply that these errors accumulate, or propagate, in different ways, for example,
when arithmetic operations are carried out on multiple measurements. Random
errors accumulate “in quadrature”: if we measure x1 and x2 (xi D Ox C "i ), and
assume that the random errors (©1 and ©2, where ©i is a random variable with mean
0 and standard deviation � i) on these measurements are independent of one another
(zero covariance between ©1 and ©2), then the expected error on the sum (x1 C x2)

is given by
q

�2
1 C �2

2 , which is always less than.�1 C �2/: Thus it is often said
that random errors “average out.” This is, however, somewhat misleading as the
random error never truly “disappears” (except in the limit of an infinite sample
size), although by definition the expected value, E[©i], equals 0. By comparison,
systematic errors accumulate linearly: In this case, if we measure x1 and x2 (xi D
Ox C ıi ), then the expected error on the sum (x1 C x2) is simply (ı1 C ı2). More
thorough treatments of formal error propagation are given elsewhere (e.g., Taylor
1991).

In the context of data-model fusion, as described above, an important distinction
should be made between random and systematic errors (Lasslop et al. 2008;
Williams et al. 2009). Random errors place an upper limit on the agreement
between data and models. Because random errors are stochastic, they cannot be
modeled (Grant et al. 2005; Richardson and Hollinger 2005; Ibrom et al. 2006).
Random errors also lead to greater uncertainty in model parameterization and
process attribution (essentially a problem of “equifinality,” sensu Franks et al.
1997: with random errors or noise in the data, the set of model parameters that
provide similarly good model fits becomes larger as the data uncertainties become
larger). By comparison, uncorrected systematic errors can potentially bias data-
model fusion analyses but do not necessarily increase parameter or model prediction
uncertainties (Lasslop et al. 2008). Even in the absence of model error, uncorrected
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systematic errors may also lead to inconsistencies between model predictions and
data constraints that cannot be reconciled given what is known or assumed about the
random errors.

7.1.3 Characterizing Uncertainty

For random errors, we would like to describe the associated uncertainty in terms of
the full pdf of the error distribution: Is it normal, lognormal, uniform, or double-
exponential? What are its moments? In addition to standard deviation, we may
also be interested in higher order moments, for example, skewness and kurtosis.
Is the error variance constant (homoscedastic), or is it in some way time varying or
otherwise correlated with one or more independent variables (heteroscedastic)? Are
errors in successive measurements in time fully independent, or are they positively
(or negatively) autocorrelated? These questions need to be answered in order for the
appropriate statistical or analytical methods to be chosen.

For systematic errors, we are particularly interested in knowing whether the
bias influences all measurements to the same degree (“fully systematic”), or only
measurements made under certain conditions (“selectively systematic”) (Moncrieff
et al. 1996). Systematic errors may also result in a fixed bias, or the bias may be
relative and scale with the magnitude of what is being measured, or it may change
over time. In terms of CO2 concentration measurements, a zero offset would result
in a fixed bias, whereas calibration against a mislabeled standard, that is, causing
sensitivity or span bias, would lead to a relative bias.

7.1.4 Objectives

In this chapter, we focus on describing and quantifying the random and systematic
errors affecting eddy covariance flux measurements. Our emphasis is on some of the
more recent work that was not synthesized in previous reviews (e.g., Goulden et al.
1996; Moncrieff et al. 1996; Aubinet et al. 2000; Baldocchi 2003; Kruijt et al. 2004;
Loescher et al. 2006).

Random errors tend to be quite large at the half-hourly time scale and cannot be
ignored even in the context of annual flux integrals, especially as they propagate
through to gap-filled and partitioned net ecosystem exchange (NEE) time series.
A number of methods have been developed to quantify the random errors; these are
summarized here and the general patterns presented.

Some of the systematic errors in flux measurements are well characterized, and
corrections (sometimes drawing from improvements in our theoretical understand-
ing and treatment) have been developed for these biases (see Sects. 3.2.2, 4.1, 5.4).
However, in many cases, the corrections for these errors are imperfect, and thus
some uncertainty remains even after the correction is applied. For some systematic
errors, particularly advection, current practices (e.g., u* filtering) allow us to reduce,
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but not completely eliminate, the associated uncertainties; here we aim to quantify
the uncertainty that still remains. As an aside, we note that while in principle the
distinction between random and systematic errors is clear, in practice this can be
more difficult, as many errors have both a random and a systematic component and
operate at varying time scales. This idea is discussed more fully by Moncrieff et al.
(1996), as well as by Kruijt et al. (2004) and Richardson et al. (2008).

We do not address measurements in other types of flux measurements, such
as cuvette or chamber measurements of photosynthesis or respiration, or other
ecological measurements that are made at many sites, as these are beyond the scope
of this book and are discussed elsewhere. For example, Smith and Hollinger (1991)
discussed and quantified uncertainty in chamber measurements, soil respiration
measurement uncertainty is described and quantified by Davidson et al. (2002) and
Savage et al. (2008), and an approach to estimate ecosystem biomass and nutrient
budget uncertainty is presented by Yanai et al. (2010). An evaluation of uncertainties
in disjunct eddy covariance measurements (DEC) is presented in Sect. 10.5.

7.2 Random Errors in Flux Measurements

Random error in flux measurements arise from a variety of sources. These in-
clude:

1. The stochastic nature of turbulence (Wesely and Hart 1985) and, associated
sampling errors, including incomplete sampling of large eddies, and uncertainty
in the calculated covariance between the vertical wind velocity (w) and the scalar
of interest (c);

2. Errors due to the instrument system, including random errors in measurements
of both w and c; and

3. Uncertainty attributable to changes in wind direction and velocity which influ-
ence the footprint over which the measurements integrate, and thus the degree to
which any individual 30-min measurement is representative of the point in space
where the measurement system is located, or, more generally, the surrounding
ecosystem (Aubinet et al. 2000).

While it could be argued that (3) is distinctly different in nature from (1) and
(2), we included it here as a source of uncertainty because footprint variability is
typically not taken into account, neither when 30-min measurements are aggregated
to annual ecosystem carbon budgets, nor when the 30-min measurements are
analyzed statistically or used in a more sophisticated data-model fusion scheme.

We will discuss each of these sources of uncertainty in greater detail below, but
note that the methods developed to date to quantify random uncertainty for the most
part focus on the total uncertainty – this being needed for most applications where
uncertainty information is used – rather than attempt to parse this aggregate value
to the three components listed above.
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7.2.1 Turbulence Sampling Error

Finkelstein and Sims (2001) provide an overview of the uncertainties associated
with turbulence sampling errors. They note that these errors occur because large
eddies, which are responsible for much of the total flux, cannot be adequately
sampled during a 30-min integration period. They also improve on previous methods
to estimate the variance of the calculated covariance through incorporation of
necessary lag and cross-correlation terms. A conceptual framework is provided
by the equation, developed by Lenschow et al. (1994) and Mann and Lenschow
(1994) from the basic equations of turbulence, to estimate for the relative error in
an aircraft flux measurements. Hollinger and Richardson (2005) and Richardson
et al. (2006a) adapted this approach to provide an approximation of uncertainty in
tower-based flux measurements. This framework separates out (1) an estimate of
the uncertainty in the variance of the covariance from (2) uncertainty associated
with the organization of turbulence into large eddies and a finite integration period
(full details are given in Richardson et al. 2006a).

While micrometeorological approaches such as this are appealing, they require
an estimate of the integral timescale (a measure of how long turbulence remains
correlated with itself, signifying the scale of the most energetic eddies and corre-
sponding to the peak of the spectral density; Finnigan 2000), as well as knowledge
of the turbulence statistics, which means not only that the measurement and the
error estimate are based on the same flux variances and covariances, but also that
the necessary information should be made available in standard 30-min data files.

7.2.2 Instrument Errors

Random errors resulting from the measurement system have been quantified using
a number of different approaches. Similar to the paired measurement approaches
described below, Eugster et al. (1997) used simultaneous measurements from two
collocated towers in the Alaskan tundra to quantify instrument uncertainties; these
were estimated to be 7% for H, 9% for �E, and 15% for Fc. Using essentially the
same approach, Dragoni et al. (2007) estimated that instrument uncertainty was
about 13% for Fc at the 30-min time step, and calculated that at the annual time
step, this accumulated to an uncertainty of ˙10 g C m�2 year�1, or 3% of annual
NEE at a temperate deciduous site, Morgan Monroe. By comparison, Oren et al.
(2006) used the variability in nocturnal �E as an indicator of measurement system
uncertainty and, assuming analogous errors in Fc, estimated that at the annual time
step, this accumulated to an uncertainty of ˙8–28 g C m�2 year�1 for the Duke pine
plantation.

All these comparisons are built on assumptions that are difficult to test. Such
comparisons always risk confusing instrument and noninstrument errors. The only
unequivocal solution is to adopt the conventional engineering approach (e.g.,
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Coleman and Steele 2009) and investigate instrument uncertainty from the bottom
up, that is, from the component uncertainties of the eddy flux instrumentation.

7.2.3 Footprint Variability

Flux measurements integrate across a time-varying, and usually somewhat hetero-
geneous, footprint. Oren et al. (2006) reanalyzed data from an experiment described
by Katul et al. (1999), in which simultaneous eddy covariance measurements were
made at six towers within the Duke pine plantation, to distinguish the relative
contribution of (1) spatial variability (i.e., differences in “ecosystem activity”) and
(2) turbulent sampling errors to the measurement uncertainty. This study found that
at the 30-min time step, spatial variability (�10% of the measured flux, during
the day) accounted for 50% of the measurement uncertainty, even in a relatively
homogeneous forest. At the annual time step, the spatial variability accumulated to
an uncertainty of ˙25–65 g C m�2 year�1, or in some years as much as 50% of total
(including gap-filling) annual NEE uncertainty (˙79–127 g C m�2 year�1). Related
to this, the observation by Schmid et al. (2003) that annual NEE integrals for the
University of Michigan Biological Station (UMBS) deciduous forest could differ
by up to 80 g C m�2 year�1, depending on whether data measured at a height of 34
or 46 m were used, presumably also partially reflects footprint differences.

7.2.4 Quantifying the Total Random Uncertainty

If each of the sources of random error could be independently quantified, then
the total random flux measurement uncertainty could be estimated by adding the
individual uncertainties together in quadrature. A more straightforward approach
is to conduct statistical analyses that directly yield estimates of the total random
uncertainty. Three methods have been developed; these are referred to as the “paired
tower,” “24 h differencing,” and “model residual” approaches.

As proposed by Finkelstein and Sims (2001), the paired tower approach is based
on the premise that repeated, independent measurements of a quantity can be used
to estimate the statistical properties of the random error (©) in those measurements.
Hollinger et al. (2004) and Hollinger and Richardson (2005) used simultaneous
measurements (x1,t and x2,t) from two towers separated by � 800 m at the Howland
Forest AmeriFlux site to estimate the moments of ©, assuming that the measurement
errors (©1,t and ©2,t) at the two towers were independent and identically distributed.
For this assumption to hold, the footprints must be nonoverlapping, so that the
turbulence sampling errors at tower 1 and tower 2 are uncorrelated (cf. Rannik
et al. 2006, who estimated uncertainties using data from two towers which, because
they were separated by only 30 m, had overlapping footprints and thus correlated
sampling errors, and Dragoni et al. 2007, who used simultaneous flux measurements
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from two instrument systems separated by approximately 1 m to quantify random
instrument errors). Then, the standard deviation of the measurement error can be
estimated as in Eq. 7.1, using multiple realizations (i.e., repeated over time) of x1,t

and x2,t to obtain more precise estimates of the statistics of ©.

�."t/ D �.x1; t � x2; t/p
2

(7.1)

For this method to work, it is critical that (1) in a given half-hour, the environ-
mental conditions in the footprint of tower 1 are nearly identical to those in the
footprint of tower 2; and (2) the vegetation, soils, etc. are extremely similar between
the footprints of tower 1 and tower 2, so that the biological response to the abiotic
forcing is the same. Together, these ensure x1,t and x2,t are essentially measurements
of the same quantity, and thus that the difference between the measurement pair is
due only to measurement error (including random variation of the sampled footprint)
and not to differences in biotic or abiotic factors.

Recognizing that there are few eddy covariance sites around the world where
two towers would satisfy the “similar but independent” criteria required for the
paired tower approach, the 24-h differencing approach, which trades time for space,
was developed by Hollinger and Richardson (2005) and subsequently implemented
at a range of AmeriFlux and CarboEurope sites by Richardson et al. (2006a,
2008). With this method, two flux measurements (x1,t, x1,tC24) made at a single
tower, exactly 24 h apart (to minimize diurnal effects) and under similar environ-
mental conditions, are considered analogs of the simultaneous two-tower paired
measurements described above. The similar environmental conditions criterion is
included so that the difference between x1,t and x1,tC24 can largely be attributed
to random error rather than environmental forcing; for this filtering, PPFD within
75 �mol m�2 s�1, air temperature within 3ıC, wind speed within 1 m s�1, and
vapor pressure deficit within 0.2 kPa has been found to yield an acceptable balance
between the requirement that environmental conditions be “similar” and the desire
for a sufficiently large sample size of measurement pairs so that the statistics of
© could be adequately estimated (Richardson et al. 2006a, 2008). More stringent
filtering (e.g., excluding measurement pairs if the mean half-hourly wind directions
differed by more than ˙15ı) was reported to only result in a modest (�10%)
reduction in estimated uncertainty, and a large reduction in the number of accepted
measurement pairs.

The third, or model residual approach, uses the difference between a highly
tuned empirical model and the measured fluxes as an estimate of © (Richardson
and Hollinger 2005; Richardson et al. 2008; Stauch et al. 2008; Lasslop et al. 2008).
In principle, it is assumed that model error is negligible and that the model residual
can be attributed almost entirely to random measurement error. This assumption has
been largely confirmed in Moffat et al. (2007) and Richardson et al. (2008). An
advantage of this method over the 24-h differencing approach is that many more
estimates of the inferred error are available for use in estimating statistics of ©.
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Hollinger and Richardson (2005) demonstrated not only that the paired tower
and 24-h differencing approaches provided roughly comparable estimates of flux
measurement uncertainty but also that these were both in reasonable agreement
with predictions of the Mann and Lenschow (1994) sampling error model (see
Sect. 7.2.1, above). Richardson et al. (2008) showed that uncertainty estimates
from the model residual approach were larger (by 20% or more; the actual amount
depended on the model used) than those derived by 24-h differencing, presumably
because even in the best case, model error could not be completely eliminated.
However, overall patterns, particularly with respect to the pdf of ©, and the way
in which �(©) scales with flux magnitude, have been found to be extremely
similar (especially considering that uncertainty estimates are inherently uncertain)
regardless of the method. That being said, a key difference among methods is
that the two approaches relying on paired observations are unable to estimate
odd moments such as skewness, because the differencing implies symmetry in
the resulting pdf. While positive skewness has been demonstrated with the model
residual approach (Richardson et al. 2008), particularly for near-zero fluxes, this
may simply be the result of selective data editing by the investigators, and the
preferential elimination of positive or negative outliers.

7.2.5 Overall Patterns of the Random Uncertainty

Regardless of the method used to quantify the random flux measurement uncer-
tainty, two characteristics of the uncertainty have been shown to be extremely robust,
both with respect to different fluxes (i.e., for H and �E as well as Fc) and across a
variety of sites and ecosystem types (Hollinger and Richardson 2005; Richardson
et al. 2006a, 2008; Stauch et al. 2008; Lasslop et al. 2008; Liu et al. 2009).

First, the standard deviation of the random measurement uncertainty (in
�mol m�2 s�1) generally increases with the magnitude of the flux (jFsj) in question,
and this relationship can be approximated as in Eq. 7.2 (see Table 7.1 and Fig. 7.1):

�."s/ D a C b jFsj (7.2)

For Fc, the nonzero y-axis intercept, a, varies among sites, with typical values
between 0.9 and 3.5 �mol m�2 s�1 (Richardson et al. 2008). By comparison, the
slope, b, lies in a relatively narrow range across sites, usually between 0.1 and 0.2.
A consequence of the nonzero intercept, a, is that there is a baseline of residual
uncertainty even when the flux is zero; this implies that relative errors decrease
with increasing flux magnitude (cf. the error model based on turbulence statistics,
Sect. 7.2.1, for which relative error is assumed to be constant).

Second, the overall distribution of the flux measurement uncertainty is non-
Gaussian, most notably because it is strongly leptokurtic – meaning that it is
peaky, with heavy tails; the Laplace, or double exponential, distribution is a good
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Table 7.1 For H, �E, and Fc, random flux measurement error (� (")) scales linearly with the
magnitude of the flux (F). Results are summarized below from three previous studies. Standard
errors for parameter estimates (where available) are in parentheses. All slope coefficients are
significantly different from zero (P < 0.01)

(A) Hollinger and Richardson (2005); two towers

Site Uncertainty

Howland H 10 C 0.22 jHj
�E 10 C 0.32 j�Ej
Fc 2 C 0.1 Fc (F � 0)

2 C 0.4 Fc (F � 0)

(B) Richardson et al. (2006a); 24 h differencing

Flux Uncertainty

F � 0 F � 0
H Forested 19.7 (3.5) C 0.16 (0.01) H 10.0 (3.8) � 0.44 (0.07) H

Grassland 17.3 (1.9) C 0.07 (0.01) H 13.3 (2.5) � 0.16 (0.04) H
�E Forested 15.3 (3.8) C 0.23 (0.02) �E 6.2 (1.0) � 1.42 (0.03) �E

Grassland 8.1 (1.7) C 0.16 (0.01) �E No data
Fc Forested 0.62 (0.73) C 0.63 (0.09) Fc 1.42 (0.31) � 0.19 (0.02) Fc

Grassland 0.38 (0.25) C 0.30 (0.07) Fc 0.47 (0.18) � 0.12 (0.02) Fc

(C) Richardson et al. (2008); Forested sites

Method Uncertainty

Model residuals
(neural network)

1.69(0.20) C 0.16(0.02) jFcj
Paired observations 1.47(0.22) C 0.17(0.02) jFcj

approximation of the pdf. As a result, not only are very large errors more common
than if the error distribution was normal, but also very small errors are more common
than if the error distribution was normal. It was proposed that the leptokurtic
distribution could result from the superposition of Gaussian distributions with
nonconstant variances (Hollinger and Richardson 2005; Stauch et al. 2008; Lasslop
et al. 2008). Indeed, Lasslop et al. (2008) showed that after normalizing the error
(by dividing with the expected standard deviation for each flux observation) the
overall distribution generally became approximately Gaussian. However, for some
sites, even when flux data are binned into relatively narrow classes, nonnormal
random errors are observed for fluxes close to zero (e.g., �1 < Fc < 1, as in Fig. 7.2),
whereas for large uptake fluxes (Fc < �10 �mol m�2 s�1, Fig. 7.2), the errors
tend to be much more Gaussian (see also Fig. 3 in Richardson et al. 2008). We
conducted an analysis of the whole LaThuile FLUXNET dataset using the “model
residual” approach (Fig. 7.3). We find the patterns discussed above, that is, a
positive kurtosis for the overall distribution of the model residuals, but this is largely
(although not completely) reduced when the nonconstant variances are accounted
for by normalization. Skewness is also apparent in the error distribution for some
sites, particularly at night (Richardson and Hollinger 2005, Barr et al. unpublished
results). Richardson et al. (2008) found trimming the top and bottom 1% of residuals
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Fig. 7.1 Scaling of random uncertainty (1� ) with flux magnitude (NEE, �mol m�2 s�1) for
four temperate sites: CaCa1 – Campbell River mature stand, a Douglas-fir-dominated evergreen
coniferous site; CaLet – Lethbridge, a Great Plains grassland; USHa1 – Harvard Forest EMS tower,
an oak-dominated deciduous broadleaf forest; USHo1 – Howland Forest Main tower, a spruce-
dominated evergreen coniferous site. Random uncertainty estimated using the residuals from
calibrated Fluxnet-Canada gap-filling algorithm, which was also used to predict NEE (Source:
Barr, Hollinger and Richardson, unpublished). Different symbols indicate different years of data,
showing that uncertainty estimates are estimated consistently over time

typically resulted in a much more symmetric distribution of ©, and also reduced
kurtosis (see, e.g., Fig. 7.3). However, blindly filtering outlier points that cause
accentuated kurtosis and skewness is not recommended, as, in addition to changing
the apparent pdf of the random measurement error, this may have an impact on
annual flux estimates.

Thus, although there are some general patterns across sites, differences in site
characteristics, as well as differences in the data acceptance practices used by site
investigators, may necessitate careful site-specific analyses of the random error
following the methods described here (see also Richardson et al. 2006a, 2008;
Lasslop et al. 2008). We note that at each site decisions must be made concerning
the degree to which valid flux data are contaminated with data from a separate
(nonbiological or atmospheric) process. If this is judged to be the case, then
approaches can be used to identify and remove such outliers (Barnett and Lewis
1994). However, data-trimming methods are sensitive to the underlying statistical
distribution of the data and the appropriate method of identifying outliers should
be used based on the error pdf; Barnett and Lewis (1994) present methods for both
Gaussian and double exponential distributions.
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Fig. 7.2 Comparison of probability distributions of inferred random error for (a) near-zero
fluxes (�1 � Fc � 1 �mol m�2 s�1; n D 2,544, standard deviation D 0.82, kurtosis D 123.92)
and (b) large uptake fluxes (Fc � �10 �mol m�2 s�1; n D 949, standard deviation D 2.97,
kurtosis D 1.99). Random errors estimated using paired tower approach (“Main” and “West”
towers at Howland Forest AmeriFlux site). In both cases, the normal distribution is shown as a
black line

The maximum likelihood method is used to determine model parameters (which
may range from coefficients of simple regression models to physiological parame-
ters in complex carbon cycle models) that maximize the probability (likelihood) of
the sample data. This method takes into account prior knowledge of data uncertain-
ties, using estimators (likelihood functions) that depend upon the error structure
of the data. For normally distributed data with constant variance, the maximum
likelihood is calculated via ordinary least squares. Minimizing the sum of absolute
deviations (rather than squared deviations) is appropriate if the error distribution
is deemed to follow the Laplace distribution. If the errors are heteroscedastic,
as is typically the case with eddy flux data, then observations should also be
appropriately down-weighted, that is, by 1/�(©) (weighted absolute deviations) or
1/�2(©) (weighted least squares). It should be noted that different minimization
criteria may result in different best-fit parameter sets, parameter covariances,
and uncertainty estimates – not to mention different interpretations of the data
(Richardson and Hollinger 2005; Lasslop et al. 2008).

Several additional details about the random measurement error are worth
noting:

1. At some sites, the relationship between flux magnitude and uncertainty appears
to level off for large negative fluxes (US – Ha1 in Fig. 7.1);

2. At many, but not all (Richardson et al. 2006a, 2008; Barr et al., unpublished
results) sites, the slope, b, is larger for positive (i.e., nocturnal release) than
negative (i.e., daytime uptake) fluxes, which may have to do with outlier removal
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Fig. 7.3 Histograms of the kurtosis of the half hourly random error estimates for 332
FLUXNET site-years. In the first column, only error estimates of high-magnitude fluxes
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The first row shows the kurtosis of the errors not accounting for the variable standard deviation,
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tails of the error distribution trimmed (1%) and the errors were normalized

and data editing by site investigators, or to differences in the turbulent transport
statistics between unstable conditions during the day and stable conditions at
night;

3. While Raupach et al. (2005) suggested that errors in measured fluxes would
be cross-correlated (i.e., positive correlation between error in Fc and error in
�E), Lasslop et al. (2008) reported that this was not the case. This is surprising
given that different scalars are carried by the same turbulent eddies, but a
possible explanation for this observation is that the exchange sites within the
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ecosystem differ among fluxes (as discussed in Hollinger and Richardson 2005).
In contrast to the results of Lasslop et al. (2008), data from the two-tower system
at Howland (Hollinger unpublished) indicate that between-tower differences
(errors) of various fluxes are weakly correlated at night (e.g., for Fc and �E,
r D 0.2) while during active daytime periods correlations are higher (e.g., during
the growing season when PPFD � 1,000 �mol m�2 s�1, Fc: �E r D �0.33,
Fc:H r D �0.46, H: �E r D 0.52). Lasslop et al. (2008) also found that the
autocorrelation of flux measurement errors dropped off rapidly, and is typically
less than 0.6 for a 30 min lag;

4. Consistent with theory, the CO2 flux measurement uncertainty decreases with
increasing wind speed (Hollinger et al. 2004), although this was not generally
observed for H or �E (Richardson et al. 2006a);

5. Differences in random flux measurement error between open- and closed-path
systems appear to be more or less negligible (Richardson et al. 2006a; Ocheltree
and Loescher 2007; Haslwanter et al. 2009).

7.2.6 Random Uncertainties at Longer Time Scales

Over time (days, months, years), the total random uncertainty on a flux integral
increases with the length of the integration period. However, at the same time, the
random uncertainty on the mean flux becomes smaller. For example, Rannik et al.
(2006) reported the random uncertainty (1�) on half-hourly fluxes at the Hyytiälä
site was ˙1.1 �mol m�2 s�1 (˙23 mg C m�2), whereas the random uncertainty on
the daily mean flux was ˙0.2 �mol m�2 s�1 (˙4 mg C m�2), which is consistent
with the rule that random errors decrease with averaging as 1=

p
n(whereas for the

integral they increase as n=
p

n). On the daily flux integral, however, this translates
to ˙195 mg C m�2. This emphasizes the importance of distinguishing between
uncertainties on means and uncertainties on integrals; the latter is n times larger
than the former. And, whereas diurnal and seasonal differences in the sign of the
measured flux may cancel each other so the net flux is near zero, this is not the
case with uncertainties on the flux integral, which always grow over time. Finally,
it should be noted that what seems a trivial error on the mean half-hour flux (e.g.,
˙0.1 �mol m�2 s�1) is certainly not insignificant when considered in terms of daily
(˙0.1 g C m�2 day�1) or yearly (˙40 g C m�2 year�1) integrals.

Propagation of uncertainties to longer time scales is conveniently done using
some sort of Monte Carlo or resampling technique (e.g., Richardson and Hollinger
2005), especially as this permits incorporation of uncertainties due to gap filling
(e.g., Moffat et al. 2007; Richardson and Hollinger 2007). Using a bootstrapping
approach, Liu et al. (2009) quantified random uncertainties in flux integrals at var-
ious time scales (30-min, day, month, quarter, year) for a young conifer plantation;
relative uncertainty dropped from � 100% at subdaily timescales to 7–22% (˙10–
40 g C m�2 year�1) at the annual timescale. Other studies have similarly attempted
to quantify the random uncertainty for annual NEE integrals; across a range of sites.
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Stauch et al. (2008) and Richardson and Hollinger (2007) reported that random
uncertainties on integrated NEE accumulated to roughly ˙30 g C m�2 year�1 (95%
confidence); these estimates are consistent with the observation by Hollinger et al.
(2004) that, over a 3-year period, annual NEE integrals from the Howland “main”
and “west” towers never differed by more than 25 g C m�2 year�1, which was
substantially less than the observed interannual variability.

7.3 Systematic Errors in Flux Measurements

We now address the sources of systematic error, or bias, in flux measurements.
These can be grouped into three categories. The first two categories have to do
with measurement issues, due to the underlying assumptions of the eddy covariance
technique not being satisfied (Sect. 7.3.1), or resulting from instrument calibration
and design errors (Sect. 7.3.2). The third category relates to processing issues,
for example, how both the raw high-frequency measurements and also the 30-min
covariances are treated in preparation of a “final” quality-controlled, corrected, and
gap-filled data set (e.g., Kruijt et al. 2004) (Sect. 7.3.3).

As noted above, systematic errors, unlike random errors, can and should be cor-
rected; if the correction has been applied correctly, this error disappears completely.
However, uncertainties appear because the correction is not complete, or is not
sufficiently accurate to entirely eliminate the error. In this section, our focus is on
a brief overview (as these are treated in greater detail in separate chapters) of the
major systematic errors and the method(s) used to correct them, and we attempt to
quantify any uncertainty that remains after having applied the correction.

7.3.1 Systematic Errors Resulting from Unmet Assumptions
and Methodological Challenges

Calculation of the eddy flux from the conservation equation requires several
simplifying assumptions (Baldocchi et al. 1988, 1996; Dabberdt et al. 1993; Foken
and Wichura 1996; Massman and Lee 2002), most important of which are that
the surrounding terrain is homogeneous and flat, that the transport processes are
stationary in time, that there is adequate turbulence to drive transport, and that the
vertical turbulent flux is the only significant transport mechanism. Violation of these
assumptions will induce errors and uncertainties in the measured flux; we note that
Foken and Wichura (1996) have proposed quality tests with which suspect data,
violating the underlying assumptions, can be flagged and filtered (see Sect. 4.3).
We now discuss in greater detail some of these uncertainties, as well as a related
methodological challenge: the problem of nocturnal measurements, which Massman
and Lee (2002) described as “a co-occurrence of all eddy covariance limitations.”
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Surface heterogeneity is thought to be a key factor contributing both to advection
(Sects. 5.1.3 and 5.4.2) and to energy balance nonclosure (Sect. 4.2) errors. For
example, Finnigan (2008) notes that even in flat terrain, advection can occur if the
canopy source-sink strength is not spatially homogeneous. It is increasingly recog-
nized that without accounting for advection, annual estimates of CO2 sink strength
are likely biased upward, because advection tends to be a selectively systematic
error and usually results in underestimation of nocturnal CO2 efflux (Staebler and
Fitzjarrald 2004). Quantifying the advection bias is challenging (Finnigan 2008),
and the size of the bias likely varies widely among sites (Feigenwinter et al. 2008).
However, Aubinet (2008) recently proposed a scheme to classify sites to one of five
different advection patterns, suggesting that a general model may be possible.

With respect to energy balance closure, Foken (2008) concluded that this was
“a scale problem” resulting from surface heterogeneity and the omission of low-
frequency fluxes associated with large eddies generated at edges or changes in
land use. Barr et al. (2006) observed an increased energy imbalance at low
wind speeds that may be related to the onset of organized mesoscale circulations
that produce stationary cells that add horizontal and vertical advection (Kanda
et al. 2004). We note that if either or both of the turbulent energy fluxes are
systematically underestimated, then this suggests the potential for a corresponding
error in the measured CO2 flux because atmospheric transport processes are similar
for all scalars and the calculation of all scalar fluxes rests on the same theoretical
assumptions (Twine et al. 2000; Wilson et al. 2002). The CO2 flux bias and energy
imbalance have been shown to respond similarly to u* and atmospheric stability
(Barr et al. 2006). However, using the energy imbalance to “correct” CO2 fluxes is
not widely accepted (Foken et al. 2006). We do not recommend its use at this time
(see also Sect. 4.2).

Nonstationarity of the turbulent statistics can result from underlying diurnal
cycles or from changes in weather (Foken and Wichura 1996). When nonstationarity
occurs, a key consequence is that the surface exchange is not exactly equal to the
sum of the measured flux and storage terms (Finnigan 2008). Measurements taken
under nonsteady-state conditions may be identified and then filtered by application
of the stationarity test described in (Sect. 4.3.2). The resulting uncertainty is
mainly random and depends on the gap frequency and gap-filling algorithm. In
a comparison of 18 European sites, Rebmann et al. (2005) showed that the test
eliminated on average 23% of the data. However, they did not study the impact of
this elimination on annual NEE. At Vielsalm (forested) and Lonzée (crop) sites,
Heinesch (not published) found a similar percentage of eliminated data in day
conditions but, at night, this percentage was larger, reaching 30–40%. However,
nonsteady-state nighttime data are often also removed by u* filtering (see below).

Under stable conditions with poorly developed turbulence, the eddy covariance
method is unable to accurately measure the surface exchange because nonturbulent
fluxes (storage, advection) may become as important as the turbulent fluxes
themselves (see Sect. 5.1.3). The error resulting from assumptions of adequate
turbulence not being satisfied is probably the most important in eddy covariance
measurement. In addition, as it acts as a selective systematic error (Moncrieff et al.
1996) its impact on annual fluxes is especially critical.
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Recent experiments have shown unambiguously that correcting for advection,
although attractive from a theoretical point of view, is impractical because direct
advection measurements introduce not only large uncertainties (Aubinet et al. 2003;
Feigenwinter et al. 2008; Leuning et al. 2008) but also large systematic biases
(Aubinet et al. 2010) in flux estimates (see also Sect. 5.4.2.3).

For these reasons, filtering nocturnal measurements during poorly mixed periods
remains the best method. A filtering procedure based on a friction velocity threshold
was proposed by Goulden et al. (1996). The method, its advantages, and shortcom-
ings are discussed in Sects. 5.3 and 5.4.1 and some alternatives are proposed.

By comparing 12 site-years in certain European forests where the nocturnal flux
error is thought to be large, Papale et al. (2006) reported the error associated with
not correcting for low turbulence always induced a systematic NEE overestimation,
varying by site and year, but generally in the range of 20–130 g C m�2 year�1

(based on the difference between annual CO2 flux integrals calculated with and
without u* filtering). Uncertainties resulting from u* filtering may have two sources:
Uncertainty regarding determination of the specific u* threshold (u*crit) applied, and
uncertainty from the algorithm used to fill the resulting data gaps. Uncertainties
linked with data gap-filling algorithms are discussed in Sects. 7.2 and 7.3.3.3.
Impact of the uncertainty on u*crit was analyzed by Papale et al. (2006) (see
also Hollinger et al. 2004). They reported confidence intervals on u*crit of 0.15–
0.25 m s�1, which lead to 10–70 g C m�2 year�1 uncertainties on annual NEE.
NEE declined when u*crit was increased, that is, sites became smaller carbon sinks.
Analyzing a winter wheat crop, Moureaux et al. (2008) obtained values in the lower
range of these estimates, that is, 10 (1.6%), 50 (5.2%), and 30 (1.9%) g C m�2 on
NEE, Reco, and GEP, respectively.

7.3.2 Systematic Errors Resulting from Instrument Calibration
and Design

The eddy covariance measurement system itself can also be a source of systematic
errors. These include errors related to calibration and drift, as well as errors
resulting from the infrared gas analyzers (IRGA) and sonic anemometer instruments
themselves. Many of these errors can be minimized by careful attention to system
design (see Sects. 2.3 and 2.4). A list of these errors, their order of magnitude, the
recommended correction procedure, and the possible uncertainty remaining after
the correction is given in Table 7.2.

7.3.2.1 Calibration Uncertainties

For any type of instrument, calibration errors and drift result in biased measure-
ments. These errors are, in principle, systematic, but there is a random component
operating at longer timescales (days to weeks) because both the sign and magnitude
of the error are often unknown.
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Calibration uncertainties result either from uncertainties in the concentration
of calibration standards or from calibration drift. The relative error on the eddy
covariance flux resulting from uncertainties in the standard gases is equal to the
relative error on the gas concentration. This error is often as high as 2.5%, although
0.5% accuracy is easily achieved.

Calibration drift error is due to instrument instability and affects mainly gas
analyzers. For the AmeriFlux Portable Eddy Covariance System, Ocheltree and
Loescher (2007) found that over a week-long period, calibration drift between
two different measurement systems resulted in a 5% difference in the measured
fluxes. Regular (daily to weekly) calibrations are thus required to minimize this
source of uncertainty. The set up of an automatic calibration procedure facilitates its
regular application. Uncertainty resulting from the calibration drift largely depends
on the time interval between two successive calibrations and on the procedure that
is used to account for drift. Three different procedures could be followed: centered,
averaged, and linearly interpolated calibration. In order to estimate the uncertainty in
each case, we assume that at each calibration the relation between the quantity being
measured (x) and the electronic signal (V) is given by xj D fj(V) and that calibration
drift is monotonic. In the case of centered calibration, each intercalibration period
(between j and j C 1) is divided in two parts, fj(V) being used in the first half and
fjC1(V) in the second. In these conditions, an upper limit to calibration error is given
by:

ıCal D ˇ̌
fj .V / � fj C1.V /

ˇ̌
(7.3)

In the case of averaged calibration, during the intercalibration period, the signal
is computed as the average between fj(V) and fjC1(V). An upper limit to calibration
error is then given by:

ıCal D
ˇ̌
fj .V / � fj C1.V /

ˇ̌

2
(7.4)

For interpolated calibration, the calibration function ft.V / is computed at each
moment of the intercalibration period as

ft.V / D fj .V / C t

T

�
fj C1.V / � fj .V /

�
(7.5)

where T is the period duration between the two calibration and t is the time since the
last calibration, j. In case of linear drift with time, this procedure reduces the error
due to calibration drift to zero. However, in case of nonlinear drift, an uncertainty
may remain whose upper limit is given by Eq. 7.4.
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7.3.2.2 Spikes

Spikes in high-frequency raw data can be caused by instrumental problems (elec-
tronic spikes) or by any perturbation of the measurement volume (bird droppings,
cobwebs, precipitation, etc.). Algorithms that detect spikes but also abnormally
large variances, skewnesses, kurtosis, and discontinuities are currently available
and correction procedures are discussed in Sect. 3.2.2. In the case of short peaks,
the algorithm removes the spike and fills the resulting gap, in other cases the
measurement may be flagged, leaving to the user the possibility to remove it
from the data set or not. Papale et al. (2006) showed that spikes generally have a
small impact on annual NEE (usually <10 g C m�2 year�1 and only occasionally
>20 g C m�2 year�1). The uncertainty remaining after elimination of flagged data
depends mainly on the quantity of flagged data and on the data gap-filling algorithm
(see Sect. 7.3.3.3).

7.3.2.3 Sonic Anemometer Errors

Systematic errors associated with sonic anemometers can be due to its misalignment
or to the limitations of a particular instrument design. Dyer et al. (1982) pointed
out that, after adequate coordinate rotation (Sect. 3.2.4) the error on scalar fluxes
due to sensor misalignment was about 3% per degree tilt. In addition, because of
their design, which results in self-sheltering by transducers and flow distortion by
the anemometer frame, sonic anemometers have an imperfect cosine response. This
results in what are known as “angle of attack” errors (Sect. 4.1.5.1, see also Sect.
2.3.2). Corrections for these have been published and are typically applied to the raw
u, v, and w measurements, often by the instrument internal software. An improved
correction was found to increase measured Fc, H, and �E fluxes by 3–13% (Nakai
et al. 2006). In addition, because sonic anemometers differ in design, the measured
turbulent statistics (means and variances) and air temperature tend to vary somewhat
depending on manufacturer and model. For short averaging periods in particular,
this may result in substantial uncertainty in measured scalar fluxes (Loescher et al.
2005). Distortion due to tower and infrastructure may also affect turbulence. This
point is discussed in detail in Sect. 2.2.

7.3.2.4 Infrared Gas Analyzer Errors

Open- and closed-path IRGAs are subject to different errors and biases (Sects. 2.4
and 4.1). However, these can be practically eliminated by careful system design and
an adequate correction, so that remaining uncertainty is small. Indeed, Ocheltree
and Loescher (2007) compared open- and closed-path IRGA measurements of Fc

made with the AmeriFlux Portable Eddy Covariance System and reported good
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agreement (R2 D 0.96) between the two fluxes, once the appropriate corrections had
been made (see also Haslwanter et al. 2009). The significant errors attributable to
the gas analyzer are reviewed below.

7.3.2.5 High-Frequency Losses

All sensors (we focus here on IRGAs, but similar problems affect other gas
analyzers and sonic anemometers as well) are affected by high-frequency damping
due to several reasons including instrument time response, sensor separation, vol-
ume averaging, etc. (Sect. 4.1.3). Closed-path systems (IRGA, tunable diode laser
(TDL), Proton Transfer Reaction Mass Spectrometry (PTR-MS)) are in addition
affected by a damping due to fluctuation attenuation in the sampling tube, so that
spectral corrections are generally larger for closed-path analyzers than for open-path
analyzers (Sects. 2.4.2 and 4.1.3). The negative effects of damping can be minimized
by the use of short, clean tubes and flow rates that are high enough to produce fully
turbulent flow. A comparison between open- and closed-path IRGAs in an urban
environment showed that these high-frequency losses for CO2 were about 11 ˙ 3%
(SD) for a closed-path analyzer, and 3 ˙ 2% for an open-path analyzer (Järvi et al.
2009).

Spectral corrections (Sect. 4.1.3) are used to adjust the measured flux for high-
frequency losses. The appropriate correction can be estimated both theoretically
and empirically (Massman 2000); the theoretical approach yields spectral correction
factors for Fc ranging from 4% to 25%, and for �E between 6 and 35% (Aubinet
et al. 2000). The high-frequency losses are larger for �E than for Fc because of
adsorption and desorption of water in the sampling tube that increases attenuation by
the system dramatically at high relative humidity (Ibrom et al. 2007a; De Ligne et al.
2010); high-frequency losses for �E generally increase with the age of sampling
tubes (Su et al. 2004; Mammarella et al. 2009). In practice, this means that the
spectral transfer function of the eddy covariance system that is used for spectral
correction needs to be sensitive to weather conditions (relative humidity), tube
aging, and changes in the mass flow through the system. These corrections are
described more fully in Sect. 4.1.3 and elsewhere (Aubinet et al. 2000; Massman
2000; Massman and Lee 2002; Ibrom et al. 2007a; Massman and Ibrom 2008).

7.3.2.6 Density Fluctuations

The need to apply the WPL (Webb et al. 1980) correction for density fluctuations in
sampled air is well established (Sect. 4.1.4). Its application is required for open-path
analyzers and may be needed in part for closed-path IRGAs if the CO2 concentration
is not reported relative to dry air. The correction has been described in Sect. 4.1.4
and consists in two terms (Eq. 4.25), one taking account of density fluctuations
related to sensible heat transport, the second, of density fluctuations due to water
vapor flux. In the case of an open-path system, both terms must be introduced in
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Table 7.3 Expected order of magnitude of density corrections on annual CO2 flux

Annual average energy
fluxes

Density correction on
annual CO2 flux

Climate
Sensible heat
(GJ m�2 year�1)

Latent heat
(GJ m�2 year�1)

Due to temperature
fluctuations
(gC m�2 year�1)

Due to water vapor
fluctuations
(gC m�2 year�1)

Boreal 0.3 0.6 138 53
Temperate 0.9 0.9 413 80
Tropical 1.8 0.9 826 80
Equatorial 0.9 1.8 413 160

Derived from Webb et al. (1980) and from climatological data from Bonan (2008)
NB: No WPL correction is necessary with closed-path analyzers if the CO2 concentration is
expressed relative to dry air and the flux equation is adapted accordingly (see eq. 4 and Appendix
Ibrom et al. (2007b))
NB2: In cases of closed-path systems, where CO2 is expressed relative to moist air, the WPL vapor
correction presented in this table may overcorrect because water vapor concentration variations
may lag CO2 variations (see text)

the correction while in the case of a closed-path system, only the water vapor flux
correction is potentially needed as temperature-driven density fluctuations caused
by a cooccurring sensible heat flux are attenuated by passage of the air sample
through the intake tube (Rannik et al. 1997). If the closed-path analyzer reports dry
mole fraction (corrects for water vapor fluctuations internally), then this correction
does not need to be made by the experimenter. The impact of these corrections
on annual sums can be substantial, varying strongly according to the site and the
meteorological conditions. An evaluation of their order of magnitude showing the
potential importance of these corrections as derived from Webb et al. (1980) and
average climatological data (Bonan 2008) is presented in Table 7.3.

In closed-path sensors where the CO2 concentration is not reported relative to
dry air, the dilution effect of water vapor on CO2 concentrations is different from
what it is in the atmosphere or open-path sensors. As water vapor fluctuations
are dampened and phase shifted in the tubes of the closed-path system, using the
original formulation, that is, the true latent heat flux in the atmosphere, to correct
the dilution of CO2 concentrations by water vapor fluctuations will overcorrect the
CO2 flux. Ibrom et al. (2007b) found the magnitude of the overcorrection to be
about 30 g C m�2 year�1, a 21% underestimation of the annual carbon budget at
the Danish beech forest, Sorø, although this effect will depend upon details of the
closed-path system (tube length, flow rate, age of tubes). It is thus recommended
that instead of applying the WPL water vapor correction to calculated fluxes
from closed-path instruments, researchers instead apply the dilution correction by
transforming densities into dry mixing ratios before computing the (co)variances.
Many IRGAs measure both water vapor and CO2 and some of them (LiCor 6262 or
7200) but not all (LiCor 7000) have the option available in the instrument software
of correcting the CO2 output for water vapor density fluctuations.
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Uncertainties remaining after this correction are relatively small, and can in the
case of open-path sensors, be attributed to uncertainties in measured energy fluxes
(Liu et al. 2006), and also CO2 density (Serrano-Ortiz et al. 2008), which propagate
through the correction. Liu et al. (2006) determined that minimizing both random
and systematic errors in H was essential, as otherwise these have a potentially large
negative impact on the accuracy of the “corrected” Fc. Serrano-Ortiz et al. (2008)
calculated that underestimation of CO2 density by just 5% (due to e.g., dirty open-
path IRGA optics) resulted in a 13% overestimation (at the monthly time scale) of
net C uptake by a semi-arid shrubland in Spain; these biases are most pronounced
in ecosystems such as this where H is large at midday (see also Sect. 4.1.4.3).

7.3.2.7 Instrument Surface Heat Exchange

With respect to open-path analyzers, Burba et al. (2008) have demonstrated the
influence of instrument surface heat exchange on measured CO2 fluxes for a
widely used instrument (Sect. 4.1.5.2). They showed that the surface of the open-
path became warmer than ambient air during daytime, which induced natural
convection and a nonzero vertical velocity in the instrument path. This leads to
a flux overestimation that appears to be most pronounced in cold climates during
the nongrowing season, and leads to a substantial overestimation of ecosystem C
uptake. The error on half hourly fluxes varies from 40% to 770% in winter (when
the absolute magnitude of fluxes is generally small) but never exceeds 5% in summer
conditions. The impact on annual carbon budget was found to be around 90–
100 g C m�2 year�1 (14–16%) for crops (Burba et al. 2008) and 450 g C m�2 year�1

(17%) for emissions from an urban area (Järvi et al. 2009).
To correct, it is recommended to apply the WPL correction with sensible heat

flux measured inside the open-path rather than in the atmosphere (Burba et al. 2008).
However, this procedure is seldom workable as this flux is generally not available.
A series of empirical corrections were thus proposed by Burba et al. (2008) to
overcome this problem. However, they are empirical, instrument-specific (LI-7500),
and apply to vertically oriented instruments only.

The residual uncertainty remaining after application of Burba et al. (2008)
correction is estimated to be about 5% on annual CO2 fluxes (Burba et al. 2008);
Järvi et al. (2009) estimated (by comparison with closed-path systems) that after
correction for self-heating, errors were reduced from 140 to 20 g C m�2 in a
temperate forest environment and from 330 to 30 g C m�2 in an urban environment.

7.3.3 Systematic Errors Associated with Data Processing

Sources of uncertainty associated with processing raw (5–20 Hz) data to obtain
30-min estimates of Fc include detrending, coordinate rotation, and both high-
and low-frequency corrections (Kruijt et al. 2004). The uncertainties have been
quantified individually and also together in the context of different software
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packages for data processing. A list of these errors, their order of magnitude, the
recommended correction procedure, and the possible uncertainty remaining after
the correction is given in Table 7.4.

7.3.3.1 Detrending and High-Pass Filtering

Detrending and high-pass filtering are carried out to reduce random or systematic
noise in flux estimates caused by low-frequency bias in turbulent time series. The
bias originates either from diurnal or sporadic changes in scalar concentrations,
wind speed and direction; or from measurement artifacts such as sudden or transient
instrument drifts (Aubinet et al. 2000).

High-pass filtering is unavoidable when calculating covariances from a finite
measurement period (low-frequency eddies with periods longer than the averaging
period are excluded from the calculated flux) and thus corrections are always
required. Detrending of time series (by application of linear detrending or recursive
filtering, see (Sect. 3.2.3.1)) is a special case of high-pass filtering, which is more
effective than simple averaging, to exclude low-frequency variance. It is up to the
investigator to choose the length of the measurement period and whether or not
detrending is applied, or in other words, which part of the turbulent signal is deemed
to be disturbed and thus needs to be replaced by theory and which not. It has
been debated whether detrending is in conflict with common derivations of the flux
equation, because only simple block averaging over the measurement period ensures
that some flux terms disappear after Reynolds averaging. Despite this debate,
detrending is still being widely used when separating the true turbulent flux from
the possibly biased measured signal. However, if one interprets the detrended signal
as the undisturbed turbulent signal, Reynolds averaging rules are compromised if
the measured time series were used. In-depth discussion on this topic is beyond the
scope of this overview; again, we aim to provide examples relating to the uncertainty
associated with detrending.

Rannik and Vesala (1999) were the first to compare the effects of using three
different high-pass filtering approaches (Sect. 3.2.3.1), block averaging (BA),
linear detrending (LD) and autoregressive filtering (AF), on flux estimations from
measured time series. They calculated theoretical random errors in covariance
estimates from finite time series by assuming an exponential covariance function
and found random errors of the CO2 daily averaged fluxes ranging from 0.29 to
0.38 �mol m�2 s�1, when using the different detrending methods as compared to
0.32 �mol m�2 s�1 as the theoretical value. Table 7.5 presents part of a multisite
analysis from the European Infrastructure for Measurement of the European Carbon
Cycle (IMECC) project where the random error and the systematic error were
quantified on measured covariances using the “model residual” approach.

The general effects of using different high-pass filtering methods at this site are
relatively small, provided appropriate corrections are made. The larger the filtering
effect, the lower the random error. Using the most efficient filter (AF with � D 225 s)
reduced the random error compared to plain averaging by 8%. Simple LD reduces
random error by more than 6%.
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Table 7.5 Systematic and random errors due to the choice of the detrending algorithm in an annual
CO2 flux data set above Beech forest, Sorø, Denmark (Pilegaard et al. 2003)

AF AF AF

BA LD � D 225 s � D450 s � D900 s

Absolute random error: RMSE of linear
regression between Fn and
OFn(�mol m�2 s�1)

3:32 3:11 3:05 3:09 3:15

Relative random error (% of the averaged
RMSE)

5:5 �0:9 �2:9 �1:7 0:1

Absolute systematic error after correction
(difference, in g C m�2 year�1,
between the annual CO2 flux estimate
to the average of the 5 estimates,
�259 g C m�2 year�1)

�13 �2 14 4 0

Relative systematic error after correction
(difference, in %, of the mean slopes

of the regressions of OFn with OFn and 1)

0:8 �0:2 �0:8 �0:2 0:0

Systematic error using Horst’s peak
frequency parameterization (Horst
1997) at this site (difference, in %, of
slopes of the regression OF H

n with OF H
n

and 1)

�2:4 �2:2 �1:8 �2:2 �2:5

The raw data were processed using five different high-pass filtering methods, block averaging
(BA), linear detrending (LD), and autoregressive filtering (AF) with different time constants (� ) and
corrected according to Rannik and Vesala (1999) using either model spectra that have been adapted
to the site, yielding storage change corrected net CO2 fluxes Fn, or using the parameterization
of Horst (1997), .F H

n /. Random errors were estimated by the “model residual” approach, i.e.,
comparing Fn with the expected value OFn, and systematic errors by comparing OFn from different
data treatments. Expected net ecosystem exchange values, OFn, were obtained by using a 2D binned

moving averaging (look-up table approach of Falge et al. 2001b). OFn is the average of OFn for the
different data treatments

The remaining systematic differences between corrected CO2 flux estimates from
different detrending procedures were < 1%, as shown by the regression slopes of OFn

(expected flux values computed with one given procedure) with OFn (average of the
expected flux values computed with the different procedures. The intercepts were all
smaller than 0.01 �mol m�2 s�1) or ˙ 16 g m�2 year�1, when looking at the annual
sums. However, the choice of the model spectra mattered. Net flux estimates were
2–3% higher when using site-adapted cospectral models rather than the often-used
Horst parameterization.

Compared to the other systematic errors in the estimation of carbon budgets,
the additional systematic error resulting from detrending is small and can be
largely removed when corrections from the appropriate cospectral models are
applied. Since detrending also has the desirable property of reducing random error,
we recommend its general use. The results presented here are from forest sites
and similar investigations need to be performed with data from other sites, site
conditions, and climates in order to develop a general picture about cospectral
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models as well as the benefits and disadvantages of detrending in terms of random
and systematic flux estimate errors.

7.3.3.2 Coordinate Rotation

Coordinate rotation is intended to eliminate errors resulting from a sonic anemome-
ter that is imperfectly mounted (i.e., not level), and differences between “streamline”
and “planar fit” approaches are discussed in Sect. 3.2.4. Anthoni et al. (2004) found
only differences of ˙15 g C m�2 year�1 in annual NEE when different coordinate
rotation strategies were applied. Comparing different coordinate rotation methods,
Mahrt et al. (2000) found that differences were insignificant. However, Finnigan
et al. (2003) noted that coordinate rotation results in high-pass filtering of the
scalar covariance, meaning the issues discussed in the previous section (and in Sect.
4.1.3.3) must be addressed. Forcing the mean vertical wind velocity to zero during
short (15–30 min) averaging periods resulted in systematic underestimation of H
and �E by 10–15%, contributing to the energy balance closure problem at three
forest sites (Tumbarumba, Griffin, and Manaus) studied by Finnigan et al. (2003).
The proposed solution is to use a longer period (up to 4 h or more) for averaging
and coordinate rotation, so that the low-frequency component is not lost. However,
Finnigan et al. (2003) did not discuss applying high-pass filtering corrections as an
alternative to increasing the averaging time.

7.3.3.3 Gap Filling

There are numerous uncertainties associated with imputation of missing values
in eddy flux time series (“gap filling”). For example, Richardson and Hollinger
(2007) quantified the way in which random errors in measured fluxes are propagated
through gap filling: when measurements are more uncertain (or sparse), there is
correspondingly greater uncertainty in the filled values and thus the annual carbon
budget. Richardson and Hollinger (2007) showed how this covariance could be
quantified using Monte Carlo approaches.

There are also quasirandom uncertainties due to the timing and length of the
gaps. Filling long gaps is a particular challenge, especially when these occur during
periods when the ecosystem is actively changing (Falge et al. 2001a). This adds
additional uncertainty to annual NEE integrals. For example, within deciduous
forests, Richardson and Hollinger (2007) found that gaps of 3 weeks during the
winter dormant season could be filled with reasonable accuracy, whereas a one-
week gap during the spring green-up period was associated with an uncertainty of
˙30 g C m�2 year�1 at 95% confidence. Although the uncertainty associated with
gaps of more than a day in length will depend on the specific site and data-year in
question, Richardson and Hollinger (2007) reported values that were typically in the
range of ˙10–30 g C m�2 year�1 when integrated across the entire year; this range
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is comparable in magnitude to the aggregate uncertainty due to random errors in
measurements and as propagated through gap filling.

Finally, there are systematic uncertainties associated with choosing any particular
algorithm for gap filling (Falge et al. 2001a; Moffat et al. 2007). The recent gap-
filling comparison by Moffat et al. (2007) found that in most cases, the algorithms
being used were approaching the noise limit (uncertainty) of the measurements.
However, highly empirical approaches, including artificial neural networks and
marginal distribution sampling, consistently performed the best (better than non-
linear regression models, for example) across a range of forested European sites. At
the annual time step, differences among algorithms were generally modest, as most
produced annual NEE integrals that were within ˙25 g C m�2 year�1 of the mean.

By comparison, relatively little effort has been directed at developing and testing
algorithms for gap-filling H and �E time series; the early analysis by Falge et al.
(2001b) reported that H could vary by up to 140 MJ m�2 year�1 (19%), and �E by
up to 205 MJ m�2 year�1 (39%) depending on the method used. As eddy flux data
are increasingly being used to evaluate and improve ecosystem and land surface
models, more emphasis will have to be placed on quantifying these uncertainties for
water and energy fluxes.

7.3.3.4 Flux Partitioning

To obtain better insights into the process-level controls over NEE, there is con-
siderable interest in partitioning the measured net flux of CO2 to two component
fluxes, gross ecosystem productivity (GEP) and total ecosystem respiration (Reco)
(see Chap. 9 for a review of methods). At night, the partitioning is simple, as
Reco D NEE. During the day, the partitioning is dependent on the model used.
Therefore there are substantial uncertainties associated with the resulting estimates
of GEP and Reco (Hagen et al. 2006; Richardson et al. 2006b). For example, daytime
respiration can be estimated by extrapolation of nighttime measurements using
some sort of temperature response function, but this approach does not account for
daytime inhibition of foliar respiration, which is estimated to be 11–17% of GEP
according to a modeling analysis by Wohlfahrt et al. (2005). An alternative method
estimates daytime respiration from the y-axis intercept of a light response curve.
These approaches are compared systematically by Lasslop et al. (2010). Desai et al.
(2008) conducted a broad survey of partitioning algorithms; results indicated that
most methods differed by less than10% in terms of annual integrals, although there
was more variability among methods when additional gaps were added to the data.
Patterns across sites tended to be consistent when a single algorithm was applied
to all data sets, indicating that choice of partitioning algorithm mostly results in
systematic bias of unknown magnitude, since the “true” GEP is not known. At
shorter time scales (e.g., with respect to diurnal cycles), there was more variability
among algorithms, particularly with respect to Reco (see also Lasslop et al. 2010).
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7.4 Closing Ecosystem Carbon Budgets

The above discussion of random errors and systematic biases in eddy covariance
measurements of surface-atmosphere exchange raises questions about whether
ecosystem C budgets derived from these measurements are in any way consis-
tent with budgets estimated using other types of data, such as inventory-based
approaches. Taking data uncertainties into account is critical for these kinds of
comparisons. Schelhaas et al. (2004) reported that although the “best” estimates
of C uptake by the Loobos pine forest differed by roughly 40% (eddy flux:
295 g C m�2 year�1; inventory: 202 g C m�2 year�1), confidence intervals were
sufficiently wide that the two estimates were not inconsistent with each other. In
an earlier study, Curtis et al. (2002) found that tower-based estimates of forest C
uptake from four temperate deciduous forests were in “reasonable” agreement with
estimates derived from changes in wood and soil C pools. At a fifth site (Walker
Branch), where annual NEE integrals are suspect because of likely advection issues,
the agreement was, not surprisingly, poor (eddy flux: 575 g C m�2 year�1; inventory:
250 g C m�2 year�1). Gough et al. (2008) emphasized the importance of making
such comparisons over several years; there was poor agreement when annual tower-
and inventory-based estimates of carbon storage were compared, but surprisingly
close agreement (within 1%) with respect to 5-year averages.

Rather than comparing estimates of total C sequestration, Luyssaert et al. (2009)
developed a two-stage “consistency cross-check” to compare C balance components
based on flux tower and inventory methods. For 13 of the 16 sites examined, the
data were judged to pass the test. While this does not necessarily imply that the
absolute fluxes are accurate (consistency tests were based on estimating C balance
closure terms, and examining ratios of different C balance components), it does give
increased confidence in our use of eddy covariance fluxes for model evaluation and
hypothesis testing, in spite of the substantial uncertainties described in this chapter.

7.5 Conclusion

Numerous previous studies, including Goulden et al. (1996), Lee et al. (1999),
Anthoni et al. (1999, 2004), and Flanagan and Johnson (2005) have quantified
various sources of flux measurement uncertainty and have attempted to attach
confidence intervals to published annual sums of NEE; Baldocchi (2003) estimated
that on ideal sites, the uncertainty in annual NEE was less than ˙50 g C m�2 year�1,
which is about the range that has been estimated in other studies. In this chapter,
we have attempted to conduct a comprehensive evaluation of both random and
systematic errors, with an emphasis on how these affect our use and interpretation of
both 30-min and annual CO2 fluxes. In our review, we have presented methods for
quantifying the random errors, and have discussed the major sources of systematic
error, and the degree to which these can be corrected. Of these, biases due to
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advection appear to represent the most significant “known unknown,” and while
we do not recommend that attempts be made to use measurements of the advective
fluxes directly as a correction, ongoing efforts to quantify advective losses (and to
strive to find sites where advection is less likely to be an issue) are clearly justified.

We conclude by noting that, given the challenges and research questions to which
eddy covariance measurements of carbon, water, and energy fluxes are now being
applied – particularly with respect to regional-to-continental scaling, C accounting
and policy decision making, and data-model fusion – it is more important than ever
that flux measurement uncertainties be quantified and reported. In one of the earliest
reviews of flux measurement uncertainty, Moncrieff et al. (1996) remarked that in
some fields it is common to separately report estimates of random (©) and systematic
(ı) uncertainties on measured quantities, for example, x ˙ © C ı; while this approach
has not been widely adopted within the eddy covariance community, it certainly has
much to recommend (Aubinet et al. 2000).
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