
Chapter 6
Data Gap Filling

Dario Papale

6.1 Introduction

The eddy covariance (EC) technique provides data at high temporal resolution,
continuously, day and night and potentially for multiple years. Despite the recent de-
velopments in the EC technique and the availability of instruments with low power
consumption, system failures are unavoidable and create gaps in the measurements.
Common problems in the data acquisition are power breaks, in particular when the
power system is based on solar panels; damages to instruments, for example, due to
animals or lightning; incorrect system calibrations; maintenances; and also human
actions like vandalism or robbery. In addition to these events related to the data
acquisition phase, there are also gaps introduced by the data quality filtering, where
measurements are discarded if acquired under non ideal conditions. Examples of
these filters are the raw data tests described in Sects. 3.2.2, 4.3.3 and the nighttime
filtering depicted in Sect. 5.3. Falge et al. (2001) found on average 35% of data
missing due to system failures and data rejections across 19 EC sites while Papale
et al. (2006) estimated that 20–60% of the data was rejected by the different quality
filters applied.

Are these gaps a problem in our analyses? When should we fill these gaps in
the measured fluxes and which are the methods available? In this chapter, the flux
measurement gap filling will be discussed, focusing in particular on the differences
between the methods available and providing indications about the best way to fill
gaps in the data set on the basis of the data use and ecosystem characteristics.
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6.2 Gap Filling: Why and When Is It Needed?

Do we need to fill the gaps in an EC time-series? It depends on the use of the
data and the analysis that we plan to do. Thanks to its high temporal resolution,
the EC technique provides a large amount of data that are often acquired under
similar situation in terms of vegetation status and meteorological conditions. This
“redundancy” of data is fundamental in the gap-filling methods; it is also sufficient
to perform specific analyses, when no gap-free data sets are needed. Examples
are the analysis of functional relationships between fluxes and drivers or models
validation and parameterization when the model time resolution is the same of the
EC measurements. In these cases, it is not needed to fill the gaps present in the
time-series and only the measured and not-rejected data can be used.

Instead, whenever it is needed to calculate aggregated values, for example,
sums to estimate annual budgets or daily averages needed in model evaluations,
the completeness of the data set is required. If missing and rejected values in the
half-hourly data set would be perfectly random distributed, the calculation of an
integrated value could be easily performed by taking the average of all available
data. Unfortunately, data gaps do not occur randomly. For example, u* filtering
removes mainly nighttime data or power failures occur principally in winter and
night when the solar panels are used. This nonrandomness of the gaps in the data
set leads to the need to apply more sophisticated gap-filling methods to reconstruct
the missing periods.

6.3 Gap-Filling Methods

There are different gap-filling methods, in particular for carbon fluxes, that have
been proposed in scientific literature. These can be classified according to different
characteristics:

– Principles: All the gap-filling methods make use of the valid data to reconstruct
the missing period. This reconstruction however can be based on completely
empirical techniques or on the use of “functional models.” In the first case,
there are no assumptions imposed in the shape of the relations between drivers
and fluxes and the data are used to find this relation and parameterize it. In
the “functional models,” the knowledge about the process under study is used
to prescribe the way how drivers and fluxes are linked and the data are used
only to parameterize these functions. In general, functional models are not
recommended when the data are used in models evaluation activities because
the same knowledge about the processes involved could be used in both the
gap-filling method and the model to validate, leading to spurious correlations
and circularities. However, if the empirical methods are in general good in
the interpolation, they have led to high uncertainty in extrapolation, where the
empirical relation found using the available data could be not valid (e.g., filling
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winter time data with a relation found and parameterized using summer time
data). In these cases the functional models are more suitable since the knowledge
about the dynamic of the system and the role of the different drivers in the
different periods of the year is included in the method.

– Drivers: The drivers are variables, which can explain at least partially the
variability of the flux measured with the EC technique that needs to be filled.
Generally, the meteorological variables are used as drivers in most of the gap-
filling methods since they influence the ecosystem responses in terms of carbon,
water, energy, and other greenhouse gas fluxes. Incoming shortwave radiation,
air and soil temperature, vapor pressure deficit, and soil water content are in
general the most used drivers; however, other variables like precipitation, diffuse
and reflected radiation, and wind speed can also be important in specific sites or
conditions. The gap-filling method flexibility in the requested or accepted drivers
could be an important criterion to select the most appropriate technique. Methods
that have a fixed list of drivers are clearly less flexible and cannot be applied if one
of the drivers is also missing or if a variable that is supposed to be relevant in the
flux reconstruction is not included in the model. In general, empirical methods
are fully flexible in this respect and, for this reason, preferable in these conditions.
There are, however, conditions when all the meteorological data are also missing.
In these situations, if it is not possible to reconstruct at least some of the drivers
the only method that can be applied is the Mean Diurnal Variation.

– Variables simulated: The variables that need to be gap-filled could be different. In
addition to the fluxes (CO2, H2O, Energy, CH4, N2O, volatile organic compounds
(VOCs) and all the other species that can be measured by the EC technique),
the meteorological variables can also be filled, to construct a complete driver
data set that can be used as input in the fluxes gap-filling. The ability of the
methods to simulate different variables and be available for this reason as a gap-
filling tool for different fluxes and meteorological data set should be taken into
consideration.

– Noise conservation: Fluxes measured with the EC technique are affected by
random errors that introduce noise in the data. Most of the gap-filling methods are
based on interpolations and for this reason tend to remove the noise signal from
the data. There are few methods that conserve the noise in the data, for example,
the Kalman filters (Gove and Hollinger 2006) and the Multiple Imputation (Hui
et al. 2004) approaches.

– Implementation: The computer computational power available today is more
than sufficient to run all the existing gap-filling techniques. However, the
implementation of some of the existing methods could be complicated and
would need a good knowledge of programming languages. In these cases, the
centralized services offered by databases and portals could play an important
role, implementing these methods and giving a complete and robust gap-filling
tool available to the users (see Sect. 17.3).
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6.3.1 Meteorological Data Gap Filling

The gap-filling techniques presented in this chapter have been proposed mainly for
CO2 data; however, part of them, in particular the empirical methods, can be easily
adapted to be used for other fluxes. All of them (except Mean Diurnal Variation)
however require as input meteorological variables that for this reason should be
available as continuous and gap-free data set. Although data quality filtering applied
to meteorological measurements has minor impact in terms of data points removed,
gaps can occur, in particular, due to sensors malfunctioning or power breaks. In
these cases, it is needed to first fill the gaps in the drivers and then use gap-filled
meteorological data in the fluxes gap-filling. This is clearly a delicate step since
errors and uncertainties introduced in the drivers will be reflected also in the fluxes.
In addition, it is important to underline that gap-filled meteorological data should
not be used in the flux gap-filling model parameterization.

The best way to fill gaps in meteorological data is to have a back-up meteoro-
logical station with main variables measured (incoming radiation, air temperature,
relative humidity, precipitation, wind speed) close to the main EC tower but
independent regarding the power supply system. When this back-up system is not
available, the empirical methods described later in this chapter can be used when
only part of the meteorological variables are missing using as driver the variables
present and additional inputs like top of atmosphere incoming radiation or indicators
of date and time.

In the unfortunate but also quite common cases where all the meteorological
data are missing and no meteorological stations are available in the area, linear
interpolation of variables with slow changes (like temperature) or the use of Mean
Diurnal Variation method are simplest solutions to implement. Other more complex
possibilities that, however, would give more trustable results involve the use of re-
mote sensing data or meteorological reanalysis data. New generation meteorological
satellites like the European Meteosat MSG (http://www.esa.int/SPECIALS/MSG/)
provide high temporal resolution images (15–30 min) that can be used to derive
variables like incoming radiation, surface temperature, or albedo (http://landsaf.
meteo.pt/). Finding the regression between the site-level measurements and the
data produced for the pixel where the tower is located it is then possible to apply
such regression to rescale the remote sensing products at site level when the tower
measurements are missing. The same approach can be applied using meteorological
reanalysis data instead of remote sensing products. These data are also gridded data
set produced integrating observations and models, generally with daily temporal
resolution (see as example the ERA-Interim data set produced by ECMWF: http://
www.ecmwf.int/research/era/do/get/era-interim) that can be downscaled at local
level using site-specific relations parameterized using periods where the variables
of interest are present.

http://www.esa.int/SPECIALS/MSG/
http://landsaf.meteo.pt/
http://landsaf.meteo.pt/
http://www.ecmwf.int/research/era/do/get/era-interim
http://www.ecmwf.int/research/era/do/get/era-interim
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6.3.2 General Rules and Strategies (Long Gaps)

Gap-filling method setting and parameterization are crucial steps and they are
directly linked to the quality of the results. The relative abundance of data due to the
high time resolution of the EC technique and the number of meteorological variables
measured should not lead to an underestimation of the importance of this phase
that must be carefully implemented. The drivers, for example, should be selected
carefully finding the right compromise between the known biological importance of
a specific meteorological variable to explain the flux to be reproduced, its presence
and quality through the year, and its possible correlation with other drivers used that
for some of the methods could lead to an over-parameterization.

In general, the dataset used in the model parameterization should be as much
as possible representative of the different conditions with an even distribution of
samples measured in the diverse situations. This means, for example, that there
should be equilibrium between data acquired during daytime and nighttime or in
the different seasons. In addition, also the length of the time-windows used to
parameterize and apply the model has an important role. In practice, a model could
be parameterized using data from the whole year and then applied to all the present
gaps. This, however, must imply that the model is able to distinguish the different
“ecosystem states,” for example, phenological phases or different agricultural
periods (see next section). In fact, fluxes acquired under similar meteorological
conditions but during completely different “ecosystem state” could be completely
different. As an alternative, the model could be parameterized and applied on the
basis of shorter time-windows, in the order of weeks or months, where it is assumed
that certain conditions (e.g., phenology or biomass) are stable and the fluxes are
explained only by the meteorological conditions. These time windows could be
fixed in terms of length and position (e.g., a different model parameterization for
each month) or, more sophisticatedly and correctly, be centered on each single gap
to fill and have an increasing length, up to the minimum window size that provides
a sufficient number of data points to parameterize the model (see as example
Reichstein et al. 2005).

One problem, in particular when short time-windows are used, is the presence of
long gaps where no data are available for the parameterization. In these cases, when
multiple years are available and the ecosystem state did not change in the period,
the model can be parameterized using data acquired in the same period of a year
(e.g., season) but in different years. The basic assumption that justifies this approach
is that the fluxes, in the same period but different years, are mainly function of
the meteorological conditions. This is probably true, for example, in mature or old
forests that did not experience substantial disturbances or management events or
during the growing season of crops when the species and season are the same.
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6.3.2.1 Sites with Management and Disturbances

Managed or disturbed ecosystems experience rapid changes of their conditions that
drastically change the fluxes and their relations with the meteorological drivers due
to changes of the ecosystem dynamics between the period just before and just after
the perturbation. This is typical in cropland and managed grassland, in particular,
after tillage or after harvesting and grazing (Hammerle et al. 2008; Wohlfahrt et al.
2008) when the green biomass is removed in a few days and rapid vegetation
regrowth could start.

These are conditions that should be considered when the gap-filling method is
selected and implemented. In theory, the method should to be able to recognize
that the system status changed. This could be possible using as driver a variable
related to the ecosystem characteristic affected by the disturbance or management
practices. In case of harvesting, for example, a spectral reflectance measurement in
the spectral bands linked to the green vegetation (e.g., the normalized difference
vegetation index (NDVI) bands) or a below-canopy radiation sensor could help
identify the abrupt change of ecosystem status, but the gap-filling method must be
flexible enough to take this information as input.

An alternative method to take into consideration management and disturbances
during gap filling is to change the parameterization strategy. Parameters of the
gap-filling method are set using valid data measured in a time window that could
have different sizes from multiple years to few days (see Sect. 6.3.2), and clearly
in ecosystems where management and disturbances occurs, it is important to keep
this window as short as possible to avoid the use of data acquired in periods with
similar drivers values (e.g., meteorological conditions) but completely different
fluxes due to the change of status in the same parameterization step. However,
even a small window could include data before and after the disturbance event,
in particular, when, in croplands or grassland, the EC system needs to be removed
during harvesting and the gap is long and centered around the critical period.

The best way to solve this problem is probably the use of disturbance or
management indicators (DI) to split the data set in subsets that do not include
abrupt ecosystem status changes. In practice, registering the date and time of
management practices or disturbances events that are supposed to have a direct and
immediate effect on the fluxes it is possible to identify periods where the fluxes are
function only of time (e.g., regrowth) and meteorological conditions. The gap-filling
method can be then parameterized using only data acquired during the homogeneous
subperiod (Fig. 6.1). In addition, in case of similar management across the years, for
example, in grassland where generally the 3–4 cutting events per year happen in the
same periods or in cropland if the same species is cultivated for different years,
the gap-filling model can be parameterized using data from the same subperiod of
previous years (if the others states conditions remained stable). In this way, the
number of data points available increase making the parameterization more robust.
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Fig. 6.1 Example of the Disturbance Indicator (DI) uses in gap filling NEE data measured in a
managed grassland. Two artificial gaps of 7 days and 14 days have been added before (left) and
after (right) the cutting dates that create a discontinuity. The artificial gaps have been filled using
the MDS method (Sect. 6.3.3.2). It is possible to see how the gap-filling method performances
improve when the DI is used (These data have been gently processed and provided by Arnaud
Carrara)

6.3.3 Methods Description

6.3.3.1 Mean Diurnal Variation

The Mean Diurnal Variation method (MDV) is an interpolation technique that is
based on the temporal auto-correlation of the fluxes (Falge et al. 2001). Missing
observation is replaced by the mean of valid values measured on adjacent days at
the same time (the same half-hour or with a buffer of C/� 1 h). The length and
definition of the averaging period (window) can vary between different method
implementations. In general, a window length not larger than 2 weeks is recom-
mended since for longer periods nonlinear dependence on environmental variables
could introduce large uncertainty and errors (Falge et al. 2001). Also the position
of the window could be fixed or variable where in the first case the windows are
predecided and fixed and all gaps occurring in each of the windows are replaced
applying the MDV in the same period, while in the second case the windows are
defined around each single gap. Clearly, the second method is preferable because
the gap will always be centered in the window.

The MDV method does not require drivers and it is the only method applicable
when all the meteorological data are missing; it is an empirical method and can be
in theory applied to fill all the variables when temporal auto-correlation is expected.
The method implementation is easy but the accuracy and performances are lower
with respect to the others methods (see Sect. 6.4).

6.3.3.2 Look-Up Tables

The Look-up table (LUT) is an empirical method, easy to implement, where the
missing values are replaced with the average of valid measurements occurring
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under similar meteorological conditions. In practice, a multidimensional table is
created where the missing value can be “looked up” based on the values of the
meteorological drivers.

For example, in Falge et al. (2001) four tables were created in the year (according
to the different seasons) and the drivers used were photosynthetic photon flux
density (PPFD) and air temperature. The valid NEE data were binned and averaged
according with the drivers values (23 PPFD classes of 100 �mol m�2 s�1 and 35
Air Temperature classes of 2ıC for a total of 35 � 23 D 805 classes per period) and
each missing data point replaced with the NEE value in the table in same drivers
combination class occurring during the gap. Gaps in the table, where no valid NEE
data were present for a given combination of the two drivers, were filled with linear
interpolation.

The drivers used in the table preparation should be selected according to the site
characteristics, taking into consideration the environmental variables that are more
important in the processes of interest (i.e., the flux to be gap-filled) without selecting
too many variables that would lead to the impossibility of finding a sufficient number
of valid data to calculate robust averages for each of the driver class combinations.
In general, 3–4 variables selected among incoming and diffuse radiation, air and soil
temperature, soil water content, and vapor pressure deficit are sufficient.

Also, the number of tables created in each year is an important aspect to consider.
Monthly or biweekly LUTs are possible if the amount of valid data is sufficient, and
in these cases the number of drivers classes can be smaller. In addition, the drivers
considered could change according to the period of the phenological cycle and the
daily course, for example, not using incoming radiation as a driver during nighttime.

Reichstein et al. (2005) proposed a method (Marginal Distribution Sampling –
MDS) where they consider both the covariation of fluxes with meteorological
variables and the temporal auto-correlation of the fluxes. In their approach, similar
meteorological conditions are sampled in the temporal vicinity of the gap to be
filled looking in a window around the gap as small as possible to include a sufficient
number of valid data with similar meteorological conditions to calculate the average
flux. In their method, the drivers used to evaluate the similarity in the meteorological
conditions vary in order to find a compromise between number of drivers and
window length. Incoming radiation, air temperature, and vapor pressure deficit are
first considered; then, if the window needed exceeds predefined maximum length,
only incoming radiation is considered, and finally the MDV method (described in
Sect. 6.3.3.1). For a given gap, in the impossibility to find a sufficient number of
valid data to calculate the average for certain window length and drivers set, the
next step could be to increase the size of the window or to reduce the numbers of
drivers considered; the strategy to decide which of the two options to follow in the
different conditions is well explained in their paper and can be used as example.
The MDS method has been implemented in the European database as one of the
standard gap-filling methods available in the central processing (see Chap. 17).
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6.3.3.3 Artificial Neural Networks

The Artificial Neural Networks (ANNs) are purely empirical nonlinear regression
models with a medium level of implementation difficulties. The ANN consists in a
set of nodes, often organized in layers and connected by weights that are equivalent
to the regression parameters (Bishop 1995; Rojas 1996). The first step to use an
ANN is the network parameterization process called “training.” The ANN is trained
by presenting it with sets of input data (drivers) and associated output data that, in
the case of a gap-filling application, are valid fluxes. Once the ANN is trained, the
underlying dependencies of the output on the driver variables are mapped onto the
weights and the ANN can be then used to predict the missing values.

There are different algorithms to train the ANNs and one of the most used is
the back-propagation algorithm, where the training of the ANN is performed by
propagating the input data through the nodes via the weighted connections and then
back-propagating the error calculated as difference between the predicted and real
output and adjusting the weights to minimize this error (Papale and Valentini 2003;
Braswell et al. 2005).

Similar to the LUT method, also in the ANN, it is important to select as input
the appropriate and relevant environmental variables that drive the flux variability.
These could be a large set (e.g., all the meteorological variables measured at the
site) or just a preselected subset. In the first case, the ANN has the possibility to use
(i.e., assign high weights) variables commonly not considered as drivers that would
be probably excluded in the second case, but it is also important to keep in mind
that increasing the number of input variables leads to an increase of the degree of
freedom (number of weights) and requires the use of a larger training data set to
avoid model over-fitting and consequent loss of generalization ability.

The quality and the representativeness of the training data set play also an
important role. The ANNs, as all the purely empirical models, can only map and
extract information present in the data set used in the parameterization; for this
reason the data set must be accurate and cover as much and as homogenously
as possible the different ecosystem conditions (e.g., seasons, phenological phases,
daily courses). Presampling of the training data set to ensure an equal coverage
of the different conditions and the use of fuzzy values to represent additional
information such as time have been tested and used showing good results (Papale
and Valentini 2003; Moffat et al. 2007). Also, the training of different ANNs for
daytime and nighttime (using different drivers) or the training of different ANNs for
different periods and using data from adjacent years, as explained in Sect. 6.3.2.1,
can improve the method performances.

The performances of the ANN method in carbon flux gap-filling are good (see
Sect. 6.4) and for this reason this technique is used as standard in the European
database and in FLUXNET, together with the MDS method explained above. The
ANNs require a gap-free driver dataset and for this reason it is needed to first gap-fill
the meteorological variables (Sect. 6.3.1) or, when this is impossible to implement,
a second method (e.g., the MDV, Sect. 6.3.3.1) to be used when one or more drivers
are missing.
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6.3.3.4 Nonlinear Regressions

The nonlinear regressions method is based on parameterized non-linear equations
which express semi-empirical relationships between the flux and environmental
variables, often temperature and light for CO2 fluxes. There are different versions
and implementations that have been proposed (Falge et al. 2001; Hollinger et al.
2004; Barr et al. 2004; Desai et al. 2005; Richardson et al. 2006; Noormets et al.
2007) but in general two different equations are used, one for nighttime data often
estimated as function of temperature and one for daytime data using a light response
function.

The response of fluxes to the photosynthetic photon flux density PPFD is
commonly modeled using the rectangular hyperbola function like the Michaelis and
Menten equation (Eq. 9.6, Sect. 9.3.3.4) or an exponential function like Mitscherlich
equation (Eq. 9.8, Sect. 9.3.3.4) (Falge et al. 2001). For nighttime data the most used
functions are the Lloyd and Taylor and the Arrhenius (Eq. 9.5, Sect. 9.3.2.2) (Lloyd
and Taylor 1994; Falge et al. 2001; Moffat et al. 2007). Both the equations have
temperature as driver and can use either air or soil temperatures.

The parameters estimation for all these functions is done using measured valid
data. Also in this case it is important to carefully check the data before and use only
accurate measurements. In addition, the regression parameters can be kept constant
only for a certain period of time to accommodate the variation over the year of all
the other drivers not considered in the equations (i.e., season, water availability etc.).

The method is semi-empirical because, although the parameters are estimated
using the measurements, the shape of functions between drivers and fluxes are
imposed. This is an important aspect to consider when the gap-filled data are needed
in modeling activities because the model to validate or parameterize could have
the same function, linking for example, temperature and respiration and leading
to the risk of spurious correlations (Sect. 6.2). In addition, it is applicable only
when the functions linking meteorological variables and fluxes are well known and
consolidated.

6.3.3.5 Process Models

In the process models, we can include all the models that have been developed
to estimate and predict fluxes, simulating all the processes occurring and using
generally as input not only the meteorological variables but also state variables like
soil and vegetation characteristics and others quantities like leaf area index (LAI)
and biomass. These models are generally not developed specifically to be used as
gap-filling techniques.

In these models, which make full use of our knowledge of the processes involved
in the ecosystem functioning, the data are used to constrain some of the model
parameters. The advantage is that, assuming that the processes are well represented
in the model, it is possible to apply it to reconstruct also long periods of gaps or
even the fluxes under different climate, for example, in different years with respect
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to the one with EC measurements. The disadvantages are related to the uncertainty
in the reproduction processes in the model and the risk that some important process
could be completely missing or not correctly reproduced.

The implementation of this method is quite complex and require knowledge
of the model and parameters optimization techniques. The results can be used in
the site-level analysis but not for model validation and parameterization if the two
models have similar routines or functions.

6.4 Uncertainty and Quality Flags

Uncertainty estimation is an important information that should be always included
when data are gap filled. There are two main different uncertainty sources in the gap-
filled values: One is represented by the diverse estimations that different gap-filling
methods give for the same missing data point and the other is due to the uncertainty
in the selected gap-filling model parameterization that is, for example, larger when
the gaps are longer.

Moffat et al. (2007) showed in a comparison of gap-filling techniques for carbon
fluxes that most of the methods implemented give good results, often with errors
with magnitudes similar to the noise component in the data (see also Sect. 7.3.3.3)
but with a slightly higher performances for empirical methods like ANN and MDS.
Based on these results, it is possible to conclude that the uncertainty related to
the selection of the gap-filling method is relatively small when one of the high-
performance methods is used if the gap length is not too long and if the data set
available to set the gap-filling model parameters is sufficiently large and with of
good quality.

The best way to assess the uncertainty due to the parameterization is linked to
the method selected. The quality of the parameterization is a function of the number
of data points, the data quality, and the number of the variables used to constrain the
model. In general, long gaps, during which the general ecosystem conditions can
change (e.g., growing season phase, ground water table, nutrients availability), are
more difficult to fill and the uncertainty associated with the gap-filled values will
be in general higher with respect to short gaps, with highest uncertainty values in
the middle of the gap due to the distance (in time and for this reason also in terms
of ecological conditions) from the measured data used to estimate the parameters
values.

It is important to assess an uncertainty or a “confidence level” to associate with
each gap-filled value; this information is essential for a correct data analysis and
interpretation. For some of the methods introduced in this chapter, an estimate of
the uncertainty level is relatively simple. In the LUT method (Sect. 6.3.3.2) for
example, the standard deviation of the flux values in the same drivers class gives an
indication of the variability inside a group of data that the method assumes to be
similar. The same is valid for the MDV method (Sect. 6.3.3.1) where the standard
deviation or percentile distribution of the measurements at the same time in adjacent
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days gives information about the uncertainty in the gap-filled values. In others cases,
like when ANN or NRL are used (Sects. 6.3.3.3 and 6.3.3.4), the uncertainty can be
estimated using subsets of the available data to parameterize different versions of
the same model that then can be all applied obtaining different values for the same
gap.

Independently of the estimation of an uncertainty value to associate to each gap-
filled value, it is important to create additional information about the method applied
that can be included in the data set. This information can include the distance of each
single half-hourly missing from the first valid value, indication of the drivers used to
fill the gap, length of the window needed to find sufficient data to parameterize the
model, and number of the data points used. In addition, quality flags to summarize
the expected quality of each gap-filled value can be defined and added; an example
of these quality flags is presented in the appendix of the Reichstein et al. (2005)
paper.

6.5 Final Remarks

Gap-filling is a process that is sometimes unavoidable, in particular when daily
to annual integrals are needed, and different methods exist. The compherensive
analysis conducted by Moffat et al. (2007) showed that all the gap-filling techniques
give on average good results when the gaps are shorter than 10 days and the relevant
meteorological drivers available. In addition it has been also shown that including
information about discontinuity (6.3.2.1) can improve the results in case of sites
with management.

The decision about which method to select should be then based on different
considerations. First, the availability of drivers: if no meteorological data are
available, the MDV method is often the only one available and the uncertainty
associated to the simulated values will be large. Another important aspect to
consider is the possibility of spurious or circular correlation between data and model
results when the gap-filled measurements are used in process model validation. In
these cases, it is important to use a purely empirical method.

Also the difficulties in the implementation could preclude the use of some of the
methods. In these cases, however, the use of centralized gap-filling services often
provided by the databases could help to use the best methods without the need to
implement them locally.

Finally, due to the strong link between the gap-filling quality and uncertainty (al-
ways important to estimate), the availability of meteorological data, and information
about management and disturbance events, it is fundamental to carefully register all
the ancillary data about the site and to install a back-up meteorological station close
to the EC tower and independent in terms of energy.
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