
Chapter 1
The Eddy Covariance Method

Thomas Foken, Marc Aubinet, and Ray Leuning

1.1 History

The eddy covariance method for measuring exchanges of heat, mass, and mo-
mentum between a flat, horizontally homogeneous surface and the overlying
atmosphere was proposed by Montgomery (1948), Swinbank (1951), and Obukhov
(1951). Under these conditions, net transport between the surface and atmosphere
is one-dimensional and the vertical flux density can be calculated by the co-
variance between turbulent fluctuations of the vertical wind and the quantity of
interest.

Instrumentation limitations hampered early implementation of this approach.
In 1949, Konstantinonov (Obukhov 1951) developed a wind vane with two hot wire
anemometers to measure the shear stress but the full potential of the eddy covariance
method only emerged after the development of sonic anemometers, for which the
basic equations were given by Schotland (1955). After the development of the first
sonic thermometer (Barrett and Suomi 1949), a vertical sonic anemometer with a
1 m path length (Suomi 1957) was used during the O’Neill experiment in 1953
(Lettau and Davidson 1957). The design of today’s anemometers was developed by
Bovscheverov and Voronov (1960) and later by Kaimal and Businger (1963) and
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Mitsuta (1966). These phase shift anemometers have now been replaced by running
time anemometers with delay time measurements (Hanafusa et al. 1982; Coppin and
Taylor 1983).

Early micrometeorological experiments from the 1950s to 1970s were designed
to study fundamental aspects of atmospheric turbulence over homogeneous surfaces,
whereas studies in the 1980s investigated the turbulent fluxes of momentum,
sensible, and latent heat over heterogeneous surfaces. Similar experiments were
conducted in the United States (FIFE, Sellers et al. 1988), in France (HAPEX,
André et al. 1990), and in Russia (KUREX, Tsvang et al. 1991). These experiments
were to become the basis of many further micrometeorological experiments (Foken
2008) that needed researchers who were highly experienced in micrometeorology
and sensor handling.

The possibility of continuous eddy flux measurements arose in the 1990s with
the development of a new generation of sonic anemometers (see reviews by Zhang
et al. 1986; Foken and Oncley 1995) and infrared gas analyzers for water vapor
and carbon dioxide, together with the first comprehensive software packages for the
eddy covariance method (McMillen 1988). In the early 1990s, the eddy covariance
method became more and more widely used by the ecological community for the
measurement of the carbon dioxide and water exchange between an ecosystem and
the atmosphere. The first measuring towers of what later became the international
FLUXNET network (Baldocchi et al. 2001) were installed, and introductions
into techniques new for nonmicrometeorologists were written (Aubinet et al.
2000; Moncrieff et al. 1997a, b). In parallel, the development of new analyzer
types allowed an extension of the investigated trace gas spectrum. In particular,
Tunable Diode Laser and Quantum Cascade Laser spectrometers were used for
the measurement of methane and nitrous oxide (Smith et al. 1994; Laville et al.
1999; Hargreaves et al. 2001; Kroon et al. 2010), Proton Transfer Reaction Mass
Spectrometers for volatile organic compounds (Karl et al. 2002; Spirig et al. 2005),
and Chemiluminescent sensors for Ozone (Güsten and Heinrich 1996; Gerosa et al.
2003; Lamaud et al. 1994, a.o.).

Some milestones in the development of the eddy covariance method are given in
Table 1.1 with the reference to the Chapters of this book.

1.2 Preliminaries

1.2.1 Context of Eddy Covariance Measurements

Eddy covariance measurements are typically made in the surface boundary layer,
which is approximately 20–50 m high in the case of unstable stratification and a few
tens of meters in stable stratification (see Stull 1988; Garratt 1992; Foken 2008;
for complete definitions of layers in the atmosphere). Fluxes are approximately
constant with height in the surface layer; hence measurements taken in this layer
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Table 1.1 History of the development of the eddy covariance method

Historical milestone References
See chapter/
section

Theoretical basis of the eddy covariance
method

Montgomery (1948), Swinbank
(1951), Obukhov (1951)

Section 1.2

Three-dimensional sonic anemometer Bovscheverov and Voronov (1960),
Kaimal and Businger (1963),
Mitsuta (1966)

Chapter 2

Instrumental requirements McBean (1972) Chapter 2
Gas analyzer for water vapor (UV) Buck (1973), Kretschmer and

Karpovitsch (1973), Martini et al.
(1973)

Gas analyzer for water vapor (IR) Elagina (1962), Hyson and Hicks
(1975), Raupach (1978)

Chapter 2

Correction of the effect of the air density Webb et al. (1980) Section 4.1
Gas analyzer for carbon dioxide (IR) Ohtaki and Matsui (1982), Elagina

and Lazarev (1984)
Chapter 2

Transformation of buoyancy flux into
sensible heat flux

Schotanus et al. (1983) Section 4.1

System of transfer functions for spectral
correction

Moore (1986) Section 4.1

Fetch conditions Gash (1986) Chapter 8
Real-time data processing software McMillen (1988) Chapter 3
Source regions for fluxes (footprint),

based on Gash (1986)
Schmid and Oke (1990), Schuepp

et al. (1990)
Chapter 8

Relaxed eddy accumulation method,
based on Desjardins (1977)

Businger and Oncley (1990)

Influence of tubing of closed path sensors Leuning and Moncrieff (1990) Section 4.1.3
Chapter 3

Theoretical basis for flux footprints and
sampling strategies

Horst and Weil (1994), Lenschow
et al. (1994)

Chapter 8

Addressing the problem of the unclosed
energy balance at the surface

Foken and Oncley (1995) Section 4.2

Quality tests for eddy covariance data Foken and Wichura (1996), Vickers
and Mahrt (1997)

Section 4.3

Addressing the problem of vertical
advection

Lee (1998) and many others Section 1.3,
Chapter 5

Methodology for FLUXNET network
(EuroFlux)

Aubinet et al. (2000) All chapters

Gap filling in the FLUXNET network Falge et al. (2001a, b) Chapter 6
Organization of an international network

(FLUXNET)
Baldocchi et al. (2001) All chapters

Foken et al. (1995), Foken (2008), Moncrieff (2004), modified

are representative of the fluxes from the underlying surfaces which are desired
to be known. Here atmospheric turbulence is the dominant transport mechanism,
justifying the use of the eddy covariance approach to measure the fluxes.

Some preliminary definitions are necessary before discussing the eddy covari-
ance approach in detail.
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1.2.2 Reynolds Decomposition

The description of turbulent motions in the following theory sections requires the
decomposition of the time-series of each variable � into a time-mean part, N�, and
a fluctuating part, �’, the so-called Reynolds decomposition (Fig. 1.1). This can be
written as:

� D N�C� 0 (1.1a)

where:

N� D 1

T

Z tCT

t

�.t/dt (1.1b)

The application of Reynolds decomposition requires some averaging rules for
the turbulent value �’ which are termed Reynolds postulates:

I � 0 D 0

II �� D N� N� C � 0� 0

III N�� D � �

IV a� D a N�
V � C � D � C � (1.2)

where a is a constant.
Stricto sensu, these relations are valid only when averages are by “ensemble”

averaging (i.e., averaging over many realizations under identical conditions, Kaimal
and Finnigan 1994). However, this is never possible in atmospheric measurements,
so averages are most often computed on the basis of time series of statistical
quantities by making use of the ergodic hypothesis which states that time averages
are equivalent to ensemble averages (Brutsaert 1982; Kaimal and Finnigan 1994).
To fulfil this assumption, the fluctuations have to be statistically stationary during
the averaging time chosen (see Chap. 4).

Fig. 1.1 Schematic
presentation of Reynolds
decomposition of the value �

(Foken 2008)



1 The Eddy Covariance Method 5

1.2.3 Scalar Definition

The following variables are commonly used in the literature (and throughout this
book) to define the scalar intensity of an atmospheric constituent s: density (�s,
kg m�3) and molar concentration (cs mol m�3) represent the mass and the number
of moles of s per volume of air, respectively. The mole fraction (mole mole�1) is the
ratio of the moles of s divided by the total number in the mixture (also equal to the
ratio of the constituent partial pressure to the total pressure), the molar mixing ratio
(�s,m, mole mole�1) is the ratio of the constituent mole number to those of dry air,
and the mass mixing ratio (�s, kg kg�1) is the ratio of the mass of the constituent
to the mass of dry air. These variables are related by the perfect gas and the
Dalton laws.

However, among these variables, only the molar and mass mixing ratios are
conserved quantities in the presence of changes in temperature, pressure, and
water vapor content (see Kowalski and Serrano-Ortiz (2007) for a more complete
discussion). Unfortunately, the variables that are directly measured in the field by
infrared gas analyzers are rather density and molar concentration, quantities that are
not conserved during heat conduction, air compression/expansion or evaporation,
and water vapor diffusion. Therefore, variations in these quantities may appear
even in the absence of production, absorption, or transport of the component. The
corrections that are necessary to take these effects into account were extensively
discussed by Webb et al. (1980) and reexamined by Leuning (2003, 2007). They
will be presented in Sect. 4.1.4.

The conservation equations developed in the section below are written using the
mass mixing ratio but, for convenience, the other variables will also appear in this
book. Conversion factors of one variable into another are given in Table 1.2.

Table 1.2 Conversion factors between different variables characterizing scalar intensity

Conversion
factor

Molar mixing
Ratio, �sD

Mass mixing
Ratio, �smD

Molar
concentration, csD

Density, �sD

Molar mixing ratio, �s X 1
ms

md

pd

R �

mspd

R �

Mass mixing Ratio, �sm X
md

ms
1

mdpd

msR �

mdpd

R �

Molar concentration, cs X
R �

pd

msR �

mdpd
1 ms

Density, �sX
R �

mspd

R �

mdpd

1

ms
1

Note that pd corresponds to the dry air pressure (namely p � pv). As a result, the exact conversion of
mass or molar mixing ratio into concentration or density needs the knowledge of water vapor pressure
(for details see list of symbols)
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1.3 One Point Conservation Equations

The equation describing the conservation of any scalar or vector quantity � in the
atmosphere may be written as

@�d �

@t„ƒ‚…
I

C Er.Eu�d �/„ ƒ‚ …
II

C K��.�d �/„ ƒ‚ …
III

D S�„ƒ‚…
IV

(1.3)

where �!u is the wind velocity vector,
�!r and � represent the divergence

�
@

@x
; @

@y
; @

@z

�

and Laplacian
�

@2

@x2 C @2

@y2 C @2

@z2

�
operators, �d is the dry air density, K� is the

molecular diffusivity of the quantity �, and S� represents its source/sink strength.
This equation is instantaneous and applies to an infinitesimal volume of air. It states
that the rate of change of the quantity (I) can be due to its atmospheric transport
(II) to molecular diffusion (III) or to its production by a source/absorption by a
sink into the infinitesimal volume (IV). It can be applied to any scalar or vector
quantity provided source terms are defined accordingly. In particular, if � is 1,
Eq. 1.3 is the continuity equation, if � is air enthalpy, it is the enthalpy conservation
equation, and if � is the mixing ratio of an atmospheric component (water vapor,
carbon dioxide, etc.), it is the scalar conservation equation. If the quantity is a
component of the velocity vector in one given direction, Eq. 1.3 expresses the
conservation of the momentum component in this direction. The three equations
describing the momentum conservation in the three directions constitute the Navier
Stokes equations.

Application of these equations to the surface boundary layer requires application
of the Reynolds decomposition rules: the variables �; �d; Eu, and S� should each
be decomposed into a mean and a fluctuating part according to Eq. 1.1, followed
by application of the averaging operator, and appropriate rearrangement and
simplification. This procedure will be applied to each equation below.

1.3.1 Dry Air Mass Conservation (Continuity) Equation

By replacing � by 1 in Eq. 1.3, one obtains

@�d

@t
C Er.Eu�d/ D 0 (1.4)

as there is neither a source nor sink of dry air in the atmosphere. Application of the
time- averaging operator gives immediately:

@�d

@t
C Er.Eu�d/ D 0 (1.5)
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1.3.2 Momentum Conservation Equation

By replacing � in Eq. 1.3 with the component of wind velocity in one given
direction, ui, one obtains the momentum conservation equation in this direction:

@�dui

@t
C Er.Eu�d ui/ D Si (1.6)

In Eq. 1.6, the source/sink terms correspond to momentum source/sink, namely
to forces. Forces that can act on air parcels in the atmospheric boundary layer
are drag, pressure gradient, Coriolis forces, viscous forces, or buoyancy. The
first three forces are considered negligible for a flat, horizontally homogeneous
surface boundary layer above the roughness elements (i.e. not including vegetation)
(Businger 1982; Foken 2008; Stull 1988). Buoyancy appears only in the equation for
vertical momentum. The horizontal component of momentum parallel to the mean
wind is dominant in the surface boundary layer and thus the buoyancy term is not
considered. In a Cartesian coordinate system (x, y, z) where x corresponds to the
horizontal, parallel to the average wind velocity, y to the horizontal, perpendicular
to the average velocity, and z to the vertical; u, v, w are the x, y, and z components
of velocity, respectively, and this equation is written as

@�du

@t
C @�du2

@x
C @�dvu

@y
C @�dwu

@z
D 0 (1.7)

Application of the Reynolds decomposition to Eq. 1.7 and use of the following
simplifications (Businger 1982; Stull 1988):

I
ˇ̌
p0= Npˇ̌ � ˇ̌

�0
d=�d

ˇ̌

II
ˇ̌
p0= Npˇ̌ � ˇ̌

� 0= N� ˇ̌
;

III
ˇ̌
�0

d=�d

ˇ̌ � 1

IV
ˇ̌
� 0= N� ˇ̌ � 1 (1.8)

where p is the pressure and � the air temperature, leads to

@u

@t
C Nu @Nu

@x
C Nv @Nu

@y
C Nw@Nu

@z
C @u02

@x
C @v0u0

@y
C @w0u0

@z
D 0 (1.9)

Equation 1.8, III corresponds to the Boussinesq-approximation (Boussinesq
1877), which neglects density fluctuations except in the buoyancy (gravitation) term,
because the acceleration of gravity is relatively large in comparison with the other
accelerations in the momentum equation. By choosing a coordinate system such that
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Nv and Nw are zero and assuming horizontal homogeneity (horizontal gradients nullify)
and steady state conditions (time derivative nullifies) we obtain finally

@w0u0
@z

D 0 (1.10)

Where w0u0 is the eddy covariance term. Equation 1.10 suggests that, under the
preceding assumptions, this flux is constant with height and that it is representative
of the vertical flux of momentum through a horizontal plane above the surface
roughness elements. This approach is called the eddy covariance method.

Neglecting the pressure gradient, molecular/viscous transport, gravity, and
Coriolis terms to derive Eq. 1.10 does not have significant impact on the eddy
covariance method over flat, homogeneous surfaces. These conditions are however
rare in ecosystems located in a patchy landscape or undulating topography. Steady-
state conditions are also rare in the surface layer because of diurnal variations in
atmospheric stability. It is then necessary to measure the change in storage term
using an array of sensors (Sect. 2.5) or to assume quasi-steady conditions. Methods
to estimate errors caused by neglecting the storage term are included in the data
quality procedures discussed in Sect. 4.3.

1.3.3 Scalar Conservation Equation

By replacing � in Eq. 1.3 by �s, the mixing ratio of one atmospheric component,
one obtains

@�d�s

@t
C Er.Eu�d �s/ D Ss (1.11)

Through application of the Reynolds decomposition and the continuity Eq. 1.5,
Leuning (2003) showed that Eq. 1.11 can be written as

�d
@�s

@t
C �dEu Er .�s/ C Er

h
�d Eu0�0

s

i
D Ss (1.12)

This equation states that the source term Ss is given by the sum of the rate
of change of the mixing ratio �s, advection due to spatial gradients in �s, and to
divergences in the eddy fluxes.

Expanding this in terms of spatial derivatives and assuming constant dry air
density give the one point conservation equation of a scalar:

�d
@�s

@t
C �du

@�s

@x
C �dv

@�s

@y
C �dw

@�s

@z
C @�du0�0

s

@x
C @�dv0�0

s

@y
C @�dw0�0

s

@z
D NSs

(1.13)
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Considering that Nv and Nw are zero, due to axis choice (Sect. 3.2.4) and assuming
horizontal homogeneity (horizontal gradients nullify) and steady state conditions
(time derivative nullifies) we get, similar to Eq. 1.10:

@�dw0�0
s

@z
D NSs (1.14)

expressing that the vertical gradient of eddy covariance is equal to the tracer
source/sink term in the volume element. In the case of passive tracers (water vapor,
CO2), this term is zero. In the case of active tracers (ozone, VOCs, NOx, : : : ), NSs

corresponds to the rate of chemical production/destruction of the component in the
volume element.

1.3.4 Enthalpy Equation

By replacing � by cp� , the air enthalpy, one obtains

@�cp�

@t
C �!r .Eu�cp�/ D S� (1.15)

where cp is the specific heat of the air and � is moist air density. The same
development as before leads to

@�

@t
C Nu@ N�

@x
C Nv@ N�

@y
C Nw@ N�

@z
C @u0� 0

@x
C @v0� 0

@y
C @w0� 0

@z
D 1

N�cp

�
@R

@z

�
(1.16)

and

@w0� 0
@z

D 1

N�cp

�
@R

@z

�
(1.17)

Where @R
@z is the vertical radiative flux divergence, which is close to zero in clear

surface layers (no fog, rain, smoke, etc.).

1.4 Integrated Relations

Eddy covariance measurements can be used as a tool to estimate fluxes exchanged
by ecosystems. To this end, preceding equations may be integrated both horizontally
over the area of interest, A (2L � 2L), and vertically, from soil to the measurement
height hm (Fig. 1.2).
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Fig. 1.2 Schematic image of integration of Eq. 1.15 on a control volume in homogeneous terrain
(Finnigan et al. 2003)

1.4.1 Dry Air Budget Equation

Integrating Eq. 1.5 on the control volume and assuming horizontal homogeneity
gives:

Z hm

0

@�d

@t
d z C Nw�djhm C w0�0

djhm D 0 (1.18)

where assumptions of zero flux of dry air at the ground and no net sources or sinks
of dry air in the layer of air below hm are made. Slight imbalances between molar
fluxes of CO2 and O2 during photosynthesis or respiration or fluxes of nitrogen or
volatile organic compounds are extremely small and do not invalidate Eq. 1.18.

1.4.2 Scalar Budget Equation (Generalized Eddy Covariance
Method)

Integrating (1.13) in the control volume gives

1

4L2

Z L

�L

Z L

�L

Z hm

0

2
6664�d

@�s

@t„ƒ‚…
I

C �du
@�s

@x
C �dv

@�s

@y
C �dw

@�s

@z„ ƒ‚ …
II

C @�du0�0

s

@x
C @�dv0�0

s

@y„ ƒ‚ …
III

C @�dw0�0

s

@z„ ƒ‚ …
IV

3
7775 dz dx dy

D 1

4L2

Z L

�L

Z L

�L

Z hm

0

Ss dz dx dy„ ƒ‚ …
V

(1.19)

Equation 1.19 represents the complete budget equation of the component s.
It shows that the component produced by the source or absorbed by the sink (V)
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may be either stored in the control volume (I), or transported by advection (II), or
by turbulence (III and IV). In these conditions, the source/sink term represents both
the sources/sinks inside the air volume and those at the lower limit of the volume
(soil, litter).

This equation may be simplified in several ways using different hypotheses.
The most common simplification, thoroughly discussed by Finnigan et al. (2003),
supposes that the measurement system is placed in a horizontally homogeneous
equilibrium layer where all horizontal gradients in Eq. 1.19 are negligible and the
mixing ratios and turbulent fluxes measured on the tower are assumed representative
of the whole volume. In these conditions, horizontal integration is unnecessary and
a simplified one-dimensional mass balance can then be deduced as

Z hm

0

�d
@�s

@t
d z

„ ƒ‚ …
I

C
Z hm

0

�dw
@�s

@z
d z

„ ƒ‚ …
II

C �dw0�0
s

ˇ̌
hm„ ƒ‚ …

IV

D Fs„ƒ‚…
V

(1.20)

where w0�0
s

ˇ̌
hm

represents the vertical turbulent flux at the top of the control volume
and Fs the averaged source/sink strength in the whole control volume, that is, the net
ecosystem exchange for the component s. Term II represents the vertical advection
at the top of the control volume that results from dry air density change with time in
the air layer below hm. By application of the dry air conservation Eq. 1.18, this term
may be rewritten as

Z hm

0

�dw
@�s

@z
d z D �

Z hm

0

2
4

zZ

0

@�d

@t
d z0

3
5 @�s

@z
d z (1.21)

and after integration by parts as

Z hm

0

�dw
@�s

@z
d z D

Z hm

0

Œ�s.z/ � �s.h/�
@�d

@t
d z (1.22)

Equation 1.20 may thus be rewritten as

Z hm

0

�d
@�s

@t
d z C

Z hm

0

Œ�s.z/ � �s.h/�
@�d

@t
d z C �d w0�0

s

ˇ̌
hm

D Fs (1.23)

However, most often, term II is negligible so that Eq. 1.20 may be written more
simply as

Z hm

0

�d
@�s

@t
d z

„ ƒ‚ …
I

C �d w0�0
s

ˇ̌
hm„ ƒ‚ …

IV

D Fs„ƒ‚…
V

(1.24a)
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This equation is at the basis of the generalized eddy covariance method: it
suggests indeed that the flux of a scalar exchanged by an ecosystem (Fs, term V)
can be estimated as the sum of the vertical eddy covariance w0�0

s

ˇ̌
at height hm

(Fs
EC, term IV) and of the change of storage of the scalar between the soil and this

height (Fs
STO, term I), namely:

Fs D F EC
s C F STO

s (1.24b)

The above hypotheses are known to work fairly well in daytime conditions when
turbulence is fully developed, but they appear to be too restrictive to describe
completely nighttime conditions. It is then necessary to include the horizontal
and vertical advection terms in the conservation equation, with the additional
assumption that the vertical integral of �dw @�s=@z as measured on a single tower is
representative of the whole volume. Equation 1.19 then becomes

Z hm

0

N�d
@�s

@t
dz

„ ƒ‚ …
I

C
Z hm

0

"
�dw

@�s

@z
dz

#

„ ƒ‚ …
IIa

C
Z hm

0

�
�du

� N�s; x

�x
C �dv

� N�s; y

�y

�
dz

„ ƒ‚ …
IIb

C �dw0�0

s

ˇ̌
hm„ ƒ‚ …

IV

D Fs„ƒ‚…
V

(1.25a)

in which ��s;x D �s;xD L � �s;xD�L is the difference in mixing ratios at height
z between the downwind (CL) and upwind (�L) vertical planes normal to the x-
direction, with a similar definition for ��s; y in the y-direction. Equation 1.25a may
be rewritten as

Fs D F EC
s C F VA

s C F HA
s C F STO

s (1.25b)

where F VA
s and F HA

s represent vertical (Term IIa) and horizontal (Term IIb)
advection of component s. One problem is that these terms cannot be measured
on a single tower, and full use of this equation requires a three-dimensional array
of instrumentation. The importance of the different terms of this equation will be
discussed in Chap. 5.

1.5 Spectral Analysis

Thorough eddy covariance analysis, application of data quality criteria, or cor-
rect assessment of some correction factors require a spectral analysis of the
(co)variances. The aim of this section is to give the necessary information about
spectral analysis of a signal, atmospheric turbulence (co)spectra and the effects of
measurement on these (co)spectra to allow the reader to perform these analyses.
More details on spectral analysis can be found in the textbooks of Stull (1988),
Kaimal and Finnigan (1994), or Foken (2008).
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1.5.1 Spectral Analysis of Turbulence

Any turbulent flow may be thought of as a superposition of eddies over a wide range
of sizes. As a result, the fluctuation with time of the signals (velocity components,
temperature, scalar densities) measured by sensors placed in such flow vary over
a wide range of frequencies. The relation between spatial and temporal scale can
be established thanks to Taylor’s frozen turbulence hypothesis (Taylor 1938) which
assumes that eddies do not change significantly in size when convected by the mean
wind past a fixed observer. Spectral analysis uses signal frequency decomposition.
It is performed by applying an integral transformation which converts a function of
time into a function of frequency (f [Hz]):

Fs.f / D 1p
2

Z 1

�1
�s.t/e

if t dt (1.26)

F (f ) is called the Fourier transform of the signal. Of special interest in eddy
covariance are the power spectrum Css of a signal �s and the cospectrum Cws of two
signals w and �s. The first one is defined as

Css.f / D Fs.f /:Fs
�.f / (1.27)

and the second as the real part of the cross-spectrum, defined as

Cws.f / D Fw.f / � Fs
�.f / (1.28)

where Fs
�.f / is the complex conjugate of Fw.f /. Css.f / and Cws.f / are the

spectral and cospectral density, respectively. The main interest of (co) spectra is
that their integral over the whole frequency range equals the (co)variance of the
signals:

Z 1

0

Css.f /df D 	2
s

Z 1

0

Cws.f /df D w0�0
s (1.29)

so that (co) spectra may be thought of as a distribution of (co)variances into the
different frequency bands of width df.

1.5.2 Spectral Analysis of Atmospheric Turbulence

In the frequency range of interest to micrometeorology, turbulence spectra can be di-
vided into three major spectral regions: (1) at low frequencies (typically 10�4 Hz) is
the energy containing range, where turbulent energy is produced; (2) at intermediate
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Fig. 1.3 Typical atmospheric cospectrum (black curve) with effects of high pass filtering (a, gray
curve) and low pass filtering (b, gray curve)

frequencies is the inertial subrange, where energy is neither produced nor dissipated
but is transformed to smaller and smaller eddies due to an “energy cascade” process
(see, e.g. Stull 1988); and (3) at higher frequencies is the dissipation range where tur-
bulent energy is dissipated through viscosity. By considering similarity arguments,
one can deduce that the shapes of suitably normalized atmospheric (co)spectra are
repeatable and can be described by universal relations. Parameterizations of the mo-
mentum and sensible heat cospectra proposed by Kaimal et al. (1972) are given by

�f Cuw.f /

u2�
D 12n

.1 C 9:6n/
7
3

(1.30a)

�f Cw� .f /

u� ��
D 11n

.1 C 13:3n/
7
4

for n � 1

�f Cw� .f /

u� ��
D 4n

.1 C 3:8n/
7
3

for n � 1 (1.30b)

where n is a dimensionless frequency defined as: n D f .hm � d/=u and d is the
zero-plane displacement height. The u0w0 and w0� 0 covariances are normalized by
u2� and u���, respectively, where u�is the friction velocity and �� is the dynamic
temperature. An illustration of Eq. 1.30 is given in Fig. 1.3 (black curve).

1.5.3 Sensor Filtering

Eddy covariance systems, like any sensor, act as frequency filters in dampening
high and low frequencies. The reasons for this may be diverse and will be discussed
in detail in Sect. 4.1.3. In this chapter, we limit ourselves to the description of
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the impact of low or high frequency filtering on the (co)spectra shape and on the
resulting error that affects fluxes. The evolution of this impact with measurement
height and wind velocity will also be discussed.

To represent high or low frequency dampening by a measurement system, signal
theory generally use sigmoidal transfer functions which are equal to 1 in the
frequency range where the signal is not attenuated and that decays to zero in the
range where signal is attenuated. The shapes of these functions vary according to
the processes that are responsible of the dampening (Sect. 4.1.3).

As an example, Fig. 1.3 depict the impact of filtering on a typical cospectrum,
Fig. 1.3a showing the effect of a low pass filtering and Fig. 1.3b the effect of a high
pass filtering.

The relative error on the fluxes due to frequency losses, ıs

F EC
s

, may be computed
according to:

ıs

F EC
s

D 1 � s 1
0 Cws.f /Tws.f /df

s 1
0 Cws.f /df

(1.31)

where Cws(f ) is the ideal cospectral density and Tws(f ) is the apparatus transfer
function. The ratio in the integrals on the right hand side of Eq. 1.31 is represented
in Fig. 1.3 by the ratio of areas below the gray and black curves. Figure 1.3a
shows clearly that low pass filtering causes a loss of covariance and always
induces a systematic error. Figure 1.3b suggests the same thing for high pass
filtering. However, it could be deceptive as the low frequency spectral range (energy
containing range) is not so well defined as it could also depend on mesoscale
atmospheric movements. In some conditions, it is possible to observe cospectral
densities of different signs at low and high frequencies. In these conditions, the
impact of the low pass filtering is not necessarily systematic.

1.5.4 Impacts of Measurement Height and Wind Velocity

The preceding observations allow predicting the impact of measurement height and
of wind velocity on errors due to frequency losses, which is synthesized in Fig. 1.4.

Equations 1.30 describe universal cospectra as functions of the nondimensional
frequency n D f .hm�d/

u . This implies that the decrease in hm � d shifts the
cospectrum toward higher frequencies (Fig. 1.4). However, as the apparatus transfer
function does not depend on measurement height, systems placed at lower heights
would be more sensitive to high-frequency losses (Fig. 1.4a) while systems placed at
higher heights would be more sensitive to low-frequency losses (Fig. 1.4b). The first
ones would require set ups able to capture fluctuations at higher frequencies while
the second would need longer averaging times (the main cause of low-frequency
losses). Further details about frequency losses and their correction are presented in
Sect. 4.1.3.
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Fig. 1.4 (a) Undamped (full line) and low pass filtered (dotted line) cospectra; (b) Undamped (full
line) and high pass filtered (dotted line) cospectra
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