
Chapter 13
Emerging Symbols

Stefan Leijnen

Abstract Using a neural network simulation of a series of language training
experiments with chimpanzees, the difference between indexical and symbolic inter-
pretation is explored. From the results of the simulation follows a discussion about
the systemic requirements for crossing the symbolic threshold and how the primacy
of icons applies to computational models.

13.1 The Meanings of Symbol

In a study aiming to test the linguistic abilities of chimpanzees, several experi-
ments are devised and conducted to demonstrate how different learning strategies
produce different uses of language (Savage-Rumbaugh & Rumbaugh, 1978). The
study shows how their learning curves can be understood from the way these
chimps acquire language, allowing for a behavioral operationalization of language
acquisition. The results are embedded within a larger semiotic theory of symbolic
interpretation, distinguishing between three types of signs (icons, indices and sym-
bols) that describe how an object can be related to a referent by an interpreter
(Buchler, 1955; Hookway, 1985; Chandler, 2002).

Several other language training studies (Gardner & Gardner, 1977; Premack,
1976; Rumbaugh, 1977) show that apes can acquire large vocabularies. The sub-
ject has to point to one or more lexigrams on a board in order to express its thoughts
or desires. Researchers stimulate the apes to use the correct lexigrams and apply
appropriate grammar rules. However, even though their sentence construction capa-
bility can be trained to be more or less flawless, their learning strategy appears to
differ from the way humans would approach such a problem. Although they appear
to use lexigrams as representations of the objects they stand for (like humans do)
their pointing behavior is a trained response to the presented stimulus.
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The often implicit assumption that these apes use lexigrams as representations for
something else is not to be easily overlooked. For us to talk about apes using lan-
guage and having a vocabulary, evidence is required that – indeed – these apes use
linguistic skills to solve a problem, instead of associative skills to merely discover
a correlation between stimuli and responses leading to a reward. The difference
between these two skills is subtle but crucial, especially considering the principal
reason for doing ape language studies is finding out if they are actually capable of
learning a language.

So how are we to make this distinction clear? We find two contrasting definitions
of symbols in which the difference is expressed (Deacon, 2003):

(S1) A symbol is one of a conventional set of tokens manipulated with respect
to certain of its physical characteristics by a set of substitution, elimination,
and combination rules, and which is arbitrarily correlated with some referent.

(S2) A symbol is one of a conventional set of tokens that marks a node in a
complex web of interdependent referential relationships and specific refer-
ence is not obviously discernible from its token features. Its reference is often
obscure, abstract, multifaceted, and cryptic, and tends to require considerable
experience or training to interpret.

The chimpanzees in the Savage-Rumbaugh and Rumbaugh study are subjected to
a training program that causes the disparity between these two kinds of symbols to
become salient, demonstrated by a significant difference in performance results. In
one experiment, the chimps learn to distinguish lexigrams for four objects (banana,
orange, coke and milk) and two verbs (give and pour). The chimpanzees are required
to use the correct verb with each noun by arranging them in a sentence. Producing
accurate sentences like give orange or pour milk is rewarded; producing incorrect
compounds like pour banana or coke milk is discouraged.

Once the chimps have learned to associate pairs correctly, a follow-up experiment
shows that their symbol use is, in fact, non-symbolic. As the researchers introduce
new edibles and liquids to the experiment, the amount of trials needed to learn to
embed these words into sentences grows. Instead of using the web of relations to
which the lexigrams refer – the chimps know that edibles are given and liquids
are poured, but they don’t apply this knowledge to the construction of lexigram
sentences – they memorize each verb-noun correlation as a rule. The chimps use
lexigrams as

[. . .] a set of events which come to precede the receipt of a desired action or object.
[. . .] errorless trials, though given in a fashion which closely approximates that of the
final choice, do not lead to symbolic learning even in simple tasks such as food names
(Savage-Rumbaugh & Rumbaugh, 1978).

The apes have learned to use symbols as defined by S1, but not according to the
more strict definition S2. The relations between the lexigrams are arbitrary as the
chimps fail to notice the analogy with the relations between objects and actions.
S1 is a rather shallow, computational definition of symbols that doesn’t capture the
way humans use symbols as expressed in S2. Hence, phrased in semiotic terms, the
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chimpanzees have learned to use lexigrams as indices. An index pairs two things
together based on their co-appearance, like a thermometer (number and tempera-
ture) or a windsock (position and wind direction). In this case, a noun lexigram is
paired with a verb lexigram.

For the ape subjects to use the lexigrams as symbols (according to S2) a reference
is required to the network of relations for which the lexigrams stand. Evoking such
a reference is exactly the goal of the next experiment in the chimp language training
program. It is set up in almost the same way as in the previous ones, but this time the
apes’ attention is drawn towards the food and drink dispensers by increasing their
saliency with light and sounds signals. The apes now notice the dispensers opening,
also when they’re empty. This causes some of the apes to pair their understanding of
objects and actions with their understanding of lexigrams, and transfer knowledge
between these networks. Instead of memorizing each and every lexigram combina-
tion as an index these chimps have created a symbolic link, which offers them a
more efficient way of storing information in the long run.

13.2 Simulated Learning

The chimp language training research supports the claim that symbolism is not
intrinsic to a word, lexigram or object, but is dependent on the interpretation itself.
Interpreters can be iconic, indexical and symbolic, and some of the apes where capa-
ble of all three of these skills while others could only reach the indexical level. In
order to explain this gap, it would be insightful to take a peek inside a chimp’s
head, study how signals travel between neurons and how eventually a lexigram sen-
tence comes about. In a meticulous study of the chimp’s interpretation process, the
differences that cause the symbolic shift could be unveiled. Of course, the sheer
complexity and size of the brain would result in far too many parameters for us to
make sense of. As an alternative, computer simulated models of smaller, less com-
plex brains can be used in order to discover the systemic requirements for symbolic
interpretation.

For our experiments we will use an artificial neural network: a three-layer percep-
tron (McCulloch & Pitts, 1943) with full connectivity (Fig. 13.1). The nodes in the
hidden and output layer are implemented with a step activation threshold function
(1) (cf. Table. 13.1).

yj =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
n∑

i=1
(wixi) ≥ θ

0 if
n∑

i=1
(wixi) < θ

(13.1)

By varying the connection weights between neurons different network archi-
tectures are generated, each with a potentially different behavior (i.e. returning
a specific output in response to a certain input). After a set of random weight
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Fig. 13.1 Three-layer
perceptron with
full-connectivity

Table 13.1 Step activation
threshold parameters yj Base value for output connection j

xi Base value for input connection i
wi Weight of input connection i
n Number of input connections
θ Threshold parameter (0.85)

Table 13.2 Parameters of
the genetic algorithm # Children per generation 50

# Elites per generation 10
# Maximum generations 30000
# Learning runs 100
P (mutation) per bit 0.01

configurations has been selected, each of their input layers is activated with trial
data and propagated as an activation wave through the network. Weight configu-
rations are stored in a binary array. A score is awarded to each network based on
the percentage of desired output values in a series of training sessions. The highest
scoring networks (the elites) are then recombined using cross-over and mutation to
form a new generation of network configurations, and so on. Due to the similarity
with biological evolution and the storage of information in gene-like data arrays, this
method is formally known as a genetic algorithm (Holland, 1975). The parameters
of this particular GA are given in Table 13.2.

13.3 Experiments

Using the computational tools described above, the difference between indexical
and symbolic interpretation is shown in a series of experiments. The two types of
chimps (symbolic and non-symbolic) of the original language training research are
modeled as neural networks. Objects, actions and lexigrams are replaced by binary
strings of input and output data. The genetic algorithm acts as a training program,
forwarding input data into the networks and evaluating the results.

For the indexical learning model, the objects, actions and lexigrams are coded
according to the method displayed in Table 13.3. There are a couple of things
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Table 13.3 Binary encoding examples for the indexical experiment

Network input Binary string Correct output Binary string

banana + bias 1000000001 banana lexigram + give lexigram 1000000010
coke + bias 0100000001 coke lexigram + pour lexigram 0100000001
orange + bias 0010000001 orange lexigram + give lexigram 0010000010

that should be noted about this encoding. First, it disregards iconic interpretation
processes by translating multifaceted entities into easily discernable icons. The
chimpanzees are required to make distinctions between, bananas, yellow lexigrams,
cans of coke and acts of pouring, but the neural network simply uses a ten bit binary
string as input and output of the indexical process. This ensures that the neural
network learns to create indexical associations, instead of a mixture of icons and
indices: marginalizing the role of iconic interpretation isolates the indexical inter-
pretation process which facilitates the study of its features. Also, in order to allow
for a fair comparison with the symbolic network, a bias unit is added to the input
vector.

The neural network is trained by the genetic algorithm to output the correct
binary string, given a certain input string. For the input string, the leading eight
bits indicate the presence of a particular edible or liquid, the ninth bit is always zero
and the tenth bit is always one. The output string uses the leading eight bits to sig-
nify the use of a food or drink lexigram. The trailing two bits denote the use of an
action lexigram.

Once the first pairing has been learned (i.e. banana with give banana), a second
pair is added to the dataset. The learning continues with the same network and a
training set of two possible input strings. This process is repeated until all eight
objects have been associated with correct output sentences. The time it takes the
network to learn each additional object is displayed in Fig. 13.2a.

The chimps that learn to manipulate lexigrams as symbols are induced to adopt
a new learning strategy by the food and drink dispensers. These dispensers make
them reconsider the relation between the lexigram buttons and obtaining a reward.
They notice a systemic similarity between the system of lexigrams and the system
of objects and actions (Deacon, 1997) and use their existing knowledge of the object
domain to produce correct lexigram sentences.

For the symbolic learning model we use the same approach as for the indexical
simulation, with the exception of the domain knowledge being available in the input
string. In other words, the subject already knows that a banana is given (not poured)
and takes this knowledge into account when it constructs a sentence. The additional
information helps to predict the correct outcome, as actions and action lexigrams
are correlated. The training data is shown in Table 13.4, the resulting learning curve
in Fig. 13.2b.

A comparison between the learning curves of the indexical and symbolic models
is somewhat biased. Just as the chimpanzees were at some point required to learn
that bananas are given and milk is poured, so should the symbolic network, one
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Fig. 13.2 Learning curves for the indexical task (a), the symbolic task (b) and the domain task
(c). The y-axis indicates the number of generations it takes for each additional object (x-axis) to be
learned

Table 13.4 Binary encoding examples for the symbolic experiment

Network input Binary string Correct output Binary string

banana + give 1000000010 banana lexigram + give lexigram 1000000010
coke + pour 0100000001 coke lexigram + pour lexigram 0100000001
orange + give 0010000010 orange lexigram + give lexigram 0010000010

Table 13.5 Binary encoding examples for the domain experiment

Network input Binary string Correct output Binary string

banana + bias 1000000001 give + bias 1000000001
coke + bias 0100000001 pour + bias 0100000001
orange + bias 0010000001 give + bias 0010000001

could argue. The goal of these experiments is to test the difference between index-
ical and symbolic learning; to exclude learning the domain knowledge would be a
bias. Therefore, a third experiment is carried out. A neural network learns to asso-
ciate objects with corresponding actions, using the same method as in the previous
experiments. Table 13.5 contains the training data, the resulting learning curve is
displayed in Fig. 13.2c.

13.4 Conclusion

A neural network model is used to simulate two different learning strategies in a
series of three experiments. A genetic algorithm operates on a population of net-
works to train them in producing the desired output string. To generate a training
dataset with input and output patterns, eight objects, two actions and ten lexigrams
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that were also used in the chimpanzee trainings tasks are encoded into binary pat-
terns. For each of the experiments this results in a learning curve, showing the
average number of generations needed by the genetic algorithm to find a working
network configuration when a new object is inserted into the training dataset. The
first experiment (indexical task) simulates how much learning time is required to
map objects to lexigram sentences. In the second experiment (symbolic task) both
the object and the action are part of the input. Finally, a third experiment (domain
task) is added to avoid a possible bias. In comparing the indexical and symbolic task
the learning time required for the domain knowledge task is added to the learning
time for the symbolic task. This gives four learning curves, as shown in Fig. 13.3.

Several conclusions can be drawn from these curves. The domain knowledge
task takes considerably less time than the other tasks, which can be attributed to the
required output containing only one variable (either give or pour) instead of two.
Also, there is an overall decrease in learning time after the third object is added.
Once the two possible output patterns have been learned, the network has created a
tendency to produce the right kinds of output patterns in the future. This holds for
the indexical and symbolic tasks as well as for the domain task; however, due the
steep learning curves of the former two this effect is not as significant.

The chimpanzee experiment claims that the apes that adopted a symbolic
approach required more training time and made more errors during training, but
once they had crossed the symbolic threshold they were able to produce better sen-
tences and learn new symbols faster. Figure 13.3 shows that this also holds for the
simulated interpreters. Requiring less time to learn the first objects, the indexical
learning curve grows steeper than the symbolic learning curve in the long run.

Fig. 13.3 Learning curves for all three tasks compared. The y-axis indicates the number of
generations it takes for each additional object (x-axis) to be learned
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13.5 Discussion

We have set up the neural network experiments in order to investigate the differences
between indexical and symbolic learning. Although such a difference can be shown
to exist in our models, the experimental findings do not prove the accuracy of the
models used nor do they validate the conversion from the chimpanzee language
training program to the simulation. It should be noted that too many simplifications
and assumptions had to be made to call these networks either indexical or sym-
bolic interpreters. In order to reduce the complexity and tractability of the learning
task, a relatively straightforward neural network is used. Also, even though a bias is
avoided by adding the domain task, it is unclear how exactly the learning curve of
the domain task and the symbolic curve ought to compare to the results of the indexi-
cal task. One should therefore be prudent with generalizing the particular model and
approach used in these experiments.

However, when the results are projected onto the semiotic theory (similar to the
approach taken by Savage-Rumbaugh and Rumbaugh), they do allow for interesting
conclusions to be drawn. The learning curves help to identify the mechanisms that
underlie the shift to symbolism. The findings show that this shift serves a practical
purpose as it allows the subject to off-load memory from one domain to another,
thereby avoiding duplication of information. With selection pressure favoring lan-
guage use, this gives an advantage to symbolic over non-symbolic systems. The
findings also indicate that for a symbolic shift to take place, the different domains
(e.g. the domain of objects and actions and the domain of lexigram relations) are
required to be mapped onto each other by the interpreter. Understanding how this
mapping takes place is an important step towards a more accurate simulation of the
interpretation process and the role of symbols herein.

Recall our two definitions of symbols, S1 and S2. In the case of S1 a lexigram
would point directly to a referent (i.e. an index). According to the second definition
S2, the symbol would also have a pointing relation to its referent, albeit a more
obscure one which is embedded in a web of interdependent referential relationships.
In the chimp experiments, the relations that exist among objects and lexigrams are
also embedded in a web that spans both the lexigram domain and the object-action
domain. A lexigram can be an index for another lexigram: their simultaneous use
will likely lead to a pointing relationship from one to another (banana lexigram
is usually followed by give lexigram, hardly ever by pour lexigram). The realm of
objects and actions has a similar system of pointing relations (coke is always poured
and never given). Therefore, a symbolic relation is, as one might say, a higher-order
pointing relation from one domain to another.

For the interpreter to create this kind of relation, it needs to find domains that
can be mapped onto one another. Not every pairing of indexical systems is viable,
there has to be a correlation between them that makes linking them purposeful. The
input data presented in the symbolic task has some redundancy in it, so it makes
sense for the interpreter to correlate the system of lexigrams with the system of
actions and objects (cf. Table 13.4). It is exactly this redundancy or system iconicity
(redundancy implies a lack of difference) in the topology of the systems that makes
a symbolic relation advantageous (Deacon, 1997). A symbol, therefore, is a triadic
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relation that requires two systems of indices with topological redundancy, resulting
in a higher-order index between two loci in those systems. The recognition of this
redundancy, the insight that two domains are alike, is prerequisite for the symbolic
shift to occur in an individual.

We can take this deconstruction of the sign one step further and consider what an
index, being the constituent of symbols, is itself composed of. A pointing relation
always points from one thing A to another B, which may in turn point to a third
C and so on. The index from A to B is activated by the recognition of A (which is
an iconic process). By virtue of their indexical relationship, A causes B to become
active (as though B has been recognized). Suppose for example that A is smoke and
B is a fire. The thought of a fire may cause a new thought C, no matter whether
the fire was perceived directly (icon) or thought of after perceiving smoke (index).
Consequently, what is caused by an index is also an icon.

The pointing relation itself is caused by a recurring appearance of signal and ref-
erent, being in close proximity to each other in one or more dimensions (i.e. spatial
or temporal). Recognizing B frequently after recognizing A causes the interpreter
to make a prediction about the future occurrences of B after A. The commonality
of these situations is the simultaneous occurrence of signal and referent. Once the
signal appears again, the interpreter recognizes the state as one of those situations
where both signal and referent occur together. This recognition is itself a higher-
order icon, because it classifies the signal-referent relation as one of many that have
occurred before. Hence, an index is a relation between two icons that exists by virtue
of a higher-order icon: their regular co-occurrence.

As an index is solely composed of icons, and a symbol is a particular configu-
ration of indices, it follows that icons are the primary building blocks for all three
types of interpretation. This conclusion does not imply that every iconic interpreter
is also an indexical or symbolic interpreter. As the ape language training tasks as
well as the simulation experiments show, a specific configuration is required for
symbolic interpretation. Some apes were clearly unable to do symbolic interpre-
tation even though they had indexical capacities. The neural networks that were
trained to learn indices clearly show a behavior that differs from symbolic networks.
Likewise, indexical interpretation requires a specific setup of iconic skills in order
to induce the formation of a higher-order icon.

This conclusion does imply that iconic interpretation is a fundamental skill for
interpretation. The firstness of icons is argued for in semiotics (Peirce, 1894) but
also by the proficiency of simple neural network models in classification tasks,
where their robustness allows them to deal with distorted data (Kohonen, 1982;
Harnad, 1990). The potential of these computational models for recognition and
classification tasks makes them a good starting point for further investigations into
associative and symbolic models of interpretation.
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