
Chapter 3
Compositionality

THE principle of compositionality is introduced in this chapter: it concerns the relation-
ship of strings with their meanings. To be able to formulate it properly, we shall have to
introduce interpreted languages and grammars for them.

3.1 Compositionality

Let us begin with some exegetical remarks concerning the notion of compositional-
ity. Here is what I regard as a standard definition.

The meaning of a complex expression is a function of the meanings of its parts and the
mode of composition by which it has been obtained from these parts.

Almost every word of this definition is in need of explanation. We begin with the
subject of the sentence: the meaning of a complex expression. To use this expression
here means to acknowledge that there first of all are expressions and meanings; and
that expressions have meanings. Immediately we start to ask ourselves what expres-
sions are and what meanings are. Since meanings are attributed to expressions, I
take this to say that whatever expressions are, they must be part of the language to
begin with. Thus, strictly speaking, expressions must be strings. However, we have
settled the question somewhat differently in Section 2.6; there we concluded that
expressions are sequences of strings. Moreover, they must be sequences of strings
of which we know what their meaning is. This is implicit in the use of the definite
determiner in “the meaning of an expression”. The use of the definite determiner
is somewhat troublesome: it may mean that an expression has one and only one
meaning; it may also mean that its meaning is not arbitrary. If taken in the first
sense expressions are unambiguous. I take this to be incorrect and not the way in
which “the” is to be understood here (see also the discussion in Section 3.5). Rather,
I wish to plead that we interpret this as follows: given that we are under way to
investigate some given meaning of an expression, which is one of the many that it
may have but we have fixed that one as opposed to others, we have a recipe to get
this meaning from whatever the components mean. Thus, the definite determiner
points to an implicitly made choice. I defer a definition of what meanings are. So
far we know this much: there are expressions (sequences of strings) and meanings;
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58 3 Compositionality

a language consists in a relation between the two. This is the original idea laid out
in Saussure (2011).

One word still remains to be discussed: complex. To say whether an expression
is simple or complex cannot be determined intrinsically; in fact, “complex” here
means the following. We are given a grammar G of the expressions. An expression
is G-simple if it is the value in G of a simple term; and an expression is G-complex
if it is the value in G of a complex term. Often, we omit mentioning the grammar. It
turns out that one and the same expression can both be simple and complex; this is
the case with idioms, for example. But it is also the case with false idioms such as
/caterpillar/. This expression is both simple and complex, at least if we assume
a grammar of English where compounding is performed by concatenation. Notice
that so far the grammar is just a context free grammar for tuples of strings and
knows nothing about the meaning. To make sense of the above definition, however,
we must assume that the grammar also handles meanings together with expressions.
We wish to say, for example, that idioms are simple. For although as expressions
they are complex, their meaning is not derived from the meanings that any proper
parts have.

We are thus led to assume that the definition of compositionality talks about lan-
guages as relations between expressions and meanings and grammars that generate
such relations from a given finite set. It is this type of language and grammar that
we shall look at in detail in this chapter. We call them interpreted languages and
interpreted grammars. To finish explicating the definition, let us assume that we
have such a grammar that generates not just expressions but pairs of expressions and
meanings. Such pairs we call from now on signs. A sign is thus a pair σ = 〈e,m〉,
where e is the exponent of σ and m the meaning. While it cannot be said that in a
given language a given expression has just one meaning and a given meaning has
just one expression, it is true by definition that a given sign has exactly one exponent
and one meaning. It is thus more appropriate to exchange “expression” in the above
definition by “sign”. It therefore reads as follows.

The meaning of a complex sign is a function of the meanings of its parts and the syntactic
rule by which it has been composed from these signs.

Let us try to understand this definition further. A grammar generates signs; it starts
with a lexicon, which we may take to be a finite list of signs. In addition it has
some functions to generate signs from signs, in the same way as a string grammar
generates strings from strings.

A sign σ is simple if and only if it is the value of a simple term; it is complex
if and only if it is the value of a composite term. A given sign can be both simple
and complex. The previous problems have now disappeared. An idiom for example
is a sign that is simple but not complex, because its meaning is not obtainable in
the grammar in a regular way. (To be more exact, idioms are signs whose exponent
has another meaning together with which it forms a complex sign. The definition of
idiom is a truly delicate affair.) So, the definition begins by assuming that we have a
grammar G and a sign σ . Furthermore, we assume that there is a term function p(�x)
and signs σ , σ0, · · · , σn−1 such that
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σ = t (σ0, · · · , σn−1). (3.1)

In that case assume that σi = 〈ei ,mi 〉 and σ = 〈e,m〉. Then

m = F(t,m0, · · · ,mn−1) (3.2)

for some F that depends only on G. We can without further ado write tμ for the
function F(t, _, · · · , _). Then the previous means that

m = tμ(m0, · · · ,mn−1). (3.3)

It follows by a simple argument (induction on the length of t) that it is enough to
require (3.3) for t a basic function of G.

At last we need to clarify the notion of a mode of composition. First of all, we use
the same terminology as in the preceding chapter. We assume that we have a finite
set F of function symbols forming a signature 〈F,Ω〉 together with Ω . As we saw
above, for each f ∈ F there is an f μ satisfying (3.3). This is the meaning function;
there also is a function f ε such that

e = f ε(σ0, · · · , σΩ( f )−1). (3.4)

We shall see later that one will also have to impose some restrictions on f ε. Cru-
cially, we may understand mode as referring just to f , or as referring in fact to f ε.
Suppose for example that we have the following language L .

L = {〈a, 0〉, 〈b, 1〉, 〈ab, 2〉, 〈ab, 3〉} (3.5)

Assume that /ab/ is to be considered complex. If we understand a mode to be a
syntactic function then this language cannot be compositional, for there is only one
function to compose /a/ and /b/.1 To make this even more precise: we shall assume
that what counts in the specific case is not the function as a whole but rather what
it does to the specific elements at hand. That is to say that we can also define the
following function:

f (x, y) :=

⎧
⎪⎨

⎪⎩

x�y if x = a and y = b,

y�y if x = aa and y = b,

undefined else.

(3.6)

This is a different function but on the strings of the language it shows no differ-
ence to plain concatenation. We say therefore that f and g count as the same mode
exactly when f ε(�σ) = gε(�σ). (Recall in this connection Example 2.2. The plural of

1 Well, there are two: f (x, y) := x�y and g(x, y) := y�x . But this can be handled by constructing
a more complex example.
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regular nouns and the third singular of regular verbs are for these purposes formed
by the same mode, assuming their arity to be the same.) There are languages that
satisfy compositionality even with this strict identity of modes; many computer lan-
guages are of that form. There is simply only one way to combine two constituents
semantically; the surface syntax may be flexible (allowing the use of brackets, for
example) but this is just a means of identifying the constituents. However, semanti-
cally, there is just one way to combine two meanings. Natural languages are quite
different in this respect. Many expressions are constructionally ambiguous and that
accounts for many meaning differences.

Let us now settle down on the final definition of compositionality (see the
extended discussion in Section 3.3):

A language L is compositional if there is a grammar G based on a signature 〈F,Ω〉 such
that (i) L = L(G) and (ii) for each f ∈ F there is a function f μ such that if σ = 〈e,m〉
and σi = 〈ei ,mi 〉, i < Ω( f ), are signs such that

σ = f (σ0, · · · , σΩ( f )−1) (3.7)

and g counts as the same mode as f then

m = gμ(m0, · · · ,mΩ( f )−1). (3.8)

Notice that from (3.7) we deduce that

m = f μ(m0, · · · ,mΩ( f )−1), (3.9)

since f is the same as f . However, there could be more modes that are the same
as f . Three notions of sameness come to mind: (a) f = g (symbolic identity), (b)
f ε = gε (extensional identity) and (c) f ε(�σ) = gε(�σ) (casewise identity). Option
(c) is the least strict on the functions (and therefore induces the strictest condition
on compositionality); in this case, any two functions which are defined at all on the
input (and return the output string) are the same for the purpose of the definition.

A last point to mention is that strings may have categories. In this case we may
further refine the notion of identity, allowing functions to depend on the categories
of the arguments. I shall discuss the ramifications of this option below.

I shall now review some alternative definitions of compositionality. First, there is
a tradition to use a more elaborate structure than the string, namely a tree structure
defined over the string. In fact there are several such structures, and it is one of
them that is actually interpreted, namely LF. The meaning of a particular LF is
actually independent of the way in which it was obtained; however, as it has internal
structure, its meaning can be obtained with reference to that structure. I shall return
to the question of the viability of this proposal in Section 5.4. Here I just notice that
to safeguard themselves from a different interpretation of compositionality some
people have named the concept used here rule-to-rule compositionality, or direct
compositionality (see the volume Barker and Jacobson (2007)). I shall not follow
this usage, partly because I think that the alternative notions are too weak to yield
interesting results.
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More interesting therefore are definitions that are more restrictive than the one
given here. Szabó (2000) gives the following definition.

The meaning of a complex expression is determined by the meaning of its constituents and
by its structure.

In his discussion, Szabó focuses mainly on the word “determines”. The idea is that
“determines” refers to some causal connection. Thus a language that uses just any
function is not good enough. Some essential link must exist between the structure
and the meaning. Thus, Szabó claims, we are led to assume that in order for the
meaning to be determined by the structure, meanings must be structured and there
must be a kind of structural parallel between syntax and semantics. The arguments
by Pagin (2003) go in the same direction, though his reasons are slightly different.
Pagin argues that speakers and hearers must be able to effectively find meanings
associated with expressions and conversely and it is hard to imagine how that can
be done without some kind of structural similarity. The structure in meaning is lan-
guage independent, so this would among others imply a certain similarity between
all human languages. I have chosen not to go that way. One reason for my choice is
that the structure of meanings is something that we believe is too poorly understood
to give insightful results at this point; thus, I am not arguing that meanings are not
structured, I am only saying that the actual structure they have—whatever it may
be—is very hard to determine. The recent discussion in King (2007) I do not find
very revealing in this connection and too much language bound. Should it turn out
that meanings are structured our approach is nevertheless not invalid; there will
then be more conditions on syntactic structure. I think that one need not believe
in structured meanings in order to establish a difference between just any kind of
meaning composition function and one that is “good”, that is, “compositional”. I
shall return to the question of natural meaning functions in the next chapter.

Another notion of compositionality is that of Hodges (2001). In essence, the
definitions are the same as the ones given here; there are however some technical
differences that need to be pointed out. The main difference is that Hodges assumes
that meanings are given to an expression through a function; thus an expression
always has a unique meaning. This simplifies the technical apparatus and works
well for artificial languages, but for natural language this is actually a problematic
assumption. Notice that it eliminates ambiguity. Words such as /bank/ or /crane/
will not be considered ambiguous by the grammar. Moreover, the semantic functions
f μ will operate on the total meaning. This means the following: an adjective such
as /big/ does not simply operate on the different meanings of /crane/ indepen-
dently; rather, it operates on the combined meaning of the two. Let us make that
concrete. /crane/ either means a type of birds—call this meaning crane′b—or a
type of machines—call the meaning crane′m . The meaning function now associates
with it the concept crane′b ∨ crane′m , which is true of x if and only if x is either a
bird crane or a machine crane. The meaning big′ of /big/ on its part takes the whole
concept and forms the concept of being-a-big-crane. Evidently, big bird cranes are
far smaller than big machine cranes, so we expect the idea of a big bird-or-machine-
crane to be different from both.
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We may try to save the theory by proposing that the meaning of an ambiguous
item is the set of different meanings it has otherwise. Thus, we assign to /crane/
the meaning

{
crane′b, crane′m

}
. This opens problems of its own. For example, an

adjective will now apply to a set of what we otherwise would call meanings. How
does it apply to such a set? We will have to say that it applies to each member
individually. Thus we are already imposing a structure onto semantics (that mean-
ings are sets) that languages cannot override. Everything stands and falls with the
question whether a language contains genuinely ambiguous expressions. A defender
of the functional view will have to claim that expressions are not ambiguous in
this sense; they simply mean what they mean in all their totality. This is difficult
to maintain since it would deprive us of the possibility of differentiating between
idiomatic and nonidiomatic meanings of expressions. The expression “He kicked
the bucket” will have to have both the literal and the idiomatic reading as its mean-
ing simpliciter without there being a way to say what it is that makes the idiomatic
reading idiomatic.

Another problem with the functional account is that it assumes that all ambiguity
is spurious. Suppose namely that there is a string �x that can be derived in several
different ways. As the meaning of �x is assumed to be unique, we want each of
the derivations to give us the unique reading. This is problematic for reasons of
structural ambiguity.

is square free or it is a product of two (3.10)

prime numbers and greater than 100.

This description can be read in two ways. It says that the number is greater than 100,
and it is either square free of the product of two primes. Alternatively, the number
is either square free or it is not and in the latter case the product of two primes
and greater than 100. In the second reading 71 satisfies the description, in the first
reading it does not. The values for each of the readings can be obtained using a
compositional grammar. However, the sum of all values cannot be so given, since
it would require the grammar to know in each case about alternative readings. This
cannot work. Of course, such a claim needs rigorous proof. We shall return to this
matter in Section 3.5.

I also add another feature that is frequently encountered in artificial languages but
not in human languages. I have given above an example of a language that figures
in Zadrozny (1994) to show that there are languages that we intuitively consider
not compositional. A critical analysis of this example reveals that the intuition is
based on the assumption that what is graphically complex (here the string /ab/) also
is syntactically complex. Since alphabets are small, “graphically complex” cannot
always mean “consists in more than one letter”. Rather, it is taken to mean: consists
in more than one identifier, where identifiers are sequences of letters not interrupted
by special symbols. More complex criteria can be imagined; what is important is
that syntactic complexity is decidable regardless of the underlying grammar. That
this is so is a design property of formal languages; it is built into the parser. It
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allows tokenisation to precede syntactic analysis. We cannot likewise assume human
languages to be built this way. The said property, that complexity is decidable on the
basis of the string alone, is called morphological transparency. Human languages
are therefore in general morphologically intransparent. Idioms are a case in point.

3.2 Interpreted Languages and Grammars

We assume the setup of the previous chapter. As we have said, objects of a language
are sequences of strings over some alphabet (modulo a regular transduction). To
avoid having to talk about the exact nature of syntactic objects, we assume that they
come from a set E . E can for example be A∗, but different choices are possible (and
often necessary).

To differentiate languages as sets of strings from the interpreted languages
defined below we shall call sets of strings string languages (though in fact we have
allowed the exponents to be sequences of strings).

Definition 3.1 Let E and M be sets (of exponents and meanings, respectively). The
members of E × M are called signs. For a sign σ = 〈e,m〉 define

ε(σ ) := e, μ(σ ) := m. (3.11)

e is the exponent of σ and m its meaning. A set L ⊆ E×M is called an interpreted
language over E . The projection

ε[L] := {e : there is m ∈ M : 〈e,m〉 ∈ L} (3.12)

is called the string language of L and the set

μ[L] := {m : there is e ∈ E : 〈e,m〉 ∈ L} (3.13)

the expressive power of L .

The meaning of σ is not to be confused with its denotation, a term that I wish to
avoid since it is often used in a purely extensional sense, while meaning is inten-
sional.

Definition 3.2 Let L be an interpreted language. L is unambiguous if for every
〈e,m〉, 〈e,m′〉∈ L we have m = m′. L is monophone if for every 〈e,m〉, 〈e′,m〉∈ L
we have e = e′.

Thus a language is generally defined to be a set of signs; that a sign is seen here just
as a pair and not a triple (see Section 3.2) is mainly due to the fact that form and
meaning are the most obvious components of it. The exponent can be seen, heard
or touched (think of Braille letters) and the meaning—although somewhat hard to
establish in exact detail—is what makes language a symbolic system. With this defi-
nition we also return to the roots. The definition of a sign pairing form and meaning
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is due to Saussure (2011). (Chomsky also endorsed that view in Chomsky (1993),
though the exponents in Generative Grammar are far more complex.) De Saussure
uses the words signifier (signifiant) and signified (signifié), rather than exponent
and meaning. The straightforward generalization of the definition of grammar would
be the following.

Definition 3.3 Let E be a set of exponents and M a set. An interpreted grammar
is a pair G = 〈Ω, I〉 whereΩ is a finite signature and I a function that assigns to a
symbol f ∈ F a partial Ω( f )-ary function on E × M :

I( f ) : (E × M)Ω( f ) ↪→ (E × M). (3.14)

Furthermore,

L(G) := {ι(t) : t ∈ TmΩ(∅)} (3.15)

is the language generated by G.

To put it somewhat more simply, given E and M , the set S := E × M is the space
of signs. If f is a function symbol, I( f ) is a partial n-ary function on S. Indeed, the
definitions of the previous chapter can be imported without much adaptation. The
only difference is that where we generated strings (or sequences thereof) now we
generate signs.

I remark here that we can always choose E and M in a such a way that E =
ε[L(G)] and M = μ[L(G)], though of course L(G) need not be identical with
E × M .

Example 3.1 (See also Example 2.5) If G is a grammar, L(G) is either finite or
countable. This is because we can effectively enumerate the terms and there are
only countably many terms. Let now L be countable. Then there is a bijection f :
N → L . Define the grammar G in the same way as in Example 2.5. It is easy
to see that the terms are of the form snb for some n ∈ N. For this term we have
I(snb) = f (n). Thus this grammar generates L . We conclude that a language has a
grammar if and only if it is finite or countable. o

We refer the reader to Appendix A for the relationship between a partial function
f : A ↪→ B × C and the projections πB ◦ f : A ↪→ B and πC ◦ f : A ↪→ C .
We apply this to the case at hand. The symbol f is interpreted by a function I( f ) :
(E×M)Ω( f ) ↪→ (E×M) and so we can factor I( f ) into a pair of partial functions

f ε := πE ◦ I( f ), f μ := πM ◦ I( f ). (3.16)

This means in more detail that for all signs σi , i < Ω( f ), we put

f ε(σ0, · · · , σΩ( f )−1) := ε(I( f )(σ0, · · · , σΩ( f )−1)),

f μ(σ0, · · · , σΩ( f )−1) := μ(I( f )(σ0, · · · , σΩ( f )−1)).
(3.17)
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It follows that we have

I( f )(σ0, · · · , σΩ( f )−1) = 〈 f ε(σ0, · · · , σΩ( f )−1), f μ(σ0, · · · , σΩ( f )−1)〉.
(3.18)

This is written in a more concise form as

I( f ) = f ε × f μ. (3.19)

Here, f × g, where f : An → C and g : An → D are functions, is a function from
An to C × D defined by

( f × g)(x0, · · · , xn−1) := 〈 f (x0, · · · , xn−1), g(x0, · · · , xn−1)〉. (3.20)

(Notice that we write f (x0, · · · , xn−1) in place of f (〈x0, · · · , xn−1〉).) Now, in
place of a single interpretation function I we may also consider having two such
functions, namely Iε and Iμ, which we get as follows.

Iε( f ) := πE ◦ I( f ), Iμ( f ) := πM ◦ I( f ). (3.21)

As we shall see, having two independent interpretations changes things dramati-
cally. So we shall give the new construct a name and call it a bigrammar.

Definition 3.4 Let E be a set of exponents and M a set of meanings. A bigrammar
over E and M is a triple G = 〈Ω, Iε, Iμ〉 where Ω is a finite signature and Iε
and Iμ functions that assign to a mode f two partial functions, namely Iε( f ) :
(E × M)Ω( f ) ↪→ E and Iμ( f ) : (E × M)Ω( f ) ↪→ M .

The concept of a bigrammar is a different concept, as we shall show. If G =
〈Ω, Iε, Iμ〉 is a bigrammar then put I( f ) := Iε( f )× Iμ( f ). Then G× := 〈Ω, I〉
is an interpreted grammar. Conversely, given an interpreted grammar G = 〈Ω, I〉,
put G× := 〈Ω, Iε, Iμ〉 as in (3.21); this is a bigrammar.

It is easy to see that for every interpreted grammar G, G = (G×)×. However, it is
not generally the case that H = (H×)× for every bigrammar H . This is because sev-
eral distinct bigrammars may define the same interpreted grammar. Notice namely
that

dom(Iε( f )× Iμ( f )) = dom(Iε( f )) ∩ dom(Iμ( f )). (3.22)

However, the grammar G× has the property that

dom( f ε) = dom( f μ). (3.23)

Hence, a bigrammar of the form G× satisfies

dom(Iε( f )) = dom(Iμ( f )). (3.24)
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We call a bigrammar satisfying (3.24) balanced. The following is easy to see.

Proposition 3.1 Let H be a bigrammar. Then H is balanced if and only if H =
(H×)×.

Proof Clearly, if H = (H×)× then H is of the form G× and so is balanced. Con-
versely, if H is balanced then dom(I( f )) = dom( f ε) = dom( f μ) and so we have
dom(Iε( f ) × Iμ( f )) = dom(I( f )). It follows that f = Iε( f ) × Iμ( f ) and so
H = (H×)×. ��

The terminology of Section 2.1 for grammars is taken over unchanged. For exam-
ple, the definition of analysis term is the same (it involves only the underlying
signature) and the interpretation is defined inductively in the same manner. The
reason is that the same signature can be applied to generate string languages and to
generate interpreted string languages (and even more complex languages, which we
shall consider below in Section 3.3). It just depends on the function I what types of
objects are generated. This is one of the reasons for our abstract definition of gram-
mars using signatures. For example, given an interpreted grammar G = 〈Ω, I〉, we
define the interpretation of a constant term t by induction as follows:

ιG( f s0s1 · · · sΩ( f )−1) := I( f )(ιG(s0), ιG(s1), · · · , ιG(sΩ( f )−1)). (3.25)

We use also the following notation. For terms t we let tε be the exponent of ι(t)
and tμ its meaning. A term t is semantically definite if tμ exists; and it is ortho-
graphically definite if tε exists. We say that t is definite if it is both orthographi-
cally and semantically definite and indefinite otherwise. In a balanced bigrammar
a term is definite iff it is semantically definite iff it is orthographically definite.
In general however they are different but only slightly. For a term of the form
t = f (u0, · · · , uΩ( f )−1) we either have that one of the ui is indefinite, in which
case t is indefinite. Or all of the ui are definite and then t can be orthographically
but not semantically definite, or semantically but not orthographically definite (or
neither orthographically nor semantically definite).

Terms that contain variables are interpreted as partial functions from SN ↪→ S,
where S is the space of signs, here E × M . Given a sequence 〈σ0, σ1, · · ·〉 of signs
ι(t) computes the value of t where for every i ∈ N, xi is interpreted as σi .

Example 3.2 Let E := A∗ where A := {0, 1, +, -, (,), =}. Let M := Z ∪ {�,⊥}.
F := { f0, f1, f2, f3, f4, f5, f6}. Ω( f0) := Ω( f1) := 0, Ω( f2) := Ω( f3) := 1,
Ω( f4) := Ω( f5) := Ω( f6) := 2. �x is binary if it only contains /0/ and /1/; �x is
a term if it does not contain /=/. The grammar is shown in Fig. 3.1. The signs that
this grammar generates are of the following form. They are either strings of 0s and
1s, paired with the number that they represent as binary numbers. Or they are terms,
interpreted in the usual way; or they are equations between two such terms. A single
numeral expression is also a term. An equation is either true (in which case it is
interpreted by �) or false (in which case it is interpreted by ⊥). o
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J ( f0)() := 〈0, 0〉
J ( f1)() := 〈1, 1〉

J ( f2)(〈�x,m〉) :=
{
〈�x0, 2m〉 if �x is binary,

undefined else.

J ( f3)(〈�x,m〉) :=
{
〈�x1, 2m + 1〉 if �x is binary,

undefined else.

J ( f4)(〈�x,m〉, 〈�y, n〉) :=
{
〈(�x+�y),m + n〉 if �x, �y are terms,

undefined else.

J ( f5)(〈�x,m〉, 〈�y, n〉) :=
{
〈(�x-�y),m − n〉 if �x, �y are terms,

undefined else.

J ( f6)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎨

⎪⎩

〈�x=�y,�〉 if �x, �y are terms and m = n,

〈�x=�y,⊥〉 if �x, �y are terms and m �= n,

undefined else.

(3.26)

Fig. 3.1 A grammar for binary strings

Example 3.3 We shall now define an unbalanced bigrammar that defines the same
interpreted language as the grammar in the previous example. The semantic func-
tions are shown in Figs. 3.2 and 3.3. For the bigrammar G = 〈Ω,Kε,Kμ〉 we find
that G× = 〈Ω,J 〉. However, it does not satisfy the equations (3.24). For example,
we find that Kε( f2)(〈(1+1), 2〉) is undefined while Kμ( f2)((1+1), 2〉) = 4, since
Kμ does not look at the exponent. Notice that the semantic functions are not
total but could easily be made to be. Notice also that they do not depend on the
exponent, so they can be further simplified. This will be discussed in detail in
Section 3.3. o

Kε( f0)() := 0

Kε( f1)() := 1

Kε( f2)(〈�x,m〉) :=
{
�x0 if �x is binary,

undefined else.

Kε( f3)(〈�x,m〉) :=
{
�x1 if �x is binary,

undefined else.

Kε( f4)(〈�x,m〉, 〈�y, n〉) :=
{
(�x+�y) if �x, �y are terms,

undefined else.

Kε( f5)(〈�x,m〉, 〈�y, n〉) :=
{
(�x-�y) if �x, �y are terms,

undefined else.

Kε( f6)(〈�x,m〉, 〈�y, n〉) :=
{
�x=�y if �x, �y are terms,

undefined else.

(3.27)

Fig. 3.2 An unbalanced bigrammar for binary strings I
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Kμ( f0)() := 0

Kμ( f1)() := 1

Kμ( f2)(〈�x,m〉) :=
{

2m if m ∈ Z,

undefined else.

Kμ( f3)(〈�x,m〉) :=
{

2n + 1 if m ∈ Z,

undefined else.

Kμ( f4)(〈�x,m〉, 〈�y, n〉) :=
{

m + n if m, n ∈ Z,

undefined else.

Kμ( f5)(〈�x,m〉, 〈�y, n〉) :=
{

m − n if m, n ∈ Z,

undefined else.

Kμ( f6)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎨

⎪⎩

� if m, n ∈ Z and m = n,

⊥ if m, n ∈ Z and m �= n,

undefined else.

(3.28)

Fig. 3.3 An unbalanced bigrammar for binary strings II

Let me conclude with a few words on the algebraic treatment. A grammar G =
〈Ω, I〉 can also be viewed as a partial Ω-algebra defined over the space E × M
(see Appendix A for definitions). Bigrammars have no straightforward algebraic
equivalent. Exercises 3.10 and 3.11 will pursue this theme.

Exercise 3.1 It is possible to interpret the modes f2 and f3 by the string functions
�x 
→ 0��x and �x 
→ 1��x . Show that it is however impossible to use the meaning
functions given above with these string functions.

Exercise 3.2 (Continuing the previous exercise.) Give a grammar that generates the
language of equations using the string functions above. (Evidently, the functions on
meanings must be quite different.)

Exercise 3.3 Let G = 〈Ω, I〉 be a grammar. Show that there is a bigrammar G• =
〈Ω, Iε• , Iμ• 〉 such that (G•)× = G and such that for every f ∈ F , Iε•( f ) is total.
(Dually, we can construct G• such that Iμ• ( f ) is total for every f ∈ F .)

Exercise 3.4 (Using the previous exercise.) Show by giving an example that we can-
not expect both Iε•( f ) and Iμ• ( f ) to be total. Hint. This should be totally straight-
forward.

3.3 Compositionality and Independence

In this section we shall look at the interdependence between the components of
a sign. We shall look at ways of formulating the grammar in such a way that the
exponents and meanings are completely independent. We have so far assumed that
the modes are interpreted as functions on signs. As such they have the form
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I( f ) = f ε × f μ, (3.29)

with the functions defined as given in (3.17). If, however, we start with a bigrammar
we simply put

f ε := Iε( f ), f μ := Iμ( f ). (3.30)

In this case, as we observed, (3.24) does not necessarily hold any more. Although
we shall not mention this fact in the sequel, the reader is asked to be aware of
the possibility that bigrammars can help to distribute the partiality between syntax
and semantics, which is why we shall work mainly with bigrammars rather than
grammars.

There are two senses in which the equation (3.29) can be required to hold. I call
the first the strict sense: the equation is valid as stated above. This means that the
equation specified is valid even if the relevant functions are applied to signs that are
not in the language. The extensional sense requires that the equation only holds for
the language of the grammar. This is formally expressed in (3.31).

I( f ) � L(G) = ( f ε × f μ) � L(G) (3.31)

Here, if f : An ↪→ B and C ⊆ A,

f � C := {〈�c, f (�c)〉 : �c ∈ Cn}. (3.32)

These two viewpoints really are different. It is assumed that the grammatical forma-
tion rules are more general; they may be applied to words (and meanings) that do not
exist in the language. For example, we may introduce new words into a language or
create new idioms. What we find is that more often than not the morphological rules
know how to deal with them. If the rules were just defined on the language as it is,
we would have to artificially extend the interpretation of the modes as soon as new
entries get introduced into the lexicon. Consider for example the nouns of Malay (cf.
also the discussion in Example 3.8 below). Malay nouns reduplicate in the plural.
Now suppose a new word, say, a loanword from English is introduced. Will it be
reduplicated or will it be used with the English plural? Exactly this question is
studied in the so-called “wug-test”, where people are asked to form the plural of
a word that is not English. If a speaker forms a plural of such a word it means that
his or her morphological functions are more general; they operate on words that are
not English, and they operate even in the absence of any semantics. Children face
a similar situation. When they grow up they will have to guess how the plural of
nouns is formed. It is not realistic to assume that they will simply learn the plural
of each word individually. Rather, they will abstract a general rule that can be used
on new words as well. And they can both understand what is a morphological plural
and what is the concept behind plurality. And both seem to be independent. Notice
that the idea of a human grammar as different from a formal grammar is irrele-
vant here. Formal languages often do display similar differences. And though the
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wug-test seems to indicate that there is a uniform rule of plural formation in English
it is not clear that all people have the same abstract formation rule. Not only does
individual variation exist (showing us extensional differences, that is, differences in
the languages of the speakers); also it is quite conceivable that intensional variation
exists. For example, it is conceivable that when presented with a nonexistent verbal
root, German speakers will differ as to how they will inflect a new verb even when
they completely agree on the inflection of existing verbs (though I am not aware of
a positive result showing this).

Thus, we assume with some justification that the functions above may also be
defined on signs outside of the language generated by the grammar. Nevertheless we
shall study the behaviour of the functions in the intensional sense. This is because
it is easy to return to the extensional sense by restricting the original functions to
L(G). Formally, this may be expressed as follows. We say that G ′ = 〈Ω, I ′〉 is
an extensional variant of G = 〈Ω, I〉 if L(G ′) = L(G) and for every mode f ,
I ′( f ) � L(G) = I( f ) � L(G). Extensional variants cannot be distinguished from
each other by looking at the language they generate; but they might be distinguish-
able by introducing “nonce signs”.

Let us return to the equation (3.29) above. I shall rewrite it as follows:

I( f )(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉)
= 〈 f ε(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉),

f μ(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉)〉.
(3.33)

We say that a bigrammar is compositional if f μ does not depend on the ei . This
can be restated as follows. (For notions of independence for (partial) functions see
Appendix A. For partial functions, independence is weak independence by default.)

Definition 3.5 A bigrammar G is semicompositional if, for every mode f , f μ is
(weakly) independent of the exponents of the signs. If the f μ are strongly indepen-
dent of the exponents, G is called compositional. G is extensionally compositional
if it has an extensional variant that is compositional. An interpreted language L is
compositional if there is a compositional bigrammar G such that L = L(G).

Example 3.4 There are pairs of words whose meaning is roughly the same, of which
one member is singular and the other in the plural (see Kac, Manaster-Ramer, and
Rounds (1987)): examples are /military/:/armed forces/, /forest/:/woods/ and
/location/: /whereabouts/. Consider a bigrammar that has these words as values
of constants and a single unary operation that forms the regular plural. Semanti-
cally, each of the concepts has a plural (there is a notion of armies, forests and
locations). However, depending on the exponent, the plural can or cannot be regu-
larly formed. This grammar is therefore semicompositional but not compositional.
Using the notation of Example 2.10, the term p( fforest) is definite and interpreted by
〈forests,pl′(forest′)〉. However, p( fwoods) is not definite. It is however semanti-
cally definite. An example of a compositional bigrammar is the following. Switch
the interpretation of p as follows: if the noun is in the singular, form the regular plu-
ral. If it is in the plural, leave the noun unchanged. The second grammar generates
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the pluralia tanta also in their plural meaning, so that, e.g., /armed forces/ means
either army (singular meaning) or armies (plural meaning). o

The notion of semicompositionality may easily be confused with composition-
ality. The difference is not in the value that the function yields: it is unique. The
difference is whether the choice of certain expressions can make the semantic func-
tion undefined when it has a value for at least some expressions. In a composi-
tional bigrammar this is excluded while a semicompositional still allows for that
possibility.

We extend these notions to interpreted grammars as follows. For an interpreted
grammar G, G is P if and only if G× is P (see page 65 for notation). So, G is
semicompositional if and only if G× is. Notice that a language is compositional if
and only if it has a compositional interpreted grammar.

If G is extensionally compositional or semicompositional then for every mode f
there exists a partial function f μ∗ : MΩ( f ) ↪→ M such that

μ(I( f )(σ0, · · · , σΩ( f )−1))
>= f μ∗ (μ(σ0), · · · , μ(σΩ( f )−1)). (3.34)

The sign
>= means that the left- and right-hand sides are equal if defined; and more-

over, the right-hand side is defined if the left-hand side is, but the converse need not
hold. If G is compositional then also the left-hand side is defined if the right-hand
side is, so full equality holds. In that case we can put

f μ∗ (m0, · · · ,mΩ( f )−1) := f μ(〈e,m0〉, 〈e,m1〉, · · · , 〈e,mΩ( f )−1〉), (3.35)

where e is chosen arbitrarily. Since by assumption f μ does not depend on the expo-
nents, any choice of e will give the same result. Another definition is to take the full
image of the function f under projection. Recall that an n-ary function g on signs
is a subset of (E × M)n+1. For any such function put

μ[g] := {〈μ(σ0), · · · , μ(σn)〉 : 〈σ0, · · · , σn〉 ∈ g}. (3.36)

Then we may alternatively define f μ∗ by

f μ∗ := μ[I( f )]. (3.37)

Independence from the exponents guarantees that this is a function. We see here
more explicitly that f μ∗ is a partial function only on meanings. Suppose now that
L is compositional; this means that there is a compositional grammar G such
that L = L(G). This means in turn that for every σ ∈ L there is a term t
such that σ = ιG(t). If t = f s0 · · · sΩ( f )−1 then the meaning of ιG(t) equals
f μ∗ (μ(ιG(s0)), · · · , μ(ιG(sΩ( f )−1))), which is to say that, given that the σi are
the parts of σ , the meaning of σ is the result of applying the function f μ∗ to the
meaning of its parts. However, notice that we have two senses of compositionality,
the simple (intensional) and the extensional. For a language to be compositional
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we may require the existence of either an extensionally compositional grammar, or
of a compositional grammar. For if an extensionally compositional grammar exists,
there is a compositional variant, which by definition generates the same language.

Notice a further consequence. If G is extensionally compositional then we can
produce an extensional variant in the following way. Put

f̂ ε := (ε ◦ I( f )) � L(G). (3.38)

This function is defined exactly on the signs of L(G). Now take as f̂ μ∗ any function
extending f μ∗ . (In other words, f̂ ε carries all the load in terms of undefinedness. In
this case, f̂ μ∗ may even be a total function.)

Example 3.5 Here is an example. Let G = 〈Ω, I〉 be a grammar containing a binary
mode f and zeroary modes gi , i < 3, where

I(g0)() = 〈ed,past′〉
I(g1)() = 〈laugh, laugh′〉
I(g2)() = 〈car, car′〉

(3.39)

Here, I am assuming the following type assignment: car′ : e → t , laugh′ : e →
s → t and past′ : (e → s → t)→ (e → s → t).

I( f )(〈e,m〉, 〈e′,m′〉) := 〈e�e′,m′(m)〉 (3.40)

Note that this is undefined if m′(m) is undefined. This means that semantically the
only meaningful combination is past′(laugh′). Now take the bigrammar G× =
〈Ω, Iε, Iμ〉. Define a new bigrammar 〈Ω,Kε,Kμ〉 as follows. Kμ( f ) is any total
function extending Iμ( f ); for example, it also takes the pairs 〈e, car′〉, 〈e′,past′〉
as arguments (whatever e and e′) and returns some value. Then put

Kε( f )(〈e,m〉, 〈e′,m′〉) :=
{

e�e′ if e = /laugh/ and e′ = /ed/,
undefined else.

(3.41)

It is not hard to check that Kε( f ) = Iε( f ). This bigrammar therefore generates the
same output language. The source of partiality has been shifted from the semantics
to the syntax. o

A particular choice that we may take for f μ∗ is μ[I( f )]. This is sufficient. Notice
however that this may still be a partial function. Any function extending it will also
do but nothing less.

In and of itself this seems to capture the notion of compositionality. However,
it presupposes a notion of a part and mode of composition. There are two ways to
understand “part” and “mode of composition”. We may simply say that it is the
grammar that defines what is part of what and what counts as a mode. Or we may
say that the notion of part is not arbitrary. Not every grammar implements a correct
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notion of “part of”. Not every grammar therefore uses a good notion of “mode
of composition”. In Kracht (2003) I have put the restrictions into the definition of
compositionality. Here I shall keep them separate.

Signs are pairs; switching the order in the pair gives rise to the dual of the sign.
Switching the order in the entire language defines the dual of the language. Notice
that most technical notions do not distinguish between exponents and meanings, so
they can be applied to both a language and its dual. The notion dual to composition-
ality is known as autonomy.

Definition 3.6 A bigrammar G is semiautonomous if for every mode f the func-
tion f ε is weakly independent of the mi . If f ε are also strongly independent of
the mi , G is called autonomous. G is extensionally autonomous if it has an exten-
sional variant that is autonomous. An interpreted language L is autonomous if there
is an autonomous bigrammar G such that L = L(G).

Semiautonomy says that the exponent of a complex sign is the result of applying a
certain function to the exponent of its parts and that that function depends only on
the leading symbol of the analysis term. One consequence is that for every mode f
there exists a partial function f ε∗ : EΩ( f ) ↪→ E such that

ε(I( f )(σ0, · · · , σΩ( f )−1))
>= f ε∗ (ε(σ0), · · · , ε(σΩ( f )−1)). (3.42)

Again, if the left-hand side is defined then the right-hand side is as well but not
conversely. In an autonomous grammar, also the converse holds.

Finally, we say our language is independent if both syntax and semantics can
operate independently from each other.

Definition 3.7 A bigrammar is independent if it is both compositional and
autonomous; it is extensionally independent if it is both extensionally composi-
tional and extensionally autonomous. A language is independent if it has an inde-
pendent bigrammar.

Thus G is independent if for every f there are functions f ε∗ and f μ∗ such that for all
σi = 〈ei ,mi 〉, i < n:

I( f )(σ0, · · · , σΩ( f )−1) = 〈 f ε∗ (e0, · · · , eΩ( f )−1), f μ∗ (m0, · · · ,mΩ( f )−1)〉.
(3.43)

with the left-hand side defined if and only if the right-hand side is. (The functions f ε∗
and f μ∗ are defined as ε[Iε( f )] and μ[Iμ( f )], respectively.) Another formulation
is

Ω( f ) Ω( f )

I( f ) = ( f ε∗ ◦〈
︷ ︸︸ ︷
ε, · · · , ε〉)× ( f μ∗ ◦〈︷ ︸︸ ︷

μ, · · · , μ〉) (3.44)
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or

I( f )(σ0, · · · , σΩ( f )−1) (3.45)

= 〈 f ε∗ (ε(σ0), · · · , ε(σΩ( f )−1)), f μ∗ (μ(σ0), · · · , μ(σΩ( f )−1))〉.

It may be thought that for languages, extensional independence follows from exten-
sional autonomy and extensional compositionality. However, this does not seem to
be the case. I remark here that I have not been able to find an example of a language
that is not (!) independent. If there are no restrictions on the functions that can be
used, independence seems to be guaranteed.

Example 3.6 We construct various different grammars to show that autonomy and
compositionality are independent notions. Let A := {a}, E := A∗; M := N. The
signature is { f0, f1, f2}, with f0 zeroary and f1 and f2 both unary. We have

I( f0)() := 〈ε, 0〉

I( f1)(〈�x, n〉) :=
{
〈�x�a, n + 1〉 if |�x | = n,

undefined otherwise.

I( f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | ≥ n,

〈�x, n + 1〉 otherwise.

(3.46)

Call this grammar U . The action of the unary functions on the space E × M is
shown in Fig. 3.4. U generates the language D := {〈�x, n〉 : n ≤ |�x |}, as is easily
verified; the entry point is the origin, and everything is in D that is reachable by
following the arrows. Notice that the second clause of the definition for I( f2) is
never used inside D. Thus, we could have made I( f2)(〈�x, n〉) undefined if n >
|�x |. This would give us an extensional variant of the original grammar. U is not
autonomous: I( f2)(〈a, 3〉) = 〈a, 4〉 but I( f2)(〈a, 1〉) = 〈aa, 1〉. So to compute
the exponent we need to know the meaning. It is not compositional either. For we
have in addition to I( f2)(〈a, 3〉) = 〈a, 4〉 also I( f2)(〈aaa, 3〉) = 〈aaaa, 3〉), so to
compute the meaning we need to know the exponent.

Consider the following variants of I, which agree on f0 and f1 with I:

Ia( f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | ≥ n,

〈�x�a, n + 1〉 else.

Ic( f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | ≥ n,

〈�x�a�a, n〉 else.

Iac( f2)(〈�x, n〉) := 〈�x�a, n〉

(3.47)

All of them only generate the language D. The grammar U ac := 〈Ω, Iac〉 is semi-
autonomous and semicompositional.

U c = 〈Ω, Ic〉 is semicompositional but not semiautonomous. To see this, note
that we have μ(Ic( f2)(〈e,m〉)) = m, which is independent of e; on the other hand
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Fig. 3.4 The action of the grammar U

we have ε(Ic( f2)(〈aa, 2〉)) = aaa �= aa = ε(Ic( f2)(〈aa, 3〉)). Similarly we find
that 〈U a := 〈Ω, Ia〉 is semiautonomous but not semicompositional. o

Now, let J ( f0) := I( f0) and J ( f2) := I( f2). Put

J ( f1)(〈�x, n〉) := 〈�x�a, n + 1〉. (3.48)

Define J a , J c and J ac by changing the interpretation of f2 as above. 〈Ω,J ac〉 is
independent, that is, autonomous and compositional. Similarly, J a is autonomous
and noncompositional while J c is nonautonomous but compositional.

Finally, let us look at these concepts for bigrammars. If a bigrammar is
autonomous then it is possible to define an extensional variant of the form
〈Ω, Iε◦ , Iμ◦ 〉 where Iε◦( f ) is total for every f . Namely, observe that there is a func-
tion g on exponents such that

Iε( f )(�σ) = g(e0, · · · , eΩ( f )−1). (3.49)

Choose a total extension g◦ ⊇ g.
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Iε◦( f )(�σ) := g◦(e0, · · · , eΩ( f )−1)

Iμ◦ ( f ) := Iμ( f ) � dom(Iε( f ))
(3.50)

Then Iε◦( f )(�σ) is defined if and only if �σ ∈ dom(Iμ◦ ( f )) = dom(Iε( f )) ∩
dom(Iμ( f )). And in this case

〈Iε◦( f )(�σ), Iμ◦ ( f )(�σ)〉 = 〈g◦(�e), Iμ( f )(�σ)〉
= 〈g(�e), Iμ( f )(�σ)〉
= 〈Iε( f )(�σ), Iμ( f )(�σ)〉

(3.51)

Example 3.7 From a grammar we can construct two bigrammars where the partial-
ity is only in one component: one where all the exponent functions are total and
another where the semantic functions are total. With a bit of luck the first grammar
is autonomous and the second compositional. Here is an example. Let A := {a},
E := A∗; M := N. The signature is { f0, f1, f2}, with f0 zeroary and f1 and f2
both unary.

I( f0)() := 〈ε, 0〉
I( f1)(〈�x, n〉) := 〈�x�a, n + 1〉

I( f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | = n,

undefined else.

(3.52)

The definite terms are of the form f n
1 f0 or f m

1 f2 f n
1 f0. The first bigrammar is as

follows.

I�
ε ( f1)(〈�x, n〉) := �x�a

I�
ε ( f2)(〈�x, n〉) :=

{
�x�a if |�x | = n,

undefined else.

(3.53)

I�
μ ( f1)(〈�x, n〉) := n + 1

I�
μ ( f2)(〈�x, n〉) := n

(3.54)

The second bigrammar is as follows.

I�
ε ( f1)(〈�x, n〉) := �x�a

I�
ε ( f2)(〈�x, n〉) := �x�a

(3.55)

I�
μ ( f1)(〈�x, n〉) := n + 1

I�
μ ( f2)(〈�x, n〉) :=

{
n if |�x | = n,

undefined else.

(3.56)
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The grammar G� is compositional but only semiautonomous; the grammar G� is
autonomous but only semicompositional. The reason is this. In G� the functions
I�
μ ( fi ) do not depend on the exponent, they are total and always yield a unique

value. On the other hand, I�
ε ( f2) weakly depends on the meaning:

I�
ε ( f2)(〈aaa, 2〉) is undefined, I�

ε ( f2)(〈aaa, 3〉) = aaaa. (3.57)

Thus G� is indeed semiautonomous but compositional. Likewise for the other
claim. However, it turns out that there is no bigrammar corresponding to G that
is both autonomous and compositional. To see this, suppose G�� = 〈Ω, I��ε , I��μ 〉
is such a grammar. Then for any given string �x there is some n (namely |�x |) such
that I��ε ( f2)(〈�x, n〉) is defined. If the grammar is autonomous this means that for all
m I��ε ( f2)(〈�x,m〉) is defined. Hence the function I��ε ( f2) is total. Likewise we see
that I��μ ( f2) is total. It follows that dom(I��( f2)) = dom(I( f2)) equals E × M .
But this is not the case in G. o

The independence of form and meaning has interesting consequences also for the
assessment of arguments concerning generative capacity. Both examples concern
the problem whether or not there is copying in syntax.

Example 3.8 This and the next example deal with the problem of reduplication.
In Malay, the plural of a noun is formed by reduplication: /orang/ means “man”,
/orang-orang/ means “men” (see also the discussion on page 52). Thus, the plural
mode p in Malay is a unary mode and is interpreted as follows.

I(p)(〈e,m〉) :=
{
〈e�-�e,pl′(m)〉 if e is a singular noun,

undefined otherwise.
(3.58)

Under this interpretation, there is a plural morpheme with no fixed exponent; the
exponent of the morpheme depends on whatever the singular is. If Malay works like
this, then the grammar is not context free in the sense that it has non context free
rules. An alternative view however is to assume that Malay has a binary operation q
with the following interpretation.

I(q)(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈e�-�e′,pl′(m)〉 if e and e′ are nouns

and e = e′,
undefined otherwise.

(3.59)

This means that each occurrence of the singular form is a true occurrence of a con-
stituent. A third account is this. Malay has a binary mode r defined by

I(r)(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈e�-�e′,pl′(m)〉 if e and e′ are nouns

and m = m′,
undefined otherwise.

(3.60)
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This looks similar to q but the difference is that the combinatorial restrictions are
now semantic and syntactic rather than only syntactic. This has repercussions on
how powerful we believe the syntax of Malay is. If we think Malay uses p then the
syntax uses nonlinear polynomials, hence cannot be approximated by what is known
as linear context free rewrite systems (LCFRS). If we think that Malay uses q then
our theory is that the syntax is an LCFRS, even context free, since the number of
nouns is finite. However, performing the substitution tests will reveal that there are
as many form classes as there are nouns. Finally, if we think that Malay uses r we
think that the syntax is context free and that there is essentially only one noun class.
It is not easy to distinguish between these alternatives. Only if Malay has two nouns
e and e′ with identical meaning can we check whether Malay uses p, q or r (though
it is in principle also possible to treat exceptions with extra modes as well). o

The previous discussion uses grammars but it is clear how the bigrammars in
question should be constructed.

Example 3.9 Manaster-Ramer (1986) discuss a construction of English in which a
constituent is repeated verbatim:

The North Koreans were developing nuclear weapons (3.61)

anyway, Iraq war or no Iraq war.
∗The North Koreans were developing nuclear weapons (3.62)

anyway, Iraq war or no Afghanistan war.

The meaning is something like: “independent of”, “irrespective of”. As Manaster-
Ramer claims, the construction has the form /�x or no �x/, where �x is an NP (deter-
minerless!). The construction /�x or no �y/ where �x and �y are different does not
have this meaning. On this basis, Manaster-Ramer argues that English is not context
free. Basically, the idea is that there is a unary mode f defined as follows.

I( f )(〈e,m〉) :=
{
〈e��or�no��e, irrespective-of′(m)〉 if e is an NP,

undefined otherwise.
(3.63)

I put aside the alternative with a binary operation that checks for string identity.
This construction is called the “X-or-no-X construction” by Pullum and Rawlins
(2007). They observe that the second part of it need not be an exact copy. They take
this as evidence that this is not a requirement imposed by the syntax but a semantic
requirement. So the construction takes the form /�x or no �y/, where �x and �y may
be different but must be synonymous. I shall leave the issue of nonidentity aside
and focus on the following point. What Pullum and Rawlins (2007) propose is that
rather than checking syntactic identity, English works with a binary mode g defined
by
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I( f )(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈e��or�no��e, if e, e′ are NP

irrespective-of′(m)〉 and m = m′,
undefined otherwise.

(3.64)

The problem is reminiscent of reduplication discussed earlier. Although Pullum and
Rawlins (2007) show that the resulting language is not context free, their argument
makes clear that there are two notions of generative capacity involved. One is the
purely syntactic capacity and the other is the capacity to generate signs. Given a
bigrammar 〈Ω, Iε, Iμ〉 we may either look at the language generated by 〈Ω, Iε∗〉
(pure syntax), or we may look at the language ε[L(G)]. The first is the set of
all syntactically well-formed sentences, the second the set of all syntactically and
semantically well-formed sentences.

The two analyses are not identical empirically. Suppose namely we have
expressions that are synonymous for all we know (say /Abelian group/ and
/commutative group/ then the two proposals make different claims about gram-
maticality. If syntactic identity is the key then using the expression

Abelian group or no commutative group (3.65)

cannot mean “irrespective of an abelian group”, whereas if semantic identity
counted, this would be perfect. I have not investigated this, though. o

Under the assumption of independence it is possible to extend some of the results
of formal language theory to the present setting. I give an instructive example. A CF
string language has the following property:

Lemma 3.1 (Pumping Lemma) Let L be a context free string language. Then there
exists a number cL , such that for every �x ∈ L of length at least cL there are strings
�u, �v, �w, �y, �z such that

1. �x = �u �y �v �z �w;
2. �x �y �= ε;
3. for all n ∈ N: �u �yn �v �zn �w ∈ L.

For a proof see among others (Harrison, 1978). This theorem has many strengthen-
ings and all of them could be used in its place below. To be able to state the extension
properly, we need to look at two different equivalence relations induced by a bigram-
mar 〈Ω, Iε, Iμ〉. Recall from Definition 2.23 the definition of a categorial equiva-
lence. The first is the equivalence ∼Gε , where Gε := 〈G, Iε × 1〉, where 1( f ) gives
a unit value for every input (and is always defined). This equivalence relation gives
rise to the syntactic categories only. Another is the equivalence ∼G , induced by G
itself. It is defined in the same way as Definition 2.23, the only difference being
that the definition is applied to a bigrammar. We say that G is syntactically well
regimented if ∼G=∼Gε . Intuitively, if a grammar is syntactically well regimented
then the combinability of signs can be determined by looking at the exponents alone
(which does not mean that the semantic functions have to be total). Or, I( f )(�σ) is
defined if only Iε( f )(�e) is defined.
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Theorem 3.1 Let L be an interpreted language that has a syntactically well regi-
mented CF bigrammar. Then there is a cL such that for all 〈�x,m〉 ∈ L where �x has
length of at least cL there are strings �u, �v, �w, �y, �z, an element n ∈ M and unary
partial functions f , g on M such that

1. 〈�x,m〉 = 〈�u �y �v �z �w, f (p)〉;
2. �x �y �= ε;
3. for all n ∈ N: 〈�u �yn �v �zn �w, f (gn(p))〉 ∈ L.

The proof of the theorem proceeds basically in the same way as the proof of the
original Pumping Lemma. Given a string �x we find a decomposition of the string;
furthermore, we know that the decomposition is in terms of constituents. In other
words, we have terms r(x0), s(x0) and a constant term t such that

1. �x = rε(sε(tε)),
2. �y �v �z = sε(tε),
3. �v = tε.

Put p := tμ, g(x0) := sμ(x0), and f (x0) := rμ(x0). This defines the functions. The
assumption of syntactic well regimentedness allows us to conclude that since the
terms r(sn(t)) are all orthographically definite, they are also semantically definite.
Hence we have

ιG(r(s
n(t))) = 〈�u �yn �v�zn �w, f (gn(p))〉 ∈ L . (3.66)

Example 3.10 The assumption of the syntactic well regimentedness cannot be
dropped. Here is an example. Let E := v∗. According to Thue (1914) there
is an infinite word w0w1w2 · · · over {a, b, c} such that no finite subword is
immediately repeated. Let M := {w0w1 · · ·wn−1 : n ∈ N}. Our language is
{〈vn, w0w1 · · ·wn−1〉 : n ∈ N}. Here is a CF bigrammar for it: Ω( fa) = Ω( fb) =
Ω( fc) = 1 and Ω(p) = 0. The functions are defined as follows:

Iε∗(p)() := ε Iμ(p)() := ε
Iε∗( fa)(�x) := �x�v Iμ∗ ( fa)(�x) :=

{
�x�a if �x�a ∈ M ,

undefined else.

Iε∗( fb)(�x) := �x�v Iμ∗ ( fb)(�x) :=
{
�x�b if �x�b ∈ M ,

undefined else.

Iε∗( fc)(�x) := �x�v Iμ∗ ( fc)(�x) :=
{
�x�c if �x�c ∈ M ,

undefined else.

(3.67)

Suppose that the assertion of Theorem 3.1 holds for L . Then with the notation as in
the theorem we would have

σ := 〈�u �y2 �v �z2 �w, f (g2(p))〉 ∈ L . (3.68)
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However, g(�x) = �x �e for some string �e; and f (�x) = �x �q for some �q . So, f (g2(p)) =
p �e �e �q . By assumption σ �∈ L , since no string can repeat itself in a string from M .

o
The success of the previous counterexample rested in the fact that the same syn-

tactic function is split into different semantic functions. I conjecture that if this were
not the case Theorem 3.1 will also hold for L even if the grammar is not assumed
to be syntactically well regimented. I simply conjecture that it can be shown that
the grammar has that property anyway. This would constitute a case where the
notions of compositionality based on identity of functions might actually be rele-
vant. If compositionality is based on extensional identity of syntactic functions (see
page 60) then Theorem 3.1 might hold without the assumption of syntactic well
regimentedness. However, this still awaits proof.

I stress again that the diverse pumping lemmata discussed in the literature can
be generalized to interpreted languages in the same way (Ogden’s Lemma, the
strengthened form of Manaster-Ramer, Moshier, and Zeitman (1992), the lemmata
for simple literal movement grammars, see Groenink (1997) and so on). This is
simply because they are all based on the identification of constituents, which are
meaningful units of the language.

Exercise 3.5 Show how to generate the language of Example 3.7 using an indepen-
dent grammar.

Exercise 3.6 Suppose that L ⊆ E × M is an unambiguous countable interpreted
language. Show that L is extensionally autonomous. Show that the result holds also
if we assume that there is a number k such that for every e ∈ E there are at most k
many m with 〈e,m〉 ∈ L .

Exercise 3.7 Suppose that L is a monophone countable interpreted language. Show
that L is extensionally compositional. Note. Show that if G is defined only on the
signs from L , G is already extensionally compositional.

Exercise 3.8 Suppose that L ⊆ E × M is a countable interpreted language which is
a partial bijection between E and M . Then L is independent.

Exercise 3.9 Let L ⊆ E × M be a language such that ε[L] is finite. Show that L is
independent. (Similarly, show that L is independent if μ[L] is finite.)

Exercise 3.10 The following exercise points at some algebraic connections. I refer
to Appendix A for basic algebraic concepts. Let E and M be given. Given a signa-
ture Ω , we can think of a grammar as a partial Ω-algebra G = 〈E × M, I 〉. Now
show the following. (a) G is autonomous if and only if the map ε is a homomorphism
from G onto some algebra E = 〈E, J 〉 of exponents; can you identify the functions
J ( f )? (b) G is compositional if and only if μ is a homomorphism from G onto
some algebra 〈M, K 〉 of meanings. Can you identify K ( f )? Hint. (b) is dual to (a).

Exercise 3.11 (Continuing the previous exercise.) Show that if a bigrammar is inde-
pendent then the algebra of signs that it generates is a direct product of its algebra
of exponents and its algebra of meanings.
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3.4 Categories

Following the tradition in linguistics, I have assumed in Kracht (2003) that signs are
triples σ = 〈e, c,m〉, with e the exponent, m the meaning and c the category of
σ . This is in line with Keenan and Stabler (2001), Pollard and Sag (1994), Mel’čuk
(1993–2000), not to mention Categorial Grammar, for which categories are essen-
tial, and even recent LFG, which assumes a level of m-structures in addition to
c-structure (syntax) and f-structure (semantics) and even a-structure (to deal with
argument handling), see Falk (2001). However, from an abstract viewpoint we must
ask if categories are really necessary. After all, each level that is added introduces
new degrees of freedom and new ways to outplay restrictions in other levels. And,
to add to that the categories are actually not directly observable. Chomsky (1993)
assumes that language relates form with meaning. Whatever this says in practice for
Generative Grammar (and in practice the syntactic categories reappear in the form
part), the initial hypothesis is the same: start with a set of signs that contain only
form and meaning. I am inclined to view categories as basically encoding restric-
tions that are the result of partiality in the operations (see Kracht (2006)). So, we
can in principle do without them but they make the formulation somewhat more
transparent. For example, in a context free grammar rather than making the string
concatenation partial we may say that on the level of exponents there is only one
function, concatenation, which is not partial; and that the partiality arises in the cat-
egories only. It turns out, though, that one needs to be extremely cautious in thinking
that the different formulations are exactly the same. Time and again it appears that
they are only the same in “normal” circumstances and that counterexamples to their
equivalence exist. This section will elaborate on the theme of categories and prove
some results only to abandon them later. One result is that in case the set of signs
contains only finitely many categories they can be eliminated (Theorem 3.2), though
we may be forced to pay a price.

The formal details are as follows. A c-sign is a triple γ = 〈e, c,m〉. The space of
c-signs is a product E × C × M . The projections will be denoted as follows.

ε(〈e, c,m〉) := e, κ(〈e, c,m〉) := c, μ(〈e, c,m〉) := m. (3.69)

Put H := ε × μ, that is,

H(γ ) := 〈e,m〉. (3.70)

A c-language is a set of c-signs. A c-grammar consists in a signature of modes
〈F,Ω〉 plus an interpretation function C, which for given f returns a partial function
(E × C × M)Ω( f ) ↪→ (E × C × M). As before, the concept we shall be working
with is slightly different.

Definition 3.8 A trigrammar over E × C × M is a quadruple 〈Ω, Iε, Iκ , Iμ〉,
where Ω is a signature and Iε( f ) : (E × C × M)Ω( f ) → E an interpretation
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of f in E , Iκ( f ) : (E × C × M)Ω( f ) → C an interpretation of f in C and
Iμ( f ) : (E × C × M)Ω( f ) → M an interpretation of f in M .

From a trigrammar we form the corresponding c-grammar by putting

G× := 〈Ω, Iε × Iκ × Iμ〉. (3.71)

The c-language of G, L(G), is the set of c-signs generated by this grammar. This is
defined inductively in the usual way.

A trigrammar is autonomous if the exponent of I( f )(�σ) is strongly independent
of the categories and meanings of the input signs; it is compositional if the meaning
of I( f )(�σ) is strongly independent of the exponent and category of the input signs.
In addition to the notions of autonomy and compositionality we now have a third
notion, which I call categorial autonomy. It says that the category of I( f )(�σ) is
strongly independent of the exponents and the meanings of the input signs. The
trigrammar is independent if it is autonomous, compositional and categorially
autonomous. In case of independence we can exchange the functions f ε, f κ , f μ

by their reductions f ε∗ : EΩ( f ) → E , f κ∗ : CΩ( f ) → C , f μ∗ : MΩ( f ) → M , which
are obtained by removing the other components.

Let L = L(G) for some trigrammar G. The H -image of L is

H [L] := {H(γ ) : γ ∈ L}
= {〈e,m〉 : there is c ∈ C : 〈e, c,m〉 ∈ L}. (3.72)

The question is whether there is an interpreted grammar for H [L].
Theorem 3.2 Let G = 〈Ω, C〉 be a c-grammar such that L = L(G) ⊆ E ×C × M
for some finite C. Then there exists an interpreted grammar K such that L(K ) =
H [L].
Proof Let 〈F,Ω〉 be the signature of G. For a natural number i let Fi be the set of
f such that Ω( f ) = i . Define

F+
n := { f�c : f ∈ Fn, �c ∈ Cn}. (3.73)

For example

F+
0 = { f〈〉 : f ∈ F0},

F+
1 := { f〈c〉 : f ∈ F1, c ∈ C},

F+
2 := { f〈c,c′〉 : f ∈ F2, c, c

′ ∈ C}.
(3.74)

As for the signature, we put

Ω+( f�c) := Ω( f ). (3.75)
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We define the actions of the functions over this signature.

I( fc0,c1,··· ,cn−1)(〈e0,m0〉, 〈e1,m1〉, · · · , 〈en−1,mn−1〉)
:= H(C( f )(〈e0, c0,m0〉, 〈e1, c1,m1〉, · · · , 〈en−1, cn−1,mn−1〉))

(3.76)

This can also be written as follows. Put σi := 〈ei , ci ,mi 〉. Then

I( f�c)(H(σ0), H(σ1), · · · , H(σn−1)) := H(C( f )(σ0, σ1, · · · , σn−1)). (3.77)

Here the left-hand side is defined if and only if the right-hand side is; and in this
case the left-hand side is defined to be whatever the right-hand side is. This defines
the grammar K := 〈Ω, I〉.

We shall show that L(K ) = H [L]. First: L(K ) ⊇ H [L(G)]. To this effect, let
σ ∈ L(G). We show that H(σ ) ∈ L(K ). By assumption, there is a term t in the
signatureΩ such that ιG(t) = σ . We shall construct a term t+ by induction on t and
show that ιK (t+) = H(ιG(t)) = H(σ ). Base case. t = f , where f is a constant.
Then f + := f〈〉. Now, ιK ( f +) = H(ιG( f )), by construction. Inductive case. t =
f s0s1 · · · sn−1. Ω( f ) = n > 0. Let ιG(si ) = 〈ei , ci ,mi 〉. By induction hypothesis,
for every i < n there is a term s+i such that ιK

(
s+i
) = H(ιG(si )). Then C( f ) is

defined on the ιG(si ) and therefore I( fc0,c1,··· ,cn−1) is defined on 〈ei ,mi 〉 = ιK
(
s+i
)

and yields the value

ιK (t
+) = I( f�c)

(
ιK
(
s+0
)
, ιK
(
s+1
)
, · · · , ιK

(
s+n−1

))

= I( f�c)(〈e0,m0〉, · · · , 〈en−1,mn−1〉))
= H(C( f )(〈e0, c0,m0〉, · · · , 〈en−1, cn−1,mn−1〉))
= H(C( f )(ιG(s0), ιG(s1), · · · , ιG(sn−1)))

= H(ιG(t))

= H(σ )

(3.78)

Second: L(K ) ⊆ H [L]. Let σ ∈ L(K ). Then there is a term t such that ιK (t) = σ .
Put t− as follows:

( f�cs0 · · · sΩ( f )−1)
− := f s−0 s−1 · · · s−Ω( f )−1. (3.79)

In particular, ( f〈〉)− = f . We shall show that H(ιG(t−)) = ιK (t); for then put
γ := ιG(t−). It follows that H(γ ) = σ . The remaining proof is by induction on
t . Base case. Ω( f�c) = 0. In this case H(ιG(t−)) = ιK (t), by definition. Inductive
case. n := Ω( f ) > 0. Let ιG

(
s−i
) = ci and �c = 〈c0, c1, · · · , cn−1〉. Then, using

(3.77):
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H(ιG(t
−)) = H

(
ιG
(

f s−0 · · · s−n−1

))

= H
(
C( f )

(
ιG
(
s−0
)
, · · · , ιG

(
s−n−1

)))

= I( f�c)
(
H
(
ιG
(
s−0
))
, H
(
ιG
(
s−1
))
, · · · , H

(
ιG
(
s−n−1

)))

= I( f�c)(ιK (s0), ιK (s1), · · · , ιK (sn−1))

= ιK (t)

(3.80)

This had to be shown. ��
We shall write H(G) for the grammar K , for future reference. Notice that the

base cases are actually redundant in both parts; they are covered by the induction
step!

This result is of some significance. It says that the categories are redundant. More
precisely, they can be removed from the signs at the cost of introducing more modes
of composition. The proof is completely general; it uses no assumptions on the
grammar. This applies to CFGs but there are other cases too. Categorial grammars
in principle use an infinite number of categories. However, mostly only a finite
number of them is needed in a particular grammar. It may well be that the lexicon
allows to produce only finitely many categories in any case. Such is the case in the
Ajdukiewicz-Bar Hillel Calculus. The Lambek-Calculus is different in that we can
create and use infinitely many categories (for example, if we have the product then
we can form arbitrarily long categories). However, given that the Lambek-Calculus
yields a context free language (see Pentus (1997)) it therefore enjoys a formulation
using no categories whatsoever, by the above theorem.

It is worth pointing out why this theorem is actually not trivial. Suppose that
a language has nouns and verbs and that these word classes are morphologically
distinct. Suppose further that there are roots that can be used as nouns and verbs.
English is such a language. Here are examples: /dust/, /walk/, /leak/ and so on, are
examples of words that can be either nouns or verbs. Dictionaries see the matter as
follows: the word /leak/ can be both a noun and a verb; if it is a noun it means
something, say m, if it is a verb it means something else, say m̂. Thus, dictio-
naries use categories; they say that the language contains two signs: 〈leak, n,m〉
and 〈leak, v, m̂〉. For example, according to the Shorter Oxford English Dictionary
(Onions, 1973), /leak/ as a verb means: “(1) to pass (out, away, forth) by a leak or
leakage. (2) To let fluid pass in or out through a leak.” The noun has this meaning
“(1) A hole or fissure in a vessel containing or immersed in a fluid, which lets the
fluid pass in or out of the vessel [...] (2) action of leaking or leakage.” These two
meanings are clearly distinct. The latter is a physical object (hole) while the former
is a process.

If we eliminate the categories, we are left with the signs 〈leak,m〉 and
〈leak, m̂〉. It seems that vital information is lost, namely that /leak/ means m only
if it is a noun, and likewise that it means m̂ only if it is a verb. On the other hand,
we still know that /leak/ means m and m̂. If we perform the construction above,
the following will happen. The function that forms the past tense applies to the sign
〈leak, v, m̂〉 but not to the sign 〈leak, n,m〉. It is the interpretation of some mode
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f . This mode is now replaced among others by a mode fv , which takes as input
only the sign 〈leak, m̂〉 and forms the sign 〈leaked,past′(m̂)〉. It is not defined on
〈leak,m〉. Similarly the other functions are described.

Notice that the elimination of categories results in a redistribution of grammati-
cal knowledge. The morphological (or syntactic) information is placed elsewhere. It
used to be encoded in the categories of the signs. Now it is encoded in the domain of
the newly introduced functions. For example, the domain of the function fv forming
the past tense of verbs is the set of pairs 〈�x,m〉 where �x is a root and m the verbal
meaning of that root. It is undefined on 〈�y,m〉 if �y cannot be a verbal root or other-
wise does not have the meaning m; it is not defined on 〈�x, m̂〉 if m̂ is not a meaning
of the verbal root �x .

Although categories can be eliminated, this does not mean that they should be
eliminated. One reason is purely practical: in evaluating a term, the computation
may be much easier if we carried along category information, since the categories
can be made to fit the partial nature of the functions. This is quite clear in Categorial
Grammar, for example, which employs something that may be dubbed categorial
well-regimentation; it means that the categories alone can tell whether a term is
definite. To see whether a mode applies to certain signs it is enough to check the
categories. If we used the above definition, we would have to recompute the category
of the signs over and over. Additionally, we shall show below that the elimination of
categories can have the effect of removing desirable properties from the grammar.
Hence it may be desirable to keep the format in the usual way; it is however essential
to know that categories are theoretically redundant.

As I just said, eliminating categories might come at a price. For example,
we might lose compositionality of the grammar. To define compositionality for
c-languages, we simply repeat Definition 3.5 almost verbatim. The following exam-
ple now shows that compositionality and autonomy can be lost under reduction.

Example 3.11 Our example is based on the grammar of Example 3.7. We introduce
a set C = {o, p} of categories. For any given triple 〈e, c,m〉 we define

K( f1)(〈e, c,m〉) :=
{
〈e�a, p,m + 1〉 if c = p,

undefined else.

K( f2)(〈e, c,m〉) :=
{
〈e�a, o,m〉 if c = p,

undefined else.

(3.81)

From this grammar we can define the following independent trigrammar. Let
( fi )

ε∗(e) := e�a, ( f1)
μ∗ (m) := m + 1, ( f2)

μ∗ (m) := m and, finally, ( f1)
κ : p 
→

p, o 
→↓ (= undefined), ( f2)
κ : p 
→ o, o 
→↓. Call this trigrammar K . K is

independent, its reduction via H is not; it also is neither autonomous (only exten-
sionally autonomous) nor compositional (only extensionally compositional). For the
reduction is exactly the grammar of Example 3.7. o

Nevertheless, it is also possible to establish a positive result. Let L be a language.
Say that it allows to guess categories if the following holds. There are functions
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p : E → ℘(C) and q : M → ℘(C) such that if 〈e, c,m〉 ∈ L then p(e) ∩ q(m) =
{c} and that if 〈e, c,m〉 �∈ L then p(e) ∩ q(m) = ∅. This means that if e and m are
given then c is unique; and moreover, what can be inferred from e by itself and by
m itself is enough to guess c.

Proposition 3.2 Let L be an independent c-language that allows to guess cate-
gories. Suppose further that L has only finitely many categories. Then H [L] is
independent.

Proof Let p : E → ℘(C) and q : M → ℘(C) be the guessing functions. Let G be
an independent c-grammar for L . By assumption, for every mode f there are three
functions f ε∗ , f κ∗ and f μ∗ such that

I( f )(〈e0, c0,m0〉, · · · , 〈en−1, cn−1,mn−1〉) (3.82)

= 〈 f ε∗ (e0, · · · , en−1), f κ∗ (c0, · · · , cn−1), f μ∗ (m0, · · · ,mn−1)〉.

Proceed as in the proof of Theorem 3.2. We create modes of the form f�c, where
�c is a sequence of categories of length Ω( f ). Pick an n-ary mode. If n = 0 and
I( f )() = 〈e, c,m〉 let I( f〈〉)() := 〈e,m〉. Now suppose that n > 0. For each n-ary
sequence of elements from C we introduce a new mode f�c. We set

( f�c)ε(e0, · · · , en−1) :=

⎧
⎪⎨

⎪⎩

f ε∗ (e0, · · · , en−1) if for every i < n: ci ∈ p(ei )

and f κ∗ (�c) is defined,

undefined else.
(3.83)

Likewise we put

( f�c)μ∗ (m0, · · · ,mn−1) :=

⎧
⎪⎨

⎪⎩

f μ∗ (m0, · · · ,mn−1) if for every i < n: ci ∈ q(mi )

and f κ∗ (�c) is defined,

undefined else.
(3.84)

This defines the grammar G+ over the signature Ω+. We show the following
claim by induction over the length of the term: (a) if 〈e,m〉 is the value of a
term t of length n then for the unique c such that 〈e, c,m〉 ∈ L , 〈e, c,m〉 is the
value of t−; (b) if 〈e, c,m〉 is the value of a term t of length n then 〈e,m〉 is
the value of some term u such that u− = t . This will then establish the claim.
Notice first that (a) is straightforward by construction, so we need to establish (b).
For length 0 claim (b) is certainly true. Now let t = f (u0, · · · , un−1), where
n = Ω( f ), and let 〈ei ,mi 〉, i < n, be the value of ui . Note right away that
by assumption on L there can be only one such sequence and hence the set is
either empty (no new sign generated) or contains exactly one member (by inde-
pendence of the modes). Suppose first that for some j < n there is no c such
that 〈e j , c,m j 〉 ∈ L . Thus p(e j ) ∩ q(m j ) = ∅. Then for every sequence �c either
f ε�c (e0, · · · , en−1) or f μ�c (m0, · · · ,mn−1) is undefined. Hence none of the functions
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I( f�c) are applicable on this input. Now suppose that for every i there is a gi such that
〈ei , gi ,mi 〉 ∈ L . We have terms u+i such that 〈ei , gi ,mi 〉 is the value of u+i for i <
n. Then for �g := 〈g0, · · · , gn−1〉 both f ε�g (e0, · · · , en−1) and f μ�g (m0, · · · ,mn−1)

are defined and they equal f ε∗ (e0, · · · , en−1) and f μ∗ (m0, · · · ,mn−1), respectively.
Since f κ∗ (g0, · · · , gn−1) is also defined (by definition of the functions f ε�g and f μ�g )
the following value exists:

〈 f ε∗ (e0, · · · , en−1), f κ∗ (g0, · · · , gn−1), f μ∗ (m0, · · · ,mn−1)〉. (3.85)

This is the value of f �g
(
u+0 , · · · , u+n−1

)
, as is easily seen. (If �c �= �g then either of the

functions f ε�c (e0, · · · , en−1) and f μ�c (m0, · · · ,mn−1) is undefined). ��
We close this section by some considerations concerning linguistic theories.

First, the notion of a grammar as opposed to a bigrammar has the drawback of
not distinguishing between syntactically well-formed input and semantically well-
formed input. Or, to phrase this in the technical language of this book, in a grammar
a term is semantically definite if and only if it is orthographically definite. It has a
semantics if and only if it has an exponent. By using bigrammars we make these
two notions independent. However, as much as this might be desirable, it creates
problems of its own. For now we have to decide which of the components is to
be blamed for the fact that a term has no value. We can see to it that it is the
syntax, or we can see to it that it is the semantics. If we add categories, there is
a third possibility, namely to have a term whose category does not exist. Linguistic
theories differ in the way they handle the situation. Categorial Grammar is designed
to be such that if a term is indefinite then it is categorially indefinite. That means,
as long as a term has a category, it is also syntactically and semantically definite.
This is not to say that there are no semantically indefinite terms. To the contrary,
it was based on typed λ-calculus, so there were plenty of semantically ill-formed
terms. But every time a term is semantically ill-formed it would automatically be
categorially ill-formed. In LFG, each level has its own well-formedness conditions,
so that one tries to explain the complexity of the output by factoring out which level
is responsible for which output phenomenon. The theory is modular.

In Generative Grammar there is no separate level of categories. Technically, the
syntax operates before semantics. Syntax operates autonomously from semantics. In
the present formulation this just means that the syntactic functions do not respond
to changes in the meaning (whence the name autonomy above). However, in our
formulation there is no order in the way the terms are checked. The components of
the complex sign are formed in parallel.

3.5 Weak and Strong Generative Capacity

Say that two CFGs G and G ′ are weakly equivalent if they generate the same string
language; and that they are strongly equivalent if they assign the same structure to
the strings. The question arises what we think to be the structure of the sentence.
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It turns out that “same structure” depends on personal conviction. It could be, for
example, identical topology over the string, or identical tree structure, so that only
relabelling is allowed. (See Miller (1999) for an excellent discussion.) Typically, it
is assumed that structure means tree structure. To say that a language is strongly
context free is to assume that the language is given as a set of labelled (ordered)
trees. It is not enough to just consider sets of strings.

In standard linguistic literature it is assumed that syntactic structure is indepen-
dent of semantic structure. Of course this is an illusion, for all tests assume that
when we manipulate certain sentences syntactically we are also manipulating their
semantics. For example, when we consider whether /can/ is a noun and we coor-
dinate it with, say, /tray/ to get /can and tray/, we are assuming that we are
dealing with it under the same semantics that we have chosen initially (/can/ in the
sense of metal object, not the auxiliary). And this should show in the semantics of
the coordinate expression. Hence, no syntactic test really can be performed without
a semantics. Hence, we shall in this section pursue a different route to “structure”,
namely this: we shall explore the idea that structure is in fact epiphenomenal, driven
by the need to establish a compositional grammar for the language.

We have defined the associated string language ε[L] of an interpreted language
to be the set of all strings that have a meaning in L . We can likewise define for a
grammar G the associated string grammar Gε, which consists just in the functions
f ε for f ∈ F . Since f ε may depend on the meanings of the input signs, this
makes immediate sense only for an autonomous bigrammar. Recall that for such
a grammar the functions f ε∗ are defined on EΩ( f ) with values in E . Even in this
case, however, it may happen that L(Gε) �= ε[L] precisely because there might
be terms that are orthographically but not semantically definite. (In general, only
ε[L] ⊆ L(Gε) holds.)

Recall from previous discussions that in grammars the domains of f μ and f ε

are identical. In this case some of the distinctions that are of interest in this section
cannot be made, such as the distinction between weak dependency of f ε on expo-
nents and the weak dependency of f μ on the exponents. Therefore, in this chapter
we shall discuss bigrammars and not grammars. Recall also from Section 2.3 the
discussion of context freeness. There we have defined context freeness of a string
grammar intrinsically. The results in this section use the term the “context free” in
this sense. The results are often more general, applying to concatenative grammars
as well. I occasionally point out where results can be generalized.

Definition 3.9 Let L be an interpreted language and C a class of string grammars.
L is weakly C if the associated string language ε[L] has a grammar in C. L is C if
it has a weakly autonomous bigrammar whose associated string grammar is in C.
L is autonomously C if it has a strongly autonomous bigrammar whose associated
string grammar is in C.

Example 3.12 An example of an interpreted language that is weakly but not
autonomously CF. Let

L :=
{
〈an, i〉 : n ∈ N, i < 22n

}
. (3.86)
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Given a string �x of length n the number of terms that unfold to �x is at most exponen-
tial in n. This means that there is a number p such that if |�x | = n then the number
of parses is bounded by 2pn , provided that n exceeds some number k. This means
that the number of meanings for the string �x cannot exceed 2pn , if k < n. However,
in L �x has 22n

meanings and for all n such that 2n > p we have 22n
> 2pn . o

Theorem 3.3 Let L be unambiguous. Then if L is weakly C it is also autonomously
C.

Proof By assumption, there is a function b : E → M such that 〈e,m〉 ∈ L iff
m = b(e) (in set theory, L is that function b). Also, by assumption there is a string
grammar G = 〈Ω, I〉 for ε[L], which is in C. Now put

Iε( f )(〈e0,m0〉, · · · , 〈eΩ( f )n−1,mΩ( f )−1〉) := I( f )(e0, · · · , eΩ( f )−1)

Iμ( f )(〈e0,m0〉, · · · , 〈eΩ( f )−1,mΩ( f )−1〉) := b(I( f )(e0, · · · , eΩ( f )−1))

(3.87)

The bigrammar G+ := 〈Ω, Iε, Iμ〉 is obviously strongly autonomous. Moreover,
it generates L . By construction, if it generates 〈e,m〉 then (1) e ∈ L(G) = E and
(2) m = b(e). Moreover, if 〈e,m〉 ∈ L then m = b(e) and e ∈ L(G). It follows that
〈e,m〉 ∈ L(G+). ��

We can strengthen this as follows.

Theorem 3.4 Let L be unambiguous and monophone. Then if L is weakly C it is
also strongly C.

Proof By the previous theorem, L is autonomous. So f ε∗ is independent of the
meanings. The art is in defining the semantic functions. By assumption, choos-
ing E := ε[L] and M := μ[L], there is a bijection π : E → M such that
L = {〈e, π(e)〉 : e ∈ ε[L]}. With the help of this bijection put

f μ∗ (m0, · · · ,mΩ( f )−1) := π
(

f ε∗
(
π−1(m0), · · · , π−1(mΩ( f )−1)

))
. (3.88)

This defines a grammar that is compositional. ��
Notice that most interesting languages fail to be monophone. Hence the notions

based on string grammars are not as interesting as they appear. A more interest-
ing notion is provided by restricting the set of grammars to weakly independent
bigrammars. In this case the semantic functions are required to act independently
of the string functions. This means that the added semantic functions must give a
unique value independently of the strings. It is however possible to tailor the domain
of the semantic functions using the exponents. If the latter option is unavailable, we
talk of superstrong generative capacity. It means that the semantic functions do not
need to see the exponents nor even know when they should be undefined.

Definition 3.10 Let L be a language and C a class of string grammars. L is strongly
C if it has a weakly independent bigrammar whose associated string grammar is in
C. L is superstrongly C if it has an independent bigrammar whose associated string
grammar is in C.
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We shall see below an example of a language that is weakly CF but neither super-
strongly nor strongly CF and an example of a language that is strongly CF but not
superstrongly CF. Notice that by definition CFGs are strongly autonomous, so the
distinction between strong and superstrong turns on the possibility to have a weakly
compositional or compositional CFG, respectively.

Example 3.13 (See also Janssen (1997).) This example shows that weakly equiva-
lent grammar classes may not be strongly equivalent. A CFG G is left regular if it
only has rules of the form A → Bx , A → ε, or A → x , A and B nonterminals and
x a terminal symbol. G is right regular if it only has rules of the form A → x B,
A → ε or A → x , A and B nonterminals and x a terminal symbol. Let CL be
the class of left regular grammars and CR the class of right regular grammars. The
language we look at is the language of binary strings and their ordinary denotations:
A := {O, L}. For nonempty �x ∈ A∗ we put

n(O) := 0

n(L) := 1

n(�xO) := 2n(�x)
n(�xL) := 2n(�x)+ 1

(3.89)

Finally,

L := {〈�x, n(�x)〉 : �x ∈ A+}. (3.90)

This language is weakly left regular and weakly right regular. It is super strongly
left regular but not strongly right regular. Here is a left regular strongly autonomous
bigrammar (couched as a grammar). F := { f0, f1, f2, f3}, Ω( f0) = Ω( f1) = 0,
Ω( f2) = Ω( f3) = 1.

I( f0)() := 〈O, 0〉
I( f1)() := 〈L, 1〉

I( f2)(〈�x, n〉) := 〈�x�O, 2n〉
I( f3)(〈�x, n〉) := 〈�x�L, 2n + 1〉

(3.91)

There is however no independent right regular bigrammar for this language. Sup-
pose to the contrary that there is such a bigrammar. It has zeroary functions (to
reflect the terminal rules) and unary functions. The latter reflect the nonterminal
rules. Hence, they must have the form

f ε(〈�x, n〉) = �y��x (3.92)

where �y is a single symbol.
I now give a combinatorial argument that is worth remembering. Consider the

following strings:

LO, LOO, LOOO, LOOOO, · · · (3.93)
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These strings must be obtained by adding /L/ to a string consisting in zeroes. We
do not know which function is responsible for adding the /L/ in the individual cases
(we may have any number of modes) but what we do know is that there is one
mode f such that I( f ) creates two of them, say /LOOO/ and /LOOOOOOO/. By defini-
tion, it creates them from the strings /OOO/ and /OOOOOOO/, respectively. Now, these
strings have the same meaning, namely 0. If the grammar is compositional, f μ is
independent of the exponent. However, we must now have f μ(0) = 8, as well as
f μ(0) = 128, a contradiction.

I( f )(〈OOO, 0〉) = 〈LOOO, 8〉 = 〈 f ε(OOO), f μ(0)〉
I( f )(〈OOOOOOO, 0〉) = 〈LOOOOOOO, 128〉 = 〈 f ε(OOOOOOO), f μ(0)〉 (3.94)

o

This argument is pretty robust, it precludes a number of strategies. For example,
making syntactic or semantic functions partial will obviously not improve matters.

The example is useful also because it shows the following. Suppose that C and
D are classes of string grammars such that every string language that is C is also
D. Then it does not necessarily hold that a language that is superstrongly C is also
superstrongly D. For in the above example, we have two classes of grammars that
generate the same set of string languages but they are not identical when it comes to
interpreted languages.

The proof in the previous example is somewhat less satisfying since CFGs also
use categories, though it works in this case as well. In order to include categories
we have to switch to c-languages. We shall not introduce special terminology here
to keep matters simple. Basically, if L is a language of c-signs it is called weakly
CF if the associated string language is CF. It is called CF if there is an independent
c-grammar for it whose string and category part taken together is CF.

Example 3.14 We continue Example 3.13. Given the same language L we show
that there is no independent right regular c-language L ′ whose projection to A∗ ×
M is L . This is to say, allowing any classification L ′ of string-meaning pairs into
finitely many categories, there is no independent right regular c-grammar for L ′.
The argument is basically the same. We look at unary functions. If f is unary, it has
the form

I(〈�x, γ, n〉) = 〈 f ε∗ (�x), f κ∗ (γ ), f μ∗ (n)〉 (3.95)

for some f ε∗ , f κ∗ and f μ∗ . Furthermore, f ε∗ (�x) = �y��x . Look at the signs σp :=
〈LOp, γp, 2p〉 (p ∈ N). Let tp be an analysis term of σp. Either tp = f for some

zeroary f , or tp = f sp for some unary f . In the latter case, f ε∗ (�x) = LOk��x for
some k that depends only on f and so sp unfolds to 〈Op−k, δp, 0〉. Now we look at
f μ∗ . We have f μ∗ (0) = 2p. It follows that if q �= p then tq does not have the form
f sq . There are however only finitely many functions. o
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Notice that for the argument to work we did not have to assume that there are
only finitely many categories. For the argument requires only (weak!) independence
of the meaning functions from the exponents and the categories.

Example 3.15 An example to show that strong and superstrong CF languages are
distinct. Consider the number expressions of English. We may for simplicity assume
that the highest simple numeral is /million/. To keep this example small we add
just the following words: /one/, /ten/, /hundred/, /thousand/. It will be easy to
expand the grammar to the full language. Number expressions are of the following
kind: they are nonempty sequences

�x�
0 (million�)

p0��x�
1 (million�)

p1� · · ·� (�x�
n−1million�)

pn−1 (3.96)

where p0 > p1 > · · · > pn−1 and the �xi are expressions not using /million/,
which are nonempty sequences of the following form.

((one� | ten� | one�hundred�)thousand�)? (3.97)

(one� | ten� | one�hundred�)?

This language is not weakly CF. It does not satisfy the Pumping Lemma (see
Exercise 3.13). It can therefore not be superstrongly CF. However, it is strongly CF.
Here is a grammar for it. Call a block an expression containing /million/ only at
the end. Say that �x is m-free if it does not contain any occurrences of /million/ and
that it is t-free if it is m-free and does not contain any occurrences of /thousand/.
The grammar is given in Table 3.1. It has two modes of composition: “additive” con-
catenation and “multiplicative” concatenation. Since the language is unambiguous,

Table 3.1 Number names

I( f0)() := 〈one, 1〉
I( f1)() := 〈ten, 10〉
I( f2)() := 〈hundred, 100〉
I( f3)() := 〈thousand, 1000〉
I( f4)() := 〈million, 1, 000, 000〉

I(a)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈�x� � �y,m + n〉 if �x is a block and m > n

or �x m-free but not t-free,

and �y is t-free,

undefined else.

I(m)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈�x� � �y,mn〉 if �x is a block and �y = million

or �x = one and

�y = hundred, thousand

or �x = one�hundred,

�y = thousand,

undefined else.
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we can formulate a bigrammar using string functions that are total and semantic
functions that are partial. Now define

A(�x, �y,m, n) if and only if either (a) �x is a block and m > n or (b) �x is m-free but not t-free
and �y is t-free.

Also define

B(�x, �y,m, n) if and only if either (a) �x is a block and �y = million or (b) �x = one and
�y ∈ {hundred, thousand} or (c) �x = one�hundred and �y = thousand. (See Fig. 3.1).

Then define the modes as follows.

aε(〈�x,m〉, 〈�y, n〉) := �x� ��y

aμ(〈�x,m〉, 〈�y, n〉) :=
{

m + n if A(�x, �y,m, n),
undefined else.

mε(〈�x,m〉, 〈�y, n〉) := �x� ��y

mμ(〈�x,m〉, 〈�y, n〉) :=
{

mn if B(�x, �y,m, n),
undefined else.

(3.98)

Thus, the semantic functions are weakly independent of the exponents but not
strongly independent.

Variations can be played on this theme. First, if we introduce the word /zero/ and
allow the use of expressions such as /zero�(million�)k/ then the semantic condi-
tion “m > n” in A(�x, �y,m, n) must be replaced by a syntactic condition involving
the number k. In this case we may however say that the semantic functions are total
while the syntactic functions are restricted and so the language is not really CF. o

Example 3.16 Here is another example, see Radzinski (1990). In Chinese, yes-no
questions are formed by iterating the VP. I reproduce the syntax of Chinese in
English. To ask whether John went to the shop you say

John went to the shop not went to the shop? (3.99)

The recipe is this. Given a subject �x and a VP �y, the yes-no question is formed like
this

�x��y�not��y? (3.100)

The data for Chinese are not without problems but I shall ignore the empirical com-
plications here and pretend that the above characterization is exact. One analysis
proceeds via copying. An alternative analysis is the following. Observe that in Chi-
nese, disjunctive statements are formed like this. To say that subject �x �ys or �zs you
may simply say

�x��y��z. (3.101)



3.5 Weak and Strong Generative Capacity 95

In particular, a disjunction between �y and not �z is expressed like this:

�x��y�not��z. (3.102)

In this case it is required that �z �= �y. This suggests that we may also form the yes-no
question by concatenation, which however is partial. It is possible to construct a
weakly CF bigrammar but not a strongly CF one. o

I shall now return to the question whether ambiguity can be removed from a lan-
guage. The question is whether there is a transform of a language into an unambigu-
ous language and how that affects the possibility of generating it with a given class
of grammars. It shall emerge that there are languages that are inherently structurally
ambiguous. This means the following. Given a language L that is unambiguous,
every derivation of a given exponent must yield the same meaning. Thus, as one
says, all structural ambiguity is spurious.

Definition 3.11 Let G be a grammar. A G-ambiguity is a pair (t, t ′) of nonidentical
terms such that ιG(t) = 〈e,m〉 and ιG(t ′) = 〈e,m′〉 for some e, m and m′. In this
case we call e structurally ambiguous in G. The ambiguity (t, t ′) is spurious if
m = m′. Also, (t, t ′) is a lexical ambiguity, where t ≈0 t ′, which is defined as
follows:

f ≈0 g if Ω( f ) = Ω(g) = 0

f s0 · · · sn−1 ≈0 f t0 · · · tn−1 if n > 0, f = g and si ≈0 ti for all i < n
(3.103)

An ambiguity that is not lexical is called structural.

Alternatively, an ambiguity is a pair (t, u)where tε = uε. Let L be a language. Then
define the functional transform of L in the following way. For e we put e◦ := {m :
〈e,m〉 ∈ L}.

L§ := {〈e, e◦〉 : e ∈ ε[L]}. (3.104)

The functional transform of L is such that every e has exactly one meaning, which
is the (nonempty) set of meanings that e has in L .

Example 3.17 We let A := {p, 0, 1,¬,∧,∨}. F := { f0, f1, f2, f3, f4, f5},
Ω( f0) := 0, Ω( f1) := Ω( f2) := Ω( f3) := 0, Ω( f4) := Ω( f5) := 2. Meanings
are sets of functions from V := {0, 1}∗ to {t, f }. We define UBool as the language
generated by the following CFG GU . For a variable p�x , [p�x] = {β : β(�x) = t}.
Given U = [p�x], it is possible to recover �x . Given U , let †U be the unique �x for
which [�x] = U . The set of all valuations is denoted by Val.
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I( f0)() := 〈p, [ε]〉
I( f1)(〈�x,U 〉) := 〈�x�0, [(†U )�0]〉
I( f2)(〈�x,U 〉) := 〈�x�1, [(†U )�1]〉
I( f3)(〈�x,U 〉) := 〈¬��x,Val−U 〉

I( f4)(〈�x,U 〉, 〈�y, V 〉) := 〈�x�∧��y, V ∩U 〉
I( f5)(〈�x,U 〉, 〈�y, V 〉) := 〈�x�∨��y, V ∪U 〉

(3.105)

Notice that this language is like natural language in being highly ambiguous: there
are no brackets. Thus, the expression /¬p0∧p/ can be read in two ways: it has
the analysis terms f3 f4 f1 f0 f0, with negation having scope over conjunction and
f4 f3 f1 f0 f0, with conjunction having scope over negation. Clearly, the meanings
are different. o

Let us now try to see whether we can define a CFG for UBool§. We shall keep
the string part of GU from Example 3.17. Look at the strings /p�x∧¬p�x /, where
�x ∈ {0, 1}∗. As they are uniquely readable and they have no satisfying valuation,
their meaning in UBool§ is {∅}. On the other hand, /p�x∧¬p�x∨p�y/ has three analyses
corresponding to the following bracketed strings:

/((p�x∧(¬p�x))∨p�y)/, /(p�x∧(¬(p�x∨p�y)))/, /(p�x∧((¬p�x)∨p�y))/ (3.106)

Thus the meaning is {[�y], [�x] ∩ [�y],∅}. Let us now look at one particular analysis.

J ( f5)(〈p�x∧¬p�x, {∅}〉, 〈p�y, [�y]〉) = 〈p�x∧¬p�x∨p�y, {[�y], [�x] ∩ [�y],∅}〉 (3.107)

In this analysis, there are infinitely many results for this pair of inputs, so this is
a case of a grammar that cannot be strongly compositional. There is a possibility,
though, of making the result undefined for this analysis term. Another analysis is
this.

J ( f4)(〈p�x, [�x]〉, 〈¬p�x∨p�y, {(Val − [�x]) ∪ [�y],Val−([�x] ∪ [�y)]}〉) (3.108)

= 〈p�x∧¬p�x∨p�y, {[�y], [�x][�y],∅}〉

Here, the arguments provide enough information to compute the result. Thus, it is
conceivable that an independent grammar exists.

Notice that we have so far only shown that there can be no compositional CFG
that uses the structure that the formulae ordinarily have. It is not ruled out that some
unconventional structure assignment can actually work. In fact, for this language no
compositional CFGs exist. As a warm-up for the proof let us observe the following.
Let ϕ be a formula that is composed from variables using only conjunction. Then
although ϕ may be ambiguous, all the ambiguity is spurious: it has one meaning
only. It is the set of assignments that make all occurring variables true. Notice addi-
tionally that neither the order nor the multiplicity of the variables matters. Thus
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the following have identical meaning: /p∧p0∧p1/, /p1∧p0∧p1∧p/, /p0∧p∧p1∧p1/.
Next we consider formulae of the form α∨ϕ, where α is a variable and ϕ is of
the previous form. An example is /p0∨p∧p1∧p1∧p2/. We assume that α does not
occur in ϕ and that all occurrences of the same variable are adjacent. Up to spurious
ambiguity this formula has the following bracketing (conjunction binding stronger
than disjunction):

(p0∨p∧p1∧p1∧p2)

(p0∨p)∧p1∧p1∧p2

(p0∨p∧p1)∧p1∧p2

(p0∨p∧p1∧p1)∧p2

(3.109)

The general form is (α ∨ χ) ∧ ρ, and its satisfying valuations make either α ∧ ρ
or χ ∧ ρ true. α is a single variable. It is easy to see that it makes no difference
whether a variable occurs twice or more, while it may matter whether it occurs once
or twice. If v occurs once, it has a choice to be in χ or in ρ. How often it occurs in
either of them does not matter. If v occurs twice, it may additionally occur both in χ
and ρ. However, even in this case there is no difference. Assuming that v does not
occur in α, χ or ρ, here are the choices if it occurs just once:

(α ∨ χ) ∧ v ∧ ρ, (α ∨ χ ∧ v) ∧ ρ (3.110)

Here are the choices if it occurs twice:

(α ∨ χ) ∧ v ∧ v ∧ ρ, (α ∨ χ ∧ v) ∧ v ∧ ρ, (α ∨ χ ∧ v ∧ v) ∧ ρ. (3.111)

The first reading of (3.111) is the same as the first reading of (3.110), the last reading
of (3.111) the same as the last reading of (3.110). The middle reading is synonymous
with the first. (This argument requires χ to be nonempty.) For the purpose of the next
theorem say that a bigrammar 〈Ω, Iε, Iμ〉 is a concatenation bigrammar if 〈Ω, Iε∗〉
is a concatenation grammar. (Notice that the meaning functions can be partial, too
and that their partiality is not counted in the definition, since we take the string
reduct of the grammar.)

Theorem 3.5 UBool§ has no independent concatenation bigrammar. Hence,
UBool§ is not strongly CF and also not superstrongly CF.

Proof The proof will establish that there is no strongly independent concatenative
grammar that has no syncategorematic symbols. We leave the rest of the proof to the
reader. The grammar uses the alphabet of the language, the meanings as specified
and a set C of categories. The functions on the exponents are total. Partiality exists
in the semantics. It will emerge from the proof, however, that introducing partiality
will not improve the situation. We shall show that for given n there is an exponential
number of formulae that have to be derived from a polynomially bounded family
of formulae via a one step application. This is impossible. If the modes are partial,
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this remains impossible since it gives us less definite terms not more. Superstrongly
CFGs do not allow any dependency of the meaning on the strings. Thus, for every
mode f and σi = 〈ei ,mi 〉, i < Ω( f ), we have

I( f )(σ0, · · · , σΩ( f )−1) = 〈 f ε(e0, · · · , eΩ( f )−1), f μ(σ0, · · · , σΩ( f )−1)〉.
(3.112)

Let us look at the following kinds of expressions, where V = p(0 | 1)∗ is the set of
variables:

V∨(V∧)+V∨V (3.113)

For ease of understanding, we shall first ignore the internal structure of variables and
present them as units. The more concrete structure of our formulae is as follows, in
ordinary notation:

ϕ = p0 ∨ p2 ∧ p4(∧p4) ∧ p5(∧p5) · · · pn+3(∧pn+3) ∧ p3 ∨ p1 (3.114)

Let us say that ϕ has a cut at i if the letter pi is repeated twice. Let I be the set of
indices i such that pi occurs in ϕ; let R be a subset of I . Then by ϕR denote the
formula that is like ϕ having a cut exactly at those i that are in R. We show first the
following claim.

Claim. Let R, S ⊆ [4, n + 3] = [4, 5, · · · , n + 3]. If R �= S then the meaning of ϕR in
UBool§ is different from that of ϕS .

Let us look at the possible readings of such a formula. Pick a variable v = pi .
Bracketings are of several forms.

The first set is where the scopes of the disjunctions are nested: we consider the
case where the first disjunct takes scope over the second (the other case is dual).
(Here, ∧ binds stronger than ∨. γ1 may be empty; δ2 may not be.)

(Form 1) (p0 ∨ γ1 ∧ (γ2 ∧ pi ∧ δ ∨ p1)) or (p0 ∨ γ1 ∧ (γ2 ∧ pi ∧ pi ∧ δ ∨ p1))

(Form 2) (p0 ∨ γ ∧ pi ∧ δ1 ∧ (δ2 ∨ p1)) or (p0 ∨ γ ∧ pi ∧ pi ∧ δ1 ∧ (δ2 ∨ p1))

(Form 3) (p0 ∨ γ ∧ pi ∧ (pi ∧ δ ∨ p1))

The two variants of Form (1) and (2) are equivalent. Form (3) is equivalent with
Form (2) with δ = δ2. Let us now consider the case where the scopes of the disjunc-
tion signs do not intersect. We get the following list of forms, where it is assumed
that γ , δ1 and δ2 do not contain pi .

(Form A) (p0 ∨ γ ∧ pi )∧ δ1 ∧ (δ2 ∨ p1) or (p0 ∨ γ ∧ pi ∧ pi )∧ δ1 ∧ (δ2 ∨ p1);

(Form B) (p0 ∨ γ1)∧ γ2 ∧ (pi ∧ δ ∨ p1) or (p0 ∨ γ1)∧ γ2 ∧ (pi ∧ pi ∧ δ ∨ p1);

(Form C) (p0 ∨ γ1) ∧ γ2 ∧ pi ∧ δ1 ∧ (δ2 ∨ p1)

or (p0 ∨ γ1) ∧ γ2 ∧ pi ∧ pi ∧ δ1 ∧ (δ2 ∨ p1);
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(Form D) (p0 ∨ γ1) ∧ γ2 ∧ pi ∧ (pi ∧ δ ∨ p1);

(Form E) (p0 ∨ γ ∧ pi ) ∧ pi ∧ δ1 ∧ (δ2 ∨ p1); and

(Form F) (p0 ∨ γ ∧ pi ) ∧ (pi ∧ δ ∨ p1).

(We allow δi and γ j to be empty.) The two variants of Forms (A), (B) and (C) are
equivalent. Forms (D), (E) and (F) only exist if the formula has a cut at i . Thus, it
is enough if we show that one of them has no equivalent formula of either of (A),
(B) and (C). It is easily seen that Form (D) is equivalent to Form (C) with δ2 = δ.
Similarly, Form (E) is equivalent to Form (C) with γ1 = γ . Finally, we turn to Form
(F):

(p0 ∨ γ ∧ pi ) ∧ (pi ∧ δ ∨ p1)

= (p0 ∧ pi ∧ δ) ∨ (p0 ∧ p1) ∨ (γ ∧ pi ∧ pi ∧ δ) ∨ (γ ∧ pi ∧ p1)
(3.115)

Form (F) has a disjunct of the form p0 ∧ p1. This is only the case with Forms (1)
and (2), (A) with δ1 empty and (B) with γ2 empty. Form (F) implies (¬p0)→ γ , as
well as (¬p1) → δ. In Form (1), we therefore must have γ1 = γ and in Form (2)
δ2 = δ. Form (F) implies ¬(p0 ∧ p1)→ pi . This is not a consequence of Forms (1)
and (2), (A) or (B). Thus, Form (F) is not equivalent to any of the previous forms.

It follows that if the formula has a cut at i , it has a reading different from the
formula obtained by removing this cut by removing one occurrence of pi . Now, i
was completely arbitrary. Thus the claim is established.

Now consider an analysis term of ϕR . The immediate constituents of ϕR cannot
contain two disjunction symbols. They can only contain one. In this case, however,
the cuts present in ϕR are not reflected in the semantics. To conclude the argument,
let us assume that the analysis term of ϕR is f s0 · · · sΩ( f )−1. We shall look at all
possible analysis terms for the ϕS , S ⊆ [4, n+3]. We look at (3.112) and count how
many meanings we can compose in this way. The syntactic function is total. Let k∗
be the maximal arity of functions and p := card C the number or nonterminal sym-
bols. Choose a decomposition into parts; each part has a meaning that is determined
just by the subset of [i, j] ⊆ [2, n + 3] of indices for variables that occur in it (and
whether or not it contains p0, p1). For the category there is a choice of p symbols.
The meanings must exhaust the set [2, n + 3]. They can overlap in a single number
(since sometimes pi can occur twice). There are in total at most (2p)k

∗( n+2
k∗−1

)
ways

to cut ϕR into maximally k∗ parts of different category and different meaning. The
combinations of category and meaning do not depend on R. We have

(2p)k
∗
(

n + 2

k∗ − 1

)

< (2p(n + 2))k
∗

(3.116)

Out of such parts we must form in total 2n different meanings to get all the ϕS ,
using our modes. Assume that we have μ modes. If n is large enough, however,
μ(2p(n + 2))k

∗
< 2n . ��



100 3 Compositionality

The proof has just one gap and it consists in the question of variables. The vari-
ables cannot be simple and need to be constructed as well using some modes. It is
not difficult to see that here again just a polynomial number of choices exist, too few
to generate the entire number of formulae that are needed. (See also Exercise 3.14
below.)

There is an interesting further question. Consider in place of the meaning e◦
another one; given that meanings are propositions we can form the disjunctions of
all the possible meanings.

e∨ :=
∨
{m : 〈e,m〉 ∈ L}

L∨ := {〈e, e∨〉 : e ∈ ε[L]}
(3.117)

This leads to the language UBool∨. It is not clear whether this language is
(super)strongly CF.

Exercise 3.12 Prove Theorem 3.3. Prove that the theorem can be strengthened to
languages where a string has boundedly many meanings.

Exercise 3.13 The Pumping Lemma says that if a string language L is CF then there
is a number k such that for every string �x ∈ L of length> k there is a decomposition
�x = �u �y�v�z �w such that for all n (including n = 0): �u �yn �v�zn �w ∈ L . (See Section 3.4.)
Show that the language in Example 3.15 does not satisfy the Pumping Lemma.

Exercise 3.14 Look again at UBool. Call a formula a string of ε[UBool] that con-
tains /p/. (The remaining strings are indices.) Subformulae are (occurrences) of
formulae in the ordinary sense (for example, they are the parts defined by GU in
Example 3.17). We shall gain some insight into the structure of parts of a formula.
Show the following. Let �x be a formula and �y be a substring that is a formula. Then
there is an index �z such that �y�z is a subformula of �x. Thus, any context free grammar
that generates the set of formulae proceeds basically like GU modulo appending
some index at the end of a formula.

Exercise 3.15 Use the previous exercise to show that there is no strongly indepen-
dent context free grammar avoiding syncategorematic rules for UBool§.

Exercise 3.16 Let L be a language with finite expressive power (that is, with μ[L]
finite). Then if L is weakly C, it is strongly C. Give an example of a language that
is weakly C but not superstrongly C. Remark. For the proof to go through we need
some trivial assumptions on C. I propose to assume that membership in C depends
only on the fact that all I( f ) have a certain property P .

3.6 Indeterminacy in Interpreted Grammars

This section is largely based on Kracht (2008), though the proof of the central theo-
rem has been greatly simplified. We have considered in Section 2.4 the notion of an
indeterminate grammar. I shall now pick up that theme again, fulfilling my earlier
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promise to show that if we are serious about compositionality then indeterminacy is
not an option.

Definition 3.12 Let E and M be sets of exponents and meanings, respectively. An
indeterminate interpreted grammar over E × M is a pair 〈Ω, I〉, where Ω is a
signature and for every f ∈ F , I( f ) ⊆ (E × M)�( f )+1. The language generated
by G, in symbols L(G), is defined to be the least set S such that for every f ∈ F
and all σi ∈ E × M , i < Ω( f ) and τ ∈ E × M :

If for all i < Ω( f ), σi ∈ S and if 〈σ0, · · · , σΩ( f )−1, τ 〉 ∈ I( f ), then τ ∈ S.
(3.118)

This is the broadest notion, allowing to form signs from signs. Now, as before we
have to replace grammars by bigrammars. The definition is completely analogous.
Instead of a pair of functions f ε and f μ we have a pair of relations

f ε ⊆ (E × M)Ω( f ) × E,
f μ ⊆ (E × M)Ω( f ) × M.

(3.119)

This is called an indeterminate (interpreted) grammar. G is autonomous if the
exponent of the output sign is independent of the meanings. We can explicate this
as follows. For every f and σi = 〈ei ,mi 〉 and σ ′i = 〈ei ,m′

i 〉 ∈ E × M (where
i < Ω( f ))

if 〈�σ , e〉 ∈ f ε then 〈 �σ ′, e〉 ∈ f ε. (3.120)

This can be restricted to the language generated by the grammar but we refrain
from introducing too many fine distinctions. Dually, compositionality is defined.
Let us draw some consequences. If G is indeterminate, we say that the indeter-
minacy of G is semantically spurious if for all σi ∈ L(G), i < Ω( f ) + 1, if
〈σ0, · · · , σΩ( f )−1, 〈e,m〉〉 ∈ I( f ) and 〈σ0, · · · , σΩ( f )−1, 〈e,m′〉〉 ∈ I( f ) then
m = m′. This means that G restricted to its own language actually has a seman-
tically functional equivalent (the exponents may still be indeterminate even inside
the language). Syntactically spurious indeterminacy is defined dually.

Proposition 3.3 Let L be unambiguous and assume that G is an indeterminate
interpreted grammar for L. Then the indeterminacy of G is semantically spurious.

The proof is straightforward. If we generate two signs 〈e,m〉 and 〈e,m′〉 from the
same input (in fact from any input), then m = m′.

Thus, G is already autonomous (at least extensionally). For an unambiguous
grammar it may still be possible to write an indeterminate compositional (and hence
independent) grammar. In the remainder of this section we study boolean logic and
give both a positive and a negative example. Recall from Example 2.22 boolean
logic in Polish Notation and the unbracketed notation as given in Example 3.17.
Here we shall give yet another formulation, this time with obligatory bracketing.
The details are similar to those in Example 3.17. The only difference is that the
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alphabet also contains the symbols /(/ and /)/ and that the formation rules insert
these brackets every time a new constituent is being formed:

I( f0)() := 〈p, [ε]〉
I( f1)(〈�x,U 〉) := 〈�x�0, [†(U )�0]〉
I( f2)(〈�x,U 〉) := 〈�x�1, [†(U )�1]〉
I( f3)(〈�x,U 〉) := 〈(�¬��x�),Val−U 〉

I( f4)(〈�x,U 〉, 〈�y, V 〉) := 〈(��x�∧��y�), V ∩U 〉
I( f5)(〈�x,U 〉, 〈�y, V 〉) := 〈(��x�∨��y�), V ∪U 〉

(3.121)

We call this language Bool. This grammar defines the semantics of a formula to be
a set of valuations. There is a different semantics, which is based on a particular
valuation β and which is defined as follows.

β(ϕ) =
{

1 if β ∈ [ϕ],
0 else.

(3.122)

Example 3.18 Let B be the string language of boolean expressions. Pick a valuation
β and let

L := {〈ϕ, β(ϕ)〉 : ϕ ∈ B}. (3.123)

Consider an indeterminate string grammar G = 〈F,Ω〉 for it, for example the
grammar from Exercise 2.22. Put F2 := { f 0, f 1 : f ∈ F} and let Ω2( f 0) :=
Ω2( f 1) := Ω( f ). Finally, put

I( f 0) := {〈〈ei ,mi 〉 : i < Ω( f )+ 1〉 : 〈ei : i < Ω( f )+ 1〉 ∈ I( f ),
β(eΩ( f )) = 0,mΩ( f ) = 0},

I( f 1) := {〈〈ei ,mi 〉 : i < Ω( f )+ 1〉 : 〈ei : i < Ω( f )+ 1〉 ∈ I( f ),
β(eΩ( f )) = 1,mΩ( f ) = 1}.

(3.124)

So the relations are split into two variants, where the first set contains the tuples
whose last member is a formula that is true under the valuation and the second rela-
tion collects the other tuples. This is an indeterminate interpreted grammar. Call it
G2. It might be that the newly created symbols are actually interpreted by functions
but this does not have to be the case. A case in point is Example 2.22, the grammar
for Polish Notation. A given string of length n may possess up to n adjunction sites,
thus making the resulting grammar G2 indeterminate again. Consider for example
the string /∧p∧p∧pp/. Assume that β(p) = 1. Then the value of that formula is also
1. The string /∧p/ can be adjoined at several places, marked here with ◦:

◦∧◦p◦∧◦p◦∧◦p◦p (3.125)
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In all cases the resulting formula has value 1 but it is clear that we do not even need
to know this. There are more than two output strings, so some of them must have
the same truth value. o

That the semantics is finite is used essentially in the proof. The example is of
course quite dissatisfying; the functions are undefined depending on what the mean-
ing of the string is. On the other hand, there may be a way to circumvent the depen-
dency on semantics, which is to say, the fact that the meaning figures in the definition
of the functions may just be an artefact of the way we defined them. However, there
are different examples to show that indeterminacy is not such a good idea.

In what is described below I shall look into the possibility of defining a compo-
sitional adjunction grammar for the language of boolean expressions, where ϕ has
as its meaning the set of all assignments that make it true. The rest of this section is
devoted to the proof of the following theorem.

Theorem 3.6 There is no independent tree adjunction bigrammar (and hence no
compositional tree adjunction grammar) for Bool in which all meaning functions
are total.

Independence is of course essential. Since Bool is unambiguous, there can also be no
compositional grammar, for autonomy can be guaranteed at no cost: the dependency
of the exponents on the meanings is eliminable since we can recover the meaning
from the exponent.

Before we can embark on the proof, we have to make some preparations.

Definition 3.13 Let L ⊆ E × M be an interpreted language and D ⊆ E . Then
L � D := L ∩ (D × M) is the D-fragment of L . If E = A∗ and D = B∗ then we
also write L � B in place of L � B∗.

The case where we restrict to a subalphabet is the one that we shall use here. We
shall study the following fragments of Bool:

Var := Bool � {p, 0, 1}
Bool∧ := Bool � {(, ), 0, 1, p,∧}
Bool¬ := Bool � {(, ), 0, 1, p,¬}

(3.126)

Now assume G is a grammar for L . Then for every f , let

f ε � D := f ε � (D × M)

f μ � D := f μ � (D × M)
(3.127)

Finally,

f � D := ( f ε � D)× ( f μ � D). (3.128)

For this to be well defined we need to show that the functions stay inside D × M .
For a string �x and a symbol a, let �a(�x) denote the number of occurrences of a in �x .
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For E = A∗, f : En → E is pseudoadditive if for every a ∈ A: either �a(�xi ) = 0
for all i < n and then �a( f (�x0, · · · , �xn−1)) = 0 or

�a( f (�x0, �x1, · · · , �xn−1)) ≥
∑

i<n

�a(�xi ). (3.129)

If equality holds, f is called additive. A grammar is additive if every function
is. (A combination of Structure Preservation and Syncategorematicity Prohibition
guarantees additivity, actually.) Now suppose further that our grammar is additive
and that D = B∗. Then if all the �xi are in B∗, so is f ε(�x0, · · · , �xn−1). Hence we
have a grammar

(I � B)( f ) := I( f ) � B

G � B := 〈Ω, I � B〉 (3.130)

Now, G � B generates a subset of L , by construction. Moreover, by induction on
the term t we can show that if ιG(t) ∈ (B∗ × M) then ιG�B(t) = ιG(t). It follows
that G � B generates exactly G � B.

Proposition 3.4 Suppose that G is an additive compositional bigrammar for L.
Then G � B is an additive compositional bigrammar for L � B.

Thus if G is an adjunction grammar so is G � B.

Example 3.19 We look in some detail at the fragment Var. Syntactically, we may
generate this language by admitting adjunction anywhere except before the letter
/p/. Yet, for every weakly compositional grammar G there can only be a bounded
number of adjunction sites for most variables. Consider, for example, the adjunction
string 〈1, ε〉 and the variable

p000000· · ·0 (3.131)

For simplicity we fix the adjunction sites to be of the form 〈p�x, �y, ε〉. Depending
on �x we get a different variable. Thus, for any given rule only one of the adjunction
sites from {〈p0m, 0k−m, ε〉 : m ≤ k} may be chosen for the rule. One way to achieve
this is to only use adjunction strings of the form 〈�x, ε〉 and adjunction sites of the
form 〈p, �y, ε〉. o

Example 3.20 Another place where caution needs to be exercised when doing
adjunction is the following. Let ϕ be a formula consisting in variables and their
negations. Suppose that ϕ contains a variable and its negation, as in

(p01∧(¬p01)) (3.132)
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Then no valuation satisfies ϕ. In other words, we have 〈ϕ,∅〉 ∈ Bool. Consider now
what happens if we adjoin to one of them some string. Then one of the occurrences
disappears and the formula may suddenly have valuations that satisfy it. Let us
adjoin /1/, for example:

(p101∧(¬p01)) (3.133)

Any valuation mapping /p101/ to 1 and /p01/ to 0 satisfies this formula. Suppose
that G is compositional. (Weakness does not add anything interesting here.) As G
has only boundedly many rules, there can only be boundedly many values computed
from any given meaning. Thus, if G has k rules, card({ f μ(∅) : f ∈ G}) ≤ k. It
follows that adjunction can target only a restricted set of contradicting variables. o

Adjoining binary strings to variable names is a good case to show that the inde-
pendence of syntax and semantics is actually useless for practical applications. In
the case of adjoining other strings, their adjunction is actually syntactically heavily
restricted, see Kracht (2008).

Let me now prove the central theorem. Assume that we have an independent
adjunction bigrammar G for Bool∧. Let ρ be the number of rules of G and κ be the
maximum number of symbol occurrences added by any rule. A tree is called binary
if it only contains occurrences of /0/ and /1/. Choose a formula of the following
form.

ϕ = (p�x0∧(p�x1∧(p�x2 · · ·∧p�x2ρ+2)· · ·))) (3.134)

The length of the �xi is subject to the following restriction. (a) |�xi | > (2ρ + 3)κ and
(b) for i < j < 2ρ + 3: ||�xi | − |�x j || > κ .

Let ϕ be derived by G. Then it contains at most 2ρ + 2 occurrences of trees with
symbols other than /0/ and /1/. (It is not hard to see that for every occurrence of /p/
one occurrence of /∧/, of /(/ and /)/ must be added as well and similarly for the other
nonbinary symbols.) Thus, by Condition (a), each of the �xi contains occurrences
added by a binary tree. Thus, in each of the variables we can somewhere adjoin a
binary tree. There are 2ρ + 3 variables. As a single adjunction can manipulate up to
two variables, we have ρ+ 1 different adjunction sites for binary trees, each manip-
ulating a different set of variables. As we have ρ many rules, two of the adjunction
sites must yield the same output semantically. (At this point totality enters; for it
says that whenever adjunction is syntactically licit there is a corresponding semantic
output.) Hence two of them must yield the same syntactic output. Now, adjunction
at �xi can only enlarge the index by κ many symbols, which by Condition (b) does
not make it the same length as any other �x j , for j �= i . Thus the sets of variables
obtained by adjoining at different sites are different. So is their semantics. We have
ρ + 1 sites and at most ρ different results. Contradiction.
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Example 3.21 I give a letter by letter translation of Bool into English:

t (p) = /Jack sees a boy/

t (() = ε
t ()) = ε
t (0) = /who sees a girl/

t (1) = /who sees a boy/

t (∧) = /who sees no one and/

t (∨) = /who sees no one or/

t (¬) = /it is not the case that/

(3.135)

Now define the functions s as follows.

s(ε) := /who sees no one./

s(a��x) := t (a)���s(�x) (3.136)

This gives us, for example,

s((p0∧(¬p))) =/Jack sees a boy who sees a girl who sees

no one and it is not the case that

Jack sees a boy who sees no one./

(3.137)

Consider the set B := { j} ∪ {b�x : �x ∈ (0 | 1)∗} ∪ {g�x : �x ∈ (0 | 1)∗}. Here j is
Jack, b�x is the boy number �x and g�x the girl number �x . Let U ⊆ (0 | 1)∗. Define
R(U ) as follows.

R(U ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{〈b0�x, g�x〉 : �x ∈ (0 | 1)∗}
∪ {〈g0�x, g�x〉 : �x ∈ (0 | 1)∗}
∪ {〈b1�x, b�x〉 : �x ∈ (0 | 1)∗}
∪ {〈g1�x, b�x〉 : �x ∈ (0 | 1)∗}
∪ {〈 j, b�x〉 : �x ∈ U }

(3.138)

What can be shown is that the translation of /p�x/ is true in 〈B, j, R(U )〉 (with
R(U ) interpreting the relation of seeing and j interprets the constant “Jack”) iff
�x ∈ U . Thus we have a translation into English that preserves synonymy. Though
the argument is not complete (for the reason that the English examples do away
with brackets and so introduce ambiguity), it does serve to transfer Theorem 3.6 to
English. o
Exercise 3.17 Recall the definition of G× and G× from page 65. Extend these
definitions to indeterminate grammars. Construct an indeterminate grammar G for
which (G×)× �= G.

Exercise 3.18 Write a compositional adjunction grammar for Var.
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Exercise 3.19 Let G be additive. Show that if ιG(t) ∈ (B∗ × M) then ιG�B(t) =
ιG(t).

3.7 Abstraction

At the end of this chapter I shall return to a problem that has been central in the
development of modern linguistics: the definition of the unit. Units are abstract
objects and are related to concrete things via realizations. As de Saussure already
insisted, the linguist almost always deals with abstract objects. The letter /b/, the
sound [b], the genitive case—all these things are abstractions from observable real-
ity. Thus, on the one hand the sign 〈/mountain/, λx .mountain′(x)〉 is the only
thing that can be said to belong to langage as de Saussure defined it, on the other
hand it does not exist, unlike particular utterances of the word /mountain/ and par-
ticular mountains (the concept of mountainhood is an abstract object, the only thing
we take to exist in the physical sense are individual mountains). An utterance of
/mountain/ stands to the sequence of phonemes of /mountain/ in the same way
as a particular mountain stands to λx .mountain′(x). In both cases the first is the
concrete entity the second the abstract one, the one that is part of language. The
picture in Fig. 3.5 illustrates this. The main aim of this section is to give some
mathematical background to the idea of abstracting units. Before I do so, I shall
point out that there is no consensus as to how abstract language actually is. In earlier
structuralism it was believed that only the abstract object was relevant. It was often
suggested that only the contrast matters and that the actual content of the contrasting
items was irrelevant.

This view was applied to both phonology and semantics. It was thought that
nothing matters to linguistics beyond the contrast, or feature, itself. It would then

Fig. 3.5 Abstract signs
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seem that the contrast between [p] and [b] could from the abstract viewpoint not be
distinguished from the contrast between [p] and [t]; the labels “voicing” or “labial”
are meaningless to phonology. Similarly, the meaning contrast between “short” and
“tall” is formally indistinguishable from the contrast between “cold” and “hot”; all
that can be said is that the contrasting items are different. This position—though
not without merits, as we shall see—is nowadays not so popular. One reason among
many is that it cannot explain how languages can change in a quasi continuous
way and yet be underlyingly discrete. Additionally, it gives us no insight into why
languages are the way they are, particularly when it comes to the certain bias that
they display (for example to devoice consonants in coda). Also, the precise content
matters more often in language than structuralists were willing to admit. (The same
predicament with respect to natural kinds and induction is discussed in Gärdenfors
(2004)). The idea that we propose here is that the continuous change is the effect
of a continuously changing surface realization of abstract units. The contrasts are a
matter of the underlying abstract language and they get projected to the surface via
realization maps.

The picture that emerges is this. There are in total four domains:

1. concrete exponents (utterances),
2. abstract exponents (phonological representations),
3. concrete meanings (objects, things),
4. abstract meanings (semantic representations).

There are many-to-one maps from the concrete to the corresponding abstract
domains. We take the pairing between concrete exponents and concrete meanings
as given; these are the data. The pairing between abstract exponents and abstract
meanings is postulated and likewise the correspondence concrete-to-abstract. In this
scenario it becomes clear why we can have on the one hand agreement about the
extensional language, say, English and yet disagreement about what the nature of
representations is. Moreover, it becomes clear why it is that different people possess
the same language yet possess a different grammar.

We take the notion of (concrete) language in the purely extensional sense: a set of
pairs between utterances and concrete relata. For concreteness, we shall just assume
the relata to be things. Thus let us be given a set U of utterances and a set R of
(physical) relata, that is, objects of the world. Language in the extensional sense is
a subset of U×R. A pair 〈u, r〉 is in L if and only if u means r in that language. Thus,
if a particular object h, say a house, can be referred to by a particular utterance h′,
e. g., of /house/, then 〈h′, h〉 is a member of English. Some people may worry that R
is potentially too big (something like the universal class) but from a methodological
point of view nothing much is lost if we suitably restrict R. (In set theory one usually
considers models of bounded size, the bound being suitably high. In a subsequent
step one looks at the dependency of the result of the size of the bound.)

Both sets U and R are structured. The intrinsic structure of R is much harder
to establish, so we just look at U . To simplify matters again, we assume that U
consists in occurrences of sound bits (but see Scollon and Wong Scollon (2003) for
an eloquent argument why this is wrong). Then we may be justified in assuming
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that only the intrinsic physical quality really matters, in other words: we can shift u
in time (and place) without affecting its signalling potential. Thus, from now on we
deal not with actual utterances but with what we call “sound bits”. Sound bits are
what you store in a file on a computer to play it to someone (or yourself) any time
you want. This is nowadays used a lot in talking machines (as are installed in GPS
systems, dialog systems, trains or elevators). Now let " be the append operation
on sound bits. Such an operation can easily be realised on a computer, and this
technique is also widely used in technical applications. " restricted to U becomes
a partial operation. This is because there are phonotactic restrictions on the combi-
nations of sounds. Given this operation " it is possible to segment sound bits into
smaller units. In this way an utterance h′ can be segmented into a sequence of more
primitive utterances, which are instances of some sound bits corresponding to the
basic sounds of English. Ideally, they correspond to the sounds [h], the diphthong
[aU] and [s]; or maybe the diphthong is disected into [a] and [U]. So, we propose a
set P of primitive sound bits. The set P is an alphabet and " the concatenation. P∗
is the closure of P under". Further, U is a subset of P∗. P is the set of phones. The
choice of P is to some extent arbitrary; for example, in phonetics, an affricate is seen
as a sequence of stop plus fricative (see for example (IPA, 1999)) but in phonology
the affricates are often considered phonemes (= indecomposable). Similar problems
are created by diphthongs. Although segmentation is a problem area, we shall not
go into it here and instead move on to sketch the method of abstraction.

Both utterances and relata are concrete entities. My utterance u of /house/ at
11:59 today is certainly a concrete entity. We can record it and subsequently analyse
it to see if, for example, I really pronounced it in a proper English way or whether
one can hear some German accent in it. Technically, each time you have the com-
puter or tape recorder play u again you have a different utterance. Yet, we believe
that this difference is merely temporal and that the relevant physical composition
(pitch, loudness etc.) is all that is needed to make the two identical for the purpose of
linguistics. That is to say, there is, hidden in the methodology at least, an underlying
assumption that if u and u′ are acoustically the same they are also linguistically the
same. However, in our definitions we need not make any such assumption. If u can-
not be reproduced since it is unique, so be it. If acoustic features really are sufficient
this will actually be a result of the inquiry. Similarly, this building opposite of me is
concrete; I can ask English speakers whether it qualifies to be called u (by playing
them a copy of u). Again there is a question whether calling this building a house
today means that you will do so tomorrow; and if not why that is. If the difference
in time is large enough (some decades) we cannot be sure that we are dealing with
the same language again. If asking a different person we are not sure that s/he uses
the words just like the one we asked before. And so on. Again, such difficulties do
not affect so much the principles of the methodology described below; they mainly
delimit its factual applicability in concrete situations. However, once we know what
the theoretical limitations of this methodology are—independently of its practical
limitations—we can know better how to apply it.

The first tool in abstraction is the method of oppositions. We say that u and u′
are first degree L-equivalent, in symbols, u ∼L u′, if for all r ∈ R: 〈u, r〉 ∈ L ⇔
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〈u′, r〉 ∈ L . Notice that this definition applies to entire utterances and it tells us
whether or not two particular utterances denote the same thing. Similarly, we say
of two relata r and r ′ whether they are first degree L-equivalent if for all u ∈ U :
〈u, r〉 ∈ L ⇔ 〈u, r ′〉 ∈ L . It is possible to factor out first-degree equivalence in the
following way: let

[u]1 := {u′ : u′ ∼L u}, [r ]1 := {r ′ : r ′ ∼L r}. (3.139)

Finally, put

L1 := {〈[u]1, [r ]1〉 : 〈u, r〉 ∈ L}. (3.140)

Proposition 3.5 Let u′ ∼L u and r ′ ∼L r . Then 〈[u]1, [r ]1〉 ∈ L1 if and only if
〈u′, r ′〉 ∈ L.

Proof Assume that 〈[u]1, [r ]1〉 ∈ L1. Then 〈u, r〉 ∈ L , by definition. Since u′ ∼L u,
we also have 〈u′, r〉 ∈ L; and since r ′ ∼L r we have 〈u′, r ′〉 ∈ L . This reasoning
can be reversed. ��

We can formalise this as follows.

Definition 3.14 Let U and R be sets, L ⊆ U × R a language. Let f : U → V and
g : R → S be maps such that the following holds:

1. If f (u) = f (u′) then u ∼L u′.
2. If g(r) = g(r ′) then r ∼L r ′.

Then with L ′ := {〈 f (u), g(r)〉 : 〈u, r〉 ∈ L} the triple 〈 f, g, L ′〉 is called an
abstraction of L .

In particular, with the maps ϕ : u 
→ [u]1 and ψ : r 
→ [r ]1 the triple 〈ϕ,ψ, L1〉
is an abstraction of L . This is the maximal possible abstraction. Its disadvantage
is that it is not “structural”. Consider a somewhat less aggressive compression that
works as follows. Assume a representation of utterances as sequences of phones (so,
U ⊆ P∗ for some P). Define p ≈L p′ if for all u " p " u′:

If u " p " u′, u " p′ " u′ ∈ U then u " p " u′ ∼L u " p′ " u′. (3.141)

This can be phrased mathematically as follows: ≈L is the largest weak congruence
on 〈U,"〉 that is contained in ∼L (cf. Appendix A).

Standardly, the congruence ≈L is used to define the phonemes. We say that p
and p′ are allophones of the same phoneme. Even though p and p′ may not be
exchangeable in every context, if they are, exchanging them causes no difference in
meaning. In principle this method can also be applied to sequences of sounds (or
strings) but this is only reluctantly done in phonology. One reason is that phonology
likes the explanation for variability and equivalence to be phonetic: a combination
of two sounds is “legal” because it can easily be pronounced, illegal because its
pronunciation is more difficult. Yet, with a different segmentation we can perform
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similar abstractions. Suppose we propose two units, say /good/ and /bett/, which
occur in the gradation of the adjective “good”. In the positive we find /good/ while
in the comparative we find /bett/. Thus, given that gradation proceeds by adding
/∅/ in the positive and /er/ in the comparative we can safely propose that the two are
equivalent. All it takes is to assume that only /good/ can be concatenated with /∅/
and only /bett/ with /er/. There are two reasons why this is not a phonological but a
morphological fact. The first is that there is no phonological law motivated by other
facts that supports this equivalence. The other is that we can assign meanings to all
the four parts; furthermore, we shall assume that /good/ and /bett/ have identical
meaning and with this the facts neatly fall out. One problem however remains in all
these approaches: they posit nonexistent parts. To be exact: they are nonexistent as
utterances in themselves; however, they do exist as parts of genuine utterances. This
contradicts our earlier assumption that the set of valid forms of the language are
only those that are first members of a pair 〈u, r〉. For now we accept forms that are
not of this kind. Notice that the phonological abstraction did not require the units to
be meaningful and proceeded just by comparing alternatives to a sound in context.
The abstract units (phonemes) are not required to be in the language, nor are their
parts. Thus the abstracted image L1 is of a new kind, it is a language (langue) in de
Saussure’s sense. It is certainly possible to do morphology along similar lines.

The language L can be identified with parole, while langue is L1. However, we
should be aware of the fact that while L is unique (given by experience), L1 is
not. The most trivial way in which we can make a different abstraction is by using
different abstract relata.

Definition 3.15 Let A = 〈ϕ,ψ, L1〉 and B = 〈η, θ, L2〉 be abstractions of L . We
call A and B equivalent if

① dom(ϕ) = dom(η) and dom(ψ) = dom(θ),
② there is a bijection i : L1 → L2 such that η × θ = i ◦ (ϕ × ψ).
Put U = dom(ϕ) and R = dom(ψ). Then we have the following situation.

U × R
ϕ × ψ �L1

�
i

L2
η × θ

��������
(3.142)

By definition there is an inverse map j : L2 → L1. Finally, given a grammar
G = 〈Ω, I〉 for L = E × M and an abstraction A = 〈ϕ,ψ, L ′〉 we can define
the abstracted grammar G/A := 〈Ω, IA〉 for L ′ via A as follows. For a sign σ =
〈e,m〉 ∈ E × M let σA := 〈ϕ(e), ψ(m)〉, the abstraction of σ . Then for a function
symbol f define

IA( f )
(
σA0 , · · · , σAΩ( f )−1

)
:= (I( f )(σ0, · · · , σΩ( f )−1))

A. (3.143)
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This is a familiar definition in mathematics; given an equivalence of elements we
define the functions over the equivalence classes by picking representatives. This
definition is sound only if the definition is actually independent of the choice of
representatives. Otherwise the grammar becomes indeterminate.

Example 3.22 Here is an instructive example. Suppose

L = {〈a,m〉, 〈b,m〉, 〈c, p〉, 〈ac, n〉, 〈bc, n′〉}. (3.144)

The grammar consists in the following operations:

I( f0)() := 〈a,m〉
I( f1)() := 〈b,m〉
I( f2)() := 〈c, p〉

I( f3)(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈ac, n〉 if e = a, e′ = c,

〈bc, n′〉 if e = b, e′ = c,

undefined else.

(3.145)

/a/ and /b/ are L-equivalent. Put

L1 = {〈α,m〉, 〈γ, p〉, 〈αγ, n〉, 〈αγ, n′〉}. (3.146)

Let ϕ : a, b 
→ α, c 
→ γ and 1M the identity on M = {m, p, n, n′}; then A :=
〈ϕ, 1M , L1〉 is an abstraction. However, the grammar is not deterministic. Basically,
the output of IA( f3)(〈α,m〉, 〈γ, p〉) must be both 〈αγ, n〉 and 〈αγ, n′〉. o

It is important to note that the example does not show the impossibility of deliv-
ering a grammar. It just shows that the original grammar cannot necessarily be used
as a canonical starting point. In general, (3.143) is a proper definition only if the
congruence induced by ϕ and ψ is strong. Formally, the congruence induced by an
abstraction is θA, where

〈x, y〉 θA 〈u, v〉 :⇔ ϕ(x) = ϕ(u) and ψ(y) = ψ(v). (3.147)

However, the condition is far too strong to be useful. A far more interesting case is
when the congruence θA is only weak. In this case the function is not independent
of the choice of representatives; however, it is only weakly dependent. We will then
say that IA( f ) is simply the image of I( f ) under ϕ and ψ . Then in place of (3.143)
we say that IA(�σ) is defined if there are τi , i < Ω( f ), such that τi θA σi for all
i < Ω( f ) and I( f )(�τ) is defined. And in that case

IA( f )
(
σA0 , · · · , σAΩ( f )−1

)
:= (I( f )(τ0, · · · , τΩ( f )−1))

A. (3.148)

Otherwise IA(�σ) is undefined.
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Example 3.23 There are two sounds in the phoneme /ô/, namely the voiced [ô] and
the voiceless [ô

˚
]. They are mapped onto the same phoneme via ϕ. Now, in onset

position, the combination [pô] does not exist in English, neither does the combina-
tion [bô

˚
]. Only the combination [pô

˚
] and the combination [bô] are possible. Consider

the operation " of concatenation. [b] " [ô] is defined; [b] " [ô
˚

] is not. However,
ϕ([ô]) = ϕ([ô

˚
]). Thus, congruences associated with the standard phonemicization

maps are generally only weak congruences. o

Likewise, a grammar for the abstracted language does not give rise to a grammar
of the original language. In fact it may even be impossible to give one.

It is instructive to see that the combinatory restrictions on sounds do not neces-
sarily determine a strong congruence. In fact, they rarely do. This has consequences
worth pointing out. The most important one concerns the standard definition of a
phoneme. In the classical definition, two sounds are members of the same phoneme
if they can be replaced for each other in any context without affecting meaning.
It is clear that this must be read in the sense that replacing s for s′ either yields a
nonexistent form or else a form that has the same meaning. Otherwise, [ô] and [ô

˚
]

might not be in the same phoneme for lack of intersubstitutability. However, that
might not be enough to secure adequate phonemicization. For it also turns out that
the definition requiring the substitutability of single occurrences is also not enough
if we have weak congruences.

Example 3.24 Let L := {〈aa,m〉, 〈bb,m〉}. In this situation it seems justified to
postulate a single phoneme α with ϕ(a) = ϕ(b) = α. The test that uses single
substitutions indeed succeeds: we can replace /a/ by /b/ at any of the places and
the result is either undefined or has the same meaning. The abstracted language is
{〈αα,m〉}.

Now look instead at the language L ′ := {〈aa,m〉, 〈bb, n〉}. Here the definition
based on single substitutions gives wrong results: if we change /a/ to /b/ once we
get /ab/, which is not in the language. But if we change both occurrences we get
/bb/, which however has different meaning. The abstracted language is the same.
This cannot be correct. o

As the previous example showed, it is not enough to do a single replacement.
It is not easy to come up with a sufficiently clear natural example. Vowel harmony
could be a case in point. Recall that vowel harmony typically requires all vowels
of a word to come from a particular set of vowels. In Finnish, for example, they
may only be from {ä, e, i, ö, y} or from {a, e, i, o, u}. Consider now a bisyllabic
word containing two occurrences of /ä/. Exchanging one of them by /a/ results in
a nonharmonic string, which is therefore not a word. However, exchanging two or
more occurrences may yield a proper word of Finnish. (Notice however that there
are plenty of words that contain only one nonneutral vowel and so the logic of this
argument is not perfect. For the latter kind of words it may be enough to exclude
those phonemicizations that are improper for the other words too.)
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