
Chapter 2
String Languages

THIS chapter introduces the notion of a grammar as an algebra. We shall describe how
context free grammars and adjunction grammars fit the format described here. Then we
shall study syntactic categories as they arise implicitly in the formulation of a grammar and
then turn to the relationship between languages, grammars and surface tests to establish
structure. We shall meet our first principle: the Principle of Preservation.

2.1 Languages and Grammars

Languages in the way they appear to us seem to consist in strings. The text in front
of you is an example. It is basically a long chain of symbols, put one after the
other. Yet, linguists stress over and over that there is structure in this chain and that
this structure comes from a grammar that generates this language. I shall assume
that the reader is familiar with this standard view on language. In this chapter I
shall rehearse some of the definitions, though taking a slightly different view. While
standard syntactic textbooks write rules in the form of replacement rules (S → NP
VP) to be thought of as replacing what is to the left by what is to the right, here we
take a bottom up view: we define grammars as devices that combine expressions.
The reasons for this shift have already been discussed; in the next chapter, it will
become apparent why there is no alternative to this view. This is also the way in
which Montague defined his formation rules.

Although I shall have very little to say about phonology I should make it clear that
when I use the terms “alphabet” and “letter” you may replace them by “phoneme
inventory” and “phoneme”. Likewise, we may decide to include tone and other
characteristics into the representation. All this can be done. The only reason that
I do not do it is, apart from the fact that I am not a phonologist, that it would distract
attention from the central issues. The reader is however asked to keep in mind that
the discussion is largely independent of the actual nature and manifestation of the
alphabet.

I said that languages are sets of strings. Clearly, there is more to languages, as
they also give meanings to the strings. Yet, if we disregard this latter aspect—and
maybe some more—we retain as the simplest of all manifestations of a language:
that of a set of strings. The topic of string languages is very rich since it has been

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1_2,
C© Springer Science+Business Media B.V. 2011

9

10 2 String Languages

thoroughly studied in formal language theory. We start therefore by discussing string
languages.

Recall that a string over some alphabet A is a sequence of letters from A; for
example, /abcbab/ is a string over {a, b, c}. It is also a string over the alphabet
{a, b, c, d} but not over {a, b}. Alternatively, a string over A is a function �x : n → A
for some natural number n (see Appendix A); n is the length of �x . If n = 0 we get
the empty string; it is denoted by ε. We write �x, �y (with an arrow) for arbitrary
strings. Concatenation is either denoted by �x��y or by juxtaposition. In running
text, to enhance explicitness, I enclose material strings (or exponents in general)
in slashes, like this: /dog/. This carries no theoretical commitment of any sort.

Definition 2.1 Let A be a finite set, the so-called alphabet. A∗ denotes the set of
strings over A, A+ the set of nonempty strings. A language over A is a subset of A∗.

Following Unix convention, we shall enclose names for sets of symbols by colons
(for example, :digit:). This way they cannot be confused with sets of strings, for
which we use ordinary notation.

Definition 2.2 The union of two sets is alternatively denoted by S ∪ T and S | T .
Given two sets S and T we write

S · T := {�x��y : �x ∈ S, �y ∈ T }. (2.1)

Furthermore, Sn is defined inductively by

S0 := {ε}, Sn+1 := Sn · S. (2.2)

Finally we put

S∗ :=
⋃

n∈N

Sn (2.3)

as well as

S+ := S · S∗. (2.4)

Typically, we write ST in place of S · T . ∗ binds stronger than · and · binds stronger
than ∪. We shall write {x} and x indiscriminately in case x is a single letter.

It is important to note that a language as defined here is a set, so it is unstructured. A
grammar on the other hand is a description or specification of a language. There are
two types of grammars: descriptive and generative. Descriptive grammars describe
the strings of the language, while generative grammars describe a process that gen-
erates them. We shall delay a definition of descriptive grammars. Thus, for now a
grammar is a system of rules (or rather functions). It is the grammar that imposes
structure on a language. This point seems contentious; in fact, many linguists think
differently. They think that the language itself possesses a structure that needs to be

2.1 Languages and Grammars 11

described using the grammar. Some are convinced that some descriptions (maybe
even a single one) are better than all the others (see Tomalin (2006) on the origin
of this view). I consider this belief unfounded. That we know the right grammar
when we see it is wishful thinking. It is clear that regularities need accounting for.
However, that accounting for them in a particular way will make the rule apparatus
more transparent needs to be demonstrated. The most blatant defect of such claims is
that no one knows how to define simplicity in an unambiguous way. One exception
is perhaps Kolmogorov complexity, which is, however, difficult to use in practice
(see Kornai (2007) on that subject). In absence of a unique notion of simplicity we
are left with the intuition that a language “calls” for a particular description in the
form of a certain grammar. But it may well be that there are different descriptions of
the same facts, none of which need to be essentially better than the other. Indeed, if
one looks around and studies various frameworks and the way they like to deal with
various phenomena, one finds that there is little fundamental consensus; nor is there
a criterion by which to judge who is right. Thus, a language may possess various
quite different grammars. These grammars in turn impose different structures on the
language and it may be impossible to say which one is “correct”. Thus a distinction
must be made between the set of acceptable strings and the structure that we see in
them.

Example 2.1 (See also Example 2.6 below.) The language of unbracketed additive
arithmetical terms (or ua-terms for short) is defined as follows. Consider the set

:digit: := {0, 1, · · · , 9}. (2.5)

An ua-term is a string over this alphabet plus the additional symbol /+/ such that it
neither ends nor begins with /+/. So it is a member of the following set.

UA := :digit:+(+:digit:+)∗ (2.6)

Examples are the following.

0, 10, 010+7, 00+01+31, 1001+000+9 (2.7)

In practice we think of such a string as consisting in blocks of digits separated by
/+/. This is so far just a matter of convenience. We shall see below however what
may justify this view.

In contrast to the unbracketed arithmetical terms, the bracketed arithmetical
terms (a-terms) always have brackets. They are technically strings over a different
alphabet, namely :digit:∪{+, (,)}. Thus, it is not that we do not write ua-terms with
brackets; they do not contain any brackets in the first place. An a-term, by contrast,
has them everywhere. (A precise definition of a-terms will be given in Example 2.6.)
There are many ways to “analyse” a given ua-term as arising from some a-term. For
example, we can think of the ua-term

�x0+�x1+�x2+ · · · +�xn (2.8)

12 2 String Languages

as being derived, among others, in a left bracketed (2.9) or a right bracketed (2.10)
way:

(�x0+(�x1+(�x2+ · · · (�xn−1+�xn) · · ·))) (2.9)

((· · · ((�x0+�x1)+�x2)+ · · · �xn−1)+�xn) (2.10)

Similarly, the ua-term

3+1+7+5 (2.11)

can be derived from the following a-terms by deleting brackets:

(((3+1)+7)+5), ((3+(1+7))+5), (3+((1+7)+5)), (3+(1+(7+5))). (2.12)

There is no way to decide which analysis is correct. o

Example 2.2 The formation of the third singular present of the English verb is identi-
cal to the plural of nouns. It consists—irregular forms and idiosyncrasies of spelling
aside—in the addition of /s/, /es/ or /ses/, depending on the end of the word. Is
there a formal identity between the two or do they just accidentally happen to be the
same? o

This last example will be important also when discussing identity of modes in
Section 3.1. Let me briefly go into some details. Ordinary languages contain—
apart from the obvious alphabetic characters—also punctuation marks; in addition
to punctuation marks we find the digits and the blank, written here /�/ throughout
when quoting material language strings and, finally, some less obvious characters
such as “newline” or “new paragraph”. These should be counted into the alphabet A
for the purposes of writing serious grammars for languages. There is, for example, a
difference in English between /black�bird/ and /blackbird/. In written English
the only difference is the presence or absence of the blank; in spoken English this
comes out as a different stress assignment. The same goes obviously for punctuation
(the difference between restrictive and nonrestrictive relative clauses is signalled by
the presence of a comma). Spoken language has intonation, which is absent from
written language; punctuation is a partial substitute for intonation. In what is to
follow, we will concentrate on written language to avoid having to deal with issues
that are irrelevant for the purpose of this book. Writing systems however introduce
their own problems. For matters concerning the intricacies of alphabets I refer the
reader to Korpela (2006).

Intermission 1 Some interesting facts about punctuation. In general, there is
something of a syntax of punctuation marks. Writing no blank is different from
writing one blank, while one blank is the same as two (consecutive) blanks. Two
periods are likewise the same as one, two commas the same as one and so on. In
general, punctuation marks act as separators, not as brackets. This means that they
avoid being put in sequence (with minor exceptions such as a period and a comma

2.1 Languages and Grammars 13

when the period signals an abbreviation). Separators come in different strengths. For
example, a period is a stronger separator than a comma. This means that if a period
and a comma will be in competition, the (sentence) period will win. o

Anyone who is nowadays dealing with characters will know that there is a lot
of structure in an alphabet, just as the set of phonemes of a language is highly
structured. There is first and foremost a division into alphabetic characters, digits,
and punctuation marks. However, there is an additional division into such characters
that serve as separators and those that do not. Separators are there to define the units
(“identifiers” or “words”). For ua-terms, /+/ is a separator. Separators could also
be strings, of course. If we want to understand where the words are in a text we
break a string at all those positions where we find a separator. Thus, the blank and
also punctuation marks are typical separators. But this is not always the case. A
hyphen, for example, is a punctuation mark but does not serve as a separator—or
at least not always. In programming languages, brackets are separators; this means
that the name of a variable may not contain brackets, since they would simply not be
recognised as parts of the name. Anyone interested in these questions may consult,
for example, books or manuals on regular expressions and search patterns.

While we often think of languages as being sets of strings over a given alphabet,
there are occasions when we prefer to think of languages as somehow independent
of the alphabet. These viewpoints are not easy to reconcile. We can introduce some
abstractness as follows. Let A and B be alphabets and m : A → B∗ a map. m
induces a homomorphism m : A∗ → B∗ in the following way.

m(x0x1 · · · xn−1) := m(x0)
�m(x1)

� · · ·� m(xn−1) (2.13)

Then m[L] is the realphabetization of L .

Example 2.3 In German, the umlaut refers to the change of /a/, /o/ and /u/ to /ä/,
/ö/ and /ü/, respectively. Standard German allows to replace the vowels with dots
by a combination of the vowel with /e/ (historically, this is where the dots came
from; they are the remnants of an /e/ written above the vowel). So, we have a map
m : ä
→ ae, ö
→ oe, ü
→ ue. For all other (small) letters, m(x) = x . Hence,

m(Rädelsführer) = Raedelsfuehrer (2.14)

o

We now say that we look at a language only up to realphabetization. In linguistics
this is done by considering spoken language as primary and all written languages
as realphabetizations thereof. Usually we will want to require that m is injective
on L , but spelling reforms are not always like that. In Switzerland, the letter /ß/
is written /ss/, and this obliterates the contrast between /Maße/ “measures” and
/Masse/ “mass”. For this reason we shall not deal with realphabetisation except for
theoretical purposes, where we do require that m be injective. Realphabetizations
are not structurally innocent. What is segmentable in one alphabet may not be in

14 2 String Languages

another. Imagine an alphabet where /downtown/ is rendered by a single letter, say,
/ffl/. The map sending /ffl/ to /downtown/ makes an indecomposable unit decompos-
able (/down/ + /town/). The dependency of the analysis on the alphabet is mostly
left implicit throughout this work.

The division into units, which is so important in practical applications (witness
the now popular art of tokenisation), is from a theoretical standpoint secondary.
That is to say, it is the responsibility of a grammar to tell us what the units are and
how to find them. Whether or not a symbol is a separator will be a consequence of
the way the grammar works, not primarily of the language itself. This is why we
may maintain, at least in the beginning, that the alphabet is an unstructured set in
addition to the language. The structure that we see in a language and its alphabet
is—as I emphasized above—imposed on it by a system of rules and descriptions, in
other words by a grammar. This applies of course to phonemes and features in the
same way.

In my view, a grammar is basically an interpretation of an abstract language. In
computer science one often talks about abstract and concrete syntax. The abstract
syntax talks about the ideal constitution of the syntactic items, while the concrete
syntax specifies how the items are communicated. The terminology used here is that
of “signature” (abstract) versus “grammar” (concrete).

Definition 2.3 Let F be a set, the set of function symbols. A signature is a function
Ω from F to the set N of natural numbers. Given f ,Ω(f) is called the arity of f . f
is a constant if Ω(f) = 0.

If f has arity 2, for example, this means that f takes two arguments and yields a
value. If f is a function on the set S, then f : S×S → S. We also write f : S2 → S.
The result of applying f to the arguments x and y in this order is denoted by f (x, y).
If f is partial then f (x, y) need not exist. In this case we write f : S2 ↪→ S. We
mention a special case, namely Ω(f) = 0. By convention, f : S0 ↪→ S, but there
is little gain in allowing a zeroary function to be partial. Now, S0 = {∅}, and so f
yields a single value if applied to ∅. However, ∅ is simply the empty tuple in this
connection, and we would have to write f () for the value of f . However, we shall
normally write f in place of f (), treating f as if it was its own value. The 0-ary
functions play a special role in this connection, since they shall form the lexicon.

Definition 2.4 A grammar over A is a pair 〈Ω, I〉, where Ω is a signature and for
every f ∈ F , I(f) : (A∗)Ω(f) ↪→ A∗. F is the set of modes of the grammar. I is
called the interpretation. If Ω(f) = 0, f is called lexical, otherwise nonlexical.
The set {I(f) : Ω(f) = 0} is called the lexicon of G, and the set {I(f) : Ω(f) >
0} the set of rules. The language generated by G, in symbols L(G), is defined to be
the least set S satisfying the following condition for every f ∈ F and all �xi ∈ A∗,
i < Ω(f).

If for all i < Ω(f)�xi ∈ S and I(f)(�x0, · · · , �xΩ(f)−1) (2.15)

exists then I(f)(�x0, · · · , �xΩ(f)−1) ∈ S.

2.1 Languages and Grammars 15

Example 2.4 Let F := { j, t, f }, and Ω(j) = Ω(t) = 0, Ω(f) = 2. I is defined
as follows. I(j) is a zeroary function and so I(j)() is a string, the string /John/.
Likewise, I(t)() = talks. Finally, we look at I(f). Suppose first that I(f) is
interpreted like this.

I(f)(�x, �y) := �x����y�. (2.16)

Then the language contains strings like this one:

John�talks.�talks. (2.17)

The function I(f) needs to be constrained. One obvious way is to restrict the first
input to /John/ and the second to /talks/. An indirect way to achieve the same is
this definition.

I(f)(�x, �y) :=

⎧
⎪⎨

⎪⎩

�x����y�. if �x ends with /n/

and �y begins with /t/,

undefined otherwise.

(2.18)

This grammar generates the following language.

{John, talks, John�talks.} (2.19)

o

Example 2.5 Here is now a pathological example. A set S is called countable if
it is infinite and there is an onto function f : N → S. If S is countable we can
assume that f is actually bijective. Let L ⊆ A∗. L is countable, since A is finite.
Let f : N → L be bijective. Let now F := {b, s}, Ω(b) := 0 and Ω(s) := 1. This
means that we get the following terms: b, s(b), s(s(b)), s(s(s(b))), . . . The general
element has the form sn(b), n ∈ N. This is a familiar way to generate the natural
numbers: start with zero and keep forming successors. Further, we put

I(b)() := f (0)

I(s)(�x) := f (f −1(�x)+ 1)
(2.20)

So, we start with the first element in the enumeration f . The number of �x in the
enumeration is f −1(�x). If we add 1 to this number and translate this via f we get
the next element in the list. In other words, we have I(s)(f (n)) = f (n + 1).

This grammar generates L . It follows that every countable language has a gram-
mar that generates it. o

Evidently, any f ∈ F (that is, every mode) is either lexical or nonlexical.
Notice that there are no requirements on the functions, not even that they be com-
putable. (Recently, Lasersohn (2009) has argued that computability may not even be

16 2 String Languages

an appropriate requirement for meanings. Without endorsing the argument that he
presents I have dropped the requirement here.) We shall introduce restrictions on the
functions as we go along. The lexicon is not always considered part of the grammar.
I make no principled decision here; it is just easier not to have to worry about the
rules and the lexicon separately.

Example 2.6 This is one of our main examples: it will be called the language of
equations.

:eq: := :digit: ∪ {+, -, (,), =} (2.21)

F = { f0, f1, f2, f3, f4, f5, f6}. Ω(f0) = Ω(f1) = 0, Ω(f2) = Ω(f3) = 1,
Ω(f4) = Ω(f5) = Ω(f6) = 2. �x is binary if it only contains /0/ and /1/; �x is an
a-term if it does not contain /=/. The modes are shown in Table 2.1. The strings that
this grammar generates are of the following form. They are either strings consist-
ing in the letters /0/ and /1/, for example /010/, /11101/, or they are a-terms, like
/(1+(01-101))/; or they are equations between two a-terms, like /(1+10)=11/.
(A single numeral expression is also an a-term.) o

Given a signature Ω , we define the notion of an Ω-term.

Definition 2.5 Let V be a set of variables disjoint from F . LetΩ be a signature over
F . An Ω-term over V is a string t over F ∪ V satisfying one of the following.

➊ t ∈ V ,
➋ t = f , where Ω(f) = 0,
➌ t = f �t�0 · · ·� tn−1, where n = Ω(f) and ti is an Ω-term for every i < n.

Table 2.1 The modes of Example 2.6

I(f0)() := 0

I(f1)() := 1

I(f2)(�x) :=
{
�x�0 if �x is binary,

undefined else.

I(f3)(�x) :=
{
�x�1 if �x is binary,

undefined else.

I(f4)(�x, �y) :=
{
(� �x�+� �y�) if �x, �y are a-terms,

undefined else.

I(f5)(�x, �y) :=
{
(� �x�-� �y�) if �x, �y are a-terms,

undefined else.

I(f6)(�x, �y) :=
{
�x�=� �y if �x, �y are a-terms,

undefined else.

2.1 Languages and Grammars 17

The symbol TmΩ(V) denotes the set of all Ω-terms over V . The set TmΩ(∅) is
of special importance. It is the set of constant Ω-terms. A term t is constant if
t ∈ F+, that is, if it contains no variables. Given a grammar G = 〈Ω, I〉, we also
call an Ω-term a G-term.

See Fig. 2.2 on page 36 for an example of term. Notice that the second case is a
subcase of the third (where n = 0). It is listed separately for better understanding.
Some remarks are in order. Standardly, terms are considered abstract, but I thought
it easier to let terms also be concrete objects, namely strings. The syntax chosen for
these objects is Polish Notation. It has the advantage of using the alphabet itself and
having the property of transparency (see page 46 for a definition). Exercises 2.6 and
2.7 show that the language enjoys unique readability. Delaying the justification for
the terminology, let us make the following definition.

Definition 2.6 Let t be anΩ-term. s is a subterm of t if and only if s is anΩ-term
and a substring of t .

Based on the exercises at the end of this section one can show that the language of
terms is quite well behaved. A substring that looks like a term actually is a subterm
under every analysis. (Consequently there can be only one analysis.)

Proposition 2.1 Let s and t beΩ-terms and s a substring of t . Then either s = t or

t = f �t�0 · · ·� tn−1 for some f and n = Ω(f) and there is an i < n such that s is
a subterm of ti .

Given a grammar G we can define the interpretation ιG(t) of a constant term t .

➊ ιG(f) := I(f) if Ω(f) = 0,
➋ ιG(f t0 · · · tn−1) := I(f)(ιG(t0), · · · , ιG(tn−1)), where n = Ω(f).

We call ιG the unfolding function and say that t unfolds in G to �x if ιG(t) =
�x . If the grammar is clear from the context, we shall write ι(t) in place of ιG(t).
Continuing our example, we have

ι(f4 f3 f0 f2 f1) = (ι(f3 f0)+ι(f2 f1))

= (ι(f0)1+ι(f2 f1))

= (ι(f0)1+ι(f1)0)

= (01+ι(f1)0)

= (01+10)

(2.22)

This establishes the interpretation of constant terms. Since the string functions may
be partial not every constant term has a value. Thus, ι(t) may be undefined. We call

dom(ι) := {t ∈ TmΩ(∅) : ι(t) is defined} (2.23)

the set of orthographically definite terms. The term f4 f3 f0 f2 f1 is orthographi-
cally definite, while the term f6 f6 f0 f1 f1 is not. This is because once f6 has been

18 2 String Languages

used, it introduces the symbol /=/, and none of the modes can apply further. If t is
orthographically definite, so is any subterm of t . Notice that for a grammar G, the
language can simply be defined as

L(G) := {ι(t) : t ∈ TmΩ(∅)}. (2.24)

Notice that this is different from the standard concept. This difference will be of
great importance later on. Standardly, grammars may contain symbols other than
the terminal symbols. The nonterminal alphabet contains characters foreign to the
language itself. While in formal languages the presence of such characters can be
motivated from considerations of usefulness, in our context these symbols make no
sense. This is because we shall later consider interpreted languages; and there is,
as far as I know, no indication that the nonterminal symbols have any meaning. In
fact, in the terminology of this book, by the definition of “language” and “nontermi-
nal symbol” the latter have no meaning. All of this will follow from the principles
defined in Section 2.6. The present requirement is weaker since it does not constrain
the power of the rules. What it says, though, is that the generation of strings must
proceed strictly by using strings of the language itself. Later we shall also require
that the strings must be used with the meaning that the language assigns to them.

If we eliminate nonterminal symbols, however, a lot of things change as well.
L(G) not only contains the strings at the end of a derivation but every string that
is built on the way. If, for example, we write our grammar using context free rules,
L(G) not only contains the sentences but the individual words and all constituents
that any sentence of L(G) has. Therefore, unlike in traditional linguistic theory, L
is not simply assumed to contain sentences but all constituents. To distinguish these
two notions we shall talk of a language in the narrow sense if we mean language
as a set of sentences; and we speak of a language in the wide sense—or simply of a
language—if we mean language as a set of constituents. Notice that the difference
lies merely in the way in which the language defines its grammar. As objects both
are sets. But a language in the narrow sense leaves larger room to define grammars
as languages in the wide sense also fix the set from which constituents may be
drawn. Our stance in the matter is that one should start with language in the wide
sense. The reasons for this will I hope become clear in Chapter 3. At this moment I
would like to point out that for all intents and purposes starting with language in the
narrow sense makes the grammar radically underdetermined.

For the working linguist, the choice of L is a highly empirical matter and hence
full of problems: in defining L we need to make decisions as to what the constituents
of the language are. This means we need more input in the first place. On the other
hand, we get a more direct insight into structure. A grammar can only analyse a
string into parts that are already members of L . Of course there is still a question
of whether a given string really occurs as a constituent (we shall discuss that point
later). But it can only do so if it is in L . A side effect of this is that we can sometimes
know which occurrences of symbols are syncategorematic. Basically, an occurrence
of a symbol is syncategorematic in a string under a derivation if it is not part of any

2.1 Languages and Grammars 19

primitive string that the derivation uses. This is admittedly vague; a proper definition
must be deferred to Section 2.6.

Example 2.7 I give two alternative formulations of Boolean logic. The alphabet is
as follows.

:bool: := {0, 1, p,¬,∧,∨, (,)} (2.25)

The first language is the smallest set S satisfying the equation (here, as in the sequel,
· binds stronger than | or ∪):

S = (p · (0 | 1)∗) ∪ (· ¬ · S ·) ∪ (· S · (∨ | ∧) · S ·) (2.26)

The other language is the union D ∪ S, where D and S are the minimal solution of
the following set of equations:

D = D ∪ (0 | 1) · D

S = p · D ∪ (· ¬ · S ·) ∪ (· S · (∨ | ∧) · S ·) (2.27)

It turns out that in both cases S is the same set; however, in the first example
the language defined is just S, in the second it is S ∪ D. S contains p01, (¬p0),
(p1∧(¬p1)). D (but not S) also contains 0, 111. o

Given a grammar G and a string �x , we call a term t an analysis term or simply
an analysis of �x if ι(t) = �x . A string may have several analysis terms. In this case
we say that it is ambiguous. If it has none it is called ungrammatical. A grammar
is called ambiguous if it generates at least one ambiguous string and unambiguous
otherwise.

Exercise 2.1 Consider a context free grammar (for a definition, see Section 2.3).
Then the language of that grammar generated in the narrow sense is context free, by
definition. Show that also the language generated in the wide sense is context free.

Exercise 2.2 Give examples of pairs (L , L ′) such that L ′ is a language in the wide
sense, and L its narrow restriction, such that (i) L is context free but L ′ is not, (ii)
L ′ is context free but L is not.

Exercise 2.3 Describe the set of orthographically definite terms for the language of
equations.

Exercise 2.4 Write grammars for the unbracketed additive terms, the left and the
right bracketed additive terms of Example 2.1, respectively.

Exercise 2.5 Terms are strings, by definition, and can therefore be looked at as
members of a language. The methodology of this book can therefore also be applied
to them. Consider, by way of example, the strings for terms in Example 2.6. Write a
grammar for the set of all constant Ω-terms; then write a grammar for the set of all
orthographically definite terms.

20 2 String Languages

Exercise 2.6 The formal notation of terms must be accompanied by a proof that it
is uniquely readable. We shall use this and the next exercise to deliver such a proof.
Recall that terms are sequences of function symbols, no extra symbol is added.
However, not every such sequence is a term. LetΩ be a signature. For f ∈ F∪V let
γ (f) := Ω(f)−1 and for a string �x = x0x1 · · · xn−1 ∈ F∗ let γ (�x) =∑i<n γ (xi).
Show the following: if �x ∈ F∗ is a term, then (i) γ (�x) = −1 and (ii) for every proper
prefix �y = x0x1 · · · xm−1, m < n, γ (�y) ≥ 0. (It follows from this that no proper
prefix of a term is a term.) Hint. Do an induction on the length.

Exercise 2.7 (Continuing the previous exercise). Let �x = x0x1 · · · xn−1 ∈ F∗ be a
string. Then if �x satisfies (i) and (ii) from the previous exercise, �x is a term. Hint.
Induction on n. The cases n = 0, 1 are straightforward. Now suppose that n > 1.
Then x = x0x1 · · · xn−1 and γ (x0) = p ≥ 0, by (ii). Show that there is a number
i > 1 such that γ (x1 · · · xi−1) = −1; choose i minimal with that property. Then
�y0 = x1 · · · xi−1 is a term, by inductive assumption. If p > 1 we have i < n, and
there is i ′ > i such that �y0 = xi xi+1 · · · xi ′ is a term. Choose i ′ minimal with that
property. And so on, getting a decomposition x0 �y0 · · · �yp.

Exercise 2.8 Show Proposition 2.1. Hint. Assume that s �= t . Then there is a decom-
position t = f �t�0 · · ·� tn−1. Now fix a substring occurrence of s in t . Assume that
it starts in ti . Then show that it must also end in ti .

2.2 Parts and Substitution

We defined a language (in the wide sense) to be the set of all of its constituent
expressions. Since we do not discriminate sentences from nonsentences the lan-
guage contains not only sentences but also parts thereof. We would like to be able to
say of some expressions whether one is a part of the other. In particular, we would
like to say that /The cat is on the mat./ contains /on the mat/ as its part but
not, for example, /cat is on/ or /dog/. In the cases just given this is straightfor-
ward: /cat is on/ is not in our language (in the wide sense), for it has no meaning;
/dog/ on the other hand is not a string part of the expression. In other cases, however,
matters are not so easy. Is /Mary ran/ a part of /John and Mary ran./ or is it
not? It is a string part of the sentence and it is meaningful. As it turns out, there is
no unique answer in this case. (Curiously enough even semantic criteria fail to give
a unanimous answer.) More problems arise, making the notion of part quite elusive.
One problem is that there are no conditions on the string functions; another is that a
given string may have been composed in many different ways. Let us discuss these
issues below. We begin however with a definition of part.

Definition 2.7 Let G be a grammar. �x is a part of �y if there are constant terms s and
u such that s is a subterm of u and ιG(s) = �x as well as ιG(u) = �y.

This definition of part of pays no attention to the strings. Instead it looks at the
way the strings are obtained through the string functions of the grammar. Thus,
any useful restriction will come from restricting the power of string functions.

2.2 Parts and Substitution 21

The definition also pays no attention to the way in which the parts occur in the
larger string. Occurrences will be defined in Definition 2.9 and then we shall review
Definition 2.7. The examples of this section will show how broad the spectrum of
grammars is and how it affects parthood.

Example 2.8 Consider a unary function f which forms the past tense, for example
I(f)(go) = went, I(f)(sing) = sang, I(f)(ask) = asked. In this grammar,
/go/ is a part of /went/, /sing/ a part of /sang/, /ask/ a part of /asked/. o

Generally, it is actually not assumed that /went/ is literally made from /go/;
rather, it is assumed that the verb /go/ possesses different allomorphs and that the
context decides which of them is going to be used. This is also my own intuition.
Therefore, I shall propose that syntactic functions may not delete material. This
will effectively exclude the grammar of Example 2.8. Let us now look at a second
example.

Example 2.9 We present two ways of generating the nonempty strings over the
alphabet :blet: := {a, b} of “binary letters”. C1 consists in the zeroary functions
fa, fb plus the unary functions f0 and f1. We have

I1(fa)() := a

I1(fb)() := b

I1(f0)(�x) := �x�a

I1(f1)(�x) := �x�b

(2.28)

So, ιC1(f1 f0 f0 fa) = aaab. This grammar is the “typewriter model” of strings.
Strings are generated by appending letters one by one to the initial letter.

The grammar C2 has the zeroary function symbols fa and fb and a binary symbol
γ . We have

I2(fa)() := a

I2(fb)() := b

I2(γ)(�x, �y) := �x��y
(2.29)

For example, ιC2(γ γ fa faγ fa fb) = aaab.
In C1, �x is part of �y if and only if it is a nonempty prefix of �y. In C2, �x is a part

of �y if and only if it is a nonempty subword. o

It is to be noted that both grammars generate the set A+, so they are extensionally
identical. Yet structurally they are different. According to C2 strings can have many
more parts than according to C1. For example, in C2 /aaab/ possesses (apart from
itself) the parts /a/, /aa/, /aaa/, /b/, /ab/, /aab/. In addition, the string /aa/ has two
occurrences in /aaab/, which we may denote as follows: /aaab/ and /aaab/. (More
on occurrences in Definition 2.9 and Section 2.5.) Both occurrences are actually
parts of the string. It turns out, though, that not all parts can be parts in one and

22 2 String Languages

the same derivation. A more useful notion is in fact defined for a particular analysis
term. The relation “is part of” is then the union of the relations “is a t-part of” for
all terms t .

Definition 2.8 Let G be a grammar, t a constant term and �x and �y strings. We say
that �x is a t-part of �y if ιG(t) = �y and there is a subterm s of t such that ιG(s) = �x .
In this case there is t ′(x) such that t = t ′(s).

With certain adaptations we can say that the relation “is a t-part of” is transitive. (If
�y is a t-part of �z and is the unfolding of s, s a subterm of t , then parts of �y must be
s-parts of �y in order to be t-parts of �z.) Here is a somewhat surprising result given
that the union of transitive relations need not be transitive.

Proposition 2.2 The relation is part of is transitive.

Proof Let �x be a part of �y and �y a part of �z. Then there are terms r and s such that r
unfolds to �x and s unfolds to �y and r is a subterm of s. Furthermore there are t and
u that unfold to �y and �z, respectively, and t is a subterm of u. Since they unfold to
the same string, we may replace t in u by s, giving us a new term u′, of which s is a
subterm. Since r is a subterm of s, it is also a subterm of u. ��

Given a single C2-term t for /aaab/, the substring occurrences that correspond to
the subterms actually form a tree. This is essentially because the grammar encodes a
context free analysis. However, C2 is ambiguous: /aaab/ has several analysis terms
and they provide different constituent analyses. The analysis terms are as follows:
γ γ γ fa fa fa fb, γ γ faγ fa fa fb, γ γ fa faγ fa fb, γ faγ γ fa fa fb and γ faγ faγ fa fb. On
the other hand, C1 is unambiguous.

Standard tests for constituency in textbooks include the substitution test. Before
we look in detail at the test let us first say a few words about string substitution.

Definition 2.9 A (1-)context is a pair C = 〈�x, �z〉 of strings. Inserting �y into C
results in the string C(�y) := �x �y �z. We say that �y occurs in �u if there is a context C
such that �u = C(�y). We also say then that C is an occurrence of �y in �u. The result
of substituting �w for �y in its occurrence C is C(�w) = �x �w �z.

For example, C := 〈s, ish〉 is a 1-context. C(elf) = s�elf�ish = selfish.
Notice that for any 1-context C = 〈�x, �y〉, C(ε) = �x��y. The substitution test runs
as follows.

John likes cricket. (2.30)

Given a sentence, say, (2.30), we look for the string occurrences that can be sub-
stituted for /cricket/ such that the result is once again a sentence. These include
/chess/, /vegetables/, /his new home/ and so on. Similarly, we try to substitute
for other sequences such as /likes/, /John likes/ and /likes cricket/. The
underlying idea is that nonconstituents cannot be substituted for (for example /John
likes/) while constituents can. In practice, this test is not without problems, as it
often turns out that nonconstituents can be substituted for (as is the case with /John

2.2 Parts and Substitution 23

likes/, for which we can substitute /Peter dislikes/). In fact, it sometimes turns
out that the alleged nonconstituent passes all tests and we must be prepared to either
strengthen our tests or admit that these really are constituents (as some claim is
the case with /John likes/, see Steedman (1990)). In this section we shall look in
some detail at the formal underpinnings of the substitution test.

First of all, we have to ask what we actually mean by substitution and second
how it can possibly show us something about the grammars for our language. The
answer to the first question is in fact not trivial. In the absence of a grammar the
substitution we should be performing is simply string substitution. The underlying
claim of the constituency test is that it shows us when string substitution is actually
constituent substitution. This is the case if it can be performed without affecting
grammaticality. Here I have defined constituent substitution to be substitution on
the level of the analysis terms: it is the substitution of one subterm by another.
The syntactic tests assume that constituent substitution if defined is always string
substitution. This is problematic for two reasons. One is that the two need not be
identical because the string functions of the grammar may be different from string
polynomials (see the end of this section for a definition). The second is that the
substitution can give misleading evidence. We start with some examples to show
the point.

Definition 2.10 Let L be a language. Write �x ∼L �y if for all 1-contexts C : C(�x) ∈
L ⇔ C(�y) ∈ L . The set CatL(�x) := {C : C(�x) ∈ L} is called the string category
of �x in L .

Obviously, �x ∼L �y if and only if CatL(�x) = CatL(�y). If string substitution is
constituent substitution then the definition above defines exactly the syntactically
relevant classes of English. However, mostly this is not a realistic assumption. Let
us review how the notion of part can depart from that of a constituent.

Example 2.10 We look at three grammars to form the plural of English. Let F0 be
a list of functions f �x , where in all grammars below f �x will be evaluated to the
string �x . To keep it simple, let F0 = FR ∪ FI , where FR = { fcat, fdog}, FI =
{ fsheep, fmouse, fox}. FR contains the regular nouns, FI the irregular nouns. Thus,
with Ii the interpretation function of the grammar Pi we have Ii (fcat)() = cat,
Ii (fmouse)() = mouse and so on. Now, put Ω0(f�x) := 0. We denote by Rs the set
{�x : f �x ∈ FR}, Rp the corresponding plural forms, likewise Is := {�x : f�x ∈ FI }, Ip

the corresponding plural forms.
The first grammar, P1 = 〈Ω1, I1〉, is as follows. F1 := F0 ∪ {p}, Ω1(p) = 1,

Ω1 � F0 = Ω0. I1(p) is defined on Rs ∪ Is , which is all strings that are singu-
lar nouns (/cat/, /mouse/, /ox/, but not /oxen/) and its output is the corresponding
plural. So we have

I1(p) = {〈cat, cats〉, 〈dog, dogs〉,〈sheep, sheep〉, (2.31)

〈mouse, mice〉, 〈ox, oxen〉}.

The second grammar, P2 = 〈Ω2, I2〉, has instead F2 := F0 ∪ {g, fmice, fε, fs, fes,

fen}, where g is a binary function symbol. We put

24 2 String Languages

I2(g)(�x, �y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�x��y if �x ∈ Rs and �y = s

or �x = sheep and �y = ε
or �x = ox and �y = en,

undefined else.

(2.32)

In short, I2(g)(�x, �y) is defined only if �x is a noun root and �y a proper plural suffix
for �x . Since the plural of /mouse/ is not obtained by affixation, it has been added to
the lexicon. A variation of this grammar would be to set I2(g)(mouse, ε) := mice.
Thus, the plural is formed by a zero affix to a different stem.

The third grammar, P3 = 〈Ω3, I3〉 is a mixture between the two. F3 := F0 ∪
{p, g, fs, fes}. For regular nouns it uses g, for irregular nouns it uses f .

I3(g)(�x, �y) =
{
I2(g)(�x, �y) if �x ∈ Rs ,

undefined otherwise.
(2.33)

I3(p)(�x) =
{
I1(p)(�x) if �x ∈ Is ,

undefined otherwise.
(2.34)

First of all notice that we can distinguish between these grammars in terms of the
generated language. It turns out that P1 generates all and only the singular and plural
noun forms. P2 in addition contains the plural morphs (like /s/, /es/, /en/ and ε).
P3 contains only the regular plural morphs and not ε, for example (though that
depends on the exact distribution of the work between f and g). P1 realizes a model
called item and process, while P2 realises a model called item and arrangement (see
Matthews (1978) for a discussion of these models).

Next we need to look at how constituent substitution works in these examples.
Here is an example: in P2, the string /cats/ is the value of the term g fcat fs. Replace
fcat by fdog and you get the term g fdog fs, which unfolds to /dogs/. Replace it by
fmouse and you get g fmouse fs, which is undefined. Similarly, replace fs by fen and
you get g fcat fen, which is also undefined.

In P2, the plural morph is a constituent, so it should be substitutable. Likewise,
the root noun is a constituent, so we should be able to substitute for it. Sometimes
we can successfully perform such a substitution, as certain nouns accept two plural
endings: we have /formulas/ next to /formulae/. Most of the time the substitution
will fail though. In P1 on the other hand the substitution of the plural morph is illicit
for a different reason: it is not a constituent. The form /cats/ is the value of p fcat,
so the only constituent substitution we can perform is to replace fcat by fmouse and
in this case the result is /mice/.

In P3 string substitution of the plural morph by something else is sometimes
licit sometimes not. Let us look now at the substitution of the root noun by another
root noun. In P2 we may exchange /dog/ for /cat/ but not /mouse/. This is because
I2(g)(dog, s) = dogs, which is the result of substituting the substring /cat/ of
/cats/ by /dog/, but I2(g)(mouse, s) is undefined, while applying the string sub-
stitution gives /mouses/. Trying the same in P1 we find that the string substitution

2.2 Parts and Substitution 25

facts are similar; however, I2(f)(mouse) is defined and it gives /mice/. Thus, the
difference between P1 and P2 is that the substitution of the subconstituent /mouse/
for /cat/ in the derivation is licit in P1 but illicit in P2. In P1, the result of this
substitution is different from string substitution, though. o

The grammar P2 actually uses straight concatenation and the string categories
of English actually do tell us about the necessary distinctions we need to make
in the paradigms. (Note though that the grammars here do not explicitly mention
paradigms. There is no need to do so. The classes are just defined indirectly via the
partiality.)

Example 2.11 The next example is a variation of the previous theme. The first gram-
mar, Q1, has constants for the names /John/, /Alex/ and /Pete/ and for the verb
forms, /sings/ and /sing/, /runs/ and /run/. It has two binary functions, c and g.
Call a sequence �x an NP if it has the form /x1�and�x2�and�x3 · · · /. It is singular
if it does not contain /and/ and plural otherwise.

I(c)(�x, �y) :=
{
�x��and���y if �x and �y are NPs,

undefined else.
(2.35)

g combines NPs with verb forms. The chosen verb form must agree in number with
the sequence. This is done as follows.

I(g)(�x, �y) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�x����y if either �x is a singular NP

and �y is a singular verb form

or �x is a plural NP

and �y is a plural verb form,

undefined else.

(2.36)

This grammar generates /John sings/ (it is the value of g fJohn fsings) and /John
and Mary and Alex sing/ (the value of gcc fJohn fMary fAlex fsing) but not /Mary
and Alex sings/. For the second grammar, Q2, we assume we have only verb
roots (form identical with the singulars of the previous grammar) and change the
interpretation of g as follows:

K(g)(�x, �y) :=

⎧
⎪⎨

⎪⎩

�x����y if �x is a plural NP and �y is a verb root,

�x����y�s if �x is a singular NP and �y is a verb root,

undefined else.

(2.37)

In Q1, we can string substitute /John and Mary/ for /John/ only if the verb form is
already plural but not, for example, in /John sings/, for we would get /John and
Mary sings/, which the grammar does not generate. For the same reason it is also
not possible to constituent substitute. In Q2, the constituent substitution gives us
different results. Namely, constituent substitution of /John and Mary/ for /John/

26 2 String Languages

in /John sings/ yields /John and Mary sing/! This is because the sentence is
the value (under K) of g fJohn fsing, and we replace fJohn by c fJohn fMary. This yields
the term gc fJohn fMary fsing, which unfolds to /John and Mary sing/. o

The previous examples established two things: first, it may be the case that certain
affixes are introduced by the derivation. In this case the string substitution has noth-
ing to do with constituent substitution, since there is no constituent to begin with.
Second, there is a difference between string substitution and constituent substitution.
It is the latter notion that is dependent on the grammar. It is defined as follows.

We have seen in the previous section how to evaluate constant terms. Now we
shall introduce variables over constituents. Thus, we shall allow to write f x and
gxy but also g f xx , where f is unary and g binary and x and y are variables over
terms. For terms containing such variables the interpretation must be a function
from values of these variables to strings. Here is a way to implement this idea.
The interpretation of a term is a partial function from (A∗)N to A∗. Here, an infinite
sequence s := 〈s0, s1, · · ·〉 codes the assignment of strings to the variables that maps
xi to the string si . Now put

➊ ιG(xi)(s) := si ,
➋ ιG(f)(s) := I(f) if Ω(f) = 0,
➌ ιG(f t0 · · · tn−1)(s) := I(f)(ιG(t0)(s), · · · , ιG(tn−1)(s)), where n = Ω(f).

Again, if G is clear from the context, ιG will be simplified to ι. Notice that if the
string functions are partial some of the ιG(t) may also be partial functions. In the
sequel I shall not use x0 and x1 but the usual x , y instead. (ι has been defined in
Section 2.1 for constant terms slightly differently. On constant terms the valuation
is irrelevant.)

Example 2.12 We continue Example 2.9. Apart from the constant, C1 has only unary
functions, so the terms we can create have at most one variable. Examples are f1x0,
f0 f1x1, and so on. These describe functions from assignments to strings. The first
defines a function from s to A∗: s
→ s�

0 a. The second is s
→ s�
1 b. I shall sim-

plify this by eliminating reference to the entire valuation and replacing s0 and s1
by metavariables. This way we get the somewhat simpler expression �x
→ �x�a,
�x
→ �x�b. It is possible to describe the totality of definable functions. They all have
the form �x
→ �x��y for some �y ∈ A∗ (which may be empty, since we generally also
have the term x , which denotes the identity function on A∗).

C2 has many more functions. In fact, the terms that we can define in C2 are all
the definable string polynomials using constants from A. o

It is the simplifications of the preceding example that I shall adopt throughout.
If we have a term t (x, y, z) then the result of filling in the values �x , �y and �z for x ,
y and z, respectively, is denoted as usual by t (�x, �y, �z), or—if we want to be very
explicit which value is assigned to which variable—by t (x, y, z)[�x/x, �y/y, �z/z].
The latter notation is more practical when we suppress the variables in the term
itself by writing t[�x/x, �y/y, �z/z]. Now let f : (A∗)n → A∗. Say that it is a term
function of G if there is a term t (x0, x1, · · · , xn−1) such that

2.2 Parts and Substitution 27

f (�x0, · · · , �xn−1) = ιG(t[�x0/x0, · · · , �xn−1/xn−1]). (2.38)

A polynomial (over A) is a term in the signature expanded by fa (with value
a) for every a ∈ A. f is a polynomial function of G if there is a polynomial
p(x0, x1, · · · , xn−1) such that

f (�x0, · · · , �xn−1) = ιG(p[�x0/x0, · · · , �xn−1/xn−1]). (2.39)

A particular sort of polynomial is the string polynomial. Let A be an alphabet.
Then the string polynomials over A are the polynomials defined over the signature
Ω : ·
→ 2, ε
→ 0 in the algebra 〈A∗, ε,� 〉. The interpretation is fixed: · is
interpreted by concatenation, ε by the empty string and a by a constant yielding
the letter a itself. (Bracketing is therefore eliminable since string concatenation is
associative.) For example, p(x0, x1) := x1 · a · x1 · x0 · b is a polynomial. It is
interpreted by the following function over A∗.

pA∗(�x, �y) := ιG(t[�x/x0, �y/x1]) := �y�a��y��x�b (2.40)

Typically, we do not even write the dot, so that x0 · x1 reduces to x0x1.
I close this section with an observation concerning the method of substitution,

using Definition 2.10. This test is supposed to reveal something about the structure
of the language provided that the grammar for it is some constituent grammar: parts
are assumed to be substrings. (If the grammar is not of that form, another form of
test is needed.) There are two ways to understand this test, ultimately deriving from
two different definitions of language; one is to start with a language as the set of
sentences and try to define the constituents smaller than sentences via substitution
classes. Another, less ambitious method, starts with a language in the wide sense
and tries to find out the constituent occurrences in a given string. We shall look here
at the first of these interpretations; the other interpretation shall be looked at in more
detail later.

Let L ⊆ A∗ be a language in the narrow sense and �x a string. Evidently, there
are two cases. Either �x is not a substring of any string in L , and so CatL(�x) = ∅, or
it is and then CatL(�x) �= ∅. Apart from this there is nothing of substance one can
say about the distribution of categories. There is no theoretical instrument to tell us
from the substitution possibilities which are the constituents. This is reflected also
in some grammars. In the Lambek Calculus all substrings of a string of the language
are given a category.

There is a little bit that we can say about the relationship between the number
of categories and L itself. It turns out that if the set of string categories is finite the
language is regular. The following proof is based on the Myhill-Nerode Theorem
(see Harrison (1978) for a proof).

Theorem 2.1 A language has finitely many string categories if and only if it is
regular.

28 2 String Languages

Proof Suppose that L has finitely many categories. Intersect the categories with the
set {〈ε, �x〉 : �x ∈ A∗}. This yields a finite set of occurrences of prefixes. By the
Myhill-Nerode Theorem, the language is regular. Now assume that the language is
regular, and accepted by a finite automaton A. Let Ii be the language of all strings
that lead from the initial state to state i ; and let A j be the language of all strings that
lead from j to some accepting state. Then the categories coincide with the sets of
pairs Ii × A j for all states i and j such that j can be reached from i . ��
Exercise 2.9 Describe all unary term functions of C2, that is, all actions of C2-terms
in one variable.

Exercise 2.10 Verify that the language of ua-terms is defined by the following
grammar:

I(n0)() := 0

.

I(n9)() := 9

I(c0)(�x) := �x�0
.

I(c9)(�x) := �x�9

I(a0)(�x) := �x�+�0
.

I(a9)(�x) := �x�+�9

(2.41)

Exercise 2.11 (Continuing the previous exercise.) In the grammar of the previous
exercise /10+1/ is a part of /10+12/. Simply choose the analysis n1c0a1c2. However,
/12/ is not a part of /10+12/ although intuitively it should be. Begin by specifying
when a given string is a substring of another. Then write a grammar where only
those substring occurrences are parts that should be.

Exercise 2.12 The language of ua-terms is regular. Nevertheless, show that there
is no regular grammar that generates exactly this language in the wide sense; this
means that L is taken to be the union of all expressions that belong to some nonter-
minal of the grammar. Hint. Regular grammars allow to add only one symbol at a
time.

2.3 Grammars and String Categories

In the previous section we looked at string categories defined by replacing substrings
by other substrings. In this section we look at a similar but different definition where
replacement is done only of constituent occurrences. This definition presupposes a
grammar.

2.3 Grammars and String Categories 29

Definition 2.11 Let G be a grammar and �x, �y ∈ L(G). We write �x ∼G �y if for
every term t (x0), ιG(t (�x)) is defined if and only if ιG(t (�y)) is defined. We write
[�x]G := {�y : �x ∼G �y}. These sets are called the syntactic categories of G.

We have restricted the definition to strings in L(G). Thus, categories are defined
only on the strings of the language. Strings outside the language have no category.
An alternative formulation is this: �x and �y have the same category if for every pair of
terms s0 and s1 that unfold to �x and �y respectively, t (s0) is orthographically definite
if and only if t (s1) is. (It is easy to see that if this holds for one pair of terms s0 and
s1 then it holds for all. See also Definition 2.23.)

Notice that the set of strings on which no function is defined is also a syntactic
category. For example, in Example 2.1 this category is empty, in Example 2.6 it
contains all equations.

There need not be finitely many equivalence classes as the following example
shows.

Example 2.13 Let A := {a}. G = 〈Ω, I〉 is defined byΩ(e) = 0,Ω(f) = Ω(g) =
1 and

I(e)() := ε

I(f)(an) :=
{
an−1 if n > 0,

undefined else.
(2.42)

I(g)(an) := a2n

G generates a∗ in a somewhat unconventional way. Namely if m > n, then
I(f)n(am) = am−n and I(f)m(am) = ε. However, for n > m, I(f)n(am) is
undefined. Thus, am ∼G an if and only if m = n, and so there are infinitely many
equivalence classes.

Now, the grammar H = 〈Ω ′,J 〉 with F ′ := {e, h} where J (e)() := ε and
J (h)(�x) := �x�a has exactly one class of strings. It is checked that am ∼H an for
all m, n ∈ N. o

It is linguistic practice not to leave the categories implicit (in the form of domain
restrictions) but to make them part of the representation. If we so wish this can be
implemented as follows. Let C be a set. A c-string is a pair s = 〈�x, c〉where �x ∈ A∗
and c ∈ C . Given s, we put

ε(s) := �x, κ(s) := c. (2.43)

For a set S of c-strings write ε[S] := {ε(s) : s ∈ S}, κ[S] := {κ(s) : s ∈ S}.
A c-string language is a subset of A∗ × C . A c-string grammar is a pair 〈Ω, C〉
where Ω is a signature (with domain F) and C an interpretation function such that
for all f ∈ F C(f) : (A∗ × C)Ω(f) ↪→ (A∗ × C). We define ιG(t) for an Ω-term t
by

ιG(f s0 · · · sΩ(f)−1) := C(f)(ιG(s0), · · · , ιG(sΩ(f)−1)). (2.44)

30 2 String Languages

We write tε in place of ε(ιG(t)) and tκ in place of κ(ιG(t)). Thus we have

ιG(t) = 〈tε, tκ 〉. (2.45)

We also use the notation f ε for the function ε ◦ C(f) and f κ for κ ◦ C(f). A
more detailed discussion can be found in Chapter 3. The categories will be most
useful when the string operations of the grammar are independent. We shall deal
with grammars acting on several components in Chapter 3.

Example 2.14 The shift to categories is not as innocent as it first appears, for we
lose certain properties. Here is an example. The relation “is part of” is no longer
transitive. Let F := { f0, f1, g},Ω(f0) := Ω(f1) := 0 andΩ(g) := 1. C := {α, β}
and A := {a}.

I(f0)() := 〈a, α〉
I(f1)() := 〈aa, α〉

I(g)(〈�x, c〉) :=
{
〈�x�a, β〉 if c = α,

undefined else.

(2.46)

This grammar generates the language {〈a, α〉, 〈aa, β〉, 〈aa, α〉, 〈aaa, β〉}. It turns
out that /a/ is a part of /aa/, and /aa/ a part of /aaa/, but /a/ is not a part of /aaa/. o

As the example shows we can no longer simply say that a string occurs as a
substring; it occurs in a c-string as a c-string and so the category that it has in that
occurrence may also be fixed. For example, /I see John fly./ contains /fly/ as
a verb and not as a noun.

An important class of (c-string) grammars are the bottom up context free (c-)
grammars. These are not the same as ordinary CFGs. We shall recall the definition
of standard CFGs first and then turn to the bottom up version. Recall that a context
free grammar is standardly taken to be a quadruple G = 〈A, N , S, R〉, where A and
N are disjoint sets, S ∈ N and R a set of replacement rules. They have the form
X → �y, where X ∈ N and �y ∈ (A∪N)∗ is a sequence over A∪N . The rules define
a replacement relation in the following way.

Definition 2.12 Let ρ = �x → �y be a rule. We say that �u �y �w is 1-step derivable via
ρ from �u �x �v, in symbols �u �x �v ⇒ρ �u �y �v. For a set R of rules we write �u �x �v ⇒ρ

�u �y �v and say that �u �y �v is 1-step derivable from �u �x �v if there is a rule ρ ∈ R such
that �u �x �v ⇒ρ �u �y �v. Furthermore, we say that �w is n-step derivable in R from �v
and write �v ⇒n

R �w if either n = 0 and �w = �v or n > 0 and there is a �u such that �u
is n − 1-step derivable from �v and �w is 1-step derivable from �u.

Notice that �v ⇒1
R �w and �v ⇒R �w are synonymous, and that �v ⇒{ρ} �w and �v ⇒ρ �w

are also synonymous; R or ρ will be dropped when the context makes clear which
rules are being used. Notice furthermore that it may happen that a rule can be applied
to a given string in several ways. The rule A→ aa can be applied to the string /AcAb/
to yield either /aacAb/ or /Acaab/. Therefore, if we want to know what the result will

2.3 Grammars and String Categories 31

be after applying the rule we need to identify the occurrence of the left-hand side
that is being replaced. When can do this by underlining as follows: AcAb⇒ aacAb
and AcAb ⇒ Acaab. If the occurrence is underlined then the rule must be applied
to that occurrence. Hence we do not have AcAb ⇒ Acaab. Now, suppose we have
such a marked string; then the result is still not unique unless we know which rule
is being applied. This follows from the fact that several rules may replace a given
string. For example, if we also have the rule A → cd then from /AcAb/ we may
proceed to /cdcAb/ in addition to /aacAb/. However, if also the resulting string is
given, the rule that has been applied can be inferred. Thus, in order to show that a
given string �w is n-step derivable from a string �v we need to produce a sequence
〈�vi : i < n〉 of length n of marked strings such that �vi ⇒ �vi+1 for i < n − 1
and �vn−1 ⇒ �w. Such a sequence is called a derivation. Notice that the sequence
contains marked strings not just strings, though we shall often not show the marks.
The derived string is by definition not marked, though it is often added at the end of
the derivation sequence so that one can infer the choice of rules in each step.

Given a nonterminal A and a string �x we write A �G �x and say that G derives �x
from A if there is an n such that A ⇒n

R �x .

Definition 2.13 Let G = 〈S, N , A, R〉 be a CFG. The language of G in the narrow
sense is defined by

L(G) := {�x ∈ A∗ : S �G �x}. (2.47)

The language in the wide sense is defined by

Lw(G) := {�x ∈ A∗ : for some X ∈ N : X �G �x}. (2.48)

A language L in the narrow (wide) sense is context free if there is a context free
grammar G such that L = L(G) (L = Lw(G)).

Also, write [A]G := {�x : A �G �x}. Then L(G) = [S]G . This notion of gram-
mar is top down and nondeterministic. It generates the strings from a single string
(consisting in the single letter S).

Example 2.15 Let G be defined as follows.

G := 〈{a, · · · , z, �}, {<S>, <NP>, <VP>, <N>, <D>, <VI>, <VT>}, <S>, R〉 (2.49)

The alphabet consists in all lower case letters plus the space.

R = {<S>→ <NP><VP>
<NP>→ <D><N>
<D>→ the� | a�
<N>→ cat� | dog� | mouse�
<VP>→ <VI> | <VT><NP>
<VI>→ runs� | sleeps�
<VT>→ sees� | chases�}

(2.50)

32 2 String Languages

This grammar generates among others the following strings:

<S>
<NP><VP>
<D>dog�<VI>
a�dog�chases�the�cat�

(2.51)

Only the last of the four strings is meaningful. A derivation of the third string is as
follows.

〈<S>, <NP><VP>, <D><N><VP>, <D><N><VI><D>dog�<VI>〉 (2.52)

o
Let us now look at a bottom up version of CFGs. Obviously, to get such

a grammar we simply turn the rules around. Rather than assuming a rule, say,
ρ = A → BC , we define a string function fρ of arity 2 such that fρ is interpreted as
concatenation, which is to say I(fρ)(�x, �y) = �x��y. However, this function is only
defined if �x is a B-string, that is, if we can derive �x from B in the grammar and if �y
is a C-string. In this way we guarantee that �x��y is an A-string. In general, for each
rule ρ we assume a function symbol fρ and an interpretation I(fρ). A rule is of the
form A → �x for some �x ∈ (A ∪ N)∗.

This means that there is n and �xi ∈ A∗, i < n + 1, and Bi ∈ N , i < n, such that

ρ = A → �x0 B0�x1 B1 · · · Bn−1�xn (2.53)

Then Ω(fρ) := n and its interpretation is

I(fρ)(�y0, · · · , �yn−1) :=

⎧
⎪⎨

⎪⎩

�x0 �y0�x1 �y1 · · · �yn−1�xn if for all i < n:

�yi is a Bi -string,

undefined else.

(2.54)

We do this for all ρ that do not have the form A → B. It is an easy matter to trans-
form G into a grammar that has no such rules. But this transformation is actually
unnecessary. This defines the grammar G�.

Example 2.16 I transform the grammar from Example 2.15. Let us note that the
constituents generate only finitely many strings, so we can list them all.

[<D>]G = {/a�/, /the�/}
[<N>]G = {/cat�/, /dog�/, /mouse�/}
[<VI>]G = {/runs�/, /sleeps�/}
[<VT>]G = {/sees�/, /chases�/}
[<VP>]G = (runs� | sleeps�) | (sees� | chases�)(the� | a�)

(cat� | dog� | mouse�)

(2.55)

2.3 Grammars and String Categories 33

Before the transformation we need to consider the rule <VP> → <VI>. This is a
unary rule. We eliminate it and add instead the rule

<S>→ <NP><VI> (2.56)

Now we begin the transformation. The grammar G� is based on the set
{ f1, f2, · · · , f11} with Ω(fi) = 0 for i < 9 and Ω(fi) = 2 otherwise. We have

I(f0)() := a�
I(f1)() := the�
I(f2)() := cat�
I(f3)() := dog�
I(f4)() := mouse�
I(f5)() := runs�
I(f6)() := sleeps�
I(f7)() := sees�
I(f8)() := chases�

I(f9)(�x, �y) :=
{
�x��y if �x ∈ [<D>]G and �y ∈ [<N>]G ,

undefined otherwise.

I(f10)(�x, �y) :=
{
�x��y if �x ∈ [<VT>]G and �y ∈ [<NP>]G ,

undefined otherwise.

I(f11)(�x, �y) :=
{
�x��y if �x ∈ [<NP>]G and �y ∈ [<VI>]G ,

undefined otherwise.

(2.57)

The reader is asked to check that these modes correspond exactly to the rules of the
grammar (in its slight modification). The string /a�cat�sees�the�dog�/ is derived
by the term f11 f9 f0 f2 f10 f7 f9 f1 f3, as can be checked. o

G� is a grammar in the sense of Section 2.1. The grammar G� generates the
language of G in the wide sense, as the following theorem documents.

Proposition 2.3 Let G be a context free grammar. Then �x ∈ L(G�) if and only if
there is a nonterminal X such that X �G �x. In other words, L(G�) = Lw(G).

The proof is a relatively easy induction on the length of derivations. I shall relegate
this to the exercises.

Example 2.17 The elimination of unary rules is not as innocent as it first appears.
In natural languages there are plenty of examples of zero-derivation. One example
is the conversion of adjectives to nouns in Hungarian. Typically, adjectives do not
inflect. However, in the absence of a noun they can inflect just as nouns and hence
should be regarded as such. Thus, the form /fehéret/ (accusative of /fehér/) must
be translated as “a white one”. Critically, also the nominative form /fehér/ can be
so regarded and hence can be translated as either “white” or “a white one”. Given
a bottom up grammar these two are now confused. However, as long as we do not

34 2 String Languages

treat meaning in addition there is no harm in this. This theme will be picked up in
Section 3.4. o

Notice that there is no way to generate only the language L(G), which is, all
and only the S-strings for the start symbol S. When we do a top down generation
we can simply choose to start with the start symbol and all the strings we generate
are sentences. However, in the bottom up process we cannot restrict ourselves to
generating just the sentences. We must generate all intermediate strings. On the
other hand there is no need to generate strings with extraneous symbols. In the c-
string grammar we can make up for this defect as follows. For a CFG in the standard
sense let

Lc(G) := {〈�x, X〉 : X ∈ N , X �G �x}. (2.58)

So, Lc(G) contains strings together with their categorial information; it does not
however single out a particular category. We can derive L(G) from Lc(G) by pick-
ing all �x for which 〈�x, S〉 ∈ Lc(G). This is a different notion of language than
the generated language in the wide sense. In the latter we do not know what the
categories of the strings are; we just know that they have some category. On the other
hand, for a language in the wide sense there is no need to construct the categories
from the input data (as languages mostly do not always mark their expressions for
category). The arity of fρ equals the number of nonterminals on the right-hand side
of the rule.

The string based version presented above is not an exact equivalent of the gram-
mar G. In the exercises we shall show that these grammars may have quite different
derivations. To get a more exact correspondence we turn to c-strings. In the case at
hand we choose C := N . Thus c-strings are pairs 〈�x, X〉 where �x ∈ A∗ and X ∈ N .
The interpretation of the function symbol fρ is now the partial function

C(fρ)(〈�y0, c0〉, 〈�y1, c1〉, · · · ,〈�yn−1, cn−1〉) (2.59)

:= 〈�x0 �y0�x1 �y1 · · · �yn−1�xn, f κρ (c0, c1, · · · , cn−1)〉

where

f κρ (c0, · · · , cn−1) :=
{

A if for all i < n: ci = Bi ,

undefined else.
(2.60)

Then L(G) is a set of pairs 〈�x, c〉. We say that �x has category c in G if some G-term
unfolds to 〈�x, c〉. A given string can have several categories.

Example 2.18 We continue the language of equations (Example 2.6 on page 16).
The grammar G Q consists in the alphabet of terminals

:bt: := {0, 1, +, -, (,), =}. (2.61)

The alphabet of nonterminals is N := {E, B, T}, the start symbol /E/ and the set of
rules is as follows.

2.3 Grammars and String Categories 35

E→ T=T

T→ (T+T) | (T-T) | B
B→ B0 | B1 | 0 | 1

(2.62)

By default, a derivation starts with the letter /E/. Thus

C = 〈:bt:, N , E, R〉. (2.63)

Recall that “|” is an abbreviation. It allows to group together rules with the same
left-hand side. Figure 2.1 shows an example of a derivation in G Q . In each step we
replace a single occurrence of a nonterminal by a corresponding right-hand side of
(2.62). o

An X -derivation is a sequence of strings starting with the nonterminal X , where
each nonfirst member is obtained from the previous by replacing a nonterminal sym-
bol in the appropriate way. A derivation is an X -derivation with X the top symbol.
For our purposes, however, the best objects to deal with are not the derivations but
the analysis terms. The analysis term of a derivation is obtained as follows. Assign
to each rule ρ with n(ρ) nonterminals on the right a function symbol fρ of arity
n(ρ). This defines the signature. Start with the variable x0. A step in the derivation
consists in the replacement of an occurrence of a variable xi by a term of the form
fρ(xi0 , xi1 , · · · , xin(ρ)−1) where the xi j so that in the end no variable occurs twice.
This procedure is best explained with the derivation above.

Example 2.19 Continuing Example 2.18. We give the following names to the rules.

a E→ T=T

b T→ (T+T)

c T→ (T-T)

d T→ B

e B→ B0

f B→ B1

g B→ 0

h B→ 1

(2.64)

E
T=T
B=T
0=T
0=(T-T)
0=(T-B)
0=(T-0)
0=(B-0)
0=(B0-0)
0=(10-0)

Fig. 2.1 A derivation in G Q

36 2 String Languages

E x0

T=T fa x0 x1

B=T fa fd x0 x1

0=T fa fd fg x1

0=(T-T) fa fd fg fcx0 x1

0=(T-B) fa fd fg fcx0 fd x1

0=(T-0) fa fd fg fc x0 fd fg

0=(B-0) fa fd fg fc fd x0 fd fg

0=(B1-0) fa fd fg fc fd fe x0 fd fg

0=(10-0) fa fd fg fc fd fe fh fd fg

Fig. 2.2 Deriving the term

Thus the symbols are called fa , fb, fc (binary), fd , fe, f f (unary), fg and fh

(zeroary). The derivation is translated to a term as shown in Fig. 2.2. The variable
that is being replaced is surrounded by a box. The exact recipe is this: if the deriva-
tion replaces the nth nonterminal counting from the left, then it is the nth variable
from the left that is being replaced irrespective of its index. o

Now we shall supply the term symbols with interpretations that match the effect
of the rules. Call �x an X -string if X �G �x . Write L X (G) for the set of X -strings
of G. In our example LE(G Q) is the set of equations; these are strings of the form
/�x=�y/, where both �x and �y are T-strings. T-strings are terms; these are strings of the
form (a) �x , where �x consists in 0 and 1 only (a number expression, or a B-string),
(b) /(�x+�y)/ where �x and �y are T-strings, or (c) /(�x-�y)/ where �x and �y are T-strings.
Finally, the B-strings are exactly the strings from {0, 1}+.

For example, ρ = B → B1 is a rule of G Q , and so we have a symbol fρ with
Ω(fρ) = 1. The function takes a B-string �x and appends /1/. Hence:

ι(fρ)(�x) :=
{
�x�1 if �x is a B-string,

undefined else.
(2.65)

Similarly, if ρ′ = T → (T+T) we postulate a symbol fρ′ with Ω(fρ′) = 2 and
which acts as follows:

ι(fρ′)(�x, �y) :=
{
(��x�+��y�) if �x and �y are T-strings,

undefined else.
(2.66)

As we have briefly noted above, the properties “B-string”, “T-string” and so on can
actually be defined without making reference to the grammar.

We can use Example 2.19 to show that the transformation (−)� of CFGs pre-
serves the strings but not the set of terms if applied also to unary rules. The rule d
has the form T → B. It is converted into the string function I(fd)(�x) = �x , in other
words the identity function. This function is iterable, while the rule is not. Thus the
term fd fd fg would evaluate in G�

Q to /0/.

2.3 Grammars and String Categories 37

ι(fd fd fg) = I(fd)(I(fd)(I(fg)())) = I(fd)(I(fd)(0)) = I(fd)(0) = 0 (2.67)

However, there is no derivation with term fd fd fg . Try to start with the symbol T,
for example:

T x0

B fd x0

? fd fd x0

(2.68)

Similarly if we start with /B/. (If you want a derivation beginning with the start
symbol, take the term fa fd fd fg fd fh .) It might be deemed that all we have to do is
to exclude unary rules. That this is not so is shown in Exercise 2.18.

We can characterize in more exact terms the connection between the two kinds
of grammars. Here is a characterization of context free languages in terms of the
generating functions. It shows that if the functions are partial functions of a certain
kind and such that ranges of functions are subsets of domains (or disjoint) then the
generated language is context free (and conversely).

Definition 2.14 Let G = 〈Ω, I〉 be a grammar. G is called a concatenation gram-
mar if for all modes f , I(f) is the restriction of a polynomial function of the string
algebra to some arbitrary set of sequences of strings.

This definition says the following. In a concatenation grammar a mode f interpreted
as a partial function I(f) : (A∗)Ω(f) ↪→ A∗. While the domain is some arbitrary
set D ⊆ (A∗)Ω(f), there must exist a polynomial function p such that I(f) =
p � D. Notice namely that the string polynomials are total. These polynomials may
be arbitrarily restricted. However, as we shall see, in context free grammars there
are tight restrictions on these domains. Say a polynomial p(�x) is a linear string
polynomial if it is composed from the variables xi and constants such that each xi

occurs exactly once. If p is a polynomial, we denote the induced function by pA∗ .
f : (A∗)n → A∗ is a rectangularly restricted linear string polynomial if there
is a linear string polynomial p(x0, · · · , xn−1) such that f ⊆ pA∗(�x) and there are
subsets Pi ⊆ A∗, i < n, such that dom(f) = Xi<n Pi . Now recall that the grammar
G� uses precisely such functions. Thus we have

Proposition 2.4 If a language L ⊆ A∗ is context free then it has a grammar G in
which all function symbols are interpreted by rectangularly restricted linear string
polynomials.

For the converse, a little more is needed. Namely, let H be a grammar such that
all I(f) are rectangularly restricted linear polynomials. So for each f there are sets
Q f

i , i < Ω(f), such that the domain of I(f) is Xi<Ω(f)Q
f
i . Assume moreover that

for every g and i < Ω(g): either rng(I(f)) ⊆ Qg
i or rng(I(f))∩Qg

i = ∅. We call
this the connectivity property for H . For each domain Q we choose a nonterminal
NQ (notice that NQ = NP if P = Q as sets). Further, for a function symbol f such

that dom(I(f)) = Xi<Ω(f)Q
f
i and rng(I(f)) ⊆ Qg

i we create a rule

38 2 String Languages

ρ f : NQg
i
→ �x0 N

Q f
0
�x1 N

Q f
1
�x2 · · · �xΩ(f)−1 N

Q f
Ω(f)−1

�xΩ(f) (2.69)

where the �xi are chosen such that I(f) is the restriction of the polynomial

pA∗(y0, · · · , yΩ(f)−1) := �x0 y0�x1 y1�x2 · · · �xΩ(f)−1 yΩ(f)−1�xΩ(f). (2.70)

This grammar is such that �z is an NQ-string for some Q if and only if �z ∈ L(H).

Proposition 2.5 If H is a grammar such that all I(f) are rectangularly restricted
linear string polynomials and I has the connectivity property then L(H) is context
free.

Example 2.20 I give some examples to show that none of the conditions can be
dropped. First, the functions must be linear string polynomials. Take f (�x) := �x �x
on the alphabet {a}. This function is induced by the polynomial p(x0) := x0x0. It
is not linear as the variable x0 occurs twice on the right. As it happens the function
generates the language {a2n : n ∈ N, n > 0} from a. (Assuming we have a single
constant c in the signature with interpretation a.) One may be tempted to eliminate
the nonlinearity by using the following function instead.

f (�x, �y) :=
{
�x �y if |�x | = |�y|,
undefined otherwise.

(2.71)

This (binary) function is the restriction of the polynomial p(x0, x1) := x0x1 to
the set of all pairs of strings of equal length. Unfortunately, this function is not
rectangularly restricted. There are no sets H , K such that the domain of f is H ×K
and the set of strings generable from a with this function is again the set {a2n :
n ∈ N, n > 0}. Finally, consider the following two functions. The first is a modifi-
cation of f :

f (�x, �y) :=
{
�x �y if �x, �y ∈ a∗,

undefined otherwise.
(2.72)

The second is a unary function g defined by

g(�x) :=
{
�x b if |�x | = 2n for some n,

undefined otherwise.
(2.73)

Both functions are restrictions of linear polynomial functions to some rectangles.
Only the connectivity property is lacking. For Qg = {�x : |�x | = 2n for some
n ∈ N}, and we have both rng(I(g)) � Qg and rng(I(g))∩Qg �= ∅. The generated
language is

a+ ∪ {a2n
b : n ∈ N, n > 0}. (2.74)

2.3 Grammars and String Categories 39

This is not context free. Hence all the conditions are really necessary and indepen-
dent of each other. o

This gives rise to the following definition.

Definition 2.15 A string grammar is called (bottom up) context free if it is a con-
catenation grammar with rectangularly restricted linear string polynomials with the
connectivity property.

Notice that “context free” is applied not only to rule based grammars but also to
c-string grammars and string grammars alike. Whenever there is risk of confusion,
the context free grammars in the sense of this book are called “bottom up context
free”.

I close this section with some remarks concerning the use of categories as dis-
criminatory devices. Suppose two strings are such that in a language they have the
same category. Then we will want to say that they should also be of the same cat-
egory in the analysing grammar. Recall that in a context free language, the formal
concept of identity of category was substitutability in all 1-contexts, written �x ∼L �y.

Principle 1 (Identity of Indiscernibles) Let G be a context free c-grammar. If
�x ∼L �y and 〈�x, c〉 ∈ L(G) then also 〈�y, c〉 ∈ L(G).

We shall not spell out the generalisation to other kinds of grammars, though it is
straightforward to do.

Exercise 2.13 In Example 2.14 is was shown that the relation is a part of is not
transitive. Find an example to show that it is also not antisymmetric. (A relation R
is antisymmetric if from x R y and y R x follows x = y.)

Exercise 2.14 A grammar is left regular if the functions are zeroary or unary and the
unary functions all have the form f (�x) := �x�a for some a. Let L be a language.
Define �x/L := {�y : �x��y ∈ L}. Show that for a regular grammar G generating L:
�x ∼G �y if and only if �x/L = �y/L .

Exercise 2.15 Why does the bottom up grammar G� not contain any fρ for rules
of the form ρ = A → B?

Exercise 2.16 Let G be a context free grammar and A a nonterminal. Let HA :=
{�x : A �G �x}. Show that for every �x ∈ HA HA ⊆ [�x]G . Give an example to show
that equality need not hold!

Exercise 2.17 Prove Proposition 2.3.

Exercise 2.18 Context free grammars allow to tune derivations more finely than
grammars in the sense of Definition 2.4. Here is an example, due to Ben George.
Let G consist in the rules

S→L | R
L→La | a
R→aR | a

(2.75)

40 2 String Languages

Construct the corresponding grammar and show that it allows for more analysis
terms for the string /aaaa/ than does G.

2.4 Indeterminacy and Adjunction

In the previous section we have constructed a “bottom up” version G� of a context
free grammar G. (I should stress here, though, that only G�, not G, is a grammar in
the sense of this book.) In addition to the differences between the types of grammars
that I mentioned earlier there is a major difference between G and G�. It is that by
definition L(G�) is the set of all strings that are constituents for some nonterminals
as opposed to just the strings corresponding to the start symbol. Thus the standard
definition of L(G) for a CFG is contained in L(G�) but the two need not be identical
(cf. Proposition 2.3). The difference is exactly between language in the wide sense
and language in the narrow sense. Since I insist that the language of a grammar
must be taken in the wide sense we must ask if there is a kind of grammar that
generates the sentences all by themselves so that the two notions actually coincide
for this type of grammar. Such grammars do exist. The adjunction grammars are of
this kind. Unfortunately, these grammars turn out to be somewhat different from the
grammars previously defined in that the defining operations generally are relations.
Grammars of this form shall be called indeterminate grammars (the label relational
grammar has already been taken). I shall return to indeterminate grammars again in
Section 3.7 in connection with interpreted languages.

Definition 2.16 An indeterminate grammar over A is a pair 〈Ω, I〉, where Ω
is a signature and for every f ∈ F , I(f) ⊆ (A∗)Ω(f)+1. F is the set of modes
of the grammar. The set { f : Ω(f) = 0} is called the lexicon of G and the set
{ f : Ω(f) > 0} the set of rules. The language generated by G, in symbols L(G),
is defined to be the least set S satisfying for every f ∈ F and all �xi ∈ A∗, i < Ω(f):

If for all i < Ω(f) : �xi ∈ S and if 〈�x0, · · · , �xΩ(f)−1, �y〉 ∈ I(f) then �y ∈ S.
(2.76)

Thus, the output of a rule is not assumed to be unique. In a grammar of the usual sort
the output need not exist but if it exists, it is unique. In an indeterminate grammar
it need not even be unique. Adjunction grammars are such grammars. They are
popular since they generate more than context free languages and enjoy neverthe-
less quite a simple description. I point out that as soon as we move to interpreted
languages it will turn out that the indeterminacy will have to be eliminated; see also
the discussion in Section 3.7.

Definition 2.17 A 2-context is a triple γ = 〈�u, �v, �w〉. The result of inserting a pair
〈�x, �y〉 into γ is defined as follows.

γ (〈�x, �y〉) := �u �x �v �y �w (2.77)

2.4 Indeterminacy and Adjunction 41

A 2-locale is a set of 2-contexts. A string adjunction rule is a pair ρ = 〈〈�x, �y〉,Λ〉,
where Λ is a 2-locale.

According to the previous definition, the string relation associated with ρ is

Adj(ρ) := {〈�u �v �w, �u �x �v �y �w〉 : 〈�u, �v, �w〉 ∈ Λ}. (2.78)

Definition 2.18 A string adjunction grammar is a pair A = 〈S, R〉, where S is a
finite set of strings and R a finite set of string adjunction rules.

For a string adjunction grammar we define the following signature: let f�x be a sym-
bol of arity 0 for every �x ∈ S; and let gρ be a symbol of arity 1 for every ρ ∈ R.
This defines the signature. The interpretation is given by

I(f �x) := �x, I(gρ) := Adj(ρ). (2.79)

With this definition, the formal apparatus of the previous sections can be used with
minor adaptations.

We say that G generates �y in n-steps if the following holds: n = 0 and �y ∈ S
or n > 0 and there is a �z such that A generates �z in n − 1 steps and there is a
rule 〈〈�x0, �x1〉,
〉 and γ = 〈�u, �v, �w〉 ∈ A∗ such that �z possesses the decomposition
�z = γ (〈ε, ε〉) = �u �v �w and

�y = γ (〈�x0, �x1〉) = �u �x0�v�x1 �w (2.80)

L(G) denotes the set of strings that can be generated in a finite number of steps.
An alternative way to define this notion is to define the value of terms to be sets.
Namely, ιG(f s0 · · · sΩ(f)−1) would be the projection to the last component of the
following set:

⎛

⎝
∏

i<Ω(f)

ιG(si)

⎞

⎠× A∗ ∩ I(f) (2.81)

For a zeroary mode f �x we have

ιG(f �x) = (1 × A∗) ∩ {�x} = {�x}. (2.82)

The other cases are similar.

Example 2.21 We shall now give a presentation of the E-strings of the grammar from
Example 2.18 using a string adjunction grammar. We put

S := {0=0, 0=1, 1=0, 1=1} (2.83)

42 2 String Languages

The rules are as follows. Let Λ1 be the set of triples 〈�ux, �v, �w〉 such that x is
either /0/ or /1/ and �v �w does not begin with /0/ or /1/. (This is equivalent with
the following: (1) �v �= ε and �v does not begin with /0/ or /1/, or (2) �v = ε and �w
(!) does not begin with /0/ or /1/.) Let Λ2 be the set of triples of the form 〈�u, �v, �w〉,
where both �u does not end with /0/ or /1/, �w does not begin with /0/ or /1/, while
�v ∈ {0, 1}∗.

ρ0 :=〈〈0, ε〉,Λ1〉
ρ1 :=〈〈1, ε〉,Λ1〉
ρ2 :=〈〈ε, 0〉,Λ1〉
ρ3 :=〈〈ε, 1〉,Λ1〉
ρ4 :=〈〈(, +0)〉,Λ2〉
ρ5 :=〈〈(, +1)〉,Λ2〉
R :={ρ0, · · · , ρ5}

(2.84)

The signature is F := { f0, · · · , f3, g0, · · · , g5}, where the fi are zeroary and the
gi are unary. Further,

I(f0) := {0=0}
I(f1) := {0=1}
I(f2) := {1=0}
I(f3) := {1=1}

I(gi) := Adj(ρi)

(2.85)

Here is an example of a derivation:

f1 0=1
g5 f1 (0+1)=1
g2g5 f1 (0+10)=1
g5g2g5 f1 (0+(10+1))=1

(2.86)

The first line is in S. To get from the first line to the second we choose a decompo-
sition of /0=1/ as /ε�0�=1/. Thus, choose γ = 〈ε, 0, =1〉. This is in Λ2 since ε
does not end in /0/ or /1/, the middle string is a binary string and /=1/ does not begin
with /0/ or /1/. Thus we can apply the rule 〈〈(, +1)〉,Λ2〉.

γ (〈(, 1)〉) = ε�/(/�/0/�/+1)/�/=1/ = /(0+1)=1/ (2.87)

2.4 Indeterminacy and Adjunction 43

It may be checked that

ιG(g5g2g5 f1)

= {((00+1)+1)=1, (00+1)=(1+1), ((0+1)+10)=1, (0+1)=(10+1),
((0+1)+1)=10, (0+1)=(1+10), (00+(1+1))=1, 00=((1+1)+1),

(0+(10+1))=1, 0=((10+1)+1), (0+(1+1))=10, 0=((0+1)+10),

(00+1)=(1+1), 00=(1+(1+1)), (0+10)=(1+1), 0=(10+(1+1)),

(0+1)=(10+1), 0=(1+(10+1))}.

(2.88)

o
Example 2.22 (Cf. Example 2.7.) We give another example: Boolean logic in Polish
Notation. The alphabet is :bool: = {∧,∨,¬, p, 0, 1}. A term in Polish Notation is
either /p/ followed by an index (a sequence of /0/ and /1/) or it is a function symbol
f (¬, ∧ or ∨) followed by Ω(f) many terms. The formation rules using adjunction
grammars are as follows. The set of start strings is S := {p}. The rules are

R := {〈〈0, ε〉, 〈A∗ · p, ε, A∗〉〉,
〈〈1, ε〉, 〈A∗ · p, ε, A∗〉〉,
〈〈¬, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉,
〈〈∧p, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉,
〈〈∨p, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉}.

(2.89)

Using Exercises 2.6 and 2.7 we can see that this preserves termhood: the sum of the
elements added in the string is 0, and the sum of the prefixes is positive. The original
Polish Notation had no room for indices but they pose no problem here. It is easy to
verify that any string in Polish Notation is derivable in this grammar. o

It is easy to generalize the previous example to Polish Notation in general (see the
Exercises). Furthermore, I describe in the exercises how one can derive an adjunc-
tion grammar for bracketed notation as well.

In the remainder of this section I shall describe two variants of adjunction gram-
mars that have been discussed in the literature.

Definition 2.19 A 2-localeΛ is factored if there are sets S ⊆ A∗× A∗ and C ⊆ A∗
such that Λ = {〈�u, �v, �w〉 : 〈�u, �w〉 ∈ S, �v ∈ C}. A rule is factored if its 2-locale
is. A contextual grammar is a string adjunction grammar in which every rule is
factored.

See Martín-Vide and Păun (1998) for an overview.
The most popular variant of adjunction grammars are however the tree adjunc-

tion grammars (TAGs). These grammars can be explained by a method of coding
trees into strings. We shall define certain strings that we call trees. Let N be a set,
the set of nonterminal labels. Then N -trees over the alphabet A are strings from
A ∪ N ∪ {(,), �}. (a) x ∈ A∗ is an N -tree; (b) if �ui , i < n, are N -trees and X ∈ N ,

44 2 String Languages

then /(X �u0�u1 · · · �un−1 X)/ and /�(X��u0�u1 · · · �un−1�X)�/ is an N -tree. The
adjunction rules have the following form. Let 〈�x0, �x1〉 be a pair of strings such that
�x0 = /�(X� · · · /, �x1 = / · · · �X)�/ and �x0�x1 is an N -tree. Such a pair shall be
called an N -adjunction tree. Given this tree, let

 := {〈�u, �v, �w〉 : �u �v �w is an N -tree, �v = (X · · · X)}. (2.90)

The pair 〈〈�x0, �x1〉,
〉 is called a tree adjunction rule. Notice that the category X
of the adjunction string must match the X in the locale. Also, the presence of �
blocks adjunction at a node. (The symbol � is not needed to code the tree structure;
its sole purpose was to restrict adjunction.) There are many variants of TAGs. We
have picked the most common form for comparison. The language generated by a
TAG G is however not the string language; rather it is the language of yields. This
is defined as follows.

h�(x) :=
{
ε if x ∈ N ∪ {(,), �},
x else.

h�(x0x1 · · · xn−1) := h�(x0)h
�(x1) · · · h�(xn−1)

(2.91)

Then LY (G) := h�[L(G)] is the language of the yields, which is by definition the
language generated by G.

Exercise 2.19 Verify that the grammars from Examples 2.21 and 2.22 are contextual
grammars.

Exercise 2.20 LetΩ be an arbitrary signature. Write an adjunction grammar for all
terms in Polish Notation in this signature.

Exercise 2.21 LetΩ be an arbitrary signature. Terms in this signature are now writ-
ten as follows. If f is binary and s and t are terms, then /(�s� f �t�)/ is a term.
If f is unary then / f �(�s�)/ is a term. If f is ternary and higher order, then
/ f �(�s�

0 ,�,� · · ·� ,�sΩ(f)−1)/ is a term. Use the previous exercise to derive
an adjunction grammar for this language.

2.5 Syntactic Structure

Contemporary linguistics insists that what matters is not the string that we see but
rather its structure. Structure usually means tree structure. It has been stressed by
Chomsky that rules operate on constituents and not on strings. Moreover, Transfor-
mational Grammar uses representations that contain the structure in them. Formally,
however, it is not clear whether the structure needs to be represented. In this section
I shall discuss a popular way of encoding structure into the string. Moreover, we
shall investigate to what extent a context free language determines the grammar
from which it is generated.

2.5 Syntactic Structure 45

Let us take a look at CFGs and tree structures. Given a string �x and a grammar
G that generates it, G assigns a structure to �x through a term in the following way.
Assume a term t for the string �x . Then t = fρ(s0, · · · , sn−1), where n = Ω(fρ).

ρ = A → �x0 B0�x1 B1 · · · Bn−1�xn (2.92)

If n = 0 then ρ = A → �x0 and we just let the tree consist in two nodes, one with
label �x0, and a preterminal with label A. In general, we create a daughter for each
Bi and attach the tree for si there and a daughter for every nonempty �xi whose label
will be �xi (we avoid positing empty words).

We can code the derivation with a string. This is done by switching to a grammar
that distributes brackets, called Gb. This grammar is defined as follows. We intro-
duce for each nonterminal symbol X a pair of brackets (X and)X . Let ρ = X → �Y
be a rule. Then

ρb := X → (X �Y)X (2.93)

Gb contains in place of the rules R the set

Rb := {ρb : ρ ∈ R}. (2.94)

Let �x be a string. Each term t of �x can be mapped to a term tb, which is defined
by replacing every occurrence of fρ by an occurrence of fρb , for every ρ. Thus
mapping t into a term tb of the bracketed grammar we find the string �xt , which
contains a record of t . �x is obtained from �xt by deleting the brackets and the category
symbols. More exactly, define a map d as follows.

d(a) :=
{
ε if for some X : a = (X or a =)X ,

a else.

d(x0x1 · · · xn−1) := d(x0)d(x1) · · · d(xn−1)

(2.95)

Notice that the mapping d is many to one, since a given string can have many
derivations. Notice also that there may be derivations that lead to the same brack-
eted string. Thus the structure is intermediate between the string and the derivation,
adding detail to the string but not enough to recover the entire derivation.

Example 2.23 Let G = 〈:blet:, {E, A, B}, E, R〉 where R contains the following
rules:

E→ AB | BA | EE
A→ AE | EA | a
B→ BE | EB | b

(2.96)

46 2 String Languages

Now Gb = 〈:blet: ∪ {(E,)E, (A,)A, (B,)B}, {E, A, B}, E, Rb〉, with Rb consist-
ing in

E→ (EAB)E | (EBA)E | (EEE)E
A→ (AAE)A | (AEA)A | (Aa)A
B→ (BBE)B | (BEB)B | (Bb)B

(2.97)

The string /abab/ can be derived in G in several ways. One is given by the sequence
/E/, /EE/, /ABE/, /ABAB/ and so on; another is given by the sequence /E/, /AB/, /AEB/,
/ABAB/ and so on. These derivations give rise to the following bracketed strings:

(E(E(Aa)A(Bb)B)E(E(Aa)A(Bb)B)E)E

(E(Aa)A(B(E(Bb)B(Aa)A)E(Bb)B)B)E
(2.98)

Erasing the brackets returns the original string. The derivation /E/, /EE/, /EAB/,
/ABAB/ on the other hand yields the first string again. o

Proposition 2.6 Gb is unambiguous.

The proof is straightforward. It rests on the usual bracket count of embeddings.
Notice however that the structure of �x is a derived notion and the bracketed string

just a theoretical construct. The structure is actually an epiphenomenon. It may be
used in theoretical discourse but is in principle eliminable. This will have to be
reassessed when we turn to interpreted grammars. We discuss the definitions and
results first in the context of CFGs. We shall now discuss the notion of constituent
occurrence without adding brackets. Recall the definition of an occurrence from
Definition 2.9. Given a grammar G and a term t we can assign constituent occur-
rences of substrings in a straightforward way. Choose a subterm occurrence s and
decompose t into t = t ′(s). This means that t ′(x0) is a term with one free variable
and it defines a function ιG(t ′(x0)) : �x
→ �u �x �v. This means that 〈�u, �v〉 is a 1-context
and the substring that occurs in t is ιG(s). For a constant term t , occ(�y, t) is the set
of occurrences of �y in ιG(t).

This definition basically repeats what is intuitively known. Moreover, from the
derivation we can uniquely assign a category to the string occurrence. The following
formalizes the known substitution principle.

Definition 2.20 Let G be a CFG, t an A-analysis of the string �x and C an occurrence
of �y in �x . If C ∈ occ(�y, t) then C is said to be a constituent occurrence of �y in �x
under the analysis t . If C �∈ occ(�y, t), the occurrence is said to be an accidental
B-occurrence under t if �y ∈ L B(G). G is transparent if no constituent has an
accidental occurrence in a string of L(G). A language is transparent if it has a
transparent grammar.

Notice that we look at occurrences under a given analysis term t . A given string �x
can in principle have several analyses. Suppose that a context free language L is
transparent. Then given a string �x ∈ L we know that every substring occurrence
of �x that is in L also is a constituent occurrence under every analysis. Thus any

2.5 Syntactic Structure 47

context free grammar will assign the same constituent tree to �x . This is very useful
for languages of analysis terms, because we need to know that they are structurally
unique. This is the case for TmΩ(V), as the next theorem asserts.

Proposition 2.7 The language TmΩ(V) is transparent.

Proof (For notation and facts see Exercises 2.6 and 2.7.) Let s and t be terms and
C = 〈�u, �v〉 an occurrence of s in t . We shall show that s is actually a subterm
occurrence of t by induction on t . For either (a) �u = ε or (b) �u �= ε. If (a) is the
case then �v = ε, that is, s = t , or else s is a proper prefix. This cannot be, since this
would imply γ (s) ≥ 0. Now in case (b) there is an i such that the named occurrence
begins in ti . (Case 1) The occurrence is contained in ti , that is, ti = �xs �y for some
�x and �y. Then we are done by inductive hypothesis. (Case 2) s overlaps with ti .
Then we have �x , �y and �z all nonzero such that ti = �x �y and s = �y �z. Now note that
since −1 = γ (ti) = γ (�x) + γ (�y) and γ (�x) ≥ 0 (since ti is a term) we must have
γ (�y) < 0. But then s is not a term since γ (�y) ≥ 0 if �y is a proper prefix. So this
case does not arise and we are done. ��

Every constituent occurrence in �x under t corresponds to a subterm occurrence
in t . We use this for the following definition. A term is simple if it has no nontrivial
subterms.

Definition 2.21 Let G be a CFG, t an A-analysis of the string �x and C an occurrence
of a letter b in �x . C is syncategorematic if the term to which b belongs is not simple.
A substring occurrence is syncategorematic if every letter is syncategorematic and
belongs to the same subterm. G is in standard form if no string has syncategore-
matic occurrences.

This definition can easily be generalized. For a CFG, being in standard form means
that the right-hand side of a rule cannot contain both a nonterminal and a terminal
letter. For example, the standard formulation of regular grammars is that they have
rules of the form A → x B or A → x . Such grammars are not standard. It is easy to
convert a CFG into standard form. However, notice that this changes the language
of the grammar, since for us the language contains all constituents.

Example 2.24 We continue Example 2.23 above. The first derivation given by the
sequence /E/, /EE/, /ABE/, /ABAB/, /aBAB/, /abAB/, /abaB/, /abab/. In the string we
have the constituent occurrences 〈ε, ε〉, 〈ε, ab〉, 〈ab, ε〉 of category E; the occur-
rences 〈ε, bab〉 and 〈ab, b〉 of category A; and the occurrences 〈a, ab〉 and 〈aba, ε〉
of category B. The string /ab/ has an accidental occurrence 〈a, b〉. The string /aa/
has no accidental occurrence although it is a substring of /aabb/. o
Proposition 2.8 Let G be a CFG, �x ∈ L(G) and t an analysis term. Fix a con-
stituent occurrence of �y in �x under t . If �y occurs as A in the context C, and �z is any
string of category A of G, then C(�z) ∈ L(G).

Suppose now that we wish to give a syntactic analysis of a string language L . We
assume that the analysis is given in terms of a CFG. If this is so, we know that
the set of strings of L fall into finitely many classes, say, Si for i < n and that if
�x, �y ∈ Si then each constituent occurrence of �x can be substituted by �y and each

48 2 String Languages

constituent occurrence of �y can be substituted by �x . This superficially looks like a
way to discover the grammar behind a given language.

The problem with this idea is that we do not know whether a given occurrence is
a constituent occurrence. However there is one exception: a single letter wherever
it occurs can only occur as a constituent on condition that the grammar contains no
syncategorematic occurrences of symbols. It is easy to massage any CFG into such
a form without losing anything.

Example 2.25 The language of equations. In the form presented in Example 2.18 on
page 34. This grammar introduces /=/, the operation symbols and the brackets in a
syncategorematic way. It can be reformulated as follows. The original rule set is

E→ T=T

T→ (T+T) | (T-T) | B
B→ B0 | B1 | 0 | 1

(2.99)

Now introduce a nonterminal for each symbol. For example, introduce /O/, /C/, /Q/
together with the unary rules

O→ (

C→)

P→ +

M→ -

Q→ =

(2.100)

Next replace the occurrence of the syncategorematic symbols above by the corre-
sponding nonterminal:

E→ TQT

T→ OTPTC | OTMTC | B
B→ B0 | B1 | 0 | 1

(2.101)

It is possible to simplify this grammar; we group /P/ and /M/ into just one symbol,
say, /H/. Then we have the following rule set:

O→ (

C→)

H→ + | -
Q→ =

E→ TQT

T→ OTHTC | B
B→ B0 | B1 | 0 | 1

(2.102)

o

2.5 Syntactic Structure 49

Notice that the grammars (2.100) and (2.102) are not only different grammars;
they in fact generate different languages. For example, the string /(/ is in the lan-
guage of (2.102) but not in (2.100). This is a consequence of the fact that we defined
L(G) to contain all constituents of G, not just the sentences.

Let us now turn to the idea of recovering the grammar from the set of strings. We
start with the assumption that our language is generated by a context free grammar.
This means that constituents are strings, and that a string is a part of another string
only if it is a subword. The standard substitution method starts with the language L
and establishes for every �x ∈ L the set of contexts:

cntL(�x) := {〈�u, �v〉 : �u �x �v ∈ L}. (2.103)

The syntactic classes are the context sets so obtained. We present an example first.

Example 2.26 (Continuing Example 2.11.) The language M is generated by u,
defined by

t := Alex� | Pete� | Mary�
u := t (and�t)∗(sing� | run� | sings� | runs�) (2.104)

We consider words as units together with a following blank. (This makes the calcu-
lations easier.) The context sets are as follows. Here is a more succinct definition of
the language:

a := and�

v := sings� | runs�
w := sing� | run�
u = tv | t (at)+w

(2.105)

It turns out that the syntactic classes are the following: cntM (v), cntM (tv), cntM (w),
cntM (a), cntM (t), cntM (ta), cntM (at), cntM (tat), cntM (atat), cntM (atw),
cntM (tatw). These are more classes and more constituents than were present
in the original grammar even if we massaged the syncategorematic occurrences
away. o

The exercises give one more example. The problem with the substitution method
is that there is no way of telling whether an occurrence is accidental or not. Con-
sequently, the method will return context sets that are the sets of nonconstituent
occurrences. In fact, we may end up with infinitely many context sets (see the exer-
cises). And this is not because of the finiteness of the data: even if we had all data
in our hands, the grammar is still underdetermined. Thus, there is some art involved
in establishing the subset of constituent occurrences. This set can be different from
the one for the original grammar. However, in the absence of decisive evidence this
is the best one can do.

50 2 String Languages

Under certain circumstances we can know in advance that the set of nonterminals
is going to be finite. A particular case is provided by primitive languages.

Definition 2.22 A language is called primitive if every substitution class contains
a string of length 1, that is, consisting in a single letter.

Evidently, since the alphabet is finite, there are finitely many substitution classes.
This does not guarantee the uniqueness of the solution (see the Exercises) but it
narrows the choice considerably.

The language defined in Example 2.25 is not primitive. This is because the set of
E-strings (which form a substitution class!) consists in strings of length of at least 3:
an equation sign, and two terms on either side. Terms may not be empty, they have
a length of at least 1.

Primitive languages can easily be turned into CFGs. Just observe that for each
letter a there is a substitution class [a]L . Let Na be the nonterminal representing this
class (if [a]G = [b]G then also Na = Nb). The rules are of the form

Na → a a ∈ A
Na → Nc0 Nc1 · · · Ncn c0c1 · · · cn ∈ [a]L (2.106)

This set is typically infinite but a finite subset is enough to generate L , by assumption
on L .

We shall finally turn to the abstract case.

Definition 2.23 Let u and v be constant Ω-terms and G a grammar. We say that u
and v are categorially equivalent, in symbols u ∼G v, if for all terms s(x): s(u)
is orthographically definite if and only if s(v) is. They are intersubstitutable, in
symbols u ≈ Gv, if and only if they are categorially equivalent and ι(s(u)) ∈ L(G)
if and only if ι(s(v)) ∈ L(G).

This definition does not talk about strings; it talks about terms. This is because the
term may be very complex while the string is very simple. Moreover, in absence
of any condition on the form of the rules it is not possible to assign any sensible
structure to the string.

Example 2.27 Here is a context sensitive grammar, consisting in the following rules.

S→ ATB

T→ x | xT
Ax→ xA

AB→ y

(2.107)

In a derivation, first /A/ is generated to the left of the string. However, when the last
rule applies, /A/ has to be to the right. The system of constituents formed by this
grammar is quite confusing. It puts the occurrence of /y/ into a constituent with all
occurrences of /x/ (for each occurrence of /x/ there is a separate constituent, though).

o

2.6 The Principle of Preservation 51

Notice also that adjunction grammars in the general form may fail to allow for
an unequivocal assignment of structure. This is why tree adjunction grammars work
differently from string adjunction grammars. In TAGs the constituent structure is by
definition preserved while in string adjunction grammars it need not be.

Exercise 2.22 Show that the substitution classes of a context free grammar (con-
strued as a grammar in the sense of this book in the straightforward way) are of the
following form. Let N be the set of nonterminals, and P ⊆ N . Then a string �x is
said to be of class P if for all Y ∈ N : Y ⇒∗ �x if and only if Y ∈ P .

Exercise 2.23 Apply the method of context sets to grammar C1 of Example 2.9.
Show that the grammar that this gives is C2 (also from Example 2.9)! Show that the
language generated by either grammar is primitive.

Exercise 2.24 Let G consist in the rules S→ ab | aSb. Establish the context sets of
all substrings and show that there are infinitely many of them. Show that infinitely
many context free grammars can be postulated on the basis of these sets.

Exercise 2.25 Let G be a context free grammar. Try to establish an inductive defi-
nition of occ(�y, t). Hint. This definition will have to be inductive in the length of �y
and t .

2.6 The Principle of Preservation

We have seen that the effect of substitution is unpredictable unless restrictions are
placed on the nature of the string functions. We propose here two principles that
simplify the situation. In the most ideal case, functions are only able to change a
string by appending material to its left or right. If we required this we get something
slightly more general than context free grammars. To get some more freedom we
propose that grammars do not operate on the set A∗ but on some slightly more
general set of exponents, which we equate with (A∗)m for some m, or perhaps⋃

m∈N
(A∗)m , as proposed in Kracht (2003).

Principle 2 (Structure) Exponents are sequences of strings.

This is a heavy restriction but it still allows substantial freedom, more than is imme-
diately apparent. First of all, we have not said anything at all about the alphabet from
which the strings are formed. In conjunction with the Principle of Structure Preser-
vation this will simply be equivalent to saying that letters are alphabetic letters; but
I think matters are not that easy. The problems of this viewpoint will be discussed
below. Let us for the moment remain with the idea that the alphabet is simply the
standard typographical alphabet. Then exponents are strings of that alphabet—or, as
I proposed above, sequences thereof. This latter qualification is important. Consider
the following principle.

52 2 String Languages

Principle 3 (Structure Preservation) A rule may not break any string of the expo-
nent or delete any parts of it.

This can be formalized as follows. The interpretation of a function symbol f is
a function from Ω(f) many m-tuples to a single m-tuple of strings. So, I(f) =
〈t0, t1, · · · , tΩ(f)−1〉, where the ti are terms in m < Ω(f) variables that are poly-
nomial functions in the string algebra

〈A∗, ε,�〉 (2.108)

over the signature Ω� := {〈ε, 0〉, 〈�, 2〉}. This means further that ti may use vari-
ables, constants for letters of A and for the empty string and concatenation.

What these principles rule out is deletion of any kind; they also rule out break-
ing a constituent. However, what they do allow is discontinuity. A constituent may
consist in a bounded number of parts. Typically, we find that constituents consist in
just 1 or 2 strings. Examples of the latter kind are the verbs of German (after verb-
second has applied), the crossed dependencies in Dutch infinitives and split-DPs.
Occasionally we find languages that seem to have arbitrarily fragmented DPs, like
Warlpiri or Jiwarli. However, even in the case of these languages it is not entirely
clear that the approach does not work; for these languages do not break embedded
clauses either. This needs further work.

We have so far only spoken about breaking or deleting strings. The next principle
talks about rules in the sense of nonconstant functions (see Definition 2.3).

Principle 4 (Syncategorematicity Prohibition) A rule may not add any occur-
rence of a given symbol.

Again, this can be formalized by saying that the interpretation of functions uses
only definable term functions in Ω�, not polynomials. This allows for complete
reduplication (as in Malay) and it also allows for partial reduplication (modulo a
regular relation), as long as the parts can be represented as strings. The way it does
so is by stipulating that a given string may be repeated. This in fact does not mean
that a fixed symbol is introduced since the nature of the string to be reduplicated is
unknown. An alternative to reduplication is the following. We allow to concatenate
two strings �x and �y on the condition that they are identical. Thus, the formation of
the plural in Malay can be expressed in two ways: by a reduplication rule, using a
function

r(x) = x�x (2.109)

or by partial concatenation, using the function

c(x, y) =
{

x�y if x = y,

undefined else.
(2.110)

2.6 The Principle of Preservation 53

The advantage of the latter is that every occurrence of a letter can be uniquely traced
back to a leaf. The disadvantage is that it creates too many substitution classes.1

Apart from this it is hard to distinguish this approach from the one based on duplica-
tion, the more so since the rule is completely general and the categories will anyway
turn out to be eliminable from the formulation of a grammar.

Another hard case to treat is the so-called tmesis. This is the coordination of
parts that are not words by themselves. For example, in German we have the words
/Urfeind/ and /Erzfeind/, both formed from /Feind/ “enemy” and a prefix /Ur/
“since very long ago” and /Erz/ “arch-”. What is striking is that while neither prefix
can be on its own, it is possible to say

Ur- und Erzfeind (2.111)

Similarly, verbal prefixes can be separated

auf- und abladen “load and unload” (2.112)

Tmesis can be applied at the juncture of compounds and with certain prefixes. It is
in particular not free to apply to any morphological part of the word. A proper for-
mulation of tmesis under the conditions just sketched is not impossible but requires
great care.

What the principle does not allow is the addition of any concretely specified sym-
bol. For example, it may not say: “add an /s/ at the end”. This must be represented
alternatively as a binary rule concatenating the string to �x . Again, requiring this we
do not so much restrict what can be done but rather how it can be done. Yet, there is
a problem with this requirement and it runs as follows. We practically assume that
bound forms are also part of the language; that is, the plural /s/ of English, even
though it cannot occur on its own, is part of the English language. However, this
might just be an artefact of the requirement that only words are free forms; and we
may say that the language consists in more that just the free forms. The semantics of
the plural on the other hand is unproblematic or at least not more problematic than
that of any other item.

Now we turn to the question of the alphabet and the nature of the underlying
strings. Here, as so often, no unique solution can be given. Two extremes exist: on
the one hand we have alphabetic systems that are more or less sound based (with
complications of their own). On the other we have ideographic systems like Chi-
nese, which make a single letter correspond (again more or less) to a morpheme.
Chinese presents a good example of the predicament we are facing: if we base our
analysis on the sounds then there are about 100 letters (vowels in four tones plus

1 If we look at this rule in combination with semantics (anticipating the next chapter) we find
that the reduplication approach will form the plural in the semantics by performing the step from
properties of individuals to properties of sets of individuals. The partial concatenation approach
however makes the plurals appear more like dvandva-compounds. The idea is that in the Malay
plural noun /anak-anak/ “children”, we get the plural meaning from extrapolating a dvandva
from “child” and “child” rather than (the more natural) dvandva formed from different parts.

54 2 String Languages

consonants), or maybe somewhat more, given that pauses and intonation contours
must be taken on board as well. If, however, we base our analysis on the alphabet
of characters then we have an alphabet of up to 50,000 “letters”. (The Chinese
Standard Interchange Code, the most comprehensive of the lists, has close to 50,000
characters.) The question that naturally arises is this: which of the two should we
choose? In principle, it seems, we should be able to do both but writing systems can
be so artificial that it seems we ought to exclude some of them from the analysis.2

But even if we do, the sound based approach presents difficulties of its own. One is
that the notion of part is somewhat obscure. For example, we say that a string �x is
part of a string �y if it is a subword. Thus, we may for example say that /eel/ is part
of /reel/, or /ice/ is part of /rice/. If we apply our substitution tests, however, we
get quite a bizarre picture of the language. Thus, we would like to apply substitution
only to constituents, or, as we have said above, study those strings (or sequences)
that can be substituted for a single letter. If letter can be equated with morph, or
morpheme, we would get a far more interesting grammar from our substitution tests
than if we insisted on sounds (or alphabetic characters). The disadvantage of the
method is that it presupposes what it ought to reveal: the primitive parts. However,
as we shall see in the next chapter, the notion of a morph(eme) makes perfect sense,
because once we add the meaning the alphabetic characters are in fact not the most
basic elements but the morph(eme)s.

In stratificational linguistics we actually pursue both analyses at once. There
are various strata at which we have structure. Such frameworks have been pur-
sued among others by Lamb (1966) and Mel’čuk (1993–2000). In our view the
various levels are mostly epiphenomenal and can be reconstructed on the basis of
the language (as a set) itself. I shall briefly discuss the reconstruction of levels in
Section 3.7.

Even if all this is granted, we still face a number of problems. Suppose, for
example, that our language is based on morphemes, which are the letters of our
alphabet. Then, by our principles above, these letters must surface in our strings
(or sequences of sounds). It follows that morphemes are sequences of characters
of the alphabet. If that is so, we must address exceptions to strict concatenation. I
mention here as representatives: final devoicing (as found in Russian and German,
for example), vowel harmony (as found, say, in Finnish, Hungarian and Turkish),
consonant lenition in Welsh, or consonant gradation in Sami (Svenonius, 2007). Let
us discuss the first case. Final devoicing is a process that turns any consonant in the
coda of a syllable into a voiceless consonant. For example, there are two nouns in
German, /Rad/ [Ka:t] “bicycle” and /Rat/ [Ka:t] “council”. They sound exactly the
same. On the other hand, their respective genitives, /Rades/ [Ka:d@s] and /Rates/
[Ka:t@s], do not. The reason is that the rules of segmentation put the stop into the
onset of the next syllable, where it does not undergo devoicing. If we base ourselves

2 There was once a way to write in Japan that used only Chinese characters and even Chinese word
order. The characters were augmented with numbers so that one knew in which way to read the
characters. Now, not only do the characters come out differently (the character for mountain is
read “yama” in Japanese and “shān” in Chinese), but they are also arranged according to Chinese
syntax.

2.6 The Principle of Preservation 55

on the written forms, no problem. The sounds however do pose a problem. What
can be the solution?

One solution ultimately rests on the distinction between complete and incom-
plete forms. Suppose that the base form comes without word end markers. So they
would be [Ka:d] and [Ka:t], respectively. Now, when we attempt to pronounce such
a word, we must speak it in isolation, so we add a word boundary marker to its left
and right: [#Ka:d#] and [#Ka:t#]. After that, there is a process that will produce the
required form. This solution does explain the different outcomes but it falls short of
complying with the Principle of Preservation. This applies to all other phenomena
listed above, which is why we have mentioned them. We shall therefore relax this
principle a little bit. We shall assume that it is not the actual surface forms that must
be preserved but a more abstract form.

If we left matters at that we would basically remove all restrictions. We need to
restrict the abstraction. This is done as follows. We operate now with two levels:
SP (the surface phonological level) and DP (the deep phonological level). Each of
the levels uses the same alphabet (tentatively). The principles apply only to DP.
The actual strings of SP are obtained by applying a finite state transducer. In other
terms, the relation between DP and SP is a regular relation (see Kracht (2003) for
definitions and discussion). To account for German devoicing, we assume that at DP
no devoicing applies. The relation to SP, however, is such that every consonant that
happens to be syllable final is devoiced. This can be achieved using a finite state
transducer.

Let us briefly touch on the question of c-languages. If one wishes to include
categories into the language then the Principle of Preservation loses some of its bite.
It would namely be possible to introduce material into the category part where it
is invisible to the principles formulated above. I assume therefore that when cate-
gories are added they cannot introduce a finer distinction than already present in the
functions.

Principle 5 (Categorial Granularity) For a c-grammar G and the associated
string grammar H, if 〈�x, c〉 ∈ L(G) and �y ∼H �x then also 〈�y, c〉 ∈ L(G).

Thus, the set of categories cannot differentiate the exponents in a finer way than the
string functions. The way this is phrased makes the principle somewhat circular. But
you need to recall that the string categories are derived from the string functions and
ultimately from the language itself. Thus, bringing in an extra set C of categories
really is to serve the purpose of explicitly coding the categorial facts rather than
bringing back a lost dimension. However, I should note that adding categories even
with the Granularity Principle brings in extra power.

Exercise 2.26 German nouns are written with an initial upper case letter. However,
in compounds only the first letter is in upper case. For example, /Auto/ “car” and
/Bahn/ “way” result in the compound /Autobahn/ “highway”. (Observe similarly
/Erzfeind/ in the example above.) Propose a solution to this. Hint. There are (at
least) two solutions. One uses the regular relations, the other proposes several forms
for the same word.

	2 String Languages
	2.1 Languages and Grammars
	2.2 Parts and Substitution
	2.3 Grammars and String Categories
	2.4 Indeterminacy and Adjunction
	2.5 Syntactic Structure
	2.6 The Principle of Preservation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

