

INTERPRETED LANGUAGES AND COMPOSITIONALITY

STUDIES IN LINGUISTICS AND PHILOSOPHY

VOLUME 89

Managing Editors

LISA MATTHEWSON, University of British Columbia, Vancouver, Canada
YAEL SHARVIT, University of Connecticut, Storrs, USA

THOMAS EDE ZIMMERMAN, Johann Wolfgang Goethe-Universität, Frankfurt
am Main, Germany

Editorial Board

JOHAN VAN BENTHEM, University of Amsterdam, The Netherlands
GREGORY N. CARLSON, University of Rochester, U.S.A.
DAVID DOWTY, Ohio State University, Columbus, U.S.A.
GERALD GAZDAR, University of Sussex, Brighton, U.K.

IRENE HEIM, M.I.T., Cambridge, U.S.A.
EWAN KLEIN, University of Edinburgh, Scotland, U.K.

BILL LADUSAW, University of California, Santa Cruz, U.S.A.
TERRENCE PARSONS, University of California, Irvine, U.S.A.

For further volumes in this series:
http://www.springer.com/series/6556

INTERPRETED LANGUAGES
AND COMPOSITIONALITY

by

MARCUS KRACHT
Bielefeld University, Germany

123

Marcus Kracht
Bielefeld University
Postfach 100131
33501 Bielefeld
Germany
marcus.kracht@uni-bielefeld.de

ISSN 0924-4662
ISBN 978-94-007-2107-4 e-ISBN 978-94-007-2108-1
DOI 10.1007/978-94-007-2108-1
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011933831

c© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This manuscript presents an outline of something that I like to call metatheory of
linguistics. It is not an attempt to replace any existing framework by a new one; it is
rather an attempt to provide some results that show us the interconnection between
certain requirements on theories. The word “metatheory” emphasizes that I am not
trying to establish a new framework or discover concrete properties of languages
but that I want to find methods of establishing properties that a given language has.
The aim is to find out in what way our initial assumptions about the structure of
language or linguistic theory can actually yield an insight into languages and what
this insight consists in. I shall isolate a few principles and investigate their empirical
potential in this way. One such principle is the Principle of Compositionality. It will
emerge, for example, that the Principle of Compositionality has no empirical impact
whatsoever unless we fix languages to be sets of signs consisting in form and mean-
ing; additionally, when defining form and meaning for natural languages we must
make sure that there are restrictions on syntactic and semantic representations and
functions. If this is guaranteed, however, we shall show that there can be concrete
results about the structure of natural languages.

This book owes much to Keenan and Stabler (2001). However, here the emphasis
is quite different. Rather than assuming a particular grammar for a language at the
outset, it is our aim to establish to what extent a language determines the grammar
that generates it. In contrast to a lot of work in linguistics I do not take syntax as
the exclusive source of evidence for structure. Rather, I look at syntax and semantics
together. Certainly, structural properties determine in which way expressions can be
formed but it has often been assumed in linguistic literature that this is effectively all
there is to be said about structure. This prejudice is the rather unfortunate heritage of
a view promoted mainly—but not exclusively—within Generative Grammar. That
linguistics is neither just about form (syntax) nor just about content (semantics) has
been emphasized also by Manaster-Ramer and Michalove (2001) in the context of
historical linguistics. A reconstruction solely based on either sound or meaning is
useless. It must obviously involve both.

Although the style of the book is ostensively neutral, the motivation for this
research is the belief that ultimately the Principle of Compositionality is correct.
However, the methodology is not to try and verify this (this is impossible) but to
see what its consequences are. It turns out to be possible to show that there are

v

vi Preface

noncompositional languages. This means that it is an empirical question whether
natural languages are compositional. It should be clear though that no definitive
answer can be given for any natural language. The reason for this is a—in my view
unavoidable—peculiarity of the whole theory; namely that for a finite language
no grammar is needed. A simple enumeration of all items is enough. Hence, we
can only fruitfully apply the theory to infinite languages. Thus, when we apply the
present theory to a particular language we have to make assumptions about its global
nature; and these assumptions are always tentative.

One of the biggest problem areas that I have identified in the course of studying
compositionality is the nature of semantics. While the prevailing attitude used to be
that meanings are hopelessly unclear, many semanticists nowadays feel that there is
not much to discuss either: meanings are objects of the typed universe. Both groups
will feel that the present book got it wrong; the first because I include semantics
as primitive data, the second because I reject most semantic approaches to com-
positionality on the grounds that their semantics encodes semantically contingent
syntactic structure. My response to the first group is this: if it is possible that humans
understand each other and if we do agree that there is such a thing as meaning, which
can be preserved—among other—in translation, we must conclude that something
of substance can be said about meanings, both concrete and abstract. The response
to the second group is more complex. On the one hand, Montague Grammar has
enjoyed success and it popularized the notion of compositionality. Nevertheless,
I feel that there is a sort of complacency in most research conducted within type
logical grammar as a whole. Most questions of actual meaning are not really solved,
they are only relegated (for example to lexicology). Instead, many theories of formal
semantics are just offering technology without much proof that this is what we really
wanted. It is like saying that technological advances have made it possible for man
to fly. That is only half true because originally the dream was to fly like a bird. It
will take large parts of this book (especially Chapter 4) to work out exactly what is
at fault with type theoretical semantics for natural language.

The Principle of Compositionality can be seen as an abstract requirement on the
grammar of a language (and therefore, albeit indirectly, on the language itself). The
rationale for adopting it, however, comes from an assumption on the architecture
of language that is not universally shared. A particularly blatant case of this sort is
Generative Grammar, where interpretation is done after the structure building has
taken place. It will be seen, though, that even if we grant this assumption, there is
still so much to take care of that it becomes unclear just why a level such as LF
is at all needed and how it can help us. In addition, it turns out that many more
frameworks or theories fail to be compositional. This may be surprising since lin-
guists commonly judge theories on the basis of whether they are compositional or
not. Thus, if we value compositionality so highly we ought to know what exactly
makes a theory compositional. This is what this book is about. Part of my claims
may be contentious. For example, I claim below that indices are not part of a syn-
tactic representation. This militates against a number of well-established theories,
among them Generative Grammar and Montague Grammar (!). It may therefore be
thought that this diminishes the usefulness of the present approach. On the other

Preface vii

hand, it is not my task to agree with a theory simply because it is popular. What
is at stake is rather the very foundation on which the current theories are built.
And in this respect it seems to me that linguistic theory on the whole suffers from
a lack of understanding of how solid the ground is on which it rests. The actual
syntactic structure, for example, has become highly theory internal in Generative
Grammar. The independent evidence of Kayne’s Antisymmetry Thesis, for exam-
ple, was originally quite thin. And it is simply not true that it has been proved to be
correct thereafter. Rather, the factual approach has been to adopt it and explore its
consequences (just as I adopt here the Principle of Compositionality and explore its
consequences). One of the consequences is that one needs a lot more categories, for
the theory predicts plenty of movement steps and appropriate landing sites must be
furnished. However, a careful review of the syntactic structure of German (within
the generative framework) undertaken in Sternefeld (2006) has yielded a far less
articulated structure than standardly assumed. Thus, the question as to what cate-
gories we need and what structure we should assume seems to be completely open.
So, if syntax cannot help out, maybe semantics can lead the way.

This book has basically two parts. The first consists in Chapters 2 and 3, the sec-
ond in Chapters 4 and 5. The first part develops a mathematical theory of interpreted
languages; Chapter 2 provides the background of string languages, using gram-
mars that generate languages from the lexicon, known from Montague Grammar.
Chapter 3 then turns to interpreted languages. In the second part, starting with
Chapter 4 we zoom in on natural languages. We ask what the meanings of natural
language constituents are and how they can be manipulated. Then, in Chapter 5 we
apply the theory. We shall show that the notion of a concept defined in Chapter 4
changes the outlook on predicate logic: finite variable fragments are compositional,
while with infinite variables the languages have no compositional context free gram-
mar. Then we show how we can argue for structure from a purely semantic point of
view.

The current text is a development of ideas found in Kracht (2003). Since then
I have spent considerable energy in getting a clearer idea on the central notion of
this book, namely compositionality. In the meantime, new articles and books have
appeared (for example (Barker and Jacobson, 2007) and the handbook (Werning,
Hinzen, and Machery, 2012)) showing that the topic is still a lively issue. I have had
the benefit of extended discussions with Damir Ćavar, Lawrence Cheung, Herbert
Enderton, Kit Fine, Hans-Martin Gärtner, Ben George, Fritz Hamm, László Kálmán,
Ed Keenan, Ben Keil, István Kenesei, Udo Klein, Greg Kobele, András Kornai, Uwe
Mönnich, Yannis Moschovakis, Chris Piñón, Nathaniel Porter, Richard Schröder
and Ed Stabler. Special thanks also to István Kenesei for his support and to Damir
for organising the summer school in Zadar, which got me started on this manuscript.
All of them have influenced my views on the subject in numerous ways. Finally,
thanks to Richard Schröder and Udo Klein for careful reading. The responsibility
for any occurring errors in this text remains entirely with me.

A Note on Notation. This text contains lots of examples and occasional “intermis-
sions”. The end of an example or an intermission is marked by o.

Contents

1 Synopsis . 1

2 String Languages . 9
2.1 Languages and Grammars . 9
2.2 Parts and Substitution . 20
2.3 Grammars and String Categories . 28
2.4 Indeterminacy and Adjunction . 40
2.5 Syntactic Structure . 44
2.6 The Principle of Preservation . 51

3 Compositionality . 57
3.1 Compositionality . 57
3.2 Interpreted Languages and Grammars . 63
3.3 Compositionality and Independence . 68
3.4 Categories . 82
3.5 Weak and Strong Generative Capacity . 88
3.6 Indeterminacy in Interpreted Grammars . 100
3.7 Abstraction . 107

4 Meanings . 115
4.1 “Desyntactified” Meanings . 115
4.2 Predicate Logic . 121
4.3 Concepts . 126
4.4 Linking Aspects and Constructional Meanings 134
4.5 Concepts and Pictures . 139
4.6 Ambiguity and Identity . 144
4.7 Profiling . 150

5 Examples . 159
5.1 Predicate Logic . 159
5.2 Concept Based Predicate Logic . 165
5.3 A Fragment of English . 174

ix

x Contents

5.4 Concepts and LF . 179
5.5 The Structure of Dutch . 183
5.6 Arguing for Syntactic Structure . 192

6 Conclusion . 197

Appendix A Useful Mathematical Concepts and Notation 199

Symbols . 203

References . 205

Index . 209

Chapter 1
Synopsis

BEFORE I start with the technical discussion it is perhaps worthwhile to discuss the rele-
vance of the concepts. I shall begin with some notes on the historical context and the current
developments before I turn to the questions that I have tried to answer in this book.

Modern linguistics begins with de Saussure, yet he wrote surprisingly little on the
subject matter. The famous Cours de linguistique générale exists in several editions
none of which were published by de Saussure himself. Some years ago, however,
a bundle of autographs was found in his home in Geneva, which are, I think, of
supreme importance (see the English edition (Saussure, 2006)). We see de Saussure
agonize over some quite basic and seemingly innocent problems: one is the distinc-
tion between what he calls “parole”, a continuous object of changing and elusive
nature and “langue”, a system of oppositions, in other words a structured object. De
Saussure constantly reminds us that all the objects we like to talk about in linguistics
are abstractions: meanings, letters, phonemes and so on. The second problem that
he deals with, and one that will be central to this book, is that language is a relation
between form and meaning and not just a system of well-formed expressions.

One might think that one hundred years later we have settled these issues and
found satisfactory answers to them. I think otherwise. Both of the problems are
to this day unsolved. To understand why this is so it is perhaps useful to look at
Chomskyan linguistics. The basic ingredients of Generative Grammar are a firm
commitment to discrete objects and the primacy of form over meaning. There is no
room for gradience (though occasional attempts have been made even by Chomsky
himself to change this). Grammars are rule systems. Moreover, linguistics is for the
most part the study of form, be it phonology, morphology or syntax. The rise of
Montague Grammar has changed that to some degree but not entirely. One reason
for this is that Montague Grammar itself, like Generative Grammar, is rooted in
metamathematics, which puts the calculus, the mindless symbolic game, into the
centre of investigation.

The present book took its beginning in the realization that what linguists (and
logicians alike) call meaning is but a corrupted version thereof. A second, related
insight is that linguists rarely if ever think of language as a relation. The ambition
of the present monograph is to change that. What I shall outline here is a theory of
formal languages that are not merely collections of syntactic objects but relations
between syntactic objects and their meanings.

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1_1,
C© Springer Science+Business Media B.V. 2011

1

2 1 Synopsis

Throughout this book, language means a set of signs. Signs are pairs consisting in syntactic
objects and meanings. Languages are sets of signs and hence relations between syntactic
objects and meanings.

This calls for a complete revision of the terminology and the formal framework.
Consider by way of example the syntactic rule

S→ NP VP (1.1)

This rule can be used to replace the string /S/ by the string /NP VP/. (I use slashes to
enclose strings so as to show explicitly where they begin and end in running text.)
Yet, if language consists in syntactic objects together with their meanings we must
ask what the meaning of /S/ is, or, for that matter, /NP VP/. If anything, the meaning
of /S/ is the disjunction of all possible meanings of sentences of the language, or
some such object. However, notice that /S/ is not an object of the language. The
whole point of auxiliary symbols in the grammar is that they are not meant to be
part of the language for which they are used. And if they are not in the language then
they have no meaning, for a language by definition endows only its own constituents
with meaning.

Notice that the problem existed already at the inception of grammar as production
rules. Grammars never generated only the language they were designed to generate
but a host of strings that do not belong to the language. Again this was precisely
because they contained auxiliary symbols. While it was unproblematic if only string
generation was concerned, the problem becomes more urgent if meanings are con-
sidered as well. For now we need to replace the rule by something that replaces not
only strings but signs, like this:

〈S, x〉 → 〈NP, y〉 〈VP, z〉 (1.2)

This means something like this: an /S/ that means x can be decomposed into an /NP/
that means y and a /VP/ that means z. This formulation however is unsatisfactory.
First, we have lost the idea that /S/ is replaced by the sequence of /NP/ followed by
/VP/, for we needed to annotate, as it were, the parts by meaning. Second, there is
no unique way to derive y and z from x ; rather, x is unique once y and z are given.
In Montague Semantics, following Frege, z is a function and x = z(y), the result of
applying z to y. Thus, it is actually more natural to read the rule from right to left.
In this formulation it now reads as follows: given an object α of category NP and
meaning y and an object β of category VP and meaning z, the concatenation α�β is
an object of category S and meaning z(y). The objects can be anything; however, I
prefer to use strings. Notice now that we have variables for strings and that we have
(de facto) eliminated the syntactic categories. The rule looks more like this now:

〈α, y〉, 〈β, z〉 → 〈α�β, z(y)〉 (1.3)

There is a proviso: α must be of category NP, β of category VP. To implement this
we say that there is a function f that takes two signs and returns a sign as follows.

1 Synopsis 3

f (〈α, y〉, 〈β, z〉) :=

⎧
⎪⎨

⎪⎩

〈α�β, z(y)〉 if α is of category NP

and β of category VP,

undefined otherwise.

(1.4)

This is the formulation that we find in Categorial Grammar and variants thereof. It
is, as I see it, the only plausible way to read the rules of grammar. In this formulation
the category is not explicit, as we are generating objects of the language intrinsically.
The fact that the generated string α�β is an S is therefore something that we must
be able to recover from the sign itself. Notice that this problem exists also with
the input: how do we know whether α is a string of category NP? Where does this
knowledge reside if not in the grammar? I shall answer some of these questions
below. They show surprising complexity and contrary to popular opinion it is not
necessary to openly classify strings into categories.

From this moment on we are faced with plenty of choices. The binary function
f takes as its input two signs, each of which consists in two parts. Thus it has in
total four inputs. The question is whether the function is decomposable into simpler
functions. Some people would argue that this is not so and some theories encode that
dictum in one or another form. Yet, from a theoretical point of view it is not good to
drop a stronger hypothesis unless one really has to. The plausible hypothesis is this.

Independence. The functions of the grammar that create signs create the components of
the signs independently of each other.

This thesis has two parts. One is the so called Autonomy of Syntax Thesis and the
other the Compositionality Thesis. For convenience I spell them out for our exam-
ple. The autonomy thesis says that whatever f (〈α, x〉, 〈β, y〉) may be in a given
language, the form (or morphology) of the sign is a function of α and β alone, dis-
regarding x and y. The compositionality thesis says that whatever f (〈α, x〉, 〈β, y〉)
may be in a language, its semantics depends only on x and y and nothing else. Thus
we have functions f γ and f μ such that

f (〈α, x〉, 〈β, y〉) = 〈 f γ (α, β), f μ(x, y)〉 (1.5)

Informally, this says that whatever form the expression takes, it does not depend on
the meaning of the component expressions; and whatever meaning the expression
has, it does not depend on the form of the component expressions.

What does this Principle of Independence actually say? It is at this point where
many linguists start to be very creative. Anything goes in order to prove languages
to be compositional. But the problem is that there is little room for interpretation.
A language is a relation R between expressions and meanings. What we postulate
in the case of f is that there is a pair of binary functions f γ : E × E → E and
f μ : M×M → M such that (1.5) holds. What is important is that the input signs are
taken from the language R and the output sign must be in R too. Thus, independence
means that we have a set of functions that generate R from the lexicon.

4 1 Synopsis

All functions are allowed to be partial. Partiality is essential in the generation of
the signs. For example, suppose we want to account for the fact that it is grammatical
to say “Jack drove the car.” but not “Jack drove the bicycle.”. Clearly, we must say
that “drive” requires a certain kind of vehicle. The nature of the restriction may now
be either morphological or semantic. If it is morphological then it may be formulated
as a restriction on the function f γ on the expressions. If however it is semantic, what
should we do? There are various options. The best is probably to say that the type of
vehicle is already implied by the expression and so we cannot use a different one on
pain of contradiction. If one dislikes this solution, here is another one. Create two
modes, f1 and f2 and declare that f μ1 (x, y) is defined only if y is a motorized (earth
bound) vehicle, while f μ2 (x, y) is defined in cases where y is a different kind of
vehicle. What we cannot do, however, is add some material in the syntactic structure
that replicates the semantic properties, such as carmotorized and bicycle¬motorized.
This is effectively what has been proposed with θ -roles. More often than not they
have been used to encode semantic properties in syntax. The converse has also often
been done: encode a syntactic restriction in semantics.

There is a lot of terminological ground to be covered here. If the formation of
signs is a partial operation the question is whether we can at all distinguish syntactic
from semantic deviance. Chomsky argued that we can, and I wish to basically agree
with his observation even though it does seem to me that it often requires some
education to disentangle ungrammaticality and semantic deviance. If it is therefore
possible to distinguish ungrammaticality from semantic deviance, what could be the
source of that distinction? It could be this: a sentence is syntactically well-formed
if it could be generated looking only at the syntactic composition functions and
semantically well-formed if its meaning could be generated looking only at the
semantic composition functions. Thus, the fact that we can distinguish between
these two notions of (un)acceptability requires that we have independent knowledge
of both the syntactic functions and the semantic functions. However, notice that
the definition I gave is somewhat strange: how can we know the meaning of an
ungrammatical sentence? What is the meaning that it has despite the fact that it is
ungrammatical? Unfortunately, I do not have an answer to this question, but it is
these kinds of questions that come to the fore once we make a distinction between
different kinds of well-formedness. Another problem is why it is that an ungrammat-
ical sentence at all has a meaning. Why is it that sometimes the semantic functions
are more general than the syntactic functions and sometimes the syntactic functions
more general than the semantic functions? This is not only a theoretical problem.
It is important also in language learning: if a child hears only correct input, it will
hear sentences that are both grammatical and meaningful, so it can never (at least in
principle) learn to distinguish these concepts. Again I have not much to say, I simply
notice the problems. In part it is because I am not concerned with learning. Partly,
however, it is that—surprisingly—setting up something as simple as a formal theory
of interpreted languages as opposed to a formal theory of string languages requires
much more care in the definitions, and this task has to come first. Despite the fact
that the language is given in a relational form it is not clear how we can or should
define from that a grammar that manipulates syntax and semantics independently.

1 Synopsis 5

Parts of Chapter 3 are consumed by disentangling various notions of autonomy and
compositionality.

Now, as much as one would like to agree with my insistence that the language
R is given a priori and cannot be adapted later, there is still a problem. Namely, no
one knows for sure exactly how R looks like. This is not only due to the somewhat
insufficient knowledge of what is a grammatical constituent. It has to do more with
the problem of knowing exactly what the meaning of a given expression actually is.
For example, what is the meaning of “drive”? Is it a function, an event, an algorithm?
Is it extensional, intensional, time dependent? My own stance here is that basically
expressions have propositional content and the meaning of a proposition is its truth
conditions. This implies that it is not a function in the sense of Frege (from individ-
uals to truth values) and that the dependencies it displays result from the conditions
that it places on the model. Yet, what exactly the formal nature of truth conditions is,
is far from clear. Logicians have unfortunately also been quite complacent in think-
ing that the calculi they have formulated are compositional. They mostly are not. For
this reason I have to take a fresh start and develop something of a calculus of truth
conditions. The problem is that certain vital constructs in logic must be discarded
when dealing with natural language semantics. One of them are variables, another is
type theory. To see why this is so we must simply ask ourselves what the semantics
of a variable, say, “x” is and how it differs from the semantics of a different variable,
say “y”. Moreover, these meanings should be given independently of the form of the
expression. The result is that there is nothing that can distinguish the meaning of
“x” from that of “y” because all there is to the difference is the difference in name.
Consequently, if names are irrelevant, the meaning of the expression “R(x,y)” is the
same as “R(y,x)”, that is, we cannot even distinguish a relation and its converse!

This observation has far reaching consequences. For if we accept that we cannot
explicate same or different references in terms of variables then the composition of
meanings is severely restricted. Indeed, I shall show that it amounts to the restriction
of predicate logic to some finite variable fragment. On the other hand, I will argue
that nevertheless this is precisely what we want. Consider an ergative language like
Dyirbal. Dixon (1994) translates the verbs of Dyirbal by their passives in English.
So, the verb meaning “hit” is translated by “is hit by”. This makes a lot of sense
for Dyirbal, as it also turns out that the transitive object in Dyirbal is the syntactic
pivot in coordination. Yet, we may wonder how come that “hit” can at all mean the
same thing as “is hit by”, for “John hits Rover.” does not mean the same as “John is
hit by Rover.”. The answer lies here in a distinction between meaning and meaning
composition. The way the verb “hit” composes with a subject expression is certainly
different from that of “is hit by”. And yet, both have as their truth conditions that
someone hit someone.

Similarly, the issue of types is a difficult one. Take once again the meaning of
the transitive verb “hit”. Montague gave it the type e → (e → t) (it is enough to
look at the extensional type). This means that it is a function that, when given an
object, returns an intransitive verb, which in turn is a function that returns a truth
value when given an object. So the first object supplied is the direct object. We could
think however that it is just the other way around (compare Dyirbal for that matter):

6 1 Synopsis

the first to be supplied is the subject and the direct object comes next. Alternatively
we may give it the type e • e → t , which returns a truth value when given a subject
paired with an object. Which of the three is correct? The problem is that they are
all equivalent: choose one, get the others for free. From a technical viewpoint this
is optimal, yet from our viewpoint this says that there is no a priori way to choose
the types. Moreover, from a philosophical point of view this gives rise to what has
been termed Benaceraff’s Dilemma after Benaceraff (1973): if we cannot choose
between these formalizations how can we know that any of them is correct? That is,
if there are such objects as meanings but they are abstract then how can we obtain
knowledge of them? If we are serious about meanings then either we must assume
that they are real (not abstract) or else that they do not exist. In particular, the idea
that types are abstract properties of objects is just an illusion, a myth. Types are
introduced to smoothen the relationship between syntax and semantics. They are
useful but not motivated from semantics. In this connection it is important to realize
that by semantics I do not mean model theoretic semantics. If I did, then any type
assignment could be motivated from a needed fit with a particular formal model.
Instead, I think of semantics primarily as truth conditions in the world.

In order to understand how this affects thinking semantically, take the sentence
“John is hitting Rover.”. How can we judge whether this sentence is true? Obviously,
it is of no help to say that we have to look whether or not the pair consisting in John
and Rover is in the hit-relation. For it is the latter that we have to construct. That
we somehow possess a list of pairs where we can look the facts up is no serious
suggestion. Obviously, such a list if it ever existed has to be compiled from the facts
out there. But how? Imagine we are witnessing some incident between John and
Rover or watching a film—where is that relation and how are we to find it? Clearly,
there must be other criteria to tell us who is the subject (or first argument) and who is
the object (or second argument). So, for a given situation we can effectively decide
which object can fill the first slot and which one the second slot so that they come
out as a pair in the hit-relation. Once we have established these criteria, however,
there is no need to appeal to pairs anymore. For whatever it is that allows us to
judge who will be subject, it is this procedure that we make use of when inserting
the subject into the construction but not earlier. The pair has become redundant.

A type theorist will object and say: so you are in effect changing the nature of
meanings. Now they are functions from scenes (or films) to objects or whatever but
still you uphold type distinctions and so you are not eliminating types. I actually
agree with this criticism. It is not types as such that I wish to eliminate. There are
occasions when types are necessary or essentially equivalent to whatever else we
might put in their place. What I contest is the view that the types tell us anything
of essence about the syntax of the expressions. We can of course imagine languages
where the fit is perfect (some computer languages are of that sort) but the truth is
that natural languages are definitely not of that kind.

I have said above that language is a relation, that is, a set of pairs. This relation is
many-to-many. A given meaning can be expressed in many ways, a given expression
may have many meanings. However, one may attempt to reduce the complexity by
a suitable reformulation. For example, we may think that an expression denotes

1 Synopsis 7

not several meanings but rather a single one, say, the set of all its meanings. Call
this kind of meaning set-meaning and the other the ground meaning. Thus, /crane/
denotes a set of ground meanings, one covering the bird meaning and the other the
machine meaning. This technical move eliminates polysemy and makes language
a function from expressions to (set-)meanings. There are however many problems
with this approach. The first is that the combination of two set-meanings is much
more complex than the combination of ground meanings, for it must now proceed
through a number of cases. Consider namely how complex signs are being made.
Given a two place function f , a complex sign is made from two simple signs, each
being an expression paired with a ground meaning. It is thus particular expressions
with particular ground meanings that are composed via f and not expressions with
all their meanings or meanings with the totality of their expressions. If an expression
is polysemous the claim is therefore that it must enter with any one of its mean-
ings in place of the collection of all its meanings. The expression /big crane/
can therefore be formed with two particular meanings for /crane/, each of them
however taken on its own. The expression is thus again polysemous insofar as the
combination of “big” with any of the two ground meanings makes sense. Similarly,
/all cranes/ can never be a quantification over objects of the expression /cranes/
in both senses simultaneously. It can only be either of them: a quantification over
some birds, or a quantification over some machines. Lumping the two meanings
into a set therefore creates options that languages do not seem to have. Or, more
precisely, the fact that a given expression has two ground meanings (= is polyse-
mous) is technically different from it having a set-meaning.

As the reader will no doubt notice the present monograph is quite technical.
This is because I felt it necessary to explore certain technical options that the setup
allows for. Since the details are essentially technical there is no point in pretending
that they can be dealt with in an informal way. Moreover, if we want to know what
the options are we better know as exactly as possible what they consist in. It so
turns out that we can obtain certain results on the limitations of compositionality.
Moreover, I show that certain technical manoeuvers (such as introducing categories
or eliminating polysemy) each have nontrivial side effects that need to be addressed.
By doing this I hope to provide the theoretical linguist with a tool for choosing
among a bewildering array of options.

Chapter 2
String Languages

THIS chapter introduces the notion of a grammar as an algebra. We shall describe how
context free grammars and adjunction grammars fit the format described here. Then we
shall study syntactic categories as they arise implicitly in the formulation of a grammar and
then turn to the relationship between languages, grammars and surface tests to establish
structure. We shall meet our first principle: the Principle of Preservation.

2.1 Languages and Grammars

Languages in the way they appear to us seem to consist in strings. The text in front
of you is an example. It is basically a long chain of symbols, put one after the
other. Yet, linguists stress over and over that there is structure in this chain and that
this structure comes from a grammar that generates this language. I shall assume
that the reader is familiar with this standard view on language. In this chapter I
shall rehearse some of the definitions, though taking a slightly different view. While
standard syntactic textbooks write rules in the form of replacement rules (S → NP
VP) to be thought of as replacing what is to the left by what is to the right, here we
take a bottom up view: we define grammars as devices that combine expressions.
The reasons for this shift have already been discussed; in the next chapter, it will
become apparent why there is no alternative to this view. This is also the way in
which Montague defined his formation rules.

Although I shall have very little to say about phonology I should make it clear that
when I use the terms “alphabet” and “letter” you may replace them by “phoneme
inventory” and “phoneme”. Likewise, we may decide to include tone and other
characteristics into the representation. All this can be done. The only reason that
I do not do it is, apart from the fact that I am not a phonologist, that it would distract
attention from the central issues. The reader is however asked to keep in mind that
the discussion is largely independent of the actual nature and manifestation of the
alphabet.

I said that languages are sets of strings. Clearly, there is more to languages, as
they also give meanings to the strings. Yet, if we disregard this latter aspect—and
maybe some more—we retain as the simplest of all manifestations of a language:
that of a set of strings. The topic of string languages is very rich since it has been

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1_2,
C© Springer Science+Business Media B.V. 2011

9

10 2 String Languages

thoroughly studied in formal language theory. We start therefore by discussing string
languages.

Recall that a string over some alphabet A is a sequence of letters from A; for
example, /abcbab/ is a string over {a, b, c}. It is also a string over the alphabet
{a, b, c, d} but not over {a, b}. Alternatively, a string over A is a function �x : n → A
for some natural number n (see Appendix A); n is the length of �x . If n = 0 we get
the empty string; it is denoted by ε. We write �x, �y (with an arrow) for arbitrary
strings. Concatenation is either denoted by �x��y or by juxtaposition. In running
text, to enhance explicitness, I enclose material strings (or exponents in general)
in slashes, like this: /dog/. This carries no theoretical commitment of any sort.

Definition 2.1 Let A be a finite set, the so-called alphabet. A∗ denotes the set of
strings over A, A+ the set of nonempty strings. A language over A is a subset of A∗.

Following Unix convention, we shall enclose names for sets of symbols by colons
(for example, :digit:). This way they cannot be confused with sets of strings, for
which we use ordinary notation.

Definition 2.2 The union of two sets is alternatively denoted by S ∪ T and S | T .
Given two sets S and T we write

S · T := {�x��y : �x ∈ S, �y ∈ T }. (2.1)

Furthermore, Sn is defined inductively by

S0 := {ε}, Sn+1 := Sn · S. (2.2)

Finally we put

S∗ :=
⋃

n∈N

Sn (2.3)

as well as

S+ := S · S∗. (2.4)

Typically, we write ST in place of S · T . ∗ binds stronger than · and · binds stronger
than ∪. We shall write {x} and x indiscriminately in case x is a single letter.

It is important to note that a language as defined here is a set, so it is unstructured. A
grammar on the other hand is a description or specification of a language. There are
two types of grammars: descriptive and generative. Descriptive grammars describe
the strings of the language, while generative grammars describe a process that gen-
erates them. We shall delay a definition of descriptive grammars. Thus, for now a
grammar is a system of rules (or rather functions). It is the grammar that imposes
structure on a language. This point seems contentious; in fact, many linguists think
differently. They think that the language itself possesses a structure that needs to be

2.1 Languages and Grammars 11

described using the grammar. Some are convinced that some descriptions (maybe
even a single one) are better than all the others (see Tomalin (2006) on the origin
of this view). I consider this belief unfounded. That we know the right grammar
when we see it is wishful thinking. It is clear that regularities need accounting for.
However, that accounting for them in a particular way will make the rule apparatus
more transparent needs to be demonstrated. The most blatant defect of such claims is
that no one knows how to define simplicity in an unambiguous way. One exception
is perhaps Kolmogorov complexity, which is, however, difficult to use in practice
(see Kornai (2007) on that subject). In absence of a unique notion of simplicity we
are left with the intuition that a language “calls” for a particular description in the
form of a certain grammar. But it may well be that there are different descriptions of
the same facts, none of which need to be essentially better than the other. Indeed, if
one looks around and studies various frameworks and the way they like to deal with
various phenomena, one finds that there is little fundamental consensus; nor is there
a criterion by which to judge who is right. Thus, a language may possess various
quite different grammars. These grammars in turn impose different structures on the
language and it may be impossible to say which one is “correct”. Thus a distinction
must be made between the set of acceptable strings and the structure that we see in
them.

Example 2.1 (See also Example 2.6 below.) The language of unbracketed additive
arithmetical terms (or ua-terms for short) is defined as follows. Consider the set

:digit: := {0, 1, · · · , 9}. (2.5)

An ua-term is a string over this alphabet plus the additional symbol /+/ such that it
neither ends nor begins with /+/. So it is a member of the following set.

UA := :digit:+(+:digit:+)∗ (2.6)

Examples are the following.

0, 10, 010+7, 00+01+31, 1001+000+9 (2.7)

In practice we think of such a string as consisting in blocks of digits separated by
/+/. This is so far just a matter of convenience. We shall see below however what
may justify this view.

In contrast to the unbracketed arithmetical terms, the bracketed arithmetical
terms (a-terms) always have brackets. They are technically strings over a different
alphabet, namely :digit:∪{+, (,)}. Thus, it is not that we do not write ua-terms with
brackets; they do not contain any brackets in the first place. An a-term, by contrast,
has them everywhere. (A precise definition of a-terms will be given in Example 2.6.)
There are many ways to “analyse” a given ua-term as arising from some a-term. For
example, we can think of the ua-term

�x0+�x1+�x2+ · · · +�xn (2.8)

12 2 String Languages

as being derived, among others, in a left bracketed (2.9) or a right bracketed (2.10)
way:

(�x0+(�x1+(�x2+ · · · (�xn−1+�xn) · · ·))) (2.9)

((· · · ((�x0+�x1)+�x2)+ · · · �xn−1)+�xn) (2.10)

Similarly, the ua-term

3+1+7+5 (2.11)

can be derived from the following a-terms by deleting brackets:

(((3+1)+7)+5), ((3+(1+7))+5), (3+((1+7)+5)), (3+(1+(7+5))). (2.12)

There is no way to decide which analysis is correct. o

Example 2.2 The formation of the third singular present of the English verb is identi-
cal to the plural of nouns. It consists—irregular forms and idiosyncrasies of spelling
aside—in the addition of /s/, /es/ or /ses/, depending on the end of the word. Is
there a formal identity between the two or do they just accidentally happen to be the
same? o

This last example will be important also when discussing identity of modes in
Section 3.1. Let me briefly go into some details. Ordinary languages contain—
apart from the obvious alphabetic characters—also punctuation marks; in addition
to punctuation marks we find the digits and the blank, written here /�/ throughout
when quoting material language strings and, finally, some less obvious characters
such as “newline” or “new paragraph”. These should be counted into the alphabet A
for the purposes of writing serious grammars for languages. There is, for example, a
difference in English between /black�bird/ and /blackbird/. In written English
the only difference is the presence or absence of the blank; in spoken English this
comes out as a different stress assignment. The same goes obviously for punctuation
(the difference between restrictive and nonrestrictive relative clauses is signalled by
the presence of a comma). Spoken language has intonation, which is absent from
written language; punctuation is a partial substitute for intonation. In what is to
follow, we will concentrate on written language to avoid having to deal with issues
that are irrelevant for the purpose of this book. Writing systems however introduce
their own problems. For matters concerning the intricacies of alphabets I refer the
reader to Korpela (2006).

Intermission 1 Some interesting facts about punctuation. In general, there is
something of a syntax of punctuation marks. Writing no blank is different from
writing one blank, while one blank is the same as two (consecutive) blanks. Two
periods are likewise the same as one, two commas the same as one and so on. In
general, punctuation marks act as separators, not as brackets. This means that they
avoid being put in sequence (with minor exceptions such as a period and a comma

2.1 Languages and Grammars 13

when the period signals an abbreviation). Separators come in different strengths. For
example, a period is a stronger separator than a comma. This means that if a period
and a comma will be in competition, the (sentence) period will win. o

Anyone who is nowadays dealing with characters will know that there is a lot
of structure in an alphabet, just as the set of phonemes of a language is highly
structured. There is first and foremost a division into alphabetic characters, digits,
and punctuation marks. However, there is an additional division into such characters
that serve as separators and those that do not. Separators are there to define the units
(“identifiers” or “words”). For ua-terms, /+/ is a separator. Separators could also
be strings, of course. If we want to understand where the words are in a text we
break a string at all those positions where we find a separator. Thus, the blank and
also punctuation marks are typical separators. But this is not always the case. A
hyphen, for example, is a punctuation mark but does not serve as a separator—or
at least not always. In programming languages, brackets are separators; this means
that the name of a variable may not contain brackets, since they would simply not be
recognised as parts of the name. Anyone interested in these questions may consult,
for example, books or manuals on regular expressions and search patterns.

While we often think of languages as being sets of strings over a given alphabet,
there are occasions when we prefer to think of languages as somehow independent
of the alphabet. These viewpoints are not easy to reconcile. We can introduce some
abstractness as follows. Let A and B be alphabets and m : A → B∗ a map. m
induces a homomorphism m : A∗ → B∗ in the following way.

m(x0x1 · · · xn−1) := m(x0)
�m(x1)

� · · ·� m(xn−1) (2.13)

Then m[L] is the realphabetization of L .

Example 2.3 In German, the umlaut refers to the change of /a/, /o/ and /u/ to /ä/,
/ö/ and /ü/, respectively. Standard German allows to replace the vowels with dots
by a combination of the vowel with /e/ (historically, this is where the dots came
from; they are the remnants of an /e/ written above the vowel). So, we have a map
m : ä
→ ae, ö
→ oe, ü
→ ue. For all other (small) letters, m(x) = x . Hence,

m(Rädelsführer) = Raedelsfuehrer (2.14)

o

We now say that we look at a language only up to realphabetization. In linguistics
this is done by considering spoken language as primary and all written languages
as realphabetizations thereof. Usually we will want to require that m is injective
on L , but spelling reforms are not always like that. In Switzerland, the letter /ß/
is written /ss/, and this obliterates the contrast between /Maße/ “measures” and
/Masse/ “mass”. For this reason we shall not deal with realphabetisation except for
theoretical purposes, where we do require that m be injective. Realphabetizations
are not structurally innocent. What is segmentable in one alphabet may not be in

14 2 String Languages

another. Imagine an alphabet where /downtown/ is rendered by a single letter, say,
/ffl/. The map sending /ffl/ to /downtown/ makes an indecomposable unit decompos-
able (/down/ + /town/). The dependency of the analysis on the alphabet is mostly
left implicit throughout this work.

The division into units, which is so important in practical applications (witness
the now popular art of tokenisation), is from a theoretical standpoint secondary.
That is to say, it is the responsibility of a grammar to tell us what the units are and
how to find them. Whether or not a symbol is a separator will be a consequence of
the way the grammar works, not primarily of the language itself. This is why we
may maintain, at least in the beginning, that the alphabet is an unstructured set in
addition to the language. The structure that we see in a language and its alphabet
is—as I emphasized above—imposed on it by a system of rules and descriptions, in
other words by a grammar. This applies of course to phonemes and features in the
same way.

In my view, a grammar is basically an interpretation of an abstract language. In
computer science one often talks about abstract and concrete syntax. The abstract
syntax talks about the ideal constitution of the syntactic items, while the concrete
syntax specifies how the items are communicated. The terminology used here is that
of “signature” (abstract) versus “grammar” (concrete).

Definition 2.3 Let F be a set, the set of function symbols. A signature is a function
Ω from F to the set N of natural numbers. Given f ,Ω(f) is called the arity of f . f
is a constant if Ω(f) = 0.

If f has arity 2, for example, this means that f takes two arguments and yields a
value. If f is a function on the set S, then f : S×S → S. We also write f : S2 → S.
The result of applying f to the arguments x and y in this order is denoted by f (x, y).
If f is partial then f (x, y) need not exist. In this case we write f : S2 ↪→ S. We
mention a special case, namely Ω(f) = 0. By convention, f : S0 ↪→ S, but there
is little gain in allowing a zeroary function to be partial. Now, S0 = {∅}, and so f
yields a single value if applied to ∅. However, ∅ is simply the empty tuple in this
connection, and we would have to write f () for the value of f . However, we shall
normally write f in place of f (), treating f as if it was its own value. The 0-ary
functions play a special role in this connection, since they shall form the lexicon.

Definition 2.4 A grammar over A is a pair 〈Ω, I〉, where Ω is a signature and for
every f ∈ F , I(f) : (A∗)Ω(f) ↪→ A∗. F is the set of modes of the grammar. I is
called the interpretation. If Ω(f) = 0, f is called lexical, otherwise nonlexical.
The set {I(f) : Ω(f) = 0} is called the lexicon of G, and the set {I(f) : Ω(f) >
0} the set of rules. The language generated by G, in symbols L(G), is defined to be
the least set S satisfying the following condition for every f ∈ F and all �xi ∈ A∗,
i < Ω(f).

If for all i < Ω(f)�xi ∈ S and I(f)(�x0, · · · , �xΩ(f)−1) (2.15)

exists then I(f)(�x0, · · · , �xΩ(f)−1) ∈ S.

2.1 Languages and Grammars 15

Example 2.4 Let F := { j, t, f }, and Ω(j) = Ω(t) = 0, Ω(f) = 2. I is defined
as follows. I(j) is a zeroary function and so I(j)() is a string, the string /John/.
Likewise, I(t)() = talks. Finally, we look at I(f). Suppose first that I(f) is
interpreted like this.

I(f)(�x, �y) := �x����y�. (2.16)

Then the language contains strings like this one:

John�talks.�talks. (2.17)

The function I(f) needs to be constrained. One obvious way is to restrict the first
input to /John/ and the second to /talks/. An indirect way to achieve the same is
this definition.

I(f)(�x, �y) :=

⎧
⎪⎨

⎪⎩

�x����y�. if �x ends with /n/

and �y begins with /t/,

undefined otherwise.

(2.18)

This grammar generates the following language.

{John, talks, John�talks.} (2.19)

o

Example 2.5 Here is now a pathological example. A set S is called countable if
it is infinite and there is an onto function f : N → S. If S is countable we can
assume that f is actually bijective. Let L ⊆ A∗. L is countable, since A is finite.
Let f : N → L be bijective. Let now F := {b, s}, Ω(b) := 0 and Ω(s) := 1. This
means that we get the following terms: b, s(b), s(s(b)), s(s(s(b))), . . . The general
element has the form sn(b), n ∈ N. This is a familiar way to generate the natural
numbers: start with zero and keep forming successors. Further, we put

I(b)() := f (0)

I(s)(�x) := f (f −1(�x)+ 1)
(2.20)

So, we start with the first element in the enumeration f . The number of �x in the
enumeration is f −1(�x). If we add 1 to this number and translate this via f we get
the next element in the list. In other words, we have I(s)(f (n)) = f (n + 1).

This grammar generates L . It follows that every countable language has a gram-
mar that generates it. o

Evidently, any f ∈ F (that is, every mode) is either lexical or nonlexical.
Notice that there are no requirements on the functions, not even that they be com-
putable. (Recently, Lasersohn (2009) has argued that computability may not even be

16 2 String Languages

an appropriate requirement for meanings. Without endorsing the argument that he
presents I have dropped the requirement here.) We shall introduce restrictions on the
functions as we go along. The lexicon is not always considered part of the grammar.
I make no principled decision here; it is just easier not to have to worry about the
rules and the lexicon separately.

Example 2.6 This is one of our main examples: it will be called the language of
equations.

:eq: := :digit: ∪ {+, -, (,), =} (2.21)

F = { f0, f1, f2, f3, f4, f5, f6}. Ω(f0) = Ω(f1) = 0, Ω(f2) = Ω(f3) = 1,
Ω(f4) = Ω(f5) = Ω(f6) = 2. �x is binary if it only contains /0/ and /1/; �x is an
a-term if it does not contain /=/. The modes are shown in Table 2.1. The strings that
this grammar generates are of the following form. They are either strings consist-
ing in the letters /0/ and /1/, for example /010/, /11101/, or they are a-terms, like
/(1+(01-101))/; or they are equations between two a-terms, like /(1+10)=11/.
(A single numeral expression is also an a-term.) o

Given a signature Ω , we define the notion of an Ω-term.

Definition 2.5 Let V be a set of variables disjoint from F . LetΩ be a signature over
F . An Ω-term over V is a string t over F ∪ V satisfying one of the following.

➊ t ∈ V ,
➋ t = f , where Ω(f) = 0,
➌ t = f �t�0 · · ·� tn−1, where n = Ω(f) and ti is an Ω-term for every i < n.

Table 2.1 The modes of Example 2.6

I(f0)() := 0

I(f1)() := 1

I(f2)(�x) :=
{
�x�0 if �x is binary,

undefined else.

I(f3)(�x) :=
{
�x�1 if �x is binary,

undefined else.

I(f4)(�x, �y) :=
{
(� �x�+� �y�) if �x, �y are a-terms,

undefined else.

I(f5)(�x, �y) :=
{
(� �x�-� �y�) if �x, �y are a-terms,

undefined else.

I(f6)(�x, �y) :=
{
�x�=� �y if �x, �y are a-terms,

undefined else.

2.1 Languages and Grammars 17

The symbol TmΩ(V) denotes the set of all Ω-terms over V . The set TmΩ(∅) is
of special importance. It is the set of constant Ω-terms. A term t is constant if
t ∈ F+, that is, if it contains no variables. Given a grammar G = 〈Ω, I〉, we also
call an Ω-term a G-term.

See Fig. 2.2 on page 36 for an example of term. Notice that the second case is a
subcase of the third (where n = 0). It is listed separately for better understanding.
Some remarks are in order. Standardly, terms are considered abstract, but I thought
it easier to let terms also be concrete objects, namely strings. The syntax chosen for
these objects is Polish Notation. It has the advantage of using the alphabet itself and
having the property of transparency (see page 46 for a definition). Exercises 2.6 and
2.7 show that the language enjoys unique readability. Delaying the justification for
the terminology, let us make the following definition.

Definition 2.6 Let t be anΩ-term. s is a subterm of t if and only if s is anΩ-term
and a substring of t .

Based on the exercises at the end of this section one can show that the language of
terms is quite well behaved. A substring that looks like a term actually is a subterm
under every analysis. (Consequently there can be only one analysis.)

Proposition 2.1 Let s and t beΩ-terms and s a substring of t . Then either s = t or

t = f �t�0 · · ·� tn−1 for some f and n = Ω(f) and there is an i < n such that s is
a subterm of ti .

Given a grammar G we can define the interpretation ιG(t) of a constant term t .

➊ ιG(f) := I(f) if Ω(f) = 0,
➋ ιG(f t0 · · · tn−1) := I(f)(ιG(t0), · · · , ιG(tn−1)), where n = Ω(f).

We call ιG the unfolding function and say that t unfolds in G to �x if ιG(t) =
�x . If the grammar is clear from the context, we shall write ι(t) in place of ιG(t).
Continuing our example, we have

ι(f4 f3 f0 f2 f1) = (ι(f3 f0)+ι(f2 f1))

= (ι(f0)1+ι(f2 f1))

= (ι(f0)1+ι(f1)0)

= (01+ι(f1)0)

= (01+10)

(2.22)

This establishes the interpretation of constant terms. Since the string functions may
be partial not every constant term has a value. Thus, ι(t) may be undefined. We call

dom(ι) := {t ∈ TmΩ(∅) : ι(t) is defined} (2.23)

the set of orthographically definite terms. The term f4 f3 f0 f2 f1 is orthographi-
cally definite, while the term f6 f6 f0 f1 f1 is not. This is because once f6 has been

18 2 String Languages

used, it introduces the symbol /=/, and none of the modes can apply further. If t is
orthographically definite, so is any subterm of t . Notice that for a grammar G, the
language can simply be defined as

L(G) := {ι(t) : t ∈ TmΩ(∅)}. (2.24)

Notice that this is different from the standard concept. This difference will be of
great importance later on. Standardly, grammars may contain symbols other than
the terminal symbols. The nonterminal alphabet contains characters foreign to the
language itself. While in formal languages the presence of such characters can be
motivated from considerations of usefulness, in our context these symbols make no
sense. This is because we shall later consider interpreted languages; and there is,
as far as I know, no indication that the nonterminal symbols have any meaning. In
fact, in the terminology of this book, by the definition of “language” and “nontermi-
nal symbol” the latter have no meaning. All of this will follow from the principles
defined in Section 2.6. The present requirement is weaker since it does not constrain
the power of the rules. What it says, though, is that the generation of strings must
proceed strictly by using strings of the language itself. Later we shall also require
that the strings must be used with the meaning that the language assigns to them.

If we eliminate nonterminal symbols, however, a lot of things change as well.
L(G) not only contains the strings at the end of a derivation but every string that
is built on the way. If, for example, we write our grammar using context free rules,
L(G) not only contains the sentences but the individual words and all constituents
that any sentence of L(G) has. Therefore, unlike in traditional linguistic theory, L
is not simply assumed to contain sentences but all constituents. To distinguish these
two notions we shall talk of a language in the narrow sense if we mean language
as a set of sentences; and we speak of a language in the wide sense—or simply of a
language—if we mean language as a set of constituents. Notice that the difference
lies merely in the way in which the language defines its grammar. As objects both
are sets. But a language in the narrow sense leaves larger room to define grammars
as languages in the wide sense also fix the set from which constituents may be
drawn. Our stance in the matter is that one should start with language in the wide
sense. The reasons for this will I hope become clear in Chapter 3. At this moment I
would like to point out that for all intents and purposes starting with language in the
narrow sense makes the grammar radically underdetermined.

For the working linguist, the choice of L is a highly empirical matter and hence
full of problems: in defining L we need to make decisions as to what the constituents
of the language are. This means we need more input in the first place. On the other
hand, we get a more direct insight into structure. A grammar can only analyse a
string into parts that are already members of L . Of course there is still a question
of whether a given string really occurs as a constituent (we shall discuss that point
later). But it can only do so if it is in L . A side effect of this is that we can sometimes
know which occurrences of symbols are syncategorematic. Basically, an occurrence
of a symbol is syncategorematic in a string under a derivation if it is not part of any

2.1 Languages and Grammars 19

primitive string that the derivation uses. This is admittedly vague; a proper definition
must be deferred to Section 2.6.

Example 2.7 I give two alternative formulations of Boolean logic. The alphabet is
as follows.

:bool: := {0, 1, p,¬,∧,∨, (,)} (2.25)

The first language is the smallest set S satisfying the equation (here, as in the sequel,
· binds stronger than | or ∪):

S = (p · (0 | 1)∗) ∪ (· ¬ · S ·) ∪ (· S · (∨ | ∧) · S ·) (2.26)

The other language is the union D ∪ S, where D and S are the minimal solution of
the following set of equations:

D = D ∪ (0 | 1) · D

S = p · D ∪ (· ¬ · S ·) ∪ (· S · (∨ | ∧) · S ·) (2.27)

It turns out that in both cases S is the same set; however, in the first example
the language defined is just S, in the second it is S ∪ D. S contains p01, (¬p0),
(p1∧(¬p1)). D (but not S) also contains 0, 111. o

Given a grammar G and a string �x , we call a term t an analysis term or simply
an analysis of �x if ι(t) = �x . A string may have several analysis terms. In this case
we say that it is ambiguous. If it has none it is called ungrammatical. A grammar
is called ambiguous if it generates at least one ambiguous string and unambiguous
otherwise.

Exercise 2.1 Consider a context free grammar (for a definition, see Section 2.3).
Then the language of that grammar generated in the narrow sense is context free, by
definition. Show that also the language generated in the wide sense is context free.

Exercise 2.2 Give examples of pairs (L , L ′) such that L ′ is a language in the wide
sense, and L its narrow restriction, such that (i) L is context free but L ′ is not, (ii)
L ′ is context free but L is not.

Exercise 2.3 Describe the set of orthographically definite terms for the language of
equations.

Exercise 2.4 Write grammars for the unbracketed additive terms, the left and the
right bracketed additive terms of Example 2.1, respectively.

Exercise 2.5 Terms are strings, by definition, and can therefore be looked at as
members of a language. The methodology of this book can therefore also be applied
to them. Consider, by way of example, the strings for terms in Example 2.6. Write a
grammar for the set of all constant Ω-terms; then write a grammar for the set of all
orthographically definite terms.

20 2 String Languages

Exercise 2.6 The formal notation of terms must be accompanied by a proof that it
is uniquely readable. We shall use this and the next exercise to deliver such a proof.
Recall that terms are sequences of function symbols, no extra symbol is added.
However, not every such sequence is a term. LetΩ be a signature. For f ∈ F∪V let
γ (f) := Ω(f)−1 and for a string �x = x0x1 · · · xn−1 ∈ F∗ let γ (�x) =∑i<n γ (xi).
Show the following: if �x ∈ F∗ is a term, then (i) γ (�x) = −1 and (ii) for every proper
prefix �y = x0x1 · · · xm−1, m < n, γ (�y) ≥ 0. (It follows from this that no proper
prefix of a term is a term.) Hint. Do an induction on the length.

Exercise 2.7 (Continuing the previous exercise). Let �x = x0x1 · · · xn−1 ∈ F∗ be a
string. Then if �x satisfies (i) and (ii) from the previous exercise, �x is a term. Hint.
Induction on n. The cases n = 0, 1 are straightforward. Now suppose that n > 1.
Then x = x0x1 · · · xn−1 and γ (x0) = p ≥ 0, by (ii). Show that there is a number
i > 1 such that γ (x1 · · · xi−1) = −1; choose i minimal with that property. Then
�y0 = x1 · · · xi−1 is a term, by inductive assumption. If p > 1 we have i < n, and
there is i ′ > i such that �y0 = xi xi+1 · · · xi ′ is a term. Choose i ′ minimal with that
property. And so on, getting a decomposition x0 �y0 · · · �yp.

Exercise 2.8 Show Proposition 2.1. Hint. Assume that s �= t . Then there is a decom-
position t = f �t�0 · · ·� tn−1. Now fix a substring occurrence of s in t . Assume that
it starts in ti . Then show that it must also end in ti .

2.2 Parts and Substitution

We defined a language (in the wide sense) to be the set of all of its constituent
expressions. Since we do not discriminate sentences from nonsentences the lan-
guage contains not only sentences but also parts thereof. We would like to be able to
say of some expressions whether one is a part of the other. In particular, we would
like to say that /The cat is on the mat./ contains /on the mat/ as its part but
not, for example, /cat is on/ or /dog/. In the cases just given this is straightfor-
ward: /cat is on/ is not in our language (in the wide sense), for it has no meaning;
/dog/ on the other hand is not a string part of the expression. In other cases, however,
matters are not so easy. Is /Mary ran/ a part of /John and Mary ran./ or is it
not? It is a string part of the sentence and it is meaningful. As it turns out, there is
no unique answer in this case. (Curiously enough even semantic criteria fail to give
a unanimous answer.) More problems arise, making the notion of part quite elusive.
One problem is that there are no conditions on the string functions; another is that a
given string may have been composed in many different ways. Let us discuss these
issues below. We begin however with a definition of part.

Definition 2.7 Let G be a grammar. �x is a part of �y if there are constant terms s and
u such that s is a subterm of u and ιG(s) = �x as well as ιG(u) = �y.

This definition of part of pays no attention to the strings. Instead it looks at the
way the strings are obtained through the string functions of the grammar. Thus,
any useful restriction will come from restricting the power of string functions.

2.2 Parts and Substitution 21

The definition also pays no attention to the way in which the parts occur in the
larger string. Occurrences will be defined in Definition 2.9 and then we shall review
Definition 2.7. The examples of this section will show how broad the spectrum of
grammars is and how it affects parthood.

Example 2.8 Consider a unary function f which forms the past tense, for example
I(f)(go) = went, I(f)(sing) = sang, I(f)(ask) = asked. In this grammar,
/go/ is a part of /went/, /sing/ a part of /sang/, /ask/ a part of /asked/. o

Generally, it is actually not assumed that /went/ is literally made from /go/;
rather, it is assumed that the verb /go/ possesses different allomorphs and that the
context decides which of them is going to be used. This is also my own intuition.
Therefore, I shall propose that syntactic functions may not delete material. This
will effectively exclude the grammar of Example 2.8. Let us now look at a second
example.

Example 2.9 We present two ways of generating the nonempty strings over the
alphabet :blet: := {a, b} of “binary letters”. C1 consists in the zeroary functions
fa, fb plus the unary functions f0 and f1. We have

I1(fa)() := a

I1(fb)() := b

I1(f0)(�x) := �x�a

I1(f1)(�x) := �x�b

(2.28)

So, ιC1(f1 f0 f0 fa) = aaab. This grammar is the “typewriter model” of strings.
Strings are generated by appending letters one by one to the initial letter.

The grammar C2 has the zeroary function symbols fa and fb and a binary symbol
γ . We have

I2(fa)() := a

I2(fb)() := b

I2(γ)(�x, �y) := �x��y
(2.29)

For example, ιC2(γ γ fa faγ fa fb) = aaab.
In C1, �x is part of �y if and only if it is a nonempty prefix of �y. In C2, �x is a part

of �y if and only if it is a nonempty subword. o

It is to be noted that both grammars generate the set A+, so they are extensionally
identical. Yet structurally they are different. According to C2 strings can have many
more parts than according to C1. For example, in C2 /aaab/ possesses (apart from
itself) the parts /a/, /aa/, /aaa/, /b/, /ab/, /aab/. In addition, the string /aa/ has two
occurrences in /aaab/, which we may denote as follows: /aaab/ and /aaab/. (More
on occurrences in Definition 2.9 and Section 2.5.) Both occurrences are actually
parts of the string. It turns out, though, that not all parts can be parts in one and

22 2 String Languages

the same derivation. A more useful notion is in fact defined for a particular analysis
term. The relation “is part of” is then the union of the relations “is a t-part of” for
all terms t .

Definition 2.8 Let G be a grammar, t a constant term and �x and �y strings. We say
that �x is a t-part of �y if ιG(t) = �y and there is a subterm s of t such that ιG(s) = �x .
In this case there is t ′(x) such that t = t ′(s).

With certain adaptations we can say that the relation “is a t-part of” is transitive. (If
�y is a t-part of �z and is the unfolding of s, s a subterm of t , then parts of �y must be
s-parts of �y in order to be t-parts of �z.) Here is a somewhat surprising result given
that the union of transitive relations need not be transitive.

Proposition 2.2 The relation is part of is transitive.

Proof Let �x be a part of �y and �y a part of �z. Then there are terms r and s such that r
unfolds to �x and s unfolds to �y and r is a subterm of s. Furthermore there are t and
u that unfold to �y and �z, respectively, and t is a subterm of u. Since they unfold to
the same string, we may replace t in u by s, giving us a new term u′, of which s is a
subterm. Since r is a subterm of s, it is also a subterm of u. ��

Given a single C2-term t for /aaab/, the substring occurrences that correspond to
the subterms actually form a tree. This is essentially because the grammar encodes a
context free analysis. However, C2 is ambiguous: /aaab/ has several analysis terms
and they provide different constituent analyses. The analysis terms are as follows:
γ γ γ fa fa fa fb, γ γ faγ fa fa fb, γ γ fa faγ fa fb, γ faγ γ fa fa fb and γ faγ faγ fa fb. On
the other hand, C1 is unambiguous.

Standard tests for constituency in textbooks include the substitution test. Before
we look in detail at the test let us first say a few words about string substitution.

Definition 2.9 A (1-)context is a pair C = 〈�x, �z〉 of strings. Inserting �y into C
results in the string C(�y) := �x �y �z. We say that �y occurs in �u if there is a context C
such that �u = C(�y). We also say then that C is an occurrence of �y in �u. The result
of substituting �w for �y in its occurrence C is C(�w) = �x �w �z.

For example, C := 〈s, ish〉 is a 1-context. C(elf) = s�elf�ish = selfish.
Notice that for any 1-context C = 〈�x, �y〉, C(ε) = �x��y. The substitution test runs
as follows.

John likes cricket. (2.30)

Given a sentence, say, (2.30), we look for the string occurrences that can be sub-
stituted for /cricket/ such that the result is once again a sentence. These include
/chess/, /vegetables/, /his new home/ and so on. Similarly, we try to substitute
for other sequences such as /likes/, /John likes/ and /likes cricket/. The
underlying idea is that nonconstituents cannot be substituted for (for example /John
likes/) while constituents can. In practice, this test is not without problems, as it
often turns out that nonconstituents can be substituted for (as is the case with /John

2.2 Parts and Substitution 23

likes/, for which we can substitute /Peter dislikes/). In fact, it sometimes turns
out that the alleged nonconstituent passes all tests and we must be prepared to either
strengthen our tests or admit that these really are constituents (as some claim is
the case with /John likes/, see Steedman (1990)). In this section we shall look in
some detail at the formal underpinnings of the substitution test.

First of all, we have to ask what we actually mean by substitution and second
how it can possibly show us something about the grammars for our language. The
answer to the first question is in fact not trivial. In the absence of a grammar the
substitution we should be performing is simply string substitution. The underlying
claim of the constituency test is that it shows us when string substitution is actually
constituent substitution. This is the case if it can be performed without affecting
grammaticality. Here I have defined constituent substitution to be substitution on
the level of the analysis terms: it is the substitution of one subterm by another.
The syntactic tests assume that constituent substitution if defined is always string
substitution. This is problematic for two reasons. One is that the two need not be
identical because the string functions of the grammar may be different from string
polynomials (see the end of this section for a definition). The second is that the
substitution can give misleading evidence. We start with some examples to show
the point.

Definition 2.10 Let L be a language. Write �x ∼L �y if for all 1-contexts C : C(�x) ∈
L ⇔ C(�y) ∈ L . The set CatL(�x) := {C : C(�x) ∈ L} is called the string category
of �x in L .

Obviously, �x ∼L �y if and only if CatL(�x) = CatL(�y). If string substitution is
constituent substitution then the definition above defines exactly the syntactically
relevant classes of English. However, mostly this is not a realistic assumption. Let
us review how the notion of part can depart from that of a constituent.

Example 2.10 We look at three grammars to form the plural of English. Let F0 be
a list of functions f �x , where in all grammars below f �x will be evaluated to the
string �x . To keep it simple, let F0 = FR ∪ FI , where FR = { fcat, fdog}, FI =
{ fsheep, fmouse, fox}. FR contains the regular nouns, FI the irregular nouns. Thus,
with Ii the interpretation function of the grammar Pi we have Ii (fcat)() = cat,
Ii (fmouse)() = mouse and so on. Now, put Ω0(f�x) := 0. We denote by Rs the set
{�x : f �x ∈ FR}, Rp the corresponding plural forms, likewise Is := {�x : f�x ∈ FI }, Ip

the corresponding plural forms.
The first grammar, P1 = 〈Ω1, I1〉, is as follows. F1 := F0 ∪ {p}, Ω1(p) = 1,

Ω1 � F0 = Ω0. I1(p) is defined on Rs ∪ Is , which is all strings that are singu-
lar nouns (/cat/, /mouse/, /ox/, but not /oxen/) and its output is the corresponding
plural. So we have

I1(p) = {〈cat, cats〉, 〈dog, dogs〉,〈sheep, sheep〉, (2.31)

〈mouse, mice〉, 〈ox, oxen〉}.

The second grammar, P2 = 〈Ω2, I2〉, has instead F2 := F0 ∪ {g, fmice, fε, fs, fes,

fen}, where g is a binary function symbol. We put

24 2 String Languages

I2(g)(�x, �y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�x��y if �x ∈ Rs and �y = s

or �x = sheep and �y = ε
or �x = ox and �y = en,

undefined else.

(2.32)

In short, I2(g)(�x, �y) is defined only if �x is a noun root and �y a proper plural suffix
for �x . Since the plural of /mouse/ is not obtained by affixation, it has been added to
the lexicon. A variation of this grammar would be to set I2(g)(mouse, ε) := mice.
Thus, the plural is formed by a zero affix to a different stem.

The third grammar, P3 = 〈Ω3, I3〉 is a mixture between the two. F3 := F0 ∪
{p, g, fs, fes}. For regular nouns it uses g, for irregular nouns it uses f .

I3(g)(�x, �y) =
{
I2(g)(�x, �y) if �x ∈ Rs ,

undefined otherwise.
(2.33)

I3(p)(�x) =
{
I1(p)(�x) if �x ∈ Is ,

undefined otherwise.
(2.34)

First of all notice that we can distinguish between these grammars in terms of the
generated language. It turns out that P1 generates all and only the singular and plural
noun forms. P2 in addition contains the plural morphs (like /s/, /es/, /en/ and ε).
P3 contains only the regular plural morphs and not ε, for example (though that
depends on the exact distribution of the work between f and g). P1 realizes a model
called item and process, while P2 realises a model called item and arrangement (see
Matthews (1978) for a discussion of these models).

Next we need to look at how constituent substitution works in these examples.
Here is an example: in P2, the string /cats/ is the value of the term g fcat fs. Replace
fcat by fdog and you get the term g fdog fs, which unfolds to /dogs/. Replace it by
fmouse and you get g fmouse fs, which is undefined. Similarly, replace fs by fen and
you get g fcat fen, which is also undefined.

In P2, the plural morph is a constituent, so it should be substitutable. Likewise,
the root noun is a constituent, so we should be able to substitute for it. Sometimes
we can successfully perform such a substitution, as certain nouns accept two plural
endings: we have /formulas/ next to /formulae/. Most of the time the substitution
will fail though. In P1 on the other hand the substitution of the plural morph is illicit
for a different reason: it is not a constituent. The form /cats/ is the value of p fcat,
so the only constituent substitution we can perform is to replace fcat by fmouse and
in this case the result is /mice/.

In P3 string substitution of the plural morph by something else is sometimes
licit sometimes not. Let us look now at the substitution of the root noun by another
root noun. In P2 we may exchange /dog/ for /cat/ but not /mouse/. This is because
I2(g)(dog, s) = dogs, which is the result of substituting the substring /cat/ of
/cats/ by /dog/, but I2(g)(mouse, s) is undefined, while applying the string sub-
stitution gives /mouses/. Trying the same in P1 we find that the string substitution

2.2 Parts and Substitution 25

facts are similar; however, I2(f)(mouse) is defined and it gives /mice/. Thus, the
difference between P1 and P2 is that the substitution of the subconstituent /mouse/
for /cat/ in the derivation is licit in P1 but illicit in P2. In P1, the result of this
substitution is different from string substitution, though. o

The grammar P2 actually uses straight concatenation and the string categories
of English actually do tell us about the necessary distinctions we need to make
in the paradigms. (Note though that the grammars here do not explicitly mention
paradigms. There is no need to do so. The classes are just defined indirectly via the
partiality.)

Example 2.11 The next example is a variation of the previous theme. The first gram-
mar, Q1, has constants for the names /John/, /Alex/ and /Pete/ and for the verb
forms, /sings/ and /sing/, /runs/ and /run/. It has two binary functions, c and g.
Call a sequence �x an NP if it has the form /x1�and�x2�and�x3 · · · /. It is singular
if it does not contain /and/ and plural otherwise.

I(c)(�x, �y) :=
{
�x��and���y if �x and �y are NPs,

undefined else.
(2.35)

g combines NPs with verb forms. The chosen verb form must agree in number with
the sequence. This is done as follows.

I(g)(�x, �y) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�x����y if either �x is a singular NP

and �y is a singular verb form

or �x is a plural NP

and �y is a plural verb form,

undefined else.

(2.36)

This grammar generates /John sings/ (it is the value of g fJohn fsings) and /John
and Mary and Alex sing/ (the value of gcc fJohn fMary fAlex fsing) but not /Mary
and Alex sings/. For the second grammar, Q2, we assume we have only verb
roots (form identical with the singulars of the previous grammar) and change the
interpretation of g as follows:

K(g)(�x, �y) :=

⎧
⎪⎨

⎪⎩

�x����y if �x is a plural NP and �y is a verb root,

�x����y�s if �x is a singular NP and �y is a verb root,

undefined else.

(2.37)

In Q1, we can string substitute /John and Mary/ for /John/ only if the verb form is
already plural but not, for example, in /John sings/, for we would get /John and
Mary sings/, which the grammar does not generate. For the same reason it is also
not possible to constituent substitute. In Q2, the constituent substitution gives us
different results. Namely, constituent substitution of /John and Mary/ for /John/

26 2 String Languages

in /John sings/ yields /John and Mary sing/! This is because the sentence is
the value (under K) of g fJohn fsing, and we replace fJohn by c fJohn fMary. This yields
the term gc fJohn fMary fsing, which unfolds to /John and Mary sing/. o

The previous examples established two things: first, it may be the case that certain
affixes are introduced by the derivation. In this case the string substitution has noth-
ing to do with constituent substitution, since there is no constituent to begin with.
Second, there is a difference between string substitution and constituent substitution.
It is the latter notion that is dependent on the grammar. It is defined as follows.

We have seen in the previous section how to evaluate constant terms. Now we
shall introduce variables over constituents. Thus, we shall allow to write f x and
gxy but also g f xx , where f is unary and g binary and x and y are variables over
terms. For terms containing such variables the interpretation must be a function
from values of these variables to strings. Here is a way to implement this idea.
The interpretation of a term is a partial function from (A∗)N to A∗. Here, an infinite
sequence s := 〈s0, s1, · · ·〉 codes the assignment of strings to the variables that maps
xi to the string si . Now put

➊ ιG(xi)(s) := si ,
➋ ιG(f)(s) := I(f) if Ω(f) = 0,
➌ ιG(f t0 · · · tn−1)(s) := I(f)(ιG(t0)(s), · · · , ιG(tn−1)(s)), where n = Ω(f).

Again, if G is clear from the context, ιG will be simplified to ι. Notice that if the
string functions are partial some of the ιG(t) may also be partial functions. In the
sequel I shall not use x0 and x1 but the usual x , y instead. (ι has been defined in
Section 2.1 for constant terms slightly differently. On constant terms the valuation
is irrelevant.)

Example 2.12 We continue Example 2.9. Apart from the constant, C1 has only unary
functions, so the terms we can create have at most one variable. Examples are f1x0,
f0 f1x1, and so on. These describe functions from assignments to strings. The first
defines a function from s to A∗: s
→ s�

0 a. The second is s
→ s�
1 b. I shall sim-

plify this by eliminating reference to the entire valuation and replacing s0 and s1
by metavariables. This way we get the somewhat simpler expression �x
→ �x�a,
�x
→ �x�b. It is possible to describe the totality of definable functions. They all have
the form �x
→ �x��y for some �y ∈ A∗ (which may be empty, since we generally also
have the term x , which denotes the identity function on A∗).

C2 has many more functions. In fact, the terms that we can define in C2 are all
the definable string polynomials using constants from A. o

It is the simplifications of the preceding example that I shall adopt throughout.
If we have a term t (x, y, z) then the result of filling in the values �x , �y and �z for x ,
y and z, respectively, is denoted as usual by t (�x, �y, �z), or—if we want to be very
explicit which value is assigned to which variable—by t (x, y, z)[�x/x, �y/y, �z/z].
The latter notation is more practical when we suppress the variables in the term
itself by writing t[�x/x, �y/y, �z/z]. Now let f : (A∗)n → A∗. Say that it is a term
function of G if there is a term t (x0, x1, · · · , xn−1) such that

2.2 Parts and Substitution 27

f (�x0, · · · , �xn−1) = ιG(t[�x0/x0, · · · , �xn−1/xn−1]). (2.38)

A polynomial (over A) is a term in the signature expanded by fa (with value
a) for every a ∈ A. f is a polynomial function of G if there is a polynomial
p(x0, x1, · · · , xn−1) such that

f (�x0, · · · , �xn−1) = ιG(p[�x0/x0, · · · , �xn−1/xn−1]). (2.39)

A particular sort of polynomial is the string polynomial. Let A be an alphabet.
Then the string polynomials over A are the polynomials defined over the signature
Ω : ·
→ 2, ε
→ 0 in the algebra 〈A∗, ε,� 〉. The interpretation is fixed: · is
interpreted by concatenation, ε by the empty string and a by a constant yielding
the letter a itself. (Bracketing is therefore eliminable since string concatenation is
associative.) For example, p(x0, x1) := x1 · a · x1 · x0 · b is a polynomial. It is
interpreted by the following function over A∗.

pA∗(�x, �y) := ιG(t[�x/x0, �y/x1]) := �y�a��y��x�b (2.40)

Typically, we do not even write the dot, so that x0 · x1 reduces to x0x1.
I close this section with an observation concerning the method of substitution,

using Definition 2.10. This test is supposed to reveal something about the structure
of the language provided that the grammar for it is some constituent grammar: parts
are assumed to be substrings. (If the grammar is not of that form, another form of
test is needed.) There are two ways to understand this test, ultimately deriving from
two different definitions of language; one is to start with a language as the set of
sentences and try to define the constituents smaller than sentences via substitution
classes. Another, less ambitious method, starts with a language in the wide sense
and tries to find out the constituent occurrences in a given string. We shall look here
at the first of these interpretations; the other interpretation shall be looked at in more
detail later.

Let L ⊆ A∗ be a language in the narrow sense and �x a string. Evidently, there
are two cases. Either �x is not a substring of any string in L , and so CatL(�x) = ∅, or
it is and then CatL(�x) �= ∅. Apart from this there is nothing of substance one can
say about the distribution of categories. There is no theoretical instrument to tell us
from the substitution possibilities which are the constituents. This is reflected also
in some grammars. In the Lambek Calculus all substrings of a string of the language
are given a category.

There is a little bit that we can say about the relationship between the number
of categories and L itself. It turns out that if the set of string categories is finite the
language is regular. The following proof is based on the Myhill-Nerode Theorem
(see Harrison (1978) for a proof).

Theorem 2.1 A language has finitely many string categories if and only if it is
regular.

28 2 String Languages

Proof Suppose that L has finitely many categories. Intersect the categories with the
set {〈ε, �x〉 : �x ∈ A∗}. This yields a finite set of occurrences of prefixes. By the
Myhill-Nerode Theorem, the language is regular. Now assume that the language is
regular, and accepted by a finite automaton A. Let Ii be the language of all strings
that lead from the initial state to state i ; and let A j be the language of all strings that
lead from j to some accepting state. Then the categories coincide with the sets of
pairs Ii × A j for all states i and j such that j can be reached from i . ��
Exercise 2.9 Describe all unary term functions of C2, that is, all actions of C2-terms
in one variable.

Exercise 2.10 Verify that the language of ua-terms is defined by the following
grammar:

I(n0)() := 0

.

I(n9)() := 9

I(c0)(�x) := �x�0
.

I(c9)(�x) := �x�9

I(a0)(�x) := �x�+�0
.

I(a9)(�x) := �x�+�9

(2.41)

Exercise 2.11 (Continuing the previous exercise.) In the grammar of the previous
exercise /10+1/ is a part of /10+12/. Simply choose the analysis n1c0a1c2. However,
/12/ is not a part of /10+12/ although intuitively it should be. Begin by specifying
when a given string is a substring of another. Then write a grammar where only
those substring occurrences are parts that should be.

Exercise 2.12 The language of ua-terms is regular. Nevertheless, show that there
is no regular grammar that generates exactly this language in the wide sense; this
means that L is taken to be the union of all expressions that belong to some nonter-
minal of the grammar. Hint. Regular grammars allow to add only one symbol at a
time.

2.3 Grammars and String Categories

In the previous section we looked at string categories defined by replacing substrings
by other substrings. In this section we look at a similar but different definition where
replacement is done only of constituent occurrences. This definition presupposes a
grammar.

2.3 Grammars and String Categories 29

Definition 2.11 Let G be a grammar and �x, �y ∈ L(G). We write �x ∼G �y if for
every term t (x0), ιG(t (�x)) is defined if and only if ιG(t (�y)) is defined. We write
[�x]G := {�y : �x ∼G �y}. These sets are called the syntactic categories of G.

We have restricted the definition to strings in L(G). Thus, categories are defined
only on the strings of the language. Strings outside the language have no category.
An alternative formulation is this: �x and �y have the same category if for every pair of
terms s0 and s1 that unfold to �x and �y respectively, t (s0) is orthographically definite
if and only if t (s1) is. (It is easy to see that if this holds for one pair of terms s0 and
s1 then it holds for all. See also Definition 2.23.)

Notice that the set of strings on which no function is defined is also a syntactic
category. For example, in Example 2.1 this category is empty, in Example 2.6 it
contains all equations.

There need not be finitely many equivalence classes as the following example
shows.

Example 2.13 Let A := {a}. G = 〈Ω, I〉 is defined byΩ(e) = 0,Ω(f) = Ω(g) =
1 and

I(e)() := ε

I(f)(an) :=
{
an−1 if n > 0,

undefined else.
(2.42)

I(g)(an) := a2n

G generates a∗ in a somewhat unconventional way. Namely if m > n, then
I(f)n(am) = am−n and I(f)m(am) = ε. However, for n > m, I(f)n(am) is
undefined. Thus, am ∼G an if and only if m = n, and so there are infinitely many
equivalence classes.

Now, the grammar H = 〈Ω ′,J 〉 with F ′ := {e, h} where J (e)() := ε and
J (h)(�x) := �x�a has exactly one class of strings. It is checked that am ∼H an for
all m, n ∈ N. o

It is linguistic practice not to leave the categories implicit (in the form of domain
restrictions) but to make them part of the representation. If we so wish this can be
implemented as follows. Let C be a set. A c-string is a pair s = 〈�x, c〉where �x ∈ A∗
and c ∈ C . Given s, we put

ε(s) := �x, κ(s) := c. (2.43)

For a set S of c-strings write ε[S] := {ε(s) : s ∈ S}, κ[S] := {κ(s) : s ∈ S}.
A c-string language is a subset of A∗ × C . A c-string grammar is a pair 〈Ω, C〉
where Ω is a signature (with domain F) and C an interpretation function such that
for all f ∈ F C(f) : (A∗ × C)Ω(f) ↪→ (A∗ × C). We define ιG(t) for an Ω-term t
by

ιG(f s0 · · · sΩ(f)−1) := C(f)(ιG(s0), · · · , ιG(sΩ(f)−1)). (2.44)

30 2 String Languages

We write tε in place of ε(ιG(t)) and tκ in place of κ(ιG(t)). Thus we have

ιG(t) = 〈tε, tκ 〉. (2.45)

We also use the notation f ε for the function ε ◦ C(f) and f κ for κ ◦ C(f). A
more detailed discussion can be found in Chapter 3. The categories will be most
useful when the string operations of the grammar are independent. We shall deal
with grammars acting on several components in Chapter 3.

Example 2.14 The shift to categories is not as innocent as it first appears, for we
lose certain properties. Here is an example. The relation “is part of” is no longer
transitive. Let F := { f0, f1, g},Ω(f0) := Ω(f1) := 0 andΩ(g) := 1. C := {α, β}
and A := {a}.

I(f0)() := 〈a, α〉
I(f1)() := 〈aa, α〉

I(g)(〈�x, c〉) :=
{
〈�x�a, β〉 if c = α,

undefined else.

(2.46)

This grammar generates the language {〈a, α〉, 〈aa, β〉, 〈aa, α〉, 〈aaa, β〉}. It turns
out that /a/ is a part of /aa/, and /aa/ a part of /aaa/, but /a/ is not a part of /aaa/. o

As the example shows we can no longer simply say that a string occurs as a
substring; it occurs in a c-string as a c-string and so the category that it has in that
occurrence may also be fixed. For example, /I see John fly./ contains /fly/ as
a verb and not as a noun.

An important class of (c-string) grammars are the bottom up context free (c-)
grammars. These are not the same as ordinary CFGs. We shall recall the definition
of standard CFGs first and then turn to the bottom up version. Recall that a context
free grammar is standardly taken to be a quadruple G = 〈A, N , S, R〉, where A and
N are disjoint sets, S ∈ N and R a set of replacement rules. They have the form
X → �y, where X ∈ N and �y ∈ (A∪N)∗ is a sequence over A∪N . The rules define
a replacement relation in the following way.

Definition 2.12 Let ρ = �x → �y be a rule. We say that �u �y �w is 1-step derivable via
ρ from �u �x �v, in symbols �u �x �v ⇒ρ �u �y �v. For a set R of rules we write �u �x �v ⇒ρ

�u �y �v and say that �u �y �v is 1-step derivable from �u �x �v if there is a rule ρ ∈ R such
that �u �x �v ⇒ρ �u �y �v. Furthermore, we say that �w is n-step derivable in R from �v
and write �v ⇒n

R �w if either n = 0 and �w = �v or n > 0 and there is a �u such that �u
is n − 1-step derivable from �v and �w is 1-step derivable from �u.

Notice that �v ⇒1
R �w and �v ⇒R �w are synonymous, and that �v ⇒{ρ} �w and �v ⇒ρ �w

are also synonymous; R or ρ will be dropped when the context makes clear which
rules are being used. Notice furthermore that it may happen that a rule can be applied
to a given string in several ways. The rule A→ aa can be applied to the string /AcAb/
to yield either /aacAb/ or /Acaab/. Therefore, if we want to know what the result will

2.3 Grammars and String Categories 31

be after applying the rule we need to identify the occurrence of the left-hand side
that is being replaced. When can do this by underlining as follows: AcAb⇒ aacAb
and AcAb ⇒ Acaab. If the occurrence is underlined then the rule must be applied
to that occurrence. Hence we do not have AcAb ⇒ Acaab. Now, suppose we have
such a marked string; then the result is still not unique unless we know which rule
is being applied. This follows from the fact that several rules may replace a given
string. For example, if we also have the rule A → cd then from /AcAb/ we may
proceed to /cdcAb/ in addition to /aacAb/. However, if also the resulting string is
given, the rule that has been applied can be inferred. Thus, in order to show that a
given string �w is n-step derivable from a string �v we need to produce a sequence
〈�vi : i < n〉 of length n of marked strings such that �vi ⇒ �vi+1 for i < n − 1
and �vn−1 ⇒ �w. Such a sequence is called a derivation. Notice that the sequence
contains marked strings not just strings, though we shall often not show the marks.
The derived string is by definition not marked, though it is often added at the end of
the derivation sequence so that one can infer the choice of rules in each step.

Given a nonterminal A and a string �x we write A �G �x and say that G derives �x
from A if there is an n such that A ⇒n

R �x .

Definition 2.13 Let G = 〈S, N , A, R〉 be a CFG. The language of G in the narrow
sense is defined by

L(G) := {�x ∈ A∗ : S �G �x}. (2.47)

The language in the wide sense is defined by

Lw(G) := {�x ∈ A∗ : for some X ∈ N : X �G �x}. (2.48)

A language L in the narrow (wide) sense is context free if there is a context free
grammar G such that L = L(G) (L = Lw(G)).

Also, write [A]G := {�x : A �G �x}. Then L(G) = [S]G . This notion of gram-
mar is top down and nondeterministic. It generates the strings from a single string
(consisting in the single letter S).

Example 2.15 Let G be defined as follows.

G := 〈{a, · · · , z, �}, {<S>, <NP>, <VP>, <N>, <D>, <VI>, <VT>}, <S>, R〉 (2.49)

The alphabet consists in all lower case letters plus the space.

R = {<S>→ <NP><VP>
<NP>→ <D><N>
<D>→ the� | a�
<N>→ cat� | dog� | mouse�
<VP>→ <VI> | <VT><NP>
<VI>→ runs� | sleeps�
<VT>→ sees� | chases�}

(2.50)

32 2 String Languages

This grammar generates among others the following strings:

<S>
<NP><VP>
<D>dog�<VI>
a�dog�chases�the�cat�

(2.51)

Only the last of the four strings is meaningful. A derivation of the third string is as
follows.

〈<S>, <NP><VP>, <D><N><VP>, <D><N><VI><D>dog�<VI>〉 (2.52)

o
Let us now look at a bottom up version of CFGs. Obviously, to get such

a grammar we simply turn the rules around. Rather than assuming a rule, say,
ρ = A → BC , we define a string function fρ of arity 2 such that fρ is interpreted as
concatenation, which is to say I(fρ)(�x, �y) = �x��y. However, this function is only
defined if �x is a B-string, that is, if we can derive �x from B in the grammar and if �y
is a C-string. In this way we guarantee that �x��y is an A-string. In general, for each
rule ρ we assume a function symbol fρ and an interpretation I(fρ). A rule is of the
form A → �x for some �x ∈ (A ∪ N)∗.

This means that there is n and �xi ∈ A∗, i < n + 1, and Bi ∈ N , i < n, such that

ρ = A → �x0 B0�x1 B1 · · · Bn−1�xn (2.53)

Then Ω(fρ) := n and its interpretation is

I(fρ)(�y0, · · · , �yn−1) :=

⎧
⎪⎨

⎪⎩

�x0 �y0�x1 �y1 · · · �yn−1�xn if for all i < n:

�yi is a Bi -string,

undefined else.

(2.54)

We do this for all ρ that do not have the form A → B. It is an easy matter to trans-
form G into a grammar that has no such rules. But this transformation is actually
unnecessary. This defines the grammar G�.

Example 2.16 I transform the grammar from Example 2.15. Let us note that the
constituents generate only finitely many strings, so we can list them all.

[<D>]G = {/a�/, /the�/}
[<N>]G = {/cat�/, /dog�/, /mouse�/}
[<VI>]G = {/runs�/, /sleeps�/}
[<VT>]G = {/sees�/, /chases�/}
[<VP>]G = (runs� | sleeps�) | (sees� | chases�)(the� | a�)

(cat� | dog� | mouse�)

(2.55)

2.3 Grammars and String Categories 33

Before the transformation we need to consider the rule <VP> → <VI>. This is a
unary rule. We eliminate it and add instead the rule

<S>→ <NP><VI> (2.56)

Now we begin the transformation. The grammar G� is based on the set
{ f1, f2, · · · , f11} with Ω(fi) = 0 for i < 9 and Ω(fi) = 2 otherwise. We have

I(f0)() := a�
I(f1)() := the�
I(f2)() := cat�
I(f3)() := dog�
I(f4)() := mouse�
I(f5)() := runs�
I(f6)() := sleeps�
I(f7)() := sees�
I(f8)() := chases�

I(f9)(�x, �y) :=
{
�x��y if �x ∈ [<D>]G and �y ∈ [<N>]G ,

undefined otherwise.

I(f10)(�x, �y) :=
{
�x��y if �x ∈ [<VT>]G and �y ∈ [<NP>]G ,

undefined otherwise.

I(f11)(�x, �y) :=
{
�x��y if �x ∈ [<NP>]G and �y ∈ [<VI>]G ,

undefined otherwise.

(2.57)

The reader is asked to check that these modes correspond exactly to the rules of the
grammar (in its slight modification). The string /a�cat�sees�the�dog�/ is derived
by the term f11 f9 f0 f2 f10 f7 f9 f1 f3, as can be checked. o

G� is a grammar in the sense of Section 2.1. The grammar G� generates the
language of G in the wide sense, as the following theorem documents.

Proposition 2.3 Let G be a context free grammar. Then �x ∈ L(G�) if and only if
there is a nonterminal X such that X �G �x. In other words, L(G�) = Lw(G).

The proof is a relatively easy induction on the length of derivations. I shall relegate
this to the exercises.

Example 2.17 The elimination of unary rules is not as innocent as it first appears.
In natural languages there are plenty of examples of zero-derivation. One example
is the conversion of adjectives to nouns in Hungarian. Typically, adjectives do not
inflect. However, in the absence of a noun they can inflect just as nouns and hence
should be regarded as such. Thus, the form /fehéret/ (accusative of /fehér/) must
be translated as “a white one”. Critically, also the nominative form /fehér/ can be
so regarded and hence can be translated as either “white” or “a white one”. Given
a bottom up grammar these two are now confused. However, as long as we do not

34 2 String Languages

treat meaning in addition there is no harm in this. This theme will be picked up in
Section 3.4. o

Notice that there is no way to generate only the language L(G), which is, all
and only the S-strings for the start symbol S. When we do a top down generation
we can simply choose to start with the start symbol and all the strings we generate
are sentences. However, in the bottom up process we cannot restrict ourselves to
generating just the sentences. We must generate all intermediate strings. On the
other hand there is no need to generate strings with extraneous symbols. In the c-
string grammar we can make up for this defect as follows. For a CFG in the standard
sense let

Lc(G) := {〈�x, X〉 : X ∈ N , X �G �x}. (2.58)

So, Lc(G) contains strings together with their categorial information; it does not
however single out a particular category. We can derive L(G) from Lc(G) by pick-
ing all �x for which 〈�x, S〉 ∈ Lc(G). This is a different notion of language than
the generated language in the wide sense. In the latter we do not know what the
categories of the strings are; we just know that they have some category. On the other
hand, for a language in the wide sense there is no need to construct the categories
from the input data (as languages mostly do not always mark their expressions for
category). The arity of fρ equals the number of nonterminals on the right-hand side
of the rule.

The string based version presented above is not an exact equivalent of the gram-
mar G. In the exercises we shall show that these grammars may have quite different
derivations. To get a more exact correspondence we turn to c-strings. In the case at
hand we choose C := N . Thus c-strings are pairs 〈�x, X〉 where �x ∈ A∗ and X ∈ N .
The interpretation of the function symbol fρ is now the partial function

C(fρ)(〈�y0, c0〉, 〈�y1, c1〉, · · · ,〈�yn−1, cn−1〉) (2.59)

:= 〈�x0 �y0�x1 �y1 · · · �yn−1�xn, f κρ (c0, c1, · · · , cn−1)〉

where

f κρ (c0, · · · , cn−1) :=
{

A if for all i < n: ci = Bi ,

undefined else.
(2.60)

Then L(G) is a set of pairs 〈�x, c〉. We say that �x has category c in G if some G-term
unfolds to 〈�x, c〉. A given string can have several categories.

Example 2.18 We continue the language of equations (Example 2.6 on page 16).
The grammar G Q consists in the alphabet of terminals

:bt: := {0, 1, +, -, (,), =}. (2.61)

The alphabet of nonterminals is N := {E, B, T}, the start symbol /E/ and the set of
rules is as follows.

2.3 Grammars and String Categories 35

E→ T=T

T→ (T+T) | (T-T) | B
B→ B0 | B1 | 0 | 1

(2.62)

By default, a derivation starts with the letter /E/. Thus

C = 〈:bt:, N , E, R〉. (2.63)

Recall that “|” is an abbreviation. It allows to group together rules with the same
left-hand side. Figure 2.1 shows an example of a derivation in G Q . In each step we
replace a single occurrence of a nonterminal by a corresponding right-hand side of
(2.62). o

An X -derivation is a sequence of strings starting with the nonterminal X , where
each nonfirst member is obtained from the previous by replacing a nonterminal sym-
bol in the appropriate way. A derivation is an X -derivation with X the top symbol.
For our purposes, however, the best objects to deal with are not the derivations but
the analysis terms. The analysis term of a derivation is obtained as follows. Assign
to each rule ρ with n(ρ) nonterminals on the right a function symbol fρ of arity
n(ρ). This defines the signature. Start with the variable x0. A step in the derivation
consists in the replacement of an occurrence of a variable xi by a term of the form
fρ(xi0 , xi1 , · · · , xin(ρ)−1) where the xi j so that in the end no variable occurs twice.
This procedure is best explained with the derivation above.

Example 2.19 Continuing Example 2.18. We give the following names to the rules.

a E→ T=T

b T→ (T+T)

c T→ (T-T)

d T→ B

e B→ B0

f B→ B1

g B→ 0

h B→ 1

(2.64)

E
T=T
B=T
0=T
0=(T-T)
0=(T-B)
0=(T-0)
0=(B-0)
0=(B0-0)
0=(10-0)

Fig. 2.1 A derivation in G Q

36 2 String Languages

E x0

T=T fa x0 x1

B=T fa fd x0 x1

0=T fa fd fg x1

0=(T-T) fa fd fg fcx0 x1

0=(T-B) fa fd fg fcx0 fd x1

0=(T-0) fa fd fg fc x0 fd fg

0=(B-0) fa fd fg fc fd x0 fd fg

0=(B1-0) fa fd fg fc fd fe x0 fd fg

0=(10-0) fa fd fg fc fd fe fh fd fg

Fig. 2.2 Deriving the term

Thus the symbols are called fa , fb, fc (binary), fd , fe, f f (unary), fg and fh

(zeroary). The derivation is translated to a term as shown in Fig. 2.2. The variable
that is being replaced is surrounded by a box. The exact recipe is this: if the deriva-
tion replaces the nth nonterminal counting from the left, then it is the nth variable
from the left that is being replaced irrespective of its index. o

Now we shall supply the term symbols with interpretations that match the effect
of the rules. Call �x an X -string if X �G �x . Write L X (G) for the set of X -strings
of G. In our example LE(G Q) is the set of equations; these are strings of the form
/�x=�y/, where both �x and �y are T-strings. T-strings are terms; these are strings of the
form (a) �x , where �x consists in 0 and 1 only (a number expression, or a B-string),
(b) /(�x+�y)/ where �x and �y are T-strings, or (c) /(�x-�y)/ where �x and �y are T-strings.
Finally, the B-strings are exactly the strings from {0, 1}+.

For example, ρ = B → B1 is a rule of G Q , and so we have a symbol fρ with
Ω(fρ) = 1. The function takes a B-string �x and appends /1/. Hence:

ι(fρ)(�x) :=
{
�x�1 if �x is a B-string,

undefined else.
(2.65)

Similarly, if ρ′ = T → (T+T) we postulate a symbol fρ′ with Ω(fρ′) = 2 and
which acts as follows:

ι(fρ′)(�x, �y) :=
{
(��x�+��y�) if �x and �y are T-strings,

undefined else.
(2.66)

As we have briefly noted above, the properties “B-string”, “T-string” and so on can
actually be defined without making reference to the grammar.

We can use Example 2.19 to show that the transformation (−)� of CFGs pre-
serves the strings but not the set of terms if applied also to unary rules. The rule d
has the form T → B. It is converted into the string function I(fd)(�x) = �x , in other
words the identity function. This function is iterable, while the rule is not. Thus the
term fd fd fg would evaluate in G�

Q to /0/.

2.3 Grammars and String Categories 37

ι(fd fd fg) = I(fd)(I(fd)(I(fg)())) = I(fd)(I(fd)(0)) = I(fd)(0) = 0 (2.67)

However, there is no derivation with term fd fd fg . Try to start with the symbol T,
for example:

T x0

B fd x0

? fd fd x0

(2.68)

Similarly if we start with /B/. (If you want a derivation beginning with the start
symbol, take the term fa fd fd fg fd fh .) It might be deemed that all we have to do is
to exclude unary rules. That this is not so is shown in Exercise 2.18.

We can characterize in more exact terms the connection between the two kinds
of grammars. Here is a characterization of context free languages in terms of the
generating functions. It shows that if the functions are partial functions of a certain
kind and such that ranges of functions are subsets of domains (or disjoint) then the
generated language is context free (and conversely).

Definition 2.14 Let G = 〈Ω, I〉 be a grammar. G is called a concatenation gram-
mar if for all modes f , I(f) is the restriction of a polynomial function of the string
algebra to some arbitrary set of sequences of strings.

This definition says the following. In a concatenation grammar a mode f interpreted
as a partial function I(f) : (A∗)Ω(f) ↪→ A∗. While the domain is some arbitrary
set D ⊆ (A∗)Ω(f), there must exist a polynomial function p such that I(f) =
p � D. Notice namely that the string polynomials are total. These polynomials may
be arbitrarily restricted. However, as we shall see, in context free grammars there
are tight restrictions on these domains. Say a polynomial p(�x) is a linear string
polynomial if it is composed from the variables xi and constants such that each xi

occurs exactly once. If p is a polynomial, we denote the induced function by pA∗ .
f : (A∗)n → A∗ is a rectangularly restricted linear string polynomial if there
is a linear string polynomial p(x0, · · · , xn−1) such that f ⊆ pA∗(�x) and there are
subsets Pi ⊆ A∗, i < n, such that dom(f) = Xi<n Pi . Now recall that the grammar
G� uses precisely such functions. Thus we have

Proposition 2.4 If a language L ⊆ A∗ is context free then it has a grammar G in
which all function symbols are interpreted by rectangularly restricted linear string
polynomials.

For the converse, a little more is needed. Namely, let H be a grammar such that
all I(f) are rectangularly restricted linear polynomials. So for each f there are sets
Q f

i , i < Ω(f), such that the domain of I(f) is Xi<Ω(f)Q
f
i . Assume moreover that

for every g and i < Ω(g): either rng(I(f)) ⊆ Qg
i or rng(I(f))∩Qg

i = ∅. We call
this the connectivity property for H . For each domain Q we choose a nonterminal
NQ (notice that NQ = NP if P = Q as sets). Further, for a function symbol f such

that dom(I(f)) = Xi<Ω(f)Q
f
i and rng(I(f)) ⊆ Qg

i we create a rule

38 2 String Languages

ρ f : NQg
i
→ �x0 N

Q f
0
�x1 N

Q f
1
�x2 · · · �xΩ(f)−1 N

Q f
Ω(f)−1

�xΩ(f) (2.69)

where the �xi are chosen such that I(f) is the restriction of the polynomial

pA∗(y0, · · · , yΩ(f)−1) := �x0 y0�x1 y1�x2 · · · �xΩ(f)−1 yΩ(f)−1�xΩ(f). (2.70)

This grammar is such that �z is an NQ-string for some Q if and only if �z ∈ L(H).

Proposition 2.5 If H is a grammar such that all I(f) are rectangularly restricted
linear string polynomials and I has the connectivity property then L(H) is context
free.

Example 2.20 I give some examples to show that none of the conditions can be
dropped. First, the functions must be linear string polynomials. Take f (�x) := �x �x
on the alphabet {a}. This function is induced by the polynomial p(x0) := x0x0. It
is not linear as the variable x0 occurs twice on the right. As it happens the function
generates the language {a2n : n ∈ N, n > 0} from a. (Assuming we have a single
constant c in the signature with interpretation a.) One may be tempted to eliminate
the nonlinearity by using the following function instead.

f (�x, �y) :=
{
�x �y if |�x | = |�y|,
undefined otherwise.

(2.71)

This (binary) function is the restriction of the polynomial p(x0, x1) := x0x1 to
the set of all pairs of strings of equal length. Unfortunately, this function is not
rectangularly restricted. There are no sets H , K such that the domain of f is H ×K
and the set of strings generable from a with this function is again the set {a2n :
n ∈ N, n > 0}. Finally, consider the following two functions. The first is a modifi-
cation of f :

f (�x, �y) :=
{
�x �y if �x, �y ∈ a∗,

undefined otherwise.
(2.72)

The second is a unary function g defined by

g(�x) :=
{
�x b if |�x | = 2n for some n,

undefined otherwise.
(2.73)

Both functions are restrictions of linear polynomial functions to some rectangles.
Only the connectivity property is lacking. For Qg = {�x : |�x | = 2n for some
n ∈ N}, and we have both rng(I(g)) � Qg and rng(I(g))∩Qg �= ∅. The generated
language is

a+ ∪ {a2n
b : n ∈ N, n > 0}. (2.74)

2.3 Grammars and String Categories 39

This is not context free. Hence all the conditions are really necessary and indepen-
dent of each other. o

This gives rise to the following definition.

Definition 2.15 A string grammar is called (bottom up) context free if it is a con-
catenation grammar with rectangularly restricted linear string polynomials with the
connectivity property.

Notice that “context free” is applied not only to rule based grammars but also to
c-string grammars and string grammars alike. Whenever there is risk of confusion,
the context free grammars in the sense of this book are called “bottom up context
free”.

I close this section with some remarks concerning the use of categories as dis-
criminatory devices. Suppose two strings are such that in a language they have the
same category. Then we will want to say that they should also be of the same cat-
egory in the analysing grammar. Recall that in a context free language, the formal
concept of identity of category was substitutability in all 1-contexts, written �x ∼L �y.

Principle 1 (Identity of Indiscernibles) Let G be a context free c-grammar. If
�x ∼L �y and 〈�x, c〉 ∈ L(G) then also 〈�y, c〉 ∈ L(G).

We shall not spell out the generalisation to other kinds of grammars, though it is
straightforward to do.

Exercise 2.13 In Example 2.14 is was shown that the relation is a part of is not
transitive. Find an example to show that it is also not antisymmetric. (A relation R
is antisymmetric if from x R y and y R x follows x = y.)

Exercise 2.14 A grammar is left regular if the functions are zeroary or unary and the
unary functions all have the form f (�x) := �x�a for some a. Let L be a language.
Define �x/L := {�y : �x��y ∈ L}. Show that for a regular grammar G generating L:
�x ∼G �y if and only if �x/L = �y/L .

Exercise 2.15 Why does the bottom up grammar G� not contain any fρ for rules
of the form ρ = A → B?

Exercise 2.16 Let G be a context free grammar and A a nonterminal. Let HA :=
{�x : A �G �x}. Show that for every �x ∈ HA HA ⊆ [�x]G . Give an example to show
that equality need not hold!

Exercise 2.17 Prove Proposition 2.3.

Exercise 2.18 Context free grammars allow to tune derivations more finely than
grammars in the sense of Definition 2.4. Here is an example, due to Ben George.
Let G consist in the rules

S→L | R
L→La | a
R→aR | a

(2.75)

40 2 String Languages

Construct the corresponding grammar and show that it allows for more analysis
terms for the string /aaaa/ than does G.

2.4 Indeterminacy and Adjunction

In the previous section we have constructed a “bottom up” version G� of a context
free grammar G. (I should stress here, though, that only G�, not G, is a grammar in
the sense of this book.) In addition to the differences between the types of grammars
that I mentioned earlier there is a major difference between G and G�. It is that by
definition L(G�) is the set of all strings that are constituents for some nonterminals
as opposed to just the strings corresponding to the start symbol. Thus the standard
definition of L(G) for a CFG is contained in L(G�) but the two need not be identical
(cf. Proposition 2.3). The difference is exactly between language in the wide sense
and language in the narrow sense. Since I insist that the language of a grammar
must be taken in the wide sense we must ask if there is a kind of grammar that
generates the sentences all by themselves so that the two notions actually coincide
for this type of grammar. Such grammars do exist. The adjunction grammars are of
this kind. Unfortunately, these grammars turn out to be somewhat different from the
grammars previously defined in that the defining operations generally are relations.
Grammars of this form shall be called indeterminate grammars (the label relational
grammar has already been taken). I shall return to indeterminate grammars again in
Section 3.7 in connection with interpreted languages.

Definition 2.16 An indeterminate grammar over A is a pair 〈Ω, I〉, where Ω
is a signature and for every f ∈ F , I(f) ⊆ (A∗)Ω(f)+1. F is the set of modes
of the grammar. The set { f : Ω(f) = 0} is called the lexicon of G and the set
{ f : Ω(f) > 0} the set of rules. The language generated by G, in symbols L(G),
is defined to be the least set S satisfying for every f ∈ F and all �xi ∈ A∗, i < Ω(f):

If for all i < Ω(f) : �xi ∈ S and if 〈�x0, · · · , �xΩ(f)−1, �y〉 ∈ I(f) then �y ∈ S.
(2.76)

Thus, the output of a rule is not assumed to be unique. In a grammar of the usual sort
the output need not exist but if it exists, it is unique. In an indeterminate grammar
it need not even be unique. Adjunction grammars are such grammars. They are
popular since they generate more than context free languages and enjoy neverthe-
less quite a simple description. I point out that as soon as we move to interpreted
languages it will turn out that the indeterminacy will have to be eliminated; see also
the discussion in Section 3.7.

Definition 2.17 A 2-context is a triple γ = 〈�u, �v, �w〉. The result of inserting a pair
〈�x, �y〉 into γ is defined as follows.

γ (〈�x, �y〉) := �u �x �v �y �w (2.77)

2.4 Indeterminacy and Adjunction 41

A 2-locale is a set of 2-contexts. A string adjunction rule is a pair ρ = 〈〈�x, �y〉,Λ〉,
where Λ is a 2-locale.

According to the previous definition, the string relation associated with ρ is

Adj(ρ) := {〈�u �v �w, �u �x �v �y �w〉 : 〈�u, �v, �w〉 ∈ Λ}. (2.78)

Definition 2.18 A string adjunction grammar is a pair A = 〈S, R〉, where S is a
finite set of strings and R a finite set of string adjunction rules.

For a string adjunction grammar we define the following signature: let f�x be a sym-
bol of arity 0 for every �x ∈ S; and let gρ be a symbol of arity 1 for every ρ ∈ R.
This defines the signature. The interpretation is given by

I(f �x) := �x, I(gρ) := Adj(ρ). (2.79)

With this definition, the formal apparatus of the previous sections can be used with
minor adaptations.

We say that G generates �y in n-steps if the following holds: n = 0 and �y ∈ S
or n > 0 and there is a �z such that A generates �z in n − 1 steps and there is a
rule 〈〈�x0, �x1〉,
〉 and γ = 〈�u, �v, �w〉 ∈ A∗ such that �z possesses the decomposition
�z = γ (〈ε, ε〉) = �u �v �w and

�y = γ (〈�x0, �x1〉) = �u �x0�v�x1 �w (2.80)

L(G) denotes the set of strings that can be generated in a finite number of steps.
An alternative way to define this notion is to define the value of terms to be sets.
Namely, ιG(f s0 · · · sΩ(f)−1) would be the projection to the last component of the
following set:

⎛

⎝
∏

i<Ω(f)

ιG(si)

⎞

⎠× A∗ ∩ I(f) (2.81)

For a zeroary mode f �x we have

ιG(f �x) = (1 × A∗) ∩ {�x} = {�x}. (2.82)

The other cases are similar.

Example 2.21 We shall now give a presentation of the E-strings of the grammar from
Example 2.18 using a string adjunction grammar. We put

S := {0=0, 0=1, 1=0, 1=1} (2.83)

42 2 String Languages

The rules are as follows. Let Λ1 be the set of triples 〈�ux, �v, �w〉 such that x is
either /0/ or /1/ and �v �w does not begin with /0/ or /1/. (This is equivalent with
the following: (1) �v �= ε and �v does not begin with /0/ or /1/, or (2) �v = ε and �w
(!) does not begin with /0/ or /1/.) Let Λ2 be the set of triples of the form 〈�u, �v, �w〉,
where both �u does not end with /0/ or /1/, �w does not begin with /0/ or /1/, while
�v ∈ {0, 1}∗.

ρ0 :=〈〈0, ε〉,Λ1〉
ρ1 :=〈〈1, ε〉,Λ1〉
ρ2 :=〈〈ε, 0〉,Λ1〉
ρ3 :=〈〈ε, 1〉,Λ1〉
ρ4 :=〈〈(, +0)〉,Λ2〉
ρ5 :=〈〈(, +1)〉,Λ2〉
R :={ρ0, · · · , ρ5}

(2.84)

The signature is F := { f0, · · · , f3, g0, · · · , g5}, where the fi are zeroary and the
gi are unary. Further,

I(f0) := {0=0}
I(f1) := {0=1}
I(f2) := {1=0}
I(f3) := {1=1}

I(gi) := Adj(ρi)

(2.85)

Here is an example of a derivation:

f1 0=1
g5 f1 (0+1)=1
g2g5 f1 (0+10)=1
g5g2g5 f1 (0+(10+1))=1

(2.86)

The first line is in S. To get from the first line to the second we choose a decompo-
sition of /0=1/ as /ε�0�=1/. Thus, choose γ = 〈ε, 0, =1〉. This is in Λ2 since ε
does not end in /0/ or /1/, the middle string is a binary string and /=1/ does not begin
with /0/ or /1/. Thus we can apply the rule 〈〈(, +1)〉,Λ2〉.

γ (〈(, 1)〉) = ε�/(/�/0/�/+1)/�/=1/ = /(0+1)=1/ (2.87)

2.4 Indeterminacy and Adjunction 43

It may be checked that

ιG(g5g2g5 f1)

= {((00+1)+1)=1, (00+1)=(1+1), ((0+1)+10)=1, (0+1)=(10+1),
((0+1)+1)=10, (0+1)=(1+10), (00+(1+1))=1, 00=((1+1)+1),

(0+(10+1))=1, 0=((10+1)+1), (0+(1+1))=10, 0=((0+1)+10),

(00+1)=(1+1), 00=(1+(1+1)), (0+10)=(1+1), 0=(10+(1+1)),

(0+1)=(10+1), 0=(1+(10+1))}.

(2.88)

o
Example 2.22 (Cf. Example 2.7.) We give another example: Boolean logic in Polish
Notation. The alphabet is :bool: = {∧,∨,¬, p, 0, 1}. A term in Polish Notation is
either /p/ followed by an index (a sequence of /0/ and /1/) or it is a function symbol
f (¬, ∧ or ∨) followed by Ω(f) many terms. The formation rules using adjunction
grammars are as follows. The set of start strings is S := {p}. The rules are

R := {〈〈0, ε〉, 〈A∗ · p, ε, A∗〉〉,
〈〈1, ε〉, 〈A∗ · p, ε, A∗〉〉,
〈〈¬, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉,
〈〈∧p, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉,
〈〈∨p, ε〉, 〈A∗, (p|∧|∨|¬) · A∗, ε〉〉}.

(2.89)

Using Exercises 2.6 and 2.7 we can see that this preserves termhood: the sum of the
elements added in the string is 0, and the sum of the prefixes is positive. The original
Polish Notation had no room for indices but they pose no problem here. It is easy to
verify that any string in Polish Notation is derivable in this grammar. o

It is easy to generalize the previous example to Polish Notation in general (see the
Exercises). Furthermore, I describe in the exercises how one can derive an adjunc-
tion grammar for bracketed notation as well.

In the remainder of this section I shall describe two variants of adjunction gram-
mars that have been discussed in the literature.

Definition 2.19 A 2-localeΛ is factored if there are sets S ⊆ A∗× A∗ and C ⊆ A∗
such that Λ = {〈�u, �v, �w〉 : 〈�u, �w〉 ∈ S, �v ∈ C}. A rule is factored if its 2-locale
is. A contextual grammar is a string adjunction grammar in which every rule is
factored.

See Martín-Vide and Păun (1998) for an overview.
The most popular variant of adjunction grammars are however the tree adjunc-

tion grammars (TAGs). These grammars can be explained by a method of coding
trees into strings. We shall define certain strings that we call trees. Let N be a set,
the set of nonterminal labels. Then N -trees over the alphabet A are strings from
A ∪ N ∪ {(,), �}. (a) x ∈ A∗ is an N -tree; (b) if �ui , i < n, are N -trees and X ∈ N ,

44 2 String Languages

then /(X �u0�u1 · · · �un−1 X)/ and /�(X��u0�u1 · · · �un−1�X)�/ is an N -tree. The
adjunction rules have the following form. Let 〈�x0, �x1〉 be a pair of strings such that
�x0 = /�(X� · · · /, �x1 = / · · · �X)�/ and �x0�x1 is an N -tree. Such a pair shall be
called an N -adjunction tree. Given this tree, let

 := {〈�u, �v, �w〉 : �u �v �w is an N -tree, �v = (X · · · X)}. (2.90)

The pair 〈〈�x0, �x1〉,
〉 is called a tree adjunction rule. Notice that the category X
of the adjunction string must match the X in the locale. Also, the presence of �
blocks adjunction at a node. (The symbol � is not needed to code the tree structure;
its sole purpose was to restrict adjunction.) There are many variants of TAGs. We
have picked the most common form for comparison. The language generated by a
TAG G is however not the string language; rather it is the language of yields. This
is defined as follows.

h�(x) :=
{
ε if x ∈ N ∪ {(,), �},
x else.

h�(x0x1 · · · xn−1) := h�(x0)h
�(x1) · · · h�(xn−1)

(2.91)

Then LY (G) := h�[L(G)] is the language of the yields, which is by definition the
language generated by G.

Exercise 2.19 Verify that the grammars from Examples 2.21 and 2.22 are contextual
grammars.

Exercise 2.20 LetΩ be an arbitrary signature. Write an adjunction grammar for all
terms in Polish Notation in this signature.

Exercise 2.21 LetΩ be an arbitrary signature. Terms in this signature are now writ-
ten as follows. If f is binary and s and t are terms, then /(�s� f �t�)/ is a term.
If f is unary then / f �(�s�)/ is a term. If f is ternary and higher order, then
/ f �(�s�

0 ,�,� · · ·� ,�sΩ(f)−1)/ is a term. Use the previous exercise to derive
an adjunction grammar for this language.

2.5 Syntactic Structure

Contemporary linguistics insists that what matters is not the string that we see but
rather its structure. Structure usually means tree structure. It has been stressed by
Chomsky that rules operate on constituents and not on strings. Moreover, Transfor-
mational Grammar uses representations that contain the structure in them. Formally,
however, it is not clear whether the structure needs to be represented. In this section
I shall discuss a popular way of encoding structure into the string. Moreover, we
shall investigate to what extent a context free language determines the grammar
from which it is generated.

2.5 Syntactic Structure 45

Let us take a look at CFGs and tree structures. Given a string �x and a grammar
G that generates it, G assigns a structure to �x through a term in the following way.
Assume a term t for the string �x . Then t = fρ(s0, · · · , sn−1), where n = Ω(fρ).

ρ = A → �x0 B0�x1 B1 · · · Bn−1�xn (2.92)

If n = 0 then ρ = A → �x0 and we just let the tree consist in two nodes, one with
label �x0, and a preterminal with label A. In general, we create a daughter for each
Bi and attach the tree for si there and a daughter for every nonempty �xi whose label
will be �xi (we avoid positing empty words).

We can code the derivation with a string. This is done by switching to a grammar
that distributes brackets, called Gb. This grammar is defined as follows. We intro-
duce for each nonterminal symbol X a pair of brackets (X and)X . Let ρ = X → �Y
be a rule. Then

ρb := X → (X �Y)X (2.93)

Gb contains in place of the rules R the set

Rb := {ρb : ρ ∈ R}. (2.94)

Let �x be a string. Each term t of �x can be mapped to a term tb, which is defined
by replacing every occurrence of fρ by an occurrence of fρb , for every ρ. Thus
mapping t into a term tb of the bracketed grammar we find the string �xt , which
contains a record of t . �x is obtained from �xt by deleting the brackets and the category
symbols. More exactly, define a map d as follows.

d(a) :=
{
ε if for some X : a = (X or a =)X ,

a else.

d(x0x1 · · · xn−1) := d(x0)d(x1) · · · d(xn−1)

(2.95)

Notice that the mapping d is many to one, since a given string can have many
derivations. Notice also that there may be derivations that lead to the same brack-
eted string. Thus the structure is intermediate between the string and the derivation,
adding detail to the string but not enough to recover the entire derivation.

Example 2.23 Let G = 〈:blet:, {E, A, B}, E, R〉 where R contains the following
rules:

E→ AB | BA | EE
A→ AE | EA | a
B→ BE | EB | b

(2.96)

46 2 String Languages

Now Gb = 〈:blet: ∪ {(E,)E, (A,)A, (B,)B}, {E, A, B}, E, Rb〉, with Rb consist-
ing in

E→ (EAB)E | (EBA)E | (EEE)E
A→ (AAE)A | (AEA)A | (Aa)A
B→ (BBE)B | (BEB)B | (Bb)B

(2.97)

The string /abab/ can be derived in G in several ways. One is given by the sequence
/E/, /EE/, /ABE/, /ABAB/ and so on; another is given by the sequence /E/, /AB/, /AEB/,
/ABAB/ and so on. These derivations give rise to the following bracketed strings:

(E(E(Aa)A(Bb)B)E(E(Aa)A(Bb)B)E)E

(E(Aa)A(B(E(Bb)B(Aa)A)E(Bb)B)B)E
(2.98)

Erasing the brackets returns the original string. The derivation /E/, /EE/, /EAB/,
/ABAB/ on the other hand yields the first string again. o

Proposition 2.6 Gb is unambiguous.

The proof is straightforward. It rests on the usual bracket count of embeddings.
Notice however that the structure of �x is a derived notion and the bracketed string

just a theoretical construct. The structure is actually an epiphenomenon. It may be
used in theoretical discourse but is in principle eliminable. This will have to be
reassessed when we turn to interpreted grammars. We discuss the definitions and
results first in the context of CFGs. We shall now discuss the notion of constituent
occurrence without adding brackets. Recall the definition of an occurrence from
Definition 2.9. Given a grammar G and a term t we can assign constituent occur-
rences of substrings in a straightforward way. Choose a subterm occurrence s and
decompose t into t = t ′(s). This means that t ′(x0) is a term with one free variable
and it defines a function ιG(t ′(x0)) : �x
→ �u �x �v. This means that 〈�u, �v〉 is a 1-context
and the substring that occurs in t is ιG(s). For a constant term t , occ(�y, t) is the set
of occurrences of �y in ιG(t).

This definition basically repeats what is intuitively known. Moreover, from the
derivation we can uniquely assign a category to the string occurrence. The following
formalizes the known substitution principle.

Definition 2.20 Let G be a CFG, t an A-analysis of the string �x and C an occurrence
of �y in �x . If C ∈ occ(�y, t) then C is said to be a constituent occurrence of �y in �x
under the analysis t . If C �∈ occ(�y, t), the occurrence is said to be an accidental
B-occurrence under t if �y ∈ L B(G). G is transparent if no constituent has an
accidental occurrence in a string of L(G). A language is transparent if it has a
transparent grammar.

Notice that we look at occurrences under a given analysis term t . A given string �x
can in principle have several analyses. Suppose that a context free language L is
transparent. Then given a string �x ∈ L we know that every substring occurrence
of �x that is in L also is a constituent occurrence under every analysis. Thus any

2.5 Syntactic Structure 47

context free grammar will assign the same constituent tree to �x . This is very useful
for languages of analysis terms, because we need to know that they are structurally
unique. This is the case for TmΩ(V), as the next theorem asserts.

Proposition 2.7 The language TmΩ(V) is transparent.

Proof (For notation and facts see Exercises 2.6 and 2.7.) Let s and t be terms and
C = 〈�u, �v〉 an occurrence of s in t . We shall show that s is actually a subterm
occurrence of t by induction on t . For either (a) �u = ε or (b) �u �= ε. If (a) is the
case then �v = ε, that is, s = t , or else s is a proper prefix. This cannot be, since this
would imply γ (s) ≥ 0. Now in case (b) there is an i such that the named occurrence
begins in ti . (Case 1) The occurrence is contained in ti , that is, ti = �xs �y for some
�x and �y. Then we are done by inductive hypothesis. (Case 2) s overlaps with ti .
Then we have �x , �y and �z all nonzero such that ti = �x �y and s = �y �z. Now note that
since −1 = γ (ti) = γ (�x) + γ (�y) and γ (�x) ≥ 0 (since ti is a term) we must have
γ (�y) < 0. But then s is not a term since γ (�y) ≥ 0 if �y is a proper prefix. So this
case does not arise and we are done. ��

Every constituent occurrence in �x under t corresponds to a subterm occurrence
in t . We use this for the following definition. A term is simple if it has no nontrivial
subterms.

Definition 2.21 Let G be a CFG, t an A-analysis of the string �x and C an occurrence
of a letter b in �x . C is syncategorematic if the term to which b belongs is not simple.
A substring occurrence is syncategorematic if every letter is syncategorematic and
belongs to the same subterm. G is in standard form if no string has syncategore-
matic occurrences.

This definition can easily be generalized. For a CFG, being in standard form means
that the right-hand side of a rule cannot contain both a nonterminal and a terminal
letter. For example, the standard formulation of regular grammars is that they have
rules of the form A → x B or A → x . Such grammars are not standard. It is easy to
convert a CFG into standard form. However, notice that this changes the language
of the grammar, since for us the language contains all constituents.

Example 2.24 We continue Example 2.23 above. The first derivation given by the
sequence /E/, /EE/, /ABE/, /ABAB/, /aBAB/, /abAB/, /abaB/, /abab/. In the string we
have the constituent occurrences 〈ε, ε〉, 〈ε, ab〉, 〈ab, ε〉 of category E; the occur-
rences 〈ε, bab〉 and 〈ab, b〉 of category A; and the occurrences 〈a, ab〉 and 〈aba, ε〉
of category B. The string /ab/ has an accidental occurrence 〈a, b〉. The string /aa/
has no accidental occurrence although it is a substring of /aabb/. o
Proposition 2.8 Let G be a CFG, �x ∈ L(G) and t an analysis term. Fix a con-
stituent occurrence of �y in �x under t . If �y occurs as A in the context C, and �z is any
string of category A of G, then C(�z) ∈ L(G).

Suppose now that we wish to give a syntactic analysis of a string language L . We
assume that the analysis is given in terms of a CFG. If this is so, we know that
the set of strings of L fall into finitely many classes, say, Si for i < n and that if
�x, �y ∈ Si then each constituent occurrence of �x can be substituted by �y and each

48 2 String Languages

constituent occurrence of �y can be substituted by �x . This superficially looks like a
way to discover the grammar behind a given language.

The problem with this idea is that we do not know whether a given occurrence is
a constituent occurrence. However there is one exception: a single letter wherever
it occurs can only occur as a constituent on condition that the grammar contains no
syncategorematic occurrences of symbols. It is easy to massage any CFG into such
a form without losing anything.

Example 2.25 The language of equations. In the form presented in Example 2.18 on
page 34. This grammar introduces /=/, the operation symbols and the brackets in a
syncategorematic way. It can be reformulated as follows. The original rule set is

E→ T=T

T→ (T+T) | (T-T) | B
B→ B0 | B1 | 0 | 1

(2.99)

Now introduce a nonterminal for each symbol. For example, introduce /O/, /C/, /Q/
together with the unary rules

O→ (

C→)

P→ +

M→ -

Q→ =

(2.100)

Next replace the occurrence of the syncategorematic symbols above by the corre-
sponding nonterminal:

E→ TQT

T→ OTPTC | OTMTC | B
B→ B0 | B1 | 0 | 1

(2.101)

It is possible to simplify this grammar; we group /P/ and /M/ into just one symbol,
say, /H/. Then we have the following rule set:

O→ (

C→)

H→ + | -
Q→ =

E→ TQT

T→ OTHTC | B
B→ B0 | B1 | 0 | 1

(2.102)

o

2.5 Syntactic Structure 49

Notice that the grammars (2.100) and (2.102) are not only different grammars;
they in fact generate different languages. For example, the string /(/ is in the lan-
guage of (2.102) but not in (2.100). This is a consequence of the fact that we defined
L(G) to contain all constituents of G, not just the sentences.

Let us now turn to the idea of recovering the grammar from the set of strings. We
start with the assumption that our language is generated by a context free grammar.
This means that constituents are strings, and that a string is a part of another string
only if it is a subword. The standard substitution method starts with the language L
and establishes for every �x ∈ L the set of contexts:

cntL(�x) := {〈�u, �v〉 : �u �x �v ∈ L}. (2.103)

The syntactic classes are the context sets so obtained. We present an example first.

Example 2.26 (Continuing Example 2.11.) The language M is generated by u,
defined by

t := Alex� | Pete� | Mary�
u := t (and�t)∗(sing� | run� | sings� | runs�) (2.104)

We consider words as units together with a following blank. (This makes the calcu-
lations easier.) The context sets are as follows. Here is a more succinct definition of
the language:

a := and�

v := sings� | runs�
w := sing� | run�
u = tv | t (at)+w

(2.105)

It turns out that the syntactic classes are the following: cntM (v), cntM (tv), cntM (w),
cntM (a), cntM (t), cntM (ta), cntM (at), cntM (tat), cntM (atat), cntM (atw),
cntM (tatw). These are more classes and more constituents than were present
in the original grammar even if we massaged the syncategorematic occurrences
away. o

The exercises give one more example. The problem with the substitution method
is that there is no way of telling whether an occurrence is accidental or not. Con-
sequently, the method will return context sets that are the sets of nonconstituent
occurrences. In fact, we may end up with infinitely many context sets (see the exer-
cises). And this is not because of the finiteness of the data: even if we had all data
in our hands, the grammar is still underdetermined. Thus, there is some art involved
in establishing the subset of constituent occurrences. This set can be different from
the one for the original grammar. However, in the absence of decisive evidence this
is the best one can do.

50 2 String Languages

Under certain circumstances we can know in advance that the set of nonterminals
is going to be finite. A particular case is provided by primitive languages.

Definition 2.22 A language is called primitive if every substitution class contains
a string of length 1, that is, consisting in a single letter.

Evidently, since the alphabet is finite, there are finitely many substitution classes.
This does not guarantee the uniqueness of the solution (see the Exercises) but it
narrows the choice considerably.

The language defined in Example 2.25 is not primitive. This is because the set of
E-strings (which form a substitution class!) consists in strings of length of at least 3:
an equation sign, and two terms on either side. Terms may not be empty, they have
a length of at least 1.

Primitive languages can easily be turned into CFGs. Just observe that for each
letter a there is a substitution class [a]L . Let Na be the nonterminal representing this
class (if [a]G = [b]G then also Na = Nb). The rules are of the form

Na → a a ∈ A
Na → Nc0 Nc1 · · · Ncn c0c1 · · · cn ∈ [a]L (2.106)

This set is typically infinite but a finite subset is enough to generate L , by assumption
on L .

We shall finally turn to the abstract case.

Definition 2.23 Let u and v be constant Ω-terms and G a grammar. We say that u
and v are categorially equivalent, in symbols u ∼G v, if for all terms s(x): s(u)
is orthographically definite if and only if s(v) is. They are intersubstitutable, in
symbols u ≈ Gv, if and only if they are categorially equivalent and ι(s(u)) ∈ L(G)
if and only if ι(s(v)) ∈ L(G).

This definition does not talk about strings; it talks about terms. This is because the
term may be very complex while the string is very simple. Moreover, in absence
of any condition on the form of the rules it is not possible to assign any sensible
structure to the string.

Example 2.27 Here is a context sensitive grammar, consisting in the following rules.

S→ ATB

T→ x | xT
Ax→ xA

AB→ y

(2.107)

In a derivation, first /A/ is generated to the left of the string. However, when the last
rule applies, /A/ has to be to the right. The system of constituents formed by this
grammar is quite confusing. It puts the occurrence of /y/ into a constituent with all
occurrences of /x/ (for each occurrence of /x/ there is a separate constituent, though).

o

2.6 The Principle of Preservation 51

Notice also that adjunction grammars in the general form may fail to allow for
an unequivocal assignment of structure. This is why tree adjunction grammars work
differently from string adjunction grammars. In TAGs the constituent structure is by
definition preserved while in string adjunction grammars it need not be.

Exercise 2.22 Show that the substitution classes of a context free grammar (con-
strued as a grammar in the sense of this book in the straightforward way) are of the
following form. Let N be the set of nonterminals, and P ⊆ N . Then a string �x is
said to be of class P if for all Y ∈ N : Y ⇒∗ �x if and only if Y ∈ P .

Exercise 2.23 Apply the method of context sets to grammar C1 of Example 2.9.
Show that the grammar that this gives is C2 (also from Example 2.9)! Show that the
language generated by either grammar is primitive.

Exercise 2.24 Let G consist in the rules S→ ab | aSb. Establish the context sets of
all substrings and show that there are infinitely many of them. Show that infinitely
many context free grammars can be postulated on the basis of these sets.

Exercise 2.25 Let G be a context free grammar. Try to establish an inductive defi-
nition of occ(�y, t). Hint. This definition will have to be inductive in the length of �y
and t .

2.6 The Principle of Preservation

We have seen that the effect of substitution is unpredictable unless restrictions are
placed on the nature of the string functions. We propose here two principles that
simplify the situation. In the most ideal case, functions are only able to change a
string by appending material to its left or right. If we required this we get something
slightly more general than context free grammars. To get some more freedom we
propose that grammars do not operate on the set A∗ but on some slightly more
general set of exponents, which we equate with (A∗)m for some m, or perhaps⋃

m∈N
(A∗)m , as proposed in Kracht (2003).

Principle 2 (Structure) Exponents are sequences of strings.

This is a heavy restriction but it still allows substantial freedom, more than is imme-
diately apparent. First of all, we have not said anything at all about the alphabet from
which the strings are formed. In conjunction with the Principle of Structure Preser-
vation this will simply be equivalent to saying that letters are alphabetic letters; but
I think matters are not that easy. The problems of this viewpoint will be discussed
below. Let us for the moment remain with the idea that the alphabet is simply the
standard typographical alphabet. Then exponents are strings of that alphabet—or, as
I proposed above, sequences thereof. This latter qualification is important. Consider
the following principle.

52 2 String Languages

Principle 3 (Structure Preservation) A rule may not break any string of the expo-
nent or delete any parts of it.

This can be formalized as follows. The interpretation of a function symbol f is
a function from Ω(f) many m-tuples to a single m-tuple of strings. So, I(f) =
〈t0, t1, · · · , tΩ(f)−1〉, where the ti are terms in m < Ω(f) variables that are poly-
nomial functions in the string algebra

〈A∗, ε,�〉 (2.108)

over the signature Ω� := {〈ε, 0〉, 〈�, 2〉}. This means further that ti may use vari-
ables, constants for letters of A and for the empty string and concatenation.

What these principles rule out is deletion of any kind; they also rule out break-
ing a constituent. However, what they do allow is discontinuity. A constituent may
consist in a bounded number of parts. Typically, we find that constituents consist in
just 1 or 2 strings. Examples of the latter kind are the verbs of German (after verb-
second has applied), the crossed dependencies in Dutch infinitives and split-DPs.
Occasionally we find languages that seem to have arbitrarily fragmented DPs, like
Warlpiri or Jiwarli. However, even in the case of these languages it is not entirely
clear that the approach does not work; for these languages do not break embedded
clauses either. This needs further work.

We have so far only spoken about breaking or deleting strings. The next principle
talks about rules in the sense of nonconstant functions (see Definition 2.3).

Principle 4 (Syncategorematicity Prohibition) A rule may not add any occur-
rence of a given symbol.

Again, this can be formalized by saying that the interpretation of functions uses
only definable term functions in Ω�, not polynomials. This allows for complete
reduplication (as in Malay) and it also allows for partial reduplication (modulo a
regular relation), as long as the parts can be represented as strings. The way it does
so is by stipulating that a given string may be repeated. This in fact does not mean
that a fixed symbol is introduced since the nature of the string to be reduplicated is
unknown. An alternative to reduplication is the following. We allow to concatenate
two strings �x and �y on the condition that they are identical. Thus, the formation of
the plural in Malay can be expressed in two ways: by a reduplication rule, using a
function

r(x) = x�x (2.109)

or by partial concatenation, using the function

c(x, y) =
{

x�y if x = y,

undefined else.
(2.110)

2.6 The Principle of Preservation 53

The advantage of the latter is that every occurrence of a letter can be uniquely traced
back to a leaf. The disadvantage is that it creates too many substitution classes.1

Apart from this it is hard to distinguish this approach from the one based on duplica-
tion, the more so since the rule is completely general and the categories will anyway
turn out to be eliminable from the formulation of a grammar.

Another hard case to treat is the so-called tmesis. This is the coordination of
parts that are not words by themselves. For example, in German we have the words
/Urfeind/ and /Erzfeind/, both formed from /Feind/ “enemy” and a prefix /Ur/
“since very long ago” and /Erz/ “arch-”. What is striking is that while neither prefix
can be on its own, it is possible to say

Ur- und Erzfeind (2.111)

Similarly, verbal prefixes can be separated

auf- und abladen “load and unload” (2.112)

Tmesis can be applied at the juncture of compounds and with certain prefixes. It is
in particular not free to apply to any morphological part of the word. A proper for-
mulation of tmesis under the conditions just sketched is not impossible but requires
great care.

What the principle does not allow is the addition of any concretely specified sym-
bol. For example, it may not say: “add an /s/ at the end”. This must be represented
alternatively as a binary rule concatenating the string to �x . Again, requiring this we
do not so much restrict what can be done but rather how it can be done. Yet, there is
a problem with this requirement and it runs as follows. We practically assume that
bound forms are also part of the language; that is, the plural /s/ of English, even
though it cannot occur on its own, is part of the English language. However, this
might just be an artefact of the requirement that only words are free forms; and we
may say that the language consists in more that just the free forms. The semantics of
the plural on the other hand is unproblematic or at least not more problematic than
that of any other item.

Now we turn to the question of the alphabet and the nature of the underlying
strings. Here, as so often, no unique solution can be given. Two extremes exist: on
the one hand we have alphabetic systems that are more or less sound based (with
complications of their own). On the other we have ideographic systems like Chi-
nese, which make a single letter correspond (again more or less) to a morpheme.
Chinese presents a good example of the predicament we are facing: if we base our
analysis on the sounds then there are about 100 letters (vowels in four tones plus

1 If we look at this rule in combination with semantics (anticipating the next chapter) we find
that the reduplication approach will form the plural in the semantics by performing the step from
properties of individuals to properties of sets of individuals. The partial concatenation approach
however makes the plurals appear more like dvandva-compounds. The idea is that in the Malay
plural noun /anak-anak/ “children”, we get the plural meaning from extrapolating a dvandva
from “child” and “child” rather than (the more natural) dvandva formed from different parts.

54 2 String Languages

consonants), or maybe somewhat more, given that pauses and intonation contours
must be taken on board as well. If, however, we base our analysis on the alphabet
of characters then we have an alphabet of up to 50,000 “letters”. (The Chinese
Standard Interchange Code, the most comprehensive of the lists, has close to 50,000
characters.) The question that naturally arises is this: which of the two should we
choose? In principle, it seems, we should be able to do both but writing systems can
be so artificial that it seems we ought to exclude some of them from the analysis.2

But even if we do, the sound based approach presents difficulties of its own. One is
that the notion of part is somewhat obscure. For example, we say that a string �x is
part of a string �y if it is a subword. Thus, we may for example say that /eel/ is part
of /reel/, or /ice/ is part of /rice/. If we apply our substitution tests, however, we
get quite a bizarre picture of the language. Thus, we would like to apply substitution
only to constituents, or, as we have said above, study those strings (or sequences)
that can be substituted for a single letter. If letter can be equated with morph, or
morpheme, we would get a far more interesting grammar from our substitution tests
than if we insisted on sounds (or alphabetic characters). The disadvantage of the
method is that it presupposes what it ought to reveal: the primitive parts. However,
as we shall see in the next chapter, the notion of a morph(eme) makes perfect sense,
because once we add the meaning the alphabetic characters are in fact not the most
basic elements but the morph(eme)s.

In stratificational linguistics we actually pursue both analyses at once. There
are various strata at which we have structure. Such frameworks have been pur-
sued among others by Lamb (1966) and Mel’čuk (1993–2000). In our view the
various levels are mostly epiphenomenal and can be reconstructed on the basis of
the language (as a set) itself. I shall briefly discuss the reconstruction of levels in
Section 3.7.

Even if all this is granted, we still face a number of problems. Suppose, for
example, that our language is based on morphemes, which are the letters of our
alphabet. Then, by our principles above, these letters must surface in our strings
(or sequences of sounds). It follows that morphemes are sequences of characters
of the alphabet. If that is so, we must address exceptions to strict concatenation. I
mention here as representatives: final devoicing (as found in Russian and German,
for example), vowel harmony (as found, say, in Finnish, Hungarian and Turkish),
consonant lenition in Welsh, or consonant gradation in Sami (Svenonius, 2007). Let
us discuss the first case. Final devoicing is a process that turns any consonant in the
coda of a syllable into a voiceless consonant. For example, there are two nouns in
German, /Rad/ [Ka:t] “bicycle” and /Rat/ [Ka:t] “council”. They sound exactly the
same. On the other hand, their respective genitives, /Rades/ [Ka:d@s] and /Rates/
[Ka:t@s], do not. The reason is that the rules of segmentation put the stop into the
onset of the next syllable, where it does not undergo devoicing. If we base ourselves

2 There was once a way to write in Japan that used only Chinese characters and even Chinese word
order. The characters were augmented with numbers so that one knew in which way to read the
characters. Now, not only do the characters come out differently (the character for mountain is
read “yama” in Japanese and “shān” in Chinese), but they are also arranged according to Chinese
syntax.

2.6 The Principle of Preservation 55

on the written forms, no problem. The sounds however do pose a problem. What
can be the solution?

One solution ultimately rests on the distinction between complete and incom-
plete forms. Suppose that the base form comes without word end markers. So they
would be [Ka:d] and [Ka:t], respectively. Now, when we attempt to pronounce such
a word, we must speak it in isolation, so we add a word boundary marker to its left
and right: [#Ka:d#] and [#Ka:t#]. After that, there is a process that will produce the
required form. This solution does explain the different outcomes but it falls short of
complying with the Principle of Preservation. This applies to all other phenomena
listed above, which is why we have mentioned them. We shall therefore relax this
principle a little bit. We shall assume that it is not the actual surface forms that must
be preserved but a more abstract form.

If we left matters at that we would basically remove all restrictions. We need to
restrict the abstraction. This is done as follows. We operate now with two levels:
SP (the surface phonological level) and DP (the deep phonological level). Each of
the levels uses the same alphabet (tentatively). The principles apply only to DP.
The actual strings of SP are obtained by applying a finite state transducer. In other
terms, the relation between DP and SP is a regular relation (see Kracht (2003) for
definitions and discussion). To account for German devoicing, we assume that at DP
no devoicing applies. The relation to SP, however, is such that every consonant that
happens to be syllable final is devoiced. This can be achieved using a finite state
transducer.

Let us briefly touch on the question of c-languages. If one wishes to include
categories into the language then the Principle of Preservation loses some of its bite.
It would namely be possible to introduce material into the category part where it
is invisible to the principles formulated above. I assume therefore that when cate-
gories are added they cannot introduce a finer distinction than already present in the
functions.

Principle 5 (Categorial Granularity) For a c-grammar G and the associated
string grammar H, if 〈�x, c〉 ∈ L(G) and �y ∼H �x then also 〈�y, c〉 ∈ L(G).

Thus, the set of categories cannot differentiate the exponents in a finer way than the
string functions. The way this is phrased makes the principle somewhat circular. But
you need to recall that the string categories are derived from the string functions and
ultimately from the language itself. Thus, bringing in an extra set C of categories
really is to serve the purpose of explicitly coding the categorial facts rather than
bringing back a lost dimension. However, I should note that adding categories even
with the Granularity Principle brings in extra power.

Exercise 2.26 German nouns are written with an initial upper case letter. However,
in compounds only the first letter is in upper case. For example, /Auto/ “car” and
/Bahn/ “way” result in the compound /Autobahn/ “highway”. (Observe similarly
/Erzfeind/ in the example above.) Propose a solution to this. Hint. There are (at
least) two solutions. One uses the regular relations, the other proposes several forms
for the same word.

Chapter 3
Compositionality

THE principle of compositionality is introduced in this chapter: it concerns the relation-
ship of strings with their meanings. To be able to formulate it properly, we shall have to
introduce interpreted languages and grammars for them.

3.1 Compositionality

Let us begin with some exegetical remarks concerning the notion of compositional-
ity. Here is what I regard as a standard definition.

The meaning of a complex expression is a function of the meanings of its parts and the
mode of composition by which it has been obtained from these parts.

Almost every word of this definition is in need of explanation. We begin with the
subject of the sentence: the meaning of a complex expression. To use this expression
here means to acknowledge that there first of all are expressions and meanings; and
that expressions have meanings. Immediately we start to ask ourselves what expres-
sions are and what meanings are. Since meanings are attributed to expressions, I
take this to say that whatever expressions are, they must be part of the language to
begin with. Thus, strictly speaking, expressions must be strings. However, we have
settled the question somewhat differently in Section 2.6; there we concluded that
expressions are sequences of strings. Moreover, they must be sequences of strings
of which we know what their meaning is. This is implicit in the use of the definite
determiner in “the meaning of an expression”. The use of the definite determiner
is somewhat troublesome: it may mean that an expression has one and only one
meaning; it may also mean that its meaning is not arbitrary. If taken in the first
sense expressions are unambiguous. I take this to be incorrect and not the way in
which “the” is to be understood here (see also the discussion in Section 3.5). Rather,
I wish to plead that we interpret this as follows: given that we are under way to
investigate some given meaning of an expression, which is one of the many that it
may have but we have fixed that one as opposed to others, we have a recipe to get
this meaning from whatever the components mean. Thus, the definite determiner
points to an implicitly made choice. I defer a definition of what meanings are. So
far we know this much: there are expressions (sequences of strings) and meanings;

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1_3,
C© Springer Science+Business Media B.V. 2011

57

58 3 Compositionality

a language consists in a relation between the two. This is the original idea laid out
in Saussure (2011).

One word still remains to be discussed: complex. To say whether an expression
is simple or complex cannot be determined intrinsically; in fact, “complex” here
means the following. We are given a grammar G of the expressions. An expression
is G-simple if it is the value in G of a simple term; and an expression is G-complex
if it is the value in G of a complex term. Often, we omit mentioning the grammar. It
turns out that one and the same expression can both be simple and complex; this is
the case with idioms, for example. But it is also the case with false idioms such as
/caterpillar/. This expression is both simple and complex, at least if we assume
a grammar of English where compounding is performed by concatenation. Notice
that so far the grammar is just a context free grammar for tuples of strings and
knows nothing about the meaning. To make sense of the above definition, however,
we must assume that the grammar also handles meanings together with expressions.
We wish to say, for example, that idioms are simple. For although as expressions
they are complex, their meaning is not derived from the meanings that any proper
parts have.

We are thus led to assume that the definition of compositionality talks about lan-
guages as relations between expressions and meanings and grammars that generate
such relations from a given finite set. It is this type of language and grammar that
we shall look at in detail in this chapter. We call them interpreted languages and
interpreted grammars. To finish explicating the definition, let us assume that we
have such a grammar that generates not just expressions but pairs of expressions and
meanings. Such pairs we call from now on signs. A sign is thus a pair σ = 〈e,m〉,
where e is the exponent of σ and m the meaning. While it cannot be said that in a
given language a given expression has just one meaning and a given meaning has
just one expression, it is true by definition that a given sign has exactly one exponent
and one meaning. It is thus more appropriate to exchange “expression” in the above
definition by “sign”. It therefore reads as follows.

The meaning of a complex sign is a function of the meanings of its parts and the syntactic
rule by which it has been composed from these signs.

Let us try to understand this definition further. A grammar generates signs; it starts
with a lexicon, which we may take to be a finite list of signs. In addition it has
some functions to generate signs from signs, in the same way as a string grammar
generates strings from strings.

A sign σ is simple if and only if it is the value of a simple term; it is complex
if and only if it is the value of a composite term. A given sign can be both simple
and complex. The previous problems have now disappeared. An idiom for example
is a sign that is simple but not complex, because its meaning is not obtainable in
the grammar in a regular way. (To be more exact, idioms are signs whose exponent
has another meaning together with which it forms a complex sign. The definition of
idiom is a truly delicate affair.) So, the definition begins by assuming that we have a
grammar G and a sign σ . Furthermore, we assume that there is a term function p(�x)
and signs σ , σ0, · · · , σn−1 such that

3.1 Compositionality 59

σ = t (σ0, · · · , σn−1). (3.1)

In that case assume that σi = 〈ei ,mi 〉 and σ = 〈e,m〉. Then

m = F(t,m0, · · · ,mn−1) (3.2)

for some F that depends only on G. We can without further ado write tμ for the
function F(t, _, · · · , _). Then the previous means that

m = tμ(m0, · · · ,mn−1). (3.3)

It follows by a simple argument (induction on the length of t) that it is enough to
require (3.3) for t a basic function of G.

At last we need to clarify the notion of a mode of composition. First of all, we use
the same terminology as in the preceding chapter. We assume that we have a finite
set F of function symbols forming a signature 〈F,Ω〉 together with Ω . As we saw
above, for each f ∈ F there is an f μ satisfying (3.3). This is the meaning function;
there also is a function f ε such that

e = f ε(σ0, · · · , σΩ(f)−1). (3.4)

We shall see later that one will also have to impose some restrictions on f ε. Cru-
cially, we may understand mode as referring just to f , or as referring in fact to f ε.
Suppose for example that we have the following language L .

L = {〈a, 0〉, 〈b, 1〉, 〈ab, 2〉, 〈ab, 3〉} (3.5)

Assume that /ab/ is to be considered complex. If we understand a mode to be a
syntactic function then this language cannot be compositional, for there is only one
function to compose /a/ and /b/.1 To make this even more precise: we shall assume
that what counts in the specific case is not the function as a whole but rather what
it does to the specific elements at hand. That is to say that we can also define the
following function:

f (x, y) :=

⎧
⎪⎨

⎪⎩

x�y if x = a and y = b,

y�y if x = aa and y = b,

undefined else.

(3.6)

This is a different function but on the strings of the language it shows no differ-
ence to plain concatenation. We say therefore that f and g count as the same mode
exactly when f ε(�σ) = gε(�σ). (Recall in this connection Example 2.2. The plural of

1 Well, there are two: f (x, y) := x�y and g(x, y) := y�x . But this can be handled by constructing
a more complex example.

60 3 Compositionality

regular nouns and the third singular of regular verbs are for these purposes formed
by the same mode, assuming their arity to be the same.) There are languages that
satisfy compositionality even with this strict identity of modes; many computer lan-
guages are of that form. There is simply only one way to combine two constituents
semantically; the surface syntax may be flexible (allowing the use of brackets, for
example) but this is just a means of identifying the constituents. However, semanti-
cally, there is just one way to combine two meanings. Natural languages are quite
different in this respect. Many expressions are constructionally ambiguous and that
accounts for many meaning differences.

Let us now settle down on the final definition of compositionality (see the
extended discussion in Section 3.3):

A language L is compositional if there is a grammar G based on a signature 〈F,Ω〉 such
that (i) L = L(G) and (ii) for each f ∈ F there is a function f μ such that if σ = 〈e,m〉
and σi = 〈ei ,mi 〉, i < Ω(f), are signs such that

σ = f (σ0, · · · , σΩ(f)−1) (3.7)

and g counts as the same mode as f then

m = gμ(m0, · · · ,mΩ(f)−1). (3.8)

Notice that from (3.7) we deduce that

m = f μ(m0, · · · ,mΩ(f)−1), (3.9)

since f is the same as f . However, there could be more modes that are the same
as f . Three notions of sameness come to mind: (a) f = g (symbolic identity), (b)
f ε = gε (extensional identity) and (c) f ε(�σ) = gε(�σ) (casewise identity). Option
(c) is the least strict on the functions (and therefore induces the strictest condition
on compositionality); in this case, any two functions which are defined at all on the
input (and return the output string) are the same for the purpose of the definition.

A last point to mention is that strings may have categories. In this case we may
further refine the notion of identity, allowing functions to depend on the categories
of the arguments. I shall discuss the ramifications of this option below.

I shall now review some alternative definitions of compositionality. First, there is
a tradition to use a more elaborate structure than the string, namely a tree structure
defined over the string. In fact there are several such structures, and it is one of
them that is actually interpreted, namely LF. The meaning of a particular LF is
actually independent of the way in which it was obtained; however, as it has internal
structure, its meaning can be obtained with reference to that structure. I shall return
to the question of the viability of this proposal in Section 5.4. Here I just notice that
to safeguard themselves from a different interpretation of compositionality some
people have named the concept used here rule-to-rule compositionality, or direct
compositionality (see the volume Barker and Jacobson (2007)). I shall not follow
this usage, partly because I think that the alternative notions are too weak to yield
interesting results.

3.1 Compositionality 61

More interesting therefore are definitions that are more restrictive than the one
given here. Szabó (2000) gives the following definition.

The meaning of a complex expression is determined by the meaning of its constituents and
by its structure.

In his discussion, Szabó focuses mainly on the word “determines”. The idea is that
“determines” refers to some causal connection. Thus a language that uses just any
function is not good enough. Some essential link must exist between the structure
and the meaning. Thus, Szabó claims, we are led to assume that in order for the
meaning to be determined by the structure, meanings must be structured and there
must be a kind of structural parallel between syntax and semantics. The arguments
by Pagin (2003) go in the same direction, though his reasons are slightly different.
Pagin argues that speakers and hearers must be able to effectively find meanings
associated with expressions and conversely and it is hard to imagine how that can
be done without some kind of structural similarity. The structure in meaning is lan-
guage independent, so this would among others imply a certain similarity between
all human languages. I have chosen not to go that way. One reason for my choice is
that the structure of meanings is something that we believe is too poorly understood
to give insightful results at this point; thus, I am not arguing that meanings are not
structured, I am only saying that the actual structure they have—whatever it may
be—is very hard to determine. The recent discussion in King (2007) I do not find
very revealing in this connection and too much language bound. Should it turn out
that meanings are structured our approach is nevertheless not invalid; there will
then be more conditions on syntactic structure. I think that one need not believe
in structured meanings in order to establish a difference between just any kind of
meaning composition function and one that is “good”, that is, “compositional”. I
shall return to the question of natural meaning functions in the next chapter.

Another notion of compositionality is that of Hodges (2001). In essence, the
definitions are the same as the ones given here; there are however some technical
differences that need to be pointed out. The main difference is that Hodges assumes
that meanings are given to an expression through a function; thus an expression
always has a unique meaning. This simplifies the technical apparatus and works
well for artificial languages, but for natural language this is actually a problematic
assumption. Notice that it eliminates ambiguity. Words such as /bank/ or /crane/
will not be considered ambiguous by the grammar. Moreover, the semantic functions
f μ will operate on the total meaning. This means the following: an adjective such
as /big/ does not simply operate on the different meanings of /crane/ indepen-
dently; rather, it operates on the combined meaning of the two. Let us make that
concrete. /crane/ either means a type of birds—call this meaning crane′b—or a
type of machines—call the meaning crane′m . The meaning function now associates
with it the concept crane′b ∨ crane′m , which is true of x if and only if x is either a
bird crane or a machine crane. The meaning big′ of /big/ on its part takes the whole
concept and forms the concept of being-a-big-crane. Evidently, big bird cranes are
far smaller than big machine cranes, so we expect the idea of a big bird-or-machine-
crane to be different from both.

62 3 Compositionality

We may try to save the theory by proposing that the meaning of an ambiguous
item is the set of different meanings it has otherwise. Thus, we assign to /crane/
the meaning

{
crane′b, crane′m

}
. This opens problems of its own. For example, an

adjective will now apply to a set of what we otherwise would call meanings. How
does it apply to such a set? We will have to say that it applies to each member
individually. Thus we are already imposing a structure onto semantics (that mean-
ings are sets) that languages cannot override. Everything stands and falls with the
question whether a language contains genuinely ambiguous expressions. A defender
of the functional view will have to claim that expressions are not ambiguous in
this sense; they simply mean what they mean in all their totality. This is difficult
to maintain since it would deprive us of the possibility of differentiating between
idiomatic and nonidiomatic meanings of expressions. The expression “He kicked
the bucket” will have to have both the literal and the idiomatic reading as its mean-
ing simpliciter without there being a way to say what it is that makes the idiomatic
reading idiomatic.

Another problem with the functional account is that it assumes that all ambiguity
is spurious. Suppose namely that there is a string �x that can be derived in several
different ways. As the meaning of �x is assumed to be unique, we want each of
the derivations to give us the unique reading. This is problematic for reasons of
structural ambiguity.

is square free or it is a product of two (3.10)

prime numbers and greater than 100.

This description can be read in two ways. It says that the number is greater than 100,
and it is either square free of the product of two primes. Alternatively, the number
is either square free or it is not and in the latter case the product of two primes
and greater than 100. In the second reading 71 satisfies the description, in the first
reading it does not. The values for each of the readings can be obtained using a
compositional grammar. However, the sum of all values cannot be so given, since
it would require the grammar to know in each case about alternative readings. This
cannot work. Of course, such a claim needs rigorous proof. We shall return to this
matter in Section 3.5.

I also add another feature that is frequently encountered in artificial languages but
not in human languages. I have given above an example of a language that figures
in Zadrozny (1994) to show that there are languages that we intuitively consider
not compositional. A critical analysis of this example reveals that the intuition is
based on the assumption that what is graphically complex (here the string /ab/) also
is syntactically complex. Since alphabets are small, “graphically complex” cannot
always mean “consists in more than one letter”. Rather, it is taken to mean: consists
in more than one identifier, where identifiers are sequences of letters not interrupted
by special symbols. More complex criteria can be imagined; what is important is
that syntactic complexity is decidable regardless of the underlying grammar. That
this is so is a design property of formal languages; it is built into the parser. It

3.2 Interpreted Languages and Grammars 63

allows tokenisation to precede syntactic analysis. We cannot likewise assume human
languages to be built this way. The said property, that complexity is decidable on the
basis of the string alone, is called morphological transparency. Human languages
are therefore in general morphologically intransparent. Idioms are a case in point.

3.2 Interpreted Languages and Grammars

We assume the setup of the previous chapter. As we have said, objects of a language
are sequences of strings over some alphabet (modulo a regular transduction). To
avoid having to talk about the exact nature of syntactic objects, we assume that they
come from a set E . E can for example be A∗, but different choices are possible (and
often necessary).

To differentiate languages as sets of strings from the interpreted languages
defined below we shall call sets of strings string languages (though in fact we have
allowed the exponents to be sequences of strings).

Definition 3.1 Let E and M be sets (of exponents and meanings, respectively). The
members of E × M are called signs. For a sign σ = 〈e,m〉 define

ε(σ) := e, μ(σ) := m. (3.11)

e is the exponent of σ and m its meaning. A set L ⊆ E×M is called an interpreted
language over E . The projection

ε[L] := {e : there is m ∈ M : 〈e,m〉 ∈ L} (3.12)

is called the string language of L and the set

μ[L] := {m : there is e ∈ E : 〈e,m〉 ∈ L} (3.13)

the expressive power of L .

The meaning of σ is not to be confused with its denotation, a term that I wish to
avoid since it is often used in a purely extensional sense, while meaning is inten-
sional.

Definition 3.2 Let L be an interpreted language. L is unambiguous if for every
〈e,m〉, 〈e,m′〉∈ L we have m = m′. L is monophone if for every 〈e,m〉, 〈e′,m〉∈ L
we have e = e′.

Thus a language is generally defined to be a set of signs; that a sign is seen here just
as a pair and not a triple (see Section 3.2) is mainly due to the fact that form and
meaning are the most obvious components of it. The exponent can be seen, heard
or touched (think of Braille letters) and the meaning—although somewhat hard to
establish in exact detail—is what makes language a symbolic system. With this defi-
nition we also return to the roots. The definition of a sign pairing form and meaning

64 3 Compositionality

is due to Saussure (2011). (Chomsky also endorsed that view in Chomsky (1993),
though the exponents in Generative Grammar are far more complex.) De Saussure
uses the words signifier (signifiant) and signified (signifié), rather than exponent
and meaning. The straightforward generalization of the definition of grammar would
be the following.

Definition 3.3 Let E be a set of exponents and M a set. An interpreted grammar
is a pair G = 〈Ω, I〉 whereΩ is a finite signature and I a function that assigns to a
symbol f ∈ F a partial Ω(f)-ary function on E × M :

I(f) : (E × M)Ω(f) ↪→ (E × M). (3.14)

Furthermore,

L(G) := {ι(t) : t ∈ TmΩ(∅)} (3.15)

is the language generated by G.

To put it somewhat more simply, given E and M , the set S := E × M is the space
of signs. If f is a function symbol, I(f) is a partial n-ary function on S. Indeed, the
definitions of the previous chapter can be imported without much adaptation. The
only difference is that where we generated strings (or sequences thereof) now we
generate signs.

I remark here that we can always choose E and M in a such a way that E =
ε[L(G)] and M = μ[L(G)], though of course L(G) need not be identical with
E × M .

Example 3.1 (See also Example 2.5) If G is a grammar, L(G) is either finite or
countable. This is because we can effectively enumerate the terms and there are
only countably many terms. Let now L be countable. Then there is a bijection f :
N → L . Define the grammar G in the same way as in Example 2.5. It is easy
to see that the terms are of the form snb for some n ∈ N. For this term we have
I(snb) = f (n). Thus this grammar generates L . We conclude that a language has a
grammar if and only if it is finite or countable. o

We refer the reader to Appendix A for the relationship between a partial function
f : A ↪→ B × C and the projections πB ◦ f : A ↪→ B and πC ◦ f : A ↪→ C .
We apply this to the case at hand. The symbol f is interpreted by a function I(f) :
(E×M)Ω(f) ↪→ (E×M) and so we can factor I(f) into a pair of partial functions

f ε := πE ◦ I(f), f μ := πM ◦ I(f). (3.16)

This means in more detail that for all signs σi , i < Ω(f), we put

f ε(σ0, · · · , σΩ(f)−1) := ε(I(f)(σ0, · · · , σΩ(f)−1)),

f μ(σ0, · · · , σΩ(f)−1) := μ(I(f)(σ0, · · · , σΩ(f)−1)).
(3.17)

3.2 Interpreted Languages and Grammars 65

It follows that we have

I(f)(σ0, · · · , σΩ(f)−1) = 〈 f ε(σ0, · · · , σΩ(f)−1), f μ(σ0, · · · , σΩ(f)−1)〉.
(3.18)

This is written in a more concise form as

I(f) = f ε × f μ. (3.19)

Here, f × g, where f : An → C and g : An → D are functions, is a function from
An to C × D defined by

(f × g)(x0, · · · , xn−1) := 〈 f (x0, · · · , xn−1), g(x0, · · · , xn−1)〉. (3.20)

(Notice that we write f (x0, · · · , xn−1) in place of f (〈x0, · · · , xn−1〉).) Now, in
place of a single interpretation function I we may also consider having two such
functions, namely Iε and Iμ, which we get as follows.

Iε(f) := πE ◦ I(f), Iμ(f) := πM ◦ I(f). (3.21)

As we shall see, having two independent interpretations changes things dramati-
cally. So we shall give the new construct a name and call it a bigrammar.

Definition 3.4 Let E be a set of exponents and M a set of meanings. A bigrammar
over E and M is a triple G = 〈Ω, Iε, Iμ〉 where Ω is a finite signature and Iε
and Iμ functions that assign to a mode f two partial functions, namely Iε(f) :
(E × M)Ω(f) ↪→ E and Iμ(f) : (E × M)Ω(f) ↪→ M .

The concept of a bigrammar is a different concept, as we shall show. If G =
〈Ω, Iε, Iμ〉 is a bigrammar then put I(f) := Iε(f)× Iμ(f). Then G× := 〈Ω, I〉
is an interpreted grammar. Conversely, given an interpreted grammar G = 〈Ω, I〉,
put G× := 〈Ω, Iε, Iμ〉 as in (3.21); this is a bigrammar.

It is easy to see that for every interpreted grammar G, G = (G×)×. However, it is
not generally the case that H = (H×)× for every bigrammar H . This is because sev-
eral distinct bigrammars may define the same interpreted grammar. Notice namely
that

dom(Iε(f)× Iμ(f)) = dom(Iε(f)) ∩ dom(Iμ(f)). (3.22)

However, the grammar G× has the property that

dom(f ε) = dom(f μ). (3.23)

Hence, a bigrammar of the form G× satisfies

dom(Iε(f)) = dom(Iμ(f)). (3.24)

66 3 Compositionality

We call a bigrammar satisfying (3.24) balanced. The following is easy to see.

Proposition 3.1 Let H be a bigrammar. Then H is balanced if and only if H =
(H×)×.

Proof Clearly, if H = (H×)× then H is of the form G× and so is balanced. Con-
versely, if H is balanced then dom(I(f)) = dom(f ε) = dom(f μ) and so we have
dom(Iε(f) × Iμ(f)) = dom(I(f)). It follows that f = Iε(f) × Iμ(f) and so
H = (H×)×. ��

The terminology of Section 2.1 for grammars is taken over unchanged. For exam-
ple, the definition of analysis term is the same (it involves only the underlying
signature) and the interpretation is defined inductively in the same manner. The
reason is that the same signature can be applied to generate string languages and to
generate interpreted string languages (and even more complex languages, which we
shall consider below in Section 3.3). It just depends on the function I what types of
objects are generated. This is one of the reasons for our abstract definition of gram-
mars using signatures. For example, given an interpreted grammar G = 〈Ω, I〉, we
define the interpretation of a constant term t by induction as follows:

ιG(f s0s1 · · · sΩ(f)−1) := I(f)(ιG(s0), ιG(s1), · · · , ιG(sΩ(f)−1)). (3.25)

We use also the following notation. For terms t we let tε be the exponent of ι(t)
and tμ its meaning. A term t is semantically definite if tμ exists; and it is ortho-
graphically definite if tε exists. We say that t is definite if it is both orthographi-
cally and semantically definite and indefinite otherwise. In a balanced bigrammar
a term is definite iff it is semantically definite iff it is orthographically definite.
In general however they are different but only slightly. For a term of the form
t = f (u0, · · · , uΩ(f)−1) we either have that one of the ui is indefinite, in which
case t is indefinite. Or all of the ui are definite and then t can be orthographically
but not semantically definite, or semantically but not orthographically definite (or
neither orthographically nor semantically definite).

Terms that contain variables are interpreted as partial functions from SN ↪→ S,
where S is the space of signs, here E × M . Given a sequence 〈σ0, σ1, · · ·〉 of signs
ι(t) computes the value of t where for every i ∈ N, xi is interpreted as σi .

Example 3.2 Let E := A∗ where A := {0, 1, +, -, (,), =}. Let M := Z ∪ {�,⊥}.
F := { f0, f1, f2, f3, f4, f5, f6}. Ω(f0) := Ω(f1) := 0, Ω(f2) := Ω(f3) := 1,
Ω(f4) := Ω(f5) := Ω(f6) := 2. �x is binary if it only contains /0/ and /1/; �x is
a term if it does not contain /=/. The grammar is shown in Fig. 3.1. The signs that
this grammar generates are of the following form. They are either strings of 0s and
1s, paired with the number that they represent as binary numbers. Or they are terms,
interpreted in the usual way; or they are equations between two such terms. A single
numeral expression is also a term. An equation is either true (in which case it is
interpreted by �) or false (in which case it is interpreted by ⊥). o

3.2 Interpreted Languages and Grammars 67

J (f0)() := 〈0, 0〉
J (f1)() := 〈1, 1〉

J (f2)(〈�x,m〉) :=
{
〈�x0, 2m〉 if �x is binary,

undefined else.

J (f3)(〈�x,m〉) :=
{
〈�x1, 2m + 1〉 if �x is binary,

undefined else.

J (f4)(〈�x,m〉, 〈�y, n〉) :=
{
〈(�x+�y),m + n〉 if �x, �y are terms,

undefined else.

J (f5)(〈�x,m〉, 〈�y, n〉) :=
{
〈(�x-�y),m − n〉 if �x, �y are terms,

undefined else.

J (f6)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎨

⎪⎩

〈�x=�y,�〉 if �x, �y are terms and m = n,

〈�x=�y,⊥〉 if �x, �y are terms and m �= n,

undefined else.

(3.26)

Fig. 3.1 A grammar for binary strings

Example 3.3 We shall now define an unbalanced bigrammar that defines the same
interpreted language as the grammar in the previous example. The semantic func-
tions are shown in Figs. 3.2 and 3.3. For the bigrammar G = 〈Ω,Kε,Kμ〉 we find
that G× = 〈Ω,J 〉. However, it does not satisfy the equations (3.24). For example,
we find that Kε(f2)(〈(1+1), 2〉) is undefined while Kμ(f2)((1+1), 2〉) = 4, since
Kμ does not look at the exponent. Notice that the semantic functions are not
total but could easily be made to be. Notice also that they do not depend on the
exponent, so they can be further simplified. This will be discussed in detail in
Section 3.3. o

Kε(f0)() := 0

Kε(f1)() := 1

Kε(f2)(〈�x,m〉) :=
{
�x0 if �x is binary,

undefined else.

Kε(f3)(〈�x,m〉) :=
{
�x1 if �x is binary,

undefined else.

Kε(f4)(〈�x,m〉, 〈�y, n〉) :=
{
(�x+�y) if �x, �y are terms,

undefined else.

Kε(f5)(〈�x,m〉, 〈�y, n〉) :=
{
(�x-�y) if �x, �y are terms,

undefined else.

Kε(f6)(〈�x,m〉, 〈�y, n〉) :=
{
�x=�y if �x, �y are terms,

undefined else.

(3.27)

Fig. 3.2 An unbalanced bigrammar for binary strings I

68 3 Compositionality

Kμ(f0)() := 0

Kμ(f1)() := 1

Kμ(f2)(〈�x,m〉) :=
{

2m if m ∈ Z,

undefined else.

Kμ(f3)(〈�x,m〉) :=
{

2n + 1 if m ∈ Z,

undefined else.

Kμ(f4)(〈�x,m〉, 〈�y, n〉) :=
{

m + n if m, n ∈ Z,

undefined else.

Kμ(f5)(〈�x,m〉, 〈�y, n〉) :=
{

m − n if m, n ∈ Z,

undefined else.

Kμ(f6)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎨

⎪⎩

� if m, n ∈ Z and m = n,

⊥ if m, n ∈ Z and m �= n,

undefined else.

(3.28)

Fig. 3.3 An unbalanced bigrammar for binary strings II

Let me conclude with a few words on the algebraic treatment. A grammar G =
〈Ω, I〉 can also be viewed as a partial Ω-algebra defined over the space E × M
(see Appendix A for definitions). Bigrammars have no straightforward algebraic
equivalent. Exercises 3.10 and 3.11 will pursue this theme.

Exercise 3.1 It is possible to interpret the modes f2 and f3 by the string functions
�x
→ 0��x and �x
→ 1��x . Show that it is however impossible to use the meaning
functions given above with these string functions.

Exercise 3.2 (Continuing the previous exercise.) Give a grammar that generates the
language of equations using the string functions above. (Evidently, the functions on
meanings must be quite different.)

Exercise 3.3 Let G = 〈Ω, I〉 be a grammar. Show that there is a bigrammar G• =
〈Ω, Iε• , Iμ• 〉 such that (G•)× = G and such that for every f ∈ F , Iε•(f) is total.
(Dually, we can construct G• such that Iμ• (f) is total for every f ∈ F .)

Exercise 3.4 (Using the previous exercise.) Show by giving an example that we can-
not expect both Iε•(f) and Iμ• (f) to be total. Hint. This should be totally straight-
forward.

3.3 Compositionality and Independence

In this section we shall look at the interdependence between the components of
a sign. We shall look at ways of formulating the grammar in such a way that the
exponents and meanings are completely independent. We have so far assumed that
the modes are interpreted as functions on signs. As such they have the form

3.3 Compositionality and Independence 69

I(f) = f ε × f μ, (3.29)

with the functions defined as given in (3.17). If, however, we start with a bigrammar
we simply put

f ε := Iε(f), f μ := Iμ(f). (3.30)

In this case, as we observed, (3.24) does not necessarily hold any more. Although
we shall not mention this fact in the sequel, the reader is asked to be aware of
the possibility that bigrammars can help to distribute the partiality between syntax
and semantics, which is why we shall work mainly with bigrammars rather than
grammars.

There are two senses in which the equation (3.29) can be required to hold. I call
the first the strict sense: the equation is valid as stated above. This means that the
equation specified is valid even if the relevant functions are applied to signs that are
not in the language. The extensional sense requires that the equation only holds for
the language of the grammar. This is formally expressed in (3.31).

I(f) � L(G) = (f ε × f μ) � L(G) (3.31)

Here, if f : An ↪→ B and C ⊆ A,

f � C := {〈�c, f (�c)〉 : �c ∈ Cn}. (3.32)

These two viewpoints really are different. It is assumed that the grammatical forma-
tion rules are more general; they may be applied to words (and meanings) that do not
exist in the language. For example, we may introduce new words into a language or
create new idioms. What we find is that more often than not the morphological rules
know how to deal with them. If the rules were just defined on the language as it is,
we would have to artificially extend the interpretation of the modes as soon as new
entries get introduced into the lexicon. Consider for example the nouns of Malay (cf.
also the discussion in Example 3.8 below). Malay nouns reduplicate in the plural.
Now suppose a new word, say, a loanword from English is introduced. Will it be
reduplicated or will it be used with the English plural? Exactly this question is
studied in the so-called “wug-test”, where people are asked to form the plural of
a word that is not English. If a speaker forms a plural of such a word it means that
his or her morphological functions are more general; they operate on words that are
not English, and they operate even in the absence of any semantics. Children face
a similar situation. When they grow up they will have to guess how the plural of
nouns is formed. It is not realistic to assume that they will simply learn the plural
of each word individually. Rather, they will abstract a general rule that can be used
on new words as well. And they can both understand what is a morphological plural
and what is the concept behind plurality. And both seem to be independent. Notice
that the idea of a human grammar as different from a formal grammar is irrele-
vant here. Formal languages often do display similar differences. And though the

70 3 Compositionality

wug-test seems to indicate that there is a uniform rule of plural formation in English
it is not clear that all people have the same abstract formation rule. Not only does
individual variation exist (showing us extensional differences, that is, differences in
the languages of the speakers); also it is quite conceivable that intensional variation
exists. For example, it is conceivable that when presented with a nonexistent verbal
root, German speakers will differ as to how they will inflect a new verb even when
they completely agree on the inflection of existing verbs (though I am not aware of
a positive result showing this).

Thus, we assume with some justification that the functions above may also be
defined on signs outside of the language generated by the grammar. Nevertheless we
shall study the behaviour of the functions in the intensional sense. This is because
it is easy to return to the extensional sense by restricting the original functions to
L(G). Formally, this may be expressed as follows. We say that G ′ = 〈Ω, I ′〉 is
an extensional variant of G = 〈Ω, I〉 if L(G ′) = L(G) and for every mode f ,
I ′(f) � L(G) = I(f) � L(G). Extensional variants cannot be distinguished from
each other by looking at the language they generate; but they might be distinguish-
able by introducing “nonce signs”.

Let us return to the equation (3.29) above. I shall rewrite it as follows:

I(f)(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉)
= 〈 f ε(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉),

f μ(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉)〉.
(3.33)

We say that a bigrammar is compositional if f μ does not depend on the ei . This
can be restated as follows. (For notions of independence for (partial) functions see
Appendix A. For partial functions, independence is weak independence by default.)

Definition 3.5 A bigrammar G is semicompositional if, for every mode f , f μ is
(weakly) independent of the exponents of the signs. If the f μ are strongly indepen-
dent of the exponents, G is called compositional. G is extensionally compositional
if it has an extensional variant that is compositional. An interpreted language L is
compositional if there is a compositional bigrammar G such that L = L(G).

Example 3.4 There are pairs of words whose meaning is roughly the same, of which
one member is singular and the other in the plural (see Kac, Manaster-Ramer, and
Rounds (1987)): examples are /military/:/armed forces/, /forest/:/woods/ and
/location/: /whereabouts/. Consider a bigrammar that has these words as values
of constants and a single unary operation that forms the regular plural. Semanti-
cally, each of the concepts has a plural (there is a notion of armies, forests and
locations). However, depending on the exponent, the plural can or cannot be regu-
larly formed. This grammar is therefore semicompositional but not compositional.
Using the notation of Example 2.10, the term p(fforest) is definite and interpreted by
〈forests,pl′(forest′)〉. However, p(fwoods) is not definite. It is however semanti-
cally definite. An example of a compositional bigrammar is the following. Switch
the interpretation of p as follows: if the noun is in the singular, form the regular plu-
ral. If it is in the plural, leave the noun unchanged. The second grammar generates

3.3 Compositionality and Independence 71

the pluralia tanta also in their plural meaning, so that, e.g., /armed forces/ means
either army (singular meaning) or armies (plural meaning). o

The notion of semicompositionality may easily be confused with composition-
ality. The difference is not in the value that the function yields: it is unique. The
difference is whether the choice of certain expressions can make the semantic func-
tion undefined when it has a value for at least some expressions. In a composi-
tional bigrammar this is excluded while a semicompositional still allows for that
possibility.

We extend these notions to interpreted grammars as follows. For an interpreted
grammar G, G is P if and only if G× is P (see page 65 for notation). So, G is
semicompositional if and only if G× is. Notice that a language is compositional if
and only if it has a compositional interpreted grammar.

If G is extensionally compositional or semicompositional then for every mode f
there exists a partial function f μ∗ : MΩ(f) ↪→ M such that

μ(I(f)(σ0, · · · , σΩ(f)−1))
>= f μ∗ (μ(σ0), · · · , μ(σΩ(f)−1)). (3.34)

The sign
>= means that the left- and right-hand sides are equal if defined; and more-

over, the right-hand side is defined if the left-hand side is, but the converse need not
hold. If G is compositional then also the left-hand side is defined if the right-hand
side is, so full equality holds. In that case we can put

f μ∗ (m0, · · · ,mΩ(f)−1) := f μ(〈e,m0〉, 〈e,m1〉, · · · , 〈e,mΩ(f)−1〉), (3.35)

where e is chosen arbitrarily. Since by assumption f μ does not depend on the expo-
nents, any choice of e will give the same result. Another definition is to take the full
image of the function f under projection. Recall that an n-ary function g on signs
is a subset of (E × M)n+1. For any such function put

μ[g] := {〈μ(σ0), · · · , μ(σn)〉 : 〈σ0, · · · , σn〉 ∈ g}. (3.36)

Then we may alternatively define f μ∗ by

f μ∗ := μ[I(f)]. (3.37)

Independence from the exponents guarantees that this is a function. We see here
more explicitly that f μ∗ is a partial function only on meanings. Suppose now that
L is compositional; this means that there is a compositional grammar G such
that L = L(G). This means in turn that for every σ ∈ L there is a term t
such that σ = ιG(t). If t = f s0 · · · sΩ(f)−1 then the meaning of ιG(t) equals
f μ∗ (μ(ιG(s0)), · · · , μ(ιG(sΩ(f)−1))), which is to say that, given that the σi are
the parts of σ , the meaning of σ is the result of applying the function f μ∗ to the
meaning of its parts. However, notice that we have two senses of compositionality,
the simple (intensional) and the extensional. For a language to be compositional

72 3 Compositionality

we may require the existence of either an extensionally compositional grammar, or
of a compositional grammar. For if an extensionally compositional grammar exists,
there is a compositional variant, which by definition generates the same language.

Notice a further consequence. If G is extensionally compositional then we can
produce an extensional variant in the following way. Put

f̂ ε := (ε ◦ I(f)) � L(G). (3.38)

This function is defined exactly on the signs of L(G). Now take as f̂ μ∗ any function
extending f μ∗ . (In other words, f̂ ε carries all the load in terms of undefinedness. In
this case, f̂ μ∗ may even be a total function.)

Example 3.5 Here is an example. Let G = 〈Ω, I〉 be a grammar containing a binary
mode f and zeroary modes gi , i < 3, where

I(g0)() = 〈ed,past′〉
I(g1)() = 〈laugh, laugh′〉
I(g2)() = 〈car, car′〉

(3.39)

Here, I am assuming the following type assignment: car′ : e → t , laugh′ : e →
s → t and past′ : (e → s → t)→ (e → s → t).

I(f)(〈e,m〉, 〈e′,m′〉) := 〈e�e′,m′(m)〉 (3.40)

Note that this is undefined if m′(m) is undefined. This means that semantically the
only meaningful combination is past′(laugh′). Now take the bigrammar G× =
〈Ω, Iε, Iμ〉. Define a new bigrammar 〈Ω,Kε,Kμ〉 as follows. Kμ(f) is any total
function extending Iμ(f); for example, it also takes the pairs 〈e, car′〉, 〈e′,past′〉
as arguments (whatever e and e′) and returns some value. Then put

Kε(f)(〈e,m〉, 〈e′,m′〉) :=
{

e�e′ if e = /laugh/ and e′ = /ed/,
undefined else.

(3.41)

It is not hard to check that Kε(f) = Iε(f). This bigrammar therefore generates the
same output language. The source of partiality has been shifted from the semantics
to the syntax. o

A particular choice that we may take for f μ∗ is μ[I(f)]. This is sufficient. Notice
however that this may still be a partial function. Any function extending it will also
do but nothing less.

In and of itself this seems to capture the notion of compositionality. However,
it presupposes a notion of a part and mode of composition. There are two ways to
understand “part” and “mode of composition”. We may simply say that it is the
grammar that defines what is part of what and what counts as a mode. Or we may
say that the notion of part is not arbitrary. Not every grammar implements a correct

3.3 Compositionality and Independence 73

notion of “part of”. Not every grammar therefore uses a good notion of “mode
of composition”. In Kracht (2003) I have put the restrictions into the definition of
compositionality. Here I shall keep them separate.

Signs are pairs; switching the order in the pair gives rise to the dual of the sign.
Switching the order in the entire language defines the dual of the language. Notice
that most technical notions do not distinguish between exponents and meanings, so
they can be applied to both a language and its dual. The notion dual to composition-
ality is known as autonomy.

Definition 3.6 A bigrammar G is semiautonomous if for every mode f the func-
tion f ε is weakly independent of the mi . If f ε are also strongly independent of
the mi , G is called autonomous. G is extensionally autonomous if it has an exten-
sional variant that is autonomous. An interpreted language L is autonomous if there
is an autonomous bigrammar G such that L = L(G).

Semiautonomy says that the exponent of a complex sign is the result of applying a
certain function to the exponent of its parts and that that function depends only on
the leading symbol of the analysis term. One consequence is that for every mode f
there exists a partial function f ε∗ : EΩ(f) ↪→ E such that

ε(I(f)(σ0, · · · , σΩ(f)−1))
>= f ε∗ (ε(σ0), · · · , ε(σΩ(f)−1)). (3.42)

Again, if the left-hand side is defined then the right-hand side is as well but not
conversely. In an autonomous grammar, also the converse holds.

Finally, we say our language is independent if both syntax and semantics can
operate independently from each other.

Definition 3.7 A bigrammar is independent if it is both compositional and
autonomous; it is extensionally independent if it is both extensionally composi-
tional and extensionally autonomous. A language is independent if it has an inde-
pendent bigrammar.

Thus G is independent if for every f there are functions f ε∗ and f μ∗ such that for all
σi = 〈ei ,mi 〉, i < n:

I(f)(σ0, · · · , σΩ(f)−1) = 〈 f ε∗ (e0, · · · , eΩ(f)−1), f μ∗ (m0, · · · ,mΩ(f)−1)〉.
(3.43)

with the left-hand side defined if and only if the right-hand side is. (The functions f ε∗
and f μ∗ are defined as ε[Iε(f)] and μ[Iμ(f)], respectively.) Another formulation
is

Ω(f) Ω(f)

I(f) = (f ε∗ ◦〈
︷ ︸︸ ︷
ε, · · · , ε〉)× (f μ∗ ◦〈︷ ︸︸ ︷

μ, · · · , μ〉) (3.44)

74 3 Compositionality

or

I(f)(σ0, · · · , σΩ(f)−1) (3.45)

= 〈 f ε∗ (ε(σ0), · · · , ε(σΩ(f)−1)), f μ∗ (μ(σ0), · · · , μ(σΩ(f)−1))〉.

It may be thought that for languages, extensional independence follows from exten-
sional autonomy and extensional compositionality. However, this does not seem to
be the case. I remark here that I have not been able to find an example of a language
that is not (!) independent. If there are no restrictions on the functions that can be
used, independence seems to be guaranteed.

Example 3.6 We construct various different grammars to show that autonomy and
compositionality are independent notions. Let A := {a}, E := A∗; M := N. The
signature is { f0, f1, f2}, with f0 zeroary and f1 and f2 both unary. We have

I(f0)() := 〈ε, 0〉

I(f1)(〈�x, n〉) :=
{
〈�x�a, n + 1〉 if |�x | = n,

undefined otherwise.

I(f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | ≥ n,

〈�x, n + 1〉 otherwise.

(3.46)

Call this grammar U . The action of the unary functions on the space E × M is
shown in Fig. 3.4. U generates the language D := {〈�x, n〉 : n ≤ |�x |}, as is easily
verified; the entry point is the origin, and everything is in D that is reachable by
following the arrows. Notice that the second clause of the definition for I(f2) is
never used inside D. Thus, we could have made I(f2)(〈�x, n〉) undefined if n >
|�x |. This would give us an extensional variant of the original grammar. U is not
autonomous: I(f2)(〈a, 3〉) = 〈a, 4〉 but I(f2)(〈a, 1〉) = 〈aa, 1〉. So to compute
the exponent we need to know the meaning. It is not compositional either. For we
have in addition to I(f2)(〈a, 3〉) = 〈a, 4〉 also I(f2)(〈aaa, 3〉) = 〈aaaa, 3〉), so to
compute the meaning we need to know the exponent.

Consider the following variants of I, which agree on f0 and f1 with I:

Ia(f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | ≥ n,

〈�x�a, n + 1〉 else.

Ic(f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | ≥ n,

〈�x�a�a, n〉 else.

Iac(f2)(〈�x, n〉) := 〈�x�a, n〉

(3.47)

All of them only generate the language D. The grammar U ac := 〈Ω, Iac〉 is semi-
autonomous and semicompositional.

U c = 〈Ω, Ic〉 is semicompositional but not semiautonomous. To see this, note
that we have μ(Ic(f2)(〈e,m〉)) = m, which is independent of e; on the other hand

3.3 Compositionality and Independence 75

Fig. 3.4 The action of the grammar U

we have ε(Ic(f2)(〈aa, 2〉)) = aaa �= aa = ε(Ic(f2)(〈aa, 3〉)). Similarly we find
that 〈U a := 〈Ω, Ia〉 is semiautonomous but not semicompositional. o

Now, let J (f0) := I(f0) and J (f2) := I(f2). Put

J (f1)(〈�x, n〉) := 〈�x�a, n + 1〉. (3.48)

Define J a , J c and J ac by changing the interpretation of f2 as above. 〈Ω,J ac〉 is
independent, that is, autonomous and compositional. Similarly, J a is autonomous
and noncompositional while J c is nonautonomous but compositional.

Finally, let us look at these concepts for bigrammars. If a bigrammar is
autonomous then it is possible to define an extensional variant of the form
〈Ω, Iε◦ , Iμ◦ 〉 where Iε◦(f) is total for every f . Namely, observe that there is a func-
tion g on exponents such that

Iε(f)(�σ) = g(e0, · · · , eΩ(f)−1). (3.49)

Choose a total extension g◦ ⊇ g.

76 3 Compositionality

Iε◦(f)(�σ) := g◦(e0, · · · , eΩ(f)−1)

Iμ◦ (f) := Iμ(f) � dom(Iε(f))
(3.50)

Then Iε◦(f)(�σ) is defined if and only if �σ ∈ dom(Iμ◦ (f)) = dom(Iε(f)) ∩
dom(Iμ(f)). And in this case

〈Iε◦(f)(�σ), Iμ◦ (f)(�σ)〉 = 〈g◦(�e), Iμ(f)(�σ)〉
= 〈g(�e), Iμ(f)(�σ)〉
= 〈Iε(f)(�σ), Iμ(f)(�σ)〉

(3.51)

Example 3.7 From a grammar we can construct two bigrammars where the partial-
ity is only in one component: one where all the exponent functions are total and
another where the semantic functions are total. With a bit of luck the first grammar
is autonomous and the second compositional. Here is an example. Let A := {a},
E := A∗; M := N. The signature is { f0, f1, f2}, with f0 zeroary and f1 and f2
both unary.

I(f0)() := 〈ε, 0〉
I(f1)(〈�x, n〉) := 〈�x�a, n + 1〉

I(f2)(〈�x, n〉) :=
{
〈�x�a, n〉 if |�x | = n,

undefined else.

(3.52)

The definite terms are of the form f n
1 f0 or f m

1 f2 f n
1 f0. The first bigrammar is as

follows.

I�
ε (f1)(〈�x, n〉) := �x�a

I�
ε (f2)(〈�x, n〉) :=

{
�x�a if |�x | = n,

undefined else.

(3.53)

I�
μ (f1)(〈�x, n〉) := n + 1

I�
μ (f2)(〈�x, n〉) := n

(3.54)

The second bigrammar is as follows.

I�
ε (f1)(〈�x, n〉) := �x�a

I�
ε (f2)(〈�x, n〉) := �x�a

(3.55)

I�
μ (f1)(〈�x, n〉) := n + 1

I�
μ (f2)(〈�x, n〉) :=

{
n if |�x | = n,

undefined else.

(3.56)

3.3 Compositionality and Independence 77

The grammar G� is compositional but only semiautonomous; the grammar G� is
autonomous but only semicompositional. The reason is this. In G� the functions
I�
μ (fi) do not depend on the exponent, they are total and always yield a unique

value. On the other hand, I�
ε (f2) weakly depends on the meaning:

I�
ε (f2)(〈aaa, 2〉) is undefined, I�

ε (f2)(〈aaa, 3〉) = aaaa. (3.57)

Thus G� is indeed semiautonomous but compositional. Likewise for the other
claim. However, it turns out that there is no bigrammar corresponding to G that
is both autonomous and compositional. To see this, suppose G�� = 〈Ω, I��ε , I��μ 〉
is such a grammar. Then for any given string �x there is some n (namely |�x |) such
that I��ε (f2)(〈�x, n〉) is defined. If the grammar is autonomous this means that for all
m I��ε (f2)(〈�x,m〉) is defined. Hence the function I��ε (f2) is total. Likewise we see
that I��μ (f2) is total. It follows that dom(I��(f2)) = dom(I(f2)) equals E × M .
But this is not the case in G. o

The independence of form and meaning has interesting consequences also for the
assessment of arguments concerning generative capacity. Both examples concern
the problem whether or not there is copying in syntax.

Example 3.8 This and the next example deal with the problem of reduplication.
In Malay, the plural of a noun is formed by reduplication: /orang/ means “man”,
/orang-orang/ means “men” (see also the discussion on page 52). Thus, the plural
mode p in Malay is a unary mode and is interpreted as follows.

I(p)(〈e,m〉) :=
{
〈e�-�e,pl′(m)〉 if e is a singular noun,

undefined otherwise.
(3.58)

Under this interpretation, there is a plural morpheme with no fixed exponent; the
exponent of the morpheme depends on whatever the singular is. If Malay works like
this, then the grammar is not context free in the sense that it has non context free
rules. An alternative view however is to assume that Malay has a binary operation q
with the following interpretation.

I(q)(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈e�-�e′,pl′(m)〉 if e and e′ are nouns

and e = e′,
undefined otherwise.

(3.59)

This means that each occurrence of the singular form is a true occurrence of a con-
stituent. A third account is this. Malay has a binary mode r defined by

I(r)(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈e�-�e′,pl′(m)〉 if e and e′ are nouns

and m = m′,
undefined otherwise.

(3.60)

78 3 Compositionality

This looks similar to q but the difference is that the combinatorial restrictions are
now semantic and syntactic rather than only syntactic. This has repercussions on
how powerful we believe the syntax of Malay is. If we think Malay uses p then the
syntax uses nonlinear polynomials, hence cannot be approximated by what is known
as linear context free rewrite systems (LCFRS). If we think that Malay uses q then
our theory is that the syntax is an LCFRS, even context free, since the number of
nouns is finite. However, performing the substitution tests will reveal that there are
as many form classes as there are nouns. Finally, if we think that Malay uses r we
think that the syntax is context free and that there is essentially only one noun class.
It is not easy to distinguish between these alternatives. Only if Malay has two nouns
e and e′ with identical meaning can we check whether Malay uses p, q or r (though
it is in principle also possible to treat exceptions with extra modes as well). o

The previous discussion uses grammars but it is clear how the bigrammars in
question should be constructed.

Example 3.9 Manaster-Ramer (1986) discuss a construction of English in which a
constituent is repeated verbatim:

The North Koreans were developing nuclear weapons (3.61)

anyway, Iraq war or no Iraq war.
∗The North Koreans were developing nuclear weapons (3.62)

anyway, Iraq war or no Afghanistan war.

The meaning is something like: “independent of”, “irrespective of”. As Manaster-
Ramer claims, the construction has the form /�x or no �x/, where �x is an NP (deter-
minerless!). The construction /�x or no �y/ where �x and �y are different does not
have this meaning. On this basis, Manaster-Ramer argues that English is not context
free. Basically, the idea is that there is a unary mode f defined as follows.

I(f)(〈e,m〉) :=
{
〈e��or�no��e, irrespective-of′(m)〉 if e is an NP,

undefined otherwise.
(3.63)

I put aside the alternative with a binary operation that checks for string identity.
This construction is called the “X-or-no-X construction” by Pullum and Rawlins
(2007). They observe that the second part of it need not be an exact copy. They take
this as evidence that this is not a requirement imposed by the syntax but a semantic
requirement. So the construction takes the form /�x or no �y/, where �x and �y may
be different but must be synonymous. I shall leave the issue of nonidentity aside
and focus on the following point. What Pullum and Rawlins (2007) propose is that
rather than checking syntactic identity, English works with a binary mode g defined
by

3.3 Compositionality and Independence 79

I(f)(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈e��or�no��e, if e, e′ are NP

irrespective-of′(m)〉 and m = m′,
undefined otherwise.

(3.64)

The problem is reminiscent of reduplication discussed earlier. Although Pullum and
Rawlins (2007) show that the resulting language is not context free, their argument
makes clear that there are two notions of generative capacity involved. One is the
purely syntactic capacity and the other is the capacity to generate signs. Given a
bigrammar 〈Ω, Iε, Iμ〉 we may either look at the language generated by 〈Ω, Iε∗〉
(pure syntax), or we may look at the language ε[L(G)]. The first is the set of
all syntactically well-formed sentences, the second the set of all syntactically and
semantically well-formed sentences.

The two analyses are not identical empirically. Suppose namely we have
expressions that are synonymous for all we know (say /Abelian group/ and
/commutative group/ then the two proposals make different claims about gram-
maticality. If syntactic identity is the key then using the expression

Abelian group or no commutative group (3.65)

cannot mean “irrespective of an abelian group”, whereas if semantic identity
counted, this would be perfect. I have not investigated this, though. o

Under the assumption of independence it is possible to extend some of the results
of formal language theory to the present setting. I give an instructive example. A CF
string language has the following property:

Lemma 3.1 (Pumping Lemma) Let L be a context free string language. Then there
exists a number cL , such that for every �x ∈ L of length at least cL there are strings
�u, �v, �w, �y, �z such that

1. �x = �u �y �v �z �w;
2. �x �y �= ε;
3. for all n ∈ N: �u �yn �v �zn �w ∈ L.

For a proof see among others (Harrison, 1978). This theorem has many strengthen-
ings and all of them could be used in its place below. To be able to state the extension
properly, we need to look at two different equivalence relations induced by a bigram-
mar 〈Ω, Iε, Iμ〉. Recall from Definition 2.23 the definition of a categorial equiva-
lence. The first is the equivalence ∼Gε , where Gε := 〈G, Iε × 1〉, where 1(f) gives
a unit value for every input (and is always defined). This equivalence relation gives
rise to the syntactic categories only. Another is the equivalence ∼G , induced by G
itself. It is defined in the same way as Definition 2.23, the only difference being
that the definition is applied to a bigrammar. We say that G is syntactically well
regimented if ∼G=∼Gε . Intuitively, if a grammar is syntactically well regimented
then the combinability of signs can be determined by looking at the exponents alone
(which does not mean that the semantic functions have to be total). Or, I(f)(�σ) is
defined if only Iε(f)(�e) is defined.

80 3 Compositionality

Theorem 3.1 Let L be an interpreted language that has a syntactically well regi-
mented CF bigrammar. Then there is a cL such that for all 〈�x,m〉 ∈ L where �x has
length of at least cL there are strings �u, �v, �w, �y, �z, an element n ∈ M and unary
partial functions f , g on M such that

1. 〈�x,m〉 = 〈�u �y �v �z �w, f (p)〉;
2. �x �y �= ε;
3. for all n ∈ N: 〈�u �yn �v �zn �w, f (gn(p))〉 ∈ L.

The proof of the theorem proceeds basically in the same way as the proof of the
original Pumping Lemma. Given a string �x we find a decomposition of the string;
furthermore, we know that the decomposition is in terms of constituents. In other
words, we have terms r(x0), s(x0) and a constant term t such that

1. �x = rε(sε(tε)),
2. �y �v �z = sε(tε),
3. �v = tε.

Put p := tμ, g(x0) := sμ(x0), and f (x0) := rμ(x0). This defines the functions. The
assumption of syntactic well regimentedness allows us to conclude that since the
terms r(sn(t)) are all orthographically definite, they are also semantically definite.
Hence we have

ιG(r(s
n(t))) = 〈�u �yn �v�zn �w, f (gn(p))〉 ∈ L . (3.66)

Example 3.10 The assumption of the syntactic well regimentedness cannot be
dropped. Here is an example. Let E := v∗. According to Thue (1914) there
is an infinite word w0w1w2 · · · over {a, b, c} such that no finite subword is
immediately repeated. Let M := {w0w1 · · ·wn−1 : n ∈ N}. Our language is
{〈vn, w0w1 · · ·wn−1〉 : n ∈ N}. Here is a CF bigrammar for it: Ω(fa) = Ω(fb) =
Ω(fc) = 1 and Ω(p) = 0. The functions are defined as follows:

Iε∗(p)() := ε Iμ(p)() := ε
Iε∗(fa)(�x) := �x�v Iμ∗ (fa)(�x) :=

{
�x�a if �x�a ∈ M ,

undefined else.

Iε∗(fb)(�x) := �x�v Iμ∗ (fb)(�x) :=
{
�x�b if �x�b ∈ M ,

undefined else.

Iε∗(fc)(�x) := �x�v Iμ∗ (fc)(�x) :=
{
�x�c if �x�c ∈ M ,

undefined else.

(3.67)

Suppose that the assertion of Theorem 3.1 holds for L . Then with the notation as in
the theorem we would have

σ := 〈�u �y2 �v �z2 �w, f (g2(p))〉 ∈ L . (3.68)

3.3 Compositionality and Independence 81

However, g(�x) = �x �e for some string �e; and f (�x) = �x �q for some �q . So, f (g2(p)) =
p �e �e �q . By assumption σ �∈ L , since no string can repeat itself in a string from M .

o
The success of the previous counterexample rested in the fact that the same syn-

tactic function is split into different semantic functions. I conjecture that if this were
not the case Theorem 3.1 will also hold for L even if the grammar is not assumed
to be syntactically well regimented. I simply conjecture that it can be shown that
the grammar has that property anyway. This would constitute a case where the
notions of compositionality based on identity of functions might actually be rele-
vant. If compositionality is based on extensional identity of syntactic functions (see
page 60) then Theorem 3.1 might hold without the assumption of syntactic well
regimentedness. However, this still awaits proof.

I stress again that the diverse pumping lemmata discussed in the literature can
be generalized to interpreted languages in the same way (Ogden’s Lemma, the
strengthened form of Manaster-Ramer, Moshier, and Zeitman (1992), the lemmata
for simple literal movement grammars, see Groenink (1997) and so on). This is
simply because they are all based on the identification of constituents, which are
meaningful units of the language.

Exercise 3.5 Show how to generate the language of Example 3.7 using an indepen-
dent grammar.

Exercise 3.6 Suppose that L ⊆ E × M is an unambiguous countable interpreted
language. Show that L is extensionally autonomous. Show that the result holds also
if we assume that there is a number k such that for every e ∈ E there are at most k
many m with 〈e,m〉 ∈ L .

Exercise 3.7 Suppose that L is a monophone countable interpreted language. Show
that L is extensionally compositional. Note. Show that if G is defined only on the
signs from L , G is already extensionally compositional.

Exercise 3.8 Suppose that L ⊆ E × M is a countable interpreted language which is
a partial bijection between E and M . Then L is independent.

Exercise 3.9 Let L ⊆ E × M be a language such that ε[L] is finite. Show that L is
independent. (Similarly, show that L is independent if μ[L] is finite.)

Exercise 3.10 The following exercise points at some algebraic connections. I refer
to Appendix A for basic algebraic concepts. Let E and M be given. Given a signa-
ture Ω , we can think of a grammar as a partial Ω-algebra G = 〈E × M, I 〉. Now
show the following. (a) G is autonomous if and only if the map ε is a homomorphism
from G onto some algebra E = 〈E, J 〉 of exponents; can you identify the functions
J (f)? (b) G is compositional if and only if μ is a homomorphism from G onto
some algebra 〈M, K 〉 of meanings. Can you identify K (f)? Hint. (b) is dual to (a).

Exercise 3.11 (Continuing the previous exercise.) Show that if a bigrammar is inde-
pendent then the algebra of signs that it generates is a direct product of its algebra
of exponents and its algebra of meanings.

82 3 Compositionality

3.4 Categories

Following the tradition in linguistics, I have assumed in Kracht (2003) that signs are
triples σ = 〈e, c,m〉, with e the exponent, m the meaning and c the category of
σ . This is in line with Keenan and Stabler (2001), Pollard and Sag (1994), Mel’čuk
(1993–2000), not to mention Categorial Grammar, for which categories are essen-
tial, and even recent LFG, which assumes a level of m-structures in addition to
c-structure (syntax) and f-structure (semantics) and even a-structure (to deal with
argument handling), see Falk (2001). However, from an abstract viewpoint we must
ask if categories are really necessary. After all, each level that is added introduces
new degrees of freedom and new ways to outplay restrictions in other levels. And,
to add to that the categories are actually not directly observable. Chomsky (1993)
assumes that language relates form with meaning. Whatever this says in practice for
Generative Grammar (and in practice the syntactic categories reappear in the form
part), the initial hypothesis is the same: start with a set of signs that contain only
form and meaning. I am inclined to view categories as basically encoding restric-
tions that are the result of partiality in the operations (see Kracht (2006)). So, we
can in principle do without them but they make the formulation somewhat more
transparent. For example, in a context free grammar rather than making the string
concatenation partial we may say that on the level of exponents there is only one
function, concatenation, which is not partial; and that the partiality arises in the cat-
egories only. It turns out, though, that one needs to be extremely cautious in thinking
that the different formulations are exactly the same. Time and again it appears that
they are only the same in “normal” circumstances and that counterexamples to their
equivalence exist. This section will elaborate on the theme of categories and prove
some results only to abandon them later. One result is that in case the set of signs
contains only finitely many categories they can be eliminated (Theorem 3.2), though
we may be forced to pay a price.

The formal details are as follows. A c-sign is a triple γ = 〈e, c,m〉. The space of
c-signs is a product E × C × M . The projections will be denoted as follows.

ε(〈e, c,m〉) := e, κ(〈e, c,m〉) := c, μ(〈e, c,m〉) := m. (3.69)

Put H := ε × μ, that is,

H(γ) := 〈e,m〉. (3.70)

A c-language is a set of c-signs. A c-grammar consists in a signature of modes
〈F,Ω〉 plus an interpretation function C, which for given f returns a partial function
(E × C × M)Ω(f) ↪→ (E × C × M). As before, the concept we shall be working
with is slightly different.

Definition 3.8 A trigrammar over E × C × M is a quadruple 〈Ω, Iε, Iκ , Iμ〉,
where Ω is a signature and Iε(f) : (E × C × M)Ω(f) → E an interpretation

3.4 Categories 83

of f in E , Iκ(f) : (E × C × M)Ω(f) → C an interpretation of f in C and
Iμ(f) : (E × C × M)Ω(f) → M an interpretation of f in M .

From a trigrammar we form the corresponding c-grammar by putting

G× := 〈Ω, Iε × Iκ × Iμ〉. (3.71)

The c-language of G, L(G), is the set of c-signs generated by this grammar. This is
defined inductively in the usual way.

A trigrammar is autonomous if the exponent of I(f)(�σ) is strongly independent
of the categories and meanings of the input signs; it is compositional if the meaning
of I(f)(�σ) is strongly independent of the exponent and category of the input signs.
In addition to the notions of autonomy and compositionality we now have a third
notion, which I call categorial autonomy. It says that the category of I(f)(�σ) is
strongly independent of the exponents and the meanings of the input signs. The
trigrammar is independent if it is autonomous, compositional and categorially
autonomous. In case of independence we can exchange the functions f ε, f κ , f μ

by their reductions f ε∗ : EΩ(f) → E , f κ∗ : CΩ(f) → C , f μ∗ : MΩ(f) → M , which
are obtained by removing the other components.

Let L = L(G) for some trigrammar G. The H -image of L is

H [L] := {H(γ) : γ ∈ L}
= {〈e,m〉 : there is c ∈ C : 〈e, c,m〉 ∈ L}. (3.72)

The question is whether there is an interpreted grammar for H [L].
Theorem 3.2 Let G = 〈Ω, C〉 be a c-grammar such that L = L(G) ⊆ E ×C × M
for some finite C. Then there exists an interpreted grammar K such that L(K) =
H [L].
Proof Let 〈F,Ω〉 be the signature of G. For a natural number i let Fi be the set of
f such that Ω(f) = i . Define

F+
n := { f�c : f ∈ Fn, �c ∈ Cn}. (3.73)

For example

F+
0 = { f〈〉 : f ∈ F0},

F+
1 := { f〈c〉 : f ∈ F1, c ∈ C},

F+
2 := { f〈c,c′〉 : f ∈ F2, c, c

′ ∈ C}.
(3.74)

As for the signature, we put

Ω+(f�c) := Ω(f). (3.75)

84 3 Compositionality

We define the actions of the functions over this signature.

I(fc0,c1,··· ,cn−1)(〈e0,m0〉, 〈e1,m1〉, · · · , 〈en−1,mn−1〉)
:= H(C(f)(〈e0, c0,m0〉, 〈e1, c1,m1〉, · · · , 〈en−1, cn−1,mn−1〉))

(3.76)

This can also be written as follows. Put σi := 〈ei , ci ,mi 〉. Then

I(f�c)(H(σ0), H(σ1), · · · , H(σn−1)) := H(C(f)(σ0, σ1, · · · , σn−1)). (3.77)

Here the left-hand side is defined if and only if the right-hand side is; and in this
case the left-hand side is defined to be whatever the right-hand side is. This defines
the grammar K := 〈Ω, I〉.

We shall show that L(K) = H [L]. First: L(K) ⊇ H [L(G)]. To this effect, let
σ ∈ L(G). We show that H(σ) ∈ L(K). By assumption, there is a term t in the
signatureΩ such that ιG(t) = σ . We shall construct a term t+ by induction on t and
show that ιK (t+) = H(ιG(t)) = H(σ). Base case. t = f , where f is a constant.
Then f + := f〈〉. Now, ιK (f +) = H(ιG(f)), by construction. Inductive case. t =
f s0s1 · · · sn−1. Ω(f) = n > 0. Let ιG(si) = 〈ei , ci ,mi 〉. By induction hypothesis,
for every i < n there is a term s+i such that ιK

(
s+i
) = H(ιG(si)). Then C(f) is

defined on the ιG(si) and therefore I(fc0,c1,··· ,cn−1) is defined on 〈ei ,mi 〉 = ιK
(
s+i
)

and yields the value

ιK (t
+) = I(f�c)

(
ιK
(
s+0
)
, ιK
(
s+1
)
, · · · , ιK

(
s+n−1

))

= I(f�c)(〈e0,m0〉, · · · , 〈en−1,mn−1〉))
= H(C(f)(〈e0, c0,m0〉, · · · , 〈en−1, cn−1,mn−1〉))
= H(C(f)(ιG(s0), ιG(s1), · · · , ιG(sn−1)))

= H(ιG(t))

= H(σ)

(3.78)

Second: L(K) ⊆ H [L]. Let σ ∈ L(K). Then there is a term t such that ιK (t) = σ .
Put t− as follows:

(f�cs0 · · · sΩ(f)−1)
− := f s−0 s−1 · · · s−Ω(f)−1. (3.79)

In particular, (f〈〉)− = f . We shall show that H(ιG(t−)) = ιK (t); for then put
γ := ιG(t−). It follows that H(γ) = σ . The remaining proof is by induction on
t . Base case. Ω(f�c) = 0. In this case H(ιG(t−)) = ιK (t), by definition. Inductive
case. n := Ω(f) > 0. Let ιG

(
s−i
) = ci and �c = 〈c0, c1, · · · , cn−1〉. Then, using

(3.77):

3.4 Categories 85

H(ιG(t
−)) = H

(
ιG
(

f s−0 · · · s−n−1

))

= H
(
C(f)

(
ιG
(
s−0
)
, · · · , ιG

(
s−n−1

)))

= I(f�c)
(
H
(
ιG
(
s−0
))
, H
(
ιG
(
s−1
))
, · · · , H

(
ιG
(
s−n−1

)))

= I(f�c)(ιK (s0), ιK (s1), · · · , ιK (sn−1))

= ιK (t)

(3.80)

This had to be shown. ��
We shall write H(G) for the grammar K , for future reference. Notice that the

base cases are actually redundant in both parts; they are covered by the induction
step!

This result is of some significance. It says that the categories are redundant. More
precisely, they can be removed from the signs at the cost of introducing more modes
of composition. The proof is completely general; it uses no assumptions on the
grammar. This applies to CFGs but there are other cases too. Categorial grammars
in principle use an infinite number of categories. However, mostly only a finite
number of them is needed in a particular grammar. It may well be that the lexicon
allows to produce only finitely many categories in any case. Such is the case in the
Ajdukiewicz-Bar Hillel Calculus. The Lambek-Calculus is different in that we can
create and use infinitely many categories (for example, if we have the product then
we can form arbitrarily long categories). However, given that the Lambek-Calculus
yields a context free language (see Pentus (1997)) it therefore enjoys a formulation
using no categories whatsoever, by the above theorem.

It is worth pointing out why this theorem is actually not trivial. Suppose that
a language has nouns and verbs and that these word classes are morphologically
distinct. Suppose further that there are roots that can be used as nouns and verbs.
English is such a language. Here are examples: /dust/, /walk/, /leak/ and so on, are
examples of words that can be either nouns or verbs. Dictionaries see the matter as
follows: the word /leak/ can be both a noun and a verb; if it is a noun it means
something, say m, if it is a verb it means something else, say m̂. Thus, dictio-
naries use categories; they say that the language contains two signs: 〈leak, n,m〉
and 〈leak, v, m̂〉. For example, according to the Shorter Oxford English Dictionary
(Onions, 1973), /leak/ as a verb means: “(1) to pass (out, away, forth) by a leak or
leakage. (2) To let fluid pass in or out through a leak.” The noun has this meaning
“(1) A hole or fissure in a vessel containing or immersed in a fluid, which lets the
fluid pass in or out of the vessel [...] (2) action of leaking or leakage.” These two
meanings are clearly distinct. The latter is a physical object (hole) while the former
is a process.

If we eliminate the categories, we are left with the signs 〈leak,m〉 and
〈leak, m̂〉. It seems that vital information is lost, namely that /leak/ means m only
if it is a noun, and likewise that it means m̂ only if it is a verb. On the other hand,
we still know that /leak/ means m and m̂. If we perform the construction above,
the following will happen. The function that forms the past tense applies to the sign
〈leak, v, m̂〉 but not to the sign 〈leak, n,m〉. It is the interpretation of some mode

86 3 Compositionality

f . This mode is now replaced among others by a mode fv , which takes as input
only the sign 〈leak, m̂〉 and forms the sign 〈leaked,past′(m̂)〉. It is not defined on
〈leak,m〉. Similarly the other functions are described.

Notice that the elimination of categories results in a redistribution of grammati-
cal knowledge. The morphological (or syntactic) information is placed elsewhere. It
used to be encoded in the categories of the signs. Now it is encoded in the domain of
the newly introduced functions. For example, the domain of the function fv forming
the past tense of verbs is the set of pairs 〈�x,m〉 where �x is a root and m the verbal
meaning of that root. It is undefined on 〈�y,m〉 if �y cannot be a verbal root or other-
wise does not have the meaning m; it is not defined on 〈�x, m̂〉 if m̂ is not a meaning
of the verbal root �x .

Although categories can be eliminated, this does not mean that they should be
eliminated. One reason is purely practical: in evaluating a term, the computation
may be much easier if we carried along category information, since the categories
can be made to fit the partial nature of the functions. This is quite clear in Categorial
Grammar, for example, which employs something that may be dubbed categorial
well-regimentation; it means that the categories alone can tell whether a term is
definite. To see whether a mode applies to certain signs it is enough to check the
categories. If we used the above definition, we would have to recompute the category
of the signs over and over. Additionally, we shall show below that the elimination of
categories can have the effect of removing desirable properties from the grammar.
Hence it may be desirable to keep the format in the usual way; it is however essential
to know that categories are theoretically redundant.

As I just said, eliminating categories might come at a price. For example,
we might lose compositionality of the grammar. To define compositionality for
c-languages, we simply repeat Definition 3.5 almost verbatim. The following exam-
ple now shows that compositionality and autonomy can be lost under reduction.

Example 3.11 Our example is based on the grammar of Example 3.7. We introduce
a set C = {o, p} of categories. For any given triple 〈e, c,m〉 we define

K(f1)(〈e, c,m〉) :=
{
〈e�a, p,m + 1〉 if c = p,

undefined else.

K(f2)(〈e, c,m〉) :=
{
〈e�a, o,m〉 if c = p,

undefined else.

(3.81)

From this grammar we can define the following independent trigrammar. Let
(fi)

ε∗(e) := e�a, (f1)
μ∗ (m) := m + 1, (f2)

μ∗ (m) := m and, finally, (f1)
κ : p
→

p, o
→↓ (= undefined), (f2)
κ : p
→ o, o
→↓. Call this trigrammar K . K is

independent, its reduction via H is not; it also is neither autonomous (only exten-
sionally autonomous) nor compositional (only extensionally compositional). For the
reduction is exactly the grammar of Example 3.7. o

Nevertheless, it is also possible to establish a positive result. Let L be a language.
Say that it allows to guess categories if the following holds. There are functions

3.4 Categories 87

p : E → ℘(C) and q : M → ℘(C) such that if 〈e, c,m〉 ∈ L then p(e) ∩ q(m) =
{c} and that if 〈e, c,m〉 �∈ L then p(e) ∩ q(m) = ∅. This means that if e and m are
given then c is unique; and moreover, what can be inferred from e by itself and by
m itself is enough to guess c.

Proposition 3.2 Let L be an independent c-language that allows to guess cate-
gories. Suppose further that L has only finitely many categories. Then H [L] is
independent.

Proof Let p : E → ℘(C) and q : M → ℘(C) be the guessing functions. Let G be
an independent c-grammar for L . By assumption, for every mode f there are three
functions f ε∗ , f κ∗ and f μ∗ such that

I(f)(〈e0, c0,m0〉, · · · , 〈en−1, cn−1,mn−1〉) (3.82)

= 〈 f ε∗ (e0, · · · , en−1), f κ∗ (c0, · · · , cn−1), f μ∗ (m0, · · · ,mn−1)〉.

Proceed as in the proof of Theorem 3.2. We create modes of the form f�c, where
�c is a sequence of categories of length Ω(f). Pick an n-ary mode. If n = 0 and
I(f)() = 〈e, c,m〉 let I(f〈〉)() := 〈e,m〉. Now suppose that n > 0. For each n-ary
sequence of elements from C we introduce a new mode f�c. We set

(f�c)ε(e0, · · · , en−1) :=

⎧
⎪⎨

⎪⎩

f ε∗ (e0, · · · , en−1) if for every i < n: ci ∈ p(ei)

and f κ∗ (�c) is defined,

undefined else.
(3.83)

Likewise we put

(f�c)μ∗ (m0, · · · ,mn−1) :=

⎧
⎪⎨

⎪⎩

f μ∗ (m0, · · · ,mn−1) if for every i < n: ci ∈ q(mi)

and f κ∗ (�c) is defined,

undefined else.
(3.84)

This defines the grammar G+ over the signature Ω+. We show the following
claim by induction over the length of the term: (a) if 〈e,m〉 is the value of a
term t of length n then for the unique c such that 〈e, c,m〉 ∈ L , 〈e, c,m〉 is the
value of t−; (b) if 〈e, c,m〉 is the value of a term t of length n then 〈e,m〉 is
the value of some term u such that u− = t . This will then establish the claim.
Notice first that (a) is straightforward by construction, so we need to establish (b).
For length 0 claim (b) is certainly true. Now let t = f (u0, · · · , un−1), where
n = Ω(f), and let 〈ei ,mi 〉, i < n, be the value of ui . Note right away that
by assumption on L there can be only one such sequence and hence the set is
either empty (no new sign generated) or contains exactly one member (by inde-
pendence of the modes). Suppose first that for some j < n there is no c such
that 〈e j , c,m j 〉 ∈ L . Thus p(e j) ∩ q(m j) = ∅. Then for every sequence �c either
f ε�c (e0, · · · , en−1) or f μ�c (m0, · · · ,mn−1) is undefined. Hence none of the functions

88 3 Compositionality

I(f�c) are applicable on this input. Now suppose that for every i there is a gi such that
〈ei , gi ,mi 〉 ∈ L . We have terms u+i such that 〈ei , gi ,mi 〉 is the value of u+i for i <
n. Then for �g := 〈g0, · · · , gn−1〉 both f ε�g (e0, · · · , en−1) and f μ�g (m0, · · · ,mn−1)

are defined and they equal f ε∗ (e0, · · · , en−1) and f μ∗ (m0, · · · ,mn−1), respectively.
Since f κ∗ (g0, · · · , gn−1) is also defined (by definition of the functions f ε�g and f μ�g)
the following value exists:

〈 f ε∗ (e0, · · · , en−1), f κ∗ (g0, · · · , gn−1), f μ∗ (m0, · · · ,mn−1)〉. (3.85)

This is the value of f �g
(
u+0 , · · · , u+n−1

)
, as is easily seen. (If �c �= �g then either of the

functions f ε�c (e0, · · · , en−1) and f μ�c (m0, · · · ,mn−1) is undefined). ��
We close this section by some considerations concerning linguistic theories.

First, the notion of a grammar as opposed to a bigrammar has the drawback of
not distinguishing between syntactically well-formed input and semantically well-
formed input. Or, to phrase this in the technical language of this book, in a grammar
a term is semantically definite if and only if it is orthographically definite. It has a
semantics if and only if it has an exponent. By using bigrammars we make these
two notions independent. However, as much as this might be desirable, it creates
problems of its own. For now we have to decide which of the components is to
be blamed for the fact that a term has no value. We can see to it that it is the
syntax, or we can see to it that it is the semantics. If we add categories, there is
a third possibility, namely to have a term whose category does not exist. Linguistic
theories differ in the way they handle the situation. Categorial Grammar is designed
to be such that if a term is indefinite then it is categorially indefinite. That means,
as long as a term has a category, it is also syntactically and semantically definite.
This is not to say that there are no semantically indefinite terms. To the contrary,
it was based on typed λ-calculus, so there were plenty of semantically ill-formed
terms. But every time a term is semantically ill-formed it would automatically be
categorially ill-formed. In LFG, each level has its own well-formedness conditions,
so that one tries to explain the complexity of the output by factoring out which level
is responsible for which output phenomenon. The theory is modular.

In Generative Grammar there is no separate level of categories. Technically, the
syntax operates before semantics. Syntax operates autonomously from semantics. In
the present formulation this just means that the syntactic functions do not respond
to changes in the meaning (whence the name autonomy above). However, in our
formulation there is no order in the way the terms are checked. The components of
the complex sign are formed in parallel.

3.5 Weak and Strong Generative Capacity

Say that two CFGs G and G ′ are weakly equivalent if they generate the same string
language; and that they are strongly equivalent if they assign the same structure to
the strings. The question arises what we think to be the structure of the sentence.

3.5 Weak and Strong Generative Capacity 89

It turns out that “same structure” depends on personal conviction. It could be, for
example, identical topology over the string, or identical tree structure, so that only
relabelling is allowed. (See Miller (1999) for an excellent discussion.) Typically, it
is assumed that structure means tree structure. To say that a language is strongly
context free is to assume that the language is given as a set of labelled (ordered)
trees. It is not enough to just consider sets of strings.

In standard linguistic literature it is assumed that syntactic structure is indepen-
dent of semantic structure. Of course this is an illusion, for all tests assume that
when we manipulate certain sentences syntactically we are also manipulating their
semantics. For example, when we consider whether /can/ is a noun and we coor-
dinate it with, say, /tray/ to get /can and tray/, we are assuming that we are
dealing with it under the same semantics that we have chosen initially (/can/ in the
sense of metal object, not the auxiliary). And this should show in the semantics of
the coordinate expression. Hence, no syntactic test really can be performed without
a semantics. Hence, we shall in this section pursue a different route to “structure”,
namely this: we shall explore the idea that structure is in fact epiphenomenal, driven
by the need to establish a compositional grammar for the language.

We have defined the associated string language ε[L] of an interpreted language
to be the set of all strings that have a meaning in L . We can likewise define for a
grammar G the associated string grammar Gε, which consists just in the functions
f ε for f ∈ F . Since f ε may depend on the meanings of the input signs, this
makes immediate sense only for an autonomous bigrammar. Recall that for such
a grammar the functions f ε∗ are defined on EΩ(f) with values in E . Even in this
case, however, it may happen that L(Gε) �= ε[L] precisely because there might
be terms that are orthographically but not semantically definite. (In general, only
ε[L] ⊆ L(Gε) holds.)

Recall from previous discussions that in grammars the domains of f μ and f ε

are identical. In this case some of the distinctions that are of interest in this section
cannot be made, such as the distinction between weak dependency of f ε on expo-
nents and the weak dependency of f μ on the exponents. Therefore, in this chapter
we shall discuss bigrammars and not grammars. Recall also from Section 2.3 the
discussion of context freeness. There we have defined context freeness of a string
grammar intrinsically. The results in this section use the term the “context free” in
this sense. The results are often more general, applying to concatenative grammars
as well. I occasionally point out where results can be generalized.

Definition 3.9 Let L be an interpreted language and C a class of string grammars.
L is weakly C if the associated string language ε[L] has a grammar in C. L is C if
it has a weakly autonomous bigrammar whose associated string grammar is in C.
L is autonomously C if it has a strongly autonomous bigrammar whose associated
string grammar is in C.

Example 3.12 An example of an interpreted language that is weakly but not
autonomously CF. Let

L :=
{
〈an, i〉 : n ∈ N, i < 22n

}
. (3.86)

90 3 Compositionality

Given a string �x of length n the number of terms that unfold to �x is at most exponen-
tial in n. This means that there is a number p such that if |�x | = n then the number
of parses is bounded by 2pn , provided that n exceeds some number k. This means
that the number of meanings for the string �x cannot exceed 2pn , if k < n. However,
in L �x has 22n

meanings and for all n such that 2n > p we have 22n
> 2pn . o

Theorem 3.3 Let L be unambiguous. Then if L is weakly C it is also autonomously
C.

Proof By assumption, there is a function b : E → M such that 〈e,m〉 ∈ L iff
m = b(e) (in set theory, L is that function b). Also, by assumption there is a string
grammar G = 〈Ω, I〉 for ε[L], which is in C. Now put

Iε(f)(〈e0,m0〉, · · · , 〈eΩ(f)n−1,mΩ(f)−1〉) := I(f)(e0, · · · , eΩ(f)−1)

Iμ(f)(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉) := b(I(f)(e0, · · · , eΩ(f)−1))

(3.87)

The bigrammar G+ := 〈Ω, Iε, Iμ〉 is obviously strongly autonomous. Moreover,
it generates L . By construction, if it generates 〈e,m〉 then (1) e ∈ L(G) = E and
(2) m = b(e). Moreover, if 〈e,m〉 ∈ L then m = b(e) and e ∈ L(G). It follows that
〈e,m〉 ∈ L(G+). ��

We can strengthen this as follows.

Theorem 3.4 Let L be unambiguous and monophone. Then if L is weakly C it is
also strongly C.

Proof By the previous theorem, L is autonomous. So f ε∗ is independent of the
meanings. The art is in defining the semantic functions. By assumption, choos-
ing E := ε[L] and M := μ[L], there is a bijection π : E → M such that
L = {〈e, π(e)〉 : e ∈ ε[L]}. With the help of this bijection put

f μ∗ (m0, · · · ,mΩ(f)−1) := π
(

f ε∗
(
π−1(m0), · · · , π−1(mΩ(f)−1)

))
. (3.88)

This defines a grammar that is compositional. ��
Notice that most interesting languages fail to be monophone. Hence the notions

based on string grammars are not as interesting as they appear. A more interest-
ing notion is provided by restricting the set of grammars to weakly independent
bigrammars. In this case the semantic functions are required to act independently
of the string functions. This means that the added semantic functions must give a
unique value independently of the strings. It is however possible to tailor the domain
of the semantic functions using the exponents. If the latter option is unavailable, we
talk of superstrong generative capacity. It means that the semantic functions do not
need to see the exponents nor even know when they should be undefined.

Definition 3.10 Let L be a language and C a class of string grammars. L is strongly
C if it has a weakly independent bigrammar whose associated string grammar is in
C. L is superstrongly C if it has an independent bigrammar whose associated string
grammar is in C.

3.5 Weak and Strong Generative Capacity 91

We shall see below an example of a language that is weakly CF but neither super-
strongly nor strongly CF and an example of a language that is strongly CF but not
superstrongly CF. Notice that by definition CFGs are strongly autonomous, so the
distinction between strong and superstrong turns on the possibility to have a weakly
compositional or compositional CFG, respectively.

Example 3.13 (See also Janssen (1997).) This example shows that weakly equiva-
lent grammar classes may not be strongly equivalent. A CFG G is left regular if it
only has rules of the form A → Bx , A → ε, or A → x , A and B nonterminals and
x a terminal symbol. G is right regular if it only has rules of the form A → x B,
A → ε or A → x , A and B nonterminals and x a terminal symbol. Let CL be
the class of left regular grammars and CR the class of right regular grammars. The
language we look at is the language of binary strings and their ordinary denotations:
A := {O, L}. For nonempty �x ∈ A∗ we put

n(O) := 0

n(L) := 1

n(�xO) := 2n(�x)
n(�xL) := 2n(�x)+ 1

(3.89)

Finally,

L := {〈�x, n(�x)〉 : �x ∈ A+}. (3.90)

This language is weakly left regular and weakly right regular. It is super strongly
left regular but not strongly right regular. Here is a left regular strongly autonomous
bigrammar (couched as a grammar). F := { f0, f1, f2, f3}, Ω(f0) = Ω(f1) = 0,
Ω(f2) = Ω(f3) = 1.

I(f0)() := 〈O, 0〉
I(f1)() := 〈L, 1〉

I(f2)(〈�x, n〉) := 〈�x�O, 2n〉
I(f3)(〈�x, n〉) := 〈�x�L, 2n + 1〉

(3.91)

There is however no independent right regular bigrammar for this language. Sup-
pose to the contrary that there is such a bigrammar. It has zeroary functions (to
reflect the terminal rules) and unary functions. The latter reflect the nonterminal
rules. Hence, they must have the form

f ε(〈�x, n〉) = �y��x (3.92)

where �y is a single symbol.
I now give a combinatorial argument that is worth remembering. Consider the

following strings:

LO, LOO, LOOO, LOOOO, · · · (3.93)

92 3 Compositionality

These strings must be obtained by adding /L/ to a string consisting in zeroes. We
do not know which function is responsible for adding the /L/ in the individual cases
(we may have any number of modes) but what we do know is that there is one
mode f such that I(f) creates two of them, say /LOOO/ and /LOOOOOOO/. By defini-
tion, it creates them from the strings /OOO/ and /OOOOOOO/, respectively. Now, these
strings have the same meaning, namely 0. If the grammar is compositional, f μ is
independent of the exponent. However, we must now have f μ(0) = 8, as well as
f μ(0) = 128, a contradiction.

I(f)(〈OOO, 0〉) = 〈LOOO, 8〉 = 〈 f ε(OOO), f μ(0)〉
I(f)(〈OOOOOOO, 0〉) = 〈LOOOOOOO, 128〉 = 〈 f ε(OOOOOOO), f μ(0)〉 (3.94)

o

This argument is pretty robust, it precludes a number of strategies. For example,
making syntactic or semantic functions partial will obviously not improve matters.

The example is useful also because it shows the following. Suppose that C and
D are classes of string grammars such that every string language that is C is also
D. Then it does not necessarily hold that a language that is superstrongly C is also
superstrongly D. For in the above example, we have two classes of grammars that
generate the same set of string languages but they are not identical when it comes to
interpreted languages.

The proof in the previous example is somewhat less satisfying since CFGs also
use categories, though it works in this case as well. In order to include categories
we have to switch to c-languages. We shall not introduce special terminology here
to keep matters simple. Basically, if L is a language of c-signs it is called weakly
CF if the associated string language is CF. It is called CF if there is an independent
c-grammar for it whose string and category part taken together is CF.

Example 3.14 We continue Example 3.13. Given the same language L we show
that there is no independent right regular c-language L ′ whose projection to A∗ ×
M is L . This is to say, allowing any classification L ′ of string-meaning pairs into
finitely many categories, there is no independent right regular c-grammar for L ′.
The argument is basically the same. We look at unary functions. If f is unary, it has
the form

I(〈�x, γ, n〉) = 〈 f ε∗ (�x), f κ∗ (γ), f μ∗ (n)〉 (3.95)

for some f ε∗ , f κ∗ and f μ∗ . Furthermore, f ε∗ (�x) = �y��x . Look at the signs σp :=
〈LOp, γp, 2p〉 (p ∈ N). Let tp be an analysis term of σp. Either tp = f for some

zeroary f , or tp = f sp for some unary f . In the latter case, f ε∗ (�x) = LOk��x for
some k that depends only on f and so sp unfolds to 〈Op−k, δp, 0〉. Now we look at
f μ∗ . We have f μ∗ (0) = 2p. It follows that if q �= p then tq does not have the form
f sq . There are however only finitely many functions. o

3.5 Weak and Strong Generative Capacity 93

Notice that for the argument to work we did not have to assume that there are
only finitely many categories. For the argument requires only (weak!) independence
of the meaning functions from the exponents and the categories.

Example 3.15 An example to show that strong and superstrong CF languages are
distinct. Consider the number expressions of English. We may for simplicity assume
that the highest simple numeral is /million/. To keep this example small we add
just the following words: /one/, /ten/, /hundred/, /thousand/. It will be easy to
expand the grammar to the full language. Number expressions are of the following
kind: they are nonempty sequences

�x�
0 (million�)

p0��x�
1 (million�)

p1� · · ·� (�x�
n−1million�)

pn−1 (3.96)

where p0 > p1 > · · · > pn−1 and the �xi are expressions not using /million/,
which are nonempty sequences of the following form.

((one� | ten� | one�hundred�)thousand�)? (3.97)

(one� | ten� | one�hundred�)?

This language is not weakly CF. It does not satisfy the Pumping Lemma (see
Exercise 3.13). It can therefore not be superstrongly CF. However, it is strongly CF.
Here is a grammar for it. Call a block an expression containing /million/ only at
the end. Say that �x is m-free if it does not contain any occurrences of /million/ and
that it is t-free if it is m-free and does not contain any occurrences of /thousand/.
The grammar is given in Table 3.1. It has two modes of composition: “additive” con-
catenation and “multiplicative” concatenation. Since the language is unambiguous,

Table 3.1 Number names

I(f0)() := 〈one, 1〉
I(f1)() := 〈ten, 10〉
I(f2)() := 〈hundred, 100〉
I(f3)() := 〈thousand, 1000〉
I(f4)() := 〈million, 1, 000, 000〉

I(a)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈�x� � �y,m + n〉 if �x is a block and m > n

or �x m-free but not t-free,

and �y is t-free,

undefined else.

I(m)(〈�x,m〉, 〈�y, n〉) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈�x� � �y,mn〉 if �x is a block and �y = million

or �x = one and

�y = hundred, thousand

or �x = one�hundred,

�y = thousand,

undefined else.

94 3 Compositionality

we can formulate a bigrammar using string functions that are total and semantic
functions that are partial. Now define

A(�x, �y,m, n) if and only if either (a) �x is a block and m > n or (b) �x is m-free but not t-free
and �y is t-free.

Also define

B(�x, �y,m, n) if and only if either (a) �x is a block and �y = million or (b) �x = one and
�y ∈ {hundred, thousand} or (c) �x = one�hundred and �y = thousand. (See Fig. 3.1).

Then define the modes as follows.

aε(〈�x,m〉, 〈�y, n〉) := �x� ��y

aμ(〈�x,m〉, 〈�y, n〉) :=
{

m + n if A(�x, �y,m, n),
undefined else.

mε(〈�x,m〉, 〈�y, n〉) := �x� ��y

mμ(〈�x,m〉, 〈�y, n〉) :=
{

mn if B(�x, �y,m, n),
undefined else.

(3.98)

Thus, the semantic functions are weakly independent of the exponents but not
strongly independent.

Variations can be played on this theme. First, if we introduce the word /zero/ and
allow the use of expressions such as /zero�(million�)k/ then the semantic condi-
tion “m > n” in A(�x, �y,m, n) must be replaced by a syntactic condition involving
the number k. In this case we may however say that the semantic functions are total
while the syntactic functions are restricted and so the language is not really CF. o

Example 3.16 Here is another example, see Radzinski (1990). In Chinese, yes-no
questions are formed by iterating the VP. I reproduce the syntax of Chinese in
English. To ask whether John went to the shop you say

John went to the shop not went to the shop? (3.99)

The recipe is this. Given a subject �x and a VP �y, the yes-no question is formed like
this

�x��y�not��y? (3.100)

The data for Chinese are not without problems but I shall ignore the empirical com-
plications here and pretend that the above characterization is exact. One analysis
proceeds via copying. An alternative analysis is the following. Observe that in Chi-
nese, disjunctive statements are formed like this. To say that subject �x �ys or �zs you
may simply say

�x��y��z. (3.101)

3.5 Weak and Strong Generative Capacity 95

In particular, a disjunction between �y and not �z is expressed like this:

�x��y�not��z. (3.102)

In this case it is required that �z �= �y. This suggests that we may also form the yes-no
question by concatenation, which however is partial. It is possible to construct a
weakly CF bigrammar but not a strongly CF one. o

I shall now return to the question whether ambiguity can be removed from a lan-
guage. The question is whether there is a transform of a language into an unambigu-
ous language and how that affects the possibility of generating it with a given class
of grammars. It shall emerge that there are languages that are inherently structurally
ambiguous. This means the following. Given a language L that is unambiguous,
every derivation of a given exponent must yield the same meaning. Thus, as one
says, all structural ambiguity is spurious.

Definition 3.11 Let G be a grammar. A G-ambiguity is a pair (t, t ′) of nonidentical
terms such that ιG(t) = 〈e,m〉 and ιG(t ′) = 〈e,m′〉 for some e, m and m′. In this
case we call e structurally ambiguous in G. The ambiguity (t, t ′) is spurious if
m = m′. Also, (t, t ′) is a lexical ambiguity, where t ≈0 t ′, which is defined as
follows:

f ≈0 g if Ω(f) = Ω(g) = 0

f s0 · · · sn−1 ≈0 f t0 · · · tn−1 if n > 0, f = g and si ≈0 ti for all i < n
(3.103)

An ambiguity that is not lexical is called structural.

Alternatively, an ambiguity is a pair (t, u)where tε = uε. Let L be a language. Then
define the functional transform of L in the following way. For e we put e◦ := {m :
〈e,m〉 ∈ L}.

L§ := {〈e, e◦〉 : e ∈ ε[L]}. (3.104)

The functional transform of L is such that every e has exactly one meaning, which
is the (nonempty) set of meanings that e has in L .

Example 3.17 We let A := {p, 0, 1,¬,∧,∨}. F := { f0, f1, f2, f3, f4, f5},
Ω(f0) := 0, Ω(f1) := Ω(f2) := Ω(f3) := 0, Ω(f4) := Ω(f5) := 2. Meanings
are sets of functions from V := {0, 1}∗ to {t, f }. We define UBool as the language
generated by the following CFG GU . For a variable p�x , [p�x] = {β : β(�x) = t}.
Given U = [p�x], it is possible to recover �x . Given U , let †U be the unique �x for
which [�x] = U . The set of all valuations is denoted by Val.

96 3 Compositionality

I(f0)() := 〈p, [ε]〉
I(f1)(〈�x,U 〉) := 〈�x�0, [(†U)�0]〉
I(f2)(〈�x,U 〉) := 〈�x�1, [(†U)�1]〉
I(f3)(〈�x,U 〉) := 〈¬��x,Val−U 〉

I(f4)(〈�x,U 〉, 〈�y, V 〉) := 〈�x�∧��y, V ∩U 〉
I(f5)(〈�x,U 〉, 〈�y, V 〉) := 〈�x�∨��y, V ∪U 〉

(3.105)

Notice that this language is like natural language in being highly ambiguous: there
are no brackets. Thus, the expression /¬p0∧p/ can be read in two ways: it has
the analysis terms f3 f4 f1 f0 f0, with negation having scope over conjunction and
f4 f3 f1 f0 f0, with conjunction having scope over negation. Clearly, the meanings
are different. o

Let us now try to see whether we can define a CFG for UBool§. We shall keep
the string part of GU from Example 3.17. Look at the strings /p�x∧¬p�x /, where
�x ∈ {0, 1}∗. As they are uniquely readable and they have no satisfying valuation,
their meaning in UBool§ is {∅}. On the other hand, /p�x∧¬p�x∨p�y/ has three analyses
corresponding to the following bracketed strings:

/((p�x∧(¬p�x))∨p�y)/, /(p�x∧(¬(p�x∨p�y)))/, /(p�x∧((¬p�x)∨p�y))/ (3.106)

Thus the meaning is {[�y], [�x] ∩ [�y],∅}. Let us now look at one particular analysis.

J (f5)(〈p�x∧¬p�x, {∅}〉, 〈p�y, [�y]〉) = 〈p�x∧¬p�x∨p�y, {[�y], [�x] ∩ [�y],∅}〉 (3.107)

In this analysis, there are infinitely many results for this pair of inputs, so this is
a case of a grammar that cannot be strongly compositional. There is a possibility,
though, of making the result undefined for this analysis term. Another analysis is
this.

J (f4)(〈p�x, [�x]〉, 〈¬p�x∨p�y, {(Val − [�x]) ∪ [�y],Val−([�x] ∪ [�y)]}〉) (3.108)

= 〈p�x∧¬p�x∨p�y, {[�y], [�x][�y],∅}〉

Here, the arguments provide enough information to compute the result. Thus, it is
conceivable that an independent grammar exists.

Notice that we have so far only shown that there can be no compositional CFG
that uses the structure that the formulae ordinarily have. It is not ruled out that some
unconventional structure assignment can actually work. In fact, for this language no
compositional CFGs exist. As a warm-up for the proof let us observe the following.
Let ϕ be a formula that is composed from variables using only conjunction. Then
although ϕ may be ambiguous, all the ambiguity is spurious: it has one meaning
only. It is the set of assignments that make all occurring variables true. Notice addi-
tionally that neither the order nor the multiplicity of the variables matters. Thus

3.5 Weak and Strong Generative Capacity 97

the following have identical meaning: /p∧p0∧p1/, /p1∧p0∧p1∧p/, /p0∧p∧p1∧p1/.
Next we consider formulae of the form α∨ϕ, where α is a variable and ϕ is of
the previous form. An example is /p0∨p∧p1∧p1∧p2/. We assume that α does not
occur in ϕ and that all occurrences of the same variable are adjacent. Up to spurious
ambiguity this formula has the following bracketing (conjunction binding stronger
than disjunction):

(p0∨p∧p1∧p1∧p2)

(p0∨p)∧p1∧p1∧p2

(p0∨p∧p1)∧p1∧p2

(p0∨p∧p1∧p1)∧p2

(3.109)

The general form is (α ∨ χ) ∧ ρ, and its satisfying valuations make either α ∧ ρ
or χ ∧ ρ true. α is a single variable. It is easy to see that it makes no difference
whether a variable occurs twice or more, while it may matter whether it occurs once
or twice. If v occurs once, it has a choice to be in χ or in ρ. How often it occurs in
either of them does not matter. If v occurs twice, it may additionally occur both in χ
and ρ. However, even in this case there is no difference. Assuming that v does not
occur in α, χ or ρ, here are the choices if it occurs just once:

(α ∨ χ) ∧ v ∧ ρ, (α ∨ χ ∧ v) ∧ ρ (3.110)

Here are the choices if it occurs twice:

(α ∨ χ) ∧ v ∧ v ∧ ρ, (α ∨ χ ∧ v) ∧ v ∧ ρ, (α ∨ χ ∧ v ∧ v) ∧ ρ. (3.111)

The first reading of (3.111) is the same as the first reading of (3.110), the last reading
of (3.111) the same as the last reading of (3.110). The middle reading is synonymous
with the first. (This argument requires χ to be nonempty.) For the purpose of the next
theorem say that a bigrammar 〈Ω, Iε, Iμ〉 is a concatenation bigrammar if 〈Ω, Iε∗〉
is a concatenation grammar. (Notice that the meaning functions can be partial, too
and that their partiality is not counted in the definition, since we take the string
reduct of the grammar.)

Theorem 3.5 UBool§ has no independent concatenation bigrammar. Hence,
UBool§ is not strongly CF and also not superstrongly CF.

Proof The proof will establish that there is no strongly independent concatenative
grammar that has no syncategorematic symbols. We leave the rest of the proof to the
reader. The grammar uses the alphabet of the language, the meanings as specified
and a set C of categories. The functions on the exponents are total. Partiality exists
in the semantics. It will emerge from the proof, however, that introducing partiality
will not improve the situation. We shall show that for given n there is an exponential
number of formulae that have to be derived from a polynomially bounded family
of formulae via a one step application. This is impossible. If the modes are partial,

98 3 Compositionality

this remains impossible since it gives us less definite terms not more. Superstrongly
CFGs do not allow any dependency of the meaning on the strings. Thus, for every
mode f and σi = 〈ei ,mi 〉, i < Ω(f), we have

I(f)(σ0, · · · , σΩ(f)−1) = 〈 f ε(e0, · · · , eΩ(f)−1), f μ(σ0, · · · , σΩ(f)−1)〉.
(3.112)

Let us look at the following kinds of expressions, where V = p(0 | 1)∗ is the set of
variables:

V∨(V∧)+V∨V (3.113)

For ease of understanding, we shall first ignore the internal structure of variables and
present them as units. The more concrete structure of our formulae is as follows, in
ordinary notation:

ϕ = p0 ∨ p2 ∧ p4(∧p4) ∧ p5(∧p5) · · · pn+3(∧pn+3) ∧ p3 ∨ p1 (3.114)

Let us say that ϕ has a cut at i if the letter pi is repeated twice. Let I be the set of
indices i such that pi occurs in ϕ; let R be a subset of I . Then by ϕR denote the
formula that is like ϕ having a cut exactly at those i that are in R. We show first the
following claim.

Claim. Let R, S ⊆ [4, n + 3] = [4, 5, · · · , n + 3]. If R �= S then the meaning of ϕR in
UBool§ is different from that of ϕS .

Let us look at the possible readings of such a formula. Pick a variable v = pi .
Bracketings are of several forms.

The first set is where the scopes of the disjunctions are nested: we consider the
case where the first disjunct takes scope over the second (the other case is dual).
(Here, ∧ binds stronger than ∨. γ1 may be empty; δ2 may not be.)

(Form 1) (p0 ∨ γ1 ∧ (γ2 ∧ pi ∧ δ ∨ p1)) or (p0 ∨ γ1 ∧ (γ2 ∧ pi ∧ pi ∧ δ ∨ p1))

(Form 2) (p0 ∨ γ ∧ pi ∧ δ1 ∧ (δ2 ∨ p1)) or (p0 ∨ γ ∧ pi ∧ pi ∧ δ1 ∧ (δ2 ∨ p1))

(Form 3) (p0 ∨ γ ∧ pi ∧ (pi ∧ δ ∨ p1))

The two variants of Form (1) and (2) are equivalent. Form (3) is equivalent with
Form (2) with δ = δ2. Let us now consider the case where the scopes of the disjunc-
tion signs do not intersect. We get the following list of forms, where it is assumed
that γ , δ1 and δ2 do not contain pi .

(Form A) (p0 ∨ γ ∧ pi)∧ δ1 ∧ (δ2 ∨ p1) or (p0 ∨ γ ∧ pi ∧ pi)∧ δ1 ∧ (δ2 ∨ p1);

(Form B) (p0 ∨ γ1)∧ γ2 ∧ (pi ∧ δ ∨ p1) or (p0 ∨ γ1)∧ γ2 ∧ (pi ∧ pi ∧ δ ∨ p1);

(Form C) (p0 ∨ γ1) ∧ γ2 ∧ pi ∧ δ1 ∧ (δ2 ∨ p1)

or (p0 ∨ γ1) ∧ γ2 ∧ pi ∧ pi ∧ δ1 ∧ (δ2 ∨ p1);

3.5 Weak and Strong Generative Capacity 99

(Form D) (p0 ∨ γ1) ∧ γ2 ∧ pi ∧ (pi ∧ δ ∨ p1);

(Form E) (p0 ∨ γ ∧ pi) ∧ pi ∧ δ1 ∧ (δ2 ∨ p1); and

(Form F) (p0 ∨ γ ∧ pi) ∧ (pi ∧ δ ∨ p1).

(We allow δi and γ j to be empty.) The two variants of Forms (A), (B) and (C) are
equivalent. Forms (D), (E) and (F) only exist if the formula has a cut at i . Thus, it
is enough if we show that one of them has no equivalent formula of either of (A),
(B) and (C). It is easily seen that Form (D) is equivalent to Form (C) with δ2 = δ.
Similarly, Form (E) is equivalent to Form (C) with γ1 = γ . Finally, we turn to Form
(F):

(p0 ∨ γ ∧ pi) ∧ (pi ∧ δ ∨ p1)

= (p0 ∧ pi ∧ δ) ∨ (p0 ∧ p1) ∨ (γ ∧ pi ∧ pi ∧ δ) ∨ (γ ∧ pi ∧ p1)
(3.115)

Form (F) has a disjunct of the form p0 ∧ p1. This is only the case with Forms (1)
and (2), (A) with δ1 empty and (B) with γ2 empty. Form (F) implies (¬p0)→ γ , as
well as (¬p1) → δ. In Form (1), we therefore must have γ1 = γ and in Form (2)
δ2 = δ. Form (F) implies ¬(p0 ∧ p1)→ pi . This is not a consequence of Forms (1)
and (2), (A) or (B). Thus, Form (F) is not equivalent to any of the previous forms.

It follows that if the formula has a cut at i , it has a reading different from the
formula obtained by removing this cut by removing one occurrence of pi . Now, i
was completely arbitrary. Thus the claim is established.

Now consider an analysis term of ϕR . The immediate constituents of ϕR cannot
contain two disjunction symbols. They can only contain one. In this case, however,
the cuts present in ϕR are not reflected in the semantics. To conclude the argument,
let us assume that the analysis term of ϕR is f s0 · · · sΩ(f)−1. We shall look at all
possible analysis terms for the ϕS , S ⊆ [4, n+3]. We look at (3.112) and count how
many meanings we can compose in this way. The syntactic function is total. Let k∗
be the maximal arity of functions and p := card C the number or nonterminal sym-
bols. Choose a decomposition into parts; each part has a meaning that is determined
just by the subset of [i, j] ⊆ [2, n + 3] of indices for variables that occur in it (and
whether or not it contains p0, p1). For the category there is a choice of p symbols.
The meanings must exhaust the set [2, n + 3]. They can overlap in a single number
(since sometimes pi can occur twice). There are in total at most (2p)k

∗(n+2
k∗−1

)
ways

to cut ϕR into maximally k∗ parts of different category and different meaning. The
combinations of category and meaning do not depend on R. We have

(2p)k
∗
(

n + 2

k∗ − 1

)

< (2p(n + 2))k
∗

(3.116)

Out of such parts we must form in total 2n different meanings to get all the ϕS ,
using our modes. Assume that we have μ modes. If n is large enough, however,
μ(2p(n + 2))k

∗
< 2n . ��

100 3 Compositionality

The proof has just one gap and it consists in the question of variables. The vari-
ables cannot be simple and need to be constructed as well using some modes. It is
not difficult to see that here again just a polynomial number of choices exist, too few
to generate the entire number of formulae that are needed. (See also Exercise 3.14
below.)

There is an interesting further question. Consider in place of the meaning e◦
another one; given that meanings are propositions we can form the disjunctions of
all the possible meanings.

e∨ :=
∨
{m : 〈e,m〉 ∈ L}

L∨ := {〈e, e∨〉 : e ∈ ε[L]}
(3.117)

This leads to the language UBool∨. It is not clear whether this language is
(super)strongly CF.

Exercise 3.12 Prove Theorem 3.3. Prove that the theorem can be strengthened to
languages where a string has boundedly many meanings.

Exercise 3.13 The Pumping Lemma says that if a string language L is CF then there
is a number k such that for every string �x ∈ L of length> k there is a decomposition
�x = �u �y�v�z �w such that for all n (including n = 0): �u �yn �v�zn �w ∈ L . (See Section 3.4.)
Show that the language in Example 3.15 does not satisfy the Pumping Lemma.

Exercise 3.14 Look again at UBool. Call a formula a string of ε[UBool] that con-
tains /p/. (The remaining strings are indices.) Subformulae are (occurrences) of
formulae in the ordinary sense (for example, they are the parts defined by GU in
Example 3.17). We shall gain some insight into the structure of parts of a formula.
Show the following. Let �x be a formula and �y be a substring that is a formula. Then
there is an index �z such that �y�z is a subformula of �x. Thus, any context free grammar
that generates the set of formulae proceeds basically like GU modulo appending
some index at the end of a formula.

Exercise 3.15 Use the previous exercise to show that there is no strongly indepen-
dent context free grammar avoiding syncategorematic rules for UBool§.

Exercise 3.16 Let L be a language with finite expressive power (that is, with μ[L]
finite). Then if L is weakly C, it is strongly C. Give an example of a language that
is weakly C but not superstrongly C. Remark. For the proof to go through we need
some trivial assumptions on C. I propose to assume that membership in C depends
only on the fact that all I(f) have a certain property P .

3.6 Indeterminacy in Interpreted Grammars

This section is largely based on Kracht (2008), though the proof of the central theo-
rem has been greatly simplified. We have considered in Section 2.4 the notion of an
indeterminate grammar. I shall now pick up that theme again, fulfilling my earlier

3.6 Indeterminacy in Interpreted Grammars 101

promise to show that if we are serious about compositionality then indeterminacy is
not an option.

Definition 3.12 Let E and M be sets of exponents and meanings, respectively. An
indeterminate interpreted grammar over E × M is a pair 〈Ω, I〉, where Ω is a
signature and for every f ∈ F , I(f) ⊆ (E × M)�(f)+1. The language generated
by G, in symbols L(G), is defined to be the least set S such that for every f ∈ F
and all σi ∈ E × M , i < Ω(f) and τ ∈ E × M :

If for all i < Ω(f), σi ∈ S and if 〈σ0, · · · , σΩ(f)−1, τ 〉 ∈ I(f), then τ ∈ S.
(3.118)

This is the broadest notion, allowing to form signs from signs. Now, as before we
have to replace grammars by bigrammars. The definition is completely analogous.
Instead of a pair of functions f ε and f μ we have a pair of relations

f ε ⊆ (E × M)Ω(f) × E,
f μ ⊆ (E × M)Ω(f) × M.

(3.119)

This is called an indeterminate (interpreted) grammar. G is autonomous if the
exponent of the output sign is independent of the meanings. We can explicate this
as follows. For every f and σi = 〈ei ,mi 〉 and σ ′i = 〈ei ,m′

i 〉 ∈ E × M (where
i < Ω(f))

if 〈�σ , e〉 ∈ f ε then 〈 �σ ′, e〉 ∈ f ε. (3.120)

This can be restricted to the language generated by the grammar but we refrain
from introducing too many fine distinctions. Dually, compositionality is defined.
Let us draw some consequences. If G is indeterminate, we say that the indeter-
minacy of G is semantically spurious if for all σi ∈ L(G), i < Ω(f) + 1, if
〈σ0, · · · , σΩ(f)−1, 〈e,m〉〉 ∈ I(f) and 〈σ0, · · · , σΩ(f)−1, 〈e,m′〉〉 ∈ I(f) then
m = m′. This means that G restricted to its own language actually has a seman-
tically functional equivalent (the exponents may still be indeterminate even inside
the language). Syntactically spurious indeterminacy is defined dually.

Proposition 3.3 Let L be unambiguous and assume that G is an indeterminate
interpreted grammar for L. Then the indeterminacy of G is semantically spurious.

The proof is straightforward. If we generate two signs 〈e,m〉 and 〈e,m′〉 from the
same input (in fact from any input), then m = m′.

Thus, G is already autonomous (at least extensionally). For an unambiguous
grammar it may still be possible to write an indeterminate compositional (and hence
independent) grammar. In the remainder of this section we study boolean logic and
give both a positive and a negative example. Recall from Example 2.22 boolean
logic in Polish Notation and the unbracketed notation as given in Example 3.17.
Here we shall give yet another formulation, this time with obligatory bracketing.
The details are similar to those in Example 3.17. The only difference is that the

102 3 Compositionality

alphabet also contains the symbols /(/ and /)/ and that the formation rules insert
these brackets every time a new constituent is being formed:

I(f0)() := 〈p, [ε]〉
I(f1)(〈�x,U 〉) := 〈�x�0, [†(U)�0]〉
I(f2)(〈�x,U 〉) := 〈�x�1, [†(U)�1]〉
I(f3)(〈�x,U 〉) := 〈(�¬��x�),Val−U 〉

I(f4)(〈�x,U 〉, 〈�y, V 〉) := 〈(��x�∧��y�), V ∩U 〉
I(f5)(〈�x,U 〉, 〈�y, V 〉) := 〈(��x�∨��y�), V ∪U 〉

(3.121)

We call this language Bool. This grammar defines the semantics of a formula to be
a set of valuations. There is a different semantics, which is based on a particular
valuation β and which is defined as follows.

β(ϕ) =
{

1 if β ∈ [ϕ],
0 else.

(3.122)

Example 3.18 Let B be the string language of boolean expressions. Pick a valuation
β and let

L := {〈ϕ, β(ϕ)〉 : ϕ ∈ B}. (3.123)

Consider an indeterminate string grammar G = 〈F,Ω〉 for it, for example the
grammar from Exercise 2.22. Put F2 := { f 0, f 1 : f ∈ F} and let Ω2(f 0) :=
Ω2(f 1) := Ω(f). Finally, put

I(f 0) := {〈〈ei ,mi 〉 : i < Ω(f)+ 1〉 : 〈ei : i < Ω(f)+ 1〉 ∈ I(f),
β(eΩ(f)) = 0,mΩ(f) = 0},

I(f 1) := {〈〈ei ,mi 〉 : i < Ω(f)+ 1〉 : 〈ei : i < Ω(f)+ 1〉 ∈ I(f),
β(eΩ(f)) = 1,mΩ(f) = 1}.

(3.124)

So the relations are split into two variants, where the first set contains the tuples
whose last member is a formula that is true under the valuation and the second rela-
tion collects the other tuples. This is an indeterminate interpreted grammar. Call it
G2. It might be that the newly created symbols are actually interpreted by functions
but this does not have to be the case. A case in point is Example 2.22, the grammar
for Polish Notation. A given string of length n may possess up to n adjunction sites,
thus making the resulting grammar G2 indeterminate again. Consider for example
the string /∧p∧p∧pp/. Assume that β(p) = 1. Then the value of that formula is also
1. The string /∧p/ can be adjoined at several places, marked here with ◦:

◦∧◦p◦∧◦p◦∧◦p◦p (3.125)

3.6 Indeterminacy in Interpreted Grammars 103

In all cases the resulting formula has value 1 but it is clear that we do not even need
to know this. There are more than two output strings, so some of them must have
the same truth value. o

That the semantics is finite is used essentially in the proof. The example is of
course quite dissatisfying; the functions are undefined depending on what the mean-
ing of the string is. On the other hand, there may be a way to circumvent the depen-
dency on semantics, which is to say, the fact that the meaning figures in the definition
of the functions may just be an artefact of the way we defined them. However, there
are different examples to show that indeterminacy is not such a good idea.

In what is described below I shall look into the possibility of defining a compo-
sitional adjunction grammar for the language of boolean expressions, where ϕ has
as its meaning the set of all assignments that make it true. The rest of this section is
devoted to the proof of the following theorem.

Theorem 3.6 There is no independent tree adjunction bigrammar (and hence no
compositional tree adjunction grammar) for Bool in which all meaning functions
are total.

Independence is of course essential. Since Bool is unambiguous, there can also be no
compositional grammar, for autonomy can be guaranteed at no cost: the dependency
of the exponents on the meanings is eliminable since we can recover the meaning
from the exponent.

Before we can embark on the proof, we have to make some preparations.

Definition 3.13 Let L ⊆ E × M be an interpreted language and D ⊆ E . Then
L � D := L ∩ (D × M) is the D-fragment of L . If E = A∗ and D = B∗ then we
also write L � B in place of L � B∗.

The case where we restrict to a subalphabet is the one that we shall use here. We
shall study the following fragments of Bool:

Var := Bool � {p, 0, 1}
Bool∧ := Bool � {(,), 0, 1, p,∧}
Bool¬ := Bool � {(,), 0, 1, p,¬}

(3.126)

Now assume G is a grammar for L . Then for every f , let

f ε � D := f ε � (D × M)

f μ � D := f μ � (D × M)
(3.127)

Finally,

f � D := (f ε � D)× (f μ � D). (3.128)

For this to be well defined we need to show that the functions stay inside D × M .
For a string �x and a symbol a, let �a(�x) denote the number of occurrences of a in �x .

104 3 Compositionality

For E = A∗, f : En → E is pseudoadditive if for every a ∈ A: either �a(�xi) = 0
for all i < n and then �a(f (�x0, · · · , �xn−1)) = 0 or

�a(f (�x0, �x1, · · · , �xn−1)) ≥
∑

i<n

�a(�xi). (3.129)

If equality holds, f is called additive. A grammar is additive if every function
is. (A combination of Structure Preservation and Syncategorematicity Prohibition
guarantees additivity, actually.) Now suppose further that our grammar is additive
and that D = B∗. Then if all the �xi are in B∗, so is f ε(�x0, · · · , �xn−1). Hence we
have a grammar

(I � B)(f) := I(f) � B

G � B := 〈Ω, I � B〉 (3.130)

Now, G � B generates a subset of L , by construction. Moreover, by induction on
the term t we can show that if ιG(t) ∈ (B∗ × M) then ιG�B(t) = ιG(t). It follows
that G � B generates exactly G � B.

Proposition 3.4 Suppose that G is an additive compositional bigrammar for L.
Then G � B is an additive compositional bigrammar for L � B.

Thus if G is an adjunction grammar so is G � B.

Example 3.19 We look in some detail at the fragment Var. Syntactically, we may
generate this language by admitting adjunction anywhere except before the letter
/p/. Yet, for every weakly compositional grammar G there can only be a bounded
number of adjunction sites for most variables. Consider, for example, the adjunction
string 〈1, ε〉 and the variable

p000000· · ·0 (3.131)

For simplicity we fix the adjunction sites to be of the form 〈p�x, �y, ε〉. Depending
on �x we get a different variable. Thus, for any given rule only one of the adjunction
sites from {〈p0m, 0k−m, ε〉 : m ≤ k} may be chosen for the rule. One way to achieve
this is to only use adjunction strings of the form 〈�x, ε〉 and adjunction sites of the
form 〈p, �y, ε〉. o

Example 3.20 Another place where caution needs to be exercised when doing
adjunction is the following. Let ϕ be a formula consisting in variables and their
negations. Suppose that ϕ contains a variable and its negation, as in

(p01∧(¬p01)) (3.132)

3.6 Indeterminacy in Interpreted Grammars 105

Then no valuation satisfies ϕ. In other words, we have 〈ϕ,∅〉 ∈ Bool. Consider now
what happens if we adjoin to one of them some string. Then one of the occurrences
disappears and the formula may suddenly have valuations that satisfy it. Let us
adjoin /1/, for example:

(p101∧(¬p01)) (3.133)

Any valuation mapping /p101/ to 1 and /p01/ to 0 satisfies this formula. Suppose
that G is compositional. (Weakness does not add anything interesting here.) As G
has only boundedly many rules, there can only be boundedly many values computed
from any given meaning. Thus, if G has k rules, card({ f μ(∅) : f ∈ G}) ≤ k. It
follows that adjunction can target only a restricted set of contradicting variables. o

Adjoining binary strings to variable names is a good case to show that the inde-
pendence of syntax and semantics is actually useless for practical applications. In
the case of adjoining other strings, their adjunction is actually syntactically heavily
restricted, see Kracht (2008).

Let me now prove the central theorem. Assume that we have an independent
adjunction bigrammar G for Bool∧. Let ρ be the number of rules of G and κ be the
maximum number of symbol occurrences added by any rule. A tree is called binary
if it only contains occurrences of /0/ and /1/. Choose a formula of the following
form.

ϕ = (p�x0∧(p�x1∧(p�x2 · · ·∧p�x2ρ+2)· · ·))) (3.134)

The length of the �xi is subject to the following restriction. (a) |�xi | > (2ρ + 3)κ and
(b) for i < j < 2ρ + 3: ||�xi | − |�x j || > κ .

Let ϕ be derived by G. Then it contains at most 2ρ + 2 occurrences of trees with
symbols other than /0/ and /1/. (It is not hard to see that for every occurrence of /p/
one occurrence of /∧/, of /(/ and /)/ must be added as well and similarly for the other
nonbinary symbols.) Thus, by Condition (a), each of the �xi contains occurrences
added by a binary tree. Thus, in each of the variables we can somewhere adjoin a
binary tree. There are 2ρ + 3 variables. As a single adjunction can manipulate up to
two variables, we have ρ+ 1 different adjunction sites for binary trees, each manip-
ulating a different set of variables. As we have ρ many rules, two of the adjunction
sites must yield the same output semantically. (At this point totality enters; for it
says that whenever adjunction is syntactically licit there is a corresponding semantic
output.) Hence two of them must yield the same syntactic output. Now, adjunction
at �xi can only enlarge the index by κ many symbols, which by Condition (b) does
not make it the same length as any other �x j , for j �= i . Thus the sets of variables
obtained by adjoining at different sites are different. So is their semantics. We have
ρ + 1 sites and at most ρ different results. Contradiction.

106 3 Compositionality

Example 3.21 I give a letter by letter translation of Bool into English:

t (p) = /Jack sees a boy/

t (() = ε
t ()) = ε
t (0) = /who sees a girl/

t (1) = /who sees a boy/

t (∧) = /who sees no one and/

t (∨) = /who sees no one or/

t (¬) = /it is not the case that/

(3.135)

Now define the functions s as follows.

s(ε) := /who sees no one./

s(a��x) := t (a)���s(�x) (3.136)

This gives us, for example,

s((p0∧(¬p))) =/Jack sees a boy who sees a girl who sees

no one and it is not the case that

Jack sees a boy who sees no one./

(3.137)

Consider the set B := { j} ∪ {b�x : �x ∈ (0 | 1)∗} ∪ {g�x : �x ∈ (0 | 1)∗}. Here j is
Jack, b�x is the boy number �x and g�x the girl number �x . Let U ⊆ (0 | 1)∗. Define
R(U) as follows.

R(U) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{〈b0�x, g�x〉 : �x ∈ (0 | 1)∗}
∪ {〈g0�x, g�x〉 : �x ∈ (0 | 1)∗}
∪ {〈b1�x, b�x〉 : �x ∈ (0 | 1)∗}
∪ {〈g1�x, b�x〉 : �x ∈ (0 | 1)∗}
∪ {〈 j, b�x〉 : �x ∈ U }

(3.138)

What can be shown is that the translation of /p�x/ is true in 〈B, j, R(U)〉 (with
R(U) interpreting the relation of seeing and j interprets the constant “Jack”) iff
�x ∈ U . Thus we have a translation into English that preserves synonymy. Though
the argument is not complete (for the reason that the English examples do away
with brackets and so introduce ambiguity), it does serve to transfer Theorem 3.6 to
English. o
Exercise 3.17 Recall the definition of G× and G× from page 65. Extend these
definitions to indeterminate grammars. Construct an indeterminate grammar G for
which (G×)× �= G.

Exercise 3.18 Write a compositional adjunction grammar for Var.

3.7 Abstraction 107

Exercise 3.19 Let G be additive. Show that if ιG(t) ∈ (B∗ × M) then ιG�B(t) =
ιG(t).

3.7 Abstraction

At the end of this chapter I shall return to a problem that has been central in the
development of modern linguistics: the definition of the unit. Units are abstract
objects and are related to concrete things via realizations. As de Saussure already
insisted, the linguist almost always deals with abstract objects. The letter /b/, the
sound [b], the genitive case—all these things are abstractions from observable real-
ity. Thus, on the one hand the sign 〈/mountain/, λx .mountain′(x)〉 is the only
thing that can be said to belong to langage as de Saussure defined it, on the other
hand it does not exist, unlike particular utterances of the word /mountain/ and par-
ticular mountains (the concept of mountainhood is an abstract object, the only thing
we take to exist in the physical sense are individual mountains). An utterance of
/mountain/ stands to the sequence of phonemes of /mountain/ in the same way
as a particular mountain stands to λx .mountain′(x). In both cases the first is the
concrete entity the second the abstract one, the one that is part of language. The
picture in Fig. 3.5 illustrates this. The main aim of this section is to give some
mathematical background to the idea of abstracting units. Before I do so, I shall
point out that there is no consensus as to how abstract language actually is. In earlier
structuralism it was believed that only the abstract object was relevant. It was often
suggested that only the contrast matters and that the actual content of the contrasting
items was irrelevant.

This view was applied to both phonology and semantics. It was thought that
nothing matters to linguistics beyond the contrast, or feature, itself. It would then

Fig. 3.5 Abstract signs

108 3 Compositionality

seem that the contrast between [p] and [b] could from the abstract viewpoint not be
distinguished from the contrast between [p] and [t]; the labels “voicing” or “labial”
are meaningless to phonology. Similarly, the meaning contrast between “short” and
“tall” is formally indistinguishable from the contrast between “cold” and “hot”; all
that can be said is that the contrasting items are different. This position—though
not without merits, as we shall see—is nowadays not so popular. One reason among
many is that it cannot explain how languages can change in a quasi continuous
way and yet be underlyingly discrete. Additionally, it gives us no insight into why
languages are the way they are, particularly when it comes to the certain bias that
they display (for example to devoice consonants in coda). Also, the precise content
matters more often in language than structuralists were willing to admit. (The same
predicament with respect to natural kinds and induction is discussed in Gärdenfors
(2004)). The idea that we propose here is that the continuous change is the effect
of a continuously changing surface realization of abstract units. The contrasts are a
matter of the underlying abstract language and they get projected to the surface via
realization maps.

The picture that emerges is this. There are in total four domains:

1. concrete exponents (utterances),
2. abstract exponents (phonological representations),
3. concrete meanings (objects, things),
4. abstract meanings (semantic representations).

There are many-to-one maps from the concrete to the corresponding abstract
domains. We take the pairing between concrete exponents and concrete meanings
as given; these are the data. The pairing between abstract exponents and abstract
meanings is postulated and likewise the correspondence concrete-to-abstract. In this
scenario it becomes clear why we can have on the one hand agreement about the
extensional language, say, English and yet disagreement about what the nature of
representations is. Moreover, it becomes clear why it is that different people possess
the same language yet possess a different grammar.

We take the notion of (concrete) language in the purely extensional sense: a set of
pairs between utterances and concrete relata. For concreteness, we shall just assume
the relata to be things. Thus let us be given a set U of utterances and a set R of
(physical) relata, that is, objects of the world. Language in the extensional sense is
a subset of U×R. A pair 〈u, r〉 is in L if and only if u means r in that language. Thus,
if a particular object h, say a house, can be referred to by a particular utterance h′,
e. g., of /house/, then 〈h′, h〉 is a member of English. Some people may worry that R
is potentially too big (something like the universal class) but from a methodological
point of view nothing much is lost if we suitably restrict R. (In set theory one usually
considers models of bounded size, the bound being suitably high. In a subsequent
step one looks at the dependency of the result of the size of the bound.)

Both sets U and R are structured. The intrinsic structure of R is much harder
to establish, so we just look at U . To simplify matters again, we assume that U
consists in occurrences of sound bits (but see Scollon and Wong Scollon (2003) for
an eloquent argument why this is wrong). Then we may be justified in assuming

3.7 Abstraction 109

that only the intrinsic physical quality really matters, in other words: we can shift u
in time (and place) without affecting its signalling potential. Thus, from now on we
deal not with actual utterances but with what we call “sound bits”. Sound bits are
what you store in a file on a computer to play it to someone (or yourself) any time
you want. This is nowadays used a lot in talking machines (as are installed in GPS
systems, dialog systems, trains or elevators). Now let " be the append operation
on sound bits. Such an operation can easily be realised on a computer, and this
technique is also widely used in technical applications. " restricted to U becomes
a partial operation. This is because there are phonotactic restrictions on the combi-
nations of sounds. Given this operation " it is possible to segment sound bits into
smaller units. In this way an utterance h′ can be segmented into a sequence of more
primitive utterances, which are instances of some sound bits corresponding to the
basic sounds of English. Ideally, they correspond to the sounds [h], the diphthong
[aU] and [s]; or maybe the diphthong is disected into [a] and [U]. So, we propose a
set P of primitive sound bits. The set P is an alphabet and " the concatenation. P∗
is the closure of P under". Further, U is a subset of P∗. P is the set of phones. The
choice of P is to some extent arbitrary; for example, in phonetics, an affricate is seen
as a sequence of stop plus fricative (see for example (IPA, 1999)) but in phonology
the affricates are often considered phonemes (= indecomposable). Similar problems
are created by diphthongs. Although segmentation is a problem area, we shall not
go into it here and instead move on to sketch the method of abstraction.

Both utterances and relata are concrete entities. My utterance u of /house/ at
11:59 today is certainly a concrete entity. We can record it and subsequently analyse
it to see if, for example, I really pronounced it in a proper English way or whether
one can hear some German accent in it. Technically, each time you have the com-
puter or tape recorder play u again you have a different utterance. Yet, we believe
that this difference is merely temporal and that the relevant physical composition
(pitch, loudness etc.) is all that is needed to make the two identical for the purpose of
linguistics. That is to say, there is, hidden in the methodology at least, an underlying
assumption that if u and u′ are acoustically the same they are also linguistically the
same. However, in our definitions we need not make any such assumption. If u can-
not be reproduced since it is unique, so be it. If acoustic features really are sufficient
this will actually be a result of the inquiry. Similarly, this building opposite of me is
concrete; I can ask English speakers whether it qualifies to be called u (by playing
them a copy of u). Again there is a question whether calling this building a house
today means that you will do so tomorrow; and if not why that is. If the difference
in time is large enough (some decades) we cannot be sure that we are dealing with
the same language again. If asking a different person we are not sure that s/he uses
the words just like the one we asked before. And so on. Again, such difficulties do
not affect so much the principles of the methodology described below; they mainly
delimit its factual applicability in concrete situations. However, once we know what
the theoretical limitations of this methodology are—independently of its practical
limitations—we can know better how to apply it.

The first tool in abstraction is the method of oppositions. We say that u and u′
are first degree L-equivalent, in symbols, u ∼L u′, if for all r ∈ R: 〈u, r〉 ∈ L ⇔

110 3 Compositionality

〈u′, r〉 ∈ L . Notice that this definition applies to entire utterances and it tells us
whether or not two particular utterances denote the same thing. Similarly, we say
of two relata r and r ′ whether they are first degree L-equivalent if for all u ∈ U :
〈u, r〉 ∈ L ⇔ 〈u, r ′〉 ∈ L . It is possible to factor out first-degree equivalence in the
following way: let

[u]1 := {u′ : u′ ∼L u}, [r]1 := {r ′ : r ′ ∼L r}. (3.139)

Finally, put

L1 := {〈[u]1, [r]1〉 : 〈u, r〉 ∈ L}. (3.140)

Proposition 3.5 Let u′ ∼L u and r ′ ∼L r . Then 〈[u]1, [r]1〉 ∈ L1 if and only if
〈u′, r ′〉 ∈ L.

Proof Assume that 〈[u]1, [r]1〉 ∈ L1. Then 〈u, r〉 ∈ L , by definition. Since u′ ∼L u,
we also have 〈u′, r〉 ∈ L; and since r ′ ∼L r we have 〈u′, r ′〉 ∈ L . This reasoning
can be reversed. ��

We can formalise this as follows.

Definition 3.14 Let U and R be sets, L ⊆ U × R a language. Let f : U → V and
g : R → S be maps such that the following holds:

1. If f (u) = f (u′) then u ∼L u′.
2. If g(r) = g(r ′) then r ∼L r ′.

Then with L ′ := {〈 f (u), g(r)〉 : 〈u, r〉 ∈ L} the triple 〈 f, g, L ′〉 is called an
abstraction of L .

In particular, with the maps ϕ : u
→ [u]1 and ψ : r
→ [r]1 the triple 〈ϕ,ψ, L1〉
is an abstraction of L . This is the maximal possible abstraction. Its disadvantage
is that it is not “structural”. Consider a somewhat less aggressive compression that
works as follows. Assume a representation of utterances as sequences of phones (so,
U ⊆ P∗ for some P). Define p ≈L p′ if for all u " p " u′:

If u " p " u′, u " p′ " u′ ∈ U then u " p " u′ ∼L u " p′ " u′. (3.141)

This can be phrased mathematically as follows: ≈L is the largest weak congruence
on 〈U,"〉 that is contained in ∼L (cf. Appendix A).

Standardly, the congruence ≈L is used to define the phonemes. We say that p
and p′ are allophones of the same phoneme. Even though p and p′ may not be
exchangeable in every context, if they are, exchanging them causes no difference in
meaning. In principle this method can also be applied to sequences of sounds (or
strings) but this is only reluctantly done in phonology. One reason is that phonology
likes the explanation for variability and equivalence to be phonetic: a combination
of two sounds is “legal” because it can easily be pronounced, illegal because its
pronunciation is more difficult. Yet, with a different segmentation we can perform

3.7 Abstraction 111

similar abstractions. Suppose we propose two units, say /good/ and /bett/, which
occur in the gradation of the adjective “good”. In the positive we find /good/ while
in the comparative we find /bett/. Thus, given that gradation proceeds by adding
/∅/ in the positive and /er/ in the comparative we can safely propose that the two are
equivalent. All it takes is to assume that only /good/ can be concatenated with /∅/
and only /bett/ with /er/. There are two reasons why this is not a phonological but a
morphological fact. The first is that there is no phonological law motivated by other
facts that supports this equivalence. The other is that we can assign meanings to all
the four parts; furthermore, we shall assume that /good/ and /bett/ have identical
meaning and with this the facts neatly fall out. One problem however remains in all
these approaches: they posit nonexistent parts. To be exact: they are nonexistent as
utterances in themselves; however, they do exist as parts of genuine utterances. This
contradicts our earlier assumption that the set of valid forms of the language are
only those that are first members of a pair 〈u, r〉. For now we accept forms that are
not of this kind. Notice that the phonological abstraction did not require the units to
be meaningful and proceeded just by comparing alternatives to a sound in context.
The abstract units (phonemes) are not required to be in the language, nor are their
parts. Thus the abstracted image L1 is of a new kind, it is a language (langue) in de
Saussure’s sense. It is certainly possible to do morphology along similar lines.

The language L can be identified with parole, while langue is L1. However, we
should be aware of the fact that while L is unique (given by experience), L1 is
not. The most trivial way in which we can make a different abstraction is by using
different abstract relata.

Definition 3.15 Let A = 〈ϕ,ψ, L1〉 and B = 〈η, θ, L2〉 be abstractions of L . We
call A and B equivalent if

① dom(ϕ) = dom(η) and dom(ψ) = dom(θ),
② there is a bijection i : L1 → L2 such that η × θ = i ◦ (ϕ × ψ).
Put U = dom(ϕ) and R = dom(ψ). Then we have the following situation.

U × R
ϕ × ψ �L1

�
i

L2
η × θ

��������
(3.142)

By definition there is an inverse map j : L2 → L1. Finally, given a grammar
G = 〈Ω, I〉 for L = E × M and an abstraction A = 〈ϕ,ψ, L ′〉 we can define
the abstracted grammar G/A := 〈Ω, IA〉 for L ′ via A as follows. For a sign σ =
〈e,m〉 ∈ E × M let σA := 〈ϕ(e), ψ(m)〉, the abstraction of σ . Then for a function
symbol f define

IA(f)
(
σA0 , · · · , σAΩ(f)−1

)
:= (I(f)(σ0, · · · , σΩ(f)−1))

A. (3.143)

112 3 Compositionality

This is a familiar definition in mathematics; given an equivalence of elements we
define the functions over the equivalence classes by picking representatives. This
definition is sound only if the definition is actually independent of the choice of
representatives. Otherwise the grammar becomes indeterminate.

Example 3.22 Here is an instructive example. Suppose

L = {〈a,m〉, 〈b,m〉, 〈c, p〉, 〈ac, n〉, 〈bc, n′〉}. (3.144)

The grammar consists in the following operations:

I(f0)() := 〈a,m〉
I(f1)() := 〈b,m〉
I(f2)() := 〈c, p〉

I(f3)(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈ac, n〉 if e = a, e′ = c,

〈bc, n′〉 if e = b, e′ = c,

undefined else.

(3.145)

/a/ and /b/ are L-equivalent. Put

L1 = {〈α,m〉, 〈γ, p〉, 〈αγ, n〉, 〈αγ, n′〉}. (3.146)

Let ϕ : a, b
→ α, c
→ γ and 1M the identity on M = {m, p, n, n′}; then A :=
〈ϕ, 1M , L1〉 is an abstraction. However, the grammar is not deterministic. Basically,
the output of IA(f3)(〈α,m〉, 〈γ, p〉) must be both 〈αγ, n〉 and 〈αγ, n′〉. o

It is important to note that the example does not show the impossibility of deliv-
ering a grammar. It just shows that the original grammar cannot necessarily be used
as a canonical starting point. In general, (3.143) is a proper definition only if the
congruence induced by ϕ and ψ is strong. Formally, the congruence induced by an
abstraction is θA, where

〈x, y〉 θA 〈u, v〉 :⇔ ϕ(x) = ϕ(u) and ψ(y) = ψ(v). (3.147)

However, the condition is far too strong to be useful. A far more interesting case is
when the congruence θA is only weak. In this case the function is not independent
of the choice of representatives; however, it is only weakly dependent. We will then
say that IA(f) is simply the image of I(f) under ϕ and ψ . Then in place of (3.143)
we say that IA(�σ) is defined if there are τi , i < Ω(f), such that τi θA σi for all
i < Ω(f) and I(f)(�τ) is defined. And in that case

IA(f)
(
σA0 , · · · , σAΩ(f)−1

)
:= (I(f)(τ0, · · · , τΩ(f)−1))

A. (3.148)

Otherwise IA(�σ) is undefined.

3.7 Abstraction 113

Example 3.23 There are two sounds in the phoneme /ô/, namely the voiced [ô] and
the voiceless [ô

˚
]. They are mapped onto the same phoneme via ϕ. Now, in onset

position, the combination [pô] does not exist in English, neither does the combina-
tion [bô

˚
]. Only the combination [pô

˚
] and the combination [bô] are possible. Consider

the operation " of concatenation. [b] " [ô] is defined; [b] " [ô
˚

] is not. However,
ϕ([ô]) = ϕ([ô

˚
]). Thus, congruences associated with the standard phonemicization

maps are generally only weak congruences. o

Likewise, a grammar for the abstracted language does not give rise to a grammar
of the original language. In fact it may even be impossible to give one.

It is instructive to see that the combinatory restrictions on sounds do not neces-
sarily determine a strong congruence. In fact, they rarely do. This has consequences
worth pointing out. The most important one concerns the standard definition of a
phoneme. In the classical definition, two sounds are members of the same phoneme
if they can be replaced for each other in any context without affecting meaning.
It is clear that this must be read in the sense that replacing s for s′ either yields a
nonexistent form or else a form that has the same meaning. Otherwise, [ô] and [ô

˚
]

might not be in the same phoneme for lack of intersubstitutability. However, that
might not be enough to secure adequate phonemicization. For it also turns out that
the definition requiring the substitutability of single occurrences is also not enough
if we have weak congruences.

Example 3.24 Let L := {〈aa,m〉, 〈bb,m〉}. In this situation it seems justified to
postulate a single phoneme α with ϕ(a) = ϕ(b) = α. The test that uses single
substitutions indeed succeeds: we can replace /a/ by /b/ at any of the places and
the result is either undefined or has the same meaning. The abstracted language is
{〈αα,m〉}.

Now look instead at the language L ′ := {〈aa,m〉, 〈bb, n〉}. Here the definition
based on single substitutions gives wrong results: if we change /a/ to /b/ once we
get /ab/, which is not in the language. But if we change both occurrences we get
/bb/, which however has different meaning. The abstracted language is the same.
This cannot be correct. o

As the previous example showed, it is not enough to do a single replacement.
It is not easy to come up with a sufficiently clear natural example. Vowel harmony
could be a case in point. Recall that vowel harmony typically requires all vowels
of a word to come from a particular set of vowels. In Finnish, for example, they
may only be from {ä, e, i, ö, y} or from {a, e, i, o, u}. Consider now a bisyllabic
word containing two occurrences of /ä/. Exchanging one of them by /a/ results in
a nonharmonic string, which is therefore not a word. However, exchanging two or
more occurrences may yield a proper word of Finnish. (Notice however that there
are plenty of words that contain only one nonneutral vowel and so the logic of this
argument is not perfect. For the latter kind of words it may be enough to exclude
those phonemicizations that are improper for the other words too.)

Chapter 4
Meanings

MEANINGS are the topic of this chapter. More precisely, it is abstract meanings that
we want to characterize. Unlike what is ordinarily assumed we do not consider the structure
of the space of meanings and the functions on them a matter of arbitrary convention. Like
with exponents we must ask what meanings actually are and how they can be manipulated.

4.1 “Desyntactified” Meanings

The present chapter is about what meanings are. Given the discussion of Section 3.7
we have two kinds of meanings to worry about: concrete meanings and abstract
meanings. We shall for the most part consider a calculus of concrete meanings but
most of the results are actually independent of which of the two we study. Though
much has been made of Putnam’s dictum that meanings (that is, concrete meanings)
cannot be in a speaker’s head (Putnam (1975), see also Gärdenfors (2004)), the
question whether or not that is so is actually peripheral to the question we are raising,
namely, what meanings are and how they can be manipulated. It threatens to focus
the debate on questions of factual knowledge rather than principle. Whether or not
my concept of gold is the same as that of another person and who has the right
concept is a question of factual detail. What matters in this book is what kind of
object that concept of mine is and how I use it; and similarly for any other person.
Language is therefore subjective, I make no attempt at constructing a language for
a community of speakers. Communication is effected only via common expressions
and must rely on intersubjective identity (or near identity) in their meaning.

We have said that meanings are given at the outset. It therefore seems to be need-
less to ask what meanings are, we just look at them. However, there is a larger issue
in the background that I cannot adequately treat in this book. The issue is that we
cannot access concrete meanings as such; the only thing we can access is particular
judgements. We have difficulties saying exactly what defines the concept “book”
whereas we seem to be completely reliable in our judgement whether this or that
thing is a book. And so there is a legitimate question as to whether the data we can
access are the ones we actually need.

While sentences are concrete since we can make them appear on tape or on paper,
meanings are not directly observable. There is a long intellectual tradition to assume

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1_4,
C© Springer Science+Business Media B.V. 2011

115

116 4 Meanings

that meanings are structured (see King (2007) for a recent exposition). This position
is adopted not only in philosophy but also in cognitive linguistics. Unfortunately,
it is in practice hard to assess which particular structure the meaning of a given
sentence has. In absence of a priori arguments the methodology should be to try
to discover that structure from the given data. For it very often happens that our
intuitions on meanings are obscured by our own language. What appears to be a
semantic fact often enough is just a syntactic (or morphological) fact in disguise.
In this way semantics is often infected with syntax. To counteract this trend I shall
try to “desyntactify” meanings. (See Erdélyi Szabó, Kálmán, and Kurucz (2007) for
a more radical proposal of desyntactification.) In particular, below I shall identify
some traits of semantic representations that I consider of purely syntactic nature:
hierarchy, order and multiplicity. Hierarchy shows up in the notion of a functional
type; some meanings are functions that can take objects of certain lower types as
arguments. This introduces an asymmetry into meanings that I claim does for the
most part not exist in the meanings themselves. Order shows up in the notion of a
tuple. Predicate logic explicates the meanings of formulae as relations, or sets of
tuples. But where exactly the idea of a first member in a tuple or a second member
is to be found in the actual denotation is unclear. Finally, although we can repeat
a variable, we cannot repeat the same object. It follows that repetition may exist in
syntax but not in semantics. We shall look at these problem areas in more detail.

Frege is one of the proponents of the idea that there are “unsaturated” expres-
sions. For example, a function is unsaturated; it yields a value only when given an
argument. The function x2 + 5, in conventional notation, does not denote a number.
We only get a number when we assign to x some value, say 3. Likewise, Frege
argues, many words do not by themselves express a complete thought. They need
certain argument places to be filled before this is the case. In this view, the phrase
/Ate./ is unsaturated: it lacks a specification of the subject. Thus, only /John ate./
is complete. It is precisely this idea that has been exploited in Montague Grammar
and Categorial Grammar. Both of them diagnose this as a syntactic failure that is
essentially a type mismatch. Unfortunately, it is unclear whether the incompleteness
of /Ate./ is at all a semantic fact. There is an alternative line of analysis, which
treats meanings as intrinsically complete (that is, propositional) and instead views
the unacceptability of sentences such as /Ate./ as a purely syntactic fact of English.
On this view, /Ate./ means “someone was eating something”. There are several
reasons why this is a better idea for natural languages. The main one is that the
correspondence between semantic arguments and syntactic positions is at best weak.
The notion of eating involves both a subject and an object (and a time point, for that
matter). An event of eating is constituted minimally by something being eaten and
someone eating it. In order to pin down the exact meaning we need to know who ate
what when. As it happens, /eat/ can also be used without an object. The standard
approach (even in syntactic theory) has been to assume that in this case the sentence
contains an empty object. Also, there are ways to convey the same meaning and
yet use a fully grammatical construction, such as /There is eating./. What is or
is not obligatorily expressed in a sentence varies greatly between languages. Some
languages allow the subject to be dropped, for example. Finally and relatedly, the

4.1 “Desyntactified” Meanings 117

analogy with functions is misleading in one important respect: while the argument
to the function is an object, that is, a thing, the syntactic subject does not necessarily
supply one. For should we assume that /John or Mary/ denotes an object that we
can feed to the verb, say in /John or Mary ate./? Similarly, /Someone ate./
contains a quantifier in subject position, something that is analysed not as an argu-
ment to the verb but rather as a functor. In my view, a syntactic argument serves to
specify the identity of some object in question. This specification can be incomplete
and thus the function once again lacks any specific value.

Montague has been impressed by the idea that syntactic requirements are at the
heart of semantic nature and has consequently endorsed the view that meanings are
objects of a typed universe of functions. To implement this we may either choose a
universe of the typed λ-calculus or some version of typed combinatory logic. A type
is a term of the language with a single binary symbol → (you might want more type
constructors but this does not change the argument). There is a set of basic types,
for example e and t , and one formation rule: If α and β are types, so is α → β.
Each type α is associated with a set Mα of denotations. It is generally required that
Mα ∩Mβ = ∅ whenever α �= β. This means that every object has at most one type.
Furthermore, we require

Mα→β := (Mβ)Mα := { f : Mα → Mβ}. (4.1)

This means that we only need to fix the sets Mb for basic b.
At its core Montague Grammar uses only two modes of combination: forward

application and backward application.

A>(〈�x,m〉, 〈�y, n〉) = 〈�x� ��y,m(n)〉
A<(〈�x,m〉, 〈�y, n〉) = 〈�x� ��y, n(m)〉 (4.2)

For A>(〈�x,m〉, 〈�y, n〉) to be defined m must be a function that can take n as its
argument. This means that there are α and β such that m is of type α→ β and n of
type α. The result is then an object of type β.

Montague Grammar inherits from λ-calculus a number of traits; one is that func-
tions cannot take several arguments simultaneously. A function can only take one
argument at a time. This can be eliminated either by allowing simultaneous abstrac-
tion or by adding a pair constructor (as in the Lambek Calculus). However, linguists
have supported the idea that functions take their arguments one by one. For this
means that syntax is binary branching. This has been one of the central arguments
in favour of Categorial Grammar. Thus, if we have a predicate with several argu-
ments, we bring it into the desired form by “Currying”, a procedure abstracting
the arguments one by one. Additionally, it assumes that when two constituents are
concatenated to form a new constituent, the meaning of the result is already deter-
mined, at least in the basic calculus. Namely, if two constituents can at all be put
together into a single constituent then one of them will have type α → β and the
other the type α; the result will therefore be of type β. The idea that constituent

118 4 Meanings

formation adds nothing to the meaning is also known as lexicalism. In this section I
shall propose that rather than using functions we should use relations; and that we
should also abandon lexicalism.

The idea of higher order types makes sense only if it is unequivocally clear what
is argument and what is function. For if it is an intrinsic property of the meaning of a
verb that it takes something as its argument there should be no doubt about this at all.
Precisely this, however, has been a problematic issue for Montague Grammar. For
on the one hand a singular proposition like “John is sick” is taken to be one where
the verb denotes a semantic function taking the subject as its argument. On the other
hand, quantified expressions have been argued to be structured in the opposite way:
/everyone/ denotes a function in /Everyone is sick./. In order to avoid this
mismatch, Montague decided to raise the denotation of /John/ so that it becomes
a function over functions. But that was a technical manoeuver. It was clearly not
motivated from semantic considerations but rather from syntactic uniformity. From
here, it is a small step towards the type changing operations, which have been used
extensively in Landmann (2004). However, they threaten to undermine the idea that
we have an intuitive grasp over the semantics of expressions.

Worse, it appears that the idea of the meaning of the syntactic subject as denot-
ing the argument that is supplied to the function is generally unworkable. We can
only say that the subject expression predicates of that argument. Modern semantics
has basically adopted that latter view. However, if that is so, the whole function-
argument asymmetry becomes arbitrary. And if we are free to view the subject at
one moment as the argument to the verb and at another moment as the function I
conclude that the distinction should be dropped altogether. Indeed, some philoso-
phers and linguists have pursued a different semantics. One avenue is event seman-
tics, which has been introduced to overcome not only the rigidity of the typing but
also that of predicate logic itself (see Parsons (1994)). (The need to free seman-
tics from syntactic “impositions” is also felt in Minimal Recursion Semantics (see
Copestake et al. (2005)). However, the latter is driven purely by concerns of practi-
cability and compensates for the lack of syntactic information by introducing labels.
Such approaches, though widespread in computational linguistics do nothing to
answer the questions that I have in mind here: namely whether semantics is indepen-
dent of syntax.) Yet not everyone may be convinced. Therefore, to settle the matter
we need empirical criteria. Additionally we need to see if there is a way to replace
the typed universe with something else. For if there is not, then this in itself would
weaken our position.

The preceding discussion can also be seen in a different light. Even if we grant
that the meaning of /eat/ is a function there might be a question as to how that
function is used in actual semantics. One camp holds that expressions are basi-
cally closed expressions. There are no free variables. One exponent of this view is
P. Jacobson. The opposing view is that there is such a thing as free variables and
there is no need to quantify them away. Proposals to this effect have been made
in Kamp (1981) and Staudacher (1987), among others. The disadvantage of closed
expressions is that they make pronominal reference difficult (if not impossible). (But
see Jacobson (1999, 2000, 2002) for an opposing view.)

4.1 “Desyntactified” Meanings 119

As a consequence, DRT went the opposite way, namely not to abstract away
arguments but use formulae instead, with or without free variables. This however
comes at a price. For if variables are no longer quantified away we must take proper
care of them. There is a standard procedure to eliminate functions from predicate
logic. Likewise we shall show here that an approach based on functions can be
replaced by one that uses open propositions. An open proposition is a proposition
that still needs certain variables to be filled. (These are exactly the “incomplete
thoughts”.) Open propositions are the denotations of formulae. A formula is an
expression of the form ϕ(x0, x1, · · · , xn−1) of type t (= truth value), where xi ,
i < n, are variables of any type. Thus, given an assignment of objects of appropriate
type to the variables this expression will yield a truth value. A notable change to
previous conceptions of truth, however, is that we consider an open proposition true
exactly when it has a satisfying assignment. Thus, /eat/ becomes true exactly when
someone is eating something at some moment. This is opposite to the standard con-
ception in logic where an open proposition is considered true if there is no falsifying
assignment; so /eat/ would be true if everyone eats everything at every moment. In
our approach free variables are inherently existential, in standard predicate logic
they are inherently universal. We should note that one problem that besets the free
variable approach is that the choice of the actual variable inserted matters for the
interpretation of the formula. However, it is patently clear that whether we use x8
or x11 is a matter of convenience. (Fine (2007) has addressed this issue and came
to the conclusion that meanings are relational. I will briefly discuss his proposal
in Section 4.6.) Thus we have to devise a method to interpret such formulae and
manipulate them in such a way that it does not make reference to the actual names
of the variables. It is often thought that algebraic semantics has provided a solution
to this problem, for example in the proposal by Quine. Here, meanings are relations
and there is no talk of variable names. Yet, now we need to talk about positions in a
relation, which are not in semantics either. We must namely also make explicit use
of substitutions based on indices (see Ben Shalom (1996)). So this does not fully
answer the complaint.

There is a well-known procedure to convert all meanings into open propositions.
If m is a meaning of type α, α �= t , then replace it with x = m, where x is of type
α. Consequently, signs of the form 〈�x,m〉 are now replaced by signs of the form
〈�x, x = m〉. Now consider the rule of application:

A>(〈�x,m〉, 〈�y, n〉) = 〈�x� ��y,m(n)〉 (4.3)

In the new semantics it becomes:

U>(〈�x, u = m〉, 〈�y, v = n〉) = 〈�x� ��y, u = m ∧ v = n ∧ w = u(v)〉. (4.4)

This is however not always satisfactory. It introduces the idea of applying m to n
through the construction; and the construction still speaks of applying m to n. There
is an alternative, which runs as follows.

U>(〈�x, u = m(w)〉, 〈�y, v = n〉) = 〈�x� ��y, u = m(w) ∧ v = n ∧ w = v〉 (4.5)

120 4 Meanings

This rule simply conjoins the two meanings and unifies certain variables. The uni-
fication, by the way, is the semantic contribution of the rule itself and cannot—on
pain of reintroducing the same problematic meanings—be pushed into the meanings
of the elements themselves. If m(w) is a function and has to be applied then we also
have to feed to m(w) these additional arguments. In this way we can see to it that
the generalized rule is as follows.

U
i j
> (〈�x, ϕ(�u)〉, 〈�y, χ(�v)〉) = 〈�x� ��y, ϕ(�u) ∧ χ(�v) ∧ ui = v j 〉 (4.6)

Eliminating the equation we can alternatively write

U
i j
> (〈�x, ϕ(�u)〉, 〈�y, χ(�v)〉) = 〈�x� ��y, ϕ(�u) ∧ [ui/v j]χ(�v)〉. (4.7)

Thus we have the following result: the meaning of a complex constituent is a con-
junction of the meaning of its parts with some fixed open formula. This is a welcome
result. For it says that every meaning is propositional and merging two constituents
is conjunction—modulo the addition of some more constraints.

The standard rendering in predicate logic suffers from defects, too. Consider the
meaning of /eat/ again. It has, as we agreed, three slots: that of the subject, the
object and the time point. When we want to specify any one of the arguments we
must know which one that is. If we want to say who is eating we must be able to
connect the subject expression with the appropriate subject slot in the predicate. In
predicate logic this mechanism is ensured through a linear notation. That there is
eating of a sandwich by Steven at noon today is rendered in relational notation as
follows.

eat(Steven, x, 12 : 00) ∧ sandwich(x) (4.8)

Recall that we agreed to read this existentially: it means that there is a value, say
s1, for x that is a sandwich and such that Steven eats it at 12:00. The order of the
three arguments, “Steven”, “x” and “12:00” is syntactic: the linear alignment in the
formula allows to assign them a particular slot in the relation. One may disagree
and claim that it is not the notation that achieves this but rather the denotation: /eat/
denotes a three place relation, which in turn is a set of triples. If this is so then we
must ask what reality there is to these triples. In predicate logic, it turns out, they
have no reality. Compare the following pieces of notation:

p(x, y, z) p(〈x, y, z〉) (4.9)

On the left we have a ternary predicate p and three arguments. On the right we have
a unary predicate p being applied to a single argument, the triple 〈x, y, z〉. Standard
models for predicate logic do not assume that triples exist. It is true that the interpre-
tation of relation symbols is given in the form of sets of tuples but these objects are
not part of the domain. Technically, it is possible to install a domain for such tuples;
however, that seems to be a mere technical trick we are pulling. The fundamental
question to be asked is namely what makes the arguments come in that particular
order as opposed to another. I do not know of any reason to put the subject first. But
what is the significance of being the first member in the sequence anyway? I know

4.2 Predicate Logic 121

of no answer to that question. At best, the significance is not objective but rather
an artefact of the way we code meanings in predicate logic; this in turn is simply
a effect of the language we speak. I am sure that speakers of an OSV language
would use a different encoding. But what difference would that make in terms of
the meaning as opposed to the encoding? In fact, Dixon (1994) translates Dyirbal
verbs in active morphology by their passive counterparts in English. Mel’čuk (1988)
goes one step further and says that in Dyirbal the syntactic subject is the object of
the corresponding English verb.

Now, if it is possible to systematically exchange the first and the second position
in the predicate logic encoding, then we know that what counts is not the actual
position. Rather, what is first in one notation is second in the other and vice versa.
Thus, if the meanings had these positions in them it should not be possible to
exchange the positions in this way. This avenue is to be explored. Suppose we have
a language just like English except that in transitive constructions all objects and
subjects are exchanged. Such a language is not so outlandish: it would be the con-
sistent ergative counterpart of English. Call this language Erglish. Thus, for Dixon,
Dyirbal is Erglish though with somewhat different pronunciation. The question is:
to what extent can semantics tell the difference between English and Erglish? The
answer is: it precisely depends on whether it can tell the difference between being
subject and being object. Unless there is a semantic difference, these languages look
semantically exactly the same. It therefore appears that if subjects and objects are
different we ought to define our semantic rules in terms of this semantic difference
rather than using arbitrary labels.

Kit Fine has argued in Fine (2000) that from a metaphysical point of view we
should better renounce the idea of a positionalist view of relations. The calculus of
concepts below is an attempt to provide such an account. (For a more sophisticated
theory of relations see Leo (2010).) It will do more than this, as we believe there
is more to the problem. Ultimately, we want to say that a property is true not of a
sequence (as in predicate logic) nor of a multiset but rather of a set of objects under
a particular way of relating the members to a slot. This means that we shall also
eliminate repetitions in the sequence. It will follow that the concept of self-loving is
different from the concept of loving someone else in that the first is unary and the
second is binary.

4.2 Predicate Logic

Standard semantic theories assume that meanings are adequately described using
predicate logic, first or higher order. Therefore, in this section I shall describe two
semantics for (many sorted) predicate logic. This section does not introduce pred-
icate logic as an interpreted language; we leave that topic to Section 5.1. In this
section we shall concentrate on standard predicate logic and clarify the basic termi-
nology and definitions.

We assume that basic objects are sortal; we have, for example, objects, time
points, degrees, events, situations, regions, worlds, truth values and so on. For each

122 4 Meanings

sort we assume that the meanings associated with it come from a particular set. Thus
we assume that we have a primitive set S of sorts. Each sort s ∈ S is interpreted
by a set Ms . Thus we have a family of sets M := {Ms : s ∈ S}. Standardly, it is
assumed that the sets Ms and Mt are disjoint whenever s �= t . A relational type is
a member of S∗, that is, it is a string of sorts. For a relational type �s, an object of
type �s is an element of the set M�s , which is defined inductively as follows.

M〈〉 := {∅}
M〈s〉 := Ms

M�s·t := M�s × Mt

(4.10)

Finally, a relation of type �s is a set of objects of type �s. The type 〈〉 is of special
importance. It corresponds to the set {∅}. This set has two subsets: 0 := ∅ and
1 := {∅}. These sets will function as our truth values: 1 is for “true” and 0 for
“false”. This is achieved by somewhat unorthodox means. A predicate is true in a
model if it has a satisfying tuple (see Definition 4.1). Otherwise it is false. Thus, it is
true if its extension is not empty and false otherwise. So, denotations of predicates
of type �s are subsets of M�s . Applied to �s = 〈〉 this gives the desired correspondence.

I also mention that functions are treated basically as relations; a function of type
〈s0, s1, · · · , sn〉 is interpreted as follows. Its arguments are of sort si , i < n and the
value is of sort sn . It is known that we can eliminate functions from a first-order
signature (see Monk (1976)) and so for simplicity we shall assume that there are no
functions.

A first-order (sortal) signature over a set S of sorts is a pair τ = 〈Rel, τ 〉 such
that Rel is a finite set, the set of relation symbols and τ : Rel → S∗ an assignment
of relational types to relation symbols. All signatures will be finite. The alphabet of
PLτ consists in the following symbols

1. variables xs
i , where i ∈ N and s ∈ S;

2. relation symbols R of type τ(R);
3. propositional connectives ∧, ∨, →, ¬;
4. for each i ∈ N and each sort s ∈ S the quantifiers ∃xs

i and ∀xs
i .

PLτ is infinite even if τ is finite. This will require creating a new type, that of an
index. Indices are generated from a finite alphabet. From these symbols we can form
formulae in the following way:

1. If �s = τ(R) and �x is a sequence of variables of type �s then R(�x) is an atomic
formula.

2. If ϕ and χ are formulae, so are ¬ϕ, ϕ ∧ χ , ϕ ∨ χ and ϕ→ χ .
3. If ϕ is a formula and xi

s a variable then
(∃xs

i

)
ϕ and

(∀xs
i

)
ϕ is a formula.

Notice that formulae have no type (or, more accurately, are all of the same type). For
each s ∈ S there is an identity =s , which we normally write =. Identity is sortal;
xt

i =s xu
j is true only if t = u = s (that is, if the sorts are identical). A τ -structure

is a pair M = 〈M, I〉, where M = {Ms : s ∈ S} and for every relation symbol

4.2 Predicate Logic 123

R, I(R) is a relation of type τ(R) over M, that is, I(R) ⊆ Mτ(R). An assignment
into M or a valuation is defined as a function β from the set of variables into⋃

M := ⋃s∈S Ms such that for every s ∈ S: β
(
xs

i

) ∈ Ms . The pair 〈M, β〉 is
called a τ -model. Ordinarily, a formula ϕ(x0, x1, · · · , xn−1) with variables xi of
type si is interpreted as a relation of type �s := 〈s0, s1, · · · , sn−1〉. We shall take a
detour via the assignments. Write [ϕ]M for the set of assignments making a formula
ϕ true. It is defined inductively. For a given assignment β, write β ′ ∼xs

i
β if for all

t �= s and all j �= i : β ′
(

xt
j

)
= β
(

xt
j

)
. Ass denotes the set of all assignments.

[R(�y)]M := {β : 〈β(y0), β(y1), · · · , β(yn−1)〉 ∈ I(R)}
[¬ϕ]M := Ass−[ϕ]M

[ϕ ∧ χ]M := [ϕ]M ∩ [χ]M
[ϕ ∨ χ]M := [ϕ]M ∪ [χ]M
[ϕ→ χ]M := (Ass−[ϕ]M) ∪ [χ]M
[(∃xs

i)ϕ]M := {β : there is β ′ ∼xs
i
β : β ′ ∈ [ϕ]M }

[(∀xs
i)ϕ]M := {β : for all β ′ ∼xs

i
β : β ′ ∈ [ϕ]M }

(4.11)

This formulation makes predicate logic amenable to the treatment of this book.
Standardly, however, one prefers a different formulation. Let β be a valuation and
ϕ a formula. Then say that ϕ is true in M under the assignment β and write
〈M, β〉 � ϕ, if β ∈ [ϕ]M . This notion is defined inductively by

〈M, β〉 � ϕ(�x) :⇔ β(�x) ∈ I(R)
〈M, β〉 � ¬ϕ :⇔ not 〈M, β〉 � ϕ
〈M, β〉 � ϕ ∧ χ :⇔ 〈M, β〉 � ϕ and 〈M, β〉 � χ
〈M, β〉 � ϕ ∨ χ :⇔ 〈M, β〉 � ϕ or 〈M, β〉 � χ
〈M, β〉 � ϕ→χ :⇔ 〈M, β〉 � ϕ or 〈M, β〉 � χ
〈M, β〉 � (∃y)ϕ :⇔ for some β ′ ∼y β: 〈M, β ′〉 � ϕ
〈M, β〉 � (∀y)ϕ :⇔ for all β ′ ∼y β: 〈M, β ′〉 � ϕ

(4.12)

For a formula ϕ the set of free variables, fr(ϕ), is defined as follows.

fr(R(�y)) := {yi : i < length(τ (R))}
fr(¬ϕ) := fr(ϕ)

fr(ϕ ∧ χ) := fr(ϕ) ∪ fr(χ)

fr(ϕ ∨ χ) := fr(ϕ) ∪ fr(χ)

fr(ϕ→ χ) := fr(ϕ) ∪ fr(χ)

fr((∃y)ϕ) := fr(ϕ)− {y}
fr((∀y)ϕ) := fr(ϕ)− {y}

(4.13)

124 4 Meanings

Proposition 4.1 (Coincidence Lemma) Let β and β ′ be valuations such that for all
y ∈ fr(ϕ) β(y) = β ′(y). Then 〈M, β〉 � ϕ iff 〈M, β ′〉 � ϕ. Alternatively, β ∈ [ϕ]M
iff β ′ ∈ [ϕ]M .

A theory (or deductively closed set) in the signature τ is a set of formulae T ⊆ Lτ
such that

for every formula ϕ and every formula χ : if ϕ→ χ ∈ T and ϕ ∈ T , then χ ∈ T .

There is a calculus for predicate logic, whose nature we shall not elucidate (however,
see Monk (1976) or Rautenberg (2006)). It defines in syntactic terms a relation
Δ � ϕ between sets Δ of formulae and a single formula ϕ. If Δ � ϕ, we say that ϕ
is derivable fromΔ. With respect to this calculus, we say that T is consistent if for
⊥ := (∃xs

0

)¬ (xs
0 = xs

0

)
(any choice of s) we do not have T � ⊥.

Theorem 4.1 (Completeness of Predicate Logic) For every consistent theory T
there is a model M and a valuation β such that for all δ ∈ T : 〈M, β〉 � δ.

An alternative to sets of assignments are finitary relations. Since this gets us closer
to our final interpretation (via concepts), let us see how this approach might go.
We assume that we have a slightly different enumeration of the variables as before.
Instead of enumerating the variables of each sort separately, we enumerate all vari-
ables in one infinite list. The set of variables of all sorts is Var := {xi : i ∈ N}.
Each of the xi has its sort, si , which we leave implicit in the notation. For every
formula ϕ we define the meaning to be a relation �ϕ�M . Before we specify the
precise nature of this relation we shall introduce an idea by Kleene. Let the syntactic
objects be pairs (ϕ, �x), where ϕ is a formula and �x a sequence of variables. Then
we let its denotation be the set of all tuples �a of the same type as �x such that there
is a valuation that satisfies ϕ and sends xi to ai . For example, (x0 + x1 = x3, x0)

is a syntactic object and denotes over the natural numbers the set {〈i〉 : i ∈ N};
(x0 + x1 = x3, x0, x3) is a syntactic object and it denotes the set {〈i, j〉 : i ≤ j}.
Finally, (x0 + x1 = x3, x0, x3, x1) denotes the set {〈i, j, k〉 : i + k = j}. Call a
syntactic object (ϕ, �x) complete if every free variable of ϕ is in �x . (We may or may
not disallow repetition of variables.) It is possible to give a compositional semantics
for complete syntactic objects (see the exercises).

The problem with predicate logic is that our strings are not pairs of formulae and
variables. But there is in fact no need to assume that. Namely, all we need to assume
is a canonical linear order on the variables. We then assume that the meaning of
the formula ϕ is what the meaning of (ϕ, �x) is, where �x is a specific set containing
the set of free variables of ϕ in canonical order. The sequence we choose here is
〈x0, x1, · · · , xn−1〉 where xn−1 is the highest free variable of ϕ. (Notice that the
variables xi with i < n − 1 need not occur free in ϕ.) Thus the relation codes the
assignment of the first n variables xi , i < n, in the following way. For a valuation β
we define the partialization βn := β � Varn , where Varn = {xi : i < n} for some n.
We translate the valuation γ into a sequence

(βn)
♥ := 〈βn(xi) : i < n〉 ∈ Xi<n Msi . (4.14)

4.2 Predicate Logic 125

Let �(ϕ) be the largest number such that x�(ϕ)−1 ∈ fr(ϕ). Then put

�ϕ�M := {(β�(ϕ))♥ : β ∈ [ϕ]M }. (4.15)

Clearly,

�ϕ�M ⊆ Xi<n Msi . (4.16)

Now, instead of defining �ϕ�M via the set of satisfying valuations we can also give
an inductive definition. Let R→k be the expansion of R to a k-ary relation. This
is defined as follows. (a) R→0 := R. (b) If k is less than the length of R then
R→k+1 := R. (c) If k is at least the length of R then R→k+1 := (R→k) × Msk ,
where sk is the sort of xk . For a tuple �a let [i : b]�a denote the result of replacing ai

by b. �a · b denotes �a with b added at the end. Given a relation R of length n, put

Ci .R :=

⎧
⎪⎨

⎪⎩

R if i ≥ n,

{�a : there is b ∈ Msi such that �a · b ∈ R} if i = n − 1,

{�a : there is b ∈ Msi such that [i : b]�a ∈ R} else.

(4.17)

Notice that in case i = n − 1 the relation gets contracted. Cylindrification yields a
relation of length n − 1 in this case. Finally, let Ωk be the total relation of length k.

�R(xi0 , · · · , xin−1)�M := {�a : 〈ai0 , · · · , ain−1〉 ∈ I(R)}
�¬ϕ�M := Ω�(ϕ) − �ϕ�M

�ϕ ∧ χ�M := �ϕ�
→�(χ)
M ∩ �χ�

→�(ϕ)
M

�ϕ ∨ χ�M := �ϕ�
→�(χ)
M ∪ �χ�

→�(ϕ)
M

�ϕ→ χ�M :=
(
Ω�(χ) − �ϕ�

→�(χ)
M

)
∪ �χ�

→�(ϕ)
M

�(∃xi)ϕ�M := Ci .�ϕ�M

(4.18)

Example 4.1 It is worthwhile to mention a few facts about how we intend to use
this for natural language. First, we assume that the denotation of expressions is a
relation of some sort. To make this come about, we must eliminate all functions and
constants. This technique is known (see Monk (1976)). We show some cases. The
denotation of /John/ is the set of things being identical to John; we can represent this
by the formula x = j, where j is the constant denoting John. There is no saturation;
merge corresponds to conjunction. The sentence “John left.” contains two pieces
whose meaning we can paraphrase as “someone is John” and “someone left”. The
syntagma adds the meaning that the two people are the same. o

In order to implement the previous idea it is necessary to revise our notion of
satisfaction.

126 4 Meanings

Definition 4.1 We write M � ϕ(�x) and say that ϕ(�x) is true in M if there is some
valuation β such that 〈β(xi) : i < n〉 ∈ �ϕ�M .

For comparison we shall say a few words about the type theoretic interpretation cho-
sen by Montague. Instead of using “flat” types (which we call sorts) he introduces
a hierarchy as follows (compare also Section 4.1). A functional type is (a) either
a basic type or (b) a sequence →s0s1 where s0 and s1 are functional types. We use
variables α, β to denote functional types and also write α → β rather than using
Polish Notation, to keep within the standard notation. We associate with α → β

the set of all functions from Mα to Mβ . Montague uses e for objects and t for truth
values. A relational type 〈s0, s1, · · · , sn−1〉 is coded as the functional type

s0 → (s1 → (· · · → (sn−1 → t))) (4.19)

This allows to dispense with the original “flat” types.

Exercise 4.1 Prove the Coincidence Lemma (Proposition 4.1).

Exercise 4.2 Spell out a compositional approach to the semantics of complete syn-
tactic objects. (You may consult Section 5.1 on this but the solution should be clear
anyhow.)

Exercise 4.3 Show that there is no compositional semantics for syntactic objects in
general. (So, dropping the completeness requirement will not work.)

Exercise 4.4 Give an example to show why the semantics �ϕ�M cannot simply be
based on the pairs (ϕ, �x)where �x is exactly the set of free variables of ϕ in canonical
order.

4.3 Concepts

Standard semantic theories assume that meanings are adequately described using
predicate logic, first or higher order. In this section, however, I shall sketch a differ-
ent theory of meaning, which is based on concepts. A concept is a set of relations
that are in some sense variants of each other. A relation is a variant of another rela-
tion if it can be obtained either by permutation of its arguments or by contracting or
expanding it. A precise definition is as follows.

Let �s = 〈s0, s1, · · · , sn−1〉 be a type and π : n → n be a permutation. Then
π(�s) := 〈sπ(0), sπ(1), · · · , sπ(n−1)〉 is a permutation of �s. If t ∈ S then �s · t is an
expansion of �s. Given a relation R of type �s, define

π [R] := {π(�x) : �x ∈ R}. (4.20)

This is a relation of type π(�s). A relation R′ is said to be a permutation of R if and
only if it is of the form π [R] for some permutation π . Furthermore, let

E(R) := {〈x0, x1, · · · , xn−1, xn−1〉 : 〈x0, x1, · · · , xn−1〉 ∈ R}. (4.21)

4.3 Concepts 127

This is a relation of type �s · sn−1. A relation R′ is said to be a diagonal expansion
of R if and only if it has the form E(R). Finally, set

Pt (R) := R × Mt . (4.22)

This is a relation of type �s · t . A relation is said to be a product expansion of R
(with type t) if and only if it has the form Pt (R).

Definition 4.2 R′ is an immediate variant of R if and only if R′ is either a permu-
tation of R or R′ is a diagonal expansion of R or R is a diagonal expansion of R′ or
R′ is a product expansion of R or R is a product expansion of R′. R′ is a variant
of R if there is a series 〈Ri : i < n + 1〉 such that R0 = R, Rn = R′ and for each
i < n, Ri+1 is an immediate variant of Ri . We write R ∼ R′ if R′ is a variant of R.

The relation of variance is an equivalence relation. It is clearly transitive and reflex-
ive (choose n = 0 in the definition), and it is symmetric because it is the transitive
and reflexive closure of a symmetric relation.

Example 4.2 Let S := {�, n}, M� := {a, b, c} and Mn := {0, 1}. The relation
R = {〈a, 0〉, 〈b, 1〉} is of type 〈�, n〉. It has a nonidentical permutation R′ =
{〈0, a〉, 〈1, b〉}. This is also known as the converse of R and written R�. The diag-
onal expansion of R is E(R) := {〈a, 0, 0〉, 〈b, 1, 1〉}. The diagonal expansion of R′
is E(R′) = {〈0, a, a〉, 〈1, b, b〉}. o

Even though the diagonal expansion repeats only the last column, R has many
more variants. Write

Ei (R) := {〈x0, x1, · · · , xn−1, xi 〉 : 〈x0, x1, · · · , xn−1〉 ∈ R}. (4.23)

Then Ei (R) is a variant of R. Namely, let π = (i n − 1) (see Appendix A for nota-
tion) and π ′ = (i n). These are the permutations that exchange the items number i
and n − 1 in the case of π and i and n in the case of π ′. Then

Ei (R) = π ′[E(π [R])]. (4.24)

We say that R′ is a generalized diagonal expansion of R if R′ = Ei (R) for some
i . Likewise, the generalized product expansion is defined by

Pi
t (R) := {〈x0, x1, · · · , xn−1,xn〉 : (4.25)

〈x0, x1, · · · , xi−1, xi+1, · · · , xn〉 ∈ R, xi ∈ Mt }.

Notice the following. The identity relation of type 〈s, s〉 is defined as

{〈x, x〉 : x ∈ Ms}. (4.26)

This is a diagonal expansion of type s of the total relation Ms of type 〈s〉. This in
turn is a product expansion of the relation M〈〉 = {∅} = 1. Thus the identity relation

128 4 Meanings

is a variant of the “true” relation. This has consequences we shall look at in more
detail later.

Definition 4.3 A concept is a set of relations of the form �R� := {R′ : R′ ∼ R}.
Concepts are denoted by small Gothic letters: c, d. For a set M (or a structure M),
the set of concepts over M (M) is denoted by Conc(M) (Conc(M)).

Notice that this is well-defined since variance is an equivalence relation. In principle
we should write �R�M since the concept depends on the structure; however, I shall
mostly drop the reference to the structure since it will always be clear from the
context. There are two special concepts: the verum concept, denoted by t and the
falsum concept, denoted by f. We have

t := �{∅}�, f := �∅�. (4.27)

We employ the following convention. For a set M we take M to be the same as
1 × M , where 1 = {∅}. Thus, if Ms is the domain of elements of type s, since Ms

and 1× Ms count as the same, the set (= relation) Ms is a variant of 1. This is to be
kept in mind. M1 = {〈x〉 : x ∈ M} is technically different from M but considered
here the same object.

Example 4.3 Let us look at a universe consisting in just one element, a. The concept
generated by the empty relation is of course just the set {∅}. This is the falsum
concept. The verum concept is the concept of the form t = �{∅}�. These are the
only concepts. Let R be a nonempty relation. Then it has the form {〈a, a, · · · , a〉}.
Any two such sets are variants of each other. For example, {〈a, a, a〉} is a variant of
{〈a, a〉} (being both a diagonal and a product expansion), which in turn is a variant of
{〈a〉}. The latter is a variant of 1. Thus, every nonempty relation is a variant of every
other nonempty relation but not a variant of the empty relation. So, Conc({a}) =
{t, f}. o

Example 4.4 We shall describe the concepts over a two element universe M :=
{a, b} (only one sort, with extension M). We shall only look at concepts generated
by at most binary relations. The zeroary relations are ∅ and {∅}, generating the
concepts t and f. The unary relations are ∅, {〈a〉}, {〈b〉}, M = {〈a〉, 〈b〉}. The first
and the last are variants of zeroary relations, so we effectively have only two new
members, {〈a〉} and {〈b〉}. Next we turn to binary relations. Here is a list of all 16:

R1 := ∅ R9 := {〈a, b〉, 〈b, a〉}
R2 := {〈a, a〉} R10 := {〈a, b〉, 〈b, b〉}
R3 := {〈a, b〉} R11 := {〈b, a〉, 〈b, b〉}
R4 := {〈b, a〉} R12 := {〈a, a〉, 〈a, b〉, 〈b, a〉}
R5 := {〈b, b〉} R13 := {〈a, a〉, 〈a, b〉, 〈b, b〉}
R6 := {〈a, a〉, 〈a, b〉} R14 := {〈a, a〉, 〈b, a〉, 〈b, b〉}
R7 := {〈a, a〉, 〈b, a〉} R15 := {〈a, b〉, 〈b, a〉, 〈b, b〉}
R8 := {〈a, a〉, 〈b, b〉} R16 := {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉}

(4.28)

4.3 Concepts 129

R1 and R16 are variants of ∅ and {∅}, respectively. R2 and R5 are diagonal expan-
sions of {〈a〉} and {〈b〉}, respectively. R3 and R4 are permutations of each other. R6
is {〈a〉} × M , so it is a variant of {∅}; R7 is a permutation of R6. R8 is the identity
on M , hence in turn a variant of verum. R9 is symmetric; it generates a concept
different from the previous. R10 and R11 are diagonal expansions of unary relations.
R12, R13 and R15 are essentially new, while R14 is a variant of R13. Thus, up to
variance, there are only six relations: R3, R6, R9, R12, R13 and R15. o

Notice that the empty set is the empty n-ary relation for every n. It thus plays
multiple roles. This is not so for concepts. The empty concept has length 0 (see
below for a definition). The empty binary relation generates the empty concept, just
as any other empty relation, since they are the same set.

It is to be noted that the identity concept is nothing but verum, a welcome con-
sequence of the calculus. For it is the diagonal relation ΔM := {〈a, a〉 : a ∈ M}.
This set is the diagonal expansion of M , which is a product expansion of 1. Hence
identity is a variant of 1 and therefore generates the concept t. This reflects the fact
that self-identity is trivially true of everything. To say that an object is identical to
itself is to issue a mere triviality. For this it does not matter whether or not we take
identity to be sortal. For example, the sortal diagonal Δs := {〈a, a〉 : a ∈ Ms} is a
diagonal expansion of Ms , which is an expansion of 1.

Let us now investigate the structure of the concept space somewhat.

Definition 4.4 The length of a relation R is the length of any member of R. Let c
be a concept. A relation R ∈ c is minimal in c if it is of minimal length among all
members of c. The length of c is the length of any minimal member of c. The length
of c is denoted by �(c).

Minimal relations obviously exist; moreover, they are in an important sense unique.
For the purpose of the next proof, say in a relation R column i is independent if for
every tuple �a ∈ R and b ∈ Ms of the appropriate sort s we have [i : b]�a ∈ R. Say
that column i is a replica of column j if the columns have the same sort s and for
every tuple �a ∈ R we have ai = a j .

Proposition 4.2 Let R and R′ be minimal members of a concept c. Then R is a
permutation of R′.

Proof We assume here that Ms has at least two members for each sort. (This just
eliminates trivial cases; for a one-element set is always redundant in a minimal
member.) Let R be a minimal relation of length n. Call an n-sequence a sequence �o
over the set {�0, �1, · · · , �n−1} ∪ {◦s : s ∈ S}. �o is full if every �i , i < n, occurs at
least once. For each s ∈ S choose some ys ∈ Ms . Let �o be of length k. Given �a ∈ R
we can assign an element �o(�a) as follows.

�o(�a) = 〈o0(�a), o1(�a), · · · , ok−1(�a)〉 (4.29)

where

130 4 Meanings

oi (�a) :=
{

a j if oi = � j ,

ys if oi = ◦s .
(4.30)

By induction, we shall assign an n-sequence to all variants R′ of R. These sequences
will be full, as can easily be checked. Moreover, inductively it is checked that �o
is an embedding of R into R′ (fullness is essential here). When R′ is minimal,
its sequence is of length n, consisting in the �i in some permutation. So R′ is a
permutation of R. And this then concludes the proof.

R is assigned the sequence 〈�0, �1, · · · , �n−1〉. Assume that R′ has the sequence
�o and that R′′ is an immediate variant of R′. Case 1. R′′ is a permutation of R′ via
π . Assign to R′′ the sequence π(�o). If �o is full then so is π(�o). The map π(�o) is
an embedding. Case 2. R′′ is a diagonal expansion of R′. Then assign to R′′ the
sequence �o · o, where o is the last member of �o. If �o is full so is the sequence �o · o.
Case 3. R′′ is a product expansion of R′ by sort s. Then assign to R′′ the sequence
�o · ◦s . If �o is full so is �o · ◦s . Case 4. R′ is a product expansion of R′′ by sort s.
Two cases need to be considered. The first is that �o = �m · ◦s . Then assign �m to
R′′. The second case is where the last member is �i for some i < n. This case never
arises. For either �m contains �i and then the last column is a replica, contradicting its
independence. Or �m does not contain �i . And this would mean that the i th column
of R is independent of the other columns. In other words, R would not be minimal.
Contradiction. So, �m is full and defines an embedding. Case 5. R′ is a diagonal
expansion of R′′. Then either �o = �m · �i for some i < n or �o = �m · ◦s for some
s ∈ S. R′′ will be assigned the sequence �m in both cases. �m is also full, since the
last member of �o also occurs in �m if it is of the form �i . Suppose the last member
is �i for some i < n. Again, being an expansion of R′′ the last column is either
independent of the other columns (which would contradict the minimality of R) or
it repeats some other column of R′′, say column h. Then oh is either ◦s or � j . In the
second case the j th column of R would be a replica of the i th column, so R is not
minimal, unless j = i . But then �m is full. In the first case column k is independent
of the i th column of R and so cannot depend on the last column. ��

The proof reveals that the concept allows to define the generating relation up to a
permutation on condition that the generating relation is nonreducible, that is, cannot
be obtained from another relation by expansion.

Lemma 4.1 Let R, R′ be minimal members of c. If R ⊆ R′ then R = R′.
Proof Suppose that R ⊆ R′. By the previous theorem, R′ = π [R] for some permu-
tation π . So, R ⊆ π [R]. From this we derive π i [R] ⊆ π i+1[R] for any i and by
transitivity, R ⊆ π i [R] for any i . Now, since there is a k such that πk is the identity,
we can also derive πk−1[R] ⊆ πk[R] = R and reasoning backwards establish that
π i [R] ⊆ R for all i < k. It follows that R′ = π [R] ⊆ R. ��

We can use this to define the type of a concept. Suppose c is a concept and that
R ∈ c is minimal. Then R has a type �s. This is a sequence. It defines a multiset §(�s)
in the following way: the sort s is contained in §(�s) exactly as many times as it is
contained in �s. Thus we say that §(�s) is the type of c.

4.3 Concepts 131

We define the following subsumption relation on concepts.

c ≤ d :⇔ (∀R ∈ c)(∃S ∈ d)(R ⊆ S) (4.31)

Notice that R ⊆ S means that the relations are of same length and type. It turns out
that just one pair of sets is sufficient to establish an order between the concepts.

Lemma 4.2 c ≤ d if and only if there is R ∈ c and S ∈ d such that R ⊆ S.

Proof From left to right is clear. So assume that there exists R ∈ c and S ∈ d such
that R ⊆ S. Let π be a permutation. Then π [R] ⊆ π [S]. Also, R×M ⊆ S×M and
E(R) = E(S). So for any permutation and expansion of R there is a corresponding
set in d. If however R is itself an expansion of T then T = Ci .R for some i . Now,
Ci .R ⊆ Ci .S. Hence for all R′ ∼ R there is a S′ ∼ S such that R′ ⊆ S′. ��
Proposition 4.3 ≤ is an ordering relation. That is to say for all c, d and e:

① c ≤ c.
② If c ≤ d and d ≤ e then c ≤ e.
③ If c ≤ d and d ≤ c then c = d.

Proof ➀ is clear. For ➁, suppose R ∈ c. Then by assumption there is S ∈ d such that
R ⊆ S; again by assumption there is a T ∈ e such that S ⊆ T . So, R ⊆ T for some
T ∈ e. It follows that c ≤ e. For ➂ let R be minimal in c. Assume first that there is
a minimal S ∈ d such that R ⊆ S. Then by assumption there is a R′ ∈ c such that
S ⊆ R′. Since R ⊆ R′ and both are of the same length, R′ is not only minimal (by
Proposition 4.2), we also have R = R′, by Lemma 4.1. It follows that R = S and
c = d. Now suppose that there is no minimal S such that R ⊆ S. Then d has smaller
length than c, for there is at least one S of length �(c) in d. Hence �(d) < �(c).
Now pick a minimal S ⊆ d. There is no R ∈ c for which S ⊆ R, contrary to
assumption. ��

The concatenation of concepts plays the role of conjunction.

Definition 4.5 Suppose that c = �R� and d = �S�. Then we define

c ∗ d := �S × R�. (4.32)

This definition does not depend on representatives. We omit the proof. Notice that
even if R is minimal in c and S is minimal in d, R × S need not be minimal in c ∗ d.
This is easily seen if c = d.

Proposition 4.4 ∗ is a semilattice operation on Conc(M). This means that for all c,
d and e:

① c ∗ c = c.
② c ∗ d = d ∗ c.
③ c ∗ (d ∗ e) = (c ∗ d) ∗ e.

132 4 Meanings

Proof Let c = �R�, d = �S� and e = �T �. Then, as R × R ∼ R (using a series
of diagonal expansions), we have �R × R� = �R� = c. Further, since R × S ∼
S × R (using a suitable permutation) we have c ∗ d = d ∗ c. Finally, (c ∗ d) ∗ e =
�(R × S)× T � = �R × (S × T)� = c ∗ (d ∗ e). ��

The concatenation is a kind of conjunction. It represents the conjunction without
any identification. In fact we can show that under the ordering ≤ defined above, ∗ is
exactly the greatest lower bound.

Proposition 4.5 ∗ is the greatest lower bound in 〈Conc(M), ≤〉. This means that

• c ∗ d ≤ c and c ∗ d ≤ d;
• for every e such that e ≤ c and e ≤ d we also have e ≤ c ∗ d.

Proof The first assumption follows from the second. Assume therefore e ≤ c and
e ≤ d for some e. Pick R ∈ e. There is then S ∈ c and T ∈ d such that R ⊆ S and
R ⊆ T . Let R be of length n. Define the set R�� as follows.

R�� := {〈a0, · · · , an−1, a0, · · · , an−1〉 : 〈a0, · · · , an−1〉 ∈ R} (4.33)

R�� ∼ R (by repeated generalized diagonal expansion). Moreover, R�� ⊆ S × T .
By Lemma 4.2, e ≤ c ∗ d. ��

There is no natural definition of disjunction, since this needs identification of
columns. We leave it to the next section to go deeper into the topic of identification
of columns across concepts.

As we have explained in Section 4.1, we claim that natural language meanings
are not sets of assignments but rather concepts. For a formula ϕ of predicate logic
we put

«ϕ»M := ��ϕ�M �M . (4.34)

Recall that �ϕ�M delivers a relation (a subset of
∏

i<�(ϕ) Msi) based on the set of
free variables of ϕ. In the sequel, we shall drop multiple references to the model
whenever possible. Thus ��ϕ�M �M will often be simplified to ��ϕ��M , dropping
innermost occurrences.

We can give a somewhat more compact version of this set. Notice namely that
�ϕ�M was based on a set that may properly include the set fr(ϕ). For if xi is not
free but there is j > i such that x j is free in ϕ, then ϕ does not depend on xi but
nevertheless the i th component of �ϕ�M records the values of xi . It is thus easily
seen that there are sets A ⊆∏ j<i Ms j and B ⊆∏i< j<�(ϕ) Ms j such that

�ϕ�M ⊆ A × Msi × B. (4.35)

There is a set C ⊆ A × B such that

�ϕ�M = {�x · y · �z : �x · �z ∈ C, y ∈ Msi }. (4.36)

4.3 Concepts 133

By the laws of concepts,

��ϕ�M �M = �C × Msi �M = �C�M . (4.37)

Thus, we can actually eliminate from �ϕ�M all columns referring to variables that
are not free in ϕ.

However, one should not be misled to think that it is exactly the free variables
whose values need to be recorded for the formation of the concept. For sometimes
variables occur free but nevertheless make no significant contribution to the formula.
For example, for the formula χ := ϕ(�y) ∧ xs

k = xs
k we get fr(χ) = fr(ϕ) ∪ {xs

k

}
. If

k ≥ �(ϕ) we have

�ϕ�M �= �χ�M . (4.38)

On the other hand we have

[ϕ]M = [χ]M . (4.39)

since both formulae are satisfied by the same assignments. We have «χ»M =
«ϕ»M . Thus the addition of “trivial” variables has no effect on the concept.

Let us finally turn to elementarily definable concepts. Suppose that R has the
form �ϕ(x0, · · · , xn−1)�M for some ϕ(x0, · · · , xn−1). In this case R is said to be
definable. Then

① π [R] = �ϕ(xπ(0), · · · , xπ(n−1)�M .
② R × M = �ϕ(x0, · · · , xn−1) ∧ xn = xn�M .
③ E(R) = �ϕ(x0, · · · , xn−1) ∧ xn−1 = xn�M .

Hence, if one minimal member of a concept is definable, all members of the concept
are definable.

Proposition 4.6 Let c be a concept and R, S ∈ c. Then R is definable if and only if
S is.

Proof It remains to be shown that if E(R) or R × M is definable, so is R. To this
end, let �ϕ(x0, · · · , xn)�M = E(R). Then �∃xn .ϕ(x0, · · · , xn)�M = R. Similarly,
if �ϕ(x0, · · · , xn)�M = R × M then �∃xn .ϕ(x0, · · · , xn)�M = R. ��

Thus the variants of a relation can be obtained by adding some equation or
existentially quantifying a relation. But there is more. Notice, for example, that the
concept does not depend on the way we number the yi . The relation will be a per-
mutation of the original relation, which by definition is a variant of it. Additionally,
let χ(y1, y0) := ϕ(y0, y1). Then «χ»M = «ϕ»M . It is therefore the case that

«xe
0 < xe

1»M = «xe
0 > xe

1»M . (4.40)

In other words, for objects of sort e the concept of “being smaller than” is the same
concept as “being bigger than”. This looks like a contradiction but it is not. The idea

134 4 Meanings

is that although the concept contains both relations, in the formation of complex
formulae just one of them is being used at a time. This is achieved by the so-called
linking aspect, to which we now turn.

Exercise 4.5 Show that c ≤ d does not hold if �(c) < �(d). However, give examples
where �(d) > �(c) and still c ≤ d.

Exercise 4.6 Show that «ϕ(x0, x1) ∧ x0 = x1» ≤ «ϕ(x0, x1)» need not hold.

Exercise 4.7 Show that if R ⊆ S then Ci .R ⊆ Ci .S and E(R) ⊆ E(S).

4.4 Linking Aspects and Constructional Meanings

The previous section has introduced the concatenation of concepts, which turned
out to be the greatest lower bound in the space of concepts ordered by ≤. However,
when we spell this out in terms of defining formulae we get something slightly
different.

Proposition 4.7 Let ϕ and χ be formulae. Let s be an injective substitution such
that fr(ϕ) ∩ fr(s(χ)) = ∅. Then

«ϕ» ∗ «χ» = «ϕ ∧ s(χ)». (4.41)

The proof is easy and left as an exercise. We just point out an example to show
why it is generally not the case that «ϕ» ∗ «ψ» = «ϕ ∧ ψ». Let ϕ = x0 < x1 and
ψ = x1 < x0. Then ϕ ∧ ψ is unsatisfiable, hence «ϕ ∧ ψ» is the null or falsum
concept. On the other hand, the concatenation is not empty, so cannot be the null
concept. According to the theorem above it is «x0 < x1 ∧ x2 < x3».

This is a welcome result. Vermeulen (1995) has made the point that the merge
operation for merging DRSs should not be as proposed in Zeevat (1989), namely
simply taking all variables at face value. Recall that the Zeevat-merge was defined
like this, where 〈V, Γ 〉 and 〈W,Δ〉 are pairs of variable sets and sets of formulae:

〈V, Γ 〉 • 〈W,Δ〉 := 〈V ∪ W, Γ ∪Δ〉. (4.42)

One of the problems that this faces is accidental capture.

〈{x},∅〉 • 〈∅, {ϕ(x)}〉 = 〈{x}, {ϕ(x)}〉 (4.43)

The left-hand sides read “∃x” and “ϕ(x)”, respectively and the right-hand side
“∃x .ϕ(x)”. Such results can only be obtained by intelligent variable handling. On
occasion, though, we really do want variables to be identified. This is the case with
the phrase /a dog/, which is the concatenation of /a/ and /dog/, which translate as
〈{x},∅〉 and 〈∅, {dog(x)}〉, respectively. The result we want is 〈{x}, {dog(x)}〉.

4.4 Linking Aspects and Constructional Meanings 135

To get this effect, Vermeulen (1995) introduces names. Variables are optionally
paired with a name, which can be anything, even an index and the variables that
have the same name will be identical after merge.1 Let [x
→ 1] be the function
mapping the variable x to 1. Then with these stipulations we get

〈[x
→ 1], 〈{x},∅〉〉 • 〈[x
→ 1], 〈∅, {dog(x)}〉〉 (4.44)

= 〈[x
→ 1], 〈{x}, {dog(x)}〉〉,
〈[x
→ 1], 〈{x},∅〉〉 • 〈[x
→ 2], 〈∅, {dog(x)}〉〉 (4.45)

= 〈[x
→ 1; y
→ 2], 〈{x}, {dog(y)}〉〉.

In this system the names of the variables are insignificant. Variables can be renamed
inside a representation as long as distinct variables are mapped to distinct variables.
Yet, the names of the variables are significant in the same way as the variable was
in the Zeevat-merge. Thus we have not made much progress, because the names
cannot be part of the meaning.

What we need to find is a definition of merge that does not assume that the
functions are part of the representation. Instead, we must be able to define them
on the basis of the concept itself. We show how to transform Vermeulen’s approach.
First, we simplify it by using numbers in place of names. It is clear that the names
can be absolutely anything, since the only thing that matters for merge is whether
names are equal or different. Now think of each number as naming a position in
a tuple. Then instead of using names to associate with the variable, we associate
positions in a tuple and the positions are simply numbers. Same number means then
that the variable will be associated with the same position in a tuple. This leads
directly to the idea of simply associating a relation with a concept. So the idea is
basically this. Assume that f and g are functions from concepts to relations such
that f (c) ∈ c for every c. Then put

c � f,g d := � f (c) ∩ g(d)�. (4.46)

This is well-defined just in case f (c) and g(d) are relations of the same type. Write
c � f d in place of c � f, f d.

Example 4.5 Transitive verbs can be coordinated to form transitive verbs. The mean-
ing of /fry and eat/ is again a 2-concept as witnessed by /fry and eat a
sausage/. Let f = g both be such that they assign to the 2-concept «fry′(x0, x1)»M
the set �fry′(x0, x1)�M and similarly to «eat′(x0, x1)»M the set �eat′(x0, x1)�M ,
Then on the basis of this choice,

1 The actual referent systems operated with a pair of such injections but we can safely ignore that
complication.

136 4 Meanings

«fry′(x0, x1)»M � f,g «eat′(x0, x1)»M

=��fry′(x0, x1)�M ∩ �eat′(x0, x1)�M �M

=��fry′(x0, x1) ∧ eat′(x0, x1)�M �M

=«fry′(x0, x1) ∧ eat′(x0, x1)»M

(4.47)

It is however also possible to coordinate concepts of different length, for exam-
ple /hit and run/. Here, /hit/ denotes a 2-concept and /run/ a 1-concept. In
this connection, /hit/ functions in the same way as /hit someone/. To make
this work we need to select for «run′(x0)»M not the set �run′(x0)�M but the set
�run′(x0)�M × M . Intersect this with the set �hit′(x0, x1)�M and one gets the set
�hit′(x0, x1)�M ∩ �run′(x0)�M of pairs 〈x, y〉 such that x hits y and runs. This is as
desired. o

As concepts are defined (uniquely) by their minimal members, a special variant
of this approach is to assume that f and g always pick out minimal members. Such
functions are called linking aspects.

Definition 4.6 A linking aspect is a partial function Y defined on some set of con-
cepts such that Y (c) is a member of c. Y is minimal if Y (c) is a minimal member of
c for every c.

A particular way to define a linking aspect is by means of critical sets.

Definition 4.7 Let c be a concept, R a minimal member of c. A critical set for R is
a set A such that for all minimal Q ∈ c: if A ⊆ Q then Q = R.

Instead of mapping concepts to relations we can map them to critical sets. Let V be
such a map. Then given c, YV (c) is defined to be the unique minimal member of c
containing V (c).

Example 4.6 Take the concept defined by< on the natural numbers. It has two min-
imal members: {〈i, j〉 : i < j} and {〈i, j〉 : i > j}. The pair 〈0, 1〉 is in the first and
not the second. Therefore {〈0, 1〉} is a critical set. Similarly, suppose that John is
taller than Phil. Then the concept denoted by “is taller than” has two minimal rela-
tions, only one of which contains 〈John,Phil〉. Therefore, {〈John,Phil〉} is a critical
set. o

For an n-ary relation S let Π(S) be the following partition of n: C ∈ Π(S) iff
for all �x ∈ S and all i, j ∈ C , xi = x j . It is not hard to see that A is critical for R iff
Π(A) = Π(R). Now, Π(∅) = {n}. We now define a sequence �xi ∈ R as follows.
Put Ai := {�x j : j < i}. If Π(Ai) �= Π(R) then let �xi ∈ R be chosen such that one
of the sets fromΠ({�xi }) is not a join of partition sets fromΠ(Ai). Such an element
must exist ifΠ(Ai) �= Π(R). In that case,Π(Ai+1) �= Π(Ai). Since the size of the
partition sets must decrease with every step it is easy to see that we can take only
n − 1 steps; that is, we need to choose at most n − 1 �xi .

Proposition 4.8 Let c be of length n. Then for every minimal R ∈ c there is a critical
set of cardinality at most n − 1.

4.4 Linking Aspects and Constructional Meanings 137

This dramatically improves the bound given by Dorr (2004) of n! − 1. This is the
best possible result. (We leave a proof of this claim to the exercises.)

Example 4.7 To see that it is not at all a weird idea to consider conjunction to be
ambiguous let us look at the notion of a syntactic pivot. In English the following
sentence implies that John fell:

John kissed the woman and fell. (4.48)

We say that /John/ is the pivot in the coordination. This is ordinarily attributed to
the fact that we have a VP coordination and /John/ is the subject of both. There
are languages in which the same coordination will imply that the woman fell. Such
languages are invariably ergative (see Dixon (1994)); however, it is not the case that
ergative languages all function in this way. Thus we need to distinguish between
ergativity in case marking and ergativity in pivot choice. Similarly, some languages
indicate whether or not a clause uses the same subject. Thus it explicitly marks part
of the linking aspect to be used. o

Example 4.8 The linking aspect is responsible for dealing with pronouns.

John saw the thief in his office. (4.49)

The pronoun /his/ may denote either John or the thief or a third person. In the
present case we can paraphrase its meaning by “belonging to someone”. Thus, the
phrase /in his office/ has the meaning “in the office belonging to someone”.
We can interpret this someone as John, the thief or leave it unidentified. Again, for
this we need different linking aspects if we insist that the only operation we want to
use is conjunction. o

Linking aspects give great flexibility in handling coordination. Every concept can
be treated independently from the other. This might not be so desirable and leads to
results that may be surprising.

Example 4.9 It is possible to define reflexivization of 2-concepts through concept
conjunction. Namely, put f(1) = {〈x, x〉 : x ∈ M} (this is not a linking aspect,
in fact choosing a minimal aspect here cannot work as the minimal member of the
truth concept is of length 0). Then let c be a 2-concept with minimal member R.

c � f 1 = �R ∩ {〈x, x〉 : x ∈ M}�. (4.50)

o

Example 4.10 Let M = {a, b, c, d}. There are c and f such that c � f 1 �= (c � f

1) � f 1. Namely, let R = {〈a, a, a〉, 〈a, a, b〉, 〈a, b, a〉, 〈a, b, b〉, 〈a, a, c〉}, c =
�R�. Further, let f (1) = {〈x, x〉 : x ∈ M} × M and f (c) = R. Then

c � f 1 = �{〈a, a, a〉, 〈a, a, b〉, 〈a, a, c〉}� = �{〈a, a〉, 〈a, b〉, 〈a, c〉}�. (4.51)

138 4 Meanings

Finally, put f (�{〈a, a〉, 〈a, b〉, 〈a, c〉}�) := {〈a, a〉, 〈a, b〉, 〈a, c〉} and we get

(c � f 1)� f 1 =(�{〈a, a〉, 〈a, b〉, 〈a, c〉}�)� f 1

= �{〈a〉}�. (4.52)

o

�Y,Z is unfortunately somewhat inflexible. When we merge c and d via Y and
Z , this is defined only if Y(c) and Z(d) have same length. Thus if Y(e) has different
length as Y(d), then only one of c �Y,Z d and c �Y,Z e is defined. A better version is
as follows. Let U be a function from pairs of concepts to pairs of relations such that
if U(c, d) = (R, S) then R ∈ c and S ∈ d. Then put

c �U d := �R ∩ S�, where U (c, d) = (R, S). (4.53)

This function offers more flexibility than might be needed in natural languages but
that is another matter. We conclude with a useful characterization of the logical
strength of these operations.

Proposition 4.9 Let c = «ϕ(�x)» and d := «ψ(�y)» with �x and �y disjoint. Then there
is a formula χ , which is a conjunction of equations of the form xi = y j such that
(c �U d) = «ϕ(�x) ∧ ψ(�y) ∧ χ».

I conclude this section with a characterization of the constructional meanings. By an
constructional meaning I mean such a meaning that is not provided through a lexical
entry but is rather defined by the grammar. In Montague Grammar there was no need
to talk about admissible meanings. If a constituent is formed, its meaning is com-
pletely determined by the meaning of its two parts. The introduction of concepts,
however, has not only made it possible to use different linking aspects (and so to get
different resulting meanings). The introduction of linking aspects was actually also
necessitated since linking of arguments places is not unique. Additionally, the intro-
duction of new intermediate variables has the drawback of introducing discourse
objects where sometimes none should exist. Thus, we also need a mechanism to
remove them. Section 4.7 will introduce a way to do this without removing them.
Here we shall revert to the standard way, namely quantification. Thus we generalize
the operation (4.53) once more. Let H be a set of numbers. Define for a relation R
the operation CH .R as follows.

C∅.R :=R

CH .R :=CH−{i}.Ci .R
(4.54)

In the equations above we assume that i is actually in H . (This is not strictly required
but makes the definition well-founded.) The general scheme of constructional mean-
ing is now this.

c �U,H d := �CH .(R ∩ S)�, where U (c, d) = (R, S). (4.55)

4.5 Concepts and Pictures 139

Exercise 4.8 Prove Proposition 4.7.

Exercise 4.9 Show that the bound of Proposition 4.8 cannot be improved.

Exercise 4.10 Show that c �Y c = c and that c �Y,Z c = c �Z ,Y c. Show that
(c �Y,Z c) = c does not generally hold.

Exercise 4.11 Show that c �Y d = d �Y c. Give an example to show that in general
c �Y,Z d = d �Y,Z c is false.

4.5 Concepts and Pictures

Up to now it looked as if concepts were a complicated sort of relations. However,
the intention is that in reality things are the other way around: that relations are a
complicated sort of concept. In this section I would like to sketch a very different
approach to concepts using pictures; moreover, I shall show that concepts are not
at all difficult to use. The approach is just one among many and only illustrates the
way things might go. We shall assume throughout that basic relations are symmetric
so that questions of ordering between the argument places are irrelevant.

We want to define all sentence meanings as certain sets of pictures; a picture
in turn is an array of coloured dots. Hence we construe pictures as functions from
arrays into the set of colours. A simple approach would be to say that an array is
a certain subset of, say, N

2 (if the picture is planar) or N
3 (for spatial pictures).

However, we prefer a slightly more abstract definition. We start with a set L , the
set of locations. A space is a pair S = 〈L , A〉 where A ⊆ (L

2

)
is a relation,

the adjacency relation. Here,
(L

2

)
is the set of 2-element subsets of L . In what is to

follow, relations will be identified through the two-element subsets rather than pairs.
We define L+ to be the transitive closure of L . (It follows that L+ is symmetric and
reflexive (if card L > 1).) We assume that any two points are related via L+. This
means that S is connected.

Let us assume that L is a subset of N
2 and that {(x0, x1), (y0, y1)} ∈ A iff |x1 −

x0| + |y0 + y1| = 1. This means that either (a) x1 = x0 and y1 = y0 ± 1, or (b)
y1 = y0 and x1 = x0±1. Say that �′ is a neighbour of � if {�′, �} ∈ A. It follows that
any � ∈ L has at most 4 neighbours. We shall assume that no points have exactly
zero or one neighbour; this excludes some trivial sets. From this we can define three
sets of points (see Fig. 4.1):

1. corners: have exactly two neighbours;
2. sides: have exactly three neighbours;
3. interior points: have exactly four neighbours.

If � is interior, let n0, n1, n2 and n3 be its neighbours. We say that n1 is across from
n0 if there is exactly one p such that (1) {n0, p}, {p, n1} ∈ A and (2) p is not a
corner. There is a exactly one point that is across from n0; let n1 be across from n0
and n3 across from n2. In the space S , the relation of acrossness can be used to
define lines: a line is a maximal connected subset G ⊆ L such that for any three

140 4 Meanings

Fig. 4.1 Types of points

points p, q, r such that {p, q}, {q, r} ∈ A p is across from r . It is easy to see that if
p and q are neighbours, there is a unique line that contains them. In the plane N×N,
lines are subsets that are either horizontal or vertical. The vertical lines are parallel to
each other, so are the horizontal lines. So we say that two lines G and G ′ are parallel
if G ∩G ′ = ∅. If G and G ′ are not parallel, then we require that card(G ∩G ′) = 1.
In the plane, if G and G ′ are parallel and H is not parallel to G, then it is also not
parallel to G ′. Now pick any line H and let H := {H ′ : H ∩ H ′ = ∅}. This defines
the set of horizontal lines; pick another line V and put V := {H : H ∩ V = ∅}.
This defines the set of vertical lines. Any line is either horizontal or vertical.

I stress that there is no way to say in advance which line is horizontal; the map
��: (x, y)
→ (y, x) maps L onto some different set L�� preserving the adjacency
but interchanging horizontal and vertical lines. Furthermore, by symmetry of A, the
directions “up” and “down” cannot be distinguished; likewise, the directions “left”
and “right”. To fix them, we need to introduce extra structure. A coordinate frame
is a triple C = 〈o, r, u〉 in L such that {o, r}, {o, u} ∈ A and u is not across from r .
The line containing o and r defines H and the line containing o and u defines the
set V . Now pick an interior point p. It has four neighbours, q0 through q3. Which
one of them is “up” from p? First, there is exactly one line in V through p and it
contains, say, q0. It also contains one more neighbour or p, say p1. Then either q0
is “up” from p or q1 is. To settle the problem which is which we need to introduce
more notions. First, the distance d(x, y) between x and y is n if n is the smallest
number such that there is a sequence 〈xi : i < n + 1〉 with x0 = x , xn = y and for
all i < n {xi , xi+1} ∈ A. p is between q and r , in symbols B(r, p, q) if p, q and r
are on a line and d(r, p), d(r, q) < d(p, q). Using betweenness it is finally possible
to define what it is for two pairs (p, q) and (p′, q ′) to be oriented the same way.
This is left as an exercise. It follows that q0 is up from p iff (p, q0) is equioriented
with (o, u).

Pictures are pairs 〈S, f 〉, where f : L → C is a function assigning each loca-
tion a colour. For simplicity we assume we have just two colours: black and white.
Black represents the points of matter; white points represent nonmatter or “air”. In
this case, in place of f we may just name the set of black points. This is a well
known type of representations. For example, printers prints pictures by means of
little dots of ink placed at certain points of a grid. Letters can be sufficiently clearly
represented using a 5 by 7 grid (see Fig. 4.2). Thus we represent “matter” with a
subset of the locations. A picture is a pair P = 〈S, B〉 where S is a space and

4.5 Concepts and Pictures 141

Fig. 4.2 Pictures by pixels

B ⊆ L . We shall continue to assume that S is a rectangular subset of N × N. An
object in P is a maximally connected subset of B. Here, C ⊆ B is connected if
for any two points p, q ∈ C we have {p, q} ∈ (A ∩ (B2

)
)+. (In plain words: there is

a sequence of pairwise adjacent points inside B.) O(S) is the set of objects of S .
Objects are therefore defined through their location. An object schema is a picture
P = 〈〈P, N 〉,C〉 containing a single object. We may for simplicity assume that the
picture is a minimal rectangle around the object. Then we may say that S contains
an object of type P if there is a function f : P → L such that (a) {x, y} ∈ N iff
{ f (x), f (y)} ∈ A and (b) f [C] is an object of S . The function f is also said to
be a realization of P in S . The same object of S can realize an object schema in
different ways. This is exactly the case if it possesses internal symmetry.

Obviously, this is the most simple of all scenarios. We define an object schema
as an arrangement of pixels and then declare any pixel schema that has identical
arrangements (up to flipping it upside down or left-to-right) as an instantiation of
that object schema. Evidently, however, we may easily complicate the matter by
allowing more fancy embeddings: those that keep distance ratios intact (thus allow-
ing to shrink or magnify the picture) or those that rotate the picture. This makes full
sense only if pictures are defined over the real plane but nothing essential hinges on
this, except that there is no more adjacency relation and we have to work with the
topology and the metric. Let us remain with the scenario as developed so far. It is
then quite easy to see how object schemata can be learnt. We need to be shown a sin-
gle instance. Properties of objects (the denotations of common nouns) are inferred
from their instances. It is not our concern to see how this can be done; this is the
domain of cognitive science. Basically, it is done by inferring a set from some of
its members (for example by constructing so-called Voronoi cells, see Gärdenfors
(2004)).

The way such learning can take place in language is as follows. Let Paul be our
language learner. Paul is shown a picture containing a single object, say, a football
and is told that it is a ball. Thus, Paul will get the following data.

〈/This is a ball./, o 〉 (4.56)

To the left we have an utterance, to the right a picture. That the utterance is paired
with a specific picture is of some importance. Now, Paul will have to do some
inference here to arrive at the fact that /ball/ denotes the object schema o rather
than the picture. Once this is achieved, however, he is able to identify the concept

142 4 Meanings

denoted by /ball/. In a similar fashion he will learn other unary concepts such as
“flag”, “hut”, “tent”, “telephone” and so on.

The next step from here is to learn the meaning of relational concepts. Let us
take the concept “to the left of”. Unlike the denotation of common nouns, it is not
identifiable by means of a single picture, since it is a relation between objects. How
then can it be learned? The answer is that it is learned in basically the same way.
Paul is presented with a picture and a sentence:

〈
/The scissor is to the left of the ball./, ✂ o

〉
. (4.57)

This picture allows to establish an association between the phrase /the scissor/
and the object to the left (since it is the only scissor) and between the phrase /the
ball/ and the object to the right. This requires only knowledge of the meaning of
the expressions. Similarly, Paul will encounter the following pair:

〈
/The square is to the left of the heart./, � ♥

〉
. (4.58)

He may come to realize that the concept “left of” is independent of the shape and
size of the objects involved and that it is about the location of the objects with respect
to each other. In this case it can be represented just like an object schema, using a set
of pictures. The burden is then entirely on the kinds of maps (“deformations”) that
one is allowed to use to embed such pictures in others. It is not our main concern to
do this; rather we wish to point out that the learning of the concept “left of” is no
more complex using concepts than it is using relations.

How then is “right of” learnt? Basically the same way. It could be using the
following data.

〈
/The ball is to the right of the scissor./, ✂ o

〉
(4.59)

Here we can appreciate for the first time that concepts really are simpler. The picture
shown is namely absolutely the same. However, in conventional representations we
would write (4.59) as

right′(ιx .ball′(x), ιx .scissor′(x)). (4.60)

By contrast, the meaning of (4.57) would be rendered as

left′(ιx .scissor′(x), ιx .ball′(x)). (4.61)

The two formulae are not the same. The positional regime in the formulae forbids
us from treating them the same. To get an identical encoding we need to translate
“right” systematically as “left” and invert the linking. This is what the concepts do
anyway. Paul will learn that whatever is to the left of the occurrence of /right/ will
be on the right in the picture of what is to the right of the occurrence of /right/.

4.5 Concepts and Pictures 143

I should point out that it is certainly not necessary that the meaning of (4.57) is
exactly the same as (4.59). In this case /right/ denotes a different concept than
/left/. We shall worry no further about that possibility. It should however be said
that there can be concomitant differences in the choice between (4.57) and (4.59)
stemming from different sources. I mention here that constructions of the form “X
is in location Y” generally indicate that Y is more stable, less movable, or bigger
than X (see Talmy (2000)).

The bicycle is to the left of the house. (4.62)

?The house is to the right of the bicycle. (4.63)

Again, this issue seems to be orthogonal to the one at hand. (Notice also that (4.63)
is not false, just inappropriate.)

We shall now test Paul’s knowledge of English. We give him the picture (4.64)

B
☎

(4.64)

and ask him:

Is the letter to the left of the phone? (4.65)

Paul will perform the following steps:

① Compare the two arguments of /left/ in (4.65) in (4.57). The comparison on
the basis of form alone yields that /the scissor/ must be associated with /the
letter/ and /the ball/ with /the phone/.

② Take the picture of (4.57) and do the following replacement: replace the scissor
by the letter and the ball by the phone.

③ Compare the resulting picture with the one given:

B ☎ versus:
B

☎

④ If there is an admissible deformation to take us from left to right for the concept
“left” then the answer is “yes”.

Thus, the entire burden is still in learning the correct meaning of the geometry of
“left”. Learning the associations with syntactic arguments is very easy by compari-
son. Moreover, a semantics based on relations offers no advantage.

We have deliberately picked the concept “left”. Unlike concepts denoted by
verbs, geometric notions do not allow to pick out one of the arguments by means
of intrinsic properties. For example, the sentence “John is pushing the cart.” is true
because it is John who exerts force on the cart and not conversely. Likewise, it
is known that directionals modify the mover in an event and no other constituent.
Thus “John threw the banana out of the window.” means that John threw the banana
and it went out of the window. If John decides to jump out of the window while

144 4 Meanings

tossing the banana onto the kitchen table, that does not make the sentence true. The
mechanism for learning such concepts is essentially the same. However, while the
linking in relational nouns and adjectives has to be learned on a case by case basis,
the linking on verbs sometimes allows to make big abstractions. This just means
that the knowledge of how linking is to be effected becomes more abstract.

Let us finally turn to another complication, namely passive, or relation change in
general.

John throws the banana out of the window. (4.66)

The banana is thrown out of the window. (4.67)

It is obvious that to learn English correctly consists in realizing that there are differ-
ent verb forms, namely active and passive and that what they signal is that the linking
has to be different in the two cases. From this point on there are two choices: Paul
might start acquiring two different linkings for the verbs, one active and one pas-
sive; or Paul might develop a recipe of deriving the linking in the passive sentences
from the linking in active sentences. How he goes about this is to a large degree a
question of how the languages are structured (in other words: how systematic the
active passive change really is).

I close this section with a few remarks about what we have done. We have
described sentences as properties of pictures. There was therefore only one entity in
semantics: that of a picture. To describe how it is that we arrive at the interpretation
of a sentence, however, we complicated the ontology. If a sentence has subjects,
something must correspond to them. Thus we introduced individuals, concepts and
so on into the semantics. However, ontologically these were considered derived
objects. We constructed a function that will derive from a picture P the set of
its objects O(P). The next object we introduced are the object schemes; an object
scheme P is a picture Q together with a family F of admissible embeddings. An
object o ∈ O(P) has a property P if there is an admissible embedding f : Q → P
such that the image of the black points is exactly o.

Exercise 4.12 Define the relation of “having same orientation” using betweenness
in a plane. Hint. Start by defining it for pairs of points on the same line. Then show
it can be projected to other, parallel lines.

4.6 Ambiguity and Identity

We have shown earlier that sentences are ambiguous and this is either because the
words have several meanings or because a given exponent has several derivations.
In view of ambiguity we must reassess our notion of what it is that makes a sentence
true. Under the standard definitions in logic we declare a sentence true if it denotes
the value 1 or the true concept, whichever. However, if a sentence is ambiguous this
creates a difficulty. Consider the word /crane/. It has two meanings: it denotes a
kind of bird and a kind of machine. This means that the lexicon contains two signs,

4.6 Ambiguity and Identity 145

where crane1 is the concept of bird cranes and crane2 is the concept of machine
cranes.

BCR := 〈crane, crane1〉 (4.68)

MCR := 〈crane, crane2〉 (4.69)

Consider now the following sentence.

Cranes weigh several tons. (4.70)

This sentence has two derivations. Unless partiality strikes, in a structure term con-
taining BCR we can replace BCR by MCR and the new term unfolds to a sign with
the same exponent (but different meaning).

(4.70) is false if we interpret /cranes/ as talking about birds (that is, if we take
the structure term to contain BCR rather than MCS) but true in the other understand-
ing of the word. It is the other way around with

Cranes can fly. (4.71)

This creates a tension between the notion of “true given an understanding” and “true
simpliciter”. We shall propose (not uncontroversially) that a sentence is true sim-
pliciter if it has a structure term under which it is true. This is a matter of convention
but for the case at hand not far off the mark. It then is the case that both (4.70) and
(4.71) are true.

Now what about negated sentences? Here we must distinguish between two kinds
of negations. There is an inner negation and an outer negation. The inner negation
produces a negated sentence, while the outer negation denies the truth of the sen-
tence. Let us look at negation formed by /it is not the case that/.

It is not the case that cranes weigh several tons. (4.72)

If taken as outer negation, this sentence is false (because (4.70) is true). If taken as
inner negation, it is true. To see this, let us imagine that we do not have the word
/cranes/ but in fact two: /cranes1/, denoting the birds and /cranes2/, denoting a
kind of machines. Then (4.70) is true if either of the following sentences is true:

Cranes1 weigh several tons. (4.73)

Cranes2 weigh several tons. (4.74)

(4.70) is false if both (4.73) and (4.74) are false. It is possible though to negate both
of them individually:

It is not the case that cranes1 weigh several tons. (4.75)

It is not the case that cranes2 weigh several tons. (4.76)

146 4 Meanings

The first is true while the second is false. In English, where the two concepts are
denoted by the same word, (4.75) and (4.76) are both expressed by (4.72). Since
(4.76) is true, so is therefore (4.72).

I should say, however, that the notion of outer negation cannot be implemented
in the present system without major changes. For if outer negation is a sign in its
own right, its meaning is a quantifier over structure terms. However there is no way
to get such a quantifier. It is not clear to me whether or not outer negation can be
expressed in embedded sentences. If it cannot be expressed, the present theory can
obviously be adapted rather straightforwardly; but if it can be expressed, then the
adaptations are indeed major. They would require namely a grammar that uses the
language transform L§ of L rather than L itself (see page 95 for a discussion of L§).

The previous discussion can be used to shed light on identity statements as well.
Consider the sentence

The morning star is the evening star. (4.77)

This is true if and only if the star that is the morning star is the same star as the
evening star. It happens to be the case that they actually are the same. If John
however is unaware of this, then he believes that (4.77) is false and that (4.78) is
true.

The morning star is not the evening star. (4.78)

This problem has been extensively dealt with in philosophy. I shall not go into that
discussion. Rather, I shall discuss how our definitions change the way in which this
puzzle must be discussed.

Example 4.11 Let M = {x}. Furthermore, we shall assume that our language has
the following basic signs.

I(f0) := 〈the morning star,{x}〉
I(f1) := 〈the evening star,{x}〉 (4.79)

And let it have one mode:

I(f2)(〈e0,m0〉, 〈e1,m1〉) := 〈e�
0 �is��e1,m0 � m1〉. (4.80)

Here, � is defined as intersection of two 1-concepts by intersecting their minimal
members. Let L1 be the language defined by all definite terms. It is

L1 := {〈the morning star, �{x}�M 〉, 〈the evening star, �{x}�M 〉,
〈the morning star is the morning star, 1〉,
〈the morning star is the evening star, 1〉,
〈the evening star is the morning star, 1〉,
〈the evening star is the evening star, 1〉}

(4.81)

4.6 Ambiguity and Identity 147

Now let N = {v,w}. We assume the same signature but instead the following inter-
pretation:

K(f0) := 〈the morning star, {v}〉
K(f1) := 〈the evening star, {w}〉

I(f2)(〈e0,m0〉, 〈e1,m1〉) := 〈e�
0 �is��e1,m0 � m1〉

(4.82)

Let L2 be the language defined by this interpretation. Then

L2 := {〈the morning star, �{v}�M 〉, 〈the evening star, �{w}�M 〉,
〈the morning star is the morning star, 1〉,
〈the morning star is the evening star, 0〉,
〈the evening star is the morning star, 0〉,
〈the evening star is the evening star, 1〉}

(4.83)

We have the following result: there are two languages, not one, whose correspond-
ing string language is the same and we even have two string identical grammars.
Nevertheless, qua interpreted languages, L1 and L2 are different. o

The example has the following moral. Two languages cannot be the same if the
models are not the same. Thus, to say that John and Paul speak the same language—
in the sense of interpreted language, which we take to be the default—requires that
their interpretations are the same. If Paul is convinced that the morning star is the
evening star and John thinks they are different then Paul and John do not speak the
same language. In order for them to speak the same language we require that not
only the expressions are the same, we also require that the expressions have the same
meaning. And “same” must be taken in a strict sense: both John and Paul would be
required to take the expressions /the morning star/ to denote the same thing
and likewise /the evening star/. But they do not. There are in fact two reasons
why two people can fail to share the same language. One is as just described: they
disagree on the truth value of some sentences. Another more subtle case is described
in the next example.

Example 4.12 L3 is like L1 except that y takes the place of x . Thus, for example,

L3 := {〈the morning star, �{y}�M 〉, 〈the evening star, �{y}�M 〉,
〈the morning star is the morning star, 1〉,
〈the morning star is the evening star, 1〉,
〈the evening star is the morning star, 1〉,
〈the evening star is the evening star, 1〉}

(4.84)

148 4 Meanings

Now let P = {y}. We assume the same signature but instead the following interpre-
tation:

L(f0) := 〈the morning star, {y}〉
L(f1) := 〈the evening star, {y}〉

L(f2)(〈e0,m0〉, 〈e1,m1〉) := 〈e�
0 �is��e1,m0 � m1〉

(4.85)

The grammars 〈Ω, I〉 and 〈Ω,L〉 are naturally equivalent. o

The languages L1 and L3 are different, yet in an abstract sense identical. Now
picture the case where George speaks L3. We would like to say that George and
Paul speak the same language but we cannot. In fact, this is as it should be. Notice
that we must distinguish (for natural language) two notions of language. There is
a private language, where expressions are interpreted as objects or constructs in a
speaker; and a public language where expressions are interpreted with real objects
(if applicable). We think for example that the public meaning of /the morning
star/ is Venus, as is the public meaning of /the evening star/. The private lan-
guage of an individual speaker needs to be “connected” to the public language in
the correct way. This is similar in the distinction between phonemes and sounds.
While two speakers can share the same phonemic system it may turn out that the
two systems are differently realized in terms of sounds. And likewise it may happen
that while Paul thinks that the morning star is the evening star and both happen to be
Venus, it may also happen that George thinks that the morning star and the evening
star are Mars. The private languages of Paul and George are different for the trivial
reason that the internal objects of both Paul and George must be different; but we
can easily establish a correspondence between them, an isomorphism, that makes
them the same. And so the private languages of Paul and George are the same up to
isomorphism, yet their public languages are different. The puzzle is thus resolved by
appeal to different de lingua beliefs, to use a phrase of Fiengo and May (2006). The
idea of Fiengo and May (2006) is roughly that what is behind many puzzles of iden-
tity is that speakers hold different beliefs concerning the referents of expressions.
In the theory proposed here, this is cashed out as follows. The abstract language
is a language where meanings are identifiable up to equivalence (as established in
Section 3.7). Any two speakers can speak the same abstract language, so the abstract
language is not the private language. Neither is it the public language. For that, we
also need to ground a language by providing translations into real world objects.
Abstract language behaviour can be established using logical connections between
sentences, while concrete language behaviour can be established by asking people
about meanings in terms of observable facts.2 This is just a sketch of a solution but
it serves as a formal explification of Fiengo and May (2006) who actually think that

2 This is evidently a simplified scenario. The visible facts may not be the same across speakers,
thus accounting for a different layer of confusion. But it is important to note that the distinction
between what is abstract in a language and what is not is real. In a sense, the fact that Tully is
Cicero is not part of the abstract language.

4.6 Ambiguity and Identity 149

many sentences also express what they call a de lingua belief. A de lingua belief is
a belief about what expressions denote. If the present theory is correct, it is a belief
about the public language.

One puzzle that Fiengo and May discuss at length is the Paderewski puzzle by
Kripke. It goes roughly as follows. Max goes to a concert by a musician named
Paderewski and comes to believe that he is a great musician. Later he visits a politi-
cal rally by a person named Paderewski. He comes to think that the latter person is
actually a bad musician. So he holds two beliefs.

Paderewski is a great musician. (4.86)

Paderewski is a bad musician. (4.87)

It so turns out that the two people are one and the same. The philosophical prob-
lems arise from the fact that under certain views of reference Max holds inconsis-
tent beliefs. Both Fine (2007) and Fiengo and May (2006) discuss this problem.
Again we need not go into the philosophical detail here. What interests us is what
may linguistically be said to be going on. The idea is that for Pavel, who knows
(or believes) that both persons are the same, /Paderewski/ is unambiguous. For
Max it is not. So, the language of Max has two signs, say, 〈Paderewski, {x}〉
and 〈Paderewski, {y}〉, while the language of Pavel only has one such sign, say
〈Paderewski, {v}〉. Thus, for Max the expression /Paderewski/ is ambiguous, for
Pavel it is not. Given our notion of truth for ambiguous sentence, it is correct for Max
to hold both (4.86) and (4.87) true. There is no logical problem, since the sentence is
simply ambiguous. This contrasts with the idea of Fiengo and May (2006) who think
that names are not expressions. They can only occur in the form [1Paderewski],
where the brackets are used to keep track of different objects. In the theory proposed
here there is no sense in disambiguation on the syntactic level. This must be done in
the semantics. Consequently, also the two occurrences of the name in the sentence

Paderewski is Paderewski. (4.88)

cannot simply be told apart by indexation so that one can distinguish between, for
example,

Paderewski1 is Paderewski1. (4.89)

and

Paderewski1 is Paderewski2. (4.90)

The reason, again, is that there is no indication at the surface. Instead, in order to
be clear, Max must use some expression that makes the referent unique. Notice that
Max also agrees to the (inner!) negation of (4.88):

Paderewski is not Paderewski. (4.91)

150 4 Meanings

The difference between this approach and Fiengo and May (2006) is brought out
also by the way in which Pavel can make Max aware that he is wrong about
Paderewski. For it is not enough for him to point out (4.91), for that is what is
also true for Max. Rather he must use a sentence that would not be true for Max, for
example

There is only one Paderewski. (4.92)

The problem is that Pavel cannot make himself understood to Max by using the
name simpliciter. He must in order to discriminate his beliefs from Max’s beliefs
use sentences that come out differently. What Fiengo and May (2006) have in mind
is that Pavel can also use a certain version of (4.88), for example

But Max, Paderewski IS Paderewski. (4.93)

But again, how is Max to interpret this if he cannot see which of the Paderewskis is
pointed to on each of the occasions?

Exercise 4.13 In Example 4.11 the word /is/ is syncategorematic. Show that this
syncategorematic use can be eliminated from the grammar.

4.7 Profiling

As I have indicated at many places there is a difference between what is com-
monly referred to as model theoretic semantics and the more popular representa-
tional semantics. It has not always been openly admitted by semanticists that the
representations involved in many brands of formal semantics do not use meanings
in the sense of truth conditions but rather are just pieces of notation. Such is the
case with DRT, Minimal Recursion Semantics, semantics used in connection with
TAGs, underspecification semantics, continuations and so on. If meanings only con-
tain truth conditions, then all these semantics could not ever claim to implement a
compositional approach to meaning. However, such argumentation misses a point.
For one line of defence is still open and should be considered: that it is not the
only objective of semantics to account for truth conditional meanings but also to
account for internal meanings. Thus I believe that the justification for using such
representations cannot be found in the truth conditions that they formulate. Rather,
it must be in the fact that these objects are essentially what humans use. Whether that
is so and which one it is that we use is an empirical question and will have to be left
to empirical research. However, I shall just add a few remarks about the necessity of
considering internal meanings. If we take, for example, the notion of a dog to be the
set of all dogs, then that object is not the kind of object we can have in our head. We
may say instead that the meaning is a particular algorithm (for recognising dogs);
but even that has a similar consequence. The algorithm turns out to be abstract,
too. The particular procedure that one person uses to differentiate dogs from other

4.7 Profiling 151

animals might be different from that of some other person in certain insignificant
ways. We will then still say that the two people have the same algorithm, though its
implementations, that is, the concrete procedures, are different.

The crucial fact about the concreteness of meanings is that to understand whether
or not two concrete meanings m and m′ instantiate the same abstract meaning must
be decided by explicit manipulation of the representations. This is the same in logic,
where we distinguish between two formulae representing the same truth condition.
Since truth conditions are too big to be stored directly we rely instead on a calculus
that manipulates representations up to truth conditional equivalence. This picture
undermines much of what I have said so far about semantics since it moves us
away from a static notion of meaning and towards a dynamic semantics based on
reasoning whose objects are symbolic in nature. I shall not continue this line since
it is too early to tell how such an account may go.

It so turns out, however, that human languages are still different. There are certain
things that have been argued to exist in internal representations for which there is no
obvious external correlate. One such thing is profiling. Profiling is the way in which
objects in an array are distinguished from each other, by making one more promi-
nent than the others. We can explain the difference between “left” and “right”, for
example, in terms of profiling. While they both denote the same concept, the profile
of “left” is inverse of that of “right”. How can this be understood? In the pictures we
can simply add a pointer to the profiled entity. If we denote concepts by formulae
then we can use underlining to do the same: thus, «left′(x, y)» and «left′(x, y)» are
concepts in which different elements are profiled. If we use concepts, we reserve,
say, the first column for the profiled element and restrict permutation in such a way
that it does not permute the first column with any other. There is a temptation to
think of profiling as just another instance of a sort. But we have to strictly distin-
guish the two. The two objects involved in the relation “left” (and “right”) are not
sortally distinct. Moreover, one and the same object can at the same time be to
the left of an object and to the right of another. This cannot happen if a different
profile means a different sort. However, from the standpoint of combining meanings
profiling has the same effect, namely to enhance the possibilities of combining two
concepts.

In the first part of this section I shall outline a formalism for such meanings. In
the second half I show how this gets used in practice.

Let S be a set of sorts. So far we have construed concepts as sets of relations.
The minimal members of a relation had to be of similar type. Now we think of the
relations of a concept to be divided into subparts, each corresponding to a particular
profile. We allow individual sorts to be profiled independently.

Definition 4.8 Let P be a set of profiles and M a set. A P-profiled relation over
M is a pair R = 〈 �p, R〉 where R is a relation and �p ∈ P∗ of length identical to the
length of R.

The relation R contains vectors 〈x0, x1, · · · , xn−1〉. When paired with the sequence
〈p0, p1, · · · , pn−1〉 this means that xi will have the profile pi . Since the pro-
file is paired with the entire relation, the profile pi is also given to yi in

152 4 Meanings

〈y0, y1, · · · , yn−1〉 ∈ R in R. One may or may not want to impose requirements
on the profiling. For example, suppose there is a label saying that the element is in
focus; this label we do not want to be distributed to more than one column. I will
not pursue this here.

A profiled concept is a set of profiled relations. The details are similar to those of
Section 4.3. Moreover, I add here that referent systems of Vermeulen (1995) can be
seen as profiled concepts. The profiled concept generated by R, also written �R�M ,
is the least set closed both ways under the following operations.

① π [〈 �p, R〉] := 〈π(�p), π [R]〉, π a permutation of the set | �p| = {0, 1, · · · , | �p|−1};
② Es,q(〈 �p, R〉) := 〈 �p · q, R × Ms〉;
③ Di (〈 �p, R〉) := 〈 �p · pi , {�x · xi : �x ∈ R}〉.
Notice that when duplicating a column we must also duplicate the corresponding
profile. It is therefore quite possible to have two identical columns, as long as they
have different profiles. Notice that full columns are discarded regardless of their
profile.

The deprofiling of 〈 �p, R〉, δ(〈 �p, R〉), is simply R. Similarly, we define the depro-
filing of a profiled concept.

δ(�R�) := {S : there is �q: 〈�q,R〉 ∈ �R�} (4.94)

So, δ(C) = δ[C]. The following gives the justification for this definition. Its proof is
left as an exercise.

Proposition 4.10 δ(�R�) is a concept.

There is a converse operation of introducing a profiling. While we could do that on
a concept-by-concept basis, there are more interesting methods.

Definition 4.9 Let Y be a linking aspect and f : N → P a function. Then define
the profiled concept f Y (c) as follows.

f Y (c) := �〈 f � card(Y (c)),Y (c)〉� (4.95)

In this definition, assume that card(Y (c)) = n. Then f � card(Y (c)) is the restriction
of f to n = {0, · · · , n − 1}. This is then viewed as the sequence 〈 f (0), f (1),
· · · , f (n − 1)〉. The idea is that all we need to specify is the way in which the
positions are profiled; the rest is done by the linking aspect, which lines up the
columns of the relation in a particular way.

The crucial difference between profiled concepts and ordinary concepts is that
we can use the profiles to define the linking; and that we can also change the profile
if necessary (unlike the typing). In principle, since the profiling is arbitrary, we
consider two profiled concepts as basically identical if they have the same profile.

Definition 4.10 Two profiled concepts C and D are said to be homologous if δ(C) =
δ(D).

4.7 Profiling 153

Any change from a profiled concept to a homologous profiled concept is thus con-
sidered legitimate. There are various methods to define such a change for the entire
space of concepts. Here is one.

Definition 4.11 Let S be a set of sorts and P a set of profiles. A reprofiling is a
family {ρs : s ∈ S} of maps ρs : P → P . The reprofiling of a profiled relation
R = 〈 �p, R〉 of type �s is the relation ρ(R) := 〈ρR{ �p}, R〉 which is defined as
follows.

ρR{pi } := ρsi (pi)

ρR{ �p} := 〈ρR{pi } : i < | �p|〉 (4.96)

Notice that the type of the relation is recoverable from the relation itself (in contrast
to its profile). So the reprofiling assigns to elements of type s and profile p the new
profile ρs(p), whereas the type remains the same.

Proposition 4.11 Let C be a profiled concept and ρ = {ρs : s ∈ S} a reprofiling.
Then ρ[C] is a profiled concept.

Again the proof is straightforward.
The simplification introduced by profiling is considerable. Suppose for example

we want to conjoin two concepts. Then we can only do this if we have a linking
aspect. However, linking aspects are in general not finitely specifiable. Thus, unlike
syntactic rules, the semantic combination rules based on concepts are arbitrarily
complex. In Section 5.3 I shall give an example of a grammar for a fragment of
English that essentially uses linking aspects only for the basic entries of the lexicon.
If one wants to treat language in its full complexity one will be forced to do either
of two things: make the linking aspect dynamic, that is, to be computed on the side;
or introduce profiling. In this section I shall explore the second option.

Now that we have profiled concepts we may actually take advantage of the
profiling in defining combinations of concepts. Our example here concerns the
definition of linking aspects.

Example 4.13 Arbitrarily embedded relative clauses.

a dog that saw a cat that chased a mouse that ate (4.97)

a cheese

Let D = {di , ci ,mi , hi : i ∈ N} be the domain. There is only one sort. Let us define
three binary relations:

E := {〈m0, h0〉} ∪ {〈di , hi+1〉 : i ∈ N}
C := {〈ci ,mi 〉 : i ∈ N} ∪ {〈ci , di+1〉 : i ∈ N}
S := {〈di , ci 〉 : i ∈ N} ∪ {〈mi , d2i 〉 : i ∈ N}

(4.98)

154 4 Meanings

I(g0)() := 〈a, «�»〉
I(g1)() := 〈that, «�»〉
I(f0)() := 〈dog, �{di : i ∈ N}�〉
I(f1)() := 〈cat, �{ci : i ∈ N}�〉
I(f2)() := 〈mouse, �{mi : i ∈ N}�〉
I(f3)() := 〈cheese, �{hi : i ∈ N}�〉
I(f4)() := 〈saw, �S�〉
I(f5)() := 〈chased, �C�〉
I(f6)() := 〈ate, �E�〉

(4.99)

There will be one mode of composition, which is binary. Let Y be the following
linking aspect. For every unary concept it picks the unique minimal member and is
defined on three binary concepts only, where Y (c) is that relation which contains
V (c), where V assigns the following critical sets to the concepts:

�E�
→ {〈m0, h0〉}
�C�
→ {〈c0,m0〉}
�S�
→ {〈d0, c0〉}

(4.100)

(Recall V (c) is a set such that exactly one minimal member of c contains V (c). Y (c)
is defined to be that set.)

Now, γ (e, e′) is defined if and only if either of the following holds:

① e = /a/ and e′ begins with /cheese/, /mouse/, /dog/, or /cat/.
② e ∈ {/ate/, /saw/, /chased/} and e′ starts with /a�/.
③ e = /that/ and e′ starts with /chased�/, /saw�/ or /ate�/.
④ e ∈ {/cat/, /mouse/, /dog/, /cheese/} and e′ starts with /that�/.

I(m)(〈e,m〉, 〈e′,m′〉) :=
{
〈e� �e′,m �Y m′〉 if γ (e, e′),
undefined else.

(4.101)

So, the syntax is right regular. Without specifying too much detail let me note the
first steps in the derivation.

〈cheese, �{hi : i ∈ N}�〉
〈a cheese, �{hi : i ∈ N}�〉
〈ate a cheese, �{〈di , hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉
〈that ate a cheese, �{〈di , hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉
〈mouse that ate a cheese, �{〈m0, h0〉}�〉
〈a mouse that ate a cheese, �{〈m0, h0〉}�〉

(4.102)

4.7 Profiling 155

At this point we get stuck; for we must now be able to combine two binary concepts.
If we combine them the wrong way, instead of interpreting /a cat that chased
a mouse that ate a cheese/ we interpret /a cat that chased a cheese
that ate a mouse/. As the embedding depth of relative clauses is unbounded
there is no recipe for defining the linking aspect using critical sets as long as they
do not exhaust the entire relation. So, we have to use a linking aspect instead. o

Example 4.14 We come to the first repair strategy. Leave everything as is with one
exception. In the interpretation of m, quantify away the lower elements, always
retaining a 1-concept. M is the domain of the model.

I(m)(〈e,m〉, 〈e′,m′〉) (4.103)

:=

⎧
⎪⎨

⎪⎩

〈e� �e′, �C1.(Y(m) ∩ (M × Y(m′))�〉 if γ(e, e′) and m is binary,

〈e� �e′,m �Y m′〉 if γ(e, e′) and m is unary,

undefined else.

The derivation now goes as follows.

〈cheese, �{hi : i ∈ N}�〉
〈a cheese, �{hi : i ∈ N}�〉
〈ate a cheese, �{di : i ∈ N} ∪ {m0}�〉
〈that ate a cheese, �{di : i ∈ N} ∪ {m0}�〉
〈mouse that ate a cheese, �{m0}�〉
〈a mouse that ate a cheese, �{m0}�〉

(4.104)

The step from the second to the third line is the crucial bit. We invoke the linking
aspect on both concepts. The right-hand side is unary, so we get the unique minimal
member. The left-hand side is the concept associated with one of the verbs and by
using the critical sets we align them such that the first column is the subject and the
second is the object. We identify the object with the unary relation and quantify it
away.

Thus, when we have processed one embedding we are back to a unary concept
and can continue:

〈chased a mouse that ate a cheese, �{c0}�〉
〈that chased a mouse that ate a cheese, �{c0}�〉
〈cat that chased a mouse that ate a cheese, �{c0}�〉
〈a cat that chased a mouse that ate a cheese, �{c0}�〉

(4.105)

The problem with this approach is that the intermediate objects are gone and cannot
be referred to any more (say, with /the mouse that ate a cheese/). o

156 4 Meanings

Example 4.15 The second strategy uses profiling. Let P := {t, b}. The rule of com-
bination is this. We assume that the subjects of verbs are assigned the profile t ; all
other arguments are assigned b. When a verb is combined with an object, the object
position is identified with the object with profile t , upon which the profile of this
element is set to b. On the assumption that only one column has label t , we define
the following linking algorithm. Assume that 〈t · �b1, R〉 ∈ C is of length m and
〈x · �b2, S〉 ∈ D of length n. Then we put

R⊗S := {x · �y · �z : x · �y ∈ R and x · �z ∈ S}. (4.106)

This is almost like the Cartesian product, except that we take only the tuples that
share the same first element and eliminate its second occurrence. With respect to the
profile, we proceed slightly differently. On the assumption that 〈t · �b1, R〉 ∈ C and
〈t · �b2,D〉 ∈ D we put

C �t D := �〈t · �b1 · �b2, R⊗S〉�M . (4.107)

This is defined only if either (a) both the concepts are at least unary or (b) both
profiles contain exactly one t . We extend this definition to the truth concept T by
putting

T �t D := D �t T := D. (4.108)

All nouns denote concepts where the one minimal relation has profile t . And so we
put

I(m)(〈e,m〉, 〈e′,m′〉) :=
{
〈e� �e′,m �t m′〉 if γ(e, e′),
undefined else.

(4.109)

We denote the column with label t by underlining. The derivation begins as follows.

〈cheese, �{hi : i ∈ N}�〉
〈a cheese, �{hi : i ∈ N}�〉
〈ate a cheese, �{〈di , hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉
〈that ate a cheese, �{〈di , hi+1〉 : i ∈ N} ∪ {〈m0, h0〉}�〉
〈mouse that ate a cheese, �{〈m0, h0〉}�〉
〈a mouse that ate a cheese, �{〈m0, h0〉}�〉

(4.110)

We have only one privileged member. We continue the derivation.

4.7 Profiling 157

〈chased a mouse that ate a cheese, �{〈c0,m0, h0〉}�〉
〈that chased a mouse that ate a cheese, �{〈c0,m0, h0〉}�〉
〈cat that chased a mouse that ate a cheese,

�{〈c0,m0, h0〉}�〉
〈a cat that chased a mouse that ate a cheese,

�{〈c0,m0, h0〉}�〉

(4.111)

The next step is to merge with /saw/:

〈saw a cat that chased a mouse that ate a cheese, (4.112)

�{〈d0, c0,m0, h0〉}�〉

And so on. Thus, the relations are growing in length but retain only one distin-
guished member. o

The idea of profiling is not new. In formal semantics, referent systems
(see Vermeulen (1995)) formalize a variant of profiling. Also Centering Theory
implements a notion of profiling (see for example Bittner (2006) and references
therein).

Exercise 4.14 Prove Proposition 4.10.

Chapter 5
Examples

IN this chapter we shall look at some examples. The first example will be standard pred-
icate logic. It will be shown that if semantics is based on concepts and not on relations
then there must be a limit on the number of free variables. The second example will be a
fragment (Montague size) of English. Finally, we shall indicate how the present approach
allows to get insights into sentence structure.

5.1 Predicate Logic

This chapter is devoted to applications as well as examples. We begin by presenting
standard predicate logic. In this section we shall give a grammar for predicate logic
together with two standard interpretations. One interprets formulas as sets of val-
uations the other as relations. Then we shall turn to concept based interpretations.
This will then be applied to natural language. Later in the chapter we shall show
how the present assumptions on semantics (and syntax) allow to predict facts about
sentential structure.

Recall from Section 4.2 the basic facts about predicate logic and its structures.
In contrast to that section we do not deal with sorts; they do not add anything of
significance. We start with a signature 〈Rel, τ 〉, Rel a finite set of relation symbols
and τ : Rel → N. We shall as usual write τ in place of 〈Rel, τ 〉. The alphabet is
then the following set: A := {(,),,,0,1,x,→,¬,∨,∧,∃,∀} ∪ Rel. We assume
that there are no function symbols. The arity of R ∈ Rel is given by τ(R). We shall
first describe informally the formation rules of well-formed expressions and their
meanings and then present a grammar of the interpreted language. The interpretation
is based on a fixed structure M = 〈M,I〉, where M is a set and I a function sending
a relation symbol R to a set I(R) ⊆ Mτ(R). A valuation is a function from the set
of variables to M . The set of all valuations is denoted by Val.

In Section 4.2 we have provided meanings only for formulae. However, our
alphabet is finite and we need an infinite array of variables. So we must generate
the set of variables from a finite base. This means, however, that we need to give
some meaning to the variables. An index is a member of (0|1)∗, that is, a possibly
empty string of /0/ and /1/. The meaning of an index is the index itself. A vari-
able is a sequence �v := /x�y, where �y is an index. The meaning of the variable is

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1_5,
C© Springer Science+Business Media B.V. 2011

159

160 5 Examples

the function �v∗ : β
→ β(�v). An atomic formula is an expression of the form
/R�(��v�0 ,��v�1 · · ·�,��vτ(R)−1

�)/, where the �vi are variables. Its meaning is
the set m(R) := {β : 〈m(�v0)(β),m(�v1)(β), · · · ,m(�vτ(R)−1)(β)〉 ∈ I(R)}. Com-
plex formulae are of the form /(¬ϕ)/, /(ϕ∧χ)/, /(ϕ∨χ)/, /(ϕ→χ)/, /(∃x�v)ϕ/,
/(∀x�v)ϕ/, where �v is an index and ϕ and χ are formulae. The meaning of formulae
has been spelled out earlier in Section 4.2. Thus the full language is Lτ .

Lτ := {〈�y, �y〉 : �y ∈ (0|1)∗}
∪{〈x�v, x�y∗〉 : �y ∈ (0|1)∗}
∪{〈ϕ, [ϕ]M 〉 : ϕ ∈ PLτ }

(5.1)

(See (4.11) for a definition of [·]M .) Now we shall present a grammar for Lτ . We
shall use the following modes:

F := { f∅, f0, f1, fv, f¬, f∧, f∨, f→, f∃, f∀} ∪ { fR : R ∈ Rel}. (5.2)

The signature isΩ : f∅
→ 0, f1
→ 1, f2
→ 1, fv
→ 1, f¬
→ 1, f∧
→ 2, f∨
→
2, f→
→ 2, f∃
→ 2, f∀
→ 2, fR
→ τ(R), where R ∈ Rel. First, we shall define
the modes that build up the variables. We put e∗(β) := β(e). The function e∗ is
defined on valuations and applies the valuation to the variable e.

C(f∅) := 〈ε, ε〉

C(f0)(〈e,m〉) :=
{
〈e�0,m�0〉 provided that e is an index,

undefined else.

C(f1)(〈e,m〉) :=
{
〈e�1,m�1〉 provided that e is an index,

undefined else.

C(fv)(〈e,m〉) :=
{
〈x�e, (x�m)∗〉 provided that e is an index,

undefined else.

(5.3)

The last rule seems dangerous since it seemingly converts any object m into a func-
tion m∗ on assignments. However, the other rules can only generate the pairs 〈�y, �y〉
and so m = e.

Next we turn to relations. Let R be a relation:

C(fR)(〈e0,m0〉, · · · , 〈eτ(R)−1,mτ(R)−1〉) (5.4)

:=

⎧
⎪⎨

⎪⎩

〈R�(�e�
0 ,

� · · ·�,�eτ(R)−1
�), {β : 〈m0(β), · · · ,mτ(R)−1(β)〉 ∈ I(R)}〉

if the ei are variables,

undefined else.

Finally we introduce the modes for the connectives. No difficulties arise with the
booleans:

5.1 Predicate Logic 161

C(f¬)(〈e,m〉) :=
{
〈(�¬�e�),Val−m〉 if e is a formula,

undefined else.

C(f∧)(〈e0,m0〉, 〈e1,m1〉) :=

⎧
⎪⎨

⎪⎩

〈(�e�
0 ∧

�e�
1),m0 ∩ m1〉

if e0 and e1 are formulae,

undefined else.

C(f∨)(〈e0,m0〉, 〈e1,m1〉) :=

⎧
⎪⎨

⎪⎩

〈(�e�
0 ∨

�e�
1),m0 ∪ m1〉

if e0 and e1 are formulae,

undefined else.

C(f→)(〈e0,m0〉, 〈e1,m1〉) :=

⎧
⎪⎨

⎪⎩

〈(�e�
0 →

�e�
1), (Val−m0) ∪ m1〉

if e0 and e1 are formulae,

undefined else.

(5.5)

Finally the quantifiers. They are introduced by binary modes, one responsible for
the handling of the variable and the other responsible for the scope. The definition
is somewhat tricky. We assume that M has at least two elements, say a and b. Given
a variable �y, let β �ya be the valuation that assigns a to �y and b to every other variable.
If m has the form v∗ for some variable v then we can find the index of this variable
by looking at the unique �y such that �y∗

(
β
�y
a

)
= a. We denote the variable with

meaning m by ζ(m).

C(f∃)(〈e0,m0〉,〈e1,m1〉) (5.6)

:=

⎧
⎪⎨

⎪⎩

〈(�∃�e�
0)

�e1, {β ′ : exists β ∼ζ(m0) β
′ : β ∈ m1}〉

if e0 is a variable and e1 a formula,

undefined else.

If M contains just one element then we put

C(f∃)(〈e0,m0〉, 〈e1,m1〉) :=

⎧
⎪⎨

⎪⎩

〈(�∃�e�
0)

�e1,m1〉
if e0 is a variable and e1 a formula,

undefined else.
(5.7)

The universal quantifier is quite similar. This finishes the definition of the grammar.
Let us notice that this grammar is actually independent. The functions on the expo-
nents and the functions on the meanings are independently formulated. In this case
what needs to be checked is that the domains for these functions (which are partial)
are independently specifiable. As we have spelled out the grammar, the functions
on the exponents are partial and the conditions on the modes are spelled out as
conditions on the exponents. Hence this is unproblematic. Now, the functions on the
meaning are de facto partial. Yet in case the functions on the exponents are defined,

162 5 Examples

the meanings can also be composed and therefore no supplementary condition needs
to be added.

Intermission 2 One may have noticed that the grammar adds syncategorematic
symbols other than brackets. In fact, all occurrences of logical and relation symbols
are syncategorematic. This is unavoidable given the language Lτ . For if /r/ is a unary
relation symbol /r(x)/ is a formula but the only part of it that is an expression is
/x/, while /r/ itself is not. This is a common dilemma. Montague has basically opted
to make logical words in natural language syncategorematic. The price is that we
cannot explain the meaning of /John walks and Pete talks./ in terms of the
meaning of /and/ and the constituent sentences. Rather, /and/ merely signals the
application of a rule whose effect is to coordinate the sentences. o

I should mention here that Fine (2003) has claimed that there is no compositional
semantics for predicate logic. The above grammar suggests that this is false. Indeed,
what Fine has in mind is a different language of predicate logic by which we do
not use variables that consist in, say, a letter and an index. Rather, he has in mind
a semantics where the name of the variable is arbitrary and not fixed in any way
in advance (like it is in mathematical logic, for example); this corresponds to the
factual use of predicate logic in everyday discourse, even in logic. Careful texts
admit that what they are using are not actual variables but metavariables. (To my
knowledge, the book (Monk, 1976) is a rare exception in actually using variables
rather than metavariables.) If we want to give a semantics of predicate logic in terms
of metavariables we must change the definitions rather substantially. Notice that
the same issue arises in connection with programming languages. It used to be the
case that variables had to have a specific format to make them distinct from other
expressions. In many modern programming languages this is no longer required.
Any expression that is not predefined can be used. Since the programmer is also
free to define a host of other things, it turns out that it is highly context dependent
whether or not a given sequence of letters actually denotes a variable.

There is certainly more than one way in which we can implement the semantics
of predicate logic. Thus, Lτ is one in many other formulations of predicate logic.
Another way is described in Section 4.5. Let S := 〈M , β〉 be a model. Based on
the model S , we perform a reduction of the formulae in the following way: write
ϕ ≡S χ if

〈M , β〉 � ϕ ↔ χ. (5.8)

This is an equivalence relation. Moreover, it is a congruence with respect to the
standard boolean operations. This means that for ◦ ∈ {∨,∧,→}:

ϕ ≡S χ

(¬ϕ) ≡S (¬χ)
ϕ1 ≡S χ1 ϕ2 ≡S χ2

(ϕ1 ◦ ϕ2) ≡S (χ1 ◦ χ2)
(5.9)

However, it is checked that the following does not hold.

5.1 Predicate Logic 163

ϕ ≡S χ

(∃xi)ϕ ≡S (∃xi)χ
(5.10)

Similarly, given just M , write ϕ ≡M χ if for all β

〈M , β〉 � ϕ ↔ χ. (5.11)

This is equivalent to saying that for all β:

〈M , β〉 � ϕ ⇔ 〈M , β〉 � χ. (5.12)

This in turn is the same as [ϕ]M = [χ]M . Finally, the denotation of a formula is
not the set [ϕ]M but rather the set {χ : ϕ ≡M χ}. This time not only the laws (5.9)
hold (with ≡M replacing ≡S) but we also have

ϕ ≡M χ

(∃xi)ϕ ≡M (∃xi)χ
(5.13)

I seize the opportunity to broaden the scope of the semantics somewhat. Let
W be a set, the set of worlds. For every w ∈ W assume a model M (w) =
〈M(w),I(w), β(w)〉. This gives us an indexed family W := {M (w) : w ∈ W } of
models. We write ϕ ≡W χ if for all w ∈ W : ϕ ≡M (w) χ . The laws (5.9) hold but
(5.10) need not hold.

The rationale behind this is that the family W represents the space of all possi-
bilities. We say that ϕ is necessary (in W) if ϕ ≡W �. (Here, � is any tautology,
say, (∀x)x=x.) ϕ is possible if ϕ ≡� W ⊥. Let Λ be a first-order logic in the chosen
signature τ . Then for every formula ϕ ∈ Lτ two choices arise: either it is inconsis-
tent, that is, its negation is in Λ; or it is consistent, in which case there is a structure
M and a valuation β such that 〈M , β〉 � ϕ. (See Section 4.2.) We can sharpen this
somewhat. Say that a theory T is maximally consistent if T is consistent but there
is no consistent U properly containing T . Let W be the set of maximally consistent
sets and 〈M (w), β(w)〉 be a model such that for every δ ∈ w: 〈M (w), β(w)〉 � δ.
With this choice of W we have that ϕ ≡W χ if and only if ϕ ↔ χ is a theorem of
predicate logic. In this model, ϕ is a necessary if it is logically true; and possible if
logically consistent.

Definition 5.1 A structure S = {〈M (w), β(w)〉 : w ∈ W } is canonical for a logic
L if ϕ is necessary in S if and only if ϕ is L-equivalent to �, impossible in S if
and only if ϕ is L-equivalent to ⊥ and possible otherwise.

This construction and result can be extended to other logics extending predicate
logic. A particular case are meaning postulates.

Example 5.1 It is standardly assumed that /bachelor/ and /unmarried man/ are
synonymous (ignoring presuppositions). There are two ways to implement this log-
ically. One is to insert two unary predicate symbols, /r/ and /m/ and define

164 5 Examples

b(x) := ((¬r(x))∧m(x)). (5.14)

This is basically a metalinguistic convention: it says that the string /b/ (which is not
a relation symbol of our language), when followed by /(x�v)/ is to be replaced by
the sequence on the right, where /x/ is replaced by /x�v/. Another way is to introduce
three one place relation symbols, /b/, /m/ and /r/ and add the meaning postulates

(∀x)(b(x)→((¬r(x))∧m(x))),
(∀x)(((¬r(x))∧m(x))→b(x)).

(5.15)

This means that our logic—call it L+—is no longer predicate logic but a stronger
logic. It is the least logic containing predicate logic and the two formulae of (5.15).
The canonical structure for this logic consists in all models of the canonical structure
for predicate logic in the new signature minus all the models where (5.15) does not
hold. o

Another point of extension is modal logic. Introduce a relation � on the set W .
Then pick w ∈ W and write

〈W , w〉 � ϕ :⇔ 〈M (w), β(w)〉 � ϕ. (5.16)

Introduce a unary � operator on formulae and define

〈W , w〉 � (�ϕ) for all u: if w � u then 〈W , u〉 � ϕ. (5.17)

This is the way in which Montague Semantics analyses propositional attitudes and
tense, for example. We shall not have much to say on this topic, though. An alter-
native approach to intensionality is to add a new sort, that of a world and make
predicates relative to worlds.

Exercise 5.1 Spell out a grammar for the language {〈ϕ, �ϕ�M 〉 : ϕ ∈ Lτ }, adding
interpretations for indices and variables as given in this section.

Exercise 5.2 Let L+ be the logic of Example 5.1. Let A be the set of formulae in
(5.15). Say that a theory T is L+τ -consistent if T ∪ A is consistent. Use the Com-
pleteness Theorem to derive that there is a canonical structure S for L+.

Exercise 5.3 Define the following order on indices:

ε, 0, 1, 00, 01, 10, 11, 000, . . . (5.18)

So, �x comes before �y, in symbols �x � �y, if and only if either �x is shorter than �y or �x
and �y are of equal length and the binary number of �x is less than that of �y. Describe
an algorithm to calculate from a number k the string �x , where �x has position k in the
order �. Describe also the algorithm of the inverse to this mapping.

5.2 Concept Based Predicate Logic 165

5.2 Concept Based Predicate Logic

In this section we shall explore the question whether there exists a compositional
grammar for predicate logic based on concepts. It will turn out that such grammar
only exists if we restrict the language to a fragment based on finitely many variables.
Whether or not the language is sorted is of no importance. Thus we ignore sorts and
look at the following language:

CLτ := {〈ϕ, «ϕ»M 〉 : ϕ ∈ PLτ }. (5.19)

There is a trivial grammar for this language. Simply use the formation rules f ε∗ of
the previous section and define the meaning functions f μ by

f μ(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉) := « f ε∗ (�e)»M . (5.20)

Thus

I(f)(〈e0,m0〉, · · · , 〈eΩ(f)−1,mΩ(f)−1〉) := 〈 f ε∗ (�e), « f ε∗ (�e)»M 〉 (5.21)

In plain words: we first form the exponent (which we can do since the grammar of
the previous section is autonomous) and then compute the meaning directly from
the exponent. The problem is that this grammar is not compositional. The ques-
tion therefore is whether we can give a compositional grammar for the language of
concepts.

As stated above, this depends on whether or not we have only boundedly many
variables. Therefore, let us assume first that we use only formulae that contain the
variables x0 through xn−1. We call this language PLn

τ . This is the set of all formulae
from PLτ such that any occurring variable is contained in {xi : i < n}. (It is of
course not necessary that the variables are called x0 through xn−1. Any other set of
variables with cardinality n will do.) Now fix a structure M = 〈M,I〉. We put

«ϕ»M := ��ϕ�M �M . (5.22)

We shall present an independent grammar for

CLn
τ =
{〈ϕ, «ϕ»M 〉 : ϕ ∈ PLn

τ

}
. (5.23)

Define C := {«ϕ»M : ϕ ∈ PLn
τ

}
, the expressive power of CLn

τ . It is clear that no
relation of length> n can be minimal for any member of C . This is because there are
only n different free variables to choose from, so they generate only n-ary relations.
However, C not only contains concepts of length n but concepts of length k < n as
well.

Let f : C → PLn
τ be a function such that c = « f (c)»M . Thus, f picks for each

concept a formula defining it. For an arbitrary χ ∈ PLn
τ the type tp(χ) is a subset of

 n , the set of permutations of n (see Appendix A). It is defined by

π ∈ tp(χ(�x)) :⇔ M � χ(xπ−1(0), · · · , xπ−1(n−1))↔ f («χ(�x)»M). (5.24)

166 5 Examples

We may write each formula as ϕ(x0, · · · , xn−1) even if some of the variables do not
appear in it. A formula may thus have several types, since nonoccurring variables
can be permuted freely (also it may happen that a relation is symmetric in some
columns). Let [y0/z0, · · · , yn−1/zn−1]δ denote the result of substituting, for each
i < n simultaneously, all free occurrences of zi in δ by yi . Given a type π and a
concept c we define

fπ (c) := [xπ(i)/xi : i < n] f (c). (5.25)

Together with (5.24) this gives us for every ϕ ∈ CLn
τ and π ∈ tp(ϕ):

M � ϕ ↔ fπ («ϕ»M). (5.26)

Example 5.2 Here is an example. Suppose we have a binary relation symbol /r/ and
we are looking at the language PL2

τ . The variables are called /x0/ (written here x0)
and /x1/ (written here x1). Let c := «r(x0,x1)»M . Then we also have

c = «r(x1,x0)»M (5.27)

Let f (c) = r(x0,x1). Then the type of /r(x0,x1)/ is the identity permutation,
written (). However, the type of /r(x1,x0)/ is the permutation π = (0 1). For we
have

fπ (c) = [x1/x0,x0/x1]r(x0,x1) = r(x1,x0). (5.28)

And so we evidently have

M � r(x1,x0)↔ fπ («r(x1,x0)»M). (5.29)

Similarly for n > 2. A particular case to look at is where we have more variables
than occur free in the formula, for example, PL4

τ . Here the type of /r(x0,x1)/ con-
sist both in () and in (2 3), because the action on nonoccurring variables is irrelevant.
Similarly, the types of /r(x1,x0)/ are (0 1) and (0 1)(2 3). o

This finishes the preparations. We are ready to spell out the modes. They are
given in Fig. 5.1. In the definition, the following functions are being used. For the
existential quantifier we introduce the following functions.

∃i
π (c) := «(∃xi) fπ (c)»M (5.30)

For the universal quantifier we use

∀i
π (c) := «(∀xi) fπ (c)»M (5.31)

with i < n and π ∈ n . Now for the booleans.

5.2 Concept Based Predicate Logic 167

N (c) := «(¬ f (c))»M

Aπ;ρ(c, d) := «(fπ (c)∨ fρ(d))»M

Cπ;ρ(c, d) := «(fπ (c)∧ fρ(d))»M

Iπ;ρ(c, d) := «(fπ (c)→ fρ(d))»M

(5.32)

The modes are as follows: for every relation symbol R and every map τ : n → n
(not necessarily injective) we pick a 0-ary mode f R

τ . For every i < n and every
π ∈ n we pick a unary mode f ∃i,π and a unary mode f ∀i,π . There will be a unary

mode f ¬ and for every π, ρ ∈ n (not necessarily distinct) binary modes f ∧π,ρ ,
f ∨π,ρ and f →π,ρ . This defines the set Fn and the signature Ωn . The interpretation
Jn is shown in Fig. 5.1. α ranges over (not necessarily bijective or even injective)
functions from n to n and i over elements from n.

Jn

(
f R
α

)
:= 〈R�(

�
xα(0)�,

� · · ·� ,�xα(a(R)−1)
�),

«R�(
�
xα(0)�,

� · · ·� ,�xα(a(R)−1)
�)»M 〉

Jn(f ¬)(〈e,m〉) := 〈(�
¬�e�), N (m)〉

Jn

(
f ∃i,π
)
(〈e,m〉) :=

{
〈(�

∃�xi
�)

�
e, ∃i

π (m)〉 if π ∈ tp(e),

undefined else.

Jn

(
f ∀i,π
)
(〈e,m〉) :=

{
〈(�

∀�xi
�)

�
e,∀i

π (m)〉 if π ∈ tp(e),

undefined else.

Jn
(

f ∨π,ρ
)
(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈(�
e�∨�e′�), Aπ,ρ(m,m′)〉 if π ∈ tp(e)

and ρ ∈ tp(e′),
undefined else.

Jn
(

f ∧π,ρ
)
(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈(�
e�∧� e′�),Cπ,ρ(m,m′)〉 if π ∈ tp(e)

and ρ ∈ tp(e′),
undefined else.

Jn
(

f →π,ρ
)
(〈e,m〉, 〈e′,m′〉) :=

⎧
⎪⎨

⎪⎩

〈(�
e�→�e′�), Iπ,ρ(m,m′)〉 if π ∈ tp(e)

and ρ ∈ tp(e′),
undefined else.

(5.33)

Fig. 5.1 The modes for CLn
τ

Theorem 5.1 The grammar Gn = 〈Ωn,Jn〉 is independent, context free and
L(Gn) = CLn

τ .

Proof It is easy to see that Gn is independent. The functions on the concepts are
defined and the functions on the exponents are partial, with conditions that are com-
pletely independent of the meaning. (This is because the concept of a formula is
uniquely determined anyway, so any mention of meaning of a sign can be elimi-
nated.) It remains to be shown that the grammar generates CLn

τ . This is done by

168 5 Examples

induction. The inductive claim is that for every formula ϕ there is a term t such that
ι(t) = 〈ϕ, «ϕ»M 〉. The base case is

ϕ = R(x j0, · · ·,x ja(R)−1). (5.34)

Put i(k) := jk if k < a(R) and i(k) := 0 else. Then

ϕ = R(xi(0), · · ·,xi(a(R)−1)) (5.35)

and so

I
(

f R
i

)
= 〈ϕ, «ϕ»M 〉. (5.36)

I perform only two of the inductive steps. Suppose for example that the formula
has the form /(e∨e′)/. By inductive hypothesis there are analysis terms t and t ′ that
unfold to 〈e,m〉 and 〈e′,m′〉, respectively. Let π be a type of e and ρ a type of e′.
(Every formula has at least one type.) By inductive hypothesis, m = «e»M and
m′ = «e′»M . Then f ∨π,ρ t t ′ is defined and has exponent /(e∨e′)/. For the meaning
we have by definition

Aπ,ρ(m,m
′)

=«(fπ (m)∨ fρ(m
′))»M

=«(e∨e′)»M

(5.37)

Next we deal with f ∃i,π . Suppose we have generated the sign 〈e,m〉 using the term t .
The induction hypothesis is that m = «e»M . Assume that e has type π . Then from
(5.26) we get

M � (∃xi)e ↔ (∃xi) fπ («e»M) (5.38)

and so

«(∃xi)e»M = «(∃xi) fπ («e»M)»M = ∃i
π (m) (5.39)

Then f ∃i,π can be applied to the sign and we get

Jn

(
f ∃i,π
)
(〈e,m〉) = 〈(�∃�xi

�)
�

e, ∃i
π (m)〉. (5.40)

This completes the proof. ��
The formulation of the semantics did not use linking aspects. They could in

principle also be used but it was easier to perform a definition by returning to the
language CLn

τ . We were taking advantage of the fact that CLn
τ is unambiguous. In

general, it is not possible to eliminate the linking aspects by splitting the functions
on the exponents.

5.2 Concept Based Predicate Logic 169

Let us discuss now the case where we have infinitely many variables. As I noted
in Intermission 2, the language with infinitely many variables has the disadvantage
that it must insert nontrivial syncategorematic symbols. Let us ignore this problem.
Let us consider the language with Rel = {r} and τ(r) = 2. The model is N =
〈N,I〉, with I(r) = {〈i, i + 1〉 : i ∈ N}. We have three modes, f∅ (zeroary), f1
and f0 (unary). Their interpretation is as follows (recall the definition of the verum
concept t as �{∅}�).

I(f∅)() := 〈x, t〉 (5.41)

I(f0)(〈e,m〉) :=
{
〈e�0,m〉 if e is a variable,

undefined else.
(5.42)

I(f1)(〈e,m〉) :=
{
〈e�1,m〉 if e is a variable,

undefined else.
(5.43)

Notice that we have this time generated variables from variables, to show that alter-
natives to introducing indices are possible. In fact, we are now generating the fol-
lowing language:

CLτ ∪{〈x�u, t〉 : �u ∈ (0|1)∗}. (5.44)

This language has two types of expressions: formulae and variables. The interpre-
tation of variables is their range and therefore the “truth”. Now we introduce the
relation symbol by means of a binary mode:

fr (〈e,m〉, 〈e′,m′〉) (5.45)

:=

⎧
⎪⎨

⎪⎩

〈r(�e�,�e′�), «{〈i, i + 1〉 : i ∈ N}»N 〉 if e �= e′ are variables,

〈r(�e�,�e′�), «∅»N 〉 if e = e′ are variables,

undefined else.

Define the following formulae.

ϕ0 := r(x,x0)

ϕ1 := (r(x,x0)∧r(x1,x00))

ϕ2 := ((r(x,x0)∧r(x1,x00))∧(r(x01,x10)∧r(x11,x000)))

ϕ3 := (((r(x,x0)∧r(x1,x00))∧(r(x01,x10)

∧r(x11,x000)))∧((r(x001,x010)

∧r(x011,x100))∧(r(x101,x110)∧r(x111,x0000))))

(5.46)

Also, define the following sets:

Sn := {〈i, i + 1, · · · , i + n − 1〉 : i ∈ N}. (5.47)

170 5 Examples

For example, S1 is N, S2 consists in the pairs 〈0, 1〉, 〈1, 2〉, 〈2, 3〉 and so on and S3
consists in the triples 〈0, 1, 2〉, 〈1, 2, 3〉, 〈2, 3, 4〉 and so on. The meaning of ϕ0 is
�S2�N , the meaning of ϕ1 is �S2 × S2�N . The set of formulae we are interested in
is a bit larger; it consists in all substitution instances of the ϕn . The following is easy
to see.

Lemma 5.1 Let χ be a substitution instance of ϕn. Either χ is unsatisfiable in N
or «χ»N is the concept generated by a nontrivial product Xk<p Sn(k) for some
numbers n(k) > 1.

Proof Clearly, some formulae are unsatisfiable, for example

((r(x,x0)∧r(x0,x1))∧(r(x,x1)∧r(x,x1))). (5.48)

Now, let x ≺ y if and only if χ contains the clause r(x,y). Say that x is of height 0
if there is no y such that y ≺ x ; and of height n+1 if there is a y of height n such that
y ≺ x . Now we shall characterise all satisfying assignments. Suppose that x ≺ y, y′
and β a satisfying assignment; then β(y) = β(x) + 1 and β(y′) = β(x) + 1, from
which β(y) = β(y′). Similarly, if x, x ′ ≺ y then β(x) = β(x ′). Let ≈0 be the
identity. And let x ≈n+1 x ′ if for some y, y′ such that y ≈n y′ either (a) y ≺ x
and y′ ≺ x ′ or (b) x ≺ y and x ′ ≺ y′; x ≈ x ′ is the union of all ≈n . This is
an equivalence relation. For ≈-equivalence classes A and B write A ≺ B if there
are x ∈ A and y ∈ B such that x ≺ y. The relation ≺ is linear on the classes.
For assume A ≺ B, B ′. Then there are x, x ′ ∈ A and y ∈ B, y′ ∈ B ′ such that
x ≺ y and x ′ ≺ y′. Since x ≈ x ′, we have y ≈ y′, by definition of ≈. Hence
B = B ′. Similarly we can show that if A, A′ ≺ B then A = A′. A valuation
is now constructed as follows. For each class A that has no ≺-predecessor, pick
a representative and assign to it any value. Then the values of the members of A
must all be the same. Suppose that the values to members of A are known and are
all identical to k; let A ≺ B. Then the value of every member of B is k + 1. By
this recipe, the valuation is completely determined. Now let us turn to the concept
defined by χ . It is clear that when we pass to the concept all equivalence classes of
≈ can be shrunk to one. All factors of the form S1 can be dropped. This gives the
product representation. ��

In particular, consider the following substitution instances.

ϑ0 := r(x,x0)

ϑ1 := (r(x,x0)∧r(x0,x1))

ϑ2 := ((r(x,x0)∧r(x0,x1))∧(r(x1,x00)∧r(x00,x01)))

ϑ3 := (((r(x,x0)∧r(x0,x1))∧(r(x1,x00)

∧r(x00,x01)))∧((r(x01,x10)

∧r(x10,x11))∧(r(x11,x000)∧r(x000,x001))))

(5.49)

The meaning of these formulae is exactly �S2n+1�N .

5.2 Concept Based Predicate Logic 171

If ġ = 〈g(0), · · · , g(k − 1)〉 is a vector of numbers, we put Sġ := Xi<k Sg(i). Let
us look at the possible ways to assemble such formulae. We shall show that there is
no way in which this sublanguage can be generated by a compositional context free
interpreted grammar. This shall suffice for the following reason. The sublanguage
is closed under taking subformulae; so if there is a grammar for the full language it
must generate these formulae by means of other formulae of this kind. Hence if this
is impossible, no grammar for the entire language exists.

Basically, for any context free grammar, the modes of composition must be to
assemble some formulae and add some bounded material.

I(f)(〈e0,m0〉, · · · , 〈en−1,mn−1〉) (5.50)

:= 〈�x�
0 e�

0 �x�
1 · · ·� �x�

n−1e�
n−1�xn, h f (m0, · · · ,mn−1)〉

We may assume that mi = �Sġ(i)�N and that h f (m0, · · · ,mn−1) = �Sġ(n)�N ,
where ġ(0), · · · , ġ(n) are vectors of natural numbers. In this way, the function h
can be coded by the assignment

h♠f : 〈ġ(0), · · · , ġ(n − 1)〉
→ ġ(n). (5.51)

Now the following can easily be verified.

Lemma 5.2 Suppose that ni are numbers and that h♠f (n0, · · · , nk−1) also is a num-

ber. Then h♠f (n0, · · · , nk−1) can be any number between max{ni : i < k} and
(∑

i<k ni
)− (k − 1).

We now turn to an investigation of the morphology.

Lemma 5.3 Assume that I(f) is as in (5.50). Then for given e′ there is at most one
vector �e = 〈ei : i < Ω(f)〉 such that f ε(�e) = e′.

Proof Let n = Ω(f). Assume that f ε(�e) = f ε(�c) for some vector �c = 〈ci : i < n〉.
Then we have

�x0e0�x1e1�x2 · · · �xn−1en−1�xn = �x0c0�x1c1�x2 · · · �xn−1cn−1�xn . (5.52)

From this it follows that

e0�x1e1�x2 · · · �xn−1en−1�xn = c0�x1c1�x2 · · · �xn−1cn−1�xn . (5.53)

Suppose first that e0 and c0 are formulae. It is a property of this language that no
prefix of a formula is a formula. Hence e0 = c0, since neither can be a prefix of the
other. Therefore

�x1e1�x2 · · · �xn−1en−1�xn = �x1c1�x2 · · · �xn−1cn−1�xn . (5.54)

172 5 Examples

Now assume that e0 is not a formula. Then it is a variable and so of the form x�u,
where �u is a binary string. In this case, since also e1 is either a variable or a formula,
�x1 must contain a prefix that finishes the occurrence of the variable that e0 begins.
It does the same with c0; thus, e0 = c0. Similarly, if c0 is not a formulae. Thus, we
get (5.54) in all cases.

Repeat this argument n − 1 times. ��
Finally, let 〈�u, �v〉 be an occurrence of �x in �z = �u �x �v. The embedding depth of

this occurrence of �x is defined as the number of opening brackets minus the number
of closing brackets in �u. Notice that in ϕn every atomic subformula has embedding
depth n.

Lemma 5.4 Let χ be a formula with an occurrence of depth d in ϕn. Then χ is a
substitution instance of ϕn−d .

Proof By induction on n − d. Let n = d. Since no formula has embedding depth
> n, the formula is atomic and so a substitution instance of ϕ0. Now let the claim
be shown for n − d. We show it for n − d + 1. Let us be given an occurrence
〈�u, �v〉 of χ . Then χ begins with an opening bracket (since no atomic formula has
embedding depth n − d + 1). Thus, it is easily seen that χ = (�z0∧�z1), where �z0
and �z1 are subformulae of embedding depth n − d. By inductive hypothesis, they
are substitution instances of ϕn−d . Then χ is a substitution instance of ϕn−d+1. ��

Thus, with I defined as in (5.50) let μ f be the largest of the bracket balances of
�x0�x1 · · · �xi , i < n. Now, if f ε∗ (e0, · · · , en−1) = ϕn , we conclude that the embedding
depth of the occurrences of the ei in ϕn are less than or equal to n−μ f . By choosing
n large enough we can make the ei to be of any minimal length we want.

Let now G be any context free compositional interpreted grammar for the lan-
guage. Define

μG := max{μ f : f ∈ F}, αG := max{Ω(f) : f ∈ F}. (5.55)

Make n large enough so that n∗ := 2n−μG + 1 > αG + card F . For every f ∈ F , let
v̇ f := h♠f (n∗, · · · , n∗). By choice of n∗ there is a number j∗ between n∗ and 2n∗−1
which is not of the form v̇ f . (If v̇ f is not a number, that is anyhow the case.) Next let
ψk be the substitution into ϑn−μG such that the names of the variables are shifted by
k in the order � (see Exercise 5.3). Since this shift is injective, the meaning of ψk is
the same as that of ϑn−μG , which is �S2n∗ �. Now we define the following sequence
of formulae:

χ◦(0) := ψ0 χ•(0) := ψ j∗−n∗

χ◦(n + 1) := (�χ◦(n)�∧�χ◦(n)�) χ•(n + 1) := (�χ•(n)�∧�χ•(n)�)
(5.56)

Finally, let ζ := (χ◦(μG)∧χ
•(μG)). Its meaning is �S j∗�. (For χ◦(μG) contains

the first n∗ variables, and χ•(μG) contains this set shifted by j∗ − n∗ (which is a
number < n∗).) Their conjunction therefore contains the first j∗ variables.

5.2 Concept Based Predicate Logic 173

We show that 〈ζ, «ζ»N 〉 cannot be generated in G. Assume that it is the value
of the term f t0 · · · tn−1. Then ζ has a decomposition as follows.

ζ = �x0e0�x1e1�x2 · · · �xn−1en−1�x (5.57)

As we have seen, the ei must be subformulae. Now, we may assume that ei �= ζ

(or else ζ = e0 and then we must obviously find a way to generate e0 using another
function). And so the ei are subformula of either χ◦(μG) or of χ•(μG). As they
are of embedding depth at most μG they have the form χ◦(d) or χ•(d) for some d.
Hence their meaning is �Sn∗�. The denotation of the term f t0 · · · tn−1 is of the form
�Sk� where k = h♠f (n∗, · · · , n∗). However, ζ has the meaning �S j∗�, which is not
of this form. This completes the proof.

Theorem 5.2 There are models and signatures for which CLτ has no compositional
interpreted context free grammar.

It is perhaps worthwhile saying something about the significance of this result. In
generative grammar it has been observed that there are constituents that serve as
a bottleneck in syntax, called phases. In the earlier fragment of Chomsky (1986),
the CP- and DP-constituents had the property that, unlike VPs, they could not be
adjoined to arbitrarily. While the existence of phases has always been a mystery,
here we find an indication as to why such bottlenecks must exist. Since we argued
that meanings are not standard meanings, such as sets of valuations or relations but
rather concepts, there is a limit on how many elements we can have in storage. One
way of calibrating the idea of storage is to calculate the number of free variables
occurring in a formula.

Exercise 5.4 The function for concept negation did not depend on the type of the
formula, while the disjunction, conjunction and implication depended on the types
of both arguments. A closer analysis reveals that for an n-ary boolean operator the
concept function depends on all n types; it is however enough to assume functions
that depend only on n − 1 arguments. Can you give a general solution how to lift an
n-ary operator to concepts using n − 1 type parameters rather than n? Perform this
reduction for Aπ;ρ , Cπ;ρ and Iπ;ρ . Can you see why negation is independent of the
type of its unique argument?

Exercise 5.5 What happens if we allow functions in the primitive vocabulary of
predicate logic?

Exercise 5.6 Modify the above proof of Theorem 5.2 to the case where the language
is as follows (cf. the definition of Lτ of the previous section):

CLτ ∪{〈�v, �v〉 : �v ∈ (0|1)∗} (5.58)

Exercise 5.7 Show that Theorem 5.2 would also hold if we allowed to introduce an
arbitrary finite set of categories. (Assuming, of course, that the grammar is indepen-
dent in all three components.)

174 5 Examples

Exercise 5.8 Here is a variation on the formulae defined above. Define ηn as fol-
lows.

η0 := r(x,x0)

η1 := (r(x,x0)∧r(x1,x00))

η2 := ((r(x,x0)∧r(x1,x00))∧r(x01,x10))

η3 := (((r(x,x0)∧r(x1,x00))∧r(x01,x10))∧r(x11,000))

(5.59)

Show that no compositional context free interpreted grammar exists that gener-
ates all the pairs 〈s(ηn), «s(ηn)»〉, where s is a substitution (together with all pairs
〈x�v, �{∅}�N 〉).

5.3 A Fragment of English

In this section we discuss a small fragment of English to show how one can over-
come the limitations of concepts. We shall consider various strategies to define the
composition via linking aspects. One strategy is to use thematic roles. The idea is
that in an event of some sort the participants can be distinguished by some property
that they have as opposed to the others. For example, the standard, relation based,
meaning of the verb /hit/ may—in standard notation—be a relation hit′(t, w, x, y)
where t is a time point, w is a possible world or situation and x and y are things.
In this case it is already possible to distinguish the variable t from the others due
to the fact that all variables are sortal. A time variable can never be identical to a
world variable or an entity variable; and the things that these variables denote are
completely separate, too. Likewise w is uniquely identifiable through its sort. Only
x and y are sortally identical. Nevertheless, we can distinguish them by observing
that in an act of hitting there is one participant that exerts force on the other. It is this
one that performs an action, while the other can be completely at rest. Thus, there is
a formula α(t, w, x) such that in our standard model M

M � hit′(t, w, x, y)→ α(t, w, x), M � hit′(t, w, x, y)→ α(t, w, y).
(5.60)

This is essentially the theory proposed by Wechsler (1995). Wechsler uses modal
notation, so it would look more like

M � �(hit′(x, y)→ α(x)), M � �(hit′(x, y)→ α(y)). (5.61)

(Notice that using modal operators means that we have to suppress the variables
on which the modality is based, here time and world.) But these differences are
superficial. Let us suppose that something like (5.60) holds. However, as the model
we are using is characteristic (all that is logically true is true in it, all that is not
logically true is false in it), we should rather require the following (with π(23) the
permutation interchanging the third and the fourth column).

5.3 A Fragment of English 175

�hit′(t, w, x, y)�M ⊆ �α(t, w, x)�M × Me

π(23)[�hit′(t, w, x, y)�M] � �α(t, w, x)�M × Me
(5.62)

The formula α(t, w, x) does not suffer from the same combinatorial ambiguity.
Thus, the concept «α(t, w, x)»M has only one minimal member in its type. The
task of picking out the correct representative has become trivial. So, we pick the
minimal member R and then return to hit′(t, w, x, y). The concept has two mini-
mal members, say S and T . According to the above, we have R × Me ⊆ S and
R × Me � T or R × Me � S and R × Me ⊆ T . Thus, there is a way to find out
which minimal member to pick.

Example 5.3 There are three sorts, e, w and t. Assume that Me = {a, b, c}, Mw =
{w0, w1} and Mt = {t0, t1}.

�α(t, w, x)�M ={〈t0, w0, a〉, 〈t0, w0, b〉, 〈t0, w0, c〉, 〈t0, w1, a〉,
〈t1, w0, b〉, 〈t1, w0, c〉} (5.63)

�hit′(t, w, x, y)�M ={〈t0, w0, a, a〉, 〈t0, w0, a, b〉, 〈t0, w0, b, a〉,
〈t0, w0, a, c〉, 〈t1, w0, c, a〉, 〈t1, w0, c, b〉} (5.64)

In this model (5.62) is satisfied. Let us now consider all permutations of the relations
where the time variable is first, the world variable is second and the object variables
third. There is only one such permutation for �α(t, w, x)�M , where there are two
for �hit′(t, w, x, y)�M , namely:

T0 :={〈t0, w0, a, a〉, 〈t0, w0, a, b〉, 〈t0, w0, b, a〉,
〈t0, w0, a, c〉, 〈t1, w0, c, a〉, 〈t1, w0, c, b〉},

T1 :={〈t0, w0, a, a〉, 〈t0, w0, b, a〉, 〈t0, w0, a, b〉,
〈t0, w0, c, a〉, 〈t1, w0, a, c〉, 〈t1, w0, b, c〉}.

(5.65)

Now, T0 can be distinguished from T1 by the fact that T1 contains 〈t1, w0, a, c〉,
which is not contained in the set �α(t, w, x)�M × Me.

�α(t, w, x)�M × Me = {〈t0, w0, a, a〉, 〈t0, w0, a, b〉, 〈t0, w0, a, c〉,
〈t0, w0, b, a〉, 〈t0, w0, b, b〉, 〈t0, w0, b, c〉, 〈t0, w0, c, a〉,
〈t0, w0, c, b〉, 〈t0, w0, c, c〉, 〈t0, w1, a, a〉, 〈t0, w1, a, b〉,
〈t0, w1, a, c〉, 〈t1, w0, b, a〉, 〈t1, w0, b, b〉, 〈t1, w0, b, c〉,
〈t1, w0, c, a〉, 〈t1, w0, c, b〉, 〈t1, w0, c, c〉}

(5.66)

Notice that looking at truth conditions rather than accidental facts is essential, that
is to say, the intensionality does real work here. For in w0 at t0 every object has
property α. If we had to define our minimal member only here, there would be no
way to distinguish the arguments. For example, suppose that atw0 and t0, everybody
is such that he or she is moving and exerting some force. Still it should not follow

176 5 Examples

that everybody is hitting someone. They could, for example, push a car uphill. Thus,
we need to make reference to other worlds. It is clear that in the entire space of
worlds there must be one where the concepts really is nonsymmetrical, otherwise
(5.62) could not be used to discriminate the arguments. o

We shall display a primitive trigrammar. It has five modes: F = { f0, f1, f2, f3,

f4}. Ω(f0) := Ω(f1) := Ω(f2) := 0, Ω(f3) := Ω(f4) := 2. For the purpose of
the next definition, let σ = 〈e, c,m〉 and σ ′ = 〈e′, c′,m′〉. Further, let dk

i j be the
relation {〈a0, · · · , ak−1〉 : ai = a j }. (This relation is only defined if sorts match.
For simplicity we suppress mentioning sorts.) Y is a linking aspect that extends the
aspect as in the previous example. What is important below is only that it orders
the arguments like this: time, world, patient, actor. Let σ = 〈e, c,m〉 and e′ =
〈e′, c′,m′〉.

D(f0)() := 〈John,NP, {a}〉
D(f1)() := 〈Paul,NP, {b}〉
D(f2)() := 〈hits,V, «hit′(t, w, x, y)»M 〉

D(f3)(σ, σ
′) :=

⎧
⎪⎨

⎪⎩

〈e���e′,VP, �C2.C4.
(
Y (m)× Y (m′) ∩ d5

24

)
�M 〉

if c = V and c′ = NP,

undefined else.

D(f4)(σ, σ
′) :=

⎧
⎪⎨

⎪⎩

〈e′���e�.,S, �C0.C1.C2.C3.
(
Y (m)× Y (m′) ∩ d4

23

)
�M 〉

if c = VP and c′ = NP,

undefined else.
(5.67)

The resulting meaning of a sentence is true if there is a time point and world such
that the sentence is true in that world at that time. Let us see how that works. The sen-
tence /John hits Paul./ can be generated only as the exponent of f4 f3 f2 f1 f0.
Let us do this step by step.

ιG(f3 f2 f1) = D(f3)(〈hits,V, R〉, 〈Paul,NP, {b}〉)
= 〈hits���Paul,VP, «C2.C4.

(
Y (m)× Y (m′) ∩ d5

24

)
»M 〉

= 〈hits Paul,VP, «{〈t0, w0, a〉, 〈t1, w0, c〉}»M 〉
(5.68)

Here is how the concept in the last step is derived. First, we apply the linking aspect
Y to the concept of hitting, whereupon we get

Y (m) ={〈t0, w0, a, a〉, 〈t0, w0, b, a〉, 〈t0, w0, a, b〉,
〈t0, w0, c, a〉, 〈t1, w0, a, c〉, 〈t1, w0, b, c〉}. (5.69)

5.3 A Fragment of English 177

Also, Y (m′) = {b}, since there is nothing to order. We take the product:

Y (m)× Y (m′) ={〈t0, w0, a, a, b〉, 〈t0, w0, b, a, b〉, 〈t0, w0, a, b, b〉,
〈t0, w0, c, a, b〉, 〈t1, w0, a, c, b〉, 〈t1, w0, b, c, b〉}. (5.70)

Next we intersect with the set d5
24. That is to say we take the subset of all vectors

〈x0, x1, x2, x3, x4〉 such that x2 = x4.

Y (m)× Y (m′) ∩ d5
24 ={〈t0, w0, b, a, b〉, 〈t1, w0, b, c, b〉} (5.71)

Finally, we remove the third and fifth column.

C2.C4.Y (m)× Y (m′) ∩ d5
24 ={〈t0, w0, a〉, 〈t1, w0, c〉} (5.72)

And then we form the concept, which just means that we basically forget the order
of the columns. Call this concept m. We are ready to continue (with Y (m) defined
below):

ιG(f4 f3 f2 f1 f0) =D(f4)(ιG(f3 f2 f1), ιG(f0))

=D(f4)(〈hits Paul,VP, «{〈t0, w0, a〉, 〈t1, w0, c〉}»M 〉,
〈John,NP, {a}〉)

=〈John���hits Paul�., S,

«C0.C1.C2.C3.
(

Y (m)× Y («{a}»M) ∩ d4
23

)
»M 〉

=〈John hits Paul.,S, {∅}〉
(5.73)

The way to get there is as follows. The linking aspect orders the minimal members
of the concept m. Assume that it does this on the basis of times< worlds< entities.
(This does not follow, by the way, from our assumption on how it orders the minimal
members of the concept of hitting!) Then

Y (m) = {〈t0, w0, a〉, 〈t1, w0, c〉}. (5.74)

It also orders the unique minimal member of the concept of John and gives us {a}.
We take the product

Y (m)× Y (�{a}�M) = {〈t0, w0, a, a〉, 〈t1, w0, c, a〉}. (5.75)

Next we intersect with d4
23:

Y (m)× Y («{a}»M) ∩ d4
23 = {〈t0, w0, a, a〉}. (5.76)

178 5 Examples

And then we eliminate the columns 0, 1, 2 and 3:

C0.C1.C2.C3.Y (m)× Y («{a}»M) ∩ d4
23 = {〈〉}. (5.77)

The sentence is true in the model.
When we move to more complex cases, for example relations involving 3 entities

(arising in the meaning of ditransitives, for example) we do not need to come up with
an α such that, say,

�ϕ(t, w, x, y, z)�M ⊆ �α(t, w, x)�M × Me × Me,

π(23)�ϕ(t, w, x, y, z)�M � �α(t, w, y)�M × Me × Me,

π(24)�ϕ(t, w, x, y, z)�M � �α(t, w, z)�M × Me × Me.

(5.78)

It is enough if we first find a concept that allows to separate two variables from a
third and then continue as before.

The formulae above do not always exist. A case in point is the relation<. If taken
as a relation on the natural numbers, we can use the formula α(y) := (y �= 0). For
there is no x such that x < 0, it is through this property that we can discriminate
the positions. However, matters change when we look at it as a relation between
integers. For the projection of< onto both of its components is the set Z of integers.
This means that for every x there is a number y that is bigger than x and for every y
there is a number x that is smaller than y. Thus we have to use a different tool. One
idea that actually always works is this.

Definition 5.2 A sampler is a function S from concepts to finite sets of tuples such
that if c is a concept, then there is exactly one minimal R ∈ c with R ⊇ S(c).

Samplers always exist. Let c be a concept; fix a minimal member c of R. LetΞ be the
set of permutations such that π [R] �= R. (In fact, we can skip all permutations that
are not sortally trivial. Here, a permutation π is sortally trivial if for the sequence
�s of sorts: π(�s) = �s.) For every π ∈ Ξ pick a tuple �xπ such that �xπ ∈ R but
�xπ �∈ π [R]. By assumption for every π ∈ Ξ such a tuple exists. Let

S(c) := {�xπ : π ∈ Ξ}. (5.79)

If we want to use a sampler to pick out a different minimal member U from c, then
since that member is a permutation of the original set R, say U = ρ[R], we can use
in place of S(c) the set ρ(S(c)).

Example 5.4 In the example above, the following is a sampler for «hit′(t, w, x, y)»M
picking out R := �hit′(t, w, x, y)�M . It is {〈t0, w0, a, c〉}. This is because the
only permutations that are sortally trivial are the identity π() and π(23). Thus,
Ξ := {π(23)} is enough. For the permutation π(23) we have π(23)(〈t0, w0, a, c〉) =
〈t0, w0, c, a〉, which is not in the relation. The set {〈c, a, t0, w0〉} instead picks out
the member π(0213)[R], or if you will, the set �hit′(y, x, t, w)�M . o

5.4 Concepts and LF 179

Example 5.5 Assume one sort e and Me = {a, b, c}. Let

R := {〈a, b, c〉, 〈a, c, b〉, 〈b, a, b〉, 〈b, b, a〉}. (5.80)

Then it turns out that Ξ = {π(01), π(02)}, because the permutation (12) transforms
R into itself. To fix �R�M to R, we use {〈a, b, c〉}. o

5.4 Concepts and LF

It seems that the introduction of concepts actually made matters worse. To derive
meanings in a compositional way is not at all straightforward. When we compare
this with other approaches (Montague Grammar, or DRT based approaches such as
(Kamp and Reyle, 1993)) we ask ourselves whether it is really warranted to replace,
say, DRSs by concepts. To see that one is virtually compelled to assume concepts,
look at what the algorithm of Kamp and Reyle (1993) factually does. It translates
the sentence (5.81) not directly but via a surface indexing.

A big man sees a small cat. (5.81)

A surface indexing is an assignment of indices to the free variables of the corre-
sponding DRS. Such indices were once assumed to be distributed by the parser in
terms of annotations to the words of the surface string. Thus the input to the transla-
tion algorithm is (5.82) rather than (5.81). Note that the indices are also written using
typewriter fonts. This highlights the fact that they are really there and they also have
to be written using some characters of the alphabet. Making this absolutely clear is
essential.

A1 big1 man1 sees(1,7) a7 small7 cat7. (5.82)

Based on the input the translation is unique. The problem with this notion of syntax
is that it uses material that is not in the actual surface string, namely indices. The
indices in turn determine the translation into a DRS, or for that matter, into some
predicate logical formula. It turns out that /man0/ has a different translation than
/man1/. Therefore, in order for the proposed algorithm to work, we must assume
that the grammar generates entries of the following form:

〈man0,man′(x0)〉, 〈man1,man′(x1)〉, 〈man2,man′(x2)〉, · · · (5.83)

It does not necessarily mean that the above entries are in the lexicon. For the indices
may be taken to be, say, decimal strings; in this case we need a base entry

〈man0,man′(x0)〉 (5.84)

and ten unary functions (to append a digit to the index) to successfully generate all
of these entries.

180 5 Examples

For a transitive verb we will have

〈sees(0,0), see′(x0, x0)〉, 〈sees(1,0), see′(x1, x0)〉,
〈sees(2,0), see′(x2, x0)〉, · · ·

〈sees(0,1), see′(x0, x1)〉, 〈sees(1,1), see′(x1, x1)〉,
〈sees(2,1), see′(x2, x1)〉, · · ·

〈sees(0,2), see′(x0, x2)〉, 〈sees(1,2), see′(x1, x2)〉,
〈sees(2,2), see′(x2, x2)〉, · · ·

· · · · · ·

(5.85)

This is where our principles come in. Recall that we have explicitly ruled out
deletion. If there is no index on the surface, there has never been one in the begin-
ning. So, at the deep phonological level we also have just /man/ and /sees/. Given
that we apply compositionality at the deep phonological level and not the surface
it might be deemed that we only need to propose a regular relation that deletes the
indices. However, such an operation lacks any phonological motivation. In partic-
ular, since the symbols we use (smaller font size lowered numbers) do not appear
in ordinary language, their use is ruled out by the fact that none of the symbols
actually exists in the language itself. It is therefore excluded. Thus we rather have
the following signs

〈man,man′(x0)〉, 〈man,man′(x1)〉, 〈man,man′(x2)〉, · · · (5.86)

〈sees, see′(x0, x0)〉, 〈sees, see′(x1, x0)〉, 〈sees, see′(x2, x0)〉, · · ·
〈sees, see′(x0, x1)〉, 〈sees, see′(x1, x1)〉, 〈sees, see′(x2, x1)〉, · · ·
〈sees, see′(x0, x2)〉, 〈sees, see′(x1, x2)〉, 〈sees, see′(x2, x2)〉, · · ·
· · · · · · · · ·

(5.87)

This means that the name of the actual variable has become immaterial beyond
distinguishing positions. This is essentially what is meant by the Principle of Alpha-
betical Innocence.1

Principle 6 (Alphabetical Innocence) Suppose a formula ϕ represents the meaning
of a natural language string. Let s be a substitution that is injective on the variables
of ϕ; and let s(ϕ) be the result of replacing every occurrence of xi by s(xi). Then
s(ϕ) is equivalent to ϕ.

It is possible to derive this from our postulates on meaning. However, it is worth
stating it on its own because it allows us to decide in a simple way whether a seman-
tics is properly desyntactified. We shall apply the principle to the case at hand. It
means that none of the predicate logical formulae properly capture the meaning of
/man/ or /see/. For if the meaning of /man/ was expressed by, say, man′(x0), then
we should have

man′(x0)↔ man′(x1). (5.88)

1 This name is due to Kit Fine, which he used during a lecture at UCLA.

5.4 Concepts and LF 181

But this is false in the standard semantics for predicate logic. Notice that even a
formula such as

∨
i∈N

man′(xi) is no good, since it is not invariant under the shift
substitution s : xi
→ xi+1.

�

∨

i∈N

man′(xi)↔ s

(
∨

i∈N

man′(xi)

)

=
∨

i∈N−{0}
man′(xi) (5.89)

We can now see why an approach of the sort advocated in Generative Grammar
is no solution. Take, for example, the semantics of Heim and Kratzer (1998). For the
purposes of presentation, I take a very simple example. The analysis of the sentence
/every man runs/ proceeds as follows. The LF associated with this sentence is

every man [8 [t8 runs]] (5.90)

This is interpreted bottom up. Notice that man′ is the same as λx0.man′(x0) and
run′ the same as λx0.run′(x0):

λP.λQ.∀x0.P(x0)→ Q(x0) man′ λP.λx8.P x8 run′

λQ.man′(x0)→ Q(x0)
... run′(x8)

... λx8.run′(x8)

∀x0.man′(x0)→ run′(x0)

(5.91)

Essentially, the semantics does two things in sequence: first, the functions are
applied to some variables, in this case x8. The net effect of this is that the variable is
displayed. In Generative Grammar this is done because variables are the interpreta-
tion of traces. This is the step of VP formation. The VP then has as its interpretation
an open formula. Next, a step of function abstraction is performed. The element
denoted by “8” does nothing but to abstract the variable x8. Finally, the quantifier,
being a function, takes the abstracted form as its argument.

The success of this proposal lies in the possibility to display and (re)abstract
variables at each step of the derivation. This however demands synchronization of
these two steps in semantics. For example, had we given the variable x7 in place of
x8, the result would have been much different.

every man [8 [t7 runs]]

λP.λQ.∀x0.P(x0)→ Q(x0) man′ λP.λx8.P x7 run′

λQ.man′(x0)→ Q(x0)
... run′(x7)

... λx8.run′(x7)

∀x0.man′(x0)→ run′(x7)

(5.92)

182 5 Examples

For in the last step we have

(λQ.∀x0.man′(x0)→ Q(x0))(λx8.run′(x7))

= ∀x0.man′(x0)→ (λx8.run′(x7))(x0)

= ∀x0.man′(x0)→ run′(x7)

Thus only if the binder abstracts the same variable that the trace denotes do we get
the correct quantification. The problems evidently get worse if we have more than
one quantifier.

In light of Alphabetical Innocence we can now see why this project is bound to
fail. For the meaning of [t8 run] and [t7 run]must be the same. Thus, movement has
the side effect of displaying the variable. Now, quantifier movement was originally
done to obtain alternate scopings (it was used to this effect by Montague, too, though
not under this name). The idea was that different readings are the effect of a different
structure beyond the level of VP.

Every man loves some woman. (5.93)

every man [8 [some woman [7 [t8 t7 loves]]]] (5.94)

some woman [7 [every man [8 [t8 t7 loves]]]] (5.95)

The underlying theme in Generative Grammar has been to make movement be the
central device by which different readings are obtained. We can see however that
this has nothing to do with movement, only with the order of quantification. For
once we have displayed the variables Alphabetic Innocence strikes and we must be
in a position to reabstract the correct variable. But how does the quantifier remember
which variable it is supposed to bind?

The generativist will point to the indices in the syntactic structure to answer this
question. However, we have also said that notational additions such as numbers
cannot be part of the syntactic structure. Additionally, as we have just said, even
if the indices are present in the syntax, they have no meaning in the semantics and
therefore the idea of exposing and then abstracting a variable cannot work. If we
therefore eliminate all numbers the material relevant for interpretation is only this:

[every woman [some man [t t loves]]] (5.96)

[some man [every woman [t t loves]]] (5.97)

(I hasten to add that even this contains information that the surface string does not
show, for example, the number and places of occurrence of traces.) Now, suppose
we were to interpret the LF directly. Then we would have to make sure we know
(apart from the scopes of the quantifiers) that /every man/ is the subject and /some
woman/ is the object. Unfortunately, we lose precisely this information once we
decide to move the quantifier. We are lost.

The impasse has been created by thinking that the interpretation of the quantified
NP can and must somehow be delayed. What is apparent, however, is that quite to
the contrary the quantified NP must be interpreted immediately, upon inserting it

5.5 The Structure of Dutch 183

into the structure. One way out of the dilemma (not the only one) is to allow the
subject to combine first with the verb. Thus, one way to account for the difference
in quantifier scope is to assume that the sentence has the following structures.

some man [loves every woman] (5.98)

[some man loves] every woman (5.99)

All that is required is to have two rules of quantification for a transitive verb. One
where one binds the subject and the other where it binds the object.

This may be hard to digest but it has been observed that in certain constructions
we actually do find the subject-verb constituent (see for example Steedman (1990)).

Some man loves and the children adore every woman. (5.100)

While Generative Grammar has insisted that the observed subject-verb constituent
is just a constituent containing the object as well, we have rejected such analyses on
two grounds. One is that syntax is not allowed to delete material. The other is that
the empty material is of no actual help in establishing the correct semantics.

I should emphasize that in the literature on compositionality one rarely finds
people taking offense at the use of free variables. The reason is that the issue of
compositionality is often confused with offering just any sort of algorithm to com-
pute the right meanings. The Tarskian truth conditions, formulated in terms of sets
of assignments as values for propositions, are perfectly intelligible and rigorously
formalized. It therefore looks like a perfect tool. But is it appropriate? Is the set of
assignments sending x8 (as opposed to x7) to some man really the meaning of /man/?
Indeed, one of the few advocates of bound variables, Pauline Jacobson, is actually
more worried about how variables are properly administrated rather than whether
the Tarskian semantics is a proper choice. Similarly, the literature in Categorial
Grammar is full of proposals where free variables are used. If I am right, all these
approaches are on the wrong track if they make use of variable names as opposed to
linking aspects.

5.5 The Structure of Dutch

In this section we shall look at arguments in favour of a particular syntactic structure.
The previous section already gave a glimpse of the idea that sentence structure can
be motivated using purely semantic considerations. In the remainder of the chapter
we shall develop this idea further. Traditionally in linguistics, arguments in favour of
a particular syntactic structure were backed mostly by syntactic tests (substitution,
movement and so on). These tests were surface tests. The tests themselves are based
on certain background assumptions. Let us take the example of transformations.

It is easy to please John. (5.101)

To please John is easy. (5.102)

184 5 Examples

The correlation between (5.101) and (5.102) was taken to show that the sentence
(5.101) contains a constituent /to please John/. The argument was that we can
apply a movement transformation to (5.101) to get (5.102). As much as this sounds
like a reasonable proposal, there is no reason to assume that (5.102) is derived from
(5.101). Technically, we just have two different sentences. (Present day transfor-
mational grammar actually does not derive (5.102) from (5.101).) What makes this
argument at all acceptable is the fact that there is not just a syntactic correlation; the
transformation would not have been proposed to derive (5.102) from (5.101) if it
had not been for the fact that they mean (approximately) the same thing. Indeed, the
idea that gave rise to transformations in the first place was that they capture meaning
correspondences on the basis of syntactic regularities. Even though Chomsky has
changed the concept of transformation, the idea that they should not interfere with
meaning has been an underlying theme all along. I give two examples that show
how semantics is relevant.

There is a systematic syntactic correlation between a transitive sentence and one
where subject and object are exchanged (ignoring subject verb agreement):

John sees Mary. (5.103)

Mary sees John. (5.104)

This does not work if one of them is a pronoun for reasons of case; and in other
languages it might not work for case reasons. (Making the transformations suitably
complex is a way to deal with that problem, however.) Yet in English this correla-
tion is systematic. However, no one has proposed a transformation that derives one
from the other. Similarly, the well known attachment paradoxes do not lead to the
proposal of a transformation, to derive, say, (5.107) from (5.106):

The police saw a man with a telescope. (5.105)

The police saw [a man with a telescope]. (5.106)

The police [[saw a man] with a telescope]. (5.107)

The fact that the interpretation of passive sentences is different from their active
counterparts has in fact in the 70ies been used to argue against deriving passive
from active sentences2:

2 It is a subtle matter to see in what ways such meaning facts can at all bear on the question
whether one sentence is derived from another. This is because interpretation happens only once
in a derivation. The argument would roughly be this. Suppose that meaning is established at the
beginning of the derivation (at deep structure). Now suppose that S′ is (more precisely: must be)
derived from S through a transformation. Then the derivation that yields S′ from its deep structure
also derives S on the way. Same deep structure, same meaning. (A dual argument can be used if
interpretation is established at LF.) Hence if the two sentences have different meaning they cannot
stem from the same deep structure.

5.5 The Structure of Dutch 185

Everyone in this class speaks two languages. (5.108)

Two languages are spoken by everyone in this class. (5.109)

While in (5.109) the universal quantifier has a narrow scope (however only prefer-
entially) (5.108) it has wide scope only.

It should be clear that the same remarks apply to the use of the substitution
method to discover the tree structure of a sentence in a context free language. All
these tests assume in one way or another a semantic correlation. It is interesting to
note in this connection that the standard understanding of “strong generative capac-
ity” was only the fact that a grammar could generate a language together with the
right kind of structure without reference to any semantics. But how do we know that
a language has that structure in the first place?

In my view, the answer lies in the fact that these languages are interpreted. The
structure turns out to be necessary in order to derive the interpreted language not
just its string part. We have met arguments of this sort before in Section 3.5. In this
section I shall present cases from the literature, some of which have been the cause
of intense debate. I shall show that the semantic theory developed in the previous
chapter allows us to say something quite nontrivial about the syntactic structure of
natural languages.

The first case is that of Dutch infinitives. Here is what they look like.

Ik zeg dat de kinderen zwemmen. (5.110)

I say that the children swim.

Ik zeg dat Marie de kinderen leert zwemmen. (5.111)

I say that Mary teaches the children to swim.

Ik zeg dat Piet Marie de kinderen laat leren zwemmen. (5.112)

I say that Piet lets Mary teach the children to swim.

Ik zeg dat Jan Pier Marie de kinderen ziet laten leren (5.113)

zwemmen.

I say that Jan sees Piet let Mary teach the children to swim.

The order in which the elements appear in the Dutch sentences is quite different
from English. All the NPs come first, followed by the verbs. Within the verbs we
find first a finite verb and then infinitives. Second, the verbs line up in the same way
as in English and not in reverse order. Thus we do not have

∗Ik zeg dat Marie de kinderen zwemmen leert. (5.114)
∗Ik zeg dat Piet Marie de kinderen zwemmen leren laat. (5.115)
∗Ik zeg dat Jan Pier Marie de kinderen zwemmen leren (5.116)

laten zag.

186 5 Examples

This word order is the order of German. But in Dutch this order is ungrammatical.
However the reason it is ungrammatical is only that the finite verb is at the end and
the nonraising verb at the beginning. Thus, to make any of the above grammatical,
we just have to flip the verbs at either end of the sequence of verbs. If we did this,
we would get grammatical sentences—but their meaning would be different from
that of the German sentences in that same order. Thus we have to keep in mind that
the difference between Dutch and German runs deeper than the surface order would
make us believe. It will turn out that under our conception of strong generative
capacity Dutch is not strongly context free, but German is. However, Dutch still
is weakly context free. Let us see how we can establish this. First notice that the
methods of Section 3.5 cannot be directly applied without inquiring into the nature
of semantics. The reason is Theorem (3.4). It seems plausible that the fragment of
Dutch is both unambiguous and monophone. Hence the reason for the impossibility
cannot just be combinatorial. It must have to do with the way semantics works. We
shall show below what that extra property is. Let us mention here that the claim
that Dutch is not weakly context free is originally due to Huybregts (1984), which
came at a time when Gazdar and Pullum were revisiting arguments by Chomsky
and others concerning the non context freeness of languages. This culminated in the
book (Gazdar et al., 1985), which presented an elaborate unification based context
free grammar mechanism for natural language. This book provoked the idea that
human languages are universally context free and this is why there was renewed
interest in the question. Huybregts was aware of the semantic flavour of his argument
and it took Shieber (1985) to get the point home that some languages are non context
free after all. What Shieber showed was however that Swiss German (more exactly
Züritüütsch, the dialect spoken in Zurich) was not even weakly context free. Thus,
the argumentation remained strictly confined to form (be it syntax or morphology).

To be able to actually prove some facts about Dutch we are going to simplify and
formalize matters somewhat. The simplification consists in ignoring tense, using
only singulars and no finite forms. It is a trivial matter to extend the accounts below
to the original case. I trust that the reader has knowledge of a few facts concerning
CF languages (see Harrison (1978) or Kracht (2003)). These are that if L ⊆ A∗ is
a CF string language and R ⊆ A∗ a regular string language, then L ∩ R also is CF.
Another is that if ϕ : A → B+ is an arbitrary map and L ⊆ A∗ is CF then ϕ[L]
also is CF. (Notice that ϕ(a) must be nonempty for all a ∈ A!) These techniques
are used to infer that the fragment below “scales” up to the full language, that is to
say, can be used to infer that Dutch as a whole and not just this selected fragment,
is not CF. I shall not perform this argument since it essentially requires syntactic
arguments (and more empirical facts about Dutch) and we are more interested in
the issue of compositionality. But to make the sentences more realistic would be to
obscure the problems that occur at a more fundamental level.

I shall in fact present various different formalizations, all leading basically to the
same conclusion but different from each other in subtle but crucial respects.

I shall use predicate logic with constants for names and basic predicates. There
are two sorts: individuals and events. The inclusion of events makes the formal
semantics less trivial. It would similarly be possible to use time points or intervals,

5.5 The Structure of Dutch 187

but events are actually easier to use. The arities of the verbs differ according to
their meaning. The base verbs are unary and the raising verbs take two arguments
of each sort. For example, let′(e0, e1, x0, x1)means “e0 is an event of letting, whose
subject is x0, who is granting x1 to perform e1”. Since x1 is then also the sub-
ject of the embedded event e1 (x1 is said to “perform e1”) there is some nontrivial
argument identification going on under merge. We shall also assume to have argu-
ment roles to further decompose the meanings of the verbs. Thus we actually regard
let′(e0, e1, x0, x1) as an abbreviation.

let′(e0,e1, x0, x1) := (5.117)

let′(e0) ∧ thm′(e0, e1) ∧ agt′(e0, x0) ∧ ben′(e0, x1) ∧ agt′(e1, x1)

The reason for this assumption will soon become apparent.
Thus, in addition to the standard vocabulary, the predicate logic will contain con-

stants of type o (“object”) for each name, constants of type e (“event”) for each verb,
constants of type 〈e, o〉 and 〈e, e〉 for argument roles and identity.

Example 5.6 We now present our first language. Our basic vocabulary is as follows:

〈Piet, «x0 = p′»〉 〈zwemmen, «swim′(e0, x0)»〉
〈Jan, «x0 = j′»〉 〈let, «let′(e0, e1, x0, x1)»〉
〈Marie, «x0 = m′»〉 〈leren, «teach′(e0, e1, x0, x1)»〉
〈het kind, «x0 = c′»〉 〈zien, «see′(e0, e1, x0, x1)»〉

(5.118)

This is to say that the exponents are considered minimal units (if you will, letters of
an alphabet) and their meanings are as given. For each of them there is a constant
f�x with exponent �x and it is interpreted as given above.

We assume that the only constituents are of the form, where m = n or m = n+1.

NP0�NP1� · · · �NPn−1� V0 V1�· · · �Vm−1 (5.119)

The meaning of such an expression is the one that it ordinarily has in Dutch. If
n = m it is a concept of type 〈e, o〉, involving an event variable and an object
variable. If n = m + 1 it is a concept of type 〈e, o, o〉.

First we present a grammar of Dutch that generates this language. Constituents
are either strings or pairs of strings. NPs by themselves as well as Vs are strings. All
other exponents are analysed as pairs 〈�x, �y〉 where �x is a sequence of NPs and �y a
sequence of Vs. Thus they have the form (5.119). We shall use two functions: one
integrates a verb and the second an NP.

We start with the base case. Let c � d be defined as follows. (a) It is partial and
requires that c is a 1-concept of type 〈o〉 and d a 2-concept of type 〈e, o〉, that is, it
is a relation between objects and events; (b) the result is obtained by identifying the
object of c with that of d. Since there is only one of each sort, we do not even need
a linking aspect for this to be well-defined.

188 5 Examples

I(c)(〈�x, c〉, 〈�y, d〉) :=

⎧
⎪⎨

⎪⎩

〈〈�x, �y〉, c � d〉 if �x is an NP and �y a nonraising

verb,

undefined else.
(5.120)

Now we deal with the recursion in the construction.
Say that a pair 〈�x, �z〉 is of Type A if �x is a sequence of n NPs and �z a sequence

of n Vs and n > 0.

I(v)(〈〈�x, �z〉, c〉, 〈�y, d〉) (5.121)

:=
{
〈〈�x, �y �z〉, c �′ d〉 if 〈�x, �z〉 is of Type A and �y a raising verb,

undefined else.

Here, c �′ d is defined if and only if c is of type 〈e, o〉 and d of type 〈e, e, o, o〉. It
identifies the event variable of c with the second event variable of d and the object
variable of c with the second object variable of d; then it quantifies the event variable
away. To do this, we need to have a linking aspect that defines the notions “first”
and “second” for concepts denoted by raising verbs in the appropriate way. This
can be done by simply listing the critical sets for each of the raising verbs. The
other strategy is semantic. We choose a linking aspect for thm′ (since this is of type
〈e, e〉). This allows to distinguish the first and second event variable. For the object
variables we actually take advantage of the thematic predicates agt′ (giving us the
first variable) and ben′ (giving us the second).

Thus we get the following meaning of (English) “let Mary swim”:

«let′(e0, e1, x0, x1)» �′ «swim′(e0, x0) ∧ x0 = m′» (5.122)

= «∃e1.let′(e0, e1, x0, x1) ∧ swim′(e1, x1) ∧ x1 = m′»

The last function needed is the one that incorporates the NP. 〈�x, �z〉 is of Type B if
it is a sequence of n NPs followed by n + 1 Vs. Define a function �′′ as follows.
It is defined if and only if c is of type 〈e, o, o〉 and d of type 〈o〉. It identifies the
object of d with the second object of c and then quantifies that away. Notice that we
can define first and second object using the thematic predicate agt′ (picking out the
“first” argument). This will be the meaning of (English) “Piet let Mary swim”:

«∃e1.let′(e0, e1, x0, x1) ∧ swim′(e1, x1) ∧ x1 = m′» �′′ «x0 = p′» (5.123)

= «∃x1.∃e1.let′(e0, e1, x0, x1) ∧ swim′(e1, x1) ∧ x0 = p′ ∧ x1 = m′»

With this definition we put

I(n)(〈�y, d〉,〈〈�x, �z〉, c〉) (5.124)

:=
{
〈〈�y �x, �z〉, c �′′ d〉 if 〈�x, �z〉 is of Type B and �y an NP,

undefined else.

5.5 The Structure of Dutch 189

Let us now see why a context free grammar for this language cannot be given. Let
us take a look at the sentence we just derived (cf. Fig. 5.2):

Jan�Marie�Piet�laten�leren�zwemmen (5.125)

In line with the assumptions that strings must contain the same number of NPs and
Vs or at most one more V than NP, we can only propose the following parts (in
addition to the words themselves):

Jan�Marie�Piet�laten�leren�zwemmen,

Marie�Piet�laten�leren�zwemmen,

Marie�Piet�laten�leren,

Piet�laten�leren,

Piet�laten

(5.126)

In this case we are done: only the first two strings contain a raising verb. It is easy
to see that this argument works in the general case, too. o

This example worked because we have assumed the language has certain proper-
ties. Whether or not it actually does, is an empirical issue. Linguists have had serious
difficulties assessing the nature of the constituents in the sentences above (from a

ι(n fJanvn fMarievc fPiet fzemmen fleren flaten)

= I(n)(〈Jan, «x0 = j′»〉, I(v)(I(n)(〈Marie, «x0 = m′»〉, I(v)(I(c)(〈Piet, «x0 = p′»〉,
〈zwemmen, «swim′(e0, x0)»〉), 〈leren, «teach′(e0, e1, x0, x1)»〉))
〈laten, «let′(e0, e1, x0, x1)»〉))

= I(n)(〈Jan, «x0 = j′»〉, I(v)(I(n)(〈Marie, «x0 = m′»〉, I(v)(〈〈Piet, zwemmen〉,
«swim′(e0, x0) ∧ x0 = p′»〉, 〈leren, «teach′(e0, e1, x0, x1)»〉))
〈laten, «let′(e0, e1, x0, x1)»〉))

= I(n)(〈Jan, «x0 = j′»〉, I(v)(I(n)(〈Marie, «x0 = m′»〉, 〈〈Piet, leren zwemmen〉,
«∃e1.swim′(e1, x1) ∧ x1 = p′ ∧ teach′(e1, e0, x0, x1)»〉,
〈laten, «let′(e0, e1, x0, x1)»〉)))

= I(n)(〈Jan, «x0 = j′»〉, I(v)(〈〈Marie Piet, leren zwemmen〉,
«∃x1.∃e1.swim′(e1, x1) ∧ teach′(e0, e1, x0, x1) ∧ x0 = m′ ∧ x1 = p′»〉,
〈laten, «let′(e0, e1, x0, x1)»〉))

= I(n)(〈Jan, «x0 = j′»〉, I(v)(〈〈Marie�Piet, �leren�zwemmen〉,
«∃e1.swim′(e1,p′) ∧ teach′(e0, e1, x0,p′) ∧ x0 = m′»〉,
〈laten, «let′(e0, e1, x0, x1)»〉))

= I(n)(〈Jan, «x0 = j′»〉, 〈〈Marie�Piet, laten�leren�zwemmen〉,
«∃e0.∃e1.swim′(e1,p′) ∧ teach′(e0, e1, x0,p′) ∧ x0 = m′ ∧ let′(e2, e0, x2, x0)»〉)

= 〈〈Jan�Marie�Piet, laten�leren�zwemmen〉,
«∃x0.∃e0.∃e1.swim′(e1,p′) ∧ teach′(e0, e1, x0,p′) ∧ x0 = m′ ∧ let′(e2, e0, x2, x0)

∧x2 = j′»〉
= 〈〈Jan�Marie�Piet, laten�leren�zwemmen〉,

«∃e0.∃e1.swim′(e1,p′) ∧ teach′(e0, e1,m′,p′) ∧ let′(e2, e0, x2,m′) ∧ x2 = j′»〉
Fig. 5.2 A derivation

190 5 Examples

syntactic viewpoint). If we make the choice as above, there is not much chance for a
CFG. Yet, one may complain that we have been biased: coordination facts indicate,
for example, that the verb sequences can be constituents, too (see Groenink (1997))
and we have just excluded them. Therefore, we shall now ease the constituency of
Dutch somewhat by admitting more subconstituents. There is another point where
we might have made an arbitrary decision. The meaning of a sentence or complex
expression is a function of the meanings of its parts. We have admitted this function
to do only the following:

① identify some columns (= add an identity of the form xi = x j) and
② cylindrify (= apply an existential quantifier ∃xi).

There does not seem to be much room for choices when to apply ➀. After all, iden-
tifying two variables is to say something significant. On the other hand, applying
➁ seems to be negotiable from a meaning point of view. The difference between
various choices seems to be rather of a technical nature. When a variable has been
quantified away it is not available any more for identification. On the other hand, the
more free variables we have the more difficult the job of identifying the right one
gets.

Example 5.7 We shall extend the set of meaningful constituents to include all strings
of NPs followed by Vs which are substrings of sentences. This means, effectively,
that all sequences of names and verbs are licit that contain at most one nonraising
V and where the NPs precede the Vs and the raising Vs precede the nonraising
Vs. This, by the way, is a regular language. As interpretation we choose the one
induced by these strings as parts of some sentence. In each combination of a V �x
and a V �y following it, we shall identify the theme of �x with the event nontheme
of �y; we shall also identify the benefactor of �x with the agent of �y. No existential
quantification. This is a variant of �′′ above. With respect to the NPs, matters are
different. Consider the string /Jan�Piet�leren/. Is Jan the one who teaches? It
depends. For the string could be embedded in the following different sentences:

Jan Piet leren zwemmen (5.127)

Marie Jan Piet leren laten zwemmen (5.128)

In (5.127), Jan is doing the teaching and Piet the swimming. In (5.128), Jan is not
doing the teaching, it is Marie. However, if Jan is doing the teaching, Piet is the one
who is being taught. (This is because they are adjacent and in Dutch the next NP
is the beneficiary of the action carried out by the agent.) Thus, we assume that our
language contains the following signs:

〈Jan�Piet�leren, «teach′(e0, e1, x0, x1) ∧ x2 = j′ ∧ x3 = p′»〉 (5.129)

〈Jan�Piet�leren, «teach′(e0, e1, x0, x1) ∧ x0 = j′ ∧ x1 = p′»〉 (5.130)

The more NPs we have in our string, the more signs we seem to get in this way.
However, there are some more restrictions. The verb following the rightmost NP is

5.5 The Structure of Dutch 191

certainly the highest. So in the following example we cannot make Piet the benefi-
ciary of the teaching. Still, three signs remain:

〈Marie�Jan�Piet�leren, (5.131)

«teach′(e0, e1, x0, x1) ∧ x2 = m′ ∧ x3 = j′ ∧ x4 = p′»〉
〈Marie�Jan�Piet�leren, (5.132)

«teach′(e0, e1, x0, x1) ∧ x0 = m′ ∧ x1 = j′ ∧ x2 = p′»〉
〈Marie�Jan�Piet�leren,

«teach′(e0, e1, x0, x1) ∧ x1 = m′ ∧ x2 = j′ ∧ x3 = p′»〉

To show this, look at the following sentences containing them.

Marie Jan Piet leren laten leren laten zwemmen (5.133)

Marie Jan Piet leren laten leren zwemmen (5.134)

Marie Jan Piet leren laten zwemmen (5.135)

And so, with n NPs and one V we have n choices in general. Notice, however, that if
the last V is nonraising, the number of different readings is just one. This is because
the subject of the nonraising verb must be the last NP and the subject of the verb
before it the second last NP and so on.

The only exception to this is when the string does not contain an NP. This
case deserves some attention. In the case of raising verbs we need to take care of
two event variables and two object variables. Each verb clearly identifies an order
between its variables. Let the first verb introduce e0 and e1 and the second e2 and
e3. Then we have to identify e1 and e2; after that we can quantify away e1/e2. The
complex concept has only two free event variables. On the other hand, we do not
really need to quantify away any variable. The concept establishes an order between
the three variables (e0, e1 and e3). For example, in /leren laten/ we have to com-
bine «let′(e0, e1, x0, x1)» with «teach′(e0, e1, x0, x1)». Let us rename the variables
in the second formula and return to ordinary predicates.

let′(e0, e1, x0, x1) ∧ teach′(e2, e3, x2, x3) (5.136)

The result we want is (up to renaming)

let′(e0, e1, x0, x1) ∧ teach′(e1, e3, x1, x3). (5.137)

Furthermore, given that we can identify a linear order on the event variables it is also
possible to define a linear order on the object variables. This is because we can iden-
tify via the thematic roles which of the variables is actually the agent (beneficiary)
of which event variable. In this way the newly formed concept can be effectively
merged with any new concept. The effect is that the constituency in the verb cluster
is completely free.

192 5 Examples

Let us see how we can derive the meanings of the sentences using these signs.
In view of the last remark it appears that there is no other choice but to start by
assembling the entire V cluster. For suppose we did not do that. Then we build signs
with an NP-sequence followed by a V-sequence. These are multiply ambiguous, yet
only one of the readings is the one needed in the sentence. It is just that as long
as we do not have the last V, we do not know which one we should choose. Now,
if we do not make a choice then we simply postpone the choice. However, if we
do that we discard information about the relative order of the NPs (since this is not
recorded in the semantics, only in the string). Thus the requirement we get is this:
the NP cluster is right branching, while the V cluster has any structure we please.
The easiest structure (but not the only one) is a right branching structure:

[Jan [Piet [Marie [het kind [zien [laten [leren (5.138)

zwemmen]]]]]]]

Once again, however, Dutch is not context free. To see this one may appeal e. g.
to Ogden’s Lemma. I shall just point out that since the verb clusters each form a
constituent, there must be infinitely many categories (one for each number of Vs).
o

I conclude this discussion with the following remarks. The structure is in basic
agreement with CCG. It has indeed been proposed that the structure of Dutch
involves a verbal cluster. Groenink (1997) has also argued from coordination data
that the verbal cluster is more flexible in Dutch and German.

5.6 Arguing for Syntactic Structure

The previous section has shown that Dutch (or at least some “purified’ version
thereof) is indeed not weakly context free. The book (Gazdar et al., 1985) seems
to have shown, however, that at least English is CF. Many syntactic theories seem
to agree (see Rogers (1994) and Kracht (1995) for a demonstration that generative
grammar of the 80ies essentially claimed the context freeness of English). In this
section we shall look at some constructions of English that indicate that also English
is not CF.

John, Mary and Phil sang, danced and played drums, (5.139)

respectively.

This sentence effectively is the conjunction of “John sang”, “Mary danced” and
“Phil played the drums”. Without the word /respectively/ it could be interpreted
as saying that John, Mary and Phil each sang, danced and played drums.

John, Mary and Phil sang, danced and played drums. (5.140)

5.6 Arguing for Syntactic Structure 193

The interpretation of (5.140) requires only a basic sentential structure: we have
a plural NP /John, Mary and Phil/ and a VP /sang, danced and played
drums/. Each has a coordinated structure. However, (5.139) is much different. To
make the argumentation self-contained we consider the following data.

Example 5.8 The language contains the following signs (compare the grammars P1
to P3 of Section 3.2). We choose a domain U of individuals. Intransitive verbs and
nouns denote sets of individuals. There are n intransitive verbs vi , i < n and 2n

nouns. Verb forms are in the past, so that number distinctions do not exist. For every
combination of vi (or their negation) we assume that there is exactly one name
n j such that n j satisfies that combination. The legitimate strings are defined by S
(where V denotes any verb, N any name):

Y := (N · �)+and� · N

Z := (V · �)+and� · V

S := Y ∪ Z ∪ N ∪ V ∪ Y · � · Z · (,�respectively)? · .
(5.141)

Additionally we assume that if /respectively/ is present, the number of names
and the number of verbs is the same. This defines a context free language (we leave
the proof as an exercise). What we shall show here however is that no compositional
CFG exists.

The meanings are as follows. (a) Strings from Y denote the sets of all denotations
of the occurring names, (b) strings from Z denote the intersection of all the sets
denoted by the individual members; (c) strings from Y ·� · Z denote the intersection
of what Y denotes and what Z denotes; finally, (d) if �yi , i < n + 1, are some names
and �zi , i < n + 1, some verbs, then the denotation of

�y0 · · · �yn−1 and��yn��z0� · · · �zn−1�and��zn, �respectively. (5.142)

is the intersection of the denotations of /�yi �zi./ for all i < n + 1.
Let us see what happens if we attempt to interpret (5.139) using the same struc-

ture as for (5.140). In this case the following happens. The phrase /John, Mary
and Phil/ is synonymous with /John, Phil and Mary/ and also /Mary, John
and Phil/ and so on. However, this synonymy does not exist between (5.139) and
(5.143) and (5.144).

John, Phil and Mary sang, danced and played drums, (5.143)

respectively.

John, Mary and Phil sang, danced and played drums, (5.144)

respectively.

It follows that /John, Mary and Phil/ is not a constituent in (5.139). Similarly
we argue that neither /John, Mary/ nor /John, Phil/ nor /Mary and Phil/ can
be constituents. And we can do the same with the verbs. The only constituents that

194 5 Examples

we can form without running a risk of conflation are /John sang/, /Mary danced/
and /Phil played drums/.

It follows that in a construction involving /respectively/ we are forced to
assume what is known as crossover (crossing) dependencies.

NP0�NP1� · · · �and�NPn−1�VP0�NP1 · · · �and�VPn−1, �respectively.
(5.145)

We can assume that we get these structures as follows. One method is to assume
that exponents are pairs of strings 〈�x, �u〉 such that �x is an NP and �v an agreeing VP.
Let Case A be the following property.

Case A : �v does not end with /respectively/ (5.146)

Furthermore, let � be the “obvious” conjunction of concepts. Assuming that NPs
and VPs denote sets of individuals, � is the intersection of their minimal members,
accompanied by existential closure (thus we get a 0-ary concept, also known as a
truth value). For two 0-ary concepts, � is set intersection. (If that presents difficul-
ties, you may replace concepts with standard relations.)

r(〈〈�x, �u〉,m〉, 〈〈�y, �v〉, n〉) (5.147)

:=
{
〈〈�x� ��y, �u��and���v�,�respectively.〉,m � n〉 in Case A,

〈〈�x� ��y, �u���v〉,m � n〉 else.

This creates a constituent 〈NPi ,VPi 〉 in (5.145), which we get with the following
rule.

s(〈�x,m〉, 〈�u, n〉) :=
{
〈〈�x, �u〉,C0.m � n〉 if �x is an NP and �u a VP,

undefined else.
(5.148)

Another option is to assume that the discontinuous NP-VP constituents are not even
formed. In this case we use a modified version of r :

r∗(〈�x,m0〉, 〈�u,m1〉, 〈�y, n0〉, 〈�v, n1〉)

:=

⎧
⎪⎨

⎪⎩

〈�x� ��y, �u��and���v�,�respectively.〉,
(C0.(m0 � m1))� C0.(n0 � n0)〉 in Case A,

undefined else.

r∗∗(〈�x,m0〉, 〈�u,m1〉, 〈〈�y, �v〉, n0〉) :=
{
〈〈�x� ��y, �u����v〉, (C0.(m0 � m1))� n0〉 not in Case A

undefined else.

(5.149)

The first variant is more elegant. o

5.6 Arguing for Syntactic Structure 195

Intermission 3 The grammar and interpretation of sequences of NPs is interesting
in its own right.

John, Paul and Mary (5.150)

John, Paul or Mary (5.151)

Assume that coordination requires the presence of either /and/ or /or/. Assume fur-
ther that meanings are concepts. Finally, the interpretation of a name is assumed
to be a singleton set. There are then two choices for us. We can either interpret
the coordinated NP as a relation between the named people, or as the set of all of
them. In either option the basic laws of conjunction and disjunction (commutativity,
associativity and idempotence) are satisfied. It is clear that the overall structure of a
conjunction is not unique, even with all this being given. It is trivial to observe that
we could in principle design ternary rules, for example. Or we may use wrapping.
But we should not dismiss any of these options either, despite the fact that they are
more complicated than the obvious right regular grammar.

In a compositional grammar this has noteworthy consequences. If one wishes to
make /John and Mary/ a subconstituent of a sentence, then this can only be done
if either /Mary and John/ cannot be substituted for it or else the resulting sentence
has the same meaning. If you choose to have categories, one can of course discrimi-
nate a number of different coordinations, for example, by giving /John and Mary/
a different category than /Mary and John/. Apart from being rather unsatisfactory,
the Principle of the Identity of Indiscernibles (see page 39) rules this out as well.
(It does not under certain circumstances, however. One is agreement in languages
where a conjunct controls the same agreement as its last member. Latin is such a
case. In such circumstances, since /John and Mary/ controls feminine agreement
and /Mary and John/ masculine agreement, they have different category.) o

Notice that /respectively/ has more syntactic possibilities than given in this
example. The preceding argument assumes that we are forming a compositional
grammar. Alternatively and interestingly, even if one does not assume composition-
ality, the result follows. This has to do with the fact that we have restricted the
available semantic functions.

English provides yet another construction that is quite problematic in phrase
structure terms, namely gapping. This phenomenon is illustrated in the following
sentence.

John gave Mary a kiss and George Susan a flower. (5.152)

We understand this as the conjunction of two sentences:

John gave Mary a kiss. (5.153)

George gave Susan a flower. (5.154)

What is problematic about this construction is that it forces us to assume that we
have a discontinuous constituent /John Mary a flower/. Let us see why this is

196 5 Examples

so. Like the previous example, we assume that the meaning of sentences is a truth
value. (This assumption can of course be modified, though the argument would not
work as easily.) Suppose, we first fully compose the sentence (5.153). This will
have as its meaning, say, a truth value. In this case it is impossible to interpolate the
meaning of the verb so that it can be used to derive the meaning of (5.154). Notice
that rather than having the full (5.154) we are actually missing the verb. It follows
that (5.152) does not contain the constituent (5.153)!

Instead we are led to assume that (5.152) contains the constituents /John
Mary a kiss/ and /George Susan a flower/. (This is essentially what Steed-
man (1990) claims. Though unlike him we do not use an ex post splitting of
the first sentence, which makes no sense semantically. Instead, both sentences
are formed in the same way from the parts.) More precisely, it contains the
pairs 〈John, Mary a kiss〉 and 〈George, Susan a flower〉. The verb /gave/ is
inserted into both of them. Since gapping is like conjunction in allowing any number
of parts, we propose a solution similar to the one offered for “respectively”.

Example 5.9 Here is a sketch of gapping. The constituents of the form /George
Susan a flower/ are seen as pairs 〈George, Susan a flower〉. These pairs are
coordinated via the mode c. After all of them are coordinated, the verb is linked with
the conjunctive meaning and inserted between the first subject and the first object.

I(c)(〈〈�x, �y〉,m〉, 〈〈�u, �v〉, n〉) := 〈〈�x, �y��u��v〉,m ∪ n〉
I(i)(〈〈�x, �y〉,m〉, 〈�v, n〉) := 〈�x��v��y,m �3 n〉 (5.155)

This accounts for this type of gapping. o

It may seem to be disappointing that the syntactic structures are so irregular.
Syntactic theories sometimes give the impression that syntactic structure (at least
of English) is a matter of a few universal principles. This seems to be an artefact
of the data that the theories wish to explain. No one theory succeeds in giving us a
satisfactory account of all known phenomena and typically they tend to do well in
a few areas and badly in others. I should also point out that in the literature there
are no essentially different solutions to the problems shown above. Respectively-
constructions have been used in (Kac et al., 1987) to show that English is not context
free. Where the latter authors use the distribution of pronouns to show that the string
language of English is not context free, here we have used the meanings to derive
the same conclusion.

Exercise 5.9 Write a CFG to generate S from Example 5.8.

Chapter 6
Conclusion

In this book I have tried to build a theory that lets us ask (and sometimes even
answer) questions concerning the structure of languages. Some of the results plainly
validate some of our intuitions; others have been surprising (at least to me). The road
has been fairly difficult not the least because exact results are difficult to obtain and
because new techniques had to be found.

We are now at the end of our journey. Many questions have been answered and
many new ones arose. I shall summarise this work with a few remarks.

• Some tangible results have been established. For example, it has been shown
that it is not possible to reduce all ambiguous languages to unambiguous ones
(at least if we want to keep the syntactic complexity). Or that concept based
predicate logic with infinitely many variables does not have a compositional con-
text free grammar. These results seem to be pretty robust. They cannot be made
to disappear if minor changes are made to the languages.

• The study of interpreted languages really has just begun. We need to understand
better in what ways the shift from string languages to interpreted languages
changes our outlook on various issues. Mathematically, new combinatorial meth-
ods need to be developed. They might help us to understand better in what ways
semantics determines syntactic structure.

• On the way I have tried to make progress also concerning the overall structure
of language. For example, notions such as morphological transparency, realpha-
betization and abstraction were attempts at understanding why natural language
apparently has more structure (in the sense of architecture in terms of levels or
strata) than the present framework (and others) make believe.

• Negative results are typically hard to obtain. This contrasts with a lot of claims in
the literature that suggest that certain phenomena force us to adopt or abandon a
specific framework because of compositionality. Most of these results either fol-
low because quite specific assumptions have been made at the outset or because
the authors simply are not imaginative enough about counterstrategies. For exam-
ple, I have not been able to show conclusively that there is no TAG for boolean
logic if we allow the semantic functions to be partial, though it seems certain that
this claim is true. Nor have I been able to find a countable language that is not
independent.

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1_6,
C© Springer Science+Business Media B.V. 2011

197

198 6 Conclusion

• The results established here make use of some additional hypotheses about
language, some of which are indispensable such as the hypothesis that rules do
not destroy any structure. Others might be more controversial, for example that
syntactic structures are sequences of strings and nothing else.

• The literature in formal semantics operates with high powered tools. Often
however the justification in using them is only that they provide a functioning
algorithm without clarifying whether or not that algorithm deserves the label
“compositional”. Our approach has been not to rely on particular mechanisms
but rather to clarify identity criteria of meaning (such as alphabetic innocence)
and see how much follows from them.

Appendix A
Useful Mathematical Concepts and Notation

For a set S we write card S for the cardinality of S. In other words, card S denotes
the number of elements of S. The number n is the set of all numbers i (including 0)
such that i < n. Thus, 3 = {0, 1, 2}. (The interested reader may check that therefore
0 = ∅, 1 = {0} = {∅}, 2 = {∅, {∅}} and 3 = {∅, {∅}, {∅, {∅}}}.) Thus, i < n
and i ∈ n are synonymous. Writing f : k → n means that f is a function defined
on all numbers < k, with values < n.

We shall write 〈x0, x1, · · · , xn−1〉 for the tuple of length n consisting in x0, x1,
etc., in that order. We make no commitment about the real nature of tuples; you may
think of them as functions from the set n to the domain. (In that case they are the
same as strings.) The length of �x := 〈x0, · · · , xn−1〉 is denoted by |�x |. We write x0 in
place of 〈x0〉 even though they are technically distinct. Tuple formation is not asso-
ciative. So, 〈x0, 〈x1, x2〉〉 is not the same as 〈〈x0, x1〉, x2〉. If �x = 〈x0, · · · , xm−1〉
and �y = 〈y0, · · · , yn−1〉 are tuples, the concatenation is denoted as follows.

�x · �y := 〈x0, · · · , xm−1, y0, · · · , yn−1〉 (A.1)

Repetitions are not eliminated, so this is a sequence of length m + n.
Given two sets, A and B, A × B is the set of pairs 〈a, b〉 such that a ∈ A and

b ∈ B. Given an indexed family Ai , i ∈ I , of sets, Xi∈I Ai is the set of functions
from I to the union of the Ai such that f (i) ∈ Ai for all i ∈ I . (Thus, technically,
A0 × A2 is not the same as Xi∈2 Ai , though the difference hardly matters.) Let A
and B be sets. A relation from A to B is a subset of A × B. We write x R y in
place of 〈x, y〉 ∈ R. A partial function from A to B is a relation from A to B such
that x R y and x R z implies y = z. A function from A to B is a partial function
from A to B where for every x ∈ A there is a y ∈ B such that x R y. We write
f : A → B to say that f is a function from A to B and f : A ↪→ B to say that f is
a partial function from A to B. If f : A → B and g : B → C then g ◦ f : A → C
is defined by (g ◦ f)(x) := g(f (x)). We write dom(f) for the set of all a ∈ A such
that f is defined on a. If f : An ↪→ B and S ⊆ A then we write f � S for the
following function

(f � S)(�x) :=
{

f (�x) if �x ∈ Sn and f (�x) is defined,

undefined else.
(A.2)

M. Kracht, Interpreted Languages and Compositionality, Studies in Linguistics
and Philosophy 89, DOI 10.1007/978-94-007-2108-1,
C© Springer Science+Business Media B.V. 2011

199

200 Appendix A Useful Mathematical Concepts and Notation

A somewhat simpler definition is

f � S := f ∩ (Sn × A). (A.3)

If X ⊆ A is a set we write f [X] := { f (a) : a ∈ X, a ∈ dom(f)}. This is the
direct image of X under f . In particular, rng(f) := f [A] is the range of f . f is
surjective or onto if rng(f) = B. f is injective or into if for all x , y: if f (x) and
f (y) are defined then either x = y or f (x) �= f (y). A permutation is a surjective
function f : n → n. It is easily seen that if f is surjective it is also injective. There
are n! := n(n − 1)(n − 2) · · · 2 · 1 permutations of an n element set (n > 0).

When f : A × B → C is a function, we say that it is independent of its first
argument if for all x, x ′ ∈ A and y ∈ B, f (x, y) = f (x ′, y). (If A �= B we also say
that f is independent of A rather than of its first argument.) Pick x ∈ A and define
f̂ : B → C by f̂ (y) := f (x, y). If f is independent of its first argument, f̂ is
independent of the choice of x . For partial functions there are some subtleties. We
say that f is weakly independent of A if for all x, x ′ ∈ A and y ∈ B, if f (x, y) and
f (x ′, y) exist, they are equal. f is strongly independent of A if for all x, x ′ ∈ A
and y ∈ B, if f (x, y) exists then so does f (x ′, y) and they are equal. By default,
for a partial function independence of A means weak independence. Independence
of its second argument (or of B) is defined similarly. Similarly, if f has several
arguments, it may be weakly of strongly independent of any of them.

If f : A → C and g : A → D are functions, then f × g : x
→ 〈 f (x), g(y)〉 is
a function from A to C × D. Every function from A to C × D can be decomposed
into two functions, in the following way. Let πC : 〈x, y〉
→ x and π2 : 〈x, y〉
→ y
be the projections from C × D to C and D, respectively. Then we have the general
equation

f = (πc ◦ f)× (πD ◦ f). (A.4)

and so the functions πC ◦ f and πD ◦ f are the decomposition. This picture changes
when we turn to partial functions. From a pair f : A ↪→ C and g : A ↪→ D we can
form the partial function

(f × g)(x) :=
{
〈 f (x), g(x)〉 if both f (x) and g(x) are defined,

undefined else.
(A.5)

Unfortunately, f × g does not allow to recover f and g uniquely. The problem is
this: we have

dom(f × g) = dom(f) ∩ dom(g). (A.6)

However, from an intersection it is not easy to recover the individual sets. If A = {0},
f = {〈0, c〉} and g = ∅ (the empty partial function) then f × g = ∅. However,
also ∅×∅ = ∅.

Appendix A Useful Mathematical Concepts and Notation 201

Given a number n, a bijective function f : n → n is called a permutation of
n. Πn denotes the set of all permutations of n. Permutations are most conveniently
described using the following notation. Pick a number i < n. The cycle of i is the
largest sequence of the form i, f (i), f (f (i)), · · · in which no member is repeated.
The set {i, f (i), f 2(i), · · · } is also called the orbit of i under f . We write this
cycle in the form (i f (i) f (f (i)) · · · f k−1(i)). An example is (2567), which says
that f maps 2 to 5, 5 to 6, 6 to 7 and 7 to 2. The order of the cycle is its length,
k. So, the order is the smallest number k for which f k(i) = i . For if f k(i) =
f m(i) for some m < k then also f k+1(i) = f m+1(i) (since f is a function),
and f k−1(i) = f m−1(i) (since f is bijective, so its inverse is a function, too).
It follows that f k−m(i) = i and since m < k, we must have m = 0. (Else we
have found a number j > 0 smaller than k such that f j (i) = i .) Cycles can be
cyclically rotated: for example, (2567) = (5672). It is easy to see that any two
distinct orbits are disjoint. A permutation thus partitions the set n into orbits, and
defines a unique cycle on each of the orbits. In writing down permutations, cycles of
length 1 are omitted. Cycles permute and can be cyclically rotated. Thus we write
(2567)(3)(1)(04) and (2567)(04), (5672)(40)(3), (04)(2567) interchangeably. The
permutation that changes nothing is also denoted by ().

A group is a structure G = 〈G, 1,−1 , ·〉, where 1 ∈ G, −1 : G → G and
· : G × G → G are such that for all x, y, z ∈ G:

1. 1 · x = x · 1 = x .
2. x−1 · x = x · x−1 = 1.
3. x · (y · z) = (x · y) · z.

We say that x−1 is the inverse of x and that x · y (also written xy) is the product of
x and y. The setΠn forms a group. The product is defined by (f ·g)(x) := f (g(x)).
The unit is the permutation (). The inverse is obtained as follows. The inverse of a
cycle (i0i1 · · · ik−1) is the cycle (ik−1ik−2 · · · i1i0). The inverse of a series of disjoint
cycles is obtained by inverting every cycle individually. (Note that if c and d are
disjoint cycles, then c ·d = d ·c.) A subgroup of G is a triple H = 〈H, 1∗,−1∗ , ·∗〉
where H ⊆ G, 1∗ = 1, x−1∗ = x−1 and x ·∗ y = x · y. It is stated without proof
that if H is a subgroup of G then |H | divides |G|.

A signature is a pair 〈F,Ω〉 (often written simply Ω) where F is a set (the
set of function symbols) and Ω : F → N a function, assigning each function
symbol an arity. An Ω-algebra is a pair A = 〈A, I 〉 such that for every f ∈ F ,
I (f) : AΩ(f) → A. We also write f A for I (f). A partial Ω-algebra is a pair
A = 〈A, I 〉 where for each f ∈ F , I (f) : AΩ(f) ↪→ A. A weak congruence on A
is an equivalence relation Θ ⊆ A2 such that the following holds.

If ai Θ bi for every i < Ω(f) and both I (f)(a0, · · · , aΩ(f)−1) and I (f)(b0, · · · ,
bΩ(f)−1) exist then they are equal.

Θ is strong if whenever ai Θ bi for all i < Ω(f) then I (f)(a0, · · · , aΩ(f)−1)

exists iff I (f)(b0, · · · , bΩ(f)−1) exists as well. If Θ is a strong congruence we can
construct the so-called quotient algebra A/Θ .

202 Appendix A Useful Mathematical Concepts and Notation

a/Θ := {b : a Θ b}
A/Θ := {a/Θ : a ∈ A}

(I/Θ)(f)(a0/Θ, · · · , aΩ(f)−1/Θ) := (f (a0, · · · , aΩ(f)−1))/Θ

A/Θ := 〈A/Θ, I/Θ〉
(A.7)

It is to be observed that (I/Θ)(f) is well defined; the value of the function does not
depend on the choice of representatives. Moreover, whether or not it is defined is
also independent of the choice of representatives, since the congruence is strong.

A homomorphism between partial algebras A = 〈A, I 〉 and B = 〈B, J 〉 is a
function h : A → B such that for all f ∈ F and all a0, · · · , aΩ(f)−1 ∈ A:

h(I (f)(a0, · · · , aΩ(f)−1)) = J (f)(h(a0), · · · , h(aΩ(f)−1)). (A.8)

If A = 〈A, I 〉 and C = 〈C, J 〉 are partial algebras then the product of A and C
is defined by

(I × J)(f)(〈a0, c0〉, · · · , 〈aΩ(f)−1, cΩ(f)−1〉) := 〈I (f)(�a), J (f)(�c)〉. (A.9)

We write A× C for the product.
In the domain of algebra, the term functions and polynomial functions are very

important. Their definition is notoriously difficult since one is often required to
use variables where this creates problems due to choices of alphabetical variants.
Instead, I offer the following definition, which only uses functions and composi-
tions.

① All projections pn
i : An → A defined by pn

i (a0, · · · , an−1) := ai are term
functions.

② If gi : Ami → A, i < Ω(f), are term functions and p := ∑i<Ω(f) mi , then
f ◦ 〈g0, · · · , gΩ(f)−1〉 : Ap → A is a term function where

f ◦ 〈g0, · · · , gΩ(f)−1〉(�c0, · · · , �cΩ(f)−1) := f (g0(�c0), · · · , gΩ(f)−1(�cΩ(f)−1))

is a term function.
③ If g : An → A is a term function and i < j then g ◦Δn

i j : An−1 → A defined by
(

g ◦Δn
i j

)
(a0, · · · , an−2) := g(a0, · · · , a j−1, ai , a j , a j+1, · · · , an−1) also is a

term function.

(For a partial algebra, replace “function” everywhere by “partial function”.) Term
functions are often described by means of terms such as (x + y) · z but this is
inaccurate. A polynomial is defined to a term function over the expanded algebra
AA, where for each a ∈ A we have added a constant a to the language, whose
interpretation is fixed to A. (Alternatively, it is the closure under ➀–➂ of the set of
functions containing A0 → A : ∅ → a for each a.)

Symbols

ε, �x , �x��y, / · /, 10
A∗, A+, 10
S | T , S · T , ST , Sn , S∗, S+, 10
:digit:, 11
Ω , 14
N, 14
:eq:, 16
TmΩ(V), 17
ιG(t), 17
L(G), 18
:bool:, 19
:blet:, 21
C(�y), 22
ιG(·)(s), 26
[�x/x], 26
∼G [· · ·]G , 29
ε(·), κ(·), 29
ε[·], κ[·], 29
�u ⇒R �v, �u ⇒n

R �v, 30
A �G �x , 31
L(G), Lw(G), 31
[A]G , 31
G�, 32
Lc(G), 34
pA∗ , 37
Gb, 45
occ(�y, t), 46
cntL(·), 49

ε(·), μ(·), 63
ε[·], μ[·], 63
L(G), 64
f ε, f μ, 64

f × g, 65
Iε, Iμ, 65
G×, G×, 65
f μ∗ , 71
>=, 71
f ε∗ , 73
ε(·), κ(·), μ(·), 82
H(γ), 82
Iκ , 82
G×, 83
e◦, 95
L§, 95
e∨, L∨, 100
Bool, 102
L � B, 103
�a(·), 103
G � D, 104

Mα , 117
A>, A<, 117
M�s , 122
τ , 122
β, 123
∼V , 123
[·]M , 123
fr(·), 123
�(·), R→k , 125
�·�, 125
Ci , 125
π [·], 126
E(·), 126
Pt (·), 127
�·�, 128

203

204 Symbols

Conc(M), Conc(M), 128
t, f, 128
�(·), 129
§(·), 130
c ≤ d, 131
«·», 132
� f,g , � f , 135(L

2

)
, 139

L+, 139
δ(R), δ(C), 152
f Y (c), 152
ρR{ �p}, 153

Lτ , 160
e∗(·), 160

ζ(·), 161
�, 164
PLn
τ , 165

CLn
τ , 165

tp(χ), 165
[y0/z0, · · · , yn−1/zn−1]δ, 166

card, 199
|�x |, 199
�x · �y, 199
Xi∈I Ai , 199
↪→, 199
f � S, 199
A/$, 201
A× C, 202

References

Barker, Chris, and Pauline Jacobson, eds. 2007. Direct Compositionality. Oxford Studies in Theo-
retical Linguistics, vol. 14. Oxford: Oxford University Press.

Ben Shalom, Dorit. 1996. “Semantic Trees.” PhD thesis, Department of Linguistics, UCLA.
Benaceraff, Paul. 1973. “Mathematical Truth.” Journal of Philosophy 70:661–79.
Bittner, Maria. 2006. Online Update. “Temporal, Modal and de se Anaphora in Polysynthetic Lan-

guages.” In Direct Compositionality, edited by Chris Barker and Pauline Jacobson, 363–404.
Oxford: Oxford University Press.

Chomsky, Noam. 1986. Barriers. Cambridge, MA: MIT Press.
Chomsky, Noam. 1993. “A Minimalist Program for Linguistic Theory.” In The View from Building

20: Essays in Honour Sylvain Bromberger, edited by K. Hale and S.J. Keyser, 1–52. Cambridge,
MA: MIT Press.

Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan A. Sag. 2005. “Minimal Recursion Seman-
tics: An Introduction.” Research on Language and Computation 3:281–332.

Dixon, Robert M.W. 1994. Ergativity. Cambridge Studies in Linguistics, vol. 69. Cambridge:
Cambridge University Press.

Dorr, Cian. 2004. “Non-Symmetric Relations.” In Studies in Metaphysics, vol. 1, edited by Dean
W. Zimmerman, 155–92. Oxford: Oxford University Press.

Erdélyi Szabó, Miklós, Lászó Kálmán, and Ági Kurucz. 2007. “Towards a Natural Language
Semantics Without Functors and Operands.” Journal of Logic, Language and Information
16:1–17.

Falk, Yehuda N. 2001. Lexical-Functional Grammar: An Introduction to Parallel Constraint-Based
Syntax. Stanford, CA: CSLI.

Fiengo, Robert, and Robert May. 2006. De Lingua Belief. Cambridge, MA: MIT Press.
Fine, Kit. 2000. “Neutral Relations.” The Philosophical Review 109:1–33.
Fine, Kit. 2003. “The Role of Variables.” Journal of Philosophy 50:605–31.
Fine, Kit. 2007. Semantic Relationism. London: Blackwell.
Gärdenfors, Peter. 2004. Conceptual Spaces. Cambridge, MA: MIT Press.
Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. 1985. Generalized Phrase Structure

Grammar. London: Blackwell.
Groenink, Annius. 1997. Surface Without Structure. Word Order and Tractability Issues in Natural

Language Analysis. PhD thesis, University of Utrecht.
Harrison, Michael A. 1978. Introduction to Formal Language Theory. Reading, MA: Addison

Wesley.
Heim, Irene, and Angelika Kratzer. 1998. Semantics in Generative Grammar. Oxford: Blackwell

Publishers.
Hodges, Wilfrid. 2001. “Formal Features of Compositionality.” Journal of Logic, Language and

Information 10:7–28.
Huybregts, Riny. 1984. “Overlapping Dependencies in Dutch.” Utrecht Working Papers in Linguis-

tics 1:3–40.
IPA. 1999. Handbook of the International Phonetic Association. Cambridge: Cambridge

University Press.

205

206 References

Jacobson, Pauline. 1999. “Towards a Variable Free Semantics.” Linguistics and Philosophy
22:117–84.

Jacobson, Pauline. 2000. “Paycheck Pronouns, Bach-Peters Sentences, and Variable Free Seman-
tics.” Natural Language Semantics 8:77–155.

Jacobson, Pauline. 2002. “The (Dis)Organisation of the Grammar: 25 Years.” Linguistics and Phi-
losophy 25:601–26.

Janssen, Theo. 1997. “Compositionality.” In Handbook of Logic and Language, edited by Johan
van Benthem and Alice ter Meulen, 417–73. Amsterdam: Elsevier.

Kac, Michael B., Alexis Manaster-Ramer, and William C. Rounds. 1987. “Simultaneous-
Distributive Co-ordination and Context-Freeness.” Computational Linguistics 13:25–30.

Kamp, Hans. 1981. “A Theory of Truth and Semantic Representation.” In Formal Methods in the
Study of Language, edited by Jeroen Groenendijk. Amsterdam: Mathematisch Centrum.

Kamp, Hans, and Uwe Reyle. 1993. From Discourse to Logic. Introduction to Modeltheoretic
Semantics of Natural Language, Formal Language and Discourse Representation. Dordrecht:
Kluwer.

Keenan, Edward L., and Edward P. Stabler. 2001. Bare Grammar. Lectures on Linguistics Invari-
ants. Stanford, CA: CSLI.

King, Jeffrey C. 2007. The Nature and Structure of Content. Oxford: Oxford University Press.
Kornai, András. 2007. Mathematical Linguistics. Advanced Information and Knowledge Process-

ing. Berlin: Springer.
Korpela, Jukka. 2006. Unicode Explained. Sebastopol, CA: O’Reilly.
Kracht, Marcus. 1995. “Syntactic Codes and Grammar Refinement.” Journal of Logic, Language

and Information 4:41–60.
Kracht, Marcus. 2003. Mathematics of Language. Berlin: Mouton de Gruyter.
Kracht, Marcus. 2006. “Partial Algebras, Meaning Categories and Algebraization.” Theoretical

Computer Science 354:131–41.
Kracht, Marcus. 2008. “Is Adjunction Compositional?” Research on Language and Computation

6:53–77.
Lamb, Sydney M. 1966. Outline of Stratificational Grammar. Washington, DC: Georgetown Uni-

versity Press.
Landmann, Fred. 2004. Indefinites and the Type of Sets. Explorations in Semantics, vol. 3. Oxford:

Blackwell.
Lasersohn, Peter. 2009. “Compositional Interpretation in Which the Meanings of Complex Expres-

sions Are Not Computable from the Meanings of Their Parts.” In Theory and Evidence in
Semantics, edited by John Nerbonne and Erhard Hinrichs, 133–58. Stanford, CA: CSLI.

Leo, Joop. 2010. The Logical Structure of Relations. PhD thesis, Department of Philosophy, Uni-
versity of Utrecht.

Manaster-Ramer, Alexis. 1986. “Copying in Natural Languages, Context-Freeness and Queue
Grammars.” In Proceedings of the 24th Annual Meeting of the Association for Computational
Linguistics 85–89. New York, NY: Stroudsburg, PA.

Manaster-Ramer, Alexis, and Peter Michalove. 2001. “Etymology vs. Phonology: The Treatment
of ∗/w/ After Sonorants in Armenian.” Münchener Studien zur Sprachwissenschaft 61:149–62.

Manaster-Ramer, Alexis, M. AndrewMoshier, and R. Suzanne Zeitman. 1992. An Extension of
Ogden’s Lemma. Manuscript. Detroit, MI: Wayne State University.

Martín-Vide, Carlos, and Gheorghe Păun. 1998. “Structured Contextual Grammars.” Grammars
1:33–55.

Matthews, Peter H. 1978. Inflectional Morphology. An Introduction to the Theory of Word-
Structure. Cambridge Textbooks in Linguistics. Cambridge: Cambridge University Press.

Mel’čuk, Igor A. 1988. Dependency Syntax: Theory and Practice. SUNY Linguistics Series.
Albany, NY: State University of New York Press.

Mel’čuk, Igor A. 1993–2000. Cours de Morphologie Générale, vols. 1–5. Montréal: Les Presses
de l’Université de Montréal.

Miller, Philip H. 1999. Strong Generative Capacity. The Semantics of Linguistic Formalisms. Stan-
ford, CA: CSLI.

References 207

Monk, Donald J. 1976. Mathematical Logic. Berlin, Heidelberg: Springer.
Onions, C.T. 1973. The Shorter English Dictionary. Oxford: Oxford University Press.
Pagin, Peter. 2003. Communication and Strong Compositionality. Journal of Philosophical Logic

32:287–322.
Parsons, Terence. 1994. Events in the Semantics of English. A Study in Subatomic Semantics.

Current Studies in Linguistics, vol. 19. Cambridge, MA: MIT Press.
Pentus, Mati. 1997. “Product–Free Lambek–Calculus and Context–Free Grammars.” Journal of

Symbolic Logic 62:648–60.
Pollard, Carl, and Ivan Sag. 1994. Head–Driven Phrase Structure Grammar. Chicago, IL: The

University of Chicago Press.
Pullurn, Geoffrey, and Kyle Rawlins. 2007. “Argument or No argument?” Linguistics and Philos-

ophy 30:277–87.
Putnam, Hilary. 1975. “The Meaning of ‘Meaning’.” In Mind, Language and Reality, 215–71.

Cambridge: Cambridge University Press.
Radzinski, Daniel. 1990. “Unbounded Syntactic Copying in Mandarin Chinese.” Linguistics and

Philosophy 13:113–27.
Rautenberg, Wolfgang. 2006. A Concise Introduction to Mathematical Logic. Berlin: Springer.
Rogers, James. 1994. Studies in the Logic of Trees with Applications to Grammar Formalisms.

PhD thesis, University of Delaware, Department of Computer & Information Sciences.
Saussure, Ferdinand de. 2006. Writings in General Linguistics. Oxford: Oxford University Press.
Saussure, Ferdinand de. 2011. Course in General Linguistics. New York, NY: Columbia

University Press.
Scollon, Ron, and Suzie Wong Scollon. 2003. Discourses in Place. Language in the Material

World. London and New York: Routledge.
Shieber, Stuart. 1985. “Evidence Against the Context–Freeness of Natural Languages.” Linguistics

and Philosophy 8:333–43.
Staudacher, Peter. 1987. “Zur Semantik Indefiniter Nominalphrasen.” In Neuere Forschungen

zur Wortbildung und Historiographie der Linguistik. Festgabe für Herbert E. Brekle, edited
by Brigitte Asbach-Schnithker and Johannes Roggenhofer, 239–58. Tübingen: Gunter Narr
Verlag.

Steedman, Mark. 1990. “Gapping as Constituent Coordination.” Linguistics and Philosophy
13:207–63.

Sternefeld, Wolfgang. 2006. Syntax. Eine morphologisch motivierte generative Beschreibung des
Deutschen. 2 Vols. Tübingen: Stauffenberg Verlag.

Svenonius, Peter. 2007. “Paradigrn Generation and Northern Sámi Stems.” In The Basis of Inflec-
tional Identity, edited by Asaf Bachrach and Andrew Nevins. Oxford: Oxford University Press.

Szabó, Zoltán Gendler. 2000. “Compositionality as Supervenience.” Linguistics & Philosophy
23:475–505.

Talmy, Leonard. 2000. Toward a Cognitive Semantics, vols. 1 & 2. Cambridge, MA: MIT Press.
Thue, Axel. 1914. Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln.

(Problems Concerning Changing Strings According to Given Rules). Skrifter utgit av Viden-
skapsselkapet i Kristiania, I. Mathematisk-naturvidenskabelig klasse, 10.

Tomalin, Marcus. 2006. Linguistics and the Formal Sciences. The Origins of Generative Grammar.
Cambridge Studies in Linguistics. Cambridge: Cambridge University Press.

Vermeulen, Kees F.M. 1995. “Merging Without Mystery or: Variables in Dynamic Semantics.”
Journal of Philosophical Logic 24:405–50.

Wechsler, Stephen. 1995. The Semantic Basis of Argument Structure. Dissertations in Linguistics.
Stanford, CA: CSLI.

Werning, Markus, Wolfram Hinzen, and Edouard Machery, eds. 2012. The Oxford Handbook of
Compositionality. Oxford: Oxford University Press.

Zadrozny, Wlodek. 1994. “From Compositional Semantics to Systematic Semantics.” Linguistics
and Philosophy 17:329–42.

Zeevat, Henk. 1989. “A Compositional Approach to Discourse Representation Theory.” Linguistics
and Philosophy 12:95–131.

Index

A
A-term, 11
Abstraction, 110

equivalent, 111
Additivity, 104
Adjacency, 139
Adjunction rule

string, 41
Algebra, 201

partial, 201
Allophone, 110
Alphabet, 10
Ambiguity

lexical, 95
spurious, 95
structural, 95

Analysis, 19
Arity, 14
Assignment, 123
Autonomy, 73, 83

categorial, 83
extensional, 73

B
Bigrammar, 65

balanced, 66

C
Categorial autonomy, 83
Category, 29, 82
CFG, 30
c-grammar, 82
c-language, 82
Compositionality, 70, 83

direct, 60
extensional, 70
rule-to-rule, 60

Concatenation grammar, 37
Concept, 128

falsum, 128
type of, 130
verum, 128

Congruence
strong, 201
weak, 201

Connectivity property, 37
Constant, 14
Constructional meaning, 138
Context, 22, 40
Context free grammar, 30

bottom up, 30
left regular, 91
right regular, 91

Converse, 127
Coordinate frame, 140
Crossover dependency, 194
c-sign, 82
c-string, 29
Cycle, 201

order of, 201

D
Denotation, 63
Deprofiling, 152
Depth

embedding, 172
Derivability, 124, 203
Derivation, 31, 35
Distance, 140
Duality, 73

E
Expansion, 126

diagonal, 127
generalized diagonal, 127
product, 127

Exponent, 63

209

210 Index

Expression
complex, 58
simple, 58

Expressive power, 63

F
Falsum concept, 128
First degree equivalence, 109
Formula, 100, 122

atomic, 122, 160
Fragment, 103
Function, 199

partial, 199
polynomial, 27
term, 26

Function symbol, 14

G
Generation, 41
Grammar, 14

ambiguous, 19
autonomous, 73
bottom up context free, 39
concatenation, 37
context free, 30, 39
c-string, 29
extensional independent, 73
extensionally autonomous, 73
extensionally compositional, 70
independent, 73
interpreted, 64
language, 14, 31, 40, 64
primitive, 50
semiautonomous, 73
semicompositional, 70
standard, 47
string adjunction, 41
syntactically well regimented, 79
transparent, 46
unambiguous, 19

Group, 201

H
Homology, 152
Homomorphism, 13

I
Image

direct, 200
Independence, 73, 83, 200

extensional, 73
strong, 200
weak, 200

Indeterminacy
semantically spurious, 101
syntactically spurious, 101

Indeterminate grammar, 40
Index, 100, 159
Interpretation, 14
Interpreted bigrammar

autonomous, 101
compositional, 101

Interpreted grammar
indeterminate, 101
language of, 101

Inverse, 201

L
Language, 10

abstract, 148
autonomous, 73
compositional, 60
context free, 31
c-string, 29
grounding, 148
independent, 73
interpreted, 63
interpreted compositional, 70
monophone, 63
narrow sense, 18, 31
string, 63
strongly C, 90
strongly context free, 90
superstrongly C, 90
superstrongly context free, 90
transparent, 46
unambiguous, 63
wide sense, 18, 31

Langue, 111
Lexicon, 14, 40
Line, 139
Linking aspect, 136
Locale, 41
Location, 139

M
Meaning, 63
Mode, 14, 40

lexical, 14
nonlexical, 14

Model, 123
Morphological transparency, 63

N
Necessity, 163

Index 211

O
Object

realization, 141
schema, 141
typed, 122

Occurrence, 22
accidental, 46
constituent, 46
syncategorematic, 47

Opposition, 109
Orbit, 201

P
Parole, 111
Part, 20, 22
Permutation, 126, 200, 201
Phases, 173
Phone, 109
Phoneme, 110
Picture, 140
Pivot, 137
Polynomial, 27, 202

linear string, 37
string, 27

Possibility, 163
Product, 201, 202
Pseudoadditivity, 104

Q
Quotient algebra, 201

R
Range, 200
Realphabetization, 13
Relata, 108
Relation, 199
Reprofiling, 153
Rule, 14, 40

S
Sampler, 178
Semiautonomy, 73
Semicompositionality, 70
Set

critical, 136
deductively closed, 124
definable, 133

Sign, 63
Signature, 14, 201

first-order, 122
Signifié, 64
Signifiant, 64
Signified, 64
Signifier, 64

Sort, 122
Space, 139

connected, 139
Space of signs, 64
String, 10

ambiguous, 19
empty, 10
length, 10
ungrammatical, 19

Structure, 122
canonical, 163

Subgroup, 201
Subterm, 17
Symbol

relation, 122
Syntactic object, 124

complete, 124
Syntax

abstract, 14
concrete, 14

T
Term, 16

G-, 17
analysis, 19
categorially equivalent, 50
constant, 17
definite, 66
indefinite, 66
intersubstitutable, 50
orthographically definite, 17, 66
semantically definite, 66

Theory, 124
consistent, 124
maximally consistent, 163

Tmesis, 53
Tree

binary, 105
Trigrammar, 82

autonomous, 83
categorially autonomous, 83
compositional, 83
independent, 83

Truth, 123, 126
Type, 122, 165

functional, 126
relational, 122

Typed object, 122

U
Ua-term, 11
Umlaut, 13
Unfolding, 17
Utterance, 108

212 Index

V
Valuation, 123, 159
Variable, 159
Variant, 127

extensional, 70
immediate, 127

Verum concept, 128

W
Well regimentation, 79
World, 163

X
X -string, 36

	Preface
	Contents
	1 Synopsis
	2 String Languages
	2.1 Languages and Grammars
	2.2 Parts and Substitution
	2.3 Grammars and String Categories
	2.4 Indeterminacy and Adjunction
	2.5 Syntactic Structure
	2.6 The Principle of Preservation

	3 Compositionality
	3.1 Compositionality
	3.2 Interpreted Languages and Grammars
	3.3 Compositionality and Independence
	3.4 Categories
	3.5 Weak and Strong Generative Capacity
	3.6 Indeterminacy in Interpreted Grammars
	3.7 Abstraction

	4 Meanings
	4.1 ``Desyntactified'' Meanings
	4.2 Predicate Logic
	4.3 Concepts
	4.4 Linking Aspects and Constructional Meanings
	4.5 Concepts and Pictures
	4.6 Ambiguity and Identity
	4.7 Profiling

	5 Examples
	5.1 Predicate Logic
	5.2 Concept Based Predicate Logic
	5.3 A Fragment of English
	5.4 Concepts and LF
	5.5 The Structure of Dutch
	5.6 Arguing for Syntactic Structure

	6 Conclusion
	 Appendix A Useful Mathematical Concepts and Notation
	Symbols
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

