
Chapter 87
Output Feedback Control for an Active
Heave Compensation System

Jia-Wang Li, Tong Ge and Xu-Yang Wang

Abstract To reduce the adverse effect of the unexpected vessel heave motion on
the response of underwater payloads, a control strategy is presented for an active
heave compensation system using an electro-hydraulic system driven by a double-
rod actuator. An adaptive observer is designed to estimate the unmeasured system
states and the unmodeled forces. An observer is also proposed to asymptotically
reconstruct the vessel motion. By using these observers, the Lyapunov’s direct
method and backstepping technique, an output feedback controller is proposed to
force the heave compensation error to converge to a small bounded area around the
origin. Simulations illustrate the effectiveness of the proposed control scheme.

Keywords Heave compensation � Output feedback control � Adaptive observer �
Backstepping

87.1 Introduction

In offshore installations and deep sea marine operations, one of the most important
issues is how to provide safety and high operability of payloads. This means that
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the payload motion should be kept unaffected by the supporting vessel motion,
since waves, wind and ocean currents can easily cause an unexpected motion of
the vessel, which in turn has adverse effects on the cable connecting between the
payload and the vessel. The unexpected horizontal motion of the vessel is often
controlled by a dynamic positioning system. To reduce the adverse effects in the
vertical direction, active heave compensation systems are usually been used.

The control problems for active heave compensation systems have been
addressed by numerous researchers in the past. In [1], a linear control scheme was
presented for an active heave compensation system. However, the authors assumed
that the vessel motion due to waves was known, which is generally hard to be
accomplished in practice. To remove this restriction, the jointed problems of wave
synchronization and heave compensation were studied in [2, 3]. In both works, the
authors assumed that only the heave acceleration was measured and its integrals
were obtained via high-pass filters. In [4], a nonlinear controller for an electro-
hydraulic system driven by a double-rod cylinder was proposed, whereas the
vessel motion and acting force were estimated by disturbance observers. The
authors in [5] designed an autopilot for the autonomous landing of a vertical take
off and landing vehicle on a ship oscillating in the vertical direction, which was
based on the approach introduced in [6]. An improved work was presented in [7],
where the reconstruction of the wave disturbances was accomplished by using the
adaptive external models proposed in [8]. For the system with time delays in
sensors and actuators, a prediction algorithm was designed in [9] to predict the
vessel motion.

This chapter focuses on active heave compensation control of an electro-
hydraulic system driven by a double-rod actuator. An adaptive observer is
proposed to estimate the system states and the force acting on the cable. By
assuming that the vessel motion can be represented by a set of harmonics with
known frequencies as [10], an observer is also developed to asymptotically
reconstruct these harmonic signals. These observers are then implemented in the
control design procedure. The control development and stability analysis are based
on the Lyapunov’s direct method and backstepping technique.

87.2 Problem Formulation

The active heave compensation system under consideration is depicted in
Fig. 87.1. This system consists of an electro-hydraulic system driven by a double
rod actuator, which is fixed to the vessel. The payload connects to the piston of the
hydraulic system via a cable and a ball joint, where the cable is assumed rigidly. In
Fig. 87.1, the reference water level is a horizontal line fixed to the earth. The heave
motion of the vessel with respect to this level is denoted by z. The position of the
piston with respect to the vessel is represented by xh: L and d denote respectively
the cable length and the desired position of the payload with respect to the
reference water level.
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Following [4], the scaled model of the active heave compensation system can
be written as

€xh ¼ h1�P� h2 _xh þ h3f ðtÞ
_�P ¼ � h4 _xh � h5�Pþ h6�xv

_�xv ¼ � h7�xv þ h8i

ð87:1Þ

where hiði ¼ 1; . . .; 8Þ are model parameters, �P and �xv denote the scaled load
pressure and spool displacement of the servo valve respectively, i is the control
current input of the servo valve, and f(t) represents the resulting forces in the
vertical direction acting on the piston. Generally, it is hard to derive the explicit
expression of f(t) since it depends on too many factors. Hence, following [4], we
treat it as a disturbance. On the other hand, it should be noted that only part of the
states of the system (87.1) can be practically measured. To facilitate the control
development, we assume that the velocity of the piston, _xh; is the measured output.

In this chapter, the control objective is to make the heave velocity of the
payload with respect to the reference water level, _dðtÞ (see Fig. 87.1), to track a
desired velocity reference. On the other hand, one can see from Fig. 87.1 that

dðtÞ ¼ zðtÞ þ xhðtÞ � L ð87:2Þ

where the vessel motion z(t) can be generally decomposed into a set of harmonic
oscillations and an additional slow time-varying term, i.e.,

zðtÞ ¼
Xn

i¼1
Ai sinðxit þ /iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wðtÞ

þvðtÞ ð87:3Þ

where n� 1; Ai; xi and /i are the amplitude, frequency and phase of the ith mode
respectively. In this chapter, we assume that the term v(t) is a constant.

Then, from (87.2) and (87.3), one can see that the control objective is equivalent
to the problem of stabilizing the following heave tracking error

eðtÞ ¼ _wðtÞ þ _xhðtÞ � cðtÞ ð87:4Þ

Ship

Reference water level

water level

Payload

Fig. 87.1 Sketch of an active
heave compensation system
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where c(t) is the desired speed, and without loss of generality, we set it as a
constant.

Note that (87.4) is generally not available for feedback since _wðtÞ is usually
unknown, whereas its derivative, _wðtÞ; is assumed to be measured via high
precision accelerometers. To overcome this difficulty, we will also design an
observer for w(t) in the next section. On the other hand, to facilitate the observer
design procedure, the following assumptions for w(t) and f(t) are made.

Assumption 1 The frequencies of the harmonics, xiði ¼ 1; . . .; nÞ; are known,
whereas the amplitudes and phases of the harmonics are not.

Assumption 2 The variables f(t) is globally bounded and there exists a nonneg-
ative constant rf such that the first order time derivative of f(t) satisfies

_f ðtÞ
�� ��� rf : ð87:5Þ

Furthermore, since the heave position is left uncontrolled, the state xh in (87.1)
is negligible, and thus, the entire system can be reduced to a third-order system
given by the following state space form

_x ¼Axþ Buþ Df ðtÞ
y ¼Cx

ð87:6Þ

with x ¼ ½ _xh; �P;�xv�>; B ¼ ½0; 0; h8�>; C ¼ ½1; 0; 0�; D ¼ ½h3; 0; 0�> and

A ¼
�h2 h1 0
�h4 �h5 h6

0 0 �h7

2
4

3
5: ð87:7Þ

It can be seen that the pair ðA;BÞ is controllable, and ðA;CÞ is observable.

87.3 Adaptive Observer Design

In this section, an adaptive observer will be developed for the unmeasured states
x and f(t). And then, another observer for w(t) will be presented to asymptotically
recover w(t) and its any order time derivatives. The first observer scheme is mainly
improved on [4].

To estimate the states x, from (87.6), we interpret the following observer

_̂x ¼ Ax̂þ Buþ Df̂ ðtÞ þ K1ðy� Cx̂Þ ð87:8Þ

where x̂ is the estimate of x, K1 ¼ ½k11; k12; k13�> is such that the matrix ðA� K1CÞ
is Hurwitz, f̂ ðtÞ denotes the estimate of f(t) and is given by

814 J.-W. Li et al.



f̂ ¼ Cðx� nÞ; _n ¼ Ax̂þ Buþ Df̂ þ K2ðy� Cx̂Þ ð87:9Þ

where K2 ¼ ½k21; k22; k23�> is a vector of control gains to be determined later.

Let ~x ¼ x� x̂ and ~f ¼ f � f̂ be the estimation errors. Then, from (87.6), (87.8)
and (87.9), we yield the observation error dynamics as follows

_~x ¼ðA� K1CÞ~xþ D~f

_~f ¼� CðAþ K2CÞ~x� CD~f þ _f :
ð87:10Þ

Proposition 1 Consider the observation error dynamics (87.10). Under Assump-
tion 2, if there exists a symmetric, positive-definite matrix M satisfying

A� K1C D
�CðAþ K2CÞ �CD

� �>
M þM

A� K1C D
�CðAþ K2CÞ �CD

� �
� kI; M

0
0
1

2

4

3

5 ¼
0
0
1

with k a positive constant and I an identity matrix, then the estimation errors ~x and
~f are globally convergent to a bounded area around the origin.

Proof Consider the following Lyapunov function V0 ¼ ½~x>; ~f �M½~x>; ~f �>: Differ-
entiating it along the solutions of (87.10), we yield

_V0� � kð~x>; ~xþ ~f 2Þ þ 2~f _f :

Due to the Young’s inequality and _f
�� ��� rf ; we have

_V0� � k~x>~x� kf
~f 2 þ e�1

1 r2
f � � gV0 þ e�1

1 r2
f

where kf ¼ k� e1 and g ¼ kf

�
�l; e1 is a positive constant such that kf [ 0 and �l is

the maximum eigenvalue of the matrix M. Then, one can see that V0ðtÞ globally
converges to a ball around zero with the radius r2

f =e1g: As a consequence, the

estimation errors ð~x; ~f Þ converge to a ball centered at the origin with the radius
rf

� ffiffiffiffiffiffiffiffi
e1gl
p

; with, where l is the minimum eigenvalue of M.
In the rest of this section, we will design an observer for w(t). At first, it worth

noting that the dynamics of w(t) can be expressed as

_W ¼ SwW ; €w ¼ CwW ð87:11Þ

with W 2 R
2n; Sw ¼ block diag½S1; . . .Sn� and Cw ¼ ½C1; . . .;Cn�; where

Si ¼
0 xi

�xi 0

� �
; Ci ¼ x2

i ; 0
� 	

; 8i 2 ½1; n�: Note that Sw and Cw are known under

Assumption 1, and the pair ðSw;CwÞ is observable. Since €w is assumed to be a
known variable, then the following observer is designed
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_̂W ¼ SwŴ þ K3ð€w� CwŴÞ; €̂w ¼ CwŴ ð87:12Þ

where Ŵ and €̂w are the estimates, K3 2 R
2n is such that the matrix ðSw � K3CwÞ is

Hurwitz. This observer can be used to reconstruct any order time derivative of w(t).

Proposition 2 The output of system (87.12) defined as

ŵðiÞ ¼ CwSi�2
w Ŵ ; 8i� 0 ð87:13Þ

yields converging estimate of the ith order derivative of w (t).

Proof From (87.11), one can see that the i th order derivative of w(t) can be given
as wðiÞ ¼ CwSi�2

w W : Then, we have

wðiÞ � ŵðiÞ ¼ CwSi�2
w ðW � ŴÞ

Let ~W ¼ W � Ŵ be the estimation error and choose the Lyapunov function
candidate V1 ¼ ~W> ~W : Differentiating V1 along the solutions of (87.11) and
(87.12), we have

_V1 ¼ ~W>ðSw � K3CwÞ ~W

which implies that limt!1 ~W


 

 ¼ 0 due to the fact that ðSw � K3CwÞ is Hurwitz.

Then, one can obtain limt!1 wðiÞ � wðiÞ
�� �� ¼ limt!1 CwSi�2

w ðW � ŴÞ
�� �� ¼ 0:

87.4 Controller Design

At first, we want to note that the structure of the system (87.8) allows us to use the
Lyapunov’s direct method and backstepping technique for the controller design
procedure, which can be divided into three steps.

Step 1.
Consider the Lyapunov function candidate V2 ¼ 0:5c1�e2 ; where c1 is a positive
constant to be chosen later. The time derivative of V2 is given by

_V2 ¼ c�e
1ð�h2x̂1 þ h1x̂2 þ h3 f̂ þ K11C~xþ _̂wÞ: ð87:14Þ

Let x̂2e ¼ x̂2 � a2 be the error state with a2 a virtual control of x̂2: Choosing a2

as

a2 ¼ h�1
1 ð�ke�eþ h2x̂1 � h3 f̂ � _̂wÞ ð87:15Þ
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with ke a positive constant, and substituting (87.15) into (87.14), we have

_V2 ¼ �kec1�e
2 þ c1�e

2ðh1x̂2e þ k11C~xÞ: ð87:16Þ

Step 2.
To regulate the new error x̂2e; we choose the Lyapunov function candidate
V3 ¼ V2 þ 0:5c2x̂2

2e with c2 [ 0: The dynamics of V3 satisfies

_V3 ¼� kec1�e
2 þ c1�eðh1x̂2e þ k11C~xÞ

þ c2x̂2eð�h4x̂1 � h5x̂2 þ h6x̂3 þ k12C~x� _a2Þ:
ð87:17Þ

Let x̂3e ¼ x̂3 � a3 be the virtual control error, and a3 is given by

a3 ¼ h�1
6 ð�kxx̂2e þ h4x̂1 þ h5x̂2 þ f1Þ ð87:18Þ

with kx a control gain to be determined later, and

f1 ¼ �h�1
1 ½keð�h2x̂1 þ h1x̂2 þ h3 f̂ þ _̂wÞ � h2

_̂x1 þ €̂w�: ð87:19Þ

Substituting (87.18) and (87.19) into (87.17) and according to the expression of
_a2; we yield

_V3 ¼� kec1�e
2 þ c1�eðh1x̂2e þ k11C~xÞ

� kxc2x̂2
2e þ c2x̂2

2eðh6x̂3e þ �k12C~xþ h�1
1 h3

_̂f Þ:
ð87:20Þ

with �k12 ¼ kek11h
�1
1 þ k12:

Step 3.
This is the final step. To regulate the error state x̂3e; we consider the Lyapunov
function V4 ¼ V3 þ 0:5c3x̂2

3e with c3 [ 0: The time derivative of V4 is

_V4 ¼ _V3 þ c3x̂3eð�h7x̂3 þ h8iþ k13C~x� _a3Þ: ð87:21Þ

Then, we choose the input i as

i ¼ h�1
8 ð�kix̂3e þ h7x̂3 � �k13C~xþ f2Þ ð87:22Þ

with

f2 ¼ �kxx̂3e þ h�1
6 ½f1

_̂x1 þ f2
_̂x2 þ k2

x x̂2e � h�1
1 ðkeŵð3Þ þ ŵð4ÞÞ� ð87:23Þ
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where ki is a control gain, �k13 ¼ k13 þ h�1
6 kx

�k12; f1 ¼ h4 þ h�1
1 h2ðke � h2Þ and

f2 ¼ h5 � ke þ h2: Substituting (87.22) and (87.23) into (87.21) and following
(87.20) and the definition of a3; we have

_V4 ¼� kec1�e
2ðh1x̂2e þ k11C~xÞ � kxc2x̂2

2e þ c2x̂2
2eðh6x̂3e

þ �k12C~xþ h�1
1 h3

_̂f Þ � kic3x̂2
3e þ c3x̂2

3eðf3
_~xþ f4

_̂f Þ
ð87:24Þ

with f3 ¼ �h2k11C=h2h6 and f4 ¼ �h3ðkx þ ke þ h2Þ=h2h6: Then, we can state
our main result of this chapter in the following theorem.

Theorem 1 Consider the system (87.6) with the output-feedback controller
(87.22) and the observers given in (87.8) and (87.12). Under Assumption 1 and 2,
the heave compensation error eðtÞ asymptotically tends to a small bounded area
around the origin.

Proof From (87.8) and (87.9), we can rewrite (87.24) as

_V4 ¼� kec1�e
2 þ c1h1�ex̂2eðþk11C~xÞ � kxc2x̂2

2e þ c2h6x̂2ex̂3e � kic3x̂2
3e

þ ðX1�eþ X1x̂2e þ X3x̂3eÞ~xþ ðX4�eþ X5x̂2e þ X6x̂3eÞ~f

with X>i 2 R
3ði ¼ 1; 2; 3Þ and Xi 2 R ði ¼ 4; 5; 6Þ the appropriate vectors and

scalars, respectively. By using the Young’s inequalities and from Proposition 1,
after a lengthy but simple calculation, we have

_V4� � �ke�e
2 � �kxx̂2

2e � �kix̂
2
3e þ K

with �ke ¼ kec1e2ðc1h1 þ 2Þ=2; �kx ¼ kxc2 � c1h1=2e2 � e3ðc2h6 þ 2Þ=2; �ki ¼ kic3�
c2h6=2e3 � e4 and K ¼ r2

f ðe1glÞ�1½
P3

i¼1 ðkXik þ jXiþ3j2Þ=2eiþ1�; where eiði ¼
2; 3; 4Þ are chosen such that the control gains �ke; �kx and �ki are positive. Then,
following the proof of Proposition 1, one can conclude that the error states
ð�e; x̂2e; x̂3eÞ globally asymptotically converge to a bounded ball centered at zero

with the radius
ffiffiffiffiffiffiffiffiffi
K=�g

p
; where �g ¼ 2 minð�ke; �kx; �kiÞ

�
maxðc1; c2; c3Þ: Furthermore,

it is not hard to check that this radius can be made arbitrarily small by choosing the
gains, ke; kx and ki; sufficiently large.

For e(t) from Proposition 1, 2 and above result, we have

lim
t!1

eðtÞj j � lim
t!1

�eðtÞj j þ lim
t!1

x1 � x̂1j j þ lim
t!1

_w� _̂w
�� ���

ffiffiffiffiffiffiffiffiffi
K=�g

p
þ rf

. ffiffiffiffiffiffiffiffi
e1gl

p
:

This means that the trajectory of e(t) reduces to a bounded value as time goes to
infinity, which completes this proof.
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87.5 Simulation Results

To illustrate the effectiveness of the proposed controller and observer, we carry out
some simulations in this section. The system parameters are given by: h1 ¼
390; h2 ¼ 0:04; h3 ¼ 0:001; h4 ¼ 490:75; h5 ¼ h6 ¼ 1:0; h7 ¼ 157:233; h8 ¼
1:02e7 and f ðtÞ ¼ 1000þ sinð15tÞ: The desired velocity is c ¼ 0: The harmonics
wðtÞ is set as

wðtÞ ¼ sinð4:3t � 0:4pÞ þ 1:5 sinð4:8t þ 0:3pÞ þ 0:7 sinð5:3tÞ:

The controller and observer gains are chosen as: ke ¼ 100; kx ¼ ki ¼ 150;

K1 ¼ ½500; �490:75; 0�>; K2 ¼ ½0:04; 0; �> and K3 ¼ ½2; 0; 4; 0; 0; 5�>: The
initial conditions of the system and observer are selected at the origin. The sim-
ulation results are depicted in Figs. 87.2 and 87.3.

From Fig. 87.2, one can see that the tracking error eðtÞ converges a small area
around the origin as expected. The plots in Fig. 87.3 show a short time presentation
of the convergence of the observation errors. It can be seen that the estimation error
€w� €̂w is asymptotically stable and the error _xh � _̂xh does not converge to zero due
to the fact that the term f ðtÞ is time-varying.
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87.6 Conclusions

In this chapter, a control strategy for an active heave compensation system is
presented. For the system with unknown disturbances and unmeasurable states,
two observers are designed respectively to estimate the system states and
asymptotically reconstruct the vessel motion represented by a set of harmonic
signals. By using the Lyapunov’s direct method and backstepping technique, a
output-feedback tracking controller is presented. The effectiveness of the proposed
control strategy is tested by means of simulations.
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