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Optimal Detection of Distributed Target
with Fluctuating Scatterers

Tao Jian

Abstract In the non-Gaussian clutter modeled as a spherically invariant random
vector, the optimal detection of a distributed target is addressed with fluctuating
scatterers in high resolution radar scenarios, by exploiting the generalized likelihood
ratio test design procedure and the binary integrator. The formula relating the false
alarm probability to the detection threshold is given, which implies the constant
false alarm rate property with respect to both the clutter covariance matrix structure
and the clutter power level. Moreover, the optimal detection parameter is also
obtained for a distributed target with fluctuating scatterers. Finally, the performance
assessment conducted by Monte Carlo simulation confirms the effectiveness of the
proposed detectors.

Keywords Optimal detection � Distributed target � Fluctuating scatterer � Binary
integrator

86.1 Introduction

The point-like target detection against Gaussian clutter for the traditional low-
resolution radar has been addressed partly in [1]. However, a high-resolution radar
can resolve a target into a number of scatterers, which is referred to as a distributed
target [2, 3]. Increasing the radar range resolution can reduce the amount of energy
per cell backscattered by distributed clutter and can enhance the radar detection
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performance largely by appropriate detection strategies [4, 5]. Whereas, at the
higher range resolution, the radar system receives target-like spikes that result in
non-Gaussian observations, which can be suitably modeled by a spherically
invariant random vector (SIRV) [6–8].

In this work, the optimal detection of a distributed target is addressed with
fluctuating scatterers, by exploiting the generalized likelihood ratio test (GLRT)
design procedure [9] and the binary integrator (BI).

86.2 Problem Formulation

It is assumed that data are collected from N sensors and the problem of detecting
the presence of a target across K range cells zts; t ¼ 1; . . .;K; is dealt with. It is
supposed that the possible target is completely contained within those data [10].
Herein, the clutter-dominant environment is considered, and the internal noise is
ignored. Hence the detection problem can be formulated as the following binary
hypotheses test

H0 : zt ¼ ct; t ¼ 1; . . .;K
H1 : zt ¼ atpþ ct; t ¼ 1; . . .;K

ð86:1Þ

where p denotes the normalized steering vector, such that pHp ¼ 1 �ð ÞHimplies
conjugate transpose), and the ats; t ¼ 1; . . .;K are unknown parameters accounting
for both the target and the channel effects. Note that, for the uniform linear array,

p ¼ 1 ; ej/; ej2/; . . . ; ejðN�1Þ/� �T
. ffiffiffiffi

N
p

, where / denotes a constant phase shifting

and �ð ÞT represents transpose.
The clutter returns are modeled as a SIRV for representing non-Gaussian clutter

[6]. Thus the N-dimension clutter vector ct at range t can be given by

ct ¼
ffiffiffiffi
st
p � gt; t ¼ 1; . . .;K þ R ð86:2Þ

where gt ¼ gt 1ð Þ; gt 2ð Þ; . . .; gt Nð Þð ÞT ; gt nð Þs; n ¼ 1; . . .;N are zero-mean complex
circular Gaussian random variables (RVs) with variance equal to one, and the texture
component st is a semipositive real RV with probability distribution fs, which is
called mixing distribution. Moreover, gt and st are assumed to be independent from
range cell to range cell. Here an N9N clutter covariance matrix structure R associated
with gt; s; t ¼ 1; . . .;K þ R is defined as

R ¼ E gtg
H
t

� �
ð86:3Þ

where R is the positive definite and Hermitian matrix.
It is assumed that the underlying mixing distribution fs is unknown. Thereby

each component of clutter vector ct is modeled as conditionally Gaussian with the
unknown variance st. It is also assumed that at is unknown but p is known.

804 T. Jian



According to the previous assumptions, the probability density function (PDF) of
zts, t ¼ 1; . . .;K under each hypothesis is given by [11]

f ztjR; st;H0ð Þ ¼ 1
pNsN

t det Rð Þ � exp � 1
st

zH
t R�1zt

� �
ð86:4Þ

f ztjR; at; st;H1ð Þ ¼ 1
pNsN

t det Rð Þ � exp � 1
st

zt � atpð ÞHR�1 zt � atpð Þ
� �

ð86:5Þ

where det �ð Þ denotes determinant.
According to the Neyman-Pearson criterion, the optimal solution to the

hypotheses testing problem (86.1) is the likelihood ratio test, but for the case at
hand, it cannot be implemented due to total ignorance of the parameters
at t ¼ 1; . . .;Kjf g and st t ¼ 1; . . .;K þ Rjf g. We resort, instead, to GLRT-based

decision schemes [9].

86.3 Binary Integrator

In this section, with the known matrix R, the BI is introduced.
To simplify the analysis, only one scatterer is supposed to occupy one reso-

lution cell. In most cases of target scattering, the scatterers may occupy only a
fraction of the K range cells. Furthermore, the echo amplitudes of range cells
occupied by target scatterers are significantly greater than that of range cells with
clutter only.

The traditional detection strategies of a point-like target only utilizes target
energy in a single range cell, and may fail for distributed targets. In order to make
the best of target energy in all K resolution cells of the range extent of target, we
can accumulate target scatterers by BI, after single target scatterer detection in
each range cell.

With known R, the derivation of target scatterer detection in single range cell is
begun by writing the GLRT as follows [3]

max
st

max
at

f ztjR; at; st;H1ð Þ

max
st

f ztjR; st;H0ð Þ ð86:6Þ

By replacing the unknown parameters with their maximum likelihood estimates
under each hypothesis, the GLRT statistic for target scatterer detection in single
range cell can be denoted as

k1 ztð Þ ¼ �N ln 1�
pHR�1zt

		 		2

zH
t R�1zt

� �
pHR�1p
� �

" #

ð86:7Þ
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Therefore, the first detection threshold T1 of BI for the given first false alarm
probability Pfa1 can be given by [5]

Pfa1 ¼ exp �ðN � 1ÞT1=N½ � ð86:8Þ

Set

dt ¼
1; if k1 ztð Þ[ T1

0; otherwise



; t ¼ 1; . . .;K ð86:9Þ

Herein, the BI (or M/K detector) is designed to detect all scatterers for a
distributed target. The detection decision is based on at least M threshold cross-
ings, out of K observations [12], where K is the integrated cell number and
M (1�M�K) is the threshold of BI. The first threshold level of a single range cell
must be determined, for the given M and K, to produce the desired integrated false
alarm probability Pfa2. Since the choice of M affects this result, each M requires a
different first threshold. It is necessary to determine an optimal or nearly optimal
value for the parameter M.

The dts, t ¼ 1; . . .;K are inputted into the M/K detector. Moreover, the
hypothesis that a distributed target is present is tested as follows

k2 ¼
XK

t¼1
dt

H1
[
\
H0

T2 ð86:10Þ

where the second detection threshold of BI is given by

T2 ¼ M; 1�M�K ð86:11Þ

Accordingly, the second false alarm probability Pfa2 is simply expressed as

Pfa2 ¼
XK

k¼M
Pk

fa1 1� Pfa1
� �K�k

K!= k! K � kð Þ!ð Þ ð86:12Þ

where Pfa1 is the first false alarm probability in (86.8). For the given overall false
alarm probability Pfa ¼ Pfa2, M and K, the first false alarm probability Pfa1 can be
determined from (86.12) either iteratively or approximately [12]. Finally, the first
threshold T1 can be computed from (86.8) for the given Pfa1. It is shown that both
of two detection thresholds T1 and T2 are independent of R and st; s, t ¼ 1; . . .;K It
implies that, with known R, the BI is constant false alarm rate (CFAR) with
respect to both the clutter covariance matrix structure and the clutter power level.

86.4 Optimal Detection Threshold

In this section, the optimal threshold M (Mopt) of BI is calculated for distributed
target detection.

The matrix R is assumed to be Toeplitz. The clutter samples were generated
assuming an exponential correlation structure, i.e., the matrix R has elements [8]
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R½ �i;j¼ c i�jj j; 1� i; j�N ð86:13Þ

where c is the one-lag correlation coefficient.
The distribution fs is modeled as a Gamma distribution with the following PDF

fsðxÞ ¼ ðL=bÞLxL�1e�ðL=bÞx
.

CðLÞ; x� 0 ð86:14Þ

where C �ð Þ is the gamma function, b indicates the mean of the distribution, and L
controls the deviation from Gaussian statistics.

It is assumed that each of the K range cells has a clutter component and each of
the h0 target range cells has a signal component. The quantity r2

s=r
2
c indicates the

average signal-to-clutter ratio (SCR) per range cell taken over K range cells, where
r2

s and r2
c indicate the average signal and clutter power per range cell respectively.

The returns from target scatterers are modeled as independent and identically
distributed (IID) zero-mean complex circular Gaussian RVs with the variance r2

s .
It means that the target amplitude fluctuates with Rayleigh law over range cells.
Moreover, the input SCR of distributed target detectors is defined as [10]

SCR ¼ r2
s pHR�1p

�
r2

c ð86:15Þ

For the given Pfa, M and K, the first detection threshold of BI can be computed
from (86.8). Moreover, Pds for all detectors are estimated based on Monte Carlo
simulation. For analytical convenience, the Pfa1 with different M is given for
Pfa ¼ 10�4 and K ¼ 15 in Table 86.1.

For only one scatterer is supposed to occupy one resolution cell, we just con-
sider the values of M for M� h0. For the space consideration, herein, we only
present some representative Mopt for h0 ¼ 2; 5; 8. In addition, Mopt for other values
of h0�K has the similar rules and can be calculated from the resultant equation of
Mopt with respect to h0.

In Fig. 86.1, the plots of Pd versus SCRin of BI (M ¼ 1; 2) are given for
N ¼ 2; L ¼ 1; c ¼ 0; K ¼ 15 and h0 ¼ 2. It is observed that, the BI with
M ¼ 2 outperforms the BI with M ¼ 1. We determine that Mopt ¼ 2 for h0 ¼ 2.
With the other preferences same as Figs. 86.1 and 86.2 refers to the detection
performance of BI (M ¼ 1; 2; 3; 4; 5) for h0 ¼ 5. It highlights that the BI with
M ¼ 1 performs worst, and the performance gets better as M increases. Moreover,

Table 86.1 Values of Pfa1 with different M for Pfa=10-4 and K=15

M 1 2 3 4 5

Pfa1 6.6670 9 10-6 9.8006 9 10-4 6.1472 9 10-3 1.70846 9 10-2 3.38243 9 10-2

M 6 7 8 9 10
Pfa1 5.60672 9 10-2 8.3561 9 10-2 1.16188 9 10-1 1.53997 9 10-1 1.97231 9 10-1

M 11 12 13 14 15
Pfa1 2.46399 9 10-1 3.02418 9 10-1 3.66965 9 10-1 4.4346 9 10-1 5.4117 9 10-1
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the BI with M ¼ 4 performs best, but the performance gets worse as M increases
for M� 4. Hence, we determine that Mopt ¼ 4 for h0 ¼ 5.

Furthermore, with the other preferences same as Figs. 86.1, 86.3 refers to the
detection performance of BI (M ¼ 1; 2; 3; 4; 5; 6; 7; 8) for h0 ¼ 8. It is indicated
that, for M� 5, the performance gets better as M increases, however, for M� 5,
the performance gets worse as M increases. Thereby we determine that Mopt ¼ 5
for h0 ¼ 8. In like manner, we also calculate the optimal M for other values of
h0�K, and the values of Mopt with different h0 are given for K ¼ 15 in
Table 86.2. It is observed that Mopt is a monotonically increasing function of h0.

According to Table 86.2, it is concluded that, for 1\h0�K; Mopt satisfies

Mopt ¼ round h0=2þ 1ð Þ ð86:16Þ

where round �ð Þ denotes rounding the parameter to the nearest integer.

Fig. 86.1 Pd versus SCR of
BI for N=2, L=1, c=0, K=15,
M=1,2, h0=2, Pfa=10-4

Fig. 86.2 Pd versus SCR of
BI for N=2, L=1, c=0, K=15,
M=1,2,3,4,5, h0=5, Pfa=10-4
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86.5 Conclusions

The optimal detection of a distributed target is addressed with fluctuating scat-
terers, by exploiting the GLRT design procedure and the BI. The formula relating
the false alarm probability to the detection threshold of BI implies the CFAR
property with respect to both the clutter covariance matrix structure and the clutter
power level. Moreover, the optimal parameter of BI is also obtained by perfor-
mance assessment.
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