Chapter 81
Adaptive Disturbance Rejection Control
of Linear Time Varying System

Dangjun Zhao, Zheng Wang, Yongji Wang and Weibing Hu

Abstract A novel adaptive disturbance rejection control scheme for a linear time
varying (LTV) system from the perspective of differential algebraic framework is
proposed. A numerical differentiator is used to obtain the derivative estimates from
the system output, which contain overall dynamics of the system. Combining a
local modeling technique and conventional proportional integral differential
controller, the proposed control scheme perfectly accommodates disturbances and
measurement noises. The convincing simulations validate the proposed control
scheme well.

Keywords Linear time varying system - Numerical differentiator - Adaptive
control - Disturbance rejection

81.1 Introduction

The case of LTV systems is important since one or some parameters of the real
physical systems are time varying. Further more, the control of nonlinear system
is, usually, accomplished by linearizing this system around a given trajectory
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which renders an LTV system [1]. Researchers have made a great number of
contributions on linear time varying (LTV) systems [2] from 1960s’. In the
literature [3] and its related literatures, a number of adaptive control schemes for
LTV systems has been proposed. Most of these adaptive control schemes
stemmed from the mature control theories of linear time invariant (LTI) systems,
and have been used in engineering successfully. In this chapter, we propose a
new adaptive control law for the LTV system via a differential algebraic
observer, which is constructed by a new differentiator. The closed-loop error
dynamics are the nature of LTI, and all signals in the closed-loop system are
uniformly ultimately bounded (UUB). The main advantage of the proposed
method lies in the excellent performance in the presence of disturbances and
measurement noise.

81.2 Preliminary

We briefly present the method of numerical differentiation, which is proposed by
Fliess and Mboup. Further information can be found in [4-7]. Consider an

analytical real-valued signal x(¢), which has a truncated Taylor expansion xy () =
EQ’:] cit*/k! at t =0 without loss of generality. The expansion satisfies
dV ' xy(t)/dtN ! = 0, which is transformed into s domain, we therefore obtain

SV xn(s) = sV (0) + sV XD (0) + - - + 27 (0) (81.1)

Multiply both sides of Eq. 81.1 by operator IT}" = £ L4005 direct esti-
mation of x)(0)can be acquired as

(_1)n+k 1 N.n

(n) _ vAntk+l N+1
xy(0) = st ms—vn(s y(s)) (81.2)

where v=N-+1+4+u,u>0. Let N =n, and read Eq. 81.2 in time domain
thereby [7]

56(”)(0) — xl(\;l)(O) _ %/%{TH"(I — )M y(1)dx (81.3)
0

where y(n,k, ) = (u+k+2n+1)!/[(n+ n)!(k+ n)!. The boundedness of the
derivative estimate above is demonstrated in the following lemma.

Lemma 1 For 0<t<e, by using Eq. 81.3 the estimate error |leuml| =
[|[¥(0) — x™(0)|| <6 with & is a sufficiently small positive constant.
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Proof The estimate error consists of two parts due to truncated error
Ry(t) = O(t"*!) and measurement noise n(¢). For truncated error when ¢ —
0 or N — o0, the term of O(t"*!) becomes negligible. For measurement noise,
we have a reasonable assumption that n(t) € L, is bounded fluctuated function
of ¢t with higher frequency. For 0<t<eg, there exist positive constant
Ory, On and 0y, such that ||Ry () || <g, and || n(z) || <ow, h(t)|| =

(("k” ALk (1 — 1)} ‘ < d;,. Rewrite Eq. 81.3 as

t

K0 = [ hOlw(e) + Ru(@) + (o)
0

)®+/M m+/h
0 0

Then
lea|l = [[£(0) = x" (0)|
= h(t)Ry(t)dt + | h(z T)Ry(1)dT
[romcr [ f
+ h(t)n(t)dr|| < 5,(Ir, + On)
/
=0
with 6 > 0.

Remark 1 Derivative estimation given by Eq. 81.3 are not of asymptotic nature
[5]. One hand, from the proof above, there has 6 — O when ¢ — 0, thus, as
long as t is small enough, ¢ will be a sufficiently small positive constant. On
the other hand, the differentiator functions as a low-pass filter, which will
attenuate those fast fluctuated noises. However, the performance of noise
rejection will degrade when ¢t — 0. Thus the choice of time window ¢ is a
compromise result.

Remark 2 The derivative estimate at time 0 is obtained from Eq. 81.3 is based on
the observation of y(z) on the time interval Ij, = [0,7], and this is not causal. In
order to obtain a causal estimate, we replace y(t) by —y(¢ — 1) in Eq. 81.3
henceforth a causal estimate ") (¢) based on the observation on the time interval
I'_ =10,]. We can simply move the estimate from t to any 7 >0 by a heaviside
function [7].
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81.3 Main Results

Problem Statement. Consider the tracking control of a uniformly controllable and
uniformly observable single input single output (SISO) LTV system, which is nth
order system and characterized by

5C1 0 1 0 X1 0 0
= S R PR x=A(r)x+Bu+D(r
f 0o 0 ... 1 Xt 0 0 3{ () 3
y=Cx+n
X ap(t) ai(t) ... ay—1(t) Xn b d(r)
y=x1+n
(81.4)

where x € R",y € R,u € R;A(t) is a time dependent matrix with corresponding
dimensions, B € R", C € R";d is the external disturbances, w; is the measurement
noise. The definitions of uniform controllability and uniform observability for
LTV system can be found in [2]. For the convenience of analysis we have are
following assumptions

Assumption 1 A(z) and D(¢) are continuous and uniformly bounded such that
|A(7)|] <My with M4 > 0 and ||D(¢)|| < Mp with Mp > 0 for all ¢ > 0.

Assumption 2 ||A(r)|| <4 with 54 > 0and ||D(r)|| < Jp with 6p > 0 for all £ > 0.
It is to note that ||e| is defined as a spectral norm of a matrix in here and the
following paper.

Local Modeling. We rewrite Eq. 81.4 as an equivalent form

n—1

(n) — ()@ = f(x:

x\ = ai(H)x" +bu+d=f(x;t) +bu+d

; (1) f(x;1) (81.5)
y=x+n

where x =[x & ... xD])'=[x x ... x,]. Let F(t) =f(x;1) +d,

then we have F(t) = x" — bu. Thank to the sampling technique, we can model F
at a time instant k as F, = x,i") — buy to avoid the algebraic loop, where () ¢ Stands
for the value of (e) at time instant k. By using Eq. 81.3 the nth order derivative of
x can be obtained from the observation of output y. Thus, the local model of F can

be written as
Fr=35" — buy_, (81.6)

Since y; can be estimated well even in noisy environment, Fk consists of the
overall dynamics of the system at time instant k, including the external distur-
bance d.
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Control Law. For the tracking problem of Eq. 81.4, let the desired trajectory
of the output y; be smooth enough and differentiable, then x; =

Yo Va ... y;"’l) ] The output y and its finite order derivatives can be esti-
mated by Eq. 81.3, then we have x=[5 y ... 3”1 ]. On the basis of the
local model, we propose our disturbance rejection controller as the following

| N R
u:z[—Fk—i—xd —k (x_xd)} (81.7)

where Fj is given by Eq. 81.6, k € R" is the vector of designed parameters, and

x&”) = yé"). The stability of our control scheme will be discussed in the following
subsection.

Stability. The following stability theorem regarding to the control law defined
by Eq. 81.7 is stated.

Theorem 1 Consider the system governed by Eq. 81.4 and consider assumptions
1 and 2 are satisfied. If the control law is provided by Eq. 81.7 and the differential
algebraic observer is given by Eq. 81.6, then all signals in the closed-loop system
are UUB.

Proof Substitute Eq. 81.7 into Eq. 81.4 resulting in the closed-loop system
X" — ¥ = F(x;t) — Fy — k" (X —x;). Let e=x—x,4 be the tracking error,
& = X — x the estimate error of state, and ¢ = Fy, — F (¢) the model error of our
local model. Rewrite the closed-loop equation as

e=Ace+b.[er +K g (81.8)
0 1 ... 0 0
where A, = : : e : , b.=
0 0 . 1 0
—k, ko1 ... =Kk 1

Let ¢ = ¢p + k'g,. We first prove ¢ is bounded. From Lemma 1, there exits a
fyw > 0 which make H5)<”> - y(”)H <5_\,<n>. Then the estimate error of x satisfies

llex]] = H (& & ... &Gou ]TH <M,,. Similarly, we have |&] = ||)~c—xH <

M,;. Here M,, and M,; are small positive constants, respectively.
From the assumption 1 and 2, F(¢) is continuous and bounded, meanwhile its
derivative respect to time is bounded, thus Vz, Vk, 3¢, such that ||F(z) — F(k)|| =

|F(2)(t — k)|| <5zt — k|| Consequently,

lexll = ||[Fe = F(0)|| = [|Fx = (Fx + F(e2)(t = R) || < [|Fx = Fe|| + || F(22) (2 = &)
< ||k — bug—y — (& — bug) || + S|t — k|| < |5 — x| + |b(ux — u—1) |
+ 0p|lt — k|| < Mei + 64 + 04Ty + 0, Ty = My (81.9)
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Here we assume ||uy — ux_1|| <0, with J, > 0, which is reasonable for the
system. We henceforth have ||er +k”&| < |—Ke.| + [ler|| < kMo + Mp <M

with M > 0, i.e., the term & = ¢r + k' &, is bounded. For the closed-loop system
(81.8), the completely solution is
t

e(r) = exp(—A.r)e(ty) + / exp[—A.(t — 7)|bee(t)dt (81.10)

If Re(4;) > 0, 4; stand for the eigenvalues of the matrix A., there exist finite
positive constant p (in fact p = max||4;]|) such that the transition matrices
lexp(=Act)[| < exp(—p1).

Hence, the solution of the closed-loop error dynamics satisfies

t

lle(®)|| = ||lexp(—Act)e(to) + /exp[—Ac(t— 7)|bee(t)dt

fo
t

<|lexp(—Aer)|[[e(20)]| + M /exp[*l\c(t*f)]df < exp(—p1)|le(r0)]|

)

401 [ exp(-pr)ds < exp(—pi)e(t)| + (M exp(—pio)

— M exp(—pt)]/p < ||e(to)[| + M exp(—pto)/p <00 (81.11)

According to the definition of UUB, the error e will eventually converge into a
hyper ball including the origin, and it is UUB.

81.4 Illustrative Example

In order to validate our control scheme, a simple example is presented here.
Consider an LTV SISO system with standard form of observability

) pssng [ (1) Lo
X u
—(140.5cost) —(1—0.5sin7) 1 sign(sin 0.5¢)

y=[1 Olx+w
(81.12)

where w = N(0,0.005) is the measurement noise. According to the output

Eq. 81.9, there have ¥ = [§ 5] and ¥=[§ §]". By using the control law of
Eq. 81.7, we design the controller as the following form
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Fig. 81.1 History of output, control and tracking error

u=73q— (5 —we—1) —ki () — a) — ko(5 — ya) (81.13)

where y; = sint is the desired output trajectory. The design parameters k; and kg
are chosen so as to render the closed-loop characteristic polynomial into a Hurwitz
polynomial with desirable roots. In such case, the desired closed-loop equation is
set as 5° + 2{w,s + w? = 0, consequently k; = 2{w, and ko = w?.

According to Eq. 81.3 and choosing N = n,k = 2 and p = 2, the estimation of
y,yandy can be obtained by y =30 fol po(0)y(T — Tt)dr, and y = —140
s pr(@)y(T = T7)/Tdt and § = 630 [, p»(x)y(T — T<)/T2dx, where polynomial
pi(t) respectively are po(t) = > — 263 +1*, pi(t) =32 — 1263 + 15¢* — 6 and
pa(t) = 121 — 80F° + 180¢* — 168 + 561°

Simulation experiment is conducted with Matlab, the sampling period
T, = 0.001 s. The controller parameters set as { = 1, w, = 5. Figure 81.1 reveals
the proposed method accommodating the external disturbance and system
parameters’ variation, even in the noisy environment.

81.5 Conclusion

This Chapter has presented a novel control scheme via a differential algebraic
framework. An online numerical differentiation technique was introduced for the
derivatives estimate, from which a local model of LTV system was established. By
using a PID controller, we obtain a closed-loop dynamics of the tracking error,
with the nature of linear time invariant. The numerical simulations validate the
proposed control scheme is efficient in the control of LTV system, even in the
presence of external disturbances and measurement noises.
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