Chapter 17

Nonlinear Retarded Integral Inequalities
for Discontinuous Functions and Its
Applications

Wu-Sheng Wang, Zizun Li and Anmin Tang

Abstract It is well-known that integral inequality for continuous function is an
important tool for studying the existence, uniqueness, boundedness, stability and
other qualitative properties of solutions of differential equations and integral
equations. The integral inequality for discontinuous function is an important tool
for studying impulsive differential equations as well. To study the estimations of
solution of nonlinear retarded impulsive integral equation, firstly retarded integral
inequalities including the nonlinear composite function of discontinuous function
are established, next the estimations of the unknown function of the integral
inequalities are given by the methods of replacement, enlargement, differential,
integral, segmentation, mathematical induction. Finally, the estimations obtained
here are used to give the estimation of the solution of a class of nonlinear
impulsive differential equation.
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17.1 Introduction

Gronwall-Bellman type inequality which furnishes explicit bounds on unknown
function have become an important tool in the study of the existence, boundedness,
stability and other qualitative properties of solutions of differential and integral
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equations. Some results related to Gronwall-Bellman type inequality can be found
in [1-4]. In recent years much attention has been given to the analogous
inequalities and their applications for discontinuous functions, some recent works
can be found in [5-8] and some references therein. In 2010, Li et al. [4] obtained
the explicit bound to the unknown function of the following inequalities.

o(t)

W2(1) < k(1) +2 / IMufi (1, 5)u(s) + Nrgr (1, 5)i(s)]ds
0

+ 2/ [Mofo (2, 5)u(s) + Naga(t, s)u (s)]ds, t >0
0

On the basis of the above inequality, we establish a new class of Gronwall-
Bellman type inequality for discontinuous function, this result furnish a handy tool
for the study of the conditions of boundedness, stability by Lyapunov, practical
stability by Chetaev for the solutions of impulsive differential and integro-differ-
ential systems.

17.2 Conclusion

Throughout this paper, R denotes the set of real number, 7y > 0 is given number.
R, = (0,00), I; == [l‘,;],li), i=1,2,---.

17.2.1 A. Conclusion 1

Theorem 1 Let us consider a nonnegative piecewise continuous function u(t) at
1>19>0, with the first kind of discontinuity at the points t;(ty<t; <tp...,

lim 7; = 00), which satisfies the retarded integral inequality for discontinuous
1—00

function

o(t)
u™ (1) < k(1) + 2 / [M.fi (2, 8)u?(s) + Nigi (¢, s)u" (s))ds

a(to)

t

+ 2/ [Myfs (2, 8)u® + Noga(t, s)u™(s)|ds + Z pu(t; —0)  (17.1)
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where f;>0,m >0, M;>0, N;>0,i=1,2 are given constants, k: R, —
(0,00) is a continuous and nondecreasing function, o. € C (Ri,RJr) is a nonde-
creasing function with a(t) <t, a(t;) =1t;, i =0,1,2,---, lim a(r) = oo, f;, & €
t—00
C(R%,Ry) are nondecreasing on t, dfi(t,s), d,gi(t,s) € C(RZ,R.), i=1,2.
Then the function u(t) will satisfy the estimation

N8

t
u(r) < \/k—(ﬁ ef,[&(s)ds CiJr/Qi(s)effnR,»(r)dfds
li

(17.2)
Vt € [li7l‘i+1}, i=0,1,2,...,
where
0(<S) K
Bs) = Nigas9(6))56) + Naga(s.0) + [ it (s, 90 + [ Nadea(s, e
o) 173
(17.3)

o(s)

0;(s) == Myfi(s,2(s))e (s) + Mafo(s,s) + / M\ (s, )dt + /Mzasfz(s,r)dr

(k)

(17.4)
j: 07 1727' al_ 17 NS [tkatk+l)7k = i,S S [tht)a
and
7 fl (t’s) 7 f2(tvs)
1s) = 1, 17.5
fi(ts) 0 fa(t,s) ) (17.5)
o= 1 (17.6)
2
i Ri—1(s)ds [ Ri—1(1)dt !
Ci _m_;[f(t') f i1+ / Qi1(s) -
o i1
. 2
T R (s)ds [ Ria@r ,
+ |7 ¢+ [ Qimi(s) i sl i=1,2,... (17.7)

Proof Taking into account the inequality of (17.1), we get
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m

(o) 0 () w(s)
X0 < 1+2/x(t0) Mifi(t,s)—= X0) + Nigi(t,s) k( ] ds
—1-2/[ {szz(LS) wi(s )+N282(t 5) ]ds‘i' Z ﬁ 7V >
fo k( ) th<t<t l i B
(17.8)
Let
_u"(1)
W(r) == Ok (17.9)
from (17.5) and (17.8), we have
o(r)
W) <142 / lM1f1 (]t(’(g Wi(s) + Nig, (¢, s)W(s)] ds
a(to)
t ) % " 1_0
+2Z MZfZ(Ii(z; (s) + Nag, (1, 9) ds+tU;<t[3 wr xt )
o(1) N
12 [ (M09 W) + i ()W) s
a(to)
+2 / (M2 1201, 5)(5) + Nago(0,9) }ds+m;<tﬁ, iz
(17.10)
Denote v(t) by
o(r) N
v(t) =2 / [Ml fi(2,8) Wi(s) + Nig, (¢, s)W(s)] ds
a(to)
+2/ (102 2(0,5)4(5) + Nago (1. 9)W () ds (17.11)

)

In the following, we shall prove the estimation (17.2).
Firstly, we consider the case ¢ € I}, by (17.11), we have

WE) <14+v(D), W()</T+v() (17.12)
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By the assumptions on f;, g; ando, we see that v(¢) is nondecreasing on R ;. Hence,
from (17.11) and (17.12), we have

V() =26 (1) [ M (0, (D) WH((1)) + Nag (1, 2(0)) W(2(0))

+ 2 [Mafs (1,1) WD) + Naga (1, )W (1)
o(t)
12 [ [0 0) + M oW as

a(to)
t
1

+2 / (3.0, (0,) WA(s) + Na 0 a0, 5) W (s)ds

o(1)
< 2T+ V(O [My fi (1, (1)) () + Mo fo (1, 1) + / My 0, fi (1, 5)d(s)

a(to)

+ / Mo 0o (t, $)ds] + 2(1 + (1)) [Ny (1, o)) (1

to

o(t)

+ Noga(t,1) + / N 6tg1(t,s)ds—|—/Nza,gz(t,s)ds] (17.13)

a(to)

By the definition of R;() in (17.3) and Q;(¢) in (17.4), from (17.13), we obtain

) <200(1)y/1 1) 4+ 2Ro(1)(1 + v(2)),

V(1)
W0 < Qo(t) + Ro(t)/1 + v(1),
Or equivalently
m < 00(t) + Ro(1) /T +v(1), (17.14)
from (17.14), we obtain
w < Qo(t) + Ro(t)\/1 +v(¢). (17.15)

From (17.15), for allt € I;, we obtain



154 W.-S. Wang et al.

V1+v(r) < ef:;Ro( (1 + / Qo(s ’0 ds) . (17.16)

By (17.12), we have

i _ 2
W(t) < [ef"’ Fols)ds (1 + / Qo(S) e_j;o Ro(z)d: ds):| (17.17)

By (17.9), from (17.17), we get u(t) < {/k(r)

eff; Ro(s)ds N fRU

1+ ft Qo(s ds) , Implying that (17.2) is true for ¢ € [;.

m

Next, we consider ¢ € I, = [t;, ;). Using the hypotheses on f;, g; and o, from
(17.10), we have

a(t)
W) <142 / ML (1, 5)WH(s) + Naga (1,5)W(s)]ds

a(to)
+2 / [Mafs (1, )W3(s) + Naga (1, s)W (s)]ds

o(r)
Wm  —
B, ,,,,1 +2 / [M\fi (1, )W2(s) + Nygi (1, ) W(s)]ds

a(ty)

t

+ 2/[M2)~‘2(t, S)W(s) + Naga(t, s)W(s)]ds

a(t)
<142 / [Mify (11, )W3(s) + Nigi (11, s)W(s)]ds

a(to)

n

+2/[M2f2(1175)w%(5) + Naga(t1,s)W(s)]ds

o(t)
-|-2 / [M\f (2, s)W(s) + Nigi (¢, s)W(s)]ds
a(n)

Wm tl —

+
ﬂl k_ tl
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t

+ 2/[M2f2(t, SYW(s) + Naga(t, ) W(s)]ds

n

n 2
< [ef:(l)Ro(s)ds (1 + / QO(S)effoRo(r)drds)]

+ il ,ORO(Y s 1+/QO RU r)dr
k(1)

ofr)
+2 / [lel (, s)W%(s) + Ny g1 (2, s)W(s)]ds
a(t)

+ 2/[M2fg(t, S)W2(s) + Naga(t, s) W (s)]ds. (17.18).

1

Denote z(¢) by

o(t)
z(t) =2 / [MLfl(t,s)W%(s)+N1g1(t,s)W(s)]ds
a(tr)

t
+ 2/[M2]~”2(t, SYW3(s) + Naga (1, s)W(s)]ds. (17.19).
a1
From (17.7) and (17.19), (17.18) can be written as

W(t)<ci+z(1), W< \/er +2(0).
Differentiating z(z), we get

2(1) = 20/ (1) [MAfi (1, (0)) W2 ((1) + Niga (1, (1) W (1)}

2[Mofs(t,0)W2(t) + Naga(t, 1) W(1)]

+2

K
—~

~
=

[Ml i (t,5) WE + Nidgu (1, s)W(s)] ds

o(f

12 / [Mzafz(;, 5) WH Noduga(t, s)W(s)] ds
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(1)
< 2\/er T2 | M fi (1, ()l (6) + Ma fa (1, 1) + / Mi3,fi (1,5)
a(tr)

+/Mz@tJ7z(t,S) +2(cr + 2(0) [INiga (1, (1))l () + Naga (1, 1)

t
/ NO.g1(t,s ds—l—/Ng@,gg t,s)ds| . (17.20)

x(t1)
By the definition of R;(r) (17.3) and Q;(¢) (17.4), from (17.20), we obtain

1) <201 (t)\/c1 +z2(t) + 2R (1) (c1 + z(1)).

Slmllar the proof of procedure f€ [to,1;), we can deduce that

2
u(t) < /&0 [ef h’“@‘”(clJr Jtois)e ] '?lR'(f)‘“ds)]“, for all 1€ f,n), it
implies that (17.2) is true for 1 € [f,1,).
In a similar way, for rel;=][f,t), we can deduce that
2
u(t) < /&0 [ef HRi(5)d (c,+ Jtos)e ] ‘?,-Rf“)dfds)]’", for all £ € [f;,#;4). This
completes the proof.

Remark 1 (1) When m =2, §; = 0, Theorem 2.1 reduces to Theorem 2.1 of Li
et al. [4].

(2) When k(1) =c,m=1,M; =M, =N; =0, N, =1,g(t,5) = v(s), Theo-
rem 2.1 reduces to Theorem 1 of Samoilenko and Perestyuk [5].

17.2.2 B. Conclusion 2

Theorem 2 Let us suppose that a nonnegative piecewise Continuous function u(t)
at t>1t>0, with the first kind of discontinuity at the points

t (to <t <tp...lim¢ = oo) , which satisfies the integral inequality for discon-

tinuous function |
a(r)
I/tm(t) < k(t) + m . / [lel ([, s)un(s) +N1gl(t, S)M”(S)W(M(S))}ds
a(t)
+mn_1n [MZfZ(t7S)Mn+N2g2(t,S)un( ds+2ﬁu

totit

(17.21)
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where f[;>0,m>n>0M;>0,N;>0,i =1,2 are given constants , k : R, —
(0,00) is a continuous and nondecreasing function f;, g; € C(Ri,RQ, are
nonincreasing on t,0,f(t,s),0,8:(t,s) € C(R2,R,),i=1,2,a € C'(R%,R,) isa
nondecreasing function with a(t) <t, a(t;) = t,-,tlirg o(t) = oo, function w(s)
satisfies the following class ¢ () w is nondecreasing ; (2) w:
Ry — Ry,w(0) =0; 3) w(aff) <w(a)w(p). Then Yt >ty the function u(t) will
satisfy the estimation
(1) t
u(t) < k() o7 | ;| e + / M,fi(t,s)ds + / Mof (1, s)ds
a(ty t
o(t) t
+ / N1g1 (2, s)w( k(s))ds—i— /Nzgz(t, s)w('” k(s))ds

o(t;) t;

(17.22)
Forallt €[t tiv),i=0,1,2..., where
tods
D;(t) = / ——— lim ®;(¢) = 0i =0, 1,2... (2.23)
ti W(sm) 1—00

e A9 Bl
IS =ty 200 = ey

A _ gl(tvs) 5 (I ) gz(l‘,S)

2i(t,s) T ety Y T ()

e =1,
a(t;) a(t;)
e = (1 + ﬁl) \/ k([) (I)F_II Q| e + / M]j‘l(l‘7 S)dS + / ngl (l’,S)W( \ k(S))dS‘

o(ti-1) a(ti—1)

m
n

+ / szz(t,s)ds> + / Nzgz(t,s)w(c/k(s))ds” = 0,1,2...

17.2.3 C. Conclusion 3

In this section, we will show that our results are useful in proving the boundedness
of solutions of impulsive differential system. We consider an impulsive system as
follows:
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det(t) = F(t,x(1), x(a(1)) 1 # 1;
Aty = 1) (17.24)
x(tg) = xo

where x € R, F € C(R*™' R¥), k is a given natural number, I;(x) € C(R¥,R),
o€ Cl(Rk, Rk) is a nondecreasing function with a(f) <t, t>1>0, a(t;) =1
i<t Vi=1,2,...,lim;_ t; = co. Let us assume that F, I; satisfy the following
conditions:

(@) |[E ()l <AOIXO" + L@ ()" + g1 (D))" w([[x(@)]])
+ 2Ol w((x(()]]),
) L@ < p;llx| where ;>0 are constants, i=1,2....,

fi,/2,81,8 € CRL,Ry), we C(R4,R;) is a nondecreasing function with
w(t) > 0 for ¢t > 0.

m
)

Corollary 1 Under assumptions of the conditions (a) and (b), all solutions x(t)
of the system (17.24) have the estimation

m-—n ¢ o(t) 3 0671 s
m—n ti a(t)w ) prme
+— (/tl_ 81<S)ds+/1<ti> OC,(Wl(s))d) } (17.25)

forall t€[fitiy),i=0,1,2..., where ®;(t),i=0,1,2,..., are defined by

x(1)

R

(2.23), N
4 (1)) 1
) m—n f(a'(s))
¢j = (1+ ;)4 Oy [P | ¢ T /f' (s)ds + / st
i1 o(tj-1)
5 a(t)) 1 =
m—n g2 (s)) i [
d 82\ V)4 =1,2...,1
+ p” /gl(s) s + / o (o1 (s)) y ! 7 :

o a(tj-1)
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