
Chapter 105
Localization on Discrete Grid Graphs

Anna Gorbenko, Vladimir Popov and Andrey Sheka

Abstract Grid graphs are popular testbeds for planning with incomplete infor-
mation. In particular, it is studied a fundamental planning problem, localization, to
investigate whether gridworlds make good testbeds for planning with incomplete
information. It is found empirically that greedy planning methods that interleave
planning and plan execution can localize robots very quickly on random grid-
worlds or mazes. Thus, they may not provide adequately challenging testbeds. On
the other hand, it is showed that finding localization plans that are within a log
factor of optimal is NP-hard. Thus there are instances of gridworlds on which all
greedy planning methods perform very poorly. These theoretical results help
empirical researchers to select appropriate planning methods for planning with
incomplete information as well as testbeds to demonstrate them. However, for
practical application of difficult instances we need a method for their fast decision.
In this paper we describe an approach to solve localization problem. This approach
is based on constructing a logical model for the problem.

Keywords Localization � Grid graph � Genetic algorithm

A. Gorbenko (&) � V. Popov � A. Sheka
Ural State University, Ekaterinburg, 620083, Russia
e-mail: gorbenko.aa@gmail.com

V. Popov
e-mail: Vladimir.Popov@usu.ru

A. Sheka
e-mail: andrey.sheka@gmail.com

X. He et al. (eds.), Computer, Informatics, Cybernetics and Applications,
Lecture Notes in Electrical Engineering 107, DOI: 10.1007/978-94-007-1839-5_105,
� Springer Science+Business Media B.V. 2012

971



105.1 Introduction

A testbed is a platform for experimentation of development projects. Testbeds
allow for rigorous, transparent, and replicable testing of scientific theories,
computational tools, and new technologies. A typical testbed could include soft-
ware, hardware, and networking components. Testbeds are widely used for plan-
ning. In this context, testbeds are planning domains that allow researchers to
evaluate their planning methods, communicate performance results of their
methods to others, interpret published performance results of others more easily,
and compare their methods against these performance results [1]. Planning
researchers have studied in detail the properties of their testbeds for planning with
complete information, such as blocksworlds and sliding tile puzzles. Examples of
such experimental and theoretical studies include [2–5]. In recent years, planning
researchers have become interested in planning with incomplete information (see
[6–10]). This is an important research direction because, in the real world, com-
plete information is often not available.

Testbeds should be easy to describe, but they should also provide a wide
enough variety to mimic real domains. In particular, testbeds must include cases
that are not too easy to solve because otherwise planning methods would appear to
be more efficient than they actually are in some of the domains of interest.

Gridworlds are popular testbeds for planning with incomplete information. In
[6] studied a fundamental planning problem, localization, to investigate whether
gridworlds make good testbeds for planning with incomplete information. In [6]
found empirically that greedy planning methods that interleave planning and plan
execution can localize robots very quickly on random gridworlds or mazes.
Thus, they may not provide adequately challenging testbeds. On the other hand,
in [6] showed that finding localization plans that are within a log factor of
optimal is NP-hard. Thus there are instances of gridworlds on which all greedy
planning methods perform very poorly. In [6] showed how to construct them.
These theoretical results help empirical researchers to select appropriate planning
methods for planning with incomplete information as well as testbeds to dem-
onstrate them. However, for practical application of difficult instances we need a
method for their fast decision. In this paper we describe an approach to solve
localization problem. This approach is based on constructing a logical model for
the problem.

105.2 Grid Graphs Planning Tasks

We study localization tasks in grid graphs. Localization is a prototypical planning
task with incomplete information. Before performing this task the robot knows a
map of the gridworld but does not know its start cell. Evidently, the robot may
need to localize prior to performing many other tasks.

972 A. Gorbenko et al.



The sensors onboard the robot tell it in every cell whether the cells immediately
adjacent to it in the four compass directions (north, east, south, west) are tra-
versable. The border of the grid graph is untraversable and observed as such. The
robot can then move one cell to the north, east, south, or west, unless that cell is
outside of the grid graph or untraversable. In the latter case the robot remains in its
current cell. We assume a point robot with accurate sensing, perfect actuation, and
knowledge of its orientation from an onboard compass.

The robot is localized if it knows its current cell. A deterministic localization
plan specifies the movement to execute based on all previous movements and
observations. A localization plan is valid if and only if there is no matter
which cell the robot is started in; it eventually prints out its current cell or correctly
determines that localization is impossible. The objective of planning then is
to determine a valid deterministic localization plan that minimizes the number
of movements for the worst possible start cell. We first calculate the number of
movements for each possible start cell. The worst-case performance is then the
maximum of these values.

In the decision version the valid deterministic localization plan problem can be
formulated as following.

We can suppose that a grid graph is given by a matrix (g [i, j]) where m and n
are dimensions of G, g [i, j] = 1 or g [i, j] = 0, and g [i, j] = 1 if and only if the
cell with coordinates i and j belongs to G.

The Valid Deterministic Localization Plan Problem (VDLPP):
Instance: A grid graph G, a natural number K.
Question: Is there a valid deterministic localization plan such that the worst-

case performance of this plan does not exceed K?
In [6] showed that VDLPP is NP-complete.

105.3 Logical Model

The propositional satisfiability problem (SAT) is a core problem in mathematical
logic and computing theory. Propositional satisfiability is the problem of deter-
mining if the variables of a given Boolean function can be assigned in such a way
as to make the formula evaluate to true. SAT was the first known NP-complete
problem, as proved by Stephen Cook in 1971. Until that time, the concept of an
NP-complete problem did not even exist. Considered also different variants of the
satisfiability problem.

Encoding problems as Boolean satisfiability and solving them with very effi-
cient satisfiability algorithms has recently caused considerable interest. In partic-
ular, local search algorithms have given impressive results on many problems. For
example, there are several ways of SAT-encoding constraint satisfaction, clique,
planning, maximum cut, Hamiltonian cycle, vertex cover, maximum independent
set, and colouring problems. There is a well known site on which posted solvers
for SAT [11]. These solvers are divided into two main classes: stochastic local

105 Localization on Discrete Grid Graphs 973



search algorithms and algorithms improved exhaustive search. All solvers allow
the conventional format for recording DIMACS Boolean function in conjunctive
normal form and solve the corresponding problem [12]. In addition to the solvers
the site also represented a large set of test problems in the format of DIMACS.
This set includes a randomly generated problem of SAT. Of course, these algo-
rithms require exponential time at worst. But they can relatively quick receive
solutions for many Boolean functions. Therefore, it is natural to use a reduction to
different variants of the satisfiability problem to solve computational hard
problems.

Note that if we have a valid deterministic localization plan such that the
worst-case performance of this plan does not exceed K then we have some
sequence of instructions. We can assume that these instructions are defined as
follows. ‘‘If x [north] = a, x [east] = b, x [south] = c, and x [west] = d, then M’’,
where x [north], x [east], x [south], and x [west] are Boolean variables whose truth
means that corresponding cells are vertices of grid graph, a, b, c, d are Boolean
constants, and M is the direction. Not very difficult to construct a Boolean function
which is true if and only if there is a valid deterministic localization plan con-
sisting of K actions. This function can be constructed so that, using a set of values
on which the function is true, we automatically obtain a sequence of instructions.
This function gives us not only a SAT-encoding of VDLPP but also a way to
obtain a sequence of instructions.

105.4 Robot Experimental Setup

Assumptions under which we consider VDLPP are simplifying but sufficiently
close to reality to enable one to use the resulting planning methods on real robots.
Greedy localization, for example, has been used on Nomad 150 mobile robots. The
success rate of moving was at least 99.57%, and the success rate of sensing was at
least 99.38% (see [10, 13]). These large success rates enable one to ignore actuator
and sensor noise, especially since the rare failures are usually quickly noticed
when the number of possible locations drops to zero, in which case the robot
simply reinitializes its belief state to all possible locations and then continues to
use the localization algorithm unchanged.

Among practical applications of VDLPP, we can note the air landing of a robot
and a variety of tasks for indoor autonomous service robots. Note that the need of
localization for indoor service robots occurs either due to temporary equipment
failure or because of deliberate refusal to memorize the route. In the first case
conditions of VDLPP are not quite consistent with the real situation. In particular,
in many cases, we can assume that the robot is close to some known point. In some
other cases, we can assume that the robot motion through a fixed direction. These
assumptions greatly simplify the solution of the problem of localization.

For our experiments, we use two mobile robots (see Fig. 105.1 and 105.2).
Typical failures for our robots are following.

974 A. Gorbenko et al.



A collision with an undetectable object. When there is a collision with an
undetectable object robot either stops or changes direction.

A tire started to deflate. In this case we get a predictable distortion of the
trajectory of motion.

Rotation of a track is stopped. In this case we get the rotation along a known
trajectory.

When the power of a servo motor is turned off, it begins to self-motion. It can
give only a single change of the angle.

Fig. 105.1 Design of this
robot based on the well-
known RC cars. From
RC-CAR AT-10ES Thunder
Tiger [14] we use only the
four wheel chassis, the high
torque DC-MOTOR and a
steering servo. The DC-
MOTOR drives the chassis
and a steering servo controls
the direction. The electronic
system based on SSC-32
microcontroller. Onboard
computer based on a
motherboard with x86
compatible processor AMD
Geode LX600 for embedded
systems

Fig. 105.2 Design of this
robot based on the well-
known Johnny 5 Robot [15].
By utilizing heavy duty
polypropylene and rubber
tracks with durable ABS
molded sprockets the robot
has excellent traction. It
includes two 12vdc 50:1 gear
head motors and the
Sabertooth 2 9 5 R/C motor
controller. Onboard computer
of this robot is Asus Eee PC
1000HE

105 Localization on Discrete Grid Graphs 975



If you lose the connection with external navigation module motors continue to
do the previous commands until the connection is restored. In this case, we know
the trajectory of motion. Only the time of movement is unknown.

Loss of the next image in the case of using visual navigation. In this case, it is
known that the robot is in a small neighborhood of the known point.

In each of these cases, we can consider instead VDLPP some more simple
problem. On the other hand VDLPP of considerable interest in the case when the
robot need not memorize the path.

Both of our robots have processors with relatively low performance. The
requirement of localization while moving substantially reduces the speed of
moving robots. Therefore, in solving many problems, we use visual topological
navigation (see [16–18]).

Vision-based navigation systems may use either topological or metrical maps.
In topological maps, only places such as rooms and their relations are learned and
recognized, whereas in metrical maps, the precise positions of environment fea-
tures and of the robot are estimated. In realistic scenarios for entertainment
robotics, the robot can fall or be blocked in places where sensors will have dif-
ficulty to find useful information. In these situations, a metrical approach, that
usually requires a continuous tracking of features, will probably fail, whereas a
topological approach, able to recognize the rooms and guide the robot between
them is more adapted. Moreover, topological approaches may be purely appear-
ance based, thus avoiding the need for camera calibration.

In practice often used simple topological algorithms that allow only follow the
target and avoid obstacles. Such algorithms provide very high performance. Note
that usually robots do not have enough memory to store full visual series.
Therefore, usually after the task the robot needs to solve the problem of locali-
zation. For example, the robot is moved directly by the user from one place to
another, the robot is moved directly by another robot, robot uses skittles as
landmarks and other robot rearranges skittles, etc.

Note that for a relatively small testbeds, we can apply brute force. However,
this method is not suitable even for indoor laboratory testing. We create a gen-
erator of special hard (see [6]) and natural instances for VDLPP. We use algo-
rithms from [11]. Also we design our own genetic algorithm for SAT which based
on algorithms from [11]. We use heterogeneous cluster based on three clusters
(Cluster USU, Linux, 8 calculation nodes, Intel Pentium IV 2.40 GHz processors;
umt, Linux, 256 calculation nodes, Xeon 3.00 GHz processors; um64, Linux, 124
calculation nodes, AMD Opteron 2.6 GHz bi-processors) [19]. Each test was run
on a cluster of at least 100 nodes. The maximum solution time was 14 h. The
average time to find a solution was 12.3 min. The best time was 52 s. Note that the
calculation exceeds 1 h is quite rare.

It is easy to see that solver for VDLPP give us theoretically a good solver for
the valid deterministic localization plan problem whose use gives only a linear
slowdown. However, in practice it may be slowing down a hundred times or more.
Thus sometimes we can use a supercomputer to find an exact solution. In this case
we can apply this solution on the robot. However, in many cases we are forced to

976 A. Gorbenko et al.



rely on heuristic methods of solution. Nevertheless, using a logical model provides
us a good tool for verifying heuristic solutions. In addition, we can expect a
significant acceleration of the process by using a more powerful supercomputer.
Also we can use a logical model for VDLPP to create a training set for supervised
learning of some intelligent algorithm for the valid deterministic localization plan
problem.

105.5 Summary

In this paper we have presented an approach to solve localization problem. This
approach is based on constructing a logical model for the problem. We also
examined practical aspects of using a logical model for the solution of the valid
deterministic localization plan problem and for the generation of testbeds for this
problem.

References

1. Hanks S, Pollack M, Cohen P (1993) AI Mag 14:17
2. Gupta N, Nau D (1992) Artif Intell 56:223
3. Koenig S, Simmons R (1996) In: Proceedings of the national conference on artificial

intelligence, p 279
4. Reinefeld A (1993) In: Proceedings of the international joint conference on artificial

intelligence, p 248
5. Slaney J, Thiebaux S (1996) In: Proceedings of the national conference on artificial

intelligence planning
6. Tovey C, Koenig S (2000) In: Proceedings of the AAAI conference on artificial intelligence,

p 819
7. Koenig S, Likhachev M (2005) Fast replanning for navigation in unknown terrain. IEEE

Trans Robot 21:354
8. Koenig S, Smirnov Y, Tovey C (2003) Performance bounds for planning in unknown terrain.

J Artif Intell 147:253
9. Mudgal A, Tovey C, Koenig S (2004) In: Proceedings of the international symposium on

artificial intelligence and mathematics
10. Tovey C, Koenig S (2010) IEEE Trans Robot 26:320
11. Information on http://people.cs.ubc.ca/*hoos/SATLIB/index-ubc.html
12. Information on http://www.cs.ubc.ca/*hoos/SATLIB/Benchmarks/SAT/satformat.ps
13. Nourbakhsh I (1996) In: Proceedings of the AAAI-96 spring symposium on planning with

incomplete information for robot problems, p 86
14. Information on http://www.tiger.com.tw/
15. Information on http://www.lynxmotion.com/c-103-johnny-5.aspx
16. Filliat D (2008) In: IEEE/RSJ international conference on intelligent robots and systems.

IEEE computer society press, New York, p 248
17. Park IP, Kender JR (1995) Topological direction-giving and visual navigation in large

environments. Artif Intell 78:355

105 Localization on Discrete Grid Graphs 977

http://people.cs.ubc.ca/~hoos/SATLIB/index-ubc.html
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
http://www.tiger.com.tw/
http://www.lynxmotion.com/c-103-johnny-5.aspx


18. Santos-Victor J, Vassallo R, Schneebeli H (1999) In: Christensen HI (ed) Proceedings of the
first international conference on computer vision systems. Springer, London, UK, p 21

19. Information on http://parallel.uran.ru/mvc_now/hardware/supercomp.htm

978 A. Gorbenko et al.

http://parallel.uran.ru/mvc_now/hardware/supercomp.htm

	105 Localization on Discrete Grid Graphs
	Abstract
	105.1…Introduction
	105.2…Grid Graphs Planning Tasks
	105.3…Logical Model
	105.4…Robot Experimental Setup
	105.5…Summary
	References


