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Improved Min-Sum Decoding Algorithm
for Moderate Length Low Density Parity
Check Codes

Waheed Ullah, Jiangtao and Yang FengFan

Abstract In this chapter, a new technique to improve the min-sum decoding
algorithm for the low density parity check (LDPC) code has been proposed. This
technique is based on the magnitude overestimation correction of the variable
message by using two normalized factors in all iterations. The variable message is
modified with a normalized factor when there is a sign change and with another
normalized factor when there is no sign change during any two consecutive iter-
ations. In this way, the algorithm gives a more optimum approximation to the min-
sum decoding algorithm. This new technique outperforms for medium and short
length codes and for small number of iterations, which make it suitable for
practical applications and hardware implementation.

Keywords LDPC codes � Sum product algorithm �Min-sum � Belief propagation �
Parity check matrix � Tanner graph

101.1 Introduction

Low density parity check (LDPC) codes, also known as Gallager codes, are a type
of linear block codes, first proposed by Gallagar [1] and were scarcely considered
in the three decades that followed due to its computational complexity and the
limited computational ability of receivers at that time. LDPC was reinvented by
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Mackay and Neal [2] and have taken considerable attention recently due to its
powerful error correcting capabilities and their Shannon limit performance [3–5],
with belief propagation decoding algorithm. The name comes from the charac-
teristic of their parity check matrix [6] which contains only a few ones (1s) as
compared to the number of zeros (0s). The Belief Propagation (BP) or the sum-
product decoding algorithm (SPA) is the best performing algorithm with very high
computation complexity and also has dependence on the noise variance. The other
popular iterative decoding algorithms which offer extremely low hardware com-
plexity with little performance degradation, is the min-sum algorithm (MSA) [7].
The min-sum algorithm reduces the decoding complexity and is free of noise
variance as well. Based on these properties of MSA, several approaches have been
made to keep the performance close to SPA while still the decoding complexity is
less. Different methods are used to bring the simplified form of the algorithm close
in performance to the original BP or sum product algorithm. Some well know
approaches are the normalized min-sum (Normalized MSA) and the offset min-
sum (Offset MSA) [8]. Density evolution [9, 10], is used to analyze the perfor-
mance of these decoding algorithms for determining the optimum values of the
key parameters either as normalized or offset values. Check message is modified
during the iteration process to avoid it from over estimation which brings the min-
sum algorithm close in performance to the standard SPA [11] and make them
suitable for practical applications and hardware implementation [12]. Due to min-
sum, which is a reduced complexity algorithm, LDPC has gained popularity in a
wide area of practical applications like local area networks, satellite and inter-
satellite communications, deep sea communications etc. Some practical consid-
erations and implementations have been have been proposed in [13, 14].

The choice of the scaling factor in the normalized and offset types of min-sum
algorithm is not fixed. The suitable parameters can only be chosen by simulation
prior to the implementation. This chapter is focused on the performance
improvement to the min-sum decoding algorithm [15] by using two hardware
friendly scaling factors. The performance of min-sum decoding algorithm is
improved further by adding one additional scaling factor. As in normalized min-
sum [9], there is only one scaling factor used which is found by exhaustive search
algorithm for better performance.

The proposed improved min-sum algorithm (IMSA) modifies the variable
message during the two consecutive iterations. When the signs of the present and
previous messages are different then it is modified with one scaling factor,
otherwise the message is altered by another scaling factor. The results show that
the proposed IMSA is better than normalized MSA and even novel modified min-
sum algorithm both in performance and complexity for the normalization factors.
The results are also compared with SPA to further validate the significant
improvement in performance.
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101.2 Representation of LDPC Codes

101.2.1 Algebraic Representation

LDCP code can be denoted in general as (N, dv, dc), where N is the length of
the code equal to the number of columns in the parity check matrix, dc is the
number of ones (1s) in a column of a parity check matrix, dv is the number of ones
(1s) in a row of a parity check matrix. LDPC codes can be regular and irregular. If
the number of ones (1s) in each row and column of a parity check matrix are the
same, it is called regular; and if the number of ones (1s) in each row and column
are not the same, it is called irregular. For a regular code, following condition
applies

M:dc ¼ N:dv ð101:1Þ

where M and N are the rows and columns of a parity check matrix respectively.
The code is valid only if H.codeT = 0, where H is the sparse parity check matrix.

101.2.2 Tanner Graph Representation

The sparse parity check matrix [6] is best represented by a bipartite graphs know
as Tanner graphs [14]. Each row of the parity check matrix represents the variable
node and each column represents the check node. The one in each row or column
shows the connectivity between variable and check nodes. The set of bit nodes
connecting to check node m is denoted by N(m) = {n|hmn = 1} and the set of
check nodes connecting to bit node n is by M(m) = {m|hmn = 1}. A typical
Tanner graph is shown in the Fig. 101.1. This graph is for (6, 2, 4) regular LDPC
code.
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101.2.3 LDPC Min-Sum Decoding Algorithm

Let X = {x1, x2 …..xn} be the transmitted code after binary phase shift keying
(BPSK). It is transmitted over an additive white Gaussian noisy (AWGN) channel.

Y ¼ Xþ n ð101:2Þ

where n is an AWGN and Y = {y1, y2…..yn}.
Now LDPC min-sum decoding [7, 10, 13], can be stated in the following steps

for a parity check matrix Hmn, where m is the number of rows and n is the number
of columns.
Step 1 Initialization: Set Ln = Y as initial log likelihood ratio (LLR) and for each

(m, n) [ {(m, n)|hmn = 1}

V0
mn ¼ Ln ð101:3Þ

Set the maximum number of iterations (Imax) as i = 0 to Imax.
Step 2 Row processing: bit nodes to check nodes

For m = 0 to M-1, update Ci
mn for each n [ N(m)

Ci
mn ¼

Y

n02NðmÞ
n0 6¼n

sign Vi�1
mn0

� �
: min

n
0 2NðmÞ
n0 6¼n

jVi�1
mn0 j ð101:4Þ

Step 3 Column processing: check nodes to bit nodes
For n = 0 to N-1, update

~Li
n ¼ Ln þ

X

m2MðnÞ
Ci

mn ð101:5Þ

Now updating Vi
mn for each m [ M(n)

Vi
mn ¼ Li

n � Ci
mn ð101:6Þ

Step 4 Hard Decision:

x̂n ¼ 0; for ~Ln [ 0

1; for ~Ln� 0

�
ð101:7Þ

Step 5 Stop condition: If the parity check equation is satisfied i.e.

H:ðx̂ :x̂2. . .. . .. . .x̂nÞT ¼ 0 ð101:8Þ

Or maximum iteration (Imax) is reached then terminate the decoding or other-
wise i = i + 1 and go back to step 2.

The message passing between check nodes and variable nodes in Steps 2 and 3
can also be represented in a graphical way as shown in Figs. 101.2 and 101.3.
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101.3 Modified Min-Sum Decoding Algorithm

101.3.1 Variable Message Update Conditions

Min sum algorithm (MSA) greatly reduces the complexity of SPA at the cost of
performance degradation and the bit error ratio is significantly higher than SPA.
All efforts are made to make the MSA close to SPA in performance while keep it
simple. The Offset and Normalized MSA alter the inaccurate magnitude for the
check node update calculated in step 2. The offset and normalized min-sum
algorithms increase the hardware complexity very less but improve the perfor-
mance significantly for MSA and bring it close to SPA.

The modified min-sum algorithm (MMSA) [15] takes into account the fol-
lowing two conditions for two consecutive iterations:

(i) The sign of the present and previous variable messages are the same then the
magnitude increase is comparatively small.

(ii) The sign of the present variable message and the previous variable messages
are different. In this case, the magnitude increase is large and the variable
message needs to be corrected to avoid overestimation.

c1 c2 cdv

v1 v2 vdc Vdc-1

Cdv-1

Row processing: bit nodes to check nodes

Fig. 101.2 Step 2. Check
node update

c1  c2 cdv

v1 v2 vdc Vdc-1
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Column Processing: check nodes to bit nodes

Fig. 101.3 Step 3. Variable
node update
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Based on the these two fundamental facts, the newly proposed technique
modifies the variable message at the check node processing with two different
scaling factors either at a sign change or at no sign change. The choice of the
scaling factors is obviously dependent on the magnitude increase and its hardware
implementation complexity. The range for both the scaling factors s is such that;
0 \ s \ 1. For the first condition, as the magnitude increase is less, the scaling
factor is chosen in the range 0.5–0.9, and for the second, as the magnitude increase
is large so it is modified by a factor in the range 0.1–0.5.

101.3.2 Method for Variable Message Correction

In the step 3, Eq. 101.6, the variable message is calculated at the ith iteration but
before using for update, it is stored temporarily as Vi;tmp

mn .

Vi;tmp
mn ¼ Li

n � Ci
mn ð101:9Þ

Next the signs of the present message Vi;tmp
mn and previous message Vi�1

mn are
compared as; If

signðVi;tmp
mn Þ ¼¼ signðVi�1

mn Þ ð101:10Þ

Then update the message as;

Vi
mn ¼ sf1ðVi;tmp

mn Þ ð101:11Þ

Else if

signðVi;tmp
mn Þ 6¼ signðVi�1

mn Þ ð101:12Þ

Then update the message as;

Vi
mn ¼ sf2ðVi;tmp

mn Þ ð101:13Þ

The scaling factors sf1 and sf2 are chosen in such a way that these could be
conveniently implemented in hardware, and at the same time provide good
approximation to the error performance. Now if the signs are different then the
change in magnitude is large and is modified with small factor to reduce the
overestimation effect. The scaling factors set for the simulation are sf1 = 0.5 and
sf2 = 0.25. Now Eqs. 101.11 and 101.13 can be re-written as;

Vi
mn ¼ 0:5ðVi;tmp

mn Þ ð101:11aÞ

Vi
mn ¼ 0:25ðVi;tmp

mn Þ ð101:13aÞ

This brings further improvement to the MSA in both lower and upper region of
SNR by using two scaling factors. The complexity is very less both in hardware
and software but the performance achieved is far better.
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101.3.3 Hardware Implementation and Complexity Analysis

We see that both scaling factors are easily implemented in hardware as shift
registers. The scaling factors chosen are the division by 2 and 4 which are simply
implemented in hardware as shift registers as data is shifted by one and two
respectively. The hardware complexity is less than the min-sum algorithm in Hai-
yang et al. [15] as there is no adder needed. The sign comparator decides which
input to select for assigning to the current message Vi

mn through multiplexer (Mux)
unit. The shift register is fast and easy to implement. So the hardware complexity
does not increase reasonably while the performance achievement is better. If we
compare the hardware complexity with normalized min sum and offset min-sum
decoding algorithms, then the complexity is increased just by a sign comparator
which is comparatively very less but the BER advantage is significant

Also this is a reliable way for updating the variable message. Instead of uniform
modification to all the variable messages, it gives the flexibility to update the
messages in two ways which gives the advantage of better performance.

101.4 Simulation Results

Two types of codes are selected for the validation of the performance results for
the proposed improved MSA through computer simulations. Regular medium and
short length LDPC codes (1024, 512) and (648, 324) are chosen for all the
decoding algorithms to evaluate the performance improvement. After encoding
process and binary phase shift keying (BPSK) modulation, the desired code is
passed through AWGN for a range of signal to noise ratio (SNR) values. The
maximum allowable number of iteration is kept as 10. In the Fig. 101.4, we see
clearly that the improved min-sum decoding algorithm outperform than MMSA,
and even from SPA for the selected length of codes. The outperformance of
improved min sum decoding algorithm than standard sum product algorithms is
due to the fact that SPA depends on large sparse parity check matrix while the
parity check matrix selected here is moderate length.

101.5 Comparison and Analysis

Simulation is performed for validating the performance of the proposed technique
for medium and short length codes which best suits for most of the practical
applications. The performance is tested at 10 maximum number of iteration for all
types of the decoding algorithms. The results obtained are compared with MMSA
and SPA. Also, simulations are carried out for two different code lengths. We see
that for the (1024, 512) LPDC code at 4.5db SNR in Fig. 101.5, the BER for
IMSA, MMSA and SPA are 0.000606, 0.001553 and 0.002029 respectively.
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Similarly for the (648, 324) LDPC code at SNR 4 in Fig. 101.6, the BER for
IMSA, MMSA, SPA is 0.000050, 0.000137 and 0.000437, respectively. In both
types of the codes, it has been observed that the proposed technique yields better
results than other min-sum decoding algorithms.

101.6 Conclusion

In this chapter a totally new approach is used with some of the existing methods to
improve the performance of the min-sum decoding algorithm for medium and
short length codes which can be easily applied to practical systems. The proposed
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method is an efficient way for modifying the variable message during the vertical
process in all iterations and hence the overestimation is corrected optimally. Due
to its two way normalization to correct the variable message magnitude, this
algorithm has an inherit capability of improved performance. Furthermore, it is
simple to implement, and the hardware cost is less.
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