
Chapter 10
Spectra of Discrete Multi-Splitting
Waveform Relaxation Methods
to Determining Periodic Solutions
of Linear Differential-Algebraic Equations

Xiaolin Lin, Liming Liu, Hong Wei, Yuan Sang, Yumei Wang
and Ronghui Lu

Abstract This chapter proposed spectra of discrete multi-splitting waveform
relaxation (DMSWR) method to determine the periodic solutions of linear differ-
ential-algebraic equations. Based on the spectral radius of the derived operator by
decoupled process, we obtained some convergent conditions for DMSWR method.
The DMSWR method is an acceleration technique of the periodic waveform
relaxation. A numerical example in circuit simulation is provided to further confirm
the theoretical analysis and also to show that the multi-splitting technique can
effectively accelerate the convergent performance of the iterative process.
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10.1 Introduction

We have known that waveform relaxation (WR) method is a basic and efficient
iteration technique for solving ordinary differential equations (ODEs) and dif-
ferential-algebraic equations (DAEs) either in initial value problems or two
point boundary problems in engineering applications, such as circuit simulation
and mechanical modeling. In fact WR was first proposed to simulate MOS
VLSI circuits [1–3]. Numerical algorithms incorporated with WR are relaxation-
based methods and they are suitable for scientific computations of transient
responses for very large dynamic systems. Many researchers have given con-
vergence conditions of WR [4–9] and multi-splitting waveform relaxation
(MSWR) [10, 11].

The resulted iterative systems with periodic constraint can be numerically
solved by the sophisticated codes of DAEs or ODEs on boundary problem in
public domain. In WR method, there are many decouple techniques such as
Jacobian Iteration, Gauss–Seidel Iteration and so on. In order to accelerate the
speed of convergence of WR, we present the multi-splitting waveform relaxation
(MSWR) method [10], it is a novel splitting technique in engineering applications.

Consider the DAEs as the following:

M _xðtÞ þ AxðtÞ þ ByðtÞ ¼ f1ðtÞ; xð0Þ ¼ xðTÞ;
CxðtÞ þ NyðtÞ ¼ f2ðtÞ; t 2 ½0; T �:

�
ð10:1Þ

where M and N are, respectively, n1 � n1 and n2 � n2 nonsingular matrices, A is
an n1 � n1 matrix, B is an n1 � n2 matrix, C is an n2 � n1 matrix, f1ðtÞ 2 Rn1 and
f2ðtÞ 2 Rn2 (t 2 0; T½ �) are two known input functions with period T, xðtÞ 2 Rn1 and
yðtÞ 2 Rn2 (t 2 ½0; T �) are to be computed. It is also obvious that yð0Þ ¼
N�1ðf2ð0Þ � Cxð0ÞÞ is for (10.1). Further, yð0Þ ¼ yðTÞ is resulted from xð0Þ ¼
xðTÞ and f2ð0Þ ¼ f2ðTÞ. We assume that the boundary condition on periodic
solutions of (10.1) means that the condition xð0Þ ¼ xðTÞ implies _xð0Þ ¼ _xðTÞ and
yð0Þ ¼ yðTÞ.

Let M ¼ M1l �M2l, A ¼ A1l � A2l, B ¼ B1l � B2l, C ¼ C1l � C2l, N ¼ N1l �
N2l ðl ¼ 1; 2; . . .; LÞ and xð0Þð�Þ; yð0Þð�Þ

� �T
is a given initial guess. Now, we present

the MSWR algorithm to compute the steady-state periodic response over one
period for (10.1). The MSWR algorithm of (10.1) is:

84 X. Lin et al.



M1l _xk;lðtÞþA1lxk;lðtÞþB1lyk;lðtÞ¼M2l _xðk�1ÞðtÞþA2lxðk�1ÞðtÞþB2lyðk�1ÞðtÞþ f1ðtÞ;

C1lxk;lðtÞþN1lyk;lðtÞ¼C2lxðk�1ÞðtÞþN2lyðk�1ÞðtÞþ f2ðtÞ;

xk;lð0Þ¼xk;lðTÞ; yk;lð0Þ¼yk;lðTÞ; l¼1;2;...;L;

xðkÞðtÞ¼
PL
l¼1

Elxk;lðtÞ; yðkÞðtÞ¼
PL
l¼1

~Elyk;lðtÞ; t2½0;T �; k¼1;2;...:

8>>>>>>><
>>>>>>>:

ð10:2Þ

where we suppose that M1l and N1lðl ¼ 1; 2; . . .; LÞ are nonsingular, El and
~Elðl ¼ 1; 2; . . .; LÞ are non-negative diagonal matrix and

PL
l¼1 El ¼ I, alsoPL

l¼1
~El ¼ I in this chapter. In order to preserve the consistency of the boundary

conditions for every periodic iteration an initial guess xð0ÞðtÞ; yð0ÞðtÞ
� �T

in (10.2)

should satisfy xð0Þð0Þ; yð0Þð0Þ
� �T¼ xð0ÞðTÞ; yð0ÞðTÞ

� �T
and _xð0Þ ¼ _xðTÞ. For any

constant guess, the required boundary conditions are naturally held. Often, for a
linear system we only consider its MSWR solutions in Cð½0; T�;CnÞ or
L2ð½0; T �;CnÞ, here n ¼ n1 þ n2. This treatment can greatly simplify the theoretical
analyzes on the MSWR. The convergence behaviors of the MSWR are mainly
decided by the corresponding MSWR operators in these functions spaces and
decouple process.

The WR solutions of initial value problems of equations as in (10.1) were
reported in [12]. The expressions of spectra and pseudo-spectra for their WR
operators were also clearly understood [13]. However, so far as we known, most of
these theoretical convergence results are about the WR, and there are few chapters
to theoretically analyze the spectra of the DMSWR operator for linear dynamic
systems in the WR literatures. In this chapter we discuss the DMSWR operator
derived from (10.2) where an analytic expression of its spectra is obtained. A
finite-difference method is then used to solve the decoupled systems (10.2) in our
test examples. The results of paper [6] are the special case of our results in this
chapter. At same tine, a numerical example in circuit simulation is provided to
further confirm the theoretical analysis and also to show that the multi-splitting
technique can effectively accelerate the convergent performance of the iterative
process.

10.2 Spectra of DMSWR Operators and Finite-Difference
for Solving MSWR Solutions

In this section we consider the discrete case of Sect. 10.2 and give a finite-
difference formula for solving the MSWR solution of (10.1).
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10.2.1 Spectra of DMSWR Operators

Now we discuss the application of linear multi-step method in the MSWR algo-
rithm (10.2). For this purpose, let us fix the time increment s ¼ T=N and discretize
(10.2) by a linear multi-step method, where its characteristic polynomials are aðnÞ
and bðnÞ, i.e., aðnÞ ¼

Pm
j¼0 ajn

j and bðnÞ ¼
Pm

j¼0 bjn
j, to obtain

1
s M1l

Pm
j¼0

ajx
k;l
p�mþj þ A1l

Pm
j¼0

bjx
k;l
p�mþj þ B1l

Pm
j¼0

bjy
k;l
p�mþj

¼ 1
s M2l

Pm
j¼0

ajx
ðk�1Þ
p�mþjþA2l

Pm
j¼0

bjx
ðk�1Þ
p�mþj þ B2l

Pm
j¼0

bjy
ðk�1Þ
p�mþjþ

Pm
j¼0

bjðf1Þp�mþj

C1lxk;l
p þ N1lyk;l

p ¼ C2lx
ðk�1Þ
p þ N2ly

ðk�1Þ
p þ ðf2Þp; l ¼ 1; 2; . . .; L

xðkÞp ¼
PL
l¼1

Elxk;l
p ; yðkÞp ¼

PL
l¼1

~Elyk;l
p ; p ¼ 0;�1;�2; . . .; k ¼ 1; 2; . . .

8>>>>>>>>><
>>>>>>>>>:

ð10:3Þ

In the above algorithm we assume that aðnÞ and bðnÞ have no common roots
where að1Þ ¼ 0 and _að1Þ ¼ bð1Þ. In practical codes one adopts a convergent linear
multi-step method to solve DAEs of (10.2). A special case of the linear multi-step
method is the backward differentiation formula (BDF) where bðnÞ ¼ nm. The
m-step constant BDF method converges to OðsmÞ for m\7 (see [1]).

Let xk;l
s and yk;l

s stand for the infinite sequences fxk;l
p g
1
p¼�1 and fyk;l

p g
1
p¼�1 for

all l ¼ 1; 2; . . .; L and similarly let xðkÞs , yðkÞs , xðk�1Þ
s , yðk�1Þ

s , ðf1Þs and ðf2Þs stand for

the infinite sequences fxðkÞp g1p¼�1, fyðkÞp g1p¼�1, fxðk�1Þ
p g1p¼�1, fyðk�1Þ

p g1p¼�1,

fðf1Þpg
1
p¼�1 and fðf2Þpg

1
p¼�1. These infinite sequences are N-periodic, for

example it means that xðkÞpþN ¼ xðkÞp ðp ¼ 0;�1;�2; . . .Þ for the sequencefxðkÞp g1p¼�1.
Now we simply rewrite (10.3) as

1
s aM1lxk;l

s þ bA1lxk;l
s þ bB1lyk;l

s ¼ 1
s aM2lx

ðk�1Þ
s þ bA2lx

ðk�1Þ
s þ bB2ly

ðk�1Þ
s þ bðf1Þs

C1lxk;l
s þ N1lyk;l

s ¼ C2lx
ðk�1Þ
s þ N2ly

ðk�1Þ
s þ ðf2Þs; l ¼ 1; 2; . . .; L

xðkÞs ¼
PL
l¼1

Elxk;l
s ; yðkÞs ¼

PL
l¼1

~Elyk;l
s ; k ¼ 1; 2; . . .

8>>><
>>>:

ð10:4Þ

where we denote the infinite sequences
Pm

j¼0 ajMsx
ðrÞ
p�mþj

n o1
p¼�1

,

Pm
j¼0 bjAsx

ðrÞ
p�mþj

n o1
p¼�1

and
Pm

j¼0 bjBsy
ðrÞ
p�mþj

n o1
p¼�1

by aMsx
ðrÞ
s , bAsx

ðrÞ
s and

bBsy
ðrÞ
s .
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Definition For an N-periodic sequence ws, its discrete Fourier coefficients are

~wp ¼
1
N

XN

q¼1

wqe�ipqð2p=NÞ; p ¼ 0;�1;�2; . . .

By use of Definition, we know that ws ¼
PN�1

q¼1 ~wqes;q, where es;q ¼
eipqð2p=NÞ� �1

p¼�1.

Condition (S) For the characteristic polynomials aðnÞ and bðnÞ, we assume that
the matrix

1
s

a
b ðn

qÞM1l þ A1l B1l

C1l N1l

� ��1

q ¼ 0; 1; . . .;N � 1 ð10:5Þ

exist for the splitting matrices M1l;A1l;B1l;C1l and N1l (l ¼ 1; 2; . . .; L) in which
n ¼ eið2p=NÞ.

Let zðrÞs ¼ ½ðxðrÞs ÞT ; ðyðrÞs ÞT �T , if Condition (S) holds, for any fixed k the solution
of (10.4) can be written as

zðkÞs ¼ Ksz
ðk�1Þ
s þ us; ð10:6Þ

here

Kszs ¼
XN�1

q¼0

PL
l¼1

Elð1s a
b ðn

qÞM1l þ A1lÞ
PL
l¼1

ElB1l

PL
l¼1

~ElC1l
PL
l¼1

~ElN1l

0
BBB@

1
CCCA

�1

PL
l¼1

Elð1s a
b ðn

qÞM2l þ A2lÞ
PL
l¼1

ElB2l

PL
l¼1

~ElC2l
PL
l¼1

~ElN2l

0
BBB@

1
CCCA~zqes;q

and

us ¼
XN�1

q¼0

PL
l¼1

Elð1s a
b ðn

qÞM1l þ A1lÞ
PL
l¼1

ElB1l

PL
l¼1

~ElC1l
PL
l¼1

~ElN1l

0
BB@

1
CCA
�1

~fqes;q

in which ~fq ¼ ½ð~f1ÞTq ; ð~f2ÞTq �
T . With the same approach given in [14], we can get the

following theorem (we omit the proof here).
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Theorem 1 Under Condition (S) the spectral set of the DMSWR operator Ks in
(10.6) is

rðKsÞ ¼ [ r

PL
l¼1

El
1
s

a
b ðn

qÞM1l þ A1l

� � PL
l¼1

ElB1l

PL
l¼1

~ElC1l
PL
l¼1

~ElN1l

0
BBB@

1
CCCA

�10
BBB@

8>>><
>>>:
PL
l¼1

El
1
s

a
b nqð ÞM2l þ A2l

� � PL
l¼1

ElB2l

PL
l¼1

~ElC2l
PL
l¼1

~ElN2l

0
BBB@

1
CCCA

1
CCCA : q ¼ 0; 1; . . .;N � 1

9>>>=
>>>;
ð10:7Þ

where n ¼ eið2p=NÞ.

10.2.2 Finite-Difference for Solving MSWR Solutions

In this section we compute the iterative waveforms _xðkÞ
� �TðtÞ; _yðkÞ

� �TðtÞ
h iT

ðk ¼
1; 2; . . .Þ in (10.2) at m ? 1 time-points, t0 ¼ 0; t1; t2; . . .; tm ¼ T , with a constant
step-size s. For any fixed k we approximate the derivatives _xðkÞ and _xðk�1Þ in (10.2)
with the implicit Euler method. As a simple case of the linear multi-step method
presented in Sect. 10.3.1, we now may write out the iterative matrix for discrete
waveforms without using the discrete Fourier series technique. We will follow this
form to do our computations in the next section. For the purpose, we denote that

XðrÞ ¼ xðrÞ
	 
T

ðt1Þ; . . .; xðrÞ
	 
T

ðtmÞ
� �T

2 Rmn1 ;

Y ðrÞ ¼ yðrÞ
	 
T

ðt1Þ; . . .; yðrÞ
	 
T

ðtmÞ
� �T

2 Rmn2 ;

F1 ¼ f T
1 ðt1Þ; f T

1 ðt2Þ; . . .; f T
1 ðtmÞ

 �T2 Rmn1 ;

F2 ¼ f T
2 ðt1Þ; f T

2 ðt2Þ; . . .; f T
2 ðtmÞ

 �T2 Rmn2 :

It is mentioned here that the order of discrete equations is different from that of
Sect. 10.2.1 for the differential part and the algebraic part. By xðrÞðt0Þ ¼ xðrÞðtmÞ
the discrete MSWR form of (10.2) is
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H1lX
k;l þ H2lY

k;l ¼ J1lX
ðk�1Þ þ J2lY

ðk�1Þ þ sF1

H3lX
k;l þ H4lY

k;l ¼ J3lX
ðk�1Þ þ J4lY

ðk�1Þ þ sF2

l ¼ 1; 2; . . .; L

XðkÞ ¼
XL

l¼1

ElX
k;l; Y ðkÞ ¼

XL

l¼1

~ElY
k;l; k ¼ 1; 2; . . .

8>>>>>>><
>>>>>>>:

ð10:8Þ

where

H1l ¼

M1l þ sA1l 0 � � � 0 �M1l

�M1l
. .

.
0

0 . .
.

M1l þ sA1l

�M1l
. .

. ..
.

..

. . .
.

M1l þ sA1l

. .
.

0

0 � � � 0 �M1l M1l þ sA1l

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

H2l ¼
sB1l

. .
.

sB1l

0
B@

1
CA; H3l ¼

C1l

. .
.

C1l

0
B@

1
CA; H4l ¼

N1l

. .
.

N1l

0
B@

1
CA

and

J1l ¼

M2l þ sA2l 0 � � � 0 �M2l

�M2l
. .

.
0

0 . .
.

M2l þ sA2l

�M2l
. .

. ..
.

..

. . .
.

M2l þ sA2l

. .
.

0

0 � � � 0 �M2l M2l þ sA2l

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

J2l ¼
sB2l

. .
.

sB2l

0
BB@

1
CCA; J3l ¼

C2l

. .
.

C2l

0
BB@

1
CCA; J4l ¼

N2l

. .
.

N2l

0
BB@

1
CCA:

Let El 2 Rmðn1þn2Þ (l ¼ 1; 2; . . .; L) be non-negative diagonal matrix andPL
l¼1 El ¼ I. For any fixed step-size s, the convergence condition of the above

iterative algorithm can be concluded in the following theorem.
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Theorem 2 The DMSWR algorithm (10.8) is convergent if

q
XL

l¼1

El
H1l H2l

H3l H4l

� ��1
J1l J2l

J3l J4l

� � !
\1 ð10:9Þ

10.3 Numerical Experiments

We define that the iterative error is the sum of the squared difference of successive
waveforms taken over all time-points.

10.3.1 Example One

Example one is a test circuit shown in Fig. 10.1 where n is 10. This circuit is taken
from [15]. It is a general form of uniformly dissipative low-pass ladder filter circuit
with a current-source input and a voltage output.The circuit equations have a form
as (10.1) where

xðtÞ ¼ i1ðtÞ; v3ðtÞ; i5ðtÞ; v7ðtÞ; i9ðtÞ; v11ðtÞ½ �T

and yðtÞ ¼ v1ðtÞ; v2ðtÞ; v4ðtÞ; v6ðtÞ; v8ðtÞ; v10ðtÞ½ �T2 R6;

f1ðtÞ ¼ ½0; . . .; 0; IðtÞ�T 2 R10 and f2ðtÞ ¼ ½0; . . .; 0�T 2 R6, for any givent 2 ½0; T �.
Now, M;A;B;C and N in (10.1) are some concrete matrices. For M;A 2 R10�10

we have M ¼ diagðL1;C2; L3;C4; . . .; L9;C10Þ and A ¼ diagð~A1; ~A2; . . .; ~A5Þ where

~Ai ¼
0 �1
1 G2i þ R�1

2iþ1

� �
ði ¼ 1; 2; 3; 4Þ; ~A5 ¼

0 �1
1 G10

� �

The matrix B 2 R10�6 and C 2 R6�10 are

Fig. 10.1 A linear periodic DAEs circuit with n even
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B ¼

0 1 0 0 0 0

0 0 �R�1
3 0 0 0

0 0 1 0 0 0

0 0 0 �R�1
5 0 0

0 0 0 1 0 0

0 0 0 0 �R�1
7 0

0 0 0 0 1 0

0 0 0 0 0 �R�1
9

0 0 0 0 0 1

0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

;

C ¼

0 0 0 0 0 0 0 0 0 0

�1 0 0 0 0 0 0 0 0 0

0 �R�1
3 �1 0 0 0 0 0 0 0

0 0 0 �R�1
5 �1 0 0 0 0 0

0 0 0 0 0 �R�1
7 �1 0 0 0

0 0 0 0 0 0 0 �R�1
9 �1 0

0
BBBBBBBB@

1
CCCCCCCCA
:

For N 2 R6�6 we have N ¼ diagð~N1; ~N2Þ,where ~N2 ¼ diagðR�1
3 ;R�1

5 ;R�1
7 ;R�1

9 Þ 2

R4�4 and ~N1 ¼
R�1

1 þ R�1
2 �R�1

1
�R�1

1 R�1
1

� �
.

We seek its periodic responses by the MSWR algorithm. In our computations
we use the discrete algorithm (10.8). For simplicity we let n = 10 and T ¼ 2p, all
circuit parameters are set to be one. The boundary values satisfy xð0Þ ¼ xð2pÞ and
yð0Þ ¼ �N�1Cxð0Þð¼ yð2pÞÞ.

For example one, we use the Jacobi splitting to split the matrices M and N, i.e.,
M1 and N1 are diagonal matrices of M and N if we adopt the symbols in (10.2).
The matrices B1 and C1are

B1 ¼

0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

2 R10�6;
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C1 ¼

0 0 0 0 0 0 0 0 0 0
�1 0 0 0 0 0 0 0 0 0
0 0 �1 0 0 0 0 0 0 0
0 0 0 0 �1 0 0 0 0 0
0 0 0 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0 �1 0

0
BBBBBB@

1
CCCCCCA
2 R6�10:

For the matrix A we have two ways to treat its splitting, for l = 1, we simply do
not split A, i.e., A1 ¼ A; for l ¼ 2, we split A as

A1 ¼

2

1 . .
.

. .
.

2
. .

. . .
.

1 2

0
BBBBBB@

1
CCCCCCA
2 R10�10

Let n ¼ ifðf 2 RÞ, the spectral of rðKÞ and rð~K1Þ ¼ [ rðKðifÞÞ : f 2 Rf g can
been calculated for E1 ¼ 0:6I and E2 ¼ 0:4I in which p ¼ 0;�1; . . .;�50
andf ¼ 0;�0:1; . . .;�49:9� 50.

To compute the MSWR solution of the system, we let the input function IðtÞ ¼

Iðt þ 2pÞ satisfy IðtÞ ¼
t; 0� t� 0:5p;

0:5p; 0:5p� t� 1:5p;
ð2p� tÞ; 1:5p� t� 2p:

8<
:

Fig. 10.2 Computed results for Example One. Left DMSWR iterations (dashed line, solid line,
and point line for Jacobi splitting, Gauss–Sediel splitting and MSWR, respectively). Right
approximate waveforms (k = 20 for Jacobi splitting, k = 12 for Gauss–Sediel splitting and
k = 6 for DMSWR) of the voltage v1ðtÞ (solid line)
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The time-step is 0:02p sec and the initial guess is the zero function. The con-
vergence results and three approximate waveforms for the voltage v1ðtÞ are shown
in Fig. 10.2.

10.4 Conclusions

We have successfully deduced an analytic expression of the spectral set on the
DMSWR operator for a linear system of DAEs under a normal periodic constraint.
The convergent conditions of the DMSWR algorithm on periodic solutions can be
conveniently chosen from this useful expression, namely the DMSWR algorithm
converges to the exact periodic response if the supremum value of spectral radii
for a series of complex matrices is less than one. The convergent condition of the
chapter is necessary and sufficient for the DMSWR algorithm.
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