
115I.G. Alonso et al., Service Robotics within the Digital Home, Intelligent Systems,
Control and Automation: Science and Engineering 53, DOI 10.1007/978-94-007-1491-5_4,
© Springer Science+Business Media B.V. 2011

Abstract In recent decades, the number of robotic standards has increased, and this
progress has encouraged the integration of service robots and growth in the number
of robotic devices with various communication protocols used in the smart home. In
this chapter, we study different standards that could be used for the integration of
mobile robots and unmanned vehicles in the digital home. As will be seen, the ori-
gins of these standards are twofold. On the one hand, standards have been devel-
oped in a military context such as JAUS or 4D/RCS, which is logical given that the
control and coordination of autonomous vehicles has many potential applications in
this field. On the other hand, standards have been developed in a computer science
context, where interoperability between the different agents that may interact in a
networked environment is a major problem.

4.1 Introduction

During the early years of computing science, only large organizations such as
NASA or the US government could afford to have computers. At that time, no one
would have ever imagined the astonishing evolution of computers together with the
continuous price drop in consumer electronics. Nowadays, there is at least one
computer in almost every home in developed countries, with enough computa-
tional power to ridicule the first computer systems. Advances due to the evolution
of computers are the first breakthrough in the field of the digital home.

M.R.F. Alcalá
Infobótica Research Group, University of Oviedo, Oviedo, Spain
e-mail: fernandezmercedes@uniovi.es

J.M. Maestre (*) • J.R. de la Pinta
Department of Systems and Automation Engineering, University of Seville, Seville, Spain
e-mail: pepemaestre@cartuja.us.es; jrdelapinta@cartuja.us.es

Chapter 4
Integration of Service Robots
in the Smart Home

Mercedes R. Fernández Alcalá, José M. Maestre,
and Javier Ramírez de la Pinta

116 M.R.F. Alcalá et al.

The next revolution in the smart home is expected to come from the world of
robotics. At present, the use of robotics is limited to industrial areas, although ser-
vice robots that assist us in routine tasks such as cleaning the house, mowing the
lawn or even preparing meals are becoming common. Nevertheless, different prob-
lems have to be solved before service robots become as popular as computers. In
particular, interoperability between the different systems that may exist in future
homes is an ongoing issue.

The idea that the reader must have in mind during this chapter is interoperability.
Interoperability is the key component to solving the smart home jigsaw puzzle.
Thus, in this chapter, we will place special emphasis on the interoperability aspects
of the different standards. In addition, different research projects on the interopera-
bility and control of robotic systems and unmanned vehicles will be surveyed.
Behind all these standards and projects, there are stories of success and failure, and
many valuable lessons about the complex world of interoperability. At this point, it
is difficult to know if any of these alternatives will prevail and become a consoli-
dated standard for the integration of robots in the digital home. However, what we
know for sure is that any succeeding standard will have learnt from all that will be
presented here.

4.2 Military Standards

4.2.1 Joint Architecture for Unmanned Systems (JAUS)

The JAUS standard was developed for the US Defense Department (English 2007)
by the JAUS Work Group, which is composed of research groups from the govern-
ment (US Army ARMDEC), industry (SSC San Diego, WINTEC Inc., iRobot) and
academia (Virginia Tech, University of Florida). JAUS was defined as an open and
scalable standard that would meet the needs related to the communication of
unmanned systems regardless of the platform used. The development of JAUS has
tried to meet the following six goals (Wade 2006):

 1. Independence of the vehicle’s platform;
 2. Isolation of the mission;
 3. Hardware independence;
 4. Independence from the technology;
 5. Independence from the operation; and
 6. Independence from the connection used.

The JAUS architecture is composed of three levels:

Level 1 – Inter subsystem: The purpose of this level is to support interoperability •	
between subsystems. It is responsible for specifying requirements between the
subsystems (Robot to Robot, Robot to Controller, Controller to Controller).

1174 Integration of Service Robots in the Smart Home

Level 2 – Inter nodal: The purpose of this level is to support the interoperability •	
between nodes. To this end, it specifies requirements between the subsystems
(interoperability between data loads or between the on-board control and data
loads).
Level 3 – Inter components: The purpose of this level is to provide a reusable •	
software source. It specifies requirements for each component (component by
component, such as sensors and motors).

In 2004, a process of transition from the JAUS Work Group to the Society of
Automotive Engineers (SAE 2010) started. This developed the standard through the
AS-4 (Technical Committee on Unmanned Systems) (SAE 2006). The following
norms migrated from JAUS to a framework based on the following services:

JAUS Transport Standard, AS5669 (SAE-TS 2009). This is in charge of defining •	
the creation of packets with the destination and source addresses and TCP and IP
headers and links.
JAUS Core Service Set, AS5710 (SAE-CSS 2010). This is responsible for pro-•	
viding the means for the software entities in an unmanned system to communi-
cate and coordinate among their activities.
JAUS Mobility Service Set, AS6009 (SAE-MSS 2009). This is in charge of making •	
the migration from the first drivers to the new development platform of the AS-4.

Today, the main application of JAUS is focused on the use of unmanned civilian
and military vehicles.

4.2.1.1 Application of Military Unmanned Vehicles

A major center for development of military unmanned vehicles exists at the SPAWAR
Systems Center (SSC) in San Diego (California). There, a JAUS work team focuses
on the development of surveillance systems, such as MDARS (Mobile Detection
Assessment Response System), which are used in autonomous vehicles for military
bases with restricted access.

The US Defense Department uses MDARS to meet security and surveillance
needs in hostile environments for humans. In this way, it provides an integrated
solution, where unit patrol vehicles are controlled just by a single control operator.
Moreover, SSC has developed a distributed processing system called Multiple
Resource Host Architecture (Everett et al. 2000) which, along with MDARS, was
tested by the JAUS work team in December 2003 to demonstrate the level of interop-
erability between control operator units (COUs) and unmanned systems (Nguyen
2005). In this experiment, COUs were equipped with a screen capable of displaying
the statuses of each patrol vehicle, and thereby they controlled each one of the
unmanned systems (Carroll et al. 2004).

These experiments show how the JAUS architecture provides interoperability for
the remote control of unmanned systems while fulfilling the objectives mentioned
in the general characteristics section.

118 M.R.F. Alcalá et al.

4.2.1.2 Application of Civil Unmanned Vehicles

In 2004, Virginia Tech launched a project to implement simultaneously the JAUS
standard in the following seven unmanned vehicles:

1. MATILDA
This was the first interoperable vehicle designed by Virginia Tech in 2002. It was
designed as an evaluation, development and demonstration platform of the JAUS
standard. It had to fulfill some functional requirements:

It had to be teleoperable through a COU;•	
It had to be capable of driving autonomously via GPS commanded by a COU;•	
It had to interact with other subsystems of JAUS (either vehicle or COU);•	
It had to accept JAUS workloads from other devices;•	
It had to allow an easy modification and/or addition of intelligent software; and•	
It had to ease the demonstration, evaluation and testing of the JAUS standard.•	

 2. JOHNNY-5
This was developed in 2004 to participate in the AUVSI Intelligent Ground
Vehicle Competition in 2005. Owing to its robustness and its capability to navi-
gate via GPS, it quickly replaced MATILDA. The main problems of this model
were the failures in the camera interface and the starting force on the wheels.

 3. CADILLAC SRX
Grant Gothing and Jesse Hurdus, researchers from Virginia Tech, managed to
implement the JAUS standard on the Cadillac SRX, creating the first luxury
unmanned vehicle in the world (Gothing and Hurdus 2006). The challenge of
this model depended on development of a JAUS-based vehicle able to use
potential field methods (Koren and Borenstein 1991) for navigation. The result
was the creation of a software topology, based on operational subsystems,
nodes and components (see Fig. 4.1).

However, when they launched this vehicle in the Blind Driver competition
(Blind Driver Challenge 2010) they detected some issues that could be improved

Fig. 4.1 JAUS topology (University of Seville 2010)

1194 Integration of Service Robots in the Smart Home

(Faruque 2006). For example, every driver had to know the turn angle of the
vehicle and, according to the control messages of the JAUS specification, only
one controller per component was allowed.

 4. GEMINI
Gemini was developed as an extension of Johnny-5. The idea was to create an
articulated robot with four wheels. It won the JAUS Award at the AUVSI
Intelligent Ground Vehicle Competition in 2006 because of its refined design, the
long life of its batteries (5 h), its innovative mobility and the ability to deal with
bigger workloads under the JAUS architecture.

 5. HELIUM RED (Unmanned Ground Vehicle; UGV) and THE RMAX (UAV)
HeLiUm RED (HElicopter LIfted UnManned Reconnaissance and Exploration
Drone) redefines the traditional notion of collaboration between UAVs and UGVs
(RMAX-HELIUM THE RED). This small unmanned vehicle is light enough to
be carried by the VT Yamaha RMAX UAV. Initially, the JAUS standard was
implemented to simplify communication with the vehicle; however, vehicles are
usually treated as subsystems of the JAUS architecture, but in the project
HELIUM RED, the UGV operates as a single node.

 6. ROCKY
This is another example of the vehicles used by Virginia Tech in the DARPA Grand
Challenge. The JAUS implementation in Rocky has taken place in two stages:

Teleoperability: Through the primitive driver, they could make sure that the •	
vehicle was teleoperated making use of the COU, but nowadays with the use
of Global Position/Speed Sensors, the COU, speed and position can be kept
on track and transmitted through a connection service.
Portability of the basic code from Cadillac SRX directly to Rocky. This fea-•	
ture can be seen as a demonstration of the reusability existing when develop-
ing autonomous vehicles under the JAUS architecture.

Owing to these achievements, Virginia Tech established, as functional require-
ments, that their prototypes had to be interoperable with other JAUS subsystems
(applied to both COUs and vehicles). Throughout this research, they realized the
need to integrate some specifications in the JAUS Service Specification standard
that would make use of messages in charge of waiting for a response that will
allow the COU and the vehicles to make behavior decisions for a better interac-
tion between them.

With respect to the development of unmanned vehicles, the company TORC
started the ByWire XGV Project (TORC 2010). This project is being developed
over a Ford Escape Hybrid using the JAUS standard as a platform to interact with
the different parts of the car (steering, throttle, brakes and gear system). The
vehicle has an Ethernet interface installed in a central console that allows for
remote control of the vehicle by a COU, making use of the SAE AS-4 (JAUS)
architecture. The use of the JAUS standard makes sure that ByWire XGV is
compatible with any other platform developed on JAUS. It is important to note

120 M.R.F. Alcalá et al.

that the ByWire XGV has maintained speeds of 160 km/h. The DARPA Urban
Challenge (DARPA 2007) checks the utility of unmanned vehicles in traffic envi-
ronments and assesses how they stick to conventional rules of the road. This is a
challenge for participants to ensure that unmanned vehicles can perform com-
plex movements such as parking or taking navigational decisions at intersec-
tions. In 2005, the DARPA Grand Challenge competition, the University of
Florida and Virginia Tech competed with their unmanned vehicle projects based
on JAUS.

Applied Research Inc., Virginia Tech, University of Florida, iRobot and the
US Air Force Research Lab showed the importance of interoperability in robot-
ics in an experiment (Clark 2005a, b). To this end, each consortium member
made their COU able to interact with all robots and control all loads. The benefits
of the JAUS standard were successfully proven after showing the independence
of the technology used in unmanned vehicles and robots.

Baity (2005), talking about the future of JAUS, mentions the need to focus on
development of software. This author says that it is a primary point to take into
account to minimize problems in the progress of UGVs.

4.2.2 Other Military Standards

4.2.2.1 4D/RCS (Real-Time Control Systems)

The 4D/RCS architecture provides a reference model for military unmanned vehi-
cles. 4D/RCS is a method of designing, integrating and testing intelligent systems
software for vehicles that have a certain degree of autonomy (Albus et al. 2002a).
It is an autonomous intelligent control system architecture for vehicles that can be
either teleoperated or fully autonomous.

4D/RCS (Kim et al. 2002) specifies the way in which software components are
distributed and interconnected, and that is the reason why it became a model for
military unmanned vehicles. The importance of this standard lies in the way in
which unmanned vehicles must manage situations in hostile environments to com-
plete their missions. As a result of the above features, the 4D/RCS fulfills perfectly
the specific needs of the Department of Defense and US Army standards (Albus
et al. 2002b).

4D/RCS architecture was based on the assumption that different knowledge rep-
resentation techniques may offer greater advantages. The aim was to cover all of
them to create a real-time control system for objects that move in the real world
(Schlenoff et al. 2006).

The Demo III UGB Program (Shoemaker and Bornstein 1998) developed and
demonstrated advances in control of unmanned systems, especially small UGVs
under supervised control. That is where the 4D/RCS architecture and its character-
istics arose. This protocol allows intelligent vehicles to adapt to a changing world,

1214 Integration of Service Robots in the Smart Home

to extract deeper information from a dynamic world and to merge such information
with previously available information to improve a vehicle’s performance.

The intelligent control of a 4D/RCS system is based on three layers of abstraction:

A conceptual framework. This is the highest layer of abstraction and covers the •	
full range of operations that involve intelligent vehicles, from a simple actuator
for some milliseconds to lots of vehicles during long periods of time.
A reference model architecture. This defines a hierarchical control structure and •	
at each level functional processes are included.
Engineering guidelines. These are the lowest layer of abstraction in intelligent •	
control. They define how to design intelligent vehicles to work in groups with
other intelligent vehicles.

4.2.2.2 NATO STANAG 4586

In 1998, a NATO expert team, composed of members of government and industry
(CDL Systems 2010), started working on the development of the standard
STANAG 4586 (Compliant Ground Control System for UAV) (Defense Update
2007), which was ratified by NATO in 2002 for the communication and interoper-
ability of its UAV.

The search for interoperability between unmanned systems is essential when
meeting objectives in military terms. The line of development should be focused on
interoperability between land systems, aerial systems and elements of control, com-
mand, communication, computer and intelligence (C4I) (STANAG 2004).

STANAG 4586 was developed as an interface control definition capable of
defining a common number of data packets for two new interfaces (CDL
Systems 2010):

A data link interface among ground control stations and aerial vehicles; and•	
A command and control interface among ground control stations and C4I •	
systems.

According to Cummings et al. (2006), STANAG 4586 is the only standard that
promotes interoperability in control networks of UAVs. There are five interoperabil-
ity levels defined in this standard (Defense Update 2007):

Level 1: Reception/transmission of data packets related to UAV.•	
Level 2: Received live data about intelligence, surveillance and reconnaissance.•	
Level 3: Control and monitoring of data packets of UAVs in addition to the recep-•	
tion of intelligence, surveillance and reconnaissance and other data.
Level 4: Control and monitoring of UAV, except from launch and recovery.•	
Level 5: Control and monitoring of UAV including launch and recovery.•	

STANAG 4586 supports Electro-Optical/Infrared, Synthetic Aperture Radar,
communication transmission and data link interface resources.

122 M.R.F. Alcalá et al.

4.3 Computer Science Standards

4.3.1 CORBA

CORBA is a standard that provides a platform for the development of distributed
systems. It allows an easy RMI under an object-oriented paradigm. CORBA is
defined by the Object Management Group (OMG), which defines APIs, communi-
cation protocols and all necessary items to ensure interoperability between different
applications running on different platforms. CORBA uses an IDL to specify the
interfaces through their functionality. This is a way to indicate how CORBA data
types must be used in implementations of client and server.

All this means that CORBA is a kind of middleware (platform of distributed
services, independent of the operating system) that guarantees success in the transit
of data across different platforms and applications. It is applied in RTS and is effi-
cient enough for any kind of problem. The main features of this standard are:

It is a distributed object standard.•	
It specifies the architecture the system should have, is flexible and heterogeneous.•	
Interoperability.•	
Scalability.•	
Transparency, facilitating client–object communication (Vinoski 1997).•	
Naming service.•	
It sets a minimum object model.•	
Each object implements an interface.•	

The definition of interfaces is made through the IDL, making it independent –
of the programming language.
The reuse in software is achieved through interface inheritance. –
Multiple inheritance. –
The details of an object’s implementation cannot be accessed. –

4.3.1.1 Components

The Object Request Broker (ORB) is the CORBA object manager and is part of •	
its core. It allows for the invocation of static and dynamic objects. It can operate
without the services and facilities provided by CORBA. It handles the invocation
and search for remote objects using dynamic methods for the invocation. It is
responsible for giving back the object attributes of the object accessed through the
IDL of the object (Vinoski 1997). Locally, it also collects information on the
objects to pass to other ORBs and handles local computer security (Fig. 4.2).
IDL, Language for defining interfaces. Since it is a declarative language and not •	
a programming language, it defines interfaces independent of the implementa-
tions of objects.
Dynamic Invocation Interface (DII). Generic Stub. Client side.•	

1234 Integration of Service Robots in the Smart Home

Dynamic Skeleton Interface (DSI). Generic skeleton. Server Side.•	
Both DII and DSI are based on the interface repository, which is a CORBA •	
object that contains information on the object’s interfaces and their types. It
allows applications to access this information in a static or a dynamic way. The
main advantage is the support given to the dynamic calls.
The implementation repository is required when the objects are persistent. Most •	
general purpose ORBs provide a repository of implementations that supports indi-
rect connections for persistent references. This characteristic solves the problem of
direct connections for persistent references. It has also a bad point; it slightly reduces
the good working of the first invocation from client to server. It also offers various
modes for the automatic activation of server objects (Henning and Vinoski 1999).
The object adapter is the bridge between the ORB and CORBA object imple-•	
mentations. This allows it to make requests to an object without knowing its
interface, since the object adapter adapts the object’s interface to that expected
from the object making the request.
Communication protocols between ORBs. CORBA is based on the protocols •	
GIOP (General Inter-ORB Protocol) and the standard protocol IIOP (Internet
Inter-ORB Protocol). GIOP specifies the types of messages and the format to
transport requests between ORBs. IIOP specifies the way TCP/IP is implemented
over GIOP. Thanks to these protocols, ORB can be integrated even if it comes
from different developers.

4.3.1.2 Services

There is a large set of standard services offered by CORBA (OMG 1998). These
services are added to the ORB interface to complete it; however, they are optional.
The most important include:

•	 Concurrency Service. Mediates concurrent access to an object such that the
consistency of the object is not compromised when accessed by concurrently
executing processes.

CLIENT

DII
IDL ORB

ORB Core

DSI
IDL

OA

SERVANT

lnterface Skeleton

(Object Implementation)

Stub

Fig. 4.2 CORBA architecture (University of Seville 2010)

124 M.R.F. Alcalá et al.

•	 Event Service. This defines two roles for objects: the supplier and the consumer.
Consumers process information in the events that are produced.

•	 Naming Service. This is the main mechanism for objects that will be invoked by
most customers from an ORB-based system.

•	 Persistent State Service. Replaces the persistent object service. These are inter-
faces that provide persistent information, namely data objects stored in databases.

•	 Property Service. Can attach dynamic properties to objects outside the static
IDL-type system.

•	 Security Service. The security service of CORBA provides various security
policies to cater for different needs that lead to a secure architecture. CORBA’s
security can be used in a wide range of systems. It also allows the reuse of its
own security protocols. These include:

Authentication and identification of objects or users (i.e. verifying that they –
are who they seem).
Access control and authorization. –
Security audits. –
Secure communication between objects. –
Non-repudiation policy –

The CORBA security service is included in the safety process of OMG.
Among the OMG security specifications, we can find:

At an API level:

ATLAS (Authorization Token Layer Acquisition Service) –
RAD (Resource Access Decision Facility) –

In CORBA’s infrastructure:

CSIv2 (Common Secure Interoperability, version 2) –
CORBA Security Service –

•	 Time Service. Allows an object to ascertain the time along with an estimated
error associated to it.

•	 Trading Object Service. Facilitates the search for objects, services, features,
functionalities and so on.

4.3.1.3 Application Examples

Some frameworks exploit the features of CORBA for telerobotic systems, whereas
some applications may be based on the manipulation of complex systems remotely
(Bottazzi et al. 2002).

CORBA is commonly used in telecommunication robots in real time as well as
to keep track on them. At the University of Auckland, researchers tested the LEGO
Mindstorm and Khepera models to demonstrate the reliability of a design for the
distributed control of robots using CORBA (Woo et al. 2003).

The Institute for Computer Design and Fault Tolerance at the University of
Karlsruhe in Germany presented a distributed software architecture based on

1254 Integration of Service Robots in the Smart Home

CORBA for the autonomous service robot Albert2. The development was focused
on the modularity and integration of learning aspects (Knoop et al. 2004).

The research group there proposed a system for controlling a humanoid robot
based on CORBA. Using this architecture in a distributed environment such as a
local network, it is possible that various humanoid robots all over the world can
share their own modules via the Internet (Takeda et al. 2001).

CORBA has been used to integrate a distributed system of multiple mobile robots
in a simulated environment that offers the possibility of a collaborative control
(Zhang et al. 2009).

4.3.2 UPnP

UPnP is a set of protocols (Jeronimo and Weast 2003) or an architecture proposed
by Microsoft and promulgated by the UPnP Forum (UPnP Forum 2010). The main
goals of UPnP are to simplify the implementation of networks at home and in cor-
porate environments and to connect devices automatically to the network without
user intervention. UPnP allows devices to connect perfectly and thereby simplifies
network implementation at home (e.g. data exchange, communications and enter-
tainment) and in corporate environments. It provides a distributed and open net-
working architecture based on already existing protocols and specifications, such as
UDP, SSDP, SOAP or XML (Bray et al. 2008). In addition, it is supported by IP as
illustrated in Fig. 4.3. Owing to its independence from any particular vendor, oper-
ating system and programming language, APIs connected to a network are able to
control, negotiate and exchange information and data easily and transparently to the
user. UPnP is independent of the physical medium, and it can work over phone
lines, power lines, the Ethernet, RF, IrDA and IEEE 1394.

UPnP enhances the concept of a digital home platform in which all household
devices should work together. It aims to control each device in the smart home, from
consumer electronics to robots, through home appliances using wired or wireless
networks. However, up to now, UPnP has not been widely used to manufacture such
devices, and it has most commonly been used in simpler systems such as blinds,
turning on lights or alarms.

The main feature of this protocol is that there is no need to configure anything
when a device is connected to the network. Device services will be automatically
available to be used for other entities on the network. This is the main idea in
UPnP: each device (a robot, a router, etc.) is available for every entity on a LAN.
To offer its services, the device publishes them using a message-passing protocol.
UPnP is able to detect when a new device is added to the network. Devices receive
an IP address from the network or they assign their own IP (Auto-IP) if a DHCP
server does not exist. They then publish this to the network and every device con-
nected to it in order to provide all interesting information such as logic name,
developer, model and serial number or the services they offer. This way, the user
does not have to worry about complex configurations; he or she just has to add the
device to the network.

126 M.R.F. Alcalá et al.

To understand how UPnP works, we need to describe the components existing on
the network and the required stages, including the protocols, to reach interoperability
between all UPnP devices.

4.3.2.1 Components

A UPnP network has three main components: devices, services and control points.
Components are described below as based on Jeronimo (2004) and the information
obtained from Members of the UPnP Forum (2008):

 1. Devices
UPnP devices are logical containers for a service or set of services, and some-
times for other devices (embedded devices). Embedded devices can be discov-
ered and used independent of the main container. Each UPnP device may offer
any number of services. By itself, a device just provides a self-description of its
information in an XML device description file, and a device’s services are those
that provide real functionality and execute the actions.

 2. Services
Services provide real functionality and can invoke actions. Each service may con-
tain any number of actions. Each action has a name and an optional set of input
and output parameters. A service has an identifier (URI) that uniquely identifies it
among all of services. It may keep variables that represent the current state of the
service. These state variables may trigger events if they are defined as evented.

 3. Control points
A control point is a network entity that invokes the functionality of a device. It is
capable of discovering and controlling other devices. In client/server terms, the
control point will be the client and the server role is assumed by the device. Once
the device is found, the control point is capable of:

Getting the device description and a list of services.•	
Getting the service’s descriptions.•	
Invoking actions to control the service.•	
Subscribing to the service. When a service’s status changes, the device sends •	
an event to the control points subscribed to the service.

4.3.2.2 Protocols

This section provides a brief description of the UPnP protocols (see Fig. 4.3) used
in these networks:

•	 TCP/IP: This is the connection-oriented communication protocol for the Internet
and other similar networks. It is based on the idea of an IP address; in other
words, it assigns an IP address to each computer or device connected to the
 network. TCP/IP provides the basis upon which to build a UPnP network.

1274 Integration of Service Robots in the Smart Home

•	 UDP/IP: This is a connectionless protocol that unlike TCP/IP provides a direct
way to send and receive datagrams over an IP network. It supports the HTTPU
and HTTPMU protocols described next.

•	 HTTP/HTTPU/HTTPMU: These protocols are essential for building UPnP
entities. HTTPU and HTTPMU are the unicast and multicast variants of HTTP.
These variants are defined to deliver messages on top of UDP/IP; on the contrary,
HTTP works over TCP/IP.

•	 SSDP: This is a protocol that can search for UPnP devices and announce devices
and services. Searches and announces used to be made by sending a multicast
SSDP message over HTTPMU; however, this may be sent in a unicast message
now. When a device receives a search message, it checks the search criteria and
if it matches, it will respond with a unicast SSDP message over HTTPU, using
the statement “200 OK,” which indicates that the request was successful. A SSDP
packet is just an HTTP message with the statement “NOTIFY” (to announce) or
“M-SEARCH” (to search).

•	 SOAP: This provides a standard mechanism for packaging messages and it
defines how two objects in different processes can communicate by exchanging
XML files. Each control request is a SOAP message that contains the action
invoked and all requested parameters. The reply is another SOAP message that
contains the results of the action or the errors as appropriate.

•	 GENA: This defines an HTTP notification architecture that allows transfer noti-
fications between HTTP resources.

•	 XML: This organizes, stores and exchanges information, and its main function
is to describe data. It is used in UPnP for device and service descriptions, control
messages and events.

•	 HTML: This is a markup language that uses a set of markup symbols or codes
to structure text and multimedia documents and to set up hypertext links between
documents.

4.3.2.3 UPnP Operation

To describe the way that the protocol operates, we need to show the six basic steps
in a UPnP network: Addressing, Discovery, Description, Control, Eventing
and Presentation. Addressing may be considered step zero of UPnP networking.

UPnP

HTTPU

UDP TCP

HTTP
HTTPSOAP

IP

HTTPMU
SSDP SSDP GENAGENA

Fig. 4.3 UPnP architecture
(de la Pinta et al. 2011)

128 M.R.F. Alcalá et al.

This book presents a simplified version of how UPnP operates. However, these
steps are detailed in the UPnP Device Architecture document (Members of the
UPnP Forum 2008):

 1. Addressing
Devices and control points must obtain an IP address before they can join to a
UPnP network; therefore, when they are first connected to the network they must
search for a DHCP server to get an IP address or use Auto-IP to obtain an address.
UPnP entities may retrieve an IP address from a DHCP server; to that effect, both
devices and control points must have a DHCP client. If the network does not
have a DHCP server, devices and control points must use Auto-IP to get the IP
address. Through this mechanism, the device takes a random address in a range
established by the ICANN/IANA. Once the address has been allocated, the entity
checks it using the ARP protocol, and if it is being used on the network the
device will get another IP address.

 2. Discovery
This step defines how a device announces its presence and how a control point
discovers devices using the SSDP (Fig. 4.4). The Discovery stage allows control
points to find devices and services and to obtain information about them.

Advertisement. Once devices are added to the network, they multicast mes-•	
sages to announce their embedded devices and services to control points
through NOTIFY packets. These messages do not require a reply and are

Control
Point 1 Control

Point 2

Control
Point 3

Device 1

UpnP
network

Device 2

Search (M-SEARCH - multicast)

Response (200 OK - unicast) (SSDP/HTTP)

Advertisement (NOTIFY - multicast) (SSDP/HTTP)

Advertisement (NOTIFY - multicast) (SSDP/HTTP)

Response (200 OK - unicast) (SSDP/HTTP)

Fig. 4.4 Discovery (University of Seville 2010)

1294 Integration of Service Robots in the Smart Home

resent periodically when devices renew their advertisements. Through these
messages, control points may retrieve the descriptions devices and then may
control devices and retrieve the descriptions of services to manage these ser-
vices, invoking actions and subscribing to events.
Search. This procedure allows control points to search for devices on the net-•	
work. Control points may search for specific devices or services through
M-SEARCH messages. Responses from devices are needed, and these con-
tain discovery messages similar to the advertisement ones; however, the
responses are unicast because devices know the control point address.

 3. Description
After the Discovery step, the control point retrieves the information from the
discovery message, i.e., a universally unique identifier and a URL of the device’s
UPnP description. The Description step consists of retrieving the description
of the device and its capabilities (service description) from this URL. The
descriptions of the devices and their services are stored in XML documents.
A device description contains device information, a list of the services pro-
vided by the device and a list of their embedded devices. A service description
includes detailed information about the device’s service, the actions provided
by the service, as well as input parameters and output state variables. To get
the description files (see Fig. 4.5), a control point sends an HTTP request using
the GET method to the URL contained in the discovery message that had
previously been received by the device. When it receives the request, it
replies with an HTTP message that contains the device’s description in the
message’s body.

UpnP
network

Control
Point Device

Device description request (HTTP - GET)

Device description response (HTTP/XML)

Service description request (HTTP - GET)

Service description response (HTTP/XML)

Service

Fig. 4.5 Description (University of Seville 2010)

130 M.R.F. Alcalá et al.

 4. Control
This is the step in which the control points invoke actions on the devices’ ser-
vices. Once a control point has all the information about a device and its services
through their descriptions, it will be able to control this device by invoking
actions. The Control step is based on the SOAP, which uses XML and HTTP to
provide web messaging and RPC. To invoke a specific action, the control point
must send a SOAP request using the POST method to the device’s service. Then,
the device will respond with the results or the errors obtained as a consequence
of the invocation. This stage is illustrated in Fig. 4.6.

 5. Eventing
Eventing can notify a control point when the state of a device changes. As explained
above, a service description contains a list of variables that models the state of the
service. If any of these variables is configured to report an event (evented variable),
the service publishes updates when any of these variables are modified.

Eventing uses a publisher/subscriber model in which the control points can sub-
scribe to events sent by a service. The services publish event notifications to subscribers.
An event is a message sent from a service to the subscribed control points. The events
inform the subscribed control points about the state changes in the services.

A control point that wants to be notified about the changes in the variable’s
state subscribes to an event source by sending a subscription request to the URL
of the events, which is contained in the corresponding device description. If a
service accepts the subscription request, it responds with a SID and the duration
of the subscription. The SID allows the control point to refer to the subscription
in subsequent requests to the service, such as renewing or cancelling the sub-
scription (Jeronimo 2004). Eventing protocol is a GENA and is used over the
TCP layer, which guarantees message delivery to the subscriber. Figure 4.7 pres-
ents a diagram of this process.

UPnP
network

Control
Point

Device

Device

Invoke action (SOAP/HTTP/XML)

Results/Errors (SOAP/HTTP/XML)

Service

Service

Fig. 4.6 Control (University of Seville 2010)

1314 Integration of Service Robots in the Smart Home

 6. Presentation
Presentation is considered as an optional step. A control point may monitor a
device or check its status through the presentation of a webpage in HTML. If a
device has a presentation page, control points may load presentation pages in a
browser and these allow users to check and control the device. To retrieve a pre-
sentation page, the control point issues an HTTP GET request to the presentation
URL and the device returns a presentation page (Microsoft) (see Fig. 4.8).

It is also interesting to review UPnP applications developed in recent years
to understand the interoperability provided by this architecture. For example,
Maestre and Camacho (2009) state that different consumer electronic devices
have been developed using UPnP architecture. De la Pinta et al. (2011) show that
the Roomba robot has been successfully integrated into a UPnP framework. In
addition, UPnP AV devices have been integrated into an OSGi platform (Kang
et al. 2005). Another example of UPnP interoperability is the success of the DLNA
protocol in multimedia services, which is derived from the UPnP architecture.

4.3.3 Jini

Jini is a service-oriented architecture developed by Sun Microsystems that pro-
vides an infrastructure for defining, publishing and searching for services on a
network. Service Discovery (similar to UPnP service) is the main feature in the

UpnP
network

Control
Point

SID=uuid:1...

Device

Device

Subscription request (GENA - SUBSCRIBE)

Subscription (uuid:1...) (GENA)

Subscription (uuid:1...) (GENA)

Events messages (GENA - NOTIFY/XML)

Renewal subscription (GENA - SUBSCRIBE)

Cancel subscription (GENA - UNSUBSCRIBE)

Service

Service

Fig. 4.7 Eventing (University of Seville 2010)

132 M.R.F. Alcalá et al.

Jini technology, both in multicast mode and search mode for specific services. Jini
uses the multiplatform feature from the Java platform to provide universal services,
and it registers each one of them as serialized objects (service proxy) with its own
interfaces. A Jini architecture diagram is shown in Fig. 4.9.

The main aims of this platform are discussed in Arnold (1999), which exposes its
immediate services availability, the hardware abstraction, the service-based architecture
and the simplicity. Jini is an easy protocol (Morgan 2000) as explained in Fig. 4.10.

When a device is connected, it looks for a lookup service (Discovery) with which •	
to register.

Device

Device

Service

Presentation page request (HTTP - GET)

Presentation page (HTTP/HTML)

Control operation

Service
Control
Point

Web
Browser UpnP

network

Fig. 4.8 Presentation (University of Seville 2010)

Application Service

Discovery

Lookup
Jini technology

Java technology

Operating system

Network transport

Fig. 4.9 Jini architecture
diagram (University of
Seville 2010)

1334 Integration of Service Robots in the Smart Home

When a service provider locates a lookup service, it joins to it (Join). The service •	
uploads a service proxy that a client would need to use its services, and the
lookup service stores it.
When a client needs to locate and invoke a service, it asks the service for the •	
lookup service, and it gives back the service proxy mentioned above.
Then, the client is able to interact with the service provider (during an specific •	
time, in a shared way or in a exclusive one) through the proxy.

The purpose of the Jini architecture is to organize devices and software into
groups inside a distributed and dynamic system. This simplifies the access, manage-
ment and maintenance of each service offered by service providers. Some interest-
ing concepts in a Jini system are presented below:

 1. Services
A Jini system consists of a set of services that can be used to perform a par-
ticular task. A service is an entity that can be used by one person, one program
or another service. It may be a calculation, saved data, a communication chan-
nel with another user, a software filter, a hardware device or another user.

Discovery for
lookup service

Discovery for
lookup service

Lookup service
reference

Lookup service
reference

Request for
service

Service object
(proxy)

Service proxy
registration

D
ISC

O
V

E
R

Y

D
ISC

O
V

E
R

Y

JO
IN

Service Provider CLIENT
Lookup
Service

L
O

O
K

U
P

Fig. 4.10 Jini events (University of Seville 2010)

134 M.R.F. Alcalá et al.

Services communicate with each other using a service protocol (set of interfaces
written in Java language).

 2. Lookup Service
Services are found through a lookup service. This is the central mechanism for
the system and provides a mapping service that indicates the functionality pro-
vided by the services. A service is added to a lookup service using the discovery
and join protocols. The service locates an appropriate lookup service (using the
discovery protocol) and then joins to it (using the join protocol).

 3. Java RMI
This is a mechanism provided by Java to invoke remote methods. RMI is a Java
extension of RPC. It provides remote communication between programs written
in the Java programming language. The RMI subsystem also implements refer-
ence counting-based distributed garbage collection to provide memory manage-
ment facilities for remote server objects.

RMI allows not only data to pass from one object to another through the net-
work, but also whole objects to be sent and received, including their codes. Much
of the simplicity of the Jini system is because of this ability to move code through
the network, encapsulated in an object.

 4. Security
The Jini security model is based on the concepts of a master list and an access
control list. Jini services are accessed by an entity – the principal – that generally
refers to a particular user in the system. The access of an object to a service
depends on the contents of the access control list associated with the object.

 5. Leasing
A lease grants access to a service for a certain period of time. Each lease contract
is negotiated between the service user and provider as part of the protocol ser-
vice, and it is released if the contract is not renewed.

 6. Transactions
A transaction can group a set of atomic distributed operations into a single unit.
If one or more operations fail, the transaction is aborted and no partial results are
written.

 7. Events
Jini supports distributed events. Objects may register to events in other objects. When
an event occurs, a notification is sent to the objects that have been registered.

4.3.4 Web Services (WS)

WS is a technology that allows websites to use distributed applications and offers
features such as access to the information and functionalities of any platform. At
first, they were created to meet the need to standardize communication between

1354 Integration of Service Robots in the Smart Home

different platforms and programming languages because earlier attempts such as
CORBA had little success. In the case of CORBA, this was because there are certain
limitations for more complex applications that require a security control or transac-
tion management.

WS provide a standard means of interoperating between different software appli-
cations, running on a variety of platforms and frameworks. WS are functions or
procedures that can be accessed via the web. Regardless of the programming lan-
guage of the service and its platform, they enable the exchange of data and provide
services between different applications.

Such a degree of interoperability is only possible using open protocols. WS are
mainly used with HTTP because this is widely used and is rarely blocked by fire-
walls. WS are a set of protocols and standards used to exchange data between appli-
cations, and they are used on important websites for tasks such as e-commerce, web
browsers and computer services by companies such as Google, eBay or Amazon.
The W3C is responsible for managing the specifications. The main features of WS
technology and its advantages and disadvantages are listed below:

It is supported by any platform and any programming language.•	
It is a W3C standard.•	
It provides functionality to websites.•	
It uses HTTP to transport data.•	
It uses standard elements for each of its components (SOAP, UDDI, Web Services •	
Definition Language (WSDL) and XML).

One of the main advantages of WS is that they allow applications to com- –
municate efficiently, regardless of the platforms used, offering greater
interoperability. WS use standards and text-based protocols, which allows
a better understanding and easier access to the data exchanged. They also
use HTTP to allow the information to pass through firewalls without
major complications. This fact together with the use of XML promotes
interoperability.
However, WS are much less efficient than are CORBA or RMI because –
they make use of formats based on text, such as XML, which are not the
best options to process tasks. Nevertheless, new WS standards may define
more optimized protocols. Also they are not as developed as standards such
as CORBA. Both HTTP and XML have a high run-time cost compared
with other distributed applications approaches. Skipping the firewall secu-
rity can also be seen as a drawback.

4.3.4.1 Components

WS use text-based standards and protocols, and this involves the components listed
below. Figure 4.11 shows the diagram of the interactions between the entities and
flows of the incoming and outgoing data of each component.

136 M.R.F. Alcalá et al.

 1. WSDL
It is desirable that WS have information on the operations and data types involved.
For this reason, WSDL is used. This is a standard adopted by the W3C that
defines the public interface of WS. It is structured as follows:

Ports (<portType>): these describe the operations provided by WS. Its func-•	
tion is similar to an object-oriented class.
Messages (<message>): these define the data involved in an operation, where •	
each message can have one or more parts. It is considered one of the param-
eters used in object-oriented programming.
Types (<types>): these define the data types involved in WS, using XML •	
Schema, an XML language that accurately describes the structures and con-
straints of the XML file. It has been in the W3C since 2001.
Links (<binding>): these describe the message formats and the protocols for •	
each one of the ports.
Operations (<operations>): these can be one-way, request-response (makes a •	
request and waits for a response), request-response (receives a request and
makes a response) or notice.
Services: these define a set of web service ports.•	

 2. UDDI
To register and publish WSDL we use Universal Description, Discovery and
Integration (UDDI). This is a standard developed for the publication and reg-
istration of WS. Its way of working is similar to a database and has two differ-
ent parts:

Registration of business:•	

White Pages (Overview) –
Yellow Pages (categories of services) –
Green Pages (business rules) –

Registration of services•	

Fig. 4.11 WS communication architecture (University of Seville 2010)

1374 Integration of Service Robots in the Smart Home

 3. SOAP
In addition, there was a need to define the way of exchanging data between
 different processes on different machines. For this task, we use the SOAP, which
defines the format of the messages to send. It is independent of the transport
protocol. The elements of a SOAP message are (Daconta et al. 2003):

Encapsulation of the message.•	
Description of the data coding.•	
Body, which contains the specific message of the application.•	

4.3.4.2 Applications

Websites ask WS for a series of functions. They are currently used in almost all
websites and they provide most logic to the website. Another possible application
of WS is for the control of robots. WS are used to control robots from anywhere in
the world via the Internet through a user interface, which will provide the services
offered by the robot as well as its status (Levine and Vickers 2001).

4.3.5 Semantic Web Services (SWS)

SWS were derived from the combination of WS with the emergence of the semantic
web (Fig. 4.12). Tim Berners-Lee created the semantic web states that the “Semantic
Web is not a separate web but an extension of the current one, in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation” (Berners-Lee et al. 2001). WS meet the requirement of a specified
syntax; however, they have a lack of semantics so they cannot resolve ambiguities.
This is solved by using SWS, optimizing this way the reuse of WS and creating
smarter websites, resulting in the concept of Web 3.0. This simplifies the sharing
and integration of web resources.

To represent knowledge, ontologies that structure information, resources or ser-
vices based on the meaning of words emerge. This allows computers to interpret
and process this information to work automatically.

Semantic
Web

Semantic Web
Services

Web
Services

XML

Fig. 4.12 The emergence of SWS (University of Seville 2010)

138 M.R.F. Alcalá et al.

The languages of high-level ontologies are backed by a formal logic, which
makes sure that the ontology can be interpreted by the machines. This means that
the computer and its software can interpret the semantics of the model without
direct human intervention. The ontological software rises to the level of human
conceptual knowledge; humans do not have to descend to the machine’s levels
(Daconta et al. 2003).

SWS are an important line of the semantic web, which aim to describe not only
information but also WS’s functionality ontologies and procedures: its inputs, out-
puts, conditions for implementation, effects produced or steps followed. These
machine-processable descriptions will automate the discovery, composition and
implementation of services, as well as the communication among them. The seman-
tic web has emerged to provide the syntactic web with semantic intelligence and has
the following main features:

Automatic data interpretation.•	
Ontologies as data models.•	
Discovery, selection and automatic service composition.•	
Service implementation through the web.•	

4.3.5.1 Required Functionalities

Publication of service descriptions.•	
Services discovery.•	
Service selection.•	
Composition of services.•	
Resolution of problems caused.•	
Implementation of automated services.•	
Monitoring of implementation.•	
Compensation.•	
Substitution of services for similar ones.•	
Verification of implementation.•	

4.3.5.2 Main Technologies

Web Ontology Language (OWL-S). This is an ontology based on OWL, •	
which is a markup language for publishing and sharing data using ontologies.
It was created by DARPA (2007), which is part of the US Department of
Defense, where they automate tasks such as the discovery, invocation and
composition of WS.
Web Service Modeling Ontology (WSMO). This is a conceptual model for the •	
relevant aspects of SWS and it belongs to the European Semantic Systems
Initiative. The WSMO working group includes the technology of Web Service

1394 Integration of Service Robots in the Smart Home

Modeling Language, which formalizes the WS that model the ontology (Lara
et al. 2004). Its main components are:

Goals. These are the customer’s aims when they access the web service. –
Ontologies. A formal description of the semantics used by all components. –
Mediator. These are connectors that provide interoperability among different –
ontologies.
WS. These can include the functional and usage descriptions of WS. –
OWL-S has a weak point in the architecture because it is undefined. It also has –
little development in comparison with WSMO. Its difficulty is also higher and
less intuitive than WSMO is. However, its groundings of use are well devel-
oped. However, WSMO is not mature in key areas of use. It has a robust and
flexible architecture for the consumer in contrast to OWL-S. It has defined
important aspects such as languages and mediation. There are also plans to
automate the creation of WS based on WSMO to semi-automate this process,
thereby saving money, time and resources; the same as in the IRS III project.

4.3.6 RMI

RMI emerged from the need to communicate among different objects, and it is imple-
mented on different machines as happens on distributed systems. Therefore, this tech-
nology is a remote invocation of Java objects. The initial version of Java RMI required
a JVM in both the origin and destination machines (Cheng-Wei et al. 2004).

After the RMI-IIOP was developed, it was added to the RMI, providing it with the
best features of CORBA. RMI is pure Java and since it does not support other languages,
CORBA emerged. The adaptation to a distributed system has not prevented the contin-
ued development of RMI as a secure system. The main characteristics of RMI are:

Simple, easy to write and easy to maintain.•	
Transparency, because the distribution of objects and parameters passing is trans-•	
parent to the programmer.
Pass an object by value (as parameters of methods).•	
The definition of interfaces is done directly in Java.•	
Implementation in Java.•	
Independence of the communication protocol.•	
Separation between interface–client and implementation–server.•	
Naming service.•	

4.3.6.1 Architecture

RMI is a layer architecture made of a stub/skeleton layer, a remote reference layer
and a transport layer. The programmer only interacts with the application layer. The

140 M.R.F. Alcalá et al.

RMI system manages the three previous layers (see Fig. 4.13), which could be
replaced by others with the same function without altering the rest.

4.3.6.2 Components

 1. IIOP
RMI allows the programming of CORBA servers and applications via the RMI
API. It is possible to work entirely in the Java programming language using the
Java Remote Method Protocol as a transport or to work with any other CORBA
implementation using IIOP Java RMI over IIOP.

RMI-IIOP is designed for developers who program in Java and want to use the
RMI interfaces using IIOP as the transport layer. The RMI-IIOP interoperability with
CORBA objects implemented in other languages is available only if all the remote
interfaces have been previously defined as Java RMI interfaces (Oracle 2010).

4.3.6.3 Application

At the University of Bielefeld, Germany, one research group has integrated memory-
based software for the development of autonomous robots. This is an approach to
an architecture of autonomous mobile robots operating in human environments.
It replaced the use of data on a closed chain based on the long- and short-term
memory. RMI was used for the exchange of critical information, such as the module
that controls the hardware. RMI also allows the system to estimate when the con-
figuration has been completed. The system can then send information on the result
of the configuration (Spexard et al. 2008).

Westhoff et al. (2004) focuses on task-level programming and monitoring robots
in their daily operations. It is not a framework limited to robots and it could be used
in other distributed environments. During its development, the authors took advan-
tage of technologies available in Java, such as Jini, RMI and Java Native Interface.

CLIENT

Application Layer

Stubs Skeletons

RRL - Remote Reference Layer

TL - Transport Layer

RMI System

SERVER

Fig. 4.13 RMI architecture
(University of Seville 2010)

1414 Integration of Service Robots in the Smart Home

Woo et al. (2003) supported Java RMI over Bluetooth, GPRS and WLAN
 technologies. As a conclusion of this, the good work of Java RMI was tested in
heterogeneous wireless environments, allowing parallel and distributed control.

In a study by researchers at the Information and Communications University in
Korea, RMI is used to access external ontologies in the development of a self-
expandable software. This kind of software is useful for intelligent robots for two
reasons. First, they study their environments and then they decide their appropriate
behavior based on what they have learnt about their surroundings.

DEVS/RMI is a distributed, self-adaptive and reconfigurable simulation environ-
ment for engineering studies. It is based on the standard implementation of DEVS,
in which Java RMI supports the synchronization of local and remote objects. It is
designed for the intensive testing of programs, and this is the reason for it support-
ing dynamic models (Zhang et al. 2005).

4.3.7 Other Computer Science Standards

4.3.7.1 DH Compliant

DH Compliant (DH Compliant 2010) is a system providing interoperability between
all devices existing in a home network. It is based on the UPnP architecture and is
currently under development by the University of Oviedo, the University of Seville
and a consortium of companies composed of Ingenium (Ingenium 2010), Domotica
Davinci (Domotica Davinci 2010), MoviRobotics (MoviRobotics 2010), (Applied
Research Associates) (ARA 2010) and the Cartif Foundation (Cartif 2010). The
main goal of DH Compliant architecture (Fig. 4.14) is to integrate consumer elec-
tronics devices, robots, sensors and other interesting components that may be useful
in a home automation framework.

The aim of the DH Compliant system is development and implementation that
allows the integration of service robots within the digital home. This architecture
will provide interactions between robots and digital homes to make life easier, more
secure and more comfortable. This protocol integrates the intelligence of a UPnP
control point and the functionality of a UPnP device in a single DHC device. This
entity network is managed by other entities that provide new services such as the
localization service, energy-saving service and the service for collaborative tasks
between robots.

4.3.7.2 OSGi

OSGi (OSGi Alliance 2003) is a module system for the Java environment that
implements a components model, which needs JVMs. OSGi is based on a layer
model that includes, among others, a bundles layer that provides the applications
and components as packages (i.e. jar files), a services layer that provides communi-
cation between bundles through Java objects, and modules and security layers.

142 M.R.F. Alcalá et al.

OSGi may be a good alternative for the development of complex systems because
of its versatility and cross-platform feature (one JVM in each network node would
be necessary to run the application). Any framework that implements the OSGi
standard must provide applications modularity to decompose the application into
small packages. Each package is a collection class (jar and settings files). The
framework is conceptually divided into the following areas:

•	 Bundles. This is a set of Java classes and additional resources.
•	 Services. This connects bundles dynamically. There is also an API for services

management.
•	 Lifecycle. This is the API to manage the lifecycle and it spans install, start, stop,

update and uninstall.
•	 Modules. This defines how bundles import and export code.
•	 Security. This limits bundles’ functionality to predefined capabilities.
•	 Execution environment. This defines what methods and classes are available on

a specific platform.

Some examples of OSGi uses can be found in the literature. Gu et al. (2004) dis-
cussed an intelligent system (SOCAM) based on ontologies integrated with OSGi to
build a system that can deliver and manage context-aware services in a smart-home
environment. Meanwhile, Kang et al. (2005) fuse UPnP AV, which is used to provide
media services, with OSGi, which manages each UPnP entity as a bundle.

Fig. 4.14 DH Compliant architecture (University of Oviedo 2010)

	Chapter 4: Integration of Service Robots in the Smart Home
	4.1 Introduction
	4.2 Military Standards
	4.2.1 Joint Architecture for Unmanned Systems (JAUS)
	4.2.1.1 Application of Military Unmanned Vehicles
	4.2.1.2 Application of Civil Unmanned Vehicles

	4.2.2 Other Military Standards
	4.2.2.1 4D/RCS (Real-Time Control Systems)
	4.2.2.2 NATO STANAG 4586

	4.3 Computer Science Standards
	4.3.1 CORBA
	4.3.1.1 Components
	4.3.1.2 Services
	4.3.1.3 Application Examples

	4.3.2 UPnP
	4.3.2.1 Components
	4.3.2.2 Protocols
	4.3.2.3 UPnP Operation

	4.3.3 Jini
	4.3.4 Web Services (WS)
	4.3.4.1 Components
	4.3.4.2 Applications

	4.3.5 Semantic Web Services (SWS)
	4.3.5.1 Required Functionalities
	4.3.5.2 Main Technologies

	4.3.6 RMI
	4.3.6.1 Architecture
	4.3.6.2 Components
	4.3.6.3 Application

	4.3.7 Other Computer Science Standards
	4.3.7.1 DH Compliant
	4.3.7.2 OSGi

