

Service Robotics within the Digital Home

International Series on
INTELLIGENT SYSTEMS, CONTROL AND AUTOMATION:
SCIENCE AND ENGINEERING

Volume 53

Editor

Professor S. G. Tzafestas, National Technical University of Athens, Greece

Editorial Advisory Board
Professor P. Antsaklis, University of Notre Dame, Notre Dame, IN, USA
Professor P. Borne, Ecole Centrale de Lille, Lille, France
Professor D.G. Caldwell, University of Salford, Salford, UK
Professor C.S. Chen, University of Akron, Akron, Ohio, USA
Professor T. Fukuda, Nagoya University, Nagoya, Japan
Professor S. Monaco, University La Sapienza, Rome, Italy
Professor G. Schmidt, Technical University of Munich, Munich, Germany
Professor S.G. Tzafestas, National Technical University of Athens, Athens, Greece
Professor F. Harashima, University of Tokyo, Tokyo, Japan
Professor N.K. Sinha, McMaster University, Hamilton, Ontario, Canada
Professor D. Tabak, George Mason University, Fairfax, Virginia, USA
Professor K. Valavanis, University of Denver, Denver, Colorado, USA

For other titles published in this series, go to
http://www.springer.com/series/6259

Ignacio González Alonso  •  Mercedes Fernández
José M. Maestre
María del Pilar Almudena García Fuente

Service Robotics within
the Digital Home

Applications and Future Prospects

Ignacio González Alonso
Infobotica Research Group
Computer Science
Oviedo University
Calle González Quirós s/n
33600 Mieres, Asturias
Spain
gonzalezaloignacio@uniovi.es

José M. Maestre
Department of Systems and Automation
Engineering
University of Seville
Descubrimientos s/n
41092 Sevilla
Spain
pepemaestre@cartuja.us.es

Mercedes Fernández
Infobotica Research Group
Computer Science
Oviedo University
Calle González Quirós s/n
33600 Mieres, Asturias
Spain
fernandezmercedes@uniovi.es

María del Pilar Almudena García Fuente
Infobotica Research Group
Computer Science
Oviedo University
Calle González Quirós s/n
33600 Mieres, Asturias
Spain
agarciaf@uniovi.es

ISBN 978-94-007-1490-8 e-ISBN 978-94-007-1491-5
DOI 10.1007/978-94-007-1491-5
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011930865

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

v

Over the past few decades there has been an exponential growth in service robots
and smart home technologies, which has led to the development of exciting new
products in our daily lives. Service robots can be used to provide domestic aid for
the elderly and disabled, serving various functions ranging from cleaning to enter-
tainment. Service robots are divided by functions, such as personal robots, field
robots, security robots, healthcare robots, medical robots, rehabilitation robots and
entertainment robots. A smart home appears “intelligent” because its embedded
computers can monitor so many aspects of the daily lives of householders. For
example, the refrigerator may be able to monitor its contents, suggest healthy alter-
natives and order groceries. Also, the smart home system may be able to clean the
house and water the plants.

However, the operation of all these devices, systems or robots does not really
require them to “think” as they are simply programmed to perform a series of repeti-
tive tasks. If anything interferes with the pre-programmed task, they would mal-
function since none of them is able to sense the interference and think out a solution.
As service robots are in greater proximity to humans, the technology involves more
safety concerns over the human–machine interaction. Therefore, it remains a great
challenge today for us to build smart homes and intelligent robots that can “think”
like we do.

To achieve such a goal, scientists and engineers have been trying hard to capture
the essence of human intelligence in our homes and robots to make them intelligent
to function well in the real world. This is a challenging and ambitious task since the
robot or home intelligence must cope with various noises, uncertainty and dynamic
changes in the real world. Like human beings, smart homes and intelligent robots
should be able to sense their environments, reason and make decisions and respond
to tasks and unexpected events quickly.

In general, intelligent robots and smart homes are broad, interdisciplinary sub-
jects that involve many different technologies such as sensor integration, data fusion,
wireless sensor networks, map building, embedded computing, navigation, plan-
ning and artificial intelligence.

Preface

vi Preface

For each individual smart home or robot, the “thinking” process takes place at
many different levels. At its lowest level, “thinking” needs to be fast to respond
quickly to unexpected events. At higher levels, “thinking” enables the homes and
robots to handle a dynamic and uncertain world. By contrast, “thinking” should
exhibit an adaptation and learning capability at its highest level. Moreover, a close
interaction among smart homes and robots should be made to achieve the common
goal cooperatively.

This book aims to address some fundamental issues related to the integration of
robots into smart homes. To build a home or a robot that is completely autonomous
and truly intelligent was only a dream yesterday, as reflected by science fiction
books and films such as I Robot and Dr. Who. It remains a dream today since most
of the autonomous robots and smart homes currently being built do not function
well in the real world. This is mainly attributed to our incomplete understanding of
the process of perception, recognition and reasoning in humans, the limitations of
available scientific methods and the incompatibility of today’s computer technol-
ogy. However, our dream will come true as our research efforts continue in the
twenty-first century. Although it is difficult and often unwise to predict the future,
we believe that we are gradually progressing in that direction as faster computers
and new sensor technology become available. The future is bright. Let us face the
challenge and work together towards the integration of smart homes and intelligent
robots step by step.

University of Essex, UK	 Professor Huosheng Hu

vii

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the
publisher.

Ministerio de Industria, Turismo y Comercio
http://www.mityc.es

This work was possible thanks to the financial support
of the Spanish Department of Science and Technology.
We must acknowledge the continuous support given by
the University of Oviedo in providing all the resources
that made possible our research and, in particular, by
their management of the DHCompliant project grant:
MITC-09-TSI-020100-2009-359.

Some companies have participated like partners, so we express our gratitude to
them.

Domotica DaVinci
www.domoticadavinci.com

Centro Tecnológico Cartif
www.cartif.com

Ingenium
www.ingeniumsl.com

Acknowledgments

viii Acknowledgments

MoviRobotics
www.movirobotics.com

Sevilla University
www.us.es

Various organizations have assisted with the production of this book by providing
images for use in the figures. The authors wish to acknowledge their support. These
organizations include (in alphabetical order):

América Kyodo
ANYBOTS
Applied Research Associates, Inc.
CoroWare Inc.
Cyberbotics
Evolution Robotics
Inderscience Enterprises Limited
Infobótica Research Group
Int. Spont. Net (Michael Jeronimo)
KA Home Robotics
Laurent Ricatti – AnyKode Marilou
NASA
National Institute of Standards and Technology
Rey Juan Carlos University
Robocup
Spykee
The Joef Stefan Institute
University of Seville
University of Western Australia
UPnP Forum
Willowgarage
YujinRobot

ix

Ignacio González Alonso
To my sweet Veronica,
To Rocio Fernández Cifuentes,
To my family and friends, and all the people from the Infobotica Research Group.

Mercedes R. Fernández Alcalá
To my family,
To (Y.C.S & T.L.M) and all my friends
To J.A.L.B.

José M. Maestre
In first place, I would like to thank all the people who have worked with me in this
field at the University of Seville. More specifically, I would like to recognize the sup-
port of A. Álvarez, J. R. de la Pinta, C. Martín and E. F. Camacho. Likewise, I would
like to thank my family for their continuous love and support. In particular, I would
like to dedicate my contribution to my brother, with the hope that he will help my
interoperability dream come true when he becomes a computer science engineer. 

María del Pilar Almudena García Fuente
To my mother, no more than one.

Acknowledgments by Author

xi

1	 Interoperability Systems.. 	 1
	 María del Pilar Almudena García Fuente, Javier Ramírez de la Pinta,

and Adrián López García

2	 Robotic Development.. 	 49
	 Pablo Gómez del Torno, Omar Álvarez Fres,

and Samuel Marcos Pablos

3	 Service Robotics.. 	 89
	 Ignacio González Alonso

4	 Integration of Service Robots in the Smart Home................................. 	 115
	 Mercedes R. Fernández Alcalá, José M. Maestre,

and Javier Ramírez de la Pinta

5	 Robotics Perspective... 	 143
	 Alberto Alonso Fernández, Pablo Fernández de Dios,

and Jorge Moreno Sánchez

Glossary..	 161

References...	 165

Contents

xiii

About the Authors

Dr. Ignacio González Alonso (M’09)  was born in Oviedo, Spain in 1978. He
became a Member (M) of IEEE in 2009. He graduated as a computer science engi-
neer (University of Oviedo, Spain, 2002); he also studied for his Master’s in
Informatics engineering (University of Oviedo, Spain, 2006); in 2009 he was
awarded a Ph.D. in Computer Science with a thesis on generative programming.

He was the co-founder of Criptonet (2001–2002) and Negocios y Robótica.
Since 2005, he has held an Assistant Professorship at the University of Oviedo,
Spain. Moreover, he is the first author of the paper that received a best paper award
at the ICONS2010 conference. He is also the author of “Robots in the smart home:
a project towards interoperability.” He is interested in the fields of interoperability
of heterogeneous systems, model-driven systems engineering, human–robot inter-
faces, environmental technologies and energy management.

Dr. Gonzalez Alonso is associated with SAE international, INCOSE, EUROP/
EURON, OMG, EPoSS, AER-ATP, ASIMELEC and HISPAROB technological
platforms.

Dra. Mercedes R. Fernández Alcalá  was born in Veracruz, México and is a
researcher at the Infobotica Research Group at the University of Oviedo. She
obtained her Ph.D. degree in Computer Science in October 2009. She also has a
Telecommunication Specialist Degree and a Master’s in Corporative Networks and
System Integration from Politechnic Valencia University. She was the author of the
conference contribution entitled: “Interoperability Standard used by Service Robots”
that received a best paper award at the ICONS2010. She is interested in the fields of
human-robot interfaces and e-learning technologies among other technologies.

Dr. José M. Maestre  is a telecommunications engineer from the University of
Seville, where he works as a postdoc researcher. In addition, he received a Master’s
degree in Smart Home and Building Automation Technologies from the Universidad
Politécnica de Madrid in 2006 and a Master’s degree in Telecommunication
Economics from the Universidad Nacional de Educación a Distancia in 2010. He
obtained his PhD in 2010. His research activity is focused on the control of distrib-
uted systems and interoperability in smart homes. He has authored and co-authored

xiv About the Authors

more than 20 papers in journals and conferences regarding these topics. He is also
one of the founders of the firm Idener, a spin-off of the University of Seville.

Dra. María del Pilar Almudena García Fuente  graduated as a mining engineer
(University of Oviedo, Spain 1987); she earned her Ph.D. in 1996. She holds a
Professorship at the University of Oviedo, (Spain, 1989). She has written three
books that were published by the publications services of University of Oviedo
titled “Introduction to structured programming and Object-Oriented Pascal,”
“Fortran programming language” and “Introduction to Computers”. She is interested
in the fields of interoperability of heterogeneous systems, model-driven systems
engineering, human–robot interfaces, environmental technologies, energy
management, home and building control, agro-forestry and logistics, industrial and
manufacturing supportive technologies.

xv

CARMEN	 Carnegie Mellon Navigation Toolkit
CLARAty	 Coupled Layer Architecture for Robotic Autonomy
CORBA	 Common Object Request Broker Architecture
COU	 Control Operator Unit
DHCP	 Dynamic Host Configuration Protocol
GENA	 General Event Notification Architecture
HTML	 Hypertext Markup Language
HTTP	 Hypertext Transfer Protocol
IDL	 Interface Definition Language
IFR	 International Federation of Robotics
MARIE	 Mobile and Autonomous Robotics Integration Environment
MDARS	 Mobile Detection Assessment Response System
MFC	 Microsoft Foundation Class Library
OMG	 Object Management Group
OpenGL	 Open Graphics Library
OPNET	 Optimized Network Engineering Tool
OROCOS	 Open RObot COntrol Software
OSGi	 Open Services Gateway Initiative
RMI	 Java Remote Method Invocation
SOAP	 Simple Object Access Protocol
SSDP	 Simple Service Discovery Protocol
STL	 Standard Template Library
TCP/IP	 Transmission Control Protocol/Internet Protocol
UDDI	 Universal Description, Discovery and Integration
UDP/IP	 User Datagram Protocol/Internet Protocol
VSE	 Microsoft Visual Simulation Environment
WS	 Web Services
WSDL	 Web Services Definition Language
XML	 Extensible Markup Language

Abbreviations

xvii

“Any sufficiently advanced technology is indistinguishable from
magic.”

Clarke, Arthur C.

This book aims to introduce the reader to the exciting world of interoperability
between service robots and the digital home. There are enormous differences inside
this field, so having the different topics of the book gathered together will help any
researcher or developer. The authors’ purpose is to help manage the complexity of
the development of such systems.

Home and building control, interoperability and service robotics could each
require an entire book for themselves, but this book will focus on adding some light
to the grey areas between them. Moreover, it will help with the practical matters that
the DH Compliant Consortium has already identified in its day-to-day work.

Our first chapter is devoted to interoperability and its standards, followed by the
second chapter that describes different development technologies. The third chapter
is a compendium of the different service robots that can interoperate in the digital
home context or have a strong or potential link with it. Chapter 4 covers home and
building control technologies. Finally, Chapter 5 contains an analysis of the field,
trends and a short forecast. As any forecast, it has a limited value, but it is included
to assist the reader in imagining his or her own forecasts or joining the discussion of
the authors’ views.

December, 2010 	 Ignacio González Alonso

Introduction

1I.G. Alonso et al., Service Robotics within the Digital Home, Intelligent Systems,
Control and Automation: Science and Engineering 53, DOI 10.1007/978-94-007-1491-5_1,
© Springer Science+Business Media B.V. 2011

Abstract  Since the most important objective of information systems is focused on
the development, use and administration of the technology that serves a group of
companies, the intercommunication among these information systems must be able
to satisfy a large number of needs. This is the main reason for standard information
systems that are being used currently. To achieve functionality and interoperability
among these systems, markup standards, consulting services and some web services
are required. The variety of information systems companies represents the main
problem for interoperability among systems, because minimum requirements are
not usually established. However, we need to realize that interoperability among
systems surpasses simple breakdowns in exchange of information. Our systems also
have to, simultaneously, simplify the use of common platforms that can deal with
different languages. There are also other important aspects, such as the interaction
and implementation of a number of tasks at the same time.

1.1 � Introduction

When looking through history from distributed systems to interoperability, it is
important to recognize a need for cooperation and expansion of networks that are
already in use. The beginning is the concept of middleware. Middleware is connectivity

M. del P.A.G. Fuente (*)
University of Oviedo, Oviedo, Spain
e-mail: agarciaf@uniovi.es

J.R. de la Pinta
Department of Systems and Automation Engineering, University of Seville, Seville, Spain
e-mail: jrdelapinta@cartuja.us.es

A. L. García
Ingenium S.L., Barcelona, Spain
e-mail: adrian@ingeniumsl.com

Chapter 1
Interoperability Systems

María del Pilar Almudena García Fuente, Javier Ramírez de la Pinta,
and Adrián López García

2 M. del P.A.G. Fuente et al.

software that offers a group of services that make the running of distributed applications
over heterogeneous platforms possible.

The idea of middleware, as an abstract layer of software, is to encapsulate all the
available resources on a network, which can comprise all kinds of devices (from
embedded processors to super processors, laptops, PDAs and mobile phones) and
interconnect them in a transparent way. In other words, give an API (Application
Programming Interface) to the programmers for the use of distributed applications.

There are some works related to the design and implementation of middleware
generic distributed systems. For example, Blair et al. (1998), which represents an
approximation to the design of a configurable system, based on the concept of
reflection. The usefulness of this component’s engineering is also important when
giving a system the ability to configure and reconfigure.

These concepts are also commented by Coulson et al. (2002). These authors
also talk about the link to the application layer by using this component’s technology.
They suggest the development of a model (OpenORB, based on the model CORBA)
independent of the platform and the language of programming. They also define
meta-structures and meta-data to give intelligence to the protocol so it can apply
reason to its own interpretations, so the system’s (re)configuration will be easier.

In this section, the protocols or existing systems used to communicate among
heterogeneous platforms will be described, focusing on those based on the concept
of service.

1.2 � UPnP

1.2.1 � Introduction

UPnP (Universal Plug and Play) is a group of protocols or a much-extended archi-
tecture suggested by Microsoft (Olleros 2007) and promulgated by the UPnP Forum,
which ensures that some network devices can autoconfigure. The aims of UPnP are
making sure that the devices can connect perfectly and simplifying the implementa-
tion of networks at home (exchange of data, communications and entertainment)
and in corporate environments. It is an open and distributed architecture based on
already existing protocols and specifications, such as UDP, SSDP, SOAP (Curbera
et al. 2002) or XML (Bray et al. 2000).

In addition, it is supported by the Internet protocol family TCP/IP, which
(independent of the company, operating system and programming language)
enables the APIs of the devices connected to a network control to negotiate and
exchange information and data in an easy and transparent way for the user. This
way, the user does not need to be an expert in networks, devices or operating sys-
tem configuration. In addition, UPnP technology does not depend on the physical
environment, so it can work on the telephonic line, the power supply, Ethernet,
radio frequency and IEE 1394.

31  Interoperability Systems

1.2.2 � General Features

The main characteristic of the protocol is the transparency of installing a device that
has just been connected to the power supply. All the services of the installed device
are automatically available without the need to configure anything in the protocol
(Miller et al. 2001). UPnP notices when a new device is connected to the net, it gives
it an IP address, a logic name and updates the rest of the devices about their functions
and processing ability. As seems obvious, it also updates the new device about these
same features of the others. This way, the user does not have to worry about the
configuration of the net or losing any time installing new drivers or controllers for
the devices. UPnP is dedicated to all these things each time a new device is con-
nected (or disconnected) to (from) the net. It also optimizes the configuration of
the devices.

Its application for development of a home automation system offers a new
possibility to create distributed control architectures. In other words, robots have
independent activation parts connected by an internal network. Because of this,
UPnP gives more versatility and flexibility to the system. Moreover, any change in
software or any device in the system is easily adaptable in the system.

A digital home based on UPnP is conceived to include all wire and wireless
networks, entertainment devices, telephonic systems, home control and many more
devices. It will also put some home networks together in a single logic made by
programmable devices (Jeronimo 2004b) (Fig. 1.1).

One of the most common uses of this protocol is to enable devices or programs
to open router ports, so they can properly communicate with the outside world.

Applications

UPnP Device

Data network

Home

Entertainment

network

Power

Line

network

Communications

network

UPnP Device UPnP Device

Device Use

UPnP Device

UPnP network devices

Fig. 1.1  UPnP: network unification technology (Jeronimo 2004)

4 M. del P.A.G. Fuente et al.

1.2.3 � Specific Features

Since the (Universal Plug and Play) UPnP model is based on the existence of two
different components, the control point and the device, this protocol makes identifi-
cation of the roles of every element in a home automation network possible. The
main idea is that every device (a robot, a router, etc.) can be accessible on a local
area network (LAN). Some will announce the services they offer to the rest using a
protocol such as the SOAP or something similar.

An XML file with the name of the device and a description of the services that
are offered are sent through the network each time a new device is plugged into
the network. The file may also include a URL pointing to the website of the
developer. In addition, an external pointer to detailed information about the ser-
vices could be included.

This fact gives a clearer idea of the ease of maintenance and transparency of
use that this architecture provides to applications and interfaces. As shown in the
figure above, Dynamic Host Configuration Protocol (DHCP) servers and/or DNS
may be available on the network, so a new device may automatically be config-
ured on the network upon connection. The next step will be discovering services.
To offer a better idea of the protocol’s way of working, a basic scheme of the logic
structure of a UPnP network is shown in Fig. 1.2.

offers

«block»
DNS Server

«block»
 Service

«block»
External Database

«block»
Control Point

«block»
Device

«block»
DHCP Server

«block»
Terminal

«block»
Local Network

is controlled by host

plugged into

connected viaaccess

user
ask for an IP

ask for a domain name

Fig. 1.2  Block diagram of a UPnP system

51  Interoperability Systems

1.2.4 � Protocols

1.2.4.1 � TCP/IP

TCP/IP stands for Transfer Control Protocol/Internet Protocol. It is the grounding
on which the development of other UPnP protocols takes place. TCP/IP is a set of
protocols that covers different physical media and provides compatibility between
different developers. It is based on the idea of an IP address or, in other words, the
idea of providing an IP address to each computer connected to the network.

1.2.4.2 � UDP/IP

The UDP (User Datagram Protocol) is the grounding that supports the HTTPU and
HTTPMU sending of messages (see below). It makes the sending of datagrams
possible before communication has been established.

1.2.4.3 � HTTP, HTTPU and HTTPMU

These protocols are basic parts of UPnP. HTTP stands for Hypertext Transfer
Protocol. HTTPU and HTTPMU are variants of HTTP, in particular, HTTP unicast
and HTTP multicast. These variants are used for the delivery of messages over
UDP/IP when multicast is used or it is not necessary to establish a connection
(Fout 2001).

1.2.4.4 � SSDP

The Simple Service Discovery Protocol (SSDP) is a protocol that allows searching
for UPnP devices on a network. It detects devices and network services that use the
SSDP, such as UPnP devices. It also detects SSDP devices and services running on
the local computer. Searches are made by sending a SSDP search request (on
HTTPMU). In addition, it can refine its search to find only devices of a particular
type, only certain services or even a particular device. A message is sent to all the
devices on the network through the same channel, so each device must be listening
through the multicast port. When it receives a search request, it checks the search
criteria and, if there is a coincidence, answers by sending a unicast SSDP message,
on HTTPU, with the code “200 OK,” which indicates that the request was success-
ful. When a device is connected to the network, it sends several SSDP presence
messages announcing the services it offers (delivery is not guaranteed over the
UDP). The messages sent by the device have a link to the location of the document
that contains its description, with its properties and the services it offers. In addition
to the SSDP properties, it provides the device with methods for disconnection noti-
fication and updates the device’s information using timeouts.

6 M. del P.A.G. Fuente et al.

A SSDP packet is just an HTTP request with the statement “NOTIFY” (to
announce) or with “M-SEARCH” (to find a service), leaving the HTTP body empty,
and keeping UPnP-specific attributes in its head.

1.2.4.5 � GENA

The General Event Notification Architecture (GENA) allows sending and receiving
notifications using HTTP over TCP/IP and HTTPMU over UDP/IP. UDP multicast
is useful because it allows a single report to be distributed to a potentially large
group of receivers using a single request. GENA defines the terms of the subscriber
and the publisher of the notifications, which enable the event’s mechanism used by
UPnP to warn of changes in the state of services. When a subscription to a service
takes place, it sends event messages updating the changes in the status of the device.
These event messages are in XML format. Apart from this, GENA is also used to
create presence messages, which are sent using the SSDP.

1.2.4.6 � SOAP

The Simple Object Access Protocol (SOAP) provides a standard mechanism for
packaging messages. It defines how two objects in different processes can communi-
cate exchanging XML data. Thus, UPnP makes use of XML and HTTP to run remote
procedure calls (RPCs), sending control messages to devices and getting the results
or the errors in each case. Each control request is a SOAP message that contains the
action invoked and all the necessary parameters. The response is another message of
the same type with the state or the result of the action requested to the device.

Although many protocols are created to simplify the communication between
applications (RPC from Sum, DCE from Microsoft, RMI from Java and ORPC
from CORBA), the SOAP has received more attention because of the great support
received from the industry. It has been accepted by almost all large companies.
Consequently, it is becoming the standard for communication based on RPC over
the Internet. Some of its advantages are:

It is not associated with any language.•	
It is not strongly associated with any transport.•	
It is not tied to any distributed object infrastructure.•	
It makes the most of the existing standards in the industry.•	
It enables interoperability among multiple environments.•	

1.2.4.7 � XML

Extensible Markup Language (XML) plays an important role in the exchange of
data. It is similar to HTML, but its main function is to describe data and not to display

71  Interoperability Systems

them as is the case of HTML. XML is a format that allows reading data through
different applications. Specifically, it can structure, store and exchange information
(W3C 2008). It is used in UPnP for device and service descriptions, control messages
and events.

1.2.5 � Components of a UPnP Network

A UPnP network defines various types of components, such as control points,
devices and services. These are detailed below.

1.2.5.1 � Devices

UPnP devices are logical containers for a service or set of services, and sometimes
for other devices (embedded devices). Embedded devices can be discovered and
used independently of the main container. Each UPnP device can offer any number
of services. By itself, a device merely provides a self-description of its information,
such as developer, model name and serial number. Device services are those that
provide real functionality (Fig. 1.3).

There are different categories of UPnP devices, standardized according to the set
of services provided by each device. This information (along with properties such
as those mentioned above) is saved in an XML document that must be kept in the
device until it needs to be sent.

embeddedDevices

Services

icons

«block»
Device

«block»
Service

«block»
icon

mimetype: String
width: lnteger
height: lnteger

url: URL

0...+

0...+

0...+

deviceType: String
friendlyName: String

manufacturerURL: URL
modelDescription: String

modelName: String
modelURL: URL

serialNumber: String
UDN: String
UPC: String

presentacionURL: URL
descripcionURL: URL

Fig. 1.3  (Unified Modelling Language) UML class diagram of a UPnP device (Jeronimo 2004)

8 M. del P.A.G. Fuente et al.

1.2.5.2 � Services

Each service in a UPnP device can contain any number of actions. An action has
a name, a set of input parameters and a return value (optional). Each argument
has a name, a value and an address. The address can be input or output depending
on whether the argument is given to the action or returned by the action.

A service has a service identifier (URI) that identifies it from all the others; there
cannot be two services with the same identifier. It can keep the variables that repre-
sent the current state of the service. These state variables have a name, type, default
value, current value and a range of permissible values. If a variable sets an event to
indicate a state, then it is an event notification variable.

A service is a state table, a control server and an event notification server. The
state table contains the variables updated when there is any change in service status.
The control server receives action requests and performs them, updates the state
table and returns the result. The event notification server publishes updates of
changes in the state of service (Fig. 1.4).

«block»
Service

«block»
Action

«block»
State Variable

actions stateVariables

arguments

«block»
Argument

returnValue: Boolean
name: String

direction: String
value: String

sendingEvents: Boolean
name: String

dataType: String
defaultValue: String

allowedValues: Vector
value: String

+ relatedStateVariable

name: String

serviceType: String
serviceID: String
controlURL: URL

eventSubURL: URL
descriptionURL: URL

0...+

0...+
1

Fig. 1.4  UML class diagram of a UPnP service (Jeronimo 2004)

91  Interoperability Systems

1.2.5.3 � Control Points

A checkpoint is a network entity that invokes the functionality of a device. It is
capable of discovering and controlling other devices. In terms of client/server in a
UPnP network, the checkpoint will be the client and the server role will be played
by the device.

Once the checkpoint finds the device, it is capable of:

Getting the description of the device and a list of related services.•	
Getting the descriptions of the services in which it is interested.•	
Invoking actions to control the service.•	
Subscribing itself to the service’s events (Fig. •	 1.5).

When the status of the service changes, the event notification server sends an
event to the checkpoint. In short, a checkpoint finds the devices, invokes the related
actions to their services and signs up for event notifications. By contrast, a device
responds to the actions invoked by the checkpoint and sends the events when the
variables change their state.

1.2.6 � UPnP Running

To describe the UPnP way of working, we will show the development in six basic
steps or stages: Addressing, Discovery, Description, Control, Event Notification and
Presentation. The routing stage can be considered step zero. The representation of
the protocol stacks used in each one of the following steps is shown below
(Fig. 1.6).

1.2.6.1 � Addressing

Since all UPnP communications are based on the Internet Protocol (IP), a device
must obtain an IP address before it can join to a network that supports UPnP.

The first step, also known as the zero phase, is based on this; an address for the
checkpoints and devices connected to the network must be obtained. All the reason-
ing presented in this phase is valid for both devices and checkpoints.

Invokes an action on a service

Device UPnP

Return a value (if any)

ServiceControl
Point

Service

Fig. 1.5  Control point invoking a service action (Jeronimo 2004)

10 M. del P.A.G. Fuente et al.

Addressing is the process by which a device automatically gets an IP address. It
allows a device to join to the network and be prepared for communication with other
devices and checkpoints. The routing protocols implemented in the UPnP devices
enables them to join dynamically to an IP network and to get an address without
being configured by the user.

UPnP devices can use the DHCP, UDP-based, to retrieve an IP address from a
DHCP server. To do this, both devices and checkpoints must have a DHCP client.
Being connected to the network, the first thing to do is to find a DHCP server that
provides them an address. If this server already exists on the network, they must use
the address they have been assigned.

If the network does not have a DHCP server, automatic IP addressing (Auto-IP)
must be used to get the IP address. Through this mechanism, the device takes a
random address within the 169.254/16 range to minimize potential collisions with
other devices. This range was established by the ICANN (Internet Corporation for
Assigned Names and Numbers) and the IANA (Internet Assigned Numbers
Authority) for IP self-configuration in private networks. Once assigned an IP address
using Auto-IP, it must be checked that this address is not used by any other device
on the network using the ARP (Address Resolution Protocol). Each device must
periodically verify the existence of a DHCP server on the network to manage the
process of addressing. In this case, the automatically assigned IP is ruled out and so
they start with the dynamic address’s assignment using the DHCP server.

First, a device or checkpoint tries to contact a DHCP server to obtain an IP
address. If it is unable to locate the server, the device uses Auto-IP, which allows
devices to select addresses without having a server to assign it to them. It may be
necessary to resolve the assignment to IP addresses because the devices can imple-
ment protocol layers higher than UPnP. To obtain this functionality, devices must
incorporate a DNS client and support the DNS dynamic registration.

Manufacturer UPnP

UPnP Forum

UPnP Device Architecture

SSDP GENAH T T P M U H T T P U

U D P

IP

T C P

G E N A

S O A P

H T T P

H T T P
(Discovery) (Discovery)

(Eventing)(Description)

(Control)SSDP

Fig. 1.6  Protocol stacks of UPnP running

111  Interoperability Systems

1.2.6.2 � Discovery

The discovery phase defines how a device announces its presence and how check-
points discover it. A UPnP device is like a mini web server that can be detected and
monitored by a checkpoint. The discovery process allows checkpoints to find devices
and services of interest and obtain information about them. The devices use the SSDP
to announce their services to checkpoints. These last ones use the SSDP to search for
devices. In the tower of protocols below, you can see certain color codes that match
the parts of each message defined below. These color codes are useful until the opera-
tion’s description of the UPnP technology is finished (Fig. 1.7).

Once a device has acquired an IP address, the SSDP announces its services to all
the control points of the network. Similarly, when you add a checkpoint to the net-
work, the SSDP searches for relevant devices on the network. They will answer if
there is an agreement with the data of the search message. The message exchanged
in both cases is a discovery message that contains essential details about the device
or its services, such as the type of device, identifier and a pointer to more detailed
information (Fig. 1.8).

It must be kept in mind that when a checkpoint or device initializes and connects
to the network, it must wait a random time between 300 and 3,000 ms before send-
ing any message of discovery. These ranges are set to avoid problems when many
devices connect to the network at the same time (300 ms) and to minimize delays in
the recovery of a network (3,000 ms) (UPnP Forum 2001).

A URL of the XML document describing the device is included in the discovery
and the announcement responses of every device. This URL provides the necessary

Manufacturer UPnP

UPnP Forum

Device architecture UPnP

HTTPUHTTPMU

UDP

IP

SSDPGENASSDP

Fig. 1.7  Protocol stack for
discovery

12 M. del P.A.G. Fuente et al.

information to the checkpoints to retrieve the descriptions of the devices and their
services. All services contained in a device have three URLs that provide the neces-
sary information to allow the checkpoints to communicate with them:

The URL of •	 control is where the checkpoint sends requests to control the service.
UPnP device manufacturers specify one for each device.
The URL of •	 subscriptions to events is where checkpoints send requests to
subscribe to events. There is a URL for this kind of service in each device. If a
service does not have event variables, and therefore no notification of events, the
element URL of subscriptions to events must appear, but it will be empty.
The URL of •	 description indicates the location of the checkpoints from which
the service description document will be retrieved. The service description docu-
ment is returned by an HTTP GET request.

A checkpoint has two possibilities to search for devices. It can pick up a notifica-
tion message sent by a device or it can request the response of the device using a
discovery message sent by the checkpoint itself (Fig. 1.9).

The devices must refresh their announcement messages periodically because they
have a limited lifespan. For this reason, they are not obliged to cancel those sent
previously (announcing their capabilities) when they disconnect from the network.

1.2.6.3 � Announcement

Once a device joins to the network, it announces its embedded devices and its
services to checkpoints through NOTIFY messages defined by GENA. These are
multicast messages that use the SSDP. These messages are sent to the address and
port (239.255.255.250:1900). This default value is indicated by ICANN/IANA to
use it with the SSDP. The checkpoints are supposed to listen to arriving messages
in this port, knowing this way the capabilities that are available on the network.
These messages do not require a response. One important fact about announcement
messages is the time of validity, which indicates the period in which the device is
available. After finishing this period without sending an announcement message,
the device will stop being available on the network.

1.Device joins the network and announces its presence

2.The control point abtains the description of device

3.The control point abtains the description of service

4.The control point invokes actions

Device

Control

Point

Fig. 1.8  Recovery of the descriptions of a service and a device (Jeronimo 2004)

131  Interoperability Systems

During the announcement process and considering that a root device has d embedded
devices and provides k different types of services, a total of 3 + 2 d + k announcement
messages are sent to the network. This can be deduced, assuming they are different
devices, by interpreting the number of messages that should be sent by a device:

A message for each type of service with •	 NT = type of service.
A message for each type of device (root or embedded) with •	 NT = device type.
A message for each device (root or embedded) with •	 NT = UUID of the device.
A message regarding the root device with •	 NT = upnp: rootdevice.

control Point 1

control Point 2

control Point 3

advertise
root device 1

root device 2

advertise

service

service

service

service

device

advertise

search

multicast

resquest

multicast
unicast

response

response

response

search

search

multicast

device

Fig. 1.9  Discovery (UPnP Forum 2008)

14 M. del P.A.G. Fuente et al.

1.2.6.4 � Search

This procedure is activated when a checkpoint requires a type of device or a specific
service. This is when the control point sends a multicast message with the address
and port specified above, i.e., 239.255.255.250:1900. In this case, unlike in the
method of announcement, it will require answers from the devices that fit with the
specifications defined by the checkpoint.

A checkpoint must send multiple M-SEARCH messages since the messages are
sent over the UDP (which does not guarantee delivery). A control point will receive
multiple messages, but some will be duplicates. To filter these replies, the control
point uses the USN header, which provides a unique identifier to look for answers.

1.2.6.5 � Description

The description enables a device to list all the features it can provide. The descrip-
tions of the devices and their services are stored in XML documents. The device
summarizes its services and capabilities in a standard format. A device description
document contains device information (such as developer, make, model and serial
number), a list of the services provided by the device and a list of its embedded
devices. A service description document contains detailed information about the
device’s service, the actions that the service provides, the parameters and values
returned by the service (Fig. 1.10).

Manufacturer UPnP

UPnP Forum

UPnP Device Architecture

HTTP

TCP

IP
Fig. 1.10  Stack of protocols
for description

151  Interoperability Systems

The answers to the search messages received by a control point contain URLs
that provide descriptions of the capabilities of the device. Control points use these
description documents to get more information from the devices, trying this way to
get their features and interact with them.

The description of a UPnP device consists of two parts: the device description,
which refers to the physic and logic container, and the service description, which
refers to the capabilities offered by the device. Both descriptions are provided by the
developer and are written in XML.

Devices may contain other logic devices apart from services. The UPnP
description document includes a list of integrated devices and a description of the
available services. For each service, its description includes a list of actions to
which the service replies and the arguments for each action. The service descrip-
tion also includes a list of variables that reflects the state of the device. These
variables are described in terms of their types of data, ranges and characteristic
events (Fig. 1.11).

To receive the description of a device, the control point sends an HTTP request
using the GET method to the URL contained in the discovery message that had
previously been received by the device. When it receives the request, it replies
with an HTTP message that contains the device’s description in the message’s body.

<?xml version=”1.0”?>

<?xml version=”1.0”?>

<scpd xmlns”...”?

<specVersion>

</specVersion>

<actionList>

<action>

</action>

</actionList>

<serviceStateTable>

<stateVariable>

</stateVariable>

</serviceStateTable>

</scpd>

..............

..............

<specVersion>

<major>1</major>

<minor>0</minor>

</specVersion>

<device>

service list

</device>

</root>

embedded device list

basic device information elements

<URLBase>base URL for all relative URLs</URLBase>

<root xmlns=”urn;schemas-upnp-org;device-1.0”>

UPnP

Device

Description UPnP

Service

Description

UPnP

Service

Description

UPnP

Service

Description

Fig. 1.11  Hierarchy in the device description and service (Jeronimo 2004)

16 M. del P.A.G. Fuente et al.

The URLs of the device’s description of its services are included in this description.
The information contained in the device description consists of:

An XML document containing various data from the device.•	
The meanings of all nested devices.•	
A list of all services supported by the device, including state variables and actions.•	

The control point can send another HTTP request containing the URLs of the
service descriptions to reacquire the service descriptions. The format of the control
point’s request is shown below (it is important not to forget about the blank line at
the end of the header):

GET: description route HTTP/1.1
HOST: host:port
ACCEPT-LANGUAGE: control point’s favorite language.

The syntax of the device’s response message is shown below, and the device’s or
service’s description will appear in the body (Fig. 1.12).

HTTP/1.1 200 OK
CONTENT-LANGUAGE: language used in the description
CONTENT-LENGTH: length of the body, in bytes CONTENT-TYPE: text/xml
DATE: time to answer

For each service that contains a device, the description contains (in addition to
what was stated above) the name and type of service, service description URL, URL
for control and URL for event notification. Finally, the device description also pro-
vides a description of all nested devices and a URL for presentation (Fig. 1.13).

control point

description

service URL

HTTP GET

root device

service

device

service

HTTP RESP

HTTP GET

HTTP RESP

description

Fig. 1.12  Description (UPnP Forum 2008)

171  Interoperability Systems

Fig. 1.13  Request/reply of the description and its protocols

Manufacturer UPnP

UPnP Forum

UPnP Device Architecture

SOAP

HTTP

TCP

IP

Fig. 1.14  Protocol stack to
control

1.2.6.6 � Control

Control is the UPnP phase in which the control points invoke actions to the services
of the devices. Once a control point has all the information about a device and one of
its services through its description, it will be able to control the service by invoking
actions. The protocol stack that supports the control phase in the running of UPnP
is shown in Fig. 1.4.

18 M. del P.A.G. Fuente et al.

To control the device, UPnP is based on the SOAP, which uses XML and
HTTP to provide web messaging and RPC. XML makes public the content of the
message and HTTP sends the message to its destination. The SOAP comprises
four parts:

•	 Extensible and required envelope to encapsulate the data. The SOAP envelope
defines a SOAP message, and this is the basic unit of exchange between SOAP
message processors. This is the only obligatory part of the specification.

•	 Optional rules for encoding data represent data types defined by the application.
•	 Link between SOAP and HTTP. This part is also optional since the SOAP can be

used in combination with any transport protocol or mechanism that can transport
the SOAP envelope.

RPC Model. Its purpose is message exchange (request/response). It is a conven-
tion to represent RPC and its responses (Fig. 1.14).

To invoke an action, the control point sends a message to the control URL that it
already knows from the description phase explained above. The device will respond
with the result or the errors obtained after running the service action. Moreover, this
action may change the state of the service and, therefore, change some of its vari-
ables (Fig. 1.15).

To invoke a specific action, the control point must send a SOAP request using the
POST method to the service device. This control message contains information
specific to the manufacturer, name of the action, names of the arguments and vari-
ables that are defined by the UPnP Forum.

Requests for the state variables were considered in UPnP, but this way of work-
ing has been discarded by the UPnP Forum and must not be used for control points.
Instead, the working committees and the manufacturers define actions that return
the variable’s value and that can be invoked by the control points.

Fig. 1.15  Control (UPnP Forum 2008)

191  Interoperability Systems

1.2.6.7 � Event Notification

Event notification offers the possibility of notifying a control point when the state
of a device changes. As explained above, a service description contains a list of
variables that model the state of the service. If any of these variables is likely to be
reported as an event, the service publishes updates when any of these variables are
modified. The protocol stack used in this case is shown in Fig. 1.16.

The event notification system uses a publisher/subscriber model in which the
control points can subscribe to events sent by a service. The services publish event
notifications to subscribers. An event is a message sent from a service to the sub-
scribed control points. The events inform the subscribed control points about the
state changes in the service.

A control point that wants to be notified about changes in the state of the vari-
ables subscribes to an event source by sending a subscription request to the URL of
the events, which is contained in the corresponding device description. The sub-
scription application must include the service to subscribe, a URL to send events
and a subscription time.

If a service accepts the subscription request, it responds with a unique identifier
of subscription (SID) and the life of the subscription, which indicates its validity
period. This unique identifier allows the control point to refer to the subscription
service for future applications to the service, such as renewing or canceling the
subscription (Figs. 1.17 and 1.18).

Manufacturer UPnP

UPnP Forum

UPnP Device Architecture

GENAHTTP

TCP

IP

Fig. 1.16  Stack of protocols
for the notification of events

20 M. del P.A.G. Fuente et al.

Event messages are sent to all subscribers regardless of the reason for the change
in state variables. These messages contain information expressed in XML with the
names and values of those state variables configured in the service as event vari-
ables. The event notification protocol is GENA and, as seen in the previous protocol
stack, it is used in the TCP transport, which guarantees message delivery to the
subscriber. When the subscription expires, the subscription identifier becomes
invalid and the service stops sending events to the corresponding control point. If
this control point attempts to send any message (renewal or cancellation, but not the
subscription), the service is rejected because the ID is no longer valid.

The control point will send a subscription message to the URL of the service to
receive its events. This message uses the SUBSCRIBE method defined by GENA
and its syntax is:

SUBSCRIBE event route of the service HTTP/1.1
HOST: host:port

State Change
Notification

Subscribe
Control
Point

State table

Service

Device

Fig. 1.17  Subscribing and notifying (Jeronimo 2004)

control point 1
SID1 Subscribe

root device

service

service

device

SubscribeRsp:SID1

renewal : SID1

renewalRsp:SID1

cancel:SID1

event:SID1

event:SID0

control point 2
Previously subscribed
SID0

Fig. 1.18  Event notification phase (UPnP Forum 2008)

211  Interoperability Systems

CALLBACK: <delivery URL > NT: upnp:event
TIMEOUT: request for the lifetime, in seconds

A blank line must be added at the end of the last header. When this message is
received, the service establishes a list of subscribers with the following information
for each of them: SID, URL for the event messages delivery, event counter and
length of subscription.

If the subscription is accepted, the service sends a message with the identifier of
the subscription and validity period. This message has the following syntax. It is
important not to forget about the final blank line:

HTTP/1.1 200 OK DATE: request time
SERVER: OS/version UPnP/1.0 product/version
SID: uuid: subscription UUID
TIMEOUT: lifetime of the subscription, in seconds

The first event notification message must be sent after the message above. It
contains the names of the variables and their current values in XML. In addition,
each time that one of these variables, which are set as event variables, changes the
service, it must send an event message to all subscribed control points.

These event notification messages are labeled with a different key for each sub-
scriber to detect errors. In every control point, in the initial event message, this key
is set at zero and increases with each subsequent notification message. This way, if
the subscriber receives a notification with an incorrect key, it will reply to the ser-
vice with an error message.

All subscriptions must be renewed periodically for the control points to go on
receiving notifications. To keep a subscription active, the control point must send a
renewal message before the subscription expires. The renewal message is sent to the
same URL as the original subscription message, but this time it does not include the
URL for event message delivery. Instead, the renewal message includes the sub-
scription identifier received in the initial message, which confirmed the subscrip-
tion. We can see this message format below and, as already mentioned, it must
include the blank line:

SUBSCRIBE: service route HTTP/1.1
HOST: host:service port
SID: uuid:susbcription UUID
TIMEOUT: request for the time of subscription, in seconds

The answer to this message is exactly the same as in the subscription message
case. When a control point does not want to get any more events from a service, it
can call off its subscription by sending a cancellation message:

UNSUBSCRIBE: service route HTTP/1.1
HOST: host:service port
SID: uuid:subscription UUID

The answer to this message is, as in the case above, an HTTP confirmation. If the
control point abruptly disconnects from the network without sending the message to

22 M. del P.A.G. Fuente et al.

cancel the subscription, the service will keep on sending it notifications until the
subscription time expires.

1.2.6.8 � Presentation

In a UPnP network, a control point can monitor a device or check its status through
the presentation of an HTML page. A home page can be loaded by the control point
in a browser and this allows users to view and control the device. The protocol stack
required for this is shown in Fig. 1.19.

Home pages are not necessary; if a device has no home page, it can still be con-
trolled through standard control messages. If the device allows a home page, its
description document contains the URL for the presentation page on the label
<presentationURL>. This label must always be present. If the device has no home
page, the label will be empty.

In the presentation phase, the control point sends an HTTP request using the
GET method to the presentation URL (available in the device description) and
the device then returns to the home page. After loading the page in the browser,
the control point can monitor the device or check its variables. The diagram
below shows this (Fig. 1.20).

The presentation message for requests includes the field ACCEPT-LANGUAGE,
and the language of the presentation page will be defined by the Content-Language
field, which is defined in the device. Figure 1.21 shows the way to recover a presen-
tation interface from a device and the protocols used to do it.

An additional component of a UPnP network is the application layer. The capa-
bilities of a device are defined by itself and the service models that provide the
framework for the network components (description, control and events). A device
manufacturer can develop these models by itself or work with other manufacturers

Manufacturer UPnP

UPnp Device Architecture

HTTP

TCP

IP

Fig. 1.19  Protocol stack for
presentation

231  Interoperability Systems

inside the UPnP Forum to prepare the standard for the device and the service
models. Currently, the working committee for UPnP has developed definitions for
standard models.

1.2.7 � Penetration in the Market

Some modern projects work with UPnP, such as Ahn et al. (2005), which compares
it with other distributed systems such as CORBA. Kim et al. (2002) used UPnP to
build a middleware layer for a home network. It is important to notice that, for this
project, we have used device emulators (TV, fridge, etc.). This will be important for
future implementations of the final solution.

control point HTTP GET

HTTP RESP

root device

service

service

device
device/service operation

browser

HTML page

description

presentation URL

Fig. 1.20  Presentation (UPnP Forum 2008)

Fig. 1.21  Request/reply of a presentation interface and its protocols

24 M. del P.A.G. Fuente et al.

Mok and Wu (2006) demonstrated UPnP protocol integration in a system consist-
ing of a robot to manipulate objects. This paper described the design of the system
systematically, the data used to compile the XML document of services and the
definition of actions and control variables. In Maestre and Camacho (2009), there
were conclusions to develop a flexible and low cost home automation, which has
been implemented using UPnP.

This architecture is also used for sensor networks. Dobrescu et al. (2007) studied
the design of a network with an interface between wireless sensor networks and
UPnP via TCP/IP. This application makes possible the communication between
control points and sensors and provides the use of web technologies for the control
interface. By contrast, Song et al. (2005) discussed the few resources that present
the sensing devices using a UPnP agent (BOSS, bridge of the sensors) that acts as
an interface between the PC and the elements not supported by UPnP.

Currently, you can find different solutions in the market for developing UPnP
systems, highlighting initiatives such as CyberLink for Java (Satoshi 2004), a Java
implementation that automatically controls all the internal aspects of the protocol
and allows the programmer to focus on the business layers and the tool’s interface.

1.3 � OSGi

1.3.1 � Introduction

OSGi [Open Services Gateway Initiative (OSGi Alliance 2003)] is an independent
corporation that brings together about 40 companies in an alliance responsible for
defining and promoting open specifications for the delivery of managed services in
network environments. It is based on the modularity of the Java environment, trying
to abstract the implementation of components (bundles) using services to commu-
nicate. One of its main aims was to resolve certain development and deployment
conflicts, such as class conflict and the explicit dependencies (Bartlett 2009).

1.3.2 � General Features

OSGi is based on a layer model (Fig. 1.22) that includes, among others, the bundles
or packages (components developed as jar files), services (which provide communi-
cation between bundles through Java objects), modules and security layer.

The features of OSGi could be a good alternative for the development of com-
plex systems because of its versatility and cross-platform feature (only a JVM resi-
dent on each node of the network would be required for the running).

Some examples of the use of OSGi in network systems can be found; for exam-
ple, Gu et al. (2004) demonstrated the use of an intelligent system (SOCAM)

251  Interoperability Systems

based on the ontological model that was aware of the running context. Other
examples include Kang et al. (2005), whose way of working is based on UPnP AV
(a UPnP variant for multimedia devices) for the multimedia internal service, and in
OSGi, which treats each entity of the UPnP system as a “bundle” of services.
Nevertheless, OSGi has several problems (some delimited, some not) because of its
poor basis of compatibility and poor management of dependencies.

1.3.3 � Specific Features

1.3.3.1 � Framework of OSGi

The OSGi framework is a module system for Java that implements a complete and
dynamic model of components, which does not exist in independent environments
of JVMs. The applications and components (which come in packets or bundles) can
be installed, started, stopped, updated and uninstalled remotely without rebooting.
The management of Java packages and classes is carefully specified. Lifecycle man-
agement is performed through APIs that make possible the remote download of
management policies. The registry allows service bundles to detect if services have
been added or deleted and acts accordingly.

Originally, it was focused on service gateways, but the scope has since widened.
OSGi specifications are now used in applications ranging from cell phones to the
Eclipse development environment (open source). Other application areas include
automotive, automation in industry and buildings, PDAs, grid computing, entertain-
ment (such as iPronto), fleet management and application servers. Figure 1.2 shows
the hierarchical structure of an OSGi system.

Fig. 1.22  Layer model of an OSGi system

26 M. del P.A.G. Fuente et al.

1.3.3.2 � Specification Process

OSGi specification has been developed by its members in an open process that is
available for the public free of charge under the OSGi specification license. The OSGi
Alliance has a performance program that is open to its members. In September 2008,
the list of certified OSGi implementations contained five entries.

1.3.3.3 � Architecture

Any framework that implements the OSGi standard provides an environment for the
modularization of applications in small packages. Each package is a collection of
well-coupled and dynamically loadable classes, jar files and a configuration that
explicitly state their external dependencies (if any). The framework is conceptually
divided into the following areas (see Fig. 1.23):

•	 Bundles: These are jar components with extra headers in a detailed manifest
file.

•	 Services: The service layer connects bundles dynamically, offering a model of
publication, search and link to plain old Java objects.

•	 Register services: The API of some management services (ServiceRegistration,
ServiceTracker and ServiceReference).

•	 Lifetime: The API for the management of lifetime (install, start, stop, update and
uninstall) bundles.

•	 Module: The layer that defines the encapsulation and declaration of dependen-
cies (how a bundle can import and export code).

•	 Security: The layer that deals with security issues, limiting the functionality of
the bundles to predefined capabilities.

STARTING

ACTIVE

STOPPING

INSTALLED

Start

Stop

RESOLVED

UNINSTALLED

Fig. 1.23  Lifetime of an OSGi
bundle

271  Interoperability Systems

•	 Running environment: This defines what methods and classes are available on a
specific platform. Since they are susceptible to change, there is no fixed list of
running environments. The Java community is creating new versions and edi-
tions of Java constantly.

	 1.	 Bundles
		� A bundle is a set of Java classes and additional resources accompanied by a detailed

manifest file (MANIFEST.MF) of all its contents as well as the additional services
required to provide the included group of Java classes more complex behavior until
the point of abstraction, where the whole is treated as one component. An example
of a MANIFEST.MF file, typical of OSGi headers, is shown below:

Bundle-Name: Hello World
Bundle-Symbolic Name: org.wikipedia.helloworld Bundle-Description:
  A Hello World bundle Bundle-ManifestVersion: 2
Bundle-Version: 1.0.0
Bundle-Activator: org.wikipedia.Activator
Export-Package: org.wikipedia.helloworld;version = “1.0.0” Import-Package:
  org.osgi.framework;version = “1.3.0”

	 2.	 Lifecycle
		� A lifecycle layer adds bundles that can be installed, started, stopped, updated and

uninstalled dynamically. The bundles trust in the module layer for class loading
but they add an API to manage the runtime modules. The lifecycle layer provides
mechanisms that are not usually part of an application. Some extensible depen-
dency mechanisms are used to ensure the correct working of the environment.
Lifecycle operations are fully protected by the security architecture (Table 1.1).

	 3.	 Services
		� The OSGi Alliance has specified many services, all of them by a Java inter-

face. The bundles can implement this interface and register it with the service
registry. Service clients can find it in the service registry or detect it when it
appears or disappears (Tables 1.2–1.4).

Table 1.1  Description of the lifetime of an OSGi bundle

State of the bundle Description

Installed The packet has been successfully installed
Resolved Every Java class that needs the bundle is available. This state indicates

that the packet is ready to be started or stopped
Starting The package is being started; it will call the method BundleActivator.

start, and this one has not finished yet. When the bundle has an
activation policy, it will remain in the initial state until it is activated,
according to this policy

Active The package has been successfully activated and it is running. Its starting
method, Bundle Activator, has been called and it has returned

Stopping The packet is being stopped. The method BundleActivator.stop has been
called but the stop method has not returned yet

Uninstalled The packet has been uninstalled. It cannot be changed to a different state

28 M. del P.A.G. Fuente et al.

Table 1.2  OSGi system services

System services Description

Logging The information register, warnings, debugging and errors are handled
through this service. It receives log entries and dispatches others
bundles that have already subscribed to this information

Configuration admin This service allows an administrator to set and view information
about the configuration of the bundles

Device access This simplifies the detection and connection of existing devices. It is
used in Plug and Play environments

User admin This service uses a database containing user information (both
public and private) to issue authentication and authorization

IO connector This service is implemented in the packet CDC (http://en.wikipedia.
org/wiki/Connected_Device_Configuration)/CLDC (http://
en.wikipedia.org/wiki/CLDC) javax.microedition.io (http://java.
sun.com/javame/reference/apis/jsr118/javax/microedition/io/
package-summary.html) as a service. This one allows the
bundles to provide new protocol diagrams

Preferences It offers an alternative, friendlier mechanism with OSGi to use the
default Java package java.util. Properties (http://java.sun.com/
javase/6/docs/api/java/util/Properties.html) for storage preferences

Component runtime The dynamic nature of the services – they can be opened and folded
at any time – makes it difficult to write software. Runtime
component specification can make it easier to manage these
issues, providing a declaration of XML-based units

Deployment admin This standardizes the access to some responsibilities of the
administration agent

Event admin This provides the bundle with a mechanism of internal communica-
tion, based on a publish and subscribe model

Application admin This simplifies the management of an environment with different
kinds of applications that are simultaneously available

Table 1.4  OSGi miscellaneous services

Other services Description

Wire Admin This allows the connection between producers and consumers
XML parser This service allows a bundle to locate a parser (XML syntax

analyzer) with specified properties and compatibility with
JAXP (http://en.wikipedia.org/wiki/JAXP)

Measurement and state This allows and simplifies the correct use of measurements in an
OSGi platform of service

Table 1.3  OSGi protocol services

Protocol services Description

HTTP service This allows the information to be sent and received by OSGi using HTTP
UPnP device

service
This specifies how OSGi bundles can be developed to work with devices

UPnP (http://en.wikipedia.org/wiki/Universal_Plug_and_Play)
DMT admin This defines an API to deal with a device using concepts of the specifica-

tions for device administration from Open Mobile Alliance
(http://en.wikipedia.org./wiki/Open_Mobile_Alliance) (OMA)

291  Interoperability Systems

1.3.4 � Organization

The OSGi Alliance was founded by Ericsson, IBM, Motorola, Sun Microsystems
and others in March 1999 (before becoming a nonprofit corporation called Connected
Alliance).

Among its members (as of May 2007) are more than 35 companies from differ-
ent business fields, such as IONA Technologies, Ericsson, Deutsche Telekom,
IBM, Makewave – before it was Gatespace Telematics – Motorola, Nokia, NTT,
Oracle, ProSyst, Red Hat, Samsung Electronics, Siemens, SpringSource and
Telefónica.

The alliance has a board that establishes the governance of the organization.
OSGi officers have different roles and responsibilities to support the alliance. The
technical work is carried out in the expert groups (EGs) organized by the board of
directors, and the non-technical work is carried out in various working groups and
committees. The technical work in EGs includes development specifications, refer-
ence implementations and compliance testing. These EGs have made four versions
of OSGi specifications (as at 2007).

There are EGs dedicated to business areas, mobile phones, vehicles and central
platforms. The Expert Group Company is the latest EG and handles applications
regarding the company/server. In November 2007, the Residential Expert Group
began working on specifications to remotely administer residential gateways or
homes.

1.3.5 � Penetration in the Market

In October 2003, Nokia, Motorola, IBM, ProSyst and other members of OSGi
formed the Mobile Expert Group, which specifies a service platform based on MIDP
for the next generation of smartphones, dealing with some of the needs that CLDC
cannot handle. MEG joined OSGi at the same time as R4.

Also in 2003, Eclipse selected OSGi as the runtime platform for the plug-in
architecture to be used for the Eclipse Rich Client Platform and the IDE plat-
form. Eclipse itself includes sophisticated tools to develop OSGi bundles, and
there are some plug-ins for Eclipse to improve the development of OSGi (for
example, ProSyst and Knopflerfish have Eclipse plug-ins available for OSGi
developers).

There is a free software community with activity around OSGi. Some open
source implementations are widely used such as Equinox OSGi, Apache Felix, the
OSGi Knopflerfish project and the editing of embedded server Equinox (mBedded
Server Equinox Edition, BSEE). Now talking about the support to the system’s
development and testing, projects Pax OPS4J provide a lot of components and
useful knowledge.

30 M. del P.A.G. Fuente et al.

1.4 � Jini

1.4.1 � Introduction

Jini is an architecture that provides an infrastructure for defining, publishing and
search services on a network. It was developed with Java classes (Arnold 1999). The
main feature of Jini is the service discovery in multicast mode or search mode for
specific services (similar to the idea of UPnP). It uses the multi-platform feature of the
Java platform to provide universal services, registering each one as serialized objects
with their own interfaces. A diagram of Jini’s architecture is shown in Fig. 1.24.

The main aims of Jini’s platform are the immediate availability of services, the hard-
ware abstraction on the Java environment, the service-based architecture and simplicity.

1.4.2 � General Features

This is an easy protocol (Morgan 2000; Fig. 1.25). When a device connects, it reg-
isters in the lookup service of the Jini network. After that, the service sends a file
with the bytecode that a customer needs to use its services.

The lookup service stores this file in a special table and puts similar services •	
together in groups. When a client asks the search service to use a device, it
responds with a list of devices that provide these services.
The client responds with the identifier of the specific device to be used and the •	
search service responds with the bytecode mentioned above.
The client will now be able to use the bytecode (during a specific time, in a •	
shared way or in an exclusive one).

Application Service

Jini technology
Lookup

Discovery

Java technology

Operating system

Network transport

Fig. 1.24  Layers model of a Jini system (Allegro 2006; Gupta et al. 2002)

311  Interoperability Systems

1.4.3 � Specific Features

The purpose of the Jini architecture is to put devices and software into groups inside
a distributed and dynamic system. This simplifies the access, management and
maintenance services offered by each point separately, keeping the flexibility and
control offered by a personal computer.

1.4.3.1 � Services

The most important concept within the Jini architecture is the service. A service is
an entity that can be used by one person, one program or another service. It may be
a calculation, saved data, a communication channel with another user, a software
filter, a hardware device or another user. As an example, we can mention the printing
services of documents.

Service provider (server)

Discovery for

lookup service

Discovery for

lookup service

Lookup service

Lookup service

reference

reference

Request for

service

Service proxy

object

Communication between devices

Service proxy

Jini lookup service Client

registration

Fig. 1.25  Diagram of the sequence events of Jini (Allegro 2006; Gupta et al. 2002)

32 M. del P.A.G. Fuente et al.

Members of a Jini system share access to services. A Jini system should not be
considered a set of clients and servers, users and programs or even programs and
files. Rather, it consists of a set of services used to perform a particular task.

The services may use other services, and the customer of a service can be a service
itself for other customers. The dynamic nature of a Jini system enables services to be
added or removed, at any time, from a set, according to demand, need or the changing
demands of the working group. Jini systems provide mechanisms for service con-
struction, lookup, transfer and use in a distributed system. The services may be:

•	 Devices, such as printers, screens and discs.
•	 Software, such as applications or utilities.
•	 Information, such as access to databases or/and files.
•	 Users of the system.

Services communicate with each other using a service protocol (set of interfaces
written in Java). All these protocols are undefined. The groundings of the Jini sys-
tem define a small number of these protocols, which in turn define the interactions
among critical services.

1.4.3.2 � Lookup Service

Services are found and resolved by a lookup service. This service is the central
mechanism for the system to boot and the main point of contact between the system
and users. In other words, it is a mapping service made up of lookup interfaces that
indicates the functionality provided by a service to groups of objects that implement
the lookup service. In addition, descriptive entries associated with a service allow
finer lookup services, based on properties understandable by a human being.

The content of a lookup service may include other search services, providing
hierarchical searches. In addition, this kind of service may contain objects that
encapsulate other names or service directories, providing a system of pointers that
connects Jini lookup services with other search services. Thus, references to a Jini
lookup service can be mixed with these names and directory services, providing the
customers of these services with a way to access a Jini system.

A service is added to a lookup service by a pair of protocols called discovery and
join. First, the service locates an appropriate lookup service (using the discovery
protocol) and then joins (using the protocol join).

1.4.3.3 � Java Remote Method Invocation (RMI)

Communication between services can be performed using Java RMI. This infra-
structure is not a service itself, but is rather part of the Jini technology infrastructure.
RMI provides mechanisms to locate, activate and perform the garbage collection of
Java objects.

331  Interoperability Systems

RMI is a Java extension to traditional mechanisms for RPC. RMI not only allows
data to pass from one object to another through the network, but also whole objects can
be sent and received, including their codes. Much of the simplicity of the Jini system is
because of this ability to move code through the network, encapsulated in an object.

1.4.3.4 � Security

The design of the Jini security model is based on the concepts of a master list and
an access control list. Jini services are accessed by an entity – the principal – which
generally refers to a particular user in the system. The services themselves may
request access to other services, providing the identifier of the object that imple-
ments the service. The access of an object to a service depends on the content of an
access control list associated with the object.

1.4.3.5 � Leasing

Access to many of the services in the Jini system environment is based on the con-
cept of lease or loan. A loan is a grant of guaranteed access to a service for a certain
period of time. Each loan contract is negotiated between the service user and pro-
vider, as part of the protocol service: a service is requested for a certain period of
time and access is granted for the same time period (probably taking into account
the time span taken to make the application). If a contract is not renewed before it is
released – because the resource is no longer necessary, the client or the network fails
or the contract cannot be renewed – both the user and the resource provider may
agree that the resource can be released.

Leases are exclusive or non-exclusive. The first ensures that no one else can have
a contract on the resource during the contracted period, whereas non-exclusive
leases permit multiple users to share the same resource.

1.4.3.6 � Transactions

A series of transactions, in a single service or spanning multiple services, may be
involved in a transaction. The Jini transaction interfaces provide the service proto-
col needed to coordinate a two-phase commit. The responsibility for deciding how
to implement transactions – and the semantics in a transaction – is left to the
services themselves using these interfaces.

1.4.3.7 � Events

Jini supports distributed events. An object may allow other objects to register in
the events of an object and receive a notification with their histories. This allows
event-distributed programs to be written with a great variety of liability and scal-
ability guarantees.

34 M. del P.A.G. Fuente et al.

1.4.3.8 � General View of Components

The components of a Jini system can be divided into three categories: infrastructure,
model of programming and services. The infrastructure is the set of components that
builds a Jini system, whereas services are the entities inside it. The programming
model is a set of interfaces that allows the construction of reliable services, including
those that are a part of the infrastructure and those that are a part of the whole.

These three categories, although disjunct, are intertwined in a way that makes
distinctions between them confusing. It is also possible to build systems with some
of the features of the Jini system with variants on the categories or without any of
them. By contrast, the main feature of Jini is that it is a system built with a particular
infrastructure and described programming models, based on the concept of service.

The separation of the segments in the architecture means that only a slight change
is needed in the inherited code to be used in a Jini system. However, the power of a
Jini system is only available for services built using the integrated model from the
beginning. A Jini system can be viewed as an extension of the network’s infrastruc-
ture, programming model and services that made Java technologies popular in the
case of a single machine. These categories, along with the components for the Java
application environment, are shown in the table below (Table 1.5).

1.4.4 � Organization of the Jini Architecture

1.4.4.1 � Infrastructure

The infrastructure defines the basic core of this technology. It includes:

•	 A distributed system for security, integrated in the RMI, which extends the security
model from Java to the world of the distributed systems.

•	 The discovery and join protocols, service protocols that allow other services
(hardware or software) to discover, be a part of and announce the services offered
to the other members of the group.

•	 The lookup service, which is used as a backup for the services. The entries in the
lookup service of objects are written in Java, and they can be downloaded as a
part of a search operation and work as local proxies for the service that sets the
code in the lookup service.

Table 1.5  Components of RMI

Infrastructure Programming model Services

Basic Java JVM API Java JNDI
RMI JavaBeans Enterprise Beans
Java security … JTS

Java + Jini Discovery/Join Leasing Printing
Distributed security Transaction Transaction manager
Lookup Events JavaSpaces services

351  Interoperability Systems

1.4.4.2 � Programming Model

The infrastructure enables the programming model and makes use of it at the same
time. The contracts made in the lookup service have a limited lifetime. This fact
allows the lookup service to precisely check the set of available services at a specific
moment. When the services binds to or separates from the lookup service, the events
are notified about it, and the objects that have already shown an interest in receiving
this information are updated about these new or defunct services.

The programming model is based on the ability to move the code, supported by
the infrastructure. Both the infrastructure and the services that use it are calculation
entities that live in the physical environment of the Jini system. However, services
also constitute a set of interfaces that define the communication protocols used by
services and the infrastructure to communicate between them.

These interfaces together form the distributed extension of the standard model in
Java programming, which constitutes the Jini programming model. Among the
interfaces that make up the Jini model are:

•	 The leasing interface, which defines a way to allocate and release resources
through a model based on the renovation of their lifetime.

•	 The event and notification interfaces, which are extensions of the event model
used by JavaBeans components for distributed environments. This feature allows
event-based communication between services enabled by the Jini technology.

•	 Operation interfaces, which enable entities to cooperate so that all changes occur
in the group or none take place.

1.4.4.3 � Services

The technology infrastructure and the Jini programming model are designed to
enable the services to offer themselves and to be found on the network. These ser-
vices make use of the infrastructure to call and discover each other and announce
their presence to other services and users.

The services appear as objects written in Java, perhaps made up of other objects.
A service has an interface that defines the operations that may be requested of
it. Some of these interfaces are intended to be used by programs, whereas others
are intended to be administered by the client to enable the service to interact
with a user.

The kind of service determines the interfaces of which it is composed and defines
the set of methods used to access the service. A service can be implemented only by
other services. Some of the Jini services are:

•	 A printing service, which can print from Java applications.
•	 A service of JavaSpaces, which can be used for simple communication and stor-

ing groups of objects written in Java.
•	 A transaction administrator, which allows groups of objects to participate in the

Jini transaction protocol defined by the model of programming.

36 M. del P.A.G. Fuente et al.

1.4.5 � Penetration in the Market

There have been various initiatives to implement Jini as a form of communication
between devices. In this regard, we underline the Ronin Agent Framework
(Chen 2000), an environment based on Jini’s distributed agents. This implemen-
tation attempted to improve the initial protocol, making it independent of the
domain (so external devices could communicate with the local network), among
other advances.

Furmento et al. (2002, 2004) described the implementation of a SOA [architec-
ture oriented to services (He 2003)], ICENI, using the Jini platform, among others.
This environment is based on an independent specification of SOA.

The integration of different service platforms is not easy. Allard et al. (2003)
integrated Jini with UPnP, but it is important to note that these two protocols are
incompatible by themselves. This new platform allows UPnP services to use Jini
devices and vice versa by making just a few configuration changes. However, these
authors do not answer several of the questions referring to the limitations encoun-
tered when working with these two architectures together.

In addition, for devices that do not have enough capacity to run a Java Virtual
Machine (JVM), Jini offers the possibility of using a surrogate host. This is just
another device capable of supporting a JVM, which works as a bridge between the
original device and the Jini network architecture.

1.5 � DLNA

1.5.1 � Introduction

The DLNA (Digital Living Network Alliance) is an international and collaborative
organization of companies involved in consumer electronics, industrial computers
and mobile devices.

DLNA is a standard that allows different devices from the same network con-
nected together to share information easily and without complicated configurations
(Fuentes 2007). This system works with both wireless and Ethernet networks and
even with the power supply. The DLNA has established a set of standards for the
platforms and infrastructure software to be completely compatible. It focuses on the
interoperability among mobile devices associated with multimedia images, digital
audio and digital video.

Thus, assuming that all available devices on the network support this technology,
a copy of the content and the network can be accessed from any device. In other
words, we can listen to music from the files stored on our computer, watch movies
stored on the digital video recorder on our computer or see photos of our camera on
the TV. Figure 1.26 shows a possible scenario using this technology.

371  Interoperability Systems

The objectives proposed by this technology are listed below:

Digital music should be easily captured, stored and accessed from anywhere in •	
the house. Digital photos should be managed, viewed and printed very easily.
It must be possible to read content anywhere and enjoy it while traveling by car or •	
walking down the street (there are already projects to synchronize information).
It must be possible to save the distributed content to be able to see it as many •	
times as we want.

1.5.2 � General Features

The digital home is an electronic network made up of PC and mobile devices that
cooperate transparently. The aim of DLNA is to become a home network for all its
global customers. This objective integrates the interoperability of the three digital
islands within the home: the Internet, broadband electronic network and island of
mobile devices (Fig. 1.27).

The DLNA network must have at least a server and a client to work. The main
objective of DMS (Digital Media Servers) is to provide multimedia content to
DMP (Digital Media Players), which act as clients. These devices include cam-
corders, digital cameras, game consoles and mobile phones, but they need to be
certified, that is, they must have integrated the electronics and configure to the
DLNA standard.

Fig. 1.26  Interoperability between two devices using DLNA

38 M. del P.A.G. Fuente et al.

DLNA makes use of a part of the technology developed for UPnP that allows
the discovery of other devices on the local network. DLNA is based on UPnP and
IETF (Internet Engineering Task Force) technologies (DLNA 2007). The DLNA
standard is based on standards established in the industry and developed by
groups such as IETF, World Wide Web Consortium (W3C), Motion Picture
Experts Group (MPEG) and the UPnP Forum. Interoperability between devices
is transparently performed by providing a particular service to the user. This
includes the ability of the devices to communicate with each other and exchange
useful information.

The interoperability guidelines require that all devices must support connectivity
via Ethernet, Wi-Fi or Bluetooth. It uses TCP/IP for all network connections and
works with HTML and the SOAP for transport and media management. The required
formats to support images, audio and video are also defined. They are JPEG, LPCM
(Linear Pulse Code Modulation) and MPEG2, respectively.

DLNA is based on a specification created by the working groups of the UPnP
Forum. This specification is the UPnP AV (Audio and Video UPnP), and it has been
the greatest success for these working groups, at least in terms of digital content
(Fig. 1.28).

1.5.2.1 � DLNA Model for Devices

The model for devices used by DLNA comes from the UPnP Forum and consists of
devices, services and control points. The devices are network entities that provide
services. These services are the basic control units and they perform actions to keep
a state through its variables. The control points are network entities used to discover

Fig. 1.27  Objective of DLNA: digital islands at home

391  Interoperability Systems

and control other devices on the network. A group of multiple devices can be
controlled by a control point.

In the UPnP standard, interoperability was first between the control point and a
single device. However, with the evolution of the specification of UPnP AV (and
DLNA as well) the basic model of devices was improved. For this reason, although
interoperability between the control point and device still works, it has been extended
to other devices so that they can interact with each other by exchanging digital con-
tent using different communication protocols (Fig. 1.29).

There are 12 kinds of DLNA devices in three different categories.
The category Home Network Device (HND) consists of five classes of devices

that share the same use on the network system, with the same media formats and
connectivity requirements.

•	 DMS. These are devices that can originate, acquire, record and store media on
the model of interoperability in the digital home. There are DMS that help to
protect the content saved. These devices, in case a customer is not able to handle
a particular format, must be able to convert the file into another format before
sending. Some examples of these devices include digital video recorders,

Link Protection
DTCP/IP (mandatory)

WMDRM-ND (optional)

MPEG2, MPEG4, AVC/H.264, LPCM, MP3, AAC LC,

JPEG, XHTML-Print + optional formats

HTTP (mandatory)

RTP (optional)

Quality of Service

UPnP AV 1.0

UPnP Print Enhanced 1.0

UPnP Device Architecture 1.0

IPv4 Protocol Suite

Mandatory Ethernet 802.3 or Wi-fi 802.11,

Optional: MOCA

Media Formats

Media Transport

Media Management

Discovery & Control

IP Networking

Connectivity

Fig. 1.28  DLNA interoperability model

40 M. del P.A.G. Fuente et al.

computers, home cinema with hard disk drives (such as music servers), devices
to capture video and images and multimedia mobile phones. We can see the
protocols and services of DMS in Fig. 1.30.

•	 DMP. These devices select and play the digital media stored on the network and
include TV monitors, home cinema, PDAs, multimedia mobile phones, consoles
and digital media adapters.

•	 Digital Media Renderer (DMR). Devices that reproduce the content received
from DMS or their mobile counterparts after being configured by another device
on the HND, such as a digital media controller (DMC, see below). DMC and
mobile DMC devices will be explained in subsequent studies. Examples of such
devices include televisions, audio/video receivers and remote speakers for music.
The services and protocols of a DMR are show in Fig. 1.31.

•	 DMC. This device has the ability to find content exposed by DMS and adapt it to
the rendering capabilities of a DMR, establishing the connections between them.
It can also send instructions to another device, such as telling a server to play a
particular video on a TV or sending a photo to a printer. A possible example of a
DMC could be a learning remote control or a multifunctional device such as a
multimedia mobile phone.

•	 Digital Media Printer (DMPr). These devices provide printing services to the
home network. Some examples are a network printer or an application running
on a PC with a USB-connected printer.

The category Mobile Handheld Device (MHD) consists of five classes of devices
that use the same model as in the HND category, but have different requirements for

Home Network Devices

Digital Media Server

Mobile Handheld Devices Home Interoperability
Devices

Mobile Interoperability
Unit

Mobile Network
Connectivity Function

Mobile Digital Media

Server (M-DMS)

Mobile Digital Media

Player (M-DMP)

Mobile Digital Media

Downloader (M-DMD)

Mobile Digital Media

Uploader (M-DMU)

Mobile Digital Media

Controller (M-DMC)

Digital Media Player

Digital Media Renderer

Digital Media Controller

Digital Media Printer

(DMS)

(DMP)

(DMR)

(DMC)

(DMPr)

(MIU)

(M-NCF)

Fig. 1.29  Categories and kinds of DLNA devices

411  Interoperability Systems

Streaming
Media

UPnP MediaServer

Content Directory
(CSD)

Connection Manager
(CMS)

UPnP DA (Device)

HTTP

TCP/IP

WiFi / Ethernet

Fig. 1.30  Protocols and
services of DMS

UPnP MediaRenderer

Connection Manager (CMS)

AV Transport (AVT)

Delivery Control (RCS)

UPnP DA (Device)

HTTP

Media
Decoder

TCP/IP

WiFi / Ethernet

Fig. 1.31  Services and
protocols of a DMR

42 M. del P.A.G. Fuente et al.

media formats and network connectivity. This category includes the following kinds
of devices and features:

•	 Mobile DMS. Wireless devices that provide and distribute content to a mobile DMP,
DMR or DMPr. Examples of these devices are mobile phones and music players.

•	 Mobile DMP. These devices are able to find and play the content offered by
DMS or mobile DMS and play it in a local environment. An example of this kind
of device may be a media tablet, which is a portable player with Wi-Fi connectiv-
ity that can be used as an Internet browser.

•	 Mobile Digital Media Controller. A device that finds content offered by a mobile
DMS and adapts it to the capabilities of a DMR, establishing connections
between the server (DMS) and renderer (DMR). A PDA and an intelligent remote
control are examples of such devices.

•	 Mobile Digital Media Uploader. These wireless devices send (load) a mobile
DMS or DMS with an upload functionality. A digital camera and a phone with
an integrated camera are examples of such devices.

•	 Mobile Digital Media Downloader. This finds and downloads the content
exposed by DMS or mobile DMS and reproduces it after downloading. An
example is a portable music player.

MHDs interact with stationary devices in the DLNA digital home and allow a
wide variety of uses. Some examples include:

Play images and videos taken from a MHD on a TV.•	
Remote control function.•	
Uploading images, music and video clips to a media server.•	
Download images to a server using its controls.•	

The category Home Infrastructure Device (HID) integrates two kinds of devices.
These devices are designed to enable MHDs and HNDs to interact.

•	 Mobile Network Connectivity Function. These devices provide a bridge func-
tion between the network connectivity of MHDs and HNDs.

•	 Media Interoperability Unit. Devices that make possible the change of format in
multimedia content between HNDs and MHDs.

These 12 kinds of devices enable the sharing of digital content over a network.
The three basic classes that must be in a DLNA network are DMS, DMP and DMC,
and a particular device can do the functions of one or more of these basic devices.

The ways of working of these devices on the DLNA network, or the phases that
it has to carry out, are similar to those described for UPnP. In the next picture, we
see a representation of how to proceed in DLNA (Fig. 1.32).

1.5.3 � Specific Features

Nowadays, the IPv4 protocol family is used, but the IETF is standardizing IPv6 as an
enhancement of this version. The use of IP in the digital home brings us many benefits:

431  Interoperability Systems

It allows us to run applications over different means that can communicate in a •	
transparent way. IP provides the framework that allows applications to be inde-
pendent of the transport technology.
It allows connecting all the devices in the home to the Internet. Using IP, every •	
digital home device can connect to any other connected to the Internet.
IP connectivity is cheap. Its implementation makes sure that IP is available at a •	
lower cost than that of other technologies.

Therefore, IP support in the current digital home is essential for interoperability
among devices. The graphic below shows the protocol stack used by DLNA 1.5
(Fig. 1.33).

The base for DLNA is the TCP/IPv4 protocol. Each device must implement a
DHCP client and look for a DHCP server the first time it connects to the network. The
device must use the IP address assigned by this server and, in case it does not find any
server, the device will use Auto-IP, which means that it will generate an IP address

Controller

D
is
co

ve
ry

D
es

cr
ip

ti
on

C
on

tr
ol

E
ve

nt
in

g

DLNA
Network

Device

Presence announcement (Notify - SSDP)

Search (M-Search − SSDP)

Response

Description (GET)

Response (XML)

Action (SOAP)

Response

Event Subscription (GENA)

Event Notification (GENA)

Fig. 1.32  DLNA working (Heredia 2008)

44 M. del P.A.G. Fuente et al.

within the 169.254/16 address range. The first and last 256 addresses in this range are
reserved and cannot be used. Once it has an address, it must determine whether that IP
is available using ARP. If the device receives a response, it is assumed that the chosen
IP is currently in use on the network and must generate a new one. In addition, the
device must periodically check the existence of a DHCP server.

The technologies for the network connectivity that can be used in DLNA are
Ethernet 10Base-T and 100Base-T (802.3i/802.3u) for wire connections, Wi-Fi
(802.11a/802.11b/802.11g) for wireless connections and Bluetooth for wireless
connections in handheld devices. In future, the idea is to start working with Ethernet
1000Base-T (802.3ab) and faster Wi-Fi connections (802.11n). It is also important
to know that technologies such as LonWorks, CeBus, X-10 and Universal Powerline
Bus are supported through UPnP bridges.

To protect digital media devices, DLNA technology makes use of digital rights
management, which restricts the use of the media and devices. To protect the links
(encryption/decryption) it is necessary to include a layer above all others in the
protocol stack. This layer is based on Digital Transmission Content Protection
(DTCP)/IP, which is needed to establish secure interoperability, and WMDRM-ND,
which is optional and provides access to additional content.

DTCP/IP is a technology to protect links and is particularly adapted to work over
IP (Arruda 2008). It is used to provide security to commercial content. It allows for
the establishment of a secure authenticated channel that supports data flow (streaming)
with limited copying rights: copy once, never copy and copy-restricted rights.

JPEG, LPCM, MPEG2

UPnP AV 1.0

HTTP 1.0/1.1

802.3i, 802.3u, 802.11a/b/g, 802.15.1

UDP

IP

HTTP
GENA
(Event)

(Media Formats)

(Media Management)

(Network Connectivity)

(Media Transport)

SSDP SSDP SOAP (Control)

HTTP (Descrip)

GENA
HTTPMU
(Discovery)

HTTPU
(Discovery)

TCP

Fig. 1.33  DLNA stack of protocols

451  Interoperability Systems

1.5.3.1 � Media Format

The media format describes the way to encode and the format for each one of the
three kinds of media: audio, video and video with audio (AV). The term format is
equivalent to codec or codec family.

The media format model is intended to achieve interoperability on the network,
while the innovation in the media codec technology goes on. It defines a set of
media formats and a set of optional media formats for audio, video and AV. DLNA
also provides rules for the use of optional formats between compatible devices and
converts optional formats into mandatory ones and vice versa. In the following
table, we can see both the mandatory and optional formats for fixed and mobile
household appliances (Table 1.6).

1.5.3.2 � Media Transport

Media transport defines how the data move through the network. The grounding of
the DLNA transport for any device that deals with media content through the net-
work is HTTP 1.1. It is necessary to use this protocol, but there is also an optional
protocol of transport in DLNA, namely the real-time transport protocol (RTP).

1.5.3.3 � Management of Media, Distribution and Control

Media managing allows devices and applications to identify, manage and distribute
digital content across devices on the network. UPnP technology AV is the solution
for the management and control of devices developed according to the guidelines
for the interoperability of devices on the network. UPnP AV architecture allows
devices to support the entertainment content in any format and in any transport pro-
tocol. The services provided by this technology are:

•	 Content Directory Service. This service provides a mechanism for each content
server on the network as well as a standard directory and all its available content

Table 1.6  Mobile household appliances

Media
format

Mandatory formats
for household
devices

Optional formats
for household
devices

Mandatory
formats for
mobile devices

Optional formats
for mobile devices

Image JPEG GIF, TIFF, PNG JPEG GIF, TIFF, PNG
Audio LPCM

(2 channels)
MP3, WMA9,

AC-3, AAC,
ATRAC3plus

MP3 y MPEG4
AAC LC

MPEG4, AMR,
ATRAC3plus, G.726,
WMA, LPCM

Video MPEG2 MPEG1, MPEG4,
WMV9

MPEG4 AVC
(AAC LC
Asoc. Audio)

VC1, H.263, MPEG4
part 2, MPEG2,
MPEG4 AVC

46 M. del P.A.G. Fuente et al.

to any interested device. It enumerates the content and presents a logic structure for
the multimedia library available on the server, such as videos, music and images.

•	 Connection Manager Service. Determines the way the content can be trans-
ferred from the media server to a media player device. This service is used to
carry out one of the following actions:

Match the capacity between the server and player devices.––
Set up and remove connections between devices.––
Find out information about current transfers on the network. When connec-––
tions are made, the connection manager service is the interface between the
devices and the TCP/IP stack.

•	 AV Transport. This controls the flow of audio and video including the functions
of play, stop, pause and search.

•	 Delivering Control Service. Many devices contain attributes that can be config-
ured dynamically. They make differences in content delivery, such as brightness
and contrast in video devices or volume, balance and the equalizer in audio devices.
This allows the control point to discover the attributes that support a device and
retrieve, change and restore the configuration of any of these attributes.

Figure 1.34 shows the typical sequence when reproducing multimedia content.

Content
Directory
Service

Connection
Manager
Service

AV
Transport

Rendering
Control
Service

Library

Driver

Get information Multimedia Library

Profile Request reproduction
Answer

Answer

Step URI and metadata for content
previously selected (Play)

Device

Network
DLNA

Adjust volume, brightness, etc..

Pause, Stop, Fast Forward, Rewind, etc...

Fig. 1.34  Sequence of actions

471  Interoperability Systems

1.5.4 � Penetration in the Market

DLNA is currently implemented in the home in the usual way, especially with the
appearance of lots of important manufacturers of devices that incorporate this tech-
nology. Among the most common devices using DLNA and incorporating it into
our home are TV sets (with 400 certifications in the second quarter of 2009), games
consoles, mobile phones (such as Nokia N95, which incorporates this standard),
players and even cameras. There were 2,000 certified devices during the first half of
2009. Thus, it seems that this standard is becoming more and more relevant for the
exchange of information and interactivity between terminals.

Attempts have been made to expand the DLNA domain further so a device will be
able to connect to any network. For example, Oh Yeon-Joo et al. (2007) implemented
the DLNA proxy server to service any virtual network (Ferguson and Huston 1998).

1.6 � Other Standards

1.6.1 � Salutation

This platform is independent of the architecture, language and operating system on
which it is installed. It is based on the operation of the translation manager, specific for
the Runtime Environment, and the salutation manager, which provides an API for pub-
lishing and search services (Suri et al. 2003). For example, Miller and Pascoe (1999)
demonstrated the integration of this protocol with Bluetooth Service Discovery.

1.6.2 � Service Location Protocol

This was created for client/server applications and it defines three kinds of agents:
user, service and directory (Veizades et al. 1997). For more information, many of
the protocols discussed in this chapter are compared and classified in Bettstetter and
Renner (2000) and Zhu et al. (2002).

1.6.3 � Ad hoc Developments

Before the appearances of concepts related to the automatic installation of devices
in distributed networks, algorithms were developed for specific types of robots. This
is the case for the Multi-Robot System of UNIX, which uses TCP/IP connections in
a client/server architecture.

Standards have also been created for a particular type of technology such as the
service discovery protocol (Avancha et al. 2001). This protocol can discover infor-
mation on existing services in other Bluetooth devices.

49I.G. Alonso et al., Service Robotics within the Digital Home, Intelligent Systems,
Control and Automation: Science and Engineering 53, DOI 10.1007/978-94-007-1491-5_2,
© Springer Science+Business Media B.V. 2011

Abstract  The complexity involved in the development of a project with several
robots in a changing and unstructured environment often requires the use of many
and various development tools. Not only complexity but also economic issues
force the use of simulation tools to reduce costs. This chapter highlights some of
the most relevant tools for robotic software development. These tools are mainly
designed for the field of mobile robotics but some of them could be used for other
kinds of robots. Some simulation tools belong to a specific robotic platform but the
most powerful tools span multiple robotic platforms. The knowledge of the exis-
tence of these tools and their characteristics can make a big difference to the devel-
opment time of a project.

2.1 � Introduction

Robotic applications are constantly improving their complexity and functionality.
With the advance of information technologies and engineering, robots are becoming
more and more common tools in our workplaces and homes. This is the reason why
it is necessary to develop a middleware that provides clear contexts, predefined data
structures, blocks of code, standard communication protocols, synchronization
mechanisms and so on (Cañas et al. 2006).

With the heterogeneous development of robots, different middleware platforms
have emerged; in some cases, the manufacturers themselves have developed these

P.G. del Torno (*) • O.Á. Fres
Infobotica Research Group, University of Oviedo, Oviedo, Spain
e-mail: gomeztpablo@uniovi.es; UO1475@uniovi.es; alvarezomar@uniovi.es

S.M. Pablos
Fundación Cartif, Valladolid, Spain
e-mail: sammar@cartif.es

Chapter 2
Robotic Development

Pablo Gómez del Torno, Omar Álvarez Fres,
and Samuel Marcos Pablos

50 P.G. del Torno et al.

platforms to program their own products (Sony offers OPEN-R for Aibo, iRobot
offers its Mobility Robot Integration Software (iRobot Corp. 2000) for its robots
B12–B14, etc.). By contrast, research groups have developed platforms designed to
cover their needs including:

CARMEN (Carnegie Mellon Navigation Toolkit) (Montemerlo et al. 2003) •	
developed by Carnegie Mellon University. OROCOS (Open RObot COntrol
Software) (Bruyninckx 2003) developed by the Catholic University of Leuven.
Player/Stage/Gazebo Project developed, at its beginnings, by the University of
South Carolina (Gerkey et al. 2003).
Miro (Middleware for Mobile Robot Applications) developed by the University •	
of Ulm (Utz et al. 2002).
MARIE (Mobile and Autonomous Robotics Integration Environment) developed •	
by the University of Sherbrooke (Côté et al. 2004).
Webots developed by the Swiss Institute of Technology in Lausanne and •	
Cyberbotics Ltd. (Michel 2004).

In the following section, we will explain in more detail some robotic simula-
tors. Generally these robotic platforms for programming are distributed as free
software and are intended to be universal, i.e. platforms that support robots from
any manufacturers.

In addition to studying the behavior of the robots, a thorough study of their
communications and specifications (attenuation, power, wiring or radio frequency)
is imperative. For this, some protocol simulators will be analyzed in the following
sections. Protocol simulators are software tools that emulate communication networks
and return data about network performance.

The aim of development platforms is to simplify the creation of robotic applica-
tions; the choice of a specific platform is often decisive for the proper integration of
all elements to achieve a good level of performance, efficiency and reusability along
with good communication between devices.

The reason why development platforms are used is that they allow the developer
to obtain real data by making simulations of the behavior and communications of
the robot in virtual environments. This has a direct impact on the reduction of costs
since they shorten the times to develop all the activities and there is no need to have
the robot, just a model of the simulator.

2.1.1 � General Characteristics of Development Platforms

The wide variety of development platforms allows them to run under different
operating systems (Windows, UNIX, Mac OSX, Linux) and to be implemented
under several programming languages (C, C++, C #, Java, Python, LISP, Ada,
Octave, Ruby, Scheme). Development platforms use different libraries; some of
which are described below.

512  Robotic Development

2.1.1.1 � Standard Template Library (STL)

STL provides containers, iterators, algorithms and functions. STL (Stepanov and
Lee 1995) provides a set of common classes in C++ (such as containers and associa-
tive arrays) that can be used with any compiler and supports some elementary oper-
ations (such as copying and assigning). STL algorithms are independent of the
containers. This fact reduces the complexity of the libraries. The STL achieves its
results using templates. This approach provides polymorphism in compiling time,
which is more efficient than is the commonly used runtime polymorphism.

2.1.1.2 � Microsoft Foundation Class Library (MFC)

MFC (Holzner 1993) is a library that contains, in a set of C++ classes, Windows
APIs, thereby achieving easier access to them. The classes are defined by Windows
Object handlers, predefined windows and common controls. The development of
this library has been made in conjunction with new versions of a Visual C++ pro-
gramming environment.

2.1.1.3 � Open Graphics Library (OpenGL)

Silicon Graphics Inc. developed, in 1992, a standard specification defining a multi-
language and multiplatform API to write applications that produce 2D and 3D
graphics called OpenGL (OpenGL 2010). The interface consists of over 250 differ-
ent functions that can be used to draw complex 3D scenes from simple geometric
primitives such as points, lines and triangles. Its use extends to CAD applications,
virtual reality, scientific visualization, information visualization and flight simula-
tion. It is also used in game development, where it competes with Direct3D on
Microsoft Windows platforms. In addition, there are several helper functions or
class structures.

2.1.2 � Robotic Middleware and Development Platforms

We will focus on the following middleware and development platforms.

2.1.2.1 � CARMEN (Carnegie Mellon Navigation Toolkit)

This was developed in 2007 by Carnegie Mellon University (EEUU) (Carnegie
Mellon University Home 2010) as a collection of robot control software in open
source. CARMEN is designed to provide a consistent interface and a set of primitives

52 P.G. del Torno et al.

for robotic application development in a wide variety of commercial robot platforms.
The goals of CARMEN (Montemerlo et al. 2003) are to eliminate the barriers
for the implementation of new algorithms for real and simulated robots and to facili-
tate the exchange of research and algorithms between different institutions. The
purpose of this platform is not focused on adopting a strict standard, but on recom-
mending good design methods to developers. CARMEN is a modular software
architecture organized in three levels:

The basic layer is responsible for the interaction and control of hardware; it •	
provides an abstract configuration of the base and sensor interfaces. Likewise, it
also provides a low-level control of movement in a straight line or simple rota-
tions, a low-level collision detection and information from motion sensors with
the aim of improving the operation of the odometers. The basic control modules
of CARMEN can be implemented in a wide range of commercial robots such as
Nomadic Technologies Scout and XR4000, ActivMedia Pioneers, iRobot b21
and the ATRV series.
The navigation layer implements primitives including location, dynamic object •	
tracking and motion planning. Unlike other navigation systems, CARMEN
integrates in a single module all the motion control, except low-level motor
control.
The third layer is reserved for user-level tasks using primitives of the second layer.•	

2.1.2.2 � Miro (Middleware for Mobile Robot Applications)

Ulm University (Germany) (Universität Ulm Home 2010) developed an article
called Miro (Middleware for Mobile Robot Applications) (Utz et al. 2002) in
2002. In this article, they research the building of a robotic object-oriented mid-
dleware capable of making the development of applications for mobile robots
easier and faster to promote the portability and maintainability of robot software.
Miro has been designed and implemented to meet the requirements for the object-
oriented standard of CORBA (OMG’s CORBA 2010). The functional core of
Miro and the data processing routines of sensors and control actuators are com-
pletely implemented in C++ allowing this way a high running efficiency. Miro
is structured in a three-layer architecture related to the two main layers of
CORBA:

The device layer provides interface abstractions oriented to objects for all sen-•	
sors and actuators of the robot. This is the part of Miro that depends on the plat-
form used for hardware.
The services layer provides a definition of the services available in sensors and •	
actuators using an IDL (Interface Definition Language) from CORBA and imple-
ments these services and platform-independent objects.
The Miro class framework provides a set of functional modules that are often used •	
for mobile robot control, such as modules for mapping, localization, behavior
generation, access path planning, registering and viewing facilities.

532  Robotic Development

2.1.2.3 � OROCOS (Open RObot COntrol Software)

The Catholic University of Leuven (Belgium) (Katholieke Universiteit Leuven
Home 2010) published in 2001 an article in which it was shown the development of
the project OROCOS (Bruyninckx 2003). OROCOS emerges as an open source
platform with the following objectives:

Open source license.•	
High modularity and flexibility.•	
The highest quality from a scientific point of view, based on its documentation •	
and its technical structure.
Independence from commercial robot manufacturers. Adapted to all robotic •	
devices and computing platforms as well as multilanguage.

The OROCOS codebase is divided into modules or libraries. There are three
main libraries:

Support module. This software is without functional content for robots and •	
includes 3D visualization and simulation, a tool for software configuration for
components, a system of real time operation, communication between processes,
documentation writing tools, and so on.
Robotic module. This software implements specific algorithms for robots, kine-•	
matics and dynamics of servo-motors, serial and parallel manipulators, and so on.
It makes use of one or more supporting modules.
Components. These are CORBA objects, described using an IDL.•	

2.1.2.4 � Player

Player is a network server for robot control (see Sect. 2.2). It provides a clean and
simple interface to the robot’s sensors and actuators over the IP network. The client
program communicates with Player over a TCP socket, reading sensory data, writing
commands to actuators and configuring devices on the fly.

2.1.2.5 � Urbi

Urbi is an open source software platform used to control robots or complex systems
in general. Urbi includes UObject, a C++ component library with a robot standard
API that can match components to be used seamlessly in highly concurrent settings
(Urbi 2010). The objective of Urbi is to help make robots compatible and simplify
the process of developing software and behaviors for those robots.

Urbi simplifies the orchestration of independent concurrent components. It
provides features to coordinate the execution of various components (e.g., actua-
tors, sensors and software devices that provide features such as text-to-speech,
face recognition and so forth). Languages such as C++ are well suited to program

54 P.G. del Torno et al.

the local, low-level handling of these hardware or software devices; indeed, these
need efficiency, a small memory footprint and access to low-level hardware details
(Gostai 2010).

Urbi has an orchestration language to join different components and so describe
high-level behaviors, namely urbiscript. Urbiscript is a programming language pri-
marily designed for robotics. It is a dynamic, prototype-based, object-oriented
scripting language that supports and emphasizes parallel and event-based program-
ming by providing core primitives and language constructs. The urbiscript language
syntax is very close to C++ syntax and is fully integrated with C++.

2.1.2.6 � Orca

Orca is an open source middleware framework for developing component-based
robotics. It is designed to target applications from single vehicles to distributed sen-
sor networks. The main goals of Orca are to enable software reuse in robotics,
simplify that software reuse and encourage that reuse of the software.

Orca enables the implementation of a distributed component-based robotic
system by allowing the user to define interfaces and communication mechanisms.
It was implemented using CORBA (Fumio et al. 2004), and it supports different
programming languages such as Java, C# and C++.

2.1.2.7 � OpenRDK

OpenRDK is a modular software framework focused on the rapid development of
distributed robotic systems (also with heterogeneous robots) (OpenRDK 2010). In
this framework, the main entity is a software process called an agent. A module is a
single thread inside the agent process; modules can be loaded and started dynami-
cally once the agent process is running (RoSta 2010a).

Modules communicate using a blackboard-type object (see Sect. 2.2.3.2), in
which they publish some of their internal variables or properties. The access to
remote properties is transparent from a module perspective. This also reduces shared
memory (OpenRDK provides easy built-ins for concurrency management) in the
case of local properties.

2.1.2.8 � CLARAty

The CLARAty (Coupled Layer Architecture for Robotic Autonomy) is a robotic
software framework to aid engineers to develop robotic applications.

CLARAty has a two-layer architecture that is designed to improve the modular-
ity of its system software. This alternative is an evolution of the conventional three-
layer architecture. The new architecture joins the planner and the executive levels of

552  Robotic Development

the conventional architecture in one decision layer (Volpe et al. 2001). One difference
between the two architectures is the distinction between the levels of granularity
and levels of intelligence (Fig. 2.1).

The functional layer is an interface for all system hardware and capabilities
through which the decision layer uses the robotic system. The decision layer is an
engine that is used to assess system resources and mission constraints. This layer
includes planners, executives, schedulers, activity databases and planner-specific
heuristics (Nesnas et al. 2003; Fig. 2.2).

Planner

Executive

Functional

Executive / Planner

Functional

Fig. 2.1  Common three-
layer architecture and
proposed second-layer

Fig. 2.2  CLARAty architecture with a functional layer and a decision layer

56 P.G. del Torno et al.

2.1.3 � Robotic Simulators

2.1.3.1 � Microsoft Robotics Studio (MSRS)

The Microsoft Robotics Developer Studio (see Sect. 2.3) is a Windows-based
environment for academic, hobbyist and commercial developers to easily create
robotic applications across a wide variety of hardware (Microsoft Robotics
Developer 2010).

2.1.3.2 � Webots

Webots (see Sect. 2.5) is a development environment used to model, program and
simulate mobile robots. With Webots, users can design complex robotic setups, with
one or several similar or different robots, in a shared environment.

2.1.3.3 � Stage/Gazebo

Stage (see Sect. 2.2) is a simulator commonly used with Player that simulates a
population of mobile robots, sensors and objects in a 2D bitmapped environment.
Gazebo (see Sect. 2.2), like Stage, is capable of simulating a population of robots,
sensors and objects, but does so in a 3D world (Player 2010).

2.1.3.4 � MARIE (Mobile and Autonomous Robotics Integration
Environment)

The University of Sherbrooke (Canada) (Université de Sherbrooke 2010) consid-
ered in 2004 (Côté et al. 2004) a tool for the reuse of code for programming mobile
robots. MARIE created an environment for system-level programming, simplifying
the reuse of applications, tools and environments programmed in a coherent and
integrated system.

2.1.3.5 � AnyKode Marilou

AnyKode Marilou (AnyKode 2010) is software based on MSRS for modeling,
programming and simulating an environment for mobile robots. The programming
languages supported are C/C++, VB#, J#, C#, C++ and CLI and the programming
can be under Windows or Linux.

The simulation of AnyKode Marilou supports two operating modes, real simu-
lation or accelerated simulation, and supports multiple robots. The platform
includes libraries for embedded robotic components: motors, servo-motors,
odometers, force/torque sensors, distance sensors (US, IR, laser), laser range

572  Robotic Development

finders, bumpers, air pressure forces, cameras, panoramic spherical cameras,
GPS, accelerometers/gyroscopes and more (Fig. 2.3).

2.1.3.6 � USARSim

This is a simulation system originally designed at the Carnegie Mellon University
(CMU) and the University of Pittsburg. Initially, USARSim was focused on urban search
and rescue, but has evolved into a general purpose simulation system (see Fig. 2.4).

USARSim was built on the engine (Unreal Engine) of the popular game Unreal
Tournament, beginning with its first version. USARSim is a tool for early testing
and late binding, and it can be used to verify the impact of the desired choices on a
virtual environment and predict the behavior of the real system. The simulator
includes several models of sensors (e.g., odometry, sonar, omnidirectional camera),
robots (e.g., Kenaf robot, P2AT, Snow Storm) and actuators (Balaguer et al. 2008).

2.1.3.7 � EyeSim/EyeBot

EyeSim is a 2D-specific simulator for the EyeBot mobile robot system. The
simulator was not implemented as an independent program or process, and

Fig. 2.3  Scenario of the AnyKode Marilou software

58 P.G. del Torno et al.

differs from most existing simulation platforms because it was implemented as
a library, which is linked to the robot application program (Bräunl and Graf
2008) (see Fig. 2.5).

The EyeBot is a controller for mobile robots with wheels, walking robots or
flying robots. It consists of a powerful 32-bit microcontroller board with a graphics
display and a digital grayscale or color camera.

2.1.3.8 � MobileSim

MobileSim is software for simulating mobile robots and their environments and
for debugging and experimenting with ARIA or other software that supports
MobileRobots platforms (MobileRobots 2010).

MobileSim builds a Stage environment from a MobileRobots/ActivMedia and
places a simulated robot model in that environment. It then provides a simulated
Pioneer control connection via a TCP port. ARIA is able to connect to TCP ports
instead of serial ports (ArSimpleConnector, for example, automatically tries TCP
port 8101 before the serial port). MobileSim is based on the Stage library and has
the GNU GPL license. Then, the most widely used robotic simulators will be
studied more deeply: Player/Stage/Gazebo, Microsoft Robotics Developer Studio
and Webots.

Fig. 2.4  Scenario of the USARSim with a robot (AirRobot) acting in a danger situation

592  Robotic Development

2.1.4 � Simulators for Communication Protocols

2.1.4.1 � OPNET Modeler

OPNET (Optimized Network Engineering Tool) is a development environment for
the specification, simulation and performance analysis of communication networks.
It can be simulated from small LANs to global satellite networks OPNET keys are
(Chang 1999):

Modeling and simulating. OPNET provides powerful tools to help users go •	
through three of the five phases in a design cycle (see Fig. 2.6).
Hierarchical model. OPNET employs a hierarchical structure for modeling. Each •	
level of the hierarchy describes different aspects of the whole system being
simulated.
Specialized in communication networks. OPNET provides a detailed library of •	
models for existing protocols and enables developers and researchers to modify
any of these existing models or to develop new models.
Automatic generation of simulations. OPNET models can be compiled into exe-•	
cutable code. A discrete event simulation can be debugged or simply executed,
resulting in output data.

Fig. 2.5  EyeSim scenario

60 P.G. del Torno et al.

OPNET has four tools, called editors, to develop a representation of a system
being modeled. Among these four tools, the parameter editor is considered a utili-
ties publisher and not a publisher within the modeling domain. This is the reason
why we focus on the three other editors (Brown and Christianson 2005):

Network editor or project editor•	 . The network editor is used to specify the physi-
cal network topology, i.e., it defines the position of the nodes and the intercon-
nections through links. The specifications of each node are made in a lower layer.
Nodes can be mobile, fixed or satellite peer-to-peer connections simplex or
duplex (Fig. 2.7).
Node editor•	 . Communication devices created and interconnected at a network
level need their specifications in the domain of the node. Node models are
expressed as interconnected modules. These modules can be grouped into two
categories: modules that have predefined characteristics and a set of construction
parameters and programmable modules, which can be processors or queues
specified in the processes editor.
Processes editor•	 . Models created by the publisher of processes are used to
describe the logical flows between processors and queues. They are expressed in
a programming language called Proto-C, which is a state transition diagram, a
library Kernel and the standard language C.

Define the problem

Build models

Execute simulation

Analyze results

Make decisions

V
al

id
at

io
n

Fig. 2.6  Cycle of modeling and simulating

612  Robotic Development

2.1.4.2 � OMNeT++

OMNeT++ is a discrete event simulator based on C++ for modeling communication
networks, multiprocessors and other distributed or parallel systems. It was devel-
oped in 1992 by András Varga (Varga 2001), but came to light in September 1997.
Simulcraft Inc. is in charge of selling the business license and providing support and
consulting services on OMNeT++. OMNeT++ is an open platform and it can be
used under GNU license.

The main application area of OMNeT++ is the simulation of communication
networks, but because of its generic and flexible architecture, it is also successfully
used in other areas such as the simulation of complex IT systems, queuing networks
or hardware architectures. The motivations that led to its development were to obtain
a powerful tool for discrete event simulation and an open platform for academic,
educational or research-oriented use.

OMNeT++ tries to fill the gap between open source platforms for software simu-
lation exclusively oriented to research studies, such as Network Simulator (Bajaj
et al. 1999) and the alternatives in the market such as OPNET (OPNET 2010) that
are too expensive.

OMNeT++ provides a component architecture for models. The components
(modules) are programmed in C++, and then assembled into larger components and
models that use a high-level language (NED). OMNeT++ can run on UNIX and
Windows using Cygwin or the compiler of Microsoft Visual C++.

Fig. 2.7  Project editor of the OPNET modeler

62 P.G. del Torno et al.

The use of OMNeT++ in the University of Karlsruhe led to the development of
the projects An OMNeT++ TCP model (Kaage et al. 2001) and A Simulation Suite
for Internet Nodes with the Ability to Integrate Arbitrary Quality of Service Behavior
(Wehrle et al. 2001) that studied a set of TCP/IP models. Likewise, the University
of Budapest carried out a project for the remote management of simulations in a
workstation group using OMNeT++ (Erdei et al. 2001).

The design of OMNeT++ developed from the desire to support the simula-
tion of large networks. This objective entailed some requirements (Varga and
Hornig 2008):

It must be able to perform large-scale simulations and hierarchical models and it •	
has to be made of reusable components.
The simulation software must emphasize simplifying the traceability and debug-•	
ging in simulation models to reduce the debugging time.
The simulation software must be modular, customizable and should allow the inser-•	
tion of large simulation models in software applications such as network planning.
The data interfaces need to be open and it must be possible to generate output •	
and input files with the most popular software tools.

The OMNeT++ model is based on modules that communicate with each other
through messages. The active modules, called simple modules, are written in C++
code and can be grouped into composed components and so on until we find the
hierarchical level we want (Varga 2001). Messages can be sent through connections
that link modules directly to the destination modules (see Fig. 2.8).

2.1.4.3 � Network Simulator

Network Simulator (ns) is a tool used to simulate networks and was developed in
1995 (ns-1) by the network research group of the Lawrence Berkeley National
Laboratory (LBNL’s Network Research Group 2010) based on work with the REAL
simulator (Keshav 1988). Network Simulator is capable of simulating several TCP
types (including SACK, Tahoe and Reno) and queue algorithms in routers.

Complex module

Simple module Simple module Simple module

Fig. 2.8  Structure model in OMNeT++. The arrows represent the connections and the points are
connecting doors

632  Robotic Development

Although ns-1 based its simulation on Tcl (Tool Command Language) programs,
its next version, 1996 (ns-2), used MIT Object Tcl and C++ language. The develop-
ment of the simulator ns-2 was performed by DARPA VINT (Virtual InterNetwork
Testbed) (VINT Project 1996) from 1997 to 2000; after this, it was developed by
DARPA SAMAN (Simulation Augmented by Measurement and Analysis for
Networks) (SAMAN 2001) and by NSF CONSER (Collaborative Simulation for
Education and Research) (CONSER 2002) until 2004. Currently, its development
relies on collaborators and volunteers and the project overall relies on Sourceforge.

The core of ns-2 is written in C++ but the simulation scripts are written in an
extension of the object-oriented language Tcl. This structure allows simulations
where a modification does not involve recompiling the simulator every time there is
a structural change.

The ns-2 simulator has a tool to animate objects known as Network Animator
and this is used to display the output of the simulator or to set up simulation sce-
narios graphically.

The next version of Network Simulator, ns-3, was developed by a group of
researchers from the University of Washington, the Georgia Institute of Technology
and the ICSI Center for Internet Research (The ICSI Networking Group 2010).
Using the simulator ns-3, they built a discrete event simulator for the Internet net-
work with educational and scientific purposes, with an emphasis on layers 2–4 of
the network stack. It also has the following objectives (Henderson et al. 2006):

The ns-3 project must adopt the methodology of a community oriented to •	
open source.
The simulator will be distributed freely as open source software and must be •	
compatible with other open source networking software.
The simulator must have a scalable, extensible and modular architecture, a clear •	
design, good documentation and be capable of making emulations.
The core of the models should be well tested and validated.•	
The project should develop a series of simulation experiments that will be a •	
canon for its current use on networks.

The simulator ns-3 can simulate the IPv4 and IPv6 networks as well as realistic
models on different abstraction levels. It can be installed on Linux, OSX (Darwin),
Windows (through emulation) and FreeBSD. Table 2.1 shows a specification of the
network models existing in ns-2 and the additional ones of ns-3.

2.1.4.4 � GloMoSim

GloMoSim (Global Mobile Information System Simulator) is a simulation environ-
ment for wireless networks and mobile devices (Zeng et al. 1998). It was developed
by the UCLA Parallel Computing Laboratory (Bagrodia et al. 1998) between 1997
and 1999 and was made using PARSEC (Parallel Simulation Environment for
Complex Systems), which was also developed by the UCLA Parallel Computing
Laboratory and is based on the C language for parallel simulations.

64 P.G. del Torno et al.

GloMoSim is structured in layers in the same way as the seven-layer architecture
from the OSI model, with standard APIs between each layer (see Fig. 2.9). This
simplifies the implementation of new protocols and models at different layers
(Farooq and Bilal 2006).

This design, based on layers, benefits modularity, i.e., the developer can imple-
ment new protocols on different layers without modifying the other layers. In addi-
tion, GloMoSim supports the parallel and sequential execution of discrete event
simulation. Table 2.2 shows the protocols supported in the different layers of
GloMoSim (Farooq and Bilal 2006).

2.1.4.5 � IPC

IPC was developed in 1994 for the NASA New Millennium Program (NASA New
Millennium Program 2010) and it has since been used in numerous robotic and
autonomous systems at CMU, NASA and elsewhere. It is based on a previous
CMU project called Task Control Architecture, which has also been used for
NASA projects.

IPC provides high-level support for connecting processes using TCP/IP sockets
and sending data between processes. It takes care of opening sockets, registering
messages and sending and receiving messages, including both anonymous publish/
subscribe- and client/server-type messages. The IPC library contains functions to

Table 2.1  Differences between ns-2 and ns-3

Layers ns-2 ns-3 (added to ns-2)

Aplication Ping, vat, telnet, FTP, multicast FTP,
HTTP, generation of probabilistic
and traced traffic, webcache

Sockets as API (to port existing
applications to the ns environment),
peer-to-peer

Transport TCP (several variants), UDP, SCTP,
XCP, TFRC, RAR, RTP

Emulation of the TCP stack (Linux,
BSD), DCCP, TCP variants with a
different speedMulticast: PGM, SRM, RLM, PLM

Network Unicast: IP, Mobile IP, distance vector
and state of link, IPinIP, source
routing, Nixvector

Complete Support to IPv4, complete
support to IPv6, NAT XORP/support
to Click Routing: BGP, OSPF, RIP,
IS-IS, PIM-SM, IGMP/MLDMulticast: SRM, centralized

MANET: AODV, DSR, DSDV, TORA,
IMEP

Link ARP, HDLC, GAF, MPLS, LDP,
Diffserv

New model 802.11, variants of 802.11
(mesh, QoS), 802.16 (WiMax),
TDMA, CDMA, GPRSQueues: DropTail, RED, RIO, WFQ,

SRR, Semantic queue of packets,
REM, Priority, VQ

MACs: CSMA, 802.11b, 802.15.4
(WPAN), Aloha Satellite

Physic Satellite Transponder, Power Model,
omnidirectional antennas

Physical layers IEEE 802, GSM

652  Robotic Development

marshal (serialize) and unmarshal (deserialize) data, handles data transfer between
machines with different Endian conventions, invokes user-defined handlers when a
message is received and invokes user-defined callbacks at set intervals.

IPC libraries exist for C, C++ and Allegro Common Lisp and Java (tested only
under Linux) (Allegro 2006). IPC currently runs on the following architectures and
operating systems: Sparc (running SunOS and Solaris), Intel processors (running
Linux, Windows NT, Windows 98), 680xx processors (running VxWorks), Silicon
Graphics Inc. (running IRIX) and Macintosh (running Mac OS and OSX). It is
easily ported to any machine that supports UNIX-style sockets (for assistance on
porting IPC to a new architecture).

Aplication Traffic Generator

Transport Layer

IP

Wireless network Layer

Clustering

Access MAC

Radio Model

Propagation Model/ Mobility Model

Fig. 2.9  Layer architecture of GloMoSim

Table 2.2  Protocols and models supported by every layer of GloMoSim

Layers Protocols

Mobility Random waypoint, random drunken, trace based
Radio propagation Free-space, duplicated wave
Radio models Cumulative noise
Models for reception of packets SNR balanced, BER with BPSK/QPSK modulation
MAC CSMA, IEEE 802.11 and MACA
Network (routing) IP with AODV, Bellman-Ford, DSR, Fisheye, LAR scheme 1,

ODMRP, WRP
Transport TCP and UDP
Application CBR, FTP, HTTP and Telnet

66 P.G. del Torno et al.

2.1.5 � Numerical Simulation

Numerical or discrete simulation consists of reproducing simulations, typically
using computers, over different processes to try to get a result as close as possible to
the reality of the behavior of the signal or simulated process and thereby prevent
potential problems and improve designs.

Numerical simulation is a useful procedure in RandD projects including struc-
tural, dynamic studies and the design of electrical circuits and fluid mechanics
among others.

Specialized programs exist in each topic, but many processes can be simulated
for any field. The only condition is to know their mathematical equations. The better
these equations are, the closer the simulation is to reality. The most important pro-
grams in this field are Matlab (Simulink) and others for specific industries such as
Cosmos (structural design), Fluent (Fluid Mechanics) and several specific branches
including Abaqus (structural analysis and fluid mechanics).

The advantages include the possibility of conducting highly complex studies
without having to make real scale models. In addition, a numerical simulation can
be optimized progressively by adding more and more complex variables to achieve
the expected results. All this can translate into huge cost savings.

The disadvantages highlight the importance of obtaining mathematical equations
to describe as accurately as possible the process to be simulated. Otherwise, results
might not reliably describe a simulated process. Another disadvantage is that it is
necessary to choose the boundary conditions and an appropriate mesh to achieve its
convergence.

2.1.6 � Discussion

After analyzing all these development platforms, we will take two platforms that
run on different operating systems. On one side, we will execute the robotic simu-
lator Player/Stage/Gazebo on a Linux machine to perform simulations in virtual
environments about the behavior of the robotic models under study. On the other
side, we will simulate communications among robots, control points and several
communication devices involved in our scenario using the protocol simulator ns-3.
We have chosen Player/Stage/Gazebo because of its wide use in the world of robot-
ics research, the availability of models to consider and its free distribution. The use
of the ns-3 simulator is because of the multitude of models of protocols that can
simulate and the free distribution of its GNU.

On another machine, we will install Windows and perform a robotic simulation
using Microsoft Robotics Developer Studio because of its better graphics features
to create virtual environments and its wide range of robotic models. Moreover, we
will emulate the protocol simulator OMNeT++ under a Windows 32-bit platform
to obtain different samples of the patterns of communication between robots and
control devices.

672  Robotic Development

We discarded the use of other robotic simulators because they did not fit our
needs. We also discarded the use of other protocol simulators because of their cost
(OPNET Modeler) or because they only focused on the field of wireless communi-
cations (GloMoSim).

2.2 � Architectural Patterns for Robotic Development

Software development brings common problems that can be solved by different
patterns. The patterns that define the structure of a software system are called the
architectural patterns. It is useful to know and use these patterns in the development
of software for robots to improve quality, maintainability and reusability as well as
save time and effort (RoSta 2010a).

2.2.1 � Layered View

This view is focused on decomposing a complex system into simpler parts.

2.2.1.1 � Layers

This pattern is used to decouple components to support modifiability, portability
and reusability. All components inside the same layer work at the same level of
abstraction. Layers communicate with their adjacent layers through interfaces. A
layer must communicate only with its adjacent layers. It is useful to decouple high-
level from low-level responsibilities (RoSta 2010a).

2.2.1.2 � Indirection Layer

The indirection layer is a layer situated between the interfaces and the instructions
of a system. The aim of this function is to hide the subsystem providing services
from the external world. This layer wraps all the relevant accesses to the system and
performs other tasks such as converting and tracing invocations. This pattern can be
implemented either as a part of the subsystem (as in a virtual machine) or as an
independent entity (as in an adapter or facade pattern) (RoSta 2010a) (Fig. 2.10).

2.2.2 � Data Flow View

This view is focused on processing and/or transforming data streams.

68 P.G. del Torno et al.

2.2.2.1 � Batch Sequential

This is based on a divide and conquer algorithm, in which a complex task is divided
into more simple sequential tasks or steps realized as independent components
(filters). At each step, the data are processed and forwarded to the next component
until completion (RoSta 2010a).

2.2.2.2 � Pipes and Filters

As well as filters, data flow in several ways (pipes). As mentioned, at each step, the
data are processed and forwarded to the next component until the completion (RoSta
2010a) (Fig. 2.11).

2.2.3 � Data-Centered View

This view is focused on sharing information with a central repository of data that is
accessed by multiple components.

Accessed SystemApplication LayerClient Layer

Client
application 1

Client
application 2

Wrapper 1

Wrapper 2

Server
Application 1

Server
Application 2

Server
Application 3

Fig. 2.10  Layer patterns

Component 1 Component 2

Component 4 Component 5

Component 3

Pipe

Fig. 2.11  Pipes and filters pattern

692  Robotic Development

2.2.3.1 � Active Repository

In this case, a shared repository (a central data store shared among other components)
informs clients of any events occurring in the repository. This repository should be
aware of the active clients to inform each client; communication often follows an
event-based model, thereby reducing overheads (RoSta 2010a).

2.2.3.2 � Blackboard

This solution proposes dividing a complex problem into smaller subtasks. Each
subtask shares its computational data with the repository component. The reposi-
tory component obtains the data from all clients to perform the necessary computa-
tions to improve the problem solution. A control component usually coordinates the
clients according to the state of the repository component. This pattern is useful
when no deterministic solution exists (RoSta 2010a) (Fig. 2.12).

2.2.4 � Adaption View

This view is focused on the system adapting through its lifecycle/evolution. In this
architectural pattern, the system is composed of two main parts: the core invariable
component and the adaptable component(s).

2.2.4.1 � Microkernel

The microkernel performs common/routine services that systems need to do. Clients
can only access microkernel services through external server APIs. The microkernels
are often structured in layers (RoSta 2010a) (Fig. 2.13).

Controller/
Monitor

Client Application

Client Application

Client Application

Blackboard

Fig. 2.12  Blackboard pattern

70 P.G. del Torno et al.

2.2.4.2 � Reflection

In this architectural style, structural and behavioral aspects of a system are stored
into meta-objects; these meta-objects (meta-object level) are separated from the
application logic components (application logic level). This provides a mecha-
nism for changing the structure and behavior of software systems dynamically
(RoSta 2010a).

2.2.4.3 � Interceptor

The interceptor’s pattern is used to accommodate the system to future changes and
to transparently update the services on runtime, thus increasing the system’s main-
tainability. Therefore, this can ease adding or modifying an intermediate stage in
the process.

2.2.5 � Language Extensions View

This view is focused on disseminating components over a distributed environment
to decouple components.

2.2.5.1 � Interpreter

The interpreter is used when conversion is required at runtime. Requests are often
parsed and executed within the same environment, namely the interpreter applica-
tion. This provides good portability across many different systems. Common pro-
gramming languages using interpretation include Python, Tcl, Perl and BASIC
(RoSta 2010a).

Client Application

External Server 1

External Server 2

External Server
N

Microkernel

Internal Server 1

Internal Server 2

Internal Server N

Fig. 2.13  Microkernel pattern

712  Robotic Development

2.2.5.2 � Virtual Machine

A virtual machine performs similar tasks to the real hardware, but by using software.
It executes an intermediate code, bytecode, rather than a machine code. A program
written in a particular language is compiled into bytecode using a bytecode com-
piler. This architectural pattern offers portability across platforms (if virtual machine
implementation exists). Examples of such systems include JVM, Parrot/Perl VM,
Python VM and Microsoft VM (RoSta 2010a).

2.2.5.3 � Rule-Based System

Rule-based systems consist of facts, rules and an engine that acts on them. Rules are
applied to facts, which may lead to new facts and so on. Examples of such systems
include Prolog language family systems or JBoss Drools Expert (RoSta 2010a).

2.2.6 � Distribution View

This view is focused on disseminating components over a distributed environment
to decouple components.

2.2.6.1 � Broker

Broker architectural patterns can be used to structure distributed software systems
with decoupled components that interact using remote service invocations. The bro-
ker is responsible for coordinating communication, addressing the requirements,
transmitting results and exceptions. It is composed of several components respon-
sible for request handling, invocation, requesting, marshaling the requests, client/
proxy, and so on (RoSta 2010a).

2.3 � Player/Stage

The Player/Stage platform was created by the researchers Brian Gerkey, Richard
Vaughan, Andrew Howard and Nathan Koenig, who were members of the University
of Southern California (Gerkey et al. 2003) during the 1990s; in 2001, it was moved
to Sourceforge and emerged as a free development platform for the research of
robotics and sensor systems.

Its development has since been expanded and the group of developers has been
attached to working groups from different universities and institutions (Kranz et al.
2006). Nowadays, the similarity and versatility between models (real and virtual)

72 P.G. del Torno et al.

place Player/Stage as a standard in open source communities for robotic research
(Collett et al. 2005), with the support of more than 20 laboratories around the
world (Vaughan et al. 2003). Its open platform nature makes it a tool in which
users can collaborate; such is their acceptance that more than 200 users are part of
the Sourceforge community (Player 2010). These include the Intelligent
Cooperative Systems Laboratory from the University of Tokyo (Intelligent
Cooperative Systems 2010), the Intelligent Autonomous Systems Group from the
University of Munich (Intelligent Autonomous Systems Group 2010) and the
Intel Corporation.

2.3.1 � General Features

The Player/Stage Project is open source and widely used for robot control. It is
divided into three parts (Player 2010):

Player: This is a server for controlling devices and repositories of robots (sensors •	
and actuators), divided into several libraries for more flexibility (Mohammed and
Al-Jaroodi 2008). The client communicates with Player using a TCP socket that
can access data, send commands or request changes to the configuration of a
device in the repository.
Stage: This is a multi-robot and bidimensional simulator capable of simulating a •	
population of mobile robots, sensors and objects in an environment mapped in
two dimensions. Stage is designed to support the study of multi-robot autono-
mous systems, so it provides simplicity in its structure. Simple computer models
are simulated for each device instead of emulating the device with great fidelity.
It pursues a temporary reduction approach for the approximate study of these
multi-robot systems.
Gazebo: This is a multi-robot simulator for 3D environments in open spaces. •	
Like Stage, it is capable of simulating a population of robots, sensors and objects,
but it does so in a world of three dimensions. It is capable of generating realistic
and physically plausible feedback from the sensors and how they interact with
objects, including an accurate simulation of rigid body physics.

Player/Stage/Gazebo is implemented in an architecture of three levels
(Mohammed and Al-Jaroodi 2008):

	1.	 The first level is made up of customers who are specifically developed as robot
applications.

	2.	 The second level is where Player provides common interfaces for various robot
devices and services.

	3.	 The third level is the current robots, sensors and actuators.

It is designed to be executed on Linux, Solaris, Mac OSX and Berkeley Software
Distribution of Linux.

732  Robotic Development

2.3.2 � Specific Features

There are several specific features for each one of the tools in which Player/Stage
is divided.

2.3.2.1 � Player

Player is designed to be independent of the programming language and platform
used. The client program can run on any machine networked to the robot and it
can also be written in any language that supports TCP sockets. Any client can
connect and read sensor data from any Player device on any robot (Player 2010).
Player serves as an interface for many different types of robotic devices and pro-
vides drivers for many pieces of hardware. Each device in Player (Player 2010) is
composed of:

Drivers, which can be (Kranz et al. 2006):•	

A code that connects and communicates with a physical device.––
An algorithm that receives data from another device and processes and returns ––
them through the same channel.
A “virtual driver,” which can arbitrarily create data when necessary.––

Interfaces, which are used by the client to write new applications that receive •	
information from sensors or actuators.

Each interface is well defined; therefore, drivers only need to package the infor-
mation into the appropriate interface format and send it to the client. Owing to the
standardization of interfaces and the fact that Player/Stage is designed to be inde-
pendent of language and platform, there are several utilities for the client, written in
a wide variety of programming languages (C, C++, Java, Python, LISP, Ada, Octave,
Ruby, Scheme) (Kranz et al. 2006).

2.3.2.2 � Stage

Stage is a graphic simulator for mobile robots in two dimensions, which initially has
two purposes (Gerkey et al. 2003):

	1.	 To allow for the fast development of controllers for real robots.
	2.	 To allow experimental robots to face possible scenarios for action.

Stage has been specifically designed to develop multi-robot systems; this feature
allows us to experiment with a large number of robots in a virtual way, which means
important savings compared with the real way of simulating with real robots (see
Fig. 2.14).

74 P.G. del Torno et al.

The aspects that allow Stage to support multi-robot systems are:

Fidelity: Stage provides package models of devices more cheaply than if users •	
emulate each device with great fidelity.
Lineal scaling with population: The algorithms used by the sensor models are •	
independent of the number of simulated robots.
Configurable: The device models are configurable and there is a wide variety of •	
sensors, actuators, sonars and so forth.
Player interface: There are hardly any differences between the simulated robots •	
and real robots because of the use of standard interfaces.

There are two libraries in Stage:

Libstageplugin. Stage is normally used as a plugin for Player. Users program •	
controllers for robots and sensors and algorithms for clients for the Player server.
This library provides a multitude of sensors and actuators, including laser and
sonar ones, as well as a differential for the wheels of the robot.
Libstage. Stage can also be used as a C library to provide a simulation of a robot •	
in user programs. This utility is necessary if Player does not fit the needs of the
developer or if we want to use a custom simulation model, based on a previously
known simulation engine.

Fig. 2.14  Multi-robot simulation in stage (Player 2010)

752  Robotic Development

2.3.2.3 � Gazebo

Developed to be fully compatible with Player server devices, the Gazebo simulator
is meant to be the 3D multi-robot platform for Player/Stage. It is capable of simu-
lating a population of robots, sensors and objects in a virtual world in 3D. The
Gazebo-simulated hardware is designed to reflect the behavior of its equivalent in
reality (Koenig and Howard 2004); because of this, the client software uses an
interface that looks identical to the real robot. This simulator is capable of generat-
ing physical situations such as the interaction among objects (including an accurate
simulation of rigid body physics) (Player 2010). Gazebo’s architecture (see
Fig. 2.15) is based on the simulator engine ODE (Open Dynamics Engine) created
by Russell Smith and belongs to the open source community (Open Dynamics
Engine – home 2010). Gazebo uses OpenGL (OpenGL 2010) to render the images
from simulated cameras or simply as a visualization tool (Beck et al. 2007). GLUT
(OpenGL Utility Toolkit) is a tool based on OpenGL windows used in Gazebo for
the visualization of simulations. The reasons for adopting this tool in Gazebo are
its ease of use, light computational load and platform independence (Koenig and
Howard 2004).

The main advantages of Gazebo are:

The simulation of different position sensors such as sonar, laser scanning •	
and GPS.
It uses models of commonly used robots such as Pioneer2DX, Pioneer2AT and •	
SegwayRMP.

Gazebo

Shared Memory
Data/Cmds 0.1 0..n

1..n

D
at

a

Commands

InterfaceClient Model

World

Hinge Slider
Sensor

Laser

Box

Plane

Cylinder

OpenGL

Sphere

Ray

Body

Open Dynamics Engine

Camera

Odometer

Universal

Hinge 2-axis

Ball and Socket

Joint

Fig. 2.15  Gazebo’s software architecture (Hidalgo Bláquez and Cañas 2008)

76 P.G. del Torno et al.

The realistic simulation of rigid body physics; robots can interact with objects •	
(grab, push, etc.).
Support for Player: Robots and sensors can be controlled through a standard •	
Player interface.
Independent operations: external programs to Player/Stage can interact directly •	
with the simulator using the library libgazebo without having to go through Player.
Graphical user interface written on wxPython (see Fig. •	 2.16).

2.3.2.4 � Differences Between Stage and Gazebo

The Player/Stage simulator provides two multi-robot simulators; Stage and Gazebo
are both compatible with Player. Client programs written using a simulator can be
implemented in the other with only minor modifications. The key is in the philosophy
of these two simulators’ designs. Stage focuses on simulating large populations of
robots with low fidelity, whereas Gazebo was designed to simulate small populations
with high fidelity. It is for this reason that the two simulators can be considered com-
plementary and they are used according to the needs of the researcher (Player 2010).

2.4 � Microsoft Robotics Developer Studio

The Microsoft Initiative: Microsoft Robotics (Jackson 2007), created in December
2006, aims to become an industry standard for robot control, so it must overcome
the many technical differences between the robots. It is said that a robot is a system

Fig. 2.16  Gazebo’s graphic user interface (Player 2010)

772  Robotic Development

that connects sensors and actuators via an electronic mean of communication.
To interact with these robotic systems, MSRS provides the mapping between decou-
pled software modules and hardware components or subsystems of the robot
(Chrysanthakopoulos and Nielsen 2007).

To be a friendly application to the user, MSRS also has a graphical interface
where you can run different scenarios. It also has a lightweight runtime environment
and includes a service-oriented routine. As shown below, it is an end-to-end devel-
opment platform that allows programmers to create services for a great variety of
robotic hardware.

2.4.1 � General Features

The architecture design of MSRS follows the pattern for transferring states
(Fielding 2000) and interacts with robots using software services (such as web
services). These services are decoupled, which allows the reuse of the code. The
interaction of services, particularly the control system, is defined through the use
of a configuration file based on XML. This manifest file, written in XML, makes
use of the functionality provided to identify each service available in MSRS. Each
service can be expressed as a state machine and remain available for review
through the network.

By contrast, the use of the SOAP (W3C 2007) allows the availability of a URL in
which the state data can be viewed through any Internet browser. MSRS is imple-
mented using .NET, so a .NET language is required to write directly into MSRS
services.

Typically, the service implementations are written in C#, although any other lan-
guage available in Visual Basic, C++ editors or Iron Python can also be used. In
addition, through the use of SOAP interfaces, every department can communicate
with other interfaces from different programming platforms with the drawbacks
of requiring a more elaborate development and suffering losses in the encoding/
decoding of messages.

There are two important limitations in this kind of implementation (Jackson
2007). First, MSRS is the ideal platform for managing real-time systems (RTS)
since it requires a high frequency of monitoring. The problem comes from the
fact that the system memory will be managed by .NET and this offers no guaran-
tee of stability, so a particular service could be interrupted during periods of
milliseconds.

The solution to this problem is keeping the RTS code running separately from
the robot´s simulation and adding a gateway consisting of an MSRS service to com-
municate between the RTS and the robot. The second limitation is that MSRS
requires that all services must be implemented in an environment where the entire
.NET library is present, and some robots do not have processors capable of handling
these environments.

78 P.G. del Torno et al.

2.4.2 � Specific Features

The fact that MSRS is designed to create robotic applications for a variety of
hardware platforms gives it special characteristics, such as the following (Microsoft
Robotics 2010).

2.4.2.1 � End-to-End Development Platform

MSRS allows developers to build services for a wide variety of robotic hardware
components:

Visual programming. MSRS has a visual programming language (VPL) that •	
allows developers to create and test robotic applications intuitively. VPL is a
programming environment based on graphic data flows instead of flow control.
The programming data flow VPL consists of a sequence of activities represented
as blocks (see Fig. 2.17) tied together. VPL can place several blocks together into
one to work with it in our program.
Simulation of robotic applications in 3D virtual environments. Microsoft Visual •	
Simulation Environment (VSE) is a tool that includes MSRS to simulate the
environments and robots in three dimensions (see Fig. 2.18). The development of
robotics involves an effort in simulations to enable the test of robotic applications
when they face a particular application environment. VSE includes AGEIATMPhysXTM,

Fig. 2.17  VPL user’s interface

792  Robotic Development

which was firstly developed by AGEIA Technologies Inc. and now belongs to the
NVIDIA Corporation. This graphical environment allows for the defining of simu-
lation routines that can use a large set of high fidelity scenarios and a scale display.
The rendering engine is based on the Microsoft XNA Framework tool (an API
developed by Microsoft for the implementation of PC games and Xbox 360) (XNA
Developer Center 2010).
Interacting with robots using Windows or web-based interfaces. MSRS creates •	
applications that permit the user to monitor and control robots using a web
browser. Moreover, the user can send commands to the robot using existing web
technologies such as HTML and JavaScript. Furthermore, cameras can be set on
robots and controlled from remote locations.

2.4.2.2 � Runtime Services

MSRS includes a representational state transfer based on .NET and runtime services
that consist of two components:

Concurrency and coordination (CCR). CCR is a dynamically linked library •	
accessible from any language oriented to .NET Common Language Runtime.

Fig. 2.18  Scenario in VSE

80 P.G. del Torno et al.

It simplifies the writing of code to handle asynchronous inputs from multiple
sensors and outputs to actuators and motors. In the handling of asynchronous
operations, it takes advantage of parallel hardware. CCR is appropriate for an
application model that separates the different components into segments that can
only interact via messages.
Decentralized software services (DSS). This is placed above CCR and it pro-•	
vides a state-oriented model of services that combines the concept of represen-
tation state transfer with a system based on levels and focused on building
scalable applications. In DSS, services are considered accessible resources
through programming and through the manipulation of the user interface. The
DSS application model simplifies the access and responds to the state of a robot
using a web browser or an application based on Windows.
Reuse of modular services using a composite model (Lopez de Toro C and Ribas •	
Xirgo 2008). The use of simple components in the development of high-level
functions foresees the reuse of code modules, as well as better reliability and
replaceability. Services are considered basic blocks to program applications
using MSRS. Services can be used to represent, among other things:

Hardware components: sensors, actuators.––
Software components: user interface, storage.––
Added components: fusion sensors.––

2.4.2.3 � Scalable and Extensible Platform

The programming model of MSRS can be applied to a wide variety of robotic
platforms, enabling the user to transfer his or her achievements across multiple
platforms. The programming interface can be used to develop applications in one or
more processor cores. The scalability of MSRS can be seen in that (Microsoft
Robotics 2010):

It can easily expand its functionality. MSRS’s functionality can be extended •	
through libraries and additional services. Software and hardware manufacturers
can easily make their products compatible with MSRS.
It supports mixed applications. Remote scenarios allow the connection, from a •	
PC to a robot through Ethernet, Bluetooth, 802.11 (Wi-Fi) or RF (Radio
Frequency). Programs can be implemented on PC-based robots that run under
Windows operating systems, allowing fully autonomous operations.
It allows the use of a wide range of programming languages. MSRS robotic •	
applications can be developed using a selection of programming languages,
including those used in Microsoft Visual Studio and Microsoft Visual Studio
Express (C# and VB.NET) and languages such as Microsoft Iron Python. It is
also possible to use other languages that support the architecture based on ser-
vices using MSRS.

812  Robotic Development

2.4.3 � Differences with Player/Stage

Although Player/Stage is an open platform, with all the advantages that entails
customization, MSRS has a number of advantages over it (Lopez de Toro C and
Ribas Xirgo 2008):

The user interface is friendlier thanks to the VPL.•	
The use of PhysX in VSE gives greater quality in simulation and a more realistic •	
environment than Gazebo does.
It has a greater number of modules, which can be added to robots.•	
The number of robots implemented in MSRS is greater than that in Player/Stage •	
(Table 2.3).

2.5 � Webots

Webots (Michel 1998) is defined as robot simulation software that provides an
environment for modeling, programming and simulating mobile robot prototypes.
It was developed over a period of 7 years by Cyberbotics Ltd., a spin-off from the
Swiss Federal Institute of Technology in Lausanne founded in 1998.

Webots has a complete set of libraries that allows the easy transference of
control programs to a large number of real robots in the market (Michel 2004).

Table 2.3  Comparison of robots implemented in MSRS and Player/Stage

MSRS Player/Stage

Aldebaran Robotics NAO –
– Acroname’s Garcia
CoroWare CoroBot –
– Botrics’s Obot d100
Lego Mindstorms NXT and RCX –
– Evolution Robotics ER1 and ERSDK
– K-Team’s Robotics Extension Board (REB) Kameleon

376BC and Khephera
iRobot Create RWI/iRobot based on RFLEX
KUKA Robotics –
Parallax Boe-Bot –
Not present MobileRobots PSOS/P2OS/AROS
Robosoft’s robots –
– Nomadics NOMAD200
– UPenn GRASP’s Clodbuster
Segway RMP Segway’s Robotic Mobility Platform (RMP)
RoombaDevTools iRobot’s Roomba
WowWee RoboSapien –

82 P.G. del Torno et al.

Webots can define and modify the whole configuration of a mobile robot, or
even of a set of different robots acting in the same environment. Moreover, for
each part of the robot it can set properties such as color, texture, weight, layers,
and so on. Webots allows the simulation of robots with a wide variety of actua-
tors and sensors.

Webots runs under different operating systems such as Windows, Linux and Mac
OSX and is aimed at researchers and teachers interested in mobile robotics.
Currently, there are several product licenses:

PRO: This is focused on RandD, has a custom set of physical objects and •	
monitors their capacity using a fast simulation mode.
EDU: This is less powerful and cheaper than the previous version is and focuses •	
on the educational field.

2.5.1 � General Features

Webots has some relevant features that make it a powerful and easy to use simu-
lation tool:

It models and simulates every mobile robot, including wheeled, articulated with •	
legs and even flying robots.
It includes a complete library of sensors and actuators.•	
It allows the programming of robots in many languages such as C, C++ and Java, •	
or even from other kinds of software through TCP/IP.
Controllers can be transferred to real mobile robots, including Aibo, Lego •	
Mindstorms, Khepera, Koala and Hemisson.
It uses the ODE library to simulate physical behaviors.•	
It allows video capture of the simulations in AVI or MPEG format for public or •	
web presentations. It includes several examples of source code drivers and
commercial robot models.
It can simulate multi-agent systems that simplify global and local communication.•	

2.5.1.1 � Robot and Environment Editor

Webots provides a list of sensors that can be installed on the robot and adjusted
individually (range, noise, response, quality of vision, etc.). This library of sensors
includes:

Distance sensors (infrared and ultrasound)•	
Rangefinders•	
Light Sensors•	
Touch sensors•	
Global position sensors (GPS)•	

832  Robotic Development

Inclinometers•	
Compass•	
Cameras (1D, 2D, color, black and white)•	
Receivers (Radio, IR)•	
Position sensors for servo-motors•	
Incremental encoders for wheels•	

Similarly, Webots also has a library of actuators, including:

Differential for wheels•	
Independent motors for each wheel•	
Servo-motors (for the arms, legs, etc.)•	
LEDs•	
Transmitters (Radio and IR)•	

Webots also allows the creation of a custom robotic model and has a simple
system for the creation of complex simulation environments. It is able to create light
flashes, smoke or texture mapping thanks to the use of OpenGL for hardware accel-
eration. Moreover, Webots can import 3D models from 3D modeling software that
follow the VRML97 standard (Vajta and Juhasz 2005). For the simulation of robots
with multiple complex joints or camera systems (see Fig. 2.19), this feature makes
it a suitable tool for humanoid robots.

Fig. 2.19  Humanoid robots modeled for Webots (Michel 2004)

84 P.G. del Torno et al.

2.5.1.2 � Realistic Simulation

The simulation system used in Webots is based on virtual time. This makes simulations
much faster than tests performed with a real robot (Hayes et al. 2003). Depending
on the complexity of the robot’s configuration and the benefits of the computer,
simulations can be up to 300 times faster than a real robot when using the fast mode.
Given the need to conduct a detailed study about the robot’s way of working, Webots
implements a step-by-step mode.

The robots with joints require accurate physical simulation. Because of this,
Webots is based on ODE to perform accurate physical simulations (Mojon 2004).
For each robot component, it is possible to specify:

The mass distribution matrix.•	
The coefficients of kinetic and static friction.•	
The coefficient of elasticity.•	

To place more emphasis on the realism of the simulation, each component is
linked to the coordinates used for collision detection; devices with servo-motors are
controlled by programming the position or velocity. The user can interact with the
simulation while it is running using the mouse to change the vision of the environ-
ment or to move and rotate objects.

2.5.1.3 � Programming Interface

Webots allows programming the robot in C as shown in Fig. 2.20; likewise, it also
includes a Java programming interface.

Moreover, every Webots controller can be connected to third-party software such
as Matlab, LabView or Lisp through a TCP/IP interface. Webots also adds the pos-
sibility of implementing a supervisor program to simulations that require long com-
putational time when the simulation needs the evaluation of many parameters
(Cyberbotics 2009).

2.5.1.4 � Transference to Real Robots

Webots allows the transference of the control code from real to simulated robots:

Khepera and Koala: This has a C cross-compiler of Webots controllers and •	
remote controls in every programming language.
Hemisson: This has a finite state automaton, graphically programmed for the •	
remote control and autonomous modes of execution.
LEGO Mindstorms: This has a cross-compiler for RCX Java of Webots control-•	
lers based on LeJOS. Aibo: It has a C/C++ cross-compiler for Webots controllers
based on Open-R SDK.

Fig. 2.20  C code to program a robot (Rognlie 1995)

86 P.G. del Torno et al.

2.5.2 � Implementation

2.5.2.1 � Khepera

The Khepera mobile robot, produced by the Swiss Federal Institute of Technology
in Lausanne, is characterized by its small size and its use in teaching and develop-
ment processes. Wang et al. (2000) applied Khepera to an environment to create
Webots (see Fig. 2.21). The features of Webots that led Wang to use it with the
Khepera robot are described below:

The simulation program can be easily transferred to real robots.•	
Its use in previous simulations in Khepera (in the fields of autonomous systems, •	
intelligent robots, evolutionary robotics, machine learning, computer vision and
artificial intelligence).
Both the real and the simulated robots can be programmed in C using the same •	
Khepera API, making the driver source code compatible between the simulator
and real robot.
Webots is also assessed in the use of any other programming language (MATLAB, •	
Lisp, Java) and in the modeling of 1D and 2D cameras and the design of 3D
environments using OpenGL.

Fig. 2.21  Example of a simulation of a Khepera robot with Webots (Zlajpah 2008)

872  Robotic Development

Wang concluded that the possibilities for developing new modules for the
Khepera robot and its inclusion in the Webots simulator make it one of the most
powerful tools to assist in the RandD of mobile robotics.

2.5.2.2 � Aibo

Aibo is a quadruped robot shaped like a dog developed by Sony. Hohl et al. (2006)
compared the data obtained when modeling the Aibo robot in Webots with data
from the real robot. To do so, they developed a controller in Webots to remotely
control the robot. The process for the experiment was as follows:

A simulation of the Aibo robot in Webots was made by using the official data •	
model, which specified its appearance, kinematic structure, dynamic properties
and way of controlling (Fig. 2.22). However, some sensors could not be simulated
in Webots because they did not correspond to the nodes described in it.
After creating a graphical user interface, a robot controller was programmed in •	
Webots. The language used was C to facilitate the work when shifting the source
code to Aibo. During implementation, it was observed that the object represent-
ing the sensor simulation represented the actual sensor in Aibo. As a result, the
call to the read function in the sensor returned the actual value.
In cross-compiling, using C++ to write programs for OPEN-R and C for the •	
Webots controller facilitated the combination of program files from the Webots
controller with the source files that define the specific functions of Aibo

.

Fig. 2.22  Aibo simulation in Webots

88 P.G. del Torno et al.

2.5.2.3 � NAO

The NAO (from Aldebaran Robotics) is often present in the RoboCup (RoboCup
2010). Certo (2009) made a model and a simulation of NAO in Webots. To make the
simulation, he took into account the rules of the RoboCup, where every game has
two types of controls:

Soccer Player: This is the program that controls the robots.•	
Supervisor: This is the program that controls the game.•	

Webots has the ability to save simulations in .motion files by applying Motion
Manager. Thus, the strategies and movements of the robot can be set before the game.

89I.G. Alonso et al., Service Robotics within the Digital Home, Intelligent Systems,
Control and Automation: Science and Engineering 53, DOI 10.1007/978-94-007-1491-5_3,
© Springer Science+Business Media B.V. 2011

Abstract  In this chapter, a classification of service robotics technology within the
digital home is established. This is followed by several examples of the different
categories of service robots. The classifications include vacuuming and cleaning,
gardening and lawnmowers, personal robotic assistants, telepresence, teleassistance
and health, entertainment, home security and privacy and robotic learning categories.
Some of these are analyzed and their parts described using SysML formal, open and
standard notation. Finally, a brief note about the synergies between professional
service robots and home service robots is included.

3.1 � Introduction

The integration of computer and human activities has allowed computer science to
push the boundaries of technology and today there are more than 6.5 million inte-
grated units in use worldwide in 2007. This figure, as seen in 2008 edition of World
Robotics report, and is estimated to rise to 18 million units by 2014 (Gomez 2008).
Accordingly, the subset of home service robotics is expected to have 18 million
robots by 2011 (IFR/WorldRobotic 2008).

The development of service robots (Schraft and Schmierer 2000) started in the late
1950s and early 1960s with the first industrial robot known as Unimate designed by
George Devolop and Joe Engelberger (Mellon Carnegie 2010). Joe also designed
Unimation and was the first to market with this machine, earning him the title of “Father
of Robotics.” By the 1980s, modern industrial arms had already increased their skills
and performances through microcontrollers and modern programming languages.

I.G. Alonso (*)
University of Oviedo, Oviedo, Spain
e-mail: gonzalezaloignacio@uniovi.es

Chapter 3
Service Robotics

Ignacio González Alonso

90 I.G. Alonso

These advances were achieved thanks to large investments in automotive companies.
Since its beginnings, robotics has been limited to very small and isolated areas
apart from the automotive industry, such as the defense or space sectors. In the
past decade, because of the economic boom of the 1990s, this has extended into
some of the fastest growing fields such as aviation and pharmaceuticals
(Barrientos 2002).

With its tremendous growth and widespread use in most prosperous sectors,
the production of robots has been optimized, resulting in a significant reduction
of costs. It is encouraging that robots have extended to several sectors: construc-
tion, agriculture, tourism and ITC among others. A wide range of robots aimed
at this particular area is also being developed and marketed at the same time as
the industrial ones.

Expectations are high because of a number of factors. These include a robust
public acceptance of the first commercial robots, the wide acceptance of IT in gen-
eral, and familiarity of the population with robots in the workplace, along with a
sufficient level of technology at an affordable price. All the evidence implies that
robots will become common, and having multiple robots in every home will be as
frequent as finding several computers in the same house.

Service robots do not have a precise definition; however, the International
Federation of Robotics (IFR International Federation of Robotics 2010) decided to
define them as “robots that work in an autonomous or semiautonomous way to
develop useful services, oriented to the well-being of humans and work teams,
excluding the repetitive or tedious tasks.” The International Service Robot
Association (Pransky 1996) defines service robots as “machines that interact and
think with the objective of increasing the abilities of the human being and his pro-
ductivity.” Both definitions have some intrinsic ambiguity, but are the best found in
the current literature. For instance, could an industrial robotic arm be considered a
service robot? It is an open question to be answered by applying the definition of a
robotic platform rather than from only a technological perspective.

Kawamura et al. (1996) preferred to define service robots as “sensor-based
mechatronic devices that perform a useful service in the activities of humans.”
According to this definition, service robotics stand somewhere between industrial
robots and space robots.

The EUROP (European Robotics Technology Platform) (Wendel and Bischoff
2009) distinguishes five areas of application to classify the different types of
robots:

Industrial: Work, partner and logistic robots.•	
Professional Service: Work, collaborator, logistic, monitoring, exploration and •	
education robots.
Domestic Services: Staff, logistic, monitoring and education robots.•	
Security: Staff, logistic, monitoring and exploration robots.•	
Space: Work, collaborators, logistic and exploration robots.•	

Currently, robots are being developed for most human environments, and they
are becoming generally available because of price reductions. Therefore, the new

913  Service Robotics

category of personal service robotics can be analyzed. The following subsections
categorize them and give the most representative examples based on the market, the
science and the author’s subjective criteria (Fig. 3.1).

3.2 � Personal Service

3.2.1 � Cleaning and Vacuuming

The main part of the personal robotics market share is held by the vacuuming robots
of IRobot. They are the best example of how an application can push the limits of
manufacturing and devise a robotics solution to a common problem. The following
examples show three different approaches to the same problem.

3.2.1.1 � Roomba and Scooba

The Roomba series is the biggest product line for robotic vacuuming within a
private home (Jones 2006). Its robots, from series 500 (IRobot 2010), are focused
on the house environment and are the best selling service robots with approximately
seven million units sold.1 They have become more and more autonomous over

Fig. 3.1  Home service robotics – body of knowledge

1 This figure has not been verified by the manufacturer, but the data were gathered directly from a
presentation from the manufacturer.

92 I.G. Alonso

recent years, and with more characteristics. Nowadays, IRobot also has the 600
series for inmotic and industrial environments.

These robots clean up to four rooms in a pseudorandom way, which is an effec-
tive compromise between cost and reliance on artificial intelligence. Figures 3.2 and
3.3 show a Roomba 563 Pet series and the Scooba (the floor cleaning version of the
Roomba).

ICreate has also been developed for the US market, which is the research platform
for IRobot (Fig. 3.4).

Fig. 3.2  IRobot Roomba 563

Fig. 3.3  IRobot Scooba

933  Service Robotics

�Notes About Development with Roomba Robots for the Digital Home

	  I	 Communication protocol
Given the advantages offered by UPnP (Santana 2005), this was the protocol
chosen for service robots such as Roomba. UPnP works with an architecture that
provides point-to-point connectivity to give users the possibility of automatically
obtaining dynamic IP addresses.

	II	 Microsoft Robotics Developer Studio and Player/Stage in the IRobot Roomba case
The processes performed by robots require constant interaction between software
and hardware elements, so it is often necessary to combine the knowledge of both
to carry out the development. This can be achieved by using simulation techniques;
Microsoft Robotics Developer Studio and Player/Stage are both open platforms
(one free but not open source in the concept definition) that can help with the task.
They provide Roomba robots with two platforms for control and simulation.

3.2.1.2 � Mint Automatic Floor Cleaner

As stated in the above subsection, the navigation algorithm for the Roomba series is
pseudorandom. To avoid unclean spots and to reduce operation time, new products
have been arriving in the market with improved navigation algorithms and systems.
Mint (Mint Evolution 2010) is one of the two that will be described in this section.

Mint’s navigation algorithm comes from NorthStar navigation (North Star
Evolution Robotics 2010), which makes this robot a more efficient navigation plat-
form than the IRobot alternatives. However, it also mops so it could fit better the
expectations of the final user if he or she has a wooden floor (Fig. 3.5).

«block»
Roomba

«interface»
Actuators

«interface»
Sensors

«block»
Bumper

«block»
Optical Sensor

«block»
Detect Dirt

«block»
Infrared

«block»
Speaker

«block»
Led

«interface»
Motor

«block»
Motor Movement

«block»
Vacuum Motor

«block»
Anti-fall Sensor

«block»
Battery Sensor

1...n

1...n

1...3

2

Fig. 3.4  IRobot Roomba SysML block diagram

94 I.G. Alonso

3.2.1.3 � IClebo Cleaning Solutions

Another option in the competitive market of vacuuming solutions is from Yujin
Robotics (Yujin Robot 2010). With one low cost and a different intelligent solution,
the IClebo platforms are viable alternatives for vacuum cleaning.

The IClebo Home is not that different from the IRobot technologies, but the
IClebo Smart robot is really a more powerful alternative to the IRobot and Mint
combined. The disadvantages of these products are their size and weight but
depending on the use, it would be a good idea to have a big dirt deposit chamber
(Fig. 3.6).

Fig. 3.5  Mint

Fig. 3.6  IClebo smart

953  Service Robotics

3.2.1.4 � Pool Cleaners

Another interesting application for automatic cleaning is the swimming pool cleaning.
Different manufacturers compete in this segment using contrasting approaches. The
Aquabot (Aquabot 2010) manufacturer is another alternative with its Aquabot Pool
Rover (Fig. 3.7).

3.3 � Green, Agricultural and Lawnmowing

The second most popular application for home robotics is automatic lawn mowing.
Like vacuum robots, lawnmower robots focus their services on a specific application.
The robotic platform infrastructure behind it is similar to that of vacuuming systems,
but it is designed for outdoor work, as can be seen by comparing the Roomba SysML
block diagram and the LawnBot SysML diagram. The presence of markers to help
the robot fix its working area was initially its main limitation. Modern robots are now
more context-aware, and their sensors and localization systems allow them to auton-
omously navigate inside their working areas. Common to all solutions in this subset
is the presence of safety systems to avoid people or animals (Figs. 3.8 and 3.9).

Despite the large and growing markets for service robotics in homes and smart
cities, enormous research continues on autonomous machinery for applications to
agro-farming tasks.

3.3.1 � Green Botics

IRobot and other manufacturers are starting to consider efficient energy manage-
ment as an important feature in their products. The DH Compliant standard set by

Fig. 3.7  Aquabot Pool Rover

96 I.G. Alonso

its robot manufacturer’s consortium, similar to efforts seen in Europe, is also being
applied to the same problem and finding the same solutions. The challenge is huge,
but it is a must for any manufacturer seeking an opportunity in the modern robotic
home environment.

3.4 � Home Personal Robotic Assistants

Although they are not yet in the mainstream, different applications for home personal
robots are resulting from the research efforts of a number of private and public initiatives.
As with any type of social skills (Breazeal 2004), robotic platforms must try to interact

Fig. 3.9  KA LawnBot (LawnBott 2010)

Fig. 3.8  Friendly Robotics LawnBot (Robomow 2010)

973  Service Robotics

with humans in unstructured environments, and they have done so with some success.
These kinds of platforms are Human-shaped and are being developed to ultimately
replace the human majordomo or maid. They have also developed some interoperabil-
ity software services to equip any home robotic platform with some intelligence, energy
management and localization systems according to the DH Compliant protocol. The
following robotic platforms are serious attempts to achieve that final goal.

3.4.1 � Examples

Personal Robot from Willow Garage, the PR2 (Cousins 2010; Willow Garage
2010) is a robotic platform for research and education. Its main characteristic is the
use of ROS (the open source operative system, which is a fork from a Linux distri-
bution with real time and other robotic framework utilities). It has been used for
automatic plugs into electric walls as well as for experimenting in different unstruc-
tured scenarios present in a house (Fig. 3.10).

In the near future, linked to a price reduction, it may be possible to find another
interesting alternatives for home personal robotics. The FutureBot (Futurerobot
2010), a restaurant and museum assistants from Futurerobot (Fig. 3.11).

Fig. 3.10  PR2 from Willow
Garage

98 I.G. Alonso

The Sacarino project (Cartif 2010) has been used inside the DH Compliant
consortium’s interoperability efforts (at the date of publication still protected by an
NDA contract).

Moreover, it is fair to mention the Honda Asimo (Honda 2010) and similar
solutions for other two-legged robots such as Reem-B from Pal-Robotics (Pal
Robotics 2010) and others (Fig. 3.12).

Asimo will require an entire book for itself, and it does not fit the category of
home robotics because of its company’s price policy (Fig. 3.13).

Fig. 3.11  FURO from Futurerobot

993  Service Robotics

3.4.2 � Home Robotics Interoperability: DH Compliant Services

Software services in a network environment have their own role in house robotic
assistants. Digital Home Compliant is an initiative led by Ingenium, University of
Oviedo, Domótica Davinci, University of Sevilla, Cartif and Movirobotics that aims
to achieve an interoperability virtual device based on DHC-Protocol and UPnP. It
has several services to help a robot interoperate with other robots and with home
and building automation services. For instance, DHC-groups (for house services
cooperation), DHC-Energy (for green energy management), DHC-Intelligence (for
business rules developments and machine learning), DHC-Localization (to get the
position of a device) and DHC-Security&Privacy (to help the user in managing its
privacy and protecting its home).

The architecture of DHC is depicted in Fig. 3.14.

Fig. 3.12  Honda Asimo
(Sakagami et al. 2002)

100 I.G. Alonso

«block»
Walk/Operating

Control Unit

«interface»
Control Unit

«interface»
Actuators

«interface»
Sensors

«block»
Asimo

«block»
Foot Area Sensor

«block»
Torso Gyroscope

«block»
Acceleration Sensor

«block»
Servomotor

«block»
Drive Unit

«block»
Harmonic Speed

Reducer

1...n

1...n

1...n

1...n

1...n

1...n
1...n

«block»
Wireless

Fig. 3.13  Asimo SysML block diagram

Fig. 3.14  DH Compliant architecture

1013  Service Robotics

3.5 � Telepresence, Teleassistance and Robotic Health Services

The concept of telepresence (Graf et al. 2004) has been widely developed by
modern research and market applications. It reflects the idea of being in two
places at the same time, and mixes the power of ITC with robotic mobility, help-
ing the owner sense and act remotely through the teleoperation of these platforms
through a network (nowadays that means the Internet). Three examples of these
platforms follow.

The most cost effective option for telepresence is the Rovio Wow-Wee (Begum
et al. 2010; WowWee 2010). This is a cheap alternative, but incorporates an
indoor navigation system based on an infrared vision recognition system. Its
robot wheels are multidirectional and it can be compared with a 4 × 4 in the auto-
motive sector. Its main weak point is that it does not have a camera at the height
of a human face. However, its moving camera has tried to satisfy that need
(Fig. 3.15).

Despite the price, it is of interest to analyze the Anybots QB telepresence solution
(Fig. 3.16).

The final alternative shown is the Rovio competitor, the Spykee (Spykee World
2010) (Figs. 3.17 and 3.18).

3.6 � Entertainment

Automatisms were already available when robots started to be used as entertain-
ment tools (Karakuri 2010) or to perform magic tricks. Modern entertainment
robotics applications for the digital home are linked with robotic toys. Moreover,

Fig. 3.15  Rovio Wow-Wee

102 I.G. Alonso

Fig. 3.16  Anybots QB

Fig. 3.17  Spykee

1033  Service Robotics

they have developed platforms intelligent enough to interact with their owners
(Kerstin et al. 2003). They have also developed kits for adults who discovered that
they enjoyed learning how to use them and how to build variations of their own. Of
course, there are other entertainment robots, such as those for shopping malls,
theaters and so on. But they are outside the scope of this book.

3.6.1 � Playing

There is an enormous variety of robotic toys presenting many benefits and innova-
tive approaches in amusement and assistive technology for children with autism.
Failures in this area will help other robotic toy developers understand the fact that
this market has not only typical high-technological device constraints, but also
limited budget constraints for customers.

«block»
WLAN Wifi

«block»
USB

«interface»
Control Unit

«block»
Pekee II Ultimate

«interface»
Sensor

«interface»
Actuators

«block»
Motors«block»

Temperature Sensor
«block»

Light Sensors
«block»
Bumper

«block»
Highly Accurate

Odometers

«block»
Infrared Telemeter

Module

«block»
Infrared Telemeter

Module

«block»
Firewire

1...n

1...n

1...n

1...n

Fig. 3.18  Spykee SysML Block diagram

104 I.G. Alonso

3.6.1.1 � Tribot

From the WowWee (WowWee 2010) company, this robot explores several social
interactions with children and is a good platform to introduce elementary program-
ming concepts to youngsters. Its remote control is the perfect excuse to show how
to program the device with a highly intuitive interface (Fig. 3.19).

3.6.1.2 � Robotic Teddy Bear

From the MIT Media Lab, the Teddy Bear (Matsumaru 2009) is a platform for
developing health solutions (MIT media lab 2010). Examples of those health appli-
cations of that robot are autism treatment or old people care. Of course, the research
in personal health appliance should have also synergies with those robots.

3.6.1.3 � Pleo

“In all science, error precedes the truth, and it is better it should go first than last” Hugh
Walpole

Technicians who develop robots sometimes make mistakes, just like any other
human. One of the most frequent mistakes is losing focus on solving market
needs, confusing the fulfillment of a customer’s expressed desires with the
beauty of a particular technique. While understanding the ease of humanizing a

Fig. 3.19  Wow-Wee Tribot
(Marco et al. 2010)

1053  Service Robotics

device, one can lose sight of the fact that developing a product without clearly
understanding the needs of the customers could lead to failure. The same prin-
ciple applies to not understanding that a $600 toy is not a toy; no matter what the
Pleo functions were. The Pleo toy had those problems; and consequently, it failed
(Fig. 3.20).

3.6.2 � Robotic Kits

This section explores some robotics kits that are having enormous success in South
Korea in terms of developing new applications for sumo or martial arts robot games
(Robobuilder 2010). Examples of these kits include Robotis and RoboBuilder
(Figs. 3.21 and 3.22).

Fig. 3.20  Pleo robot toy

Fig. 3.21  Boe Bot

106 I.G. Alonso

3.7 � Security and Safety Robotic Services

José Luis Rubio Pérez
Movirobotics Albacete Spain

3.7.1 � Home Security

Home security is a problem with no widely accepted solution. Therefore, there are
many opportunities to achieve a marketable solution for mainstream sales. It is
remarkable that some attempts today in this category can be used inside buildings
and homes to provide better protection and surveillance. It is impossible to
describe all the security platforms that have been developed for this purpose, so a
few examples will be considered as potential future home security devices. The
following five potential robotic platforms could play a role in home security
(Figs. 3.23–3.28).

It is not only in homes that security robots play a role, but also the defense sector
has been a ready market for many solutions. If these become affordable (and they
will), they will have an even more expanded role in our smart cities and societies of
the future. Examples include Predator (General Atomics 2010), Big Dog (Wooden
et al. 2010; Boston Dynamics 2010) and the Samsung surveillance unmanned
vehicle (Samsung 2010).

Fig. 3.22  RoboBuilder

1073  Service Robotics

3.7.2 � Privacy Considerations

All technologies have some risks, and service robotics is no different. Therefore, the
importance of understanding and managing these questions is crucial. Inside the
digital home, a key question is that of privacy and the openness of traditionally
protected space in homes.

Fig. 3.23  IRobot PackBot

Fig. 3.24  Pointman robot

108 I.G. Alonso

Fig. 3.25  mSecurit

«block»
Wireless

«block»
Wimax

«interface»
Control Unit

«block»
Msecurit

«block»
Image Camera

«block»
Infrared Thermal

Camera

«block»
Navigation GPS

«block»
Obstacle Detection

Sensors

«block»
Microphone

«block»
Temperature

Sensor

«block»
Radar Sensor

«block»
Speaker

«interface»
Sensor

«interface»
Actuators

«interface»
Camera

1...n 1...n

1...n1...n

1...n

Fig. 3.26  mSecurit SysML block diagram

1093  Service Robotics

An interesting approach to this problem can be obtained from a comparison with
privacy management inside social networks or O.S. security policies. This might
show how the intentions of users have to be prioritized over any other consideration
within their own home. The right to have control of your home is not only a primary
feature of privacy acts of different countries, but exists in the upper range of laws
and norms of any democratic legal system, such as constitutional or root law books.

Fig. 3.27  Canadarm2
(Mamen 2003)

Fig. 3.28  Ultra light unmanned aerial vehicle (UAV)

110 I.G. Alonso

Therefore, it is of high importance to manage this feature carefully if digital home
robots are to be effective.

3.8 � Home Robotic Assisted Learning

Learning is a lifetime task, from childhood to adulthood. Science and technology
benefit from the visualization and motivation a robot gives students in the areas of
physics, mechanics, electronics, computer science, and other similar disciplines.
Furthermore, mobile phones connected to our houses and robots allow us to satisfy
both our random curiosity and our ongoing learning needs. E-learning is outside the
scope of this book, but there exist different robotic software and hardware that rep-
resent good examples of robotic learning solutions.

For example, the Lego NXT Mindstorms is the best attempt at a cost effective
and powerful platform for robotic facilities. In addition, it has an enormous
deployed base so it can be seen as the de facto standard in the learning robotics area
(Fig. 3.29).

Of course, there are hundreds of problems that admit of robotic solutions, but we
would like to mention one more that is only a software platform. This is the suite for
robotic programming and simulation from National Instruments Lab View (NI
LabVIEW 2010) (Fig. 3.30).

Fig. 3.29  Lego NXT Mindstorms

1113  Service Robotics

3.9 � Other Service Robotics in the Professional
and Home Environment

The fields of professional service robotics, automated logistics and industrial robots
will create enormous synergies with the digital home. Here it will be the same situ-
ation as in security robotic solutions. They will be the leaders and the pushers for
new technologies that will came to the mainstream when the expected price
reduction occurs.

3.9.1 � Professional Service Robots

Professional service robotics is the branch of service robotics with the best growth
forecast, since the industry is already using solutions similar to home robotics but in
a different context. The aim of professional service robotics is to enhance the ability
of people to perform tasks required by their jobs. The current professional robotics
strategy is to replace or cooperate with the worker on tasks involving high risk or
tedious tasks using intelligent robotic co-workers or teleoperated robots under
constant human supervision. However, other solutions are being developed to give
a greater capacity to activities that demand important physical skills or if operators
are disabled. There is no doubt that, in the unstoppable search for the lowest costs
and maximum benefit, a more profitable way to use professional robots instead of
cheap workers from underdeveloped countries will be found (Fig. 3.31).

Fig. 3.30  National instruments lab view

112 I.G. Alonso

The main application fields of professional service robotics are the following.
All have enormous potential within the digital home robotics context:

Field and outdoors (agriculture, forestry, mining, etc.);•	
Autonomous transport (fleets of vehicles, driver assistance, etc.);•	
Professional cleaning and the inspection of different kinds of infrastructures •	
(buildings, ships, pipelines, bridges, etc.);
Construction and demolition;•	
Logistics (logistical tasks in hospitals and offices and the delivery of mail/food/•	
medicine, logistics in workshops, etc.);
Underwater applications (exploration of the marine fund, inspection and repairing •	
of pipes, etc.);
Medical robots and rehabilitation; and•	
Emergency situations (natural disasters such as fires, earthquakes, floods and •	
human disasters such as bombings, explosions in chemical plants, energy, etc.)
(Figs. 3.32 and 3.33).

Fig. 3.31  Corobot

1133  Service Robotics

«block»
RS32

«block»
USB

«block»
CAN

«block»
LUDS

«block»
Firewire

«block»
Scitos G5

«block»
Position

Encoders

«block»
Bumpers

«block»
Ultrasonic Laser

Range

«block»
Microphone

«block»
Wifi

«block»
Bluethooth

«block»
C++ Metralabs

Robot-API

«block»
Fedora Core 8

«interface»
Software

«block»
Control Unit

«interface»
Sensors

«interface»
Camera

«interface»
Actuators

«interface»
Comunication Port

«block»
Digital Camera

«block»
Minicamera

1...2

1...n

1...n 1...n

Fig. 3.32  Scitos GT SysML block diagram

114 I.G. Alonso

Fig. 3.33  RobuCab from
Robosoft

115I.G. Alonso et al., Service Robotics within the Digital Home, Intelligent Systems,
Control and Automation: Science and Engineering 53, DOI 10.1007/978-94-007-1491-5_4,
© Springer Science+Business Media B.V. 2011

Abstract  In recent decades, the number of robotic standards has increased, and this
progress has encouraged the integration of service robots and growth in the number
of robotic devices with various communication protocols used in the smart home. In
this chapter, we study different standards that could be used for the integration of
mobile robots and unmanned vehicles in the digital home. As will be seen, the ori-
gins of these standards are twofold. On the one hand, standards have been devel-
oped in a military context such as JAUS or 4D/RCS, which is logical given that the
control and coordination of autonomous vehicles has many potential applications in
this field. On the other hand, standards have been developed in a computer science
context, where interoperability between the different agents that may interact in a
networked environment is a major problem.

4.1 � Introduction

During the early years of computing science, only large organizations such as
NASA or the US government could afford to have computers. At that time, no one
would have ever imagined the astonishing evolution of computers together with the
continuous price drop in consumer electronics. Nowadays, there is at least one
computer in almost every home in developed countries, with enough computa-
tional power to ridicule the first computer systems. Advances due to the evolution
of computers are the first breakthrough in the field of the digital home.

M.R.F. Alcalá
Infobótica Research Group, University of Oviedo, Oviedo, Spain
e-mail: fernandezmercedes@uniovi.es

J.M. Maestre (*) • J.R. de la Pinta
Department of Systems and Automation Engineering, University of Seville, Seville, Spain
e-mail: pepemaestre@cartuja.us.es; jrdelapinta@cartuja.us.es

Chapter 4
Integration of Service Robots
in the Smart Home

Mercedes R. Fernández Alcalá, José M. Maestre,
and Javier Ramírez de la Pinta

116 M.R.F. Alcalá et al.

The next revolution in the smart home is expected to come from the world of
robotics. At present, the use of robotics is limited to industrial areas, although ser-
vice robots that assist us in routine tasks such as cleaning the house, mowing the
lawn or even preparing meals are becoming common. Nevertheless, different prob-
lems have to be solved before service robots become as popular as computers. In
particular, interoperability between the different systems that may exist in future
homes is an ongoing issue.

The idea that the reader must have in mind during this chapter is interoperability.
Interoperability is the key component to solving the smart home jigsaw puzzle.
Thus, in this chapter, we will place special emphasis on the interoperability aspects
of the different standards. In addition, different research projects on the interopera-
bility and control of robotic systems and unmanned vehicles will be surveyed.
Behind all these standards and projects, there are stories of success and failure, and
many valuable lessons about the complex world of interoperability. At this point, it
is difficult to know if any of these alternatives will prevail and become a consoli-
dated standard for the integration of robots in the digital home. However, what we
know for sure is that any succeeding standard will have learnt from all that will be
presented here.

4.2 � Military Standards

4.2.1 � Joint Architecture for Unmanned Systems (JAUS)

The JAUS standard was developed for the US Defense Department (English 2007)
by the JAUS Work Group, which is composed of research groups from the govern-
ment (US Army ARMDEC), industry (SSC San Diego, WINTEC Inc., iRobot) and
academia (Virginia Tech, University of Florida). JAUS was defined as an open and
scalable standard that would meet the needs related to the communication of
unmanned systems regardless of the platform used. The development of JAUS has
tried to meet the following six goals (Wade 2006):

	1.	 Independence of the vehicle’s platform;
	2.	 Isolation of the mission;
	3.	 Hardware independence;
	4.	 Independence from the technology;
	5.	 Independence from the operation; and
	6.	 Independence from the connection used.

The JAUS architecture is composed of three levels:

Level 1 – Inter subsystem: The purpose of this level is to support interoperability •	
between subsystems. It is responsible for specifying requirements between the
subsystems (Robot to Robot, Robot to Controller, Controller to Controller).

1174  Integration of Service Robots in the Smart Home

Level 2 – Inter nodal: The purpose of this level is to support the interoperability •	
between nodes. To this end, it specifies requirements between the subsystems
(interoperability between data loads or between the on-board control and data
loads).
Level 3 – Inter components: The purpose of this level is to provide a reusable •	
software source. It specifies requirements for each component (component by
component, such as sensors and motors).

In 2004, a process of transition from the JAUS Work Group to the Society of
Automotive Engineers (SAE 2010) started. This developed the standard through the
AS-4 (Technical Committee on Unmanned Systems) (SAE 2006). The following
norms migrated from JAUS to a framework based on the following services:

JAUS Transport Standard, AS5669 (SAE-TS 2009). This is in charge of defining •	
the creation of packets with the destination and source addresses and TCP and IP
headers and links.
JAUS Core Service Set, AS5710 (SAE-CSS 2010). This is responsible for pro-•	
viding the means for the software entities in an unmanned system to communi-
cate and coordinate among their activities.
JAUS Mobility Service Set, AS6009 (SAE-MSS 2009). This is in charge of making •	
the migration from the first drivers to the new development platform of the AS-4.

Today, the main application of JAUS is focused on the use of unmanned civilian
and military vehicles.

4.2.1.1 � Application of Military Unmanned Vehicles

A major center for development of military unmanned vehicles exists at the SPAWAR
Systems Center (SSC) in San Diego (California). There, a JAUS work team focuses
on the development of surveillance systems, such as MDARS (Mobile Detection
Assessment Response System), which are used in autonomous vehicles for military
bases with restricted access.

The US Defense Department uses MDARS to meet security and surveillance
needs in hostile environments for humans. In this way, it provides an integrated
solution, where unit patrol vehicles are controlled just by a single control operator.
Moreover, SSC has developed a distributed processing system called Multiple
Resource Host Architecture (Everett et al. 2000) which, along with MDARS, was
tested by the JAUS work team in December 2003 to demonstrate the level of interop-
erability between control operator units (COUs) and unmanned systems (Nguyen
2005). In this experiment, COUs were equipped with a screen capable of displaying
the statuses of each patrol vehicle, and thereby they controlled each one of the
unmanned systems (Carroll et al. 2004).

These experiments show how the JAUS architecture provides interoperability for
the remote control of unmanned systems while fulfilling the objectives mentioned
in the general characteristics section.

118 M.R.F. Alcalá et al.

4.2.1.2 � Application of Civil Unmanned Vehicles

In 2004, Virginia Tech launched a project to implement simultaneously the JAUS
standard in the following seven unmanned vehicles:

1.	 MATILDA
This was the first interoperable vehicle designed by Virginia Tech in 2002. It was
designed as an evaluation, development and demonstration platform of the JAUS
standard. It had to fulfill some functional requirements:

It had to be teleoperable through a COU;•	
It had to be capable of driving autonomously via GPS commanded by a COU;•	
It had to interact with other subsystems of JAUS (either vehicle or COU);•	
It had to accept JAUS workloads from other devices;•	
It had to allow an easy modification and/or addition of intelligent software; and•	
It had to ease the demonstration, evaluation and testing of the JAUS standard.•	

	2.	 JOHNNY-5
This was developed in 2004 to participate in the AUVSI Intelligent Ground
Vehicle Competition in 2005. Owing to its robustness and its capability to navi-
gate via GPS, it quickly replaced MATILDA. The main problems of this model
were the failures in the camera interface and the starting force on the wheels.

	3.	 CADILLAC SRX
Grant Gothing and Jesse Hurdus, researchers from Virginia Tech, managed to
implement the JAUS standard on the Cadillac SRX, creating the first luxury
unmanned vehicle in the world (Gothing and Hurdus 2006). The challenge of
this model depended on development of a JAUS-based vehicle able to use
potential field methods (Koren and Borenstein 1991) for navigation. The result
was the creation of a software topology, based on operational subsystems,
nodes and components (see Fig. 4.1).

However, when they launched this vehicle in the Blind Driver competition
(Blind Driver Challenge 2010) they detected some issues that could be improved

Fig. 4.1  JAUS topology (University of Seville 2010)

1194  Integration of Service Robots in the Smart Home

(Faruque 2006). For example, every driver had to know the turn angle of the
vehicle and, according to the control messages of the JAUS specification, only
one controller per component was allowed.

	4.	 GEMINI
Gemini was developed as an extension of Johnny-5. The idea was to create an
articulated robot with four wheels. It won the JAUS Award at the AUVSI
Intelligent Ground Vehicle Competition in 2006 because of its refined design, the
long life of its batteries (5 h), its innovative mobility and the ability to deal with
bigger workloads under the JAUS architecture.

	5.	 HELIUM RED (Unmanned Ground Vehicle; UGV) and THE RMAX (UAV)
HeLiUm RED (HElicopter LIfted UnManned Reconnaissance and Exploration
Drone) redefines the traditional notion of collaboration between UAVs and UGVs
(RMAX-HELIUM THE RED). This small unmanned vehicle is light enough to
be carried by the VT Yamaha RMAX UAV. Initially, the JAUS standard was
implemented to simplify communication with the vehicle; however, vehicles are
usually treated as subsystems of the JAUS architecture, but in the project
HELIUM RED, the UGV operates as a single node.

	6.	 ROCKY
This is another example of the vehicles used by Virginia Tech in the DARPA Grand
Challenge. The JAUS implementation in Rocky has taken place in two stages:

Teleoperability: Through the primitive driver, they could make sure that the •	
vehicle was teleoperated making use of the COU, but nowadays with the use
of Global Position/Speed Sensors, the COU, speed and position can be kept
on track and transmitted through a connection service.
Portability of the basic code from Cadillac SRX directly to Rocky. This fea-•	
ture can be seen as a demonstration of the reusability existing when develop-
ing autonomous vehicles under the JAUS architecture.

Owing to these achievements, Virginia Tech established, as functional require-
ments, that their prototypes had to be interoperable with other JAUS subsystems
(applied to both COUs and vehicles). Throughout this research, they realized the
need to integrate some specifications in the JAUS Service Specification standard
that would make use of messages in charge of waiting for a response that will
allow the COU and the vehicles to make behavior decisions for a better interac-
tion between them.

With respect to the development of unmanned vehicles, the company TORC
started the ByWire XGV Project (TORC 2010). This project is being developed
over a Ford Escape Hybrid using the JAUS standard as a platform to interact with
the different parts of the car (steering, throttle, brakes and gear system). The
vehicle has an Ethernet interface installed in a central console that allows for
remote control of the vehicle by a COU, making use of the SAE AS-4 (JAUS)
architecture. The use of the JAUS standard makes sure that ByWire XGV is
compatible with any other platform developed on JAUS. It is important to note

120 M.R.F. Alcalá et al.

that the ByWire XGV has maintained speeds of 160 km/h. The DARPA Urban
Challenge (DARPA 2007) checks the utility of unmanned vehicles in traffic envi-
ronments and assesses how they stick to conventional rules of the road. This is a
challenge for participants to ensure that unmanned vehicles can perform com-
plex movements such as parking or taking navigational decisions at intersec-
tions. In 2005, the DARPA Grand Challenge competition, the University of
Florida and Virginia Tech competed with their unmanned vehicle projects based
on JAUS.

Applied Research Inc., Virginia Tech, University of Florida, iRobot and the
US Air Force Research Lab showed the importance of interoperability in robot-
ics in an experiment (Clark 2005a, b). To this end, each consortium member
made their COU able to interact with all robots and control all loads. The benefits
of the JAUS standard were successfully proven after showing the independence
of the technology used in unmanned vehicles and robots.

Baity (2005), talking about the future of JAUS, mentions the need to focus on
development of software. This author says that it is a primary point to take into
account to minimize problems in the progress of UGVs.

4.2.2 � Other Military Standards

4.2.2.1 � 4D/RCS (Real-Time Control Systems)

The 4D/RCS architecture provides a reference model for military unmanned vehi-
cles. 4D/RCS is a method of designing, integrating and testing intelligent systems
software for vehicles that have a certain degree of autonomy (Albus et al. 2002a).
It is an autonomous intelligent control system architecture for vehicles that can be
either teleoperated or fully autonomous.

4D/RCS (Kim et al. 2002) specifies the way in which software components are
distributed and interconnected, and that is the reason why it became a model for
military unmanned vehicles. The importance of this standard lies in the way in
which unmanned vehicles must manage situations in hostile environments to com-
plete their missions. As a result of the above features, the 4D/RCS fulfills perfectly
the specific needs of the Department of Defense and US Army standards (Albus
et al. 2002b).

4D/RCS architecture was based on the assumption that different knowledge rep-
resentation techniques may offer greater advantages. The aim was to cover all of
them to create a real-time control system for objects that move in the real world
(Schlenoff et al. 2006).

The Demo III UGB Program (Shoemaker and Bornstein 1998) developed and
demonstrated advances in control of unmanned systems, especially small UGVs
under supervised control. That is where the 4D/RCS architecture and its character-
istics arose. This protocol allows intelligent vehicles to adapt to a changing world,

1214  Integration of Service Robots in the Smart Home

to extract deeper information from a dynamic world and to merge such information
with previously available information to improve a vehicle’s performance.

The intelligent control of a 4D/RCS system is based on three layers of abstraction:

A conceptual framework. This is the highest layer of abstraction and covers the •	
full range of operations that involve intelligent vehicles, from a simple actuator
for some milliseconds to lots of vehicles during long periods of time.
A reference model architecture. This defines a hierarchical control structure and •	
at each level functional processes are included.
Engineering guidelines. These are the lowest layer of abstraction in intelligent •	
control. They define how to design intelligent vehicles to work in groups with
other intelligent vehicles.

4.2.2.2 � NATO STANAG 4586

In 1998, a NATO expert team, composed of members of government and industry
(CDL Systems 2010), started working on the development of the standard
STANAG 4586 (Compliant Ground Control System for UAV) (Defense Update
2007), which was ratified by NATO in 2002 for the communication and interoper-
ability of its UAV.

The search for interoperability between unmanned systems is essential when
meeting objectives in military terms. The line of development should be focused on
interoperability between land systems, aerial systems and elements of control, com-
mand, communication, computer and intelligence (C4I) (STANAG 2004).

STANAG 4586 was developed as an interface control definition capable of
defining a common number of data packets for two new interfaces (CDL
Systems 2010):

A data link interface among ground control stations and aerial vehicles; and•	
A command and control interface among ground control stations and C4I •	
systems.

According to Cummings et al. (2006), STANAG 4586 is the only standard that
promotes interoperability in control networks of UAVs. There are five interoperabil-
ity levels defined in this standard (Defense Update 2007):

Level 1: Reception/transmission of data packets related to UAV.•	
Level 2: Received live data about intelligence, surveillance and reconnaissance.•	
Level 3: Control and monitoring of data packets of UAVs in addition to the recep-•	
tion of intelligence, surveillance and reconnaissance and other data.
Level 4: Control and monitoring of UAV, except from launch and recovery.•	
Level 5: Control and monitoring of UAV including launch and recovery.•	

STANAG 4586 supports Electro-Optical/Infrared, Synthetic Aperture Radar,
communication transmission and data link interface resources.

122 M.R.F. Alcalá et al.

4.3 � Computer Science Standards

4.3.1 � CORBA

CORBA is a standard that provides a platform for the development of distributed
systems. It allows an easy RMI under an object-oriented paradigm. CORBA is
defined by the Object Management Group (OMG), which defines APIs, communi-
cation protocols and all necessary items to ensure interoperability between different
applications running on different platforms. CORBA uses an IDL to specify the
interfaces through their functionality. This is a way to indicate how CORBA data
types must be used in implementations of client and server.

All this means that CORBA is a kind of middleware (platform of distributed
services, independent of the operating system) that guarantees success in the transit
of data across different platforms and applications. It is applied in RTS and is effi-
cient enough for any kind of problem. The main features of this standard are:

It is a distributed object standard.•	
It specifies the architecture the system should have, is flexible and heterogeneous.•	
Interoperability.•	
Scalability.•	
Transparency, facilitating client–object communication (Vinoski 1997).•	
Naming service.•	
It sets a minimum object model.•	
Each object implements an interface.•	

The definition of interfaces is made through the IDL, making it independent ––
of the programming language.
The reuse in software is achieved through interface inheritance.––
Multiple inheritance.––
The details of an object’s implementation cannot be accessed.––

4.3.1.1 � Components

The Object Request Broker (ORB) is the CORBA object manager and is part of •	
its core. It allows for the invocation of static and dynamic objects. It can operate
without the services and facilities provided by CORBA. It handles the invocation
and search for remote objects using dynamic methods for the invocation. It is
responsible for giving back the object attributes of the object accessed through the
IDL of the object (Vinoski 1997). Locally, it also collects information on the
objects to pass to other ORBs and handles local computer security (Fig. 4.2).
IDL, Language for defining interfaces. Since it is a declarative language and not •	
a programming language, it defines interfaces independent of the implementa-
tions of objects.
Dynamic Invocation Interface (DII). Generic Stub. Client side.•	

1234  Integration of Service Robots in the Smart Home

Dynamic Skeleton Interface (DSI). Generic skeleton. Server Side.•	
Both DII and DSI are based on the interface repository, which is a CORBA •	
object that contains information on the object’s interfaces and their types. It
allows applications to access this information in a static or a dynamic way. The
main advantage is the support given to the dynamic calls.
The implementation repository is required when the objects are persistent. Most •	
general purpose ORBs provide a repository of implementations that supports indi-
rect connections for persistent references. This characteristic solves the problem of
direct connections for persistent references. It has also a bad point; it slightly reduces
the good working of the first invocation from client to server. It also offers various
modes for the automatic activation of server objects (Henning and Vinoski 1999).
The object adapter is the bridge between the ORB and CORBA object imple-•	
mentations. This allows it to make requests to an object without knowing its
interface, since the object adapter adapts the object’s interface to that expected
from the object making the request.
Communication protocols between ORBs. CORBA is based on the protocols •	
GIOP (General Inter-ORB Protocol) and the standard protocol IIOP (Internet
Inter-ORB Protocol). GIOP specifies the types of messages and the format to
transport requests between ORBs. IIOP specifies the way TCP/IP is implemented
over GIOP. Thanks to these protocols, ORB can be integrated even if it comes
from different developers.

4.3.1.2 � Services

There is a large set of standard services offered by CORBA (OMG 1998). These
services are added to the ORB interface to complete it; however, they are optional.
The most important include:

•	 Concurrency Service. Mediates concurrent access to an object such that the
consistency of the object is not compromised when accessed by concurrently
executing processes.

CLIENT

DII
IDL ORB

ORB Core

DSI
IDL

OA

SERVANT

lnterface Skeleton

(Object Implementation)

Stub

Fig. 4.2  CORBA architecture (University of Seville 2010)

124 M.R.F. Alcalá et al.

•	 Event Service. This defines two roles for objects: the supplier and the consumer.
Consumers process information in the events that are produced.

•	 Naming Service. This is the main mechanism for objects that will be invoked by
most customers from an ORB-based system.

•	 Persistent State Service. Replaces the persistent object service. These are inter-
faces that provide persistent information, namely data objects stored in databases.

•	 Property Service. Can attach dynamic properties to objects outside the static
IDL-type system.

•	 Security Service. The security service of CORBA provides various security
policies to cater for different needs that lead to a secure architecture. CORBA’s
security can be used in a wide range of systems. It also allows the reuse of its
own security protocols. These include:

Authentication and identification of objects or users (i.e. verifying that they ––
are who they seem).
Access control and authorization.––
Security audits.––
Secure communication between objects.––
Non-repudiation policy––

The CORBA security service is included in the safety process of OMG.
Among the OMG security specifications, we can find:

At an API level:

ATLAS (Authorization Token Layer Acquisition Service)––
RAD (Resource Access Decision Facility)––

In CORBA’s infrastructure:

CSIv2 (Common Secure Interoperability, version 2)––
CORBA Security Service––

•	 Time Service. Allows an object to ascertain the time along with an estimated
error associated to it.

•	 Trading Object Service. Facilitates the search for objects, services, features,
functionalities and so on.

4.3.1.3 � Application Examples

Some frameworks exploit the features of CORBA for telerobotic systems, whereas
some applications may be based on the manipulation of complex systems remotely
(Bottazzi et al. 2002).

CORBA is commonly used in telecommunication robots in real time as well as
to keep track on them. At the University of Auckland, researchers tested the LEGO
Mindstorm and Khepera models to demonstrate the reliability of a design for the
distributed control of robots using CORBA (Woo et al. 2003).

The Institute for Computer Design and Fault Tolerance at the University of
Karlsruhe in Germany presented a distributed software architecture based on

1254  Integration of Service Robots in the Smart Home

CORBA for the autonomous service robot Albert2. The development was focused
on the modularity and integration of learning aspects (Knoop et al. 2004).

The research group there proposed a system for controlling a humanoid robot
based on CORBA. Using this architecture in a distributed environment such as a
local network, it is possible that various humanoid robots all over the world can
share their own modules via the Internet (Takeda et al. 2001).

CORBA has been used to integrate a distributed system of multiple mobile robots
in a simulated environment that offers the possibility of a collaborative control
(Zhang et al. 2009).

4.3.2 � UPnP

UPnP is a set of protocols (Jeronimo and Weast 2003) or an architecture proposed
by Microsoft and promulgated by the UPnP Forum (UPnP Forum 2010). The main
goals of UPnP are to simplify the implementation of networks at home and in cor-
porate environments and to connect devices automatically to the network without
user intervention. UPnP allows devices to connect perfectly and thereby simplifies
network implementation at home (e.g. data exchange, communications and enter-
tainment) and in corporate environments. It provides a distributed and open net-
working architecture based on already existing protocols and specifications, such as
UDP, SSDP, SOAP or XML (Bray et al. 2008). In addition, it is supported by IP as
illustrated in Fig. 4.3. Owing to its independence from any particular vendor, oper-
ating system and programming language, APIs connected to a network are able to
control, negotiate and exchange information and data easily and transparently to the
user. UPnP is independent of the physical medium, and it can work over phone
lines, power lines, the Ethernet, RF, IrDA and IEEE 1394.

UPnP enhances the concept of a digital home platform in which all household
devices should work together. It aims to control each device in the smart home, from
consumer electronics to robots, through home appliances using wired or wireless
networks. However, up to now, UPnP has not been widely used to manufacture such
devices, and it has most commonly been used in simpler systems such as blinds,
turning on lights or alarms.

The main feature of this protocol is that there is no need to configure anything
when a device is connected to the network. Device services will be automatically
available to be used for other entities on the network. This is the main idea in
UPnP: each device (a robot, a router, etc.) is available for every entity on a LAN.
To offer its services, the device publishes them using a message-passing protocol.
UPnP is able to detect when a new device is added to the network. Devices receive
an IP address from the network or they assign their own IP (Auto-IP) if a DHCP
server does not exist. They then publish this to the network and every device con-
nected to it in order to provide all interesting information such as logic name,
developer, model and serial number or the services they offer. This way, the user
does not have to worry about complex configurations; he or she just has to add the
device to the network.

126 M.R.F. Alcalá et al.

To understand how UPnP works, we need to describe the components existing on
the network and the required stages, including the protocols, to reach interoperability
between all UPnP devices.

4.3.2.1 � Components

A UPnP network has three main components: devices, services and control points.
Components are described below as based on Jeronimo (2004) and the information
obtained from Members of the UPnP Forum (2008):

	1.	 Devices
UPnP devices are logical containers for a service or set of services, and some-
times for other devices (embedded devices). Embedded devices can be discov-
ered and used independent of the main container. Each UPnP device may offer
any number of services. By itself, a device just provides a self-description of its
information in an XML device description file, and a device’s services are those
that provide real functionality and execute the actions.

	2.	 Services
Services provide real functionality and can invoke actions. Each service may con-
tain any number of actions. Each action has a name and an optional set of input
and output parameters. A service has an identifier (URI) that uniquely identifies it
among all of services. It may keep variables that represent the current state of the
service. These state variables may trigger events if they are defined as evented.

	3.	 Control points
A control point is a network entity that invokes the functionality of a device. It is
capable of discovering and controlling other devices. In client/server terms, the
control point will be the client and the server role is assumed by the device. Once
the device is found, the control point is capable of:

Getting the device description and a list of services.•	
Getting the service’s descriptions.•	
Invoking actions to control the service.•	
Subscribing to the service. When a service’s status changes, the device sends •	
an event to the control points subscribed to the service.

4.3.2.2 � Protocols

This section provides a brief description of the UPnP protocols (see Fig. 4.3) used
in these networks:

•	 TCP/IP: This is the connection-oriented communication protocol for the Internet
and other similar networks. It is based on the idea of an IP address; in other
words, it assigns an IP address to each computer or device connected to the
network. TCP/IP provides the basis upon which to build a UPnP network.

1274  Integration of Service Robots in the Smart Home

•	 UDP/IP: This is a connectionless protocol that unlike TCP/IP provides a direct
way to send and receive datagrams over an IP network. It supports the HTTPU
and HTTPMU protocols described next.

•	 HTTP/HTTPU/HTTPMU: These protocols are essential for building UPnP
entities. HTTPU and HTTPMU are the unicast and multicast variants of HTTP.
These variants are defined to deliver messages on top of UDP/IP; on the contrary,
HTTP works over TCP/IP.

•	 SSDP: This is a protocol that can search for UPnP devices and announce devices
and services. Searches and announces used to be made by sending a multicast
SSDP message over HTTPMU; however, this may be sent in a unicast message
now. When a device receives a search message, it checks the search criteria and
if it matches, it will respond with a unicast SSDP message over HTTPU, using
the statement “200 OK,” which indicates that the request was successful. A SSDP
packet is just an HTTP message with the statement “NOTIFY” (to announce) or
“M-SEARCH” (to search).

•	 SOAP: This provides a standard mechanism for packaging messages and it
defines how two objects in different processes can communicate by exchanging
XML files. Each control request is a SOAP message that contains the action
invoked and all requested parameters. The reply is another SOAP message that
contains the results of the action or the errors as appropriate.

•	 GENA: This defines an HTTP notification architecture that allows transfer noti-
fications between HTTP resources.

•	 XML: This organizes, stores and exchanges information, and its main function
is to describe data. It is used in UPnP for device and service descriptions, control
messages and events.

•	 HTML: This is a markup language that uses a set of markup symbols or codes
to structure text and multimedia documents and to set up hypertext links between
documents.

4.3.2.3 � UPnP Operation

To describe the way that the protocol operates, we need to show the six basic steps
in a UPnP network: Addressing, Discovery, Description, Control, Eventing
and Presentation. Addressing may be considered step zero of UPnP networking.

UPnP

HTTPU

UDP TCP

HTTP
HTTPSOAP

IP

HTTPMU
SSDP SSDP GENAGENA

Fig. 4.3  UPnP architecture
(de la Pinta et al. 2011)

128 M.R.F. Alcalá et al.

This book presents a simplified version of how UPnP operates. However, these
steps are detailed in the UPnP Device Architecture document (Members of the
UPnP Forum 2008):

	1.	 Addressing
Devices and control points must obtain an IP address before they can join to a
UPnP network; therefore, when they are first connected to the network they must
search for a DHCP server to get an IP address or use Auto-IP to obtain an address.
UPnP entities may retrieve an IP address from a DHCP server; to that effect, both
devices and control points must have a DHCP client. If the network does not
have a DHCP server, devices and control points must use Auto-IP to get the IP
address. Through this mechanism, the device takes a random address in a range
established by the ICANN/IANA. Once the address has been allocated, the entity
checks it using the ARP protocol, and if it is being used on the network the
device will get another IP address.

	2.	 Discovery
This step defines how a device announces its presence and how a control point
discovers devices using the SSDP (Fig. 4.4). The Discovery stage allows control
points to find devices and services and to obtain information about them.

Advertisement. Once devices are added to the network, they multicast mes-•	
sages to announce their embedded devices and services to control points
through NOTIFY packets. These messages do not require a reply and are

Control
Point 1 Control

Point 2

Control
Point 3

Device 1

UpnP
network

Device 2

Search (M-SEARCH - multicast)

Response (200 OK - unicast) (SSDP/HTTP)

Advertisement (NOTIFY - multicast) (SSDP/HTTP)

Advertisement (NOTIFY - multicast) (SSDP/HTTP)

Response (200 OK - unicast) (SSDP/HTTP)

Fig. 4.4  Discovery (University of Seville 2010)

1294  Integration of Service Robots in the Smart Home

resent periodically when devices renew their advertisements. Through these
messages, control points may retrieve the descriptions devices and then may
control devices and retrieve the descriptions of services to manage these ser-
vices, invoking actions and subscribing to events.
Search. This procedure allows control points to search for devices on the net-•	
work. Control points may search for specific devices or services through
M-SEARCH messages. Responses from devices are needed, and these con-
tain discovery messages similar to the advertisement ones; however, the
responses are unicast because devices know the control point address.

	3.	 Description
After the Discovery step, the control point retrieves the information from the
discovery message, i.e., a universally unique identifier and a URL of the device’s
UPnP description. The Description step consists of retrieving the description
of the device and its capabilities (service description) from this URL. The
descriptions of the devices and their services are stored in XML documents.
A device description contains device information, a list of the services pro-
vided by the device and a list of their embedded devices. A service description
includes detailed information about the device’s service, the actions provided
by the service, as well as input parameters and output state variables. To get
the description files (see Fig. 4.5), a control point sends an HTTP request using
the GET method to the URL contained in the discovery message that had
previously been received by the device. When it receives the request, it
replies with an HTTP message that contains the device’s description in the
message’s body.

UpnP
network

Control
Point Device

Device description request (HTTP - GET)

Device description response (HTTP/XML)

Service description request (HTTP - GET)

Service description response (HTTP/XML)

Service

Fig. 4.5  Description (University of Seville 2010)

130 M.R.F. Alcalá et al.

	4.	 Control
This is the step in which the control points invoke actions on the devices’ ser-
vices. Once a control point has all the information about a device and its services
through their descriptions, it will be able to control this device by invoking
actions. The Control step is based on the SOAP, which uses XML and HTTP to
provide web messaging and RPC. To invoke a specific action, the control point
must send a SOAP request using the POST method to the device’s service. Then,
the device will respond with the results or the errors obtained as a consequence
of the invocation. This stage is illustrated in Fig. 4.6.

	5.	 Eventing
Eventing can notify a control point when the state of a device changes. As explained
above, a service description contains a list of variables that models the state of the
service. If any of these variables is configured to report an event (evented variable),
the service publishes updates when any of these variables are modified.

Eventing uses a publisher/subscriber model in which the control points can sub-
scribe to events sent by a service. The services publish event notifications to subscribers.
An event is a message sent from a service to the subscribed control points. The events
inform the subscribed control points about the state changes in the services.

A control point that wants to be notified about the changes in the variable’s
state subscribes to an event source by sending a subscription request to the URL
of the events, which is contained in the corresponding device description. If a
service accepts the subscription request, it responds with a SID and the duration
of the subscription. The SID allows the control point to refer to the subscription
in subsequent requests to the service, such as renewing or cancelling the sub-
scription (Jeronimo 2004). Eventing protocol is a GENA and is used over the
TCP layer, which guarantees message delivery to the subscriber. Figure 4.7 pres-
ents a diagram of this process.

UPnP
network

Control
Point

Device

Device

Invoke action (SOAP/HTTP/XML)

Results/Errors (SOAP/HTTP/XML)

Service

Service

Fig. 4.6  Control (University of Seville 2010)

1314  Integration of Service Robots in the Smart Home

	6.	 Presentation
Presentation is considered as an optional step. A control point may monitor a
device or check its status through the presentation of a webpage in HTML. If a
device has a presentation page, control points may load presentation pages in a
browser and these allow users to check and control the device. To retrieve a pre-
sentation page, the control point issues an HTTP GET request to the presentation
URL and the device returns a presentation page (Microsoft) (see Fig. 4.8).

It is also interesting to review UPnP applications developed in recent years
to understand the interoperability provided by this architecture. For example,
Maestre and Camacho (2009) state that different consumer electronic devices
have been developed using UPnP architecture. De la Pinta et al. (2011) show that
the Roomba robot has been successfully integrated into a UPnP framework. In
addition, UPnP AV devices have been integrated into an OSGi platform (Kang
et al. 2005). Another example of UPnP interoperability is the success of the DLNA
protocol in multimedia services, which is derived from the UPnP architecture.

4.3.3 � Jini

Jini is a service-oriented architecture developed by Sun Microsystems that pro-
vides an infrastructure for defining, publishing and searching for services on a
network. Service Discovery (similar to UPnP service) is the main feature in the

UpnP
network

Control
Point

SID=uuid:1...

Device

Device

Subscription request (GENA - SUBSCRIBE)

Subscription (uuid:1...) (GENA)

Subscription (uuid:1...) (GENA)

Events messages (GENA - NOTIFY/XML)

Renewal subscription (GENA - SUBSCRIBE)

Cancel subscription (GENA - UNSUBSCRIBE)

Service

Service

Fig. 4.7  Eventing (University of Seville 2010)

132 M.R.F. Alcalá et al.

Jini technology, both in multicast mode and search mode for specific services. Jini
uses the multiplatform feature from the Java platform to provide universal services,
and it registers each one of them as serialized objects (service proxy) with its own
interfaces. A Jini architecture diagram is shown in Fig. 4.9.

The main aims of this platform are discussed in Arnold (1999), which exposes its
immediate services availability, the hardware abstraction, the service-based architecture
and the simplicity. Jini is an easy protocol (Morgan 2000) as explained in Fig. 4.10.

When a device is connected, it looks for a lookup service (Discovery) with which •	
to register.

Device

Device

Service

Presentation page request (HTTP - GET)

Presentation page (HTTP/HTML)

Control operation

Service
Control
Point

Web
Browser UpnP

network

Fig. 4.8  Presentation (University of Seville 2010)

Application Service

Discovery

Lookup
Jini technology

Java technology

Operating system

Network transport

Fig. 4.9  Jini architecture
diagram (University of
Seville 2010)

1334  Integration of Service Robots in the Smart Home

When a service provider locates a lookup service, it joins to it (Join). The service •	
uploads a service proxy that a client would need to use its services, and the
lookup service stores it.
When a client needs to locate and invoke a service, it asks the service for the •	
lookup service, and it gives back the service proxy mentioned above.
Then, the client is able to interact with the service provider (during an specific •	
time, in a shared way or in a exclusive one) through the proxy.

The purpose of the Jini architecture is to organize devices and software into
groups inside a distributed and dynamic system. This simplifies the access, manage-
ment and maintenance of each service offered by service providers. Some interest-
ing concepts in a Jini system are presented below:

	1.	 Services
A Jini system consists of a set of services that can be used to perform a par-
ticular task. A service is an entity that can be used by one person, one program
or another service. It may be a calculation, saved data, a communication chan-
nel with another user, a software filter, a hardware device or another user.

Discovery for
lookup service

Discovery for
lookup service

Lookup service
reference

Lookup service
reference

Request for
service

Service object
(proxy)

Service proxy
registration

D
ISC

O
V

E
R

Y

D
ISC

O
V

E
R

Y

JO
IN

Service Provider CLIENT
Lookup
Service

L
O

O
K

U
P

Fig. 4.10  Jini events (University of Seville 2010)

134 M.R.F. Alcalá et al.

Services communicate with each other using a service protocol (set of interfaces
written in Java language).

	2.	 Lookup Service
Services are found through a lookup service. This is the central mechanism for
the system and provides a mapping service that indicates the functionality pro-
vided by the services. A service is added to a lookup service using the discovery
and join protocols. The service locates an appropriate lookup service (using the
discovery protocol) and then joins to it (using the join protocol).

	3.	 Java RMI
This is a mechanism provided by Java to invoke remote methods. RMI is a Java
extension of RPC. It provides remote communication between programs written
in the Java programming language. The RMI subsystem also implements refer-
ence counting-based distributed garbage collection to provide memory manage-
ment facilities for remote server objects.

RMI allows not only data to pass from one object to another through the net-
work, but also whole objects to be sent and received, including their codes. Much
of the simplicity of the Jini system is because of this ability to move code through
the network, encapsulated in an object.

	4.	 Security
The Jini security model is based on the concepts of a master list and an access
control list. Jini services are accessed by an entity – the principal – that generally
refers to a particular user in the system. The access of an object to a service
depends on the contents of the access control list associated with the object.

	5.	 Leasing
A lease grants access to a service for a certain period of time. Each lease contract
is negotiated between the service user and provider as part of the protocol ser-
vice, and it is released if the contract is not renewed.

	6.	 Transactions
A transaction can group a set of atomic distributed operations into a single unit.
If one or more operations fail, the transaction is aborted and no partial results are
written.

	7.	 Events
Jini supports distributed events. Objects may register to events in other objects. When
an event occurs, a notification is sent to the objects that have been registered.

4.3.4 � Web Services (WS)

WS is a technology that allows websites to use distributed applications and offers
features such as access to the information and functionalities of any platform. At
first, they were created to meet the need to standardize communication between

1354  Integration of Service Robots in the Smart Home

different platforms and programming languages because earlier attempts such as
CORBA had little success. In the case of CORBA, this was because there are certain
limitations for more complex applications that require a security control or transac-
tion management.

WS provide a standard means of interoperating between different software appli-
cations, running on a variety of platforms and frameworks. WS are functions or
procedures that can be accessed via the web. Regardless of the programming lan-
guage of the service and its platform, they enable the exchange of data and provide
services between different applications.

Such a degree of interoperability is only possible using open protocols. WS are
mainly used with HTTP because this is widely used and is rarely blocked by fire-
walls. WS are a set of protocols and standards used to exchange data between appli-
cations, and they are used on important websites for tasks such as e-commerce, web
browsers and computer services by companies such as Google, eBay or Amazon.
The W3C is responsible for managing the specifications. The main features of WS
technology and its advantages and disadvantages are listed below:

It is supported by any platform and any programming language.•	
It is a W3C standard.•	
It provides functionality to websites.•	
It uses HTTP to transport data.•	
It uses standard elements for each of its components (SOAP, UDDI, Web Services •	
Definition Language (WSDL) and XML).

One of the main advantages of WS is that they allow applications to com-––
municate efficiently, regardless of the platforms used, offering greater
interoperability. WS use standards and text-based protocols, which allows
a better understanding and easier access to the data exchanged. They also
use HTTP to allow the information to pass through firewalls without
major complications. This fact together with the use of XML promotes
interoperability.
However, WS are much less efficient than are CORBA or RMI because ––
they make use of formats based on text, such as XML, which are not the
best options to process tasks. Nevertheless, new WS standards may define
more optimized protocols. Also they are not as developed as standards such
as CORBA. Both HTTP and XML have a high run-time cost compared
with other distributed applications approaches. Skipping the firewall secu-
rity can also be seen as a drawback.

4.3.4.1 � Components

WS use text-based standards and protocols, and this involves the components listed
below. Figure 4.11 shows the diagram of the interactions between the entities and
flows of the incoming and outgoing data of each component.

136 M.R.F. Alcalá et al.

	1.	 WSDL
It is desirable that WS have information on the operations and data types involved.
For this reason, WSDL is used. This is a standard adopted by the W3C that
defines the public interface of WS. It is structured as follows:

Ports (<portType>): these describe the operations provided by WS. Its func-•	
tion is similar to an object-oriented class.
Messages (<message>): these define the data involved in an operation, where •	
each message can have one or more parts. It is considered one of the param-
eters used in object-oriented programming.
Types (<types>): these define the data types involved in WS, using XML •	
Schema, an XML language that accurately describes the structures and con-
straints of the XML file. It has been in the W3C since 2001.
Links (<binding>): these describe the message formats and the protocols for •	
each one of the ports.
Operations (<operations>): these can be one-way, request-response (makes a •	
request and waits for a response), request-response (receives a request and
makes a response) or notice.
Services: these define a set of web service ports.•	

	2.	 UDDI
To register and publish WSDL we use Universal Description, Discovery and
Integration (UDDI). This is a standard developed for the publication and reg-
istration of WS. Its way of working is similar to a database and has two differ-
ent parts:

Registration of business:•	

White Pages (Overview)––
Yellow Pages (categories of services)––
Green Pages (business rules)––

Registration of services•	

Fig. 4.11  WS communication architecture (University of Seville 2010)

1374  Integration of Service Robots in the Smart Home

	3.	 SOAP
In addition, there was a need to define the way of exchanging data between
different processes on different machines. For this task, we use the SOAP, which
defines the format of the messages to send. It is independent of the transport
protocol. The elements of a SOAP message are (Daconta et al. 2003):

Encapsulation of the message.•	
Description of the data coding.•	
Body, which contains the specific message of the application.•	

4.3.4.2 � Applications

Websites ask WS for a series of functions. They are currently used in almost all
websites and they provide most logic to the website. Another possible application
of WS is for the control of robots. WS are used to control robots from anywhere in
the world via the Internet through a user interface, which will provide the services
offered by the robot as well as its status (Levine and Vickers 2001).

4.3.5 � Semantic Web Services (SWS)

SWS were derived from the combination of WS with the emergence of the semantic
web (Fig. 4.12). Tim Berners-Lee created the semantic web states that the “Semantic
Web is not a separate web but an extension of the current one, in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation” (Berners-Lee et al. 2001). WS meet the requirement of a specified
syntax; however, they have a lack of semantics so they cannot resolve ambiguities.
This is solved by using SWS, optimizing this way the reuse of WS and creating
smarter websites, resulting in the concept of Web 3.0. This simplifies the sharing
and integration of web resources.

To represent knowledge, ontologies that structure information, resources or ser-
vices based on the meaning of words emerge. This allows computers to interpret
and process this information to work automatically.

Semantic
Web

Semantic Web
Services

Web
Services

XML

Fig. 4.12  The emergence of SWS (University of Seville 2010)

138 M.R.F. Alcalá et al.

The languages of high-level ontologies are backed by a formal logic, which
makes sure that the ontology can be interpreted by the machines. This means that
the computer and its software can interpret the semantics of the model without
direct human intervention. The ontological software rises to the level of human
conceptual knowledge; humans do not have to descend to the machine’s levels
(Daconta et al. 2003).

SWS are an important line of the semantic web, which aim to describe not only
information but also WS’s functionality ontologies and procedures: its inputs, out-
puts, conditions for implementation, effects produced or steps followed. These
machine-processable descriptions will automate the discovery, composition and
implementation of services, as well as the communication among them. The seman-
tic web has emerged to provide the syntactic web with semantic intelligence and has
the following main features:

Automatic data interpretation.•	
Ontologies as data models.•	
Discovery, selection and automatic service composition.•	
Service implementation through the web.•	

4.3.5.1 � Required Functionalities

Publication of service descriptions.•	
Services discovery.•	
Service selection.•	
Composition of services.•	
Resolution of problems caused.•	
Implementation of automated services.•	
Monitoring of implementation.•	
Compensation.•	
Substitution of services for similar ones.•	
Verification of implementation.•	

4.3.5.2 � Main Technologies

Web Ontology Language (OWL-S). This is an ontology based on OWL, •	
which is a markup language for publishing and sharing data using ontologies.
It was created by DARPA (2007), which is part of the US Department of
Defense, where they automate tasks such as the discovery, invocation and
composition of WS.
Web Service Modeling Ontology (WSMO). This is a conceptual model for the •	
relevant aspects of SWS and it belongs to the European Semantic Systems
Initiative. The WSMO working group includes the technology of Web Service

1394  Integration of Service Robots in the Smart Home

Modeling Language, which formalizes the WS that model the ontology (Lara
et al. 2004). Its main components are:

Goals. These are the customer’s aims when they access the web service.––
Ontologies. A formal description of the semantics used by all components.––
Mediator. These are connectors that provide interoperability among different ––
ontologies.
WS. These can include the functional and usage descriptions of WS.––
OWL-S has a weak point in the architecture because it is undefined. It also has ––
little development in comparison with WSMO. Its difficulty is also higher and
less intuitive than WSMO is. However, its groundings of use are well devel-
oped. However, WSMO is not mature in key areas of use. It has a robust and
flexible architecture for the consumer in contrast to OWL-S. It has defined
important aspects such as languages and mediation. There are also plans to
automate the creation of WS based on WSMO to semi-automate this process,
thereby saving money, time and resources; the same as in the IRS III project.

4.3.6 � RMI

RMI emerged from the need to communicate among different objects, and it is imple-
mented on different machines as happens on distributed systems. Therefore, this tech-
nology is a remote invocation of Java objects. The initial version of Java RMI required
a JVM in both the origin and destination machines (Cheng-Wei et al. 2004).

After the RMI-IIOP was developed, it was added to the RMI, providing it with the
best features of CORBA. RMI is pure Java and since it does not support other languages,
CORBA emerged. The adaptation to a distributed system has not prevented the contin-
ued development of RMI as a secure system. The main characteristics of RMI are:

Simple, easy to write and easy to maintain.•	
Transparency, because the distribution of objects and parameters passing is trans-•	
parent to the programmer.
Pass an object by value (as parameters of methods).•	
The definition of interfaces is done directly in Java.•	
Implementation in Java.•	
Independence of the communication protocol.•	
Separation between interface–client and implementation–server.•	
Naming service.•	

4.3.6.1 � Architecture

RMI is a layer architecture made of a stub/skeleton layer, a remote reference layer
and a transport layer. The programmer only interacts with the application layer. The

140 M.R.F. Alcalá et al.

RMI system manages the three previous layers (see Fig. 4.13), which could be
replaced by others with the same function without altering the rest.

4.3.6.2 � Components

	1.	 IIOP
RMI allows the programming of CORBA servers and applications via the RMI
API. It is possible to work entirely in the Java programming language using the
Java Remote Method Protocol as a transport or to work with any other CORBA
implementation using IIOP Java RMI over IIOP.

RMI-IIOP is designed for developers who program in Java and want to use the
RMI interfaces using IIOP as the transport layer. The RMI-IIOP interoperability with
CORBA objects implemented in other languages is available only if all the remote
interfaces have been previously defined as Java RMI interfaces (Oracle 2010).

4.3.6.3 � Application

At the University of Bielefeld, Germany, one research group has integrated memory-
based software for the development of autonomous robots. This is an approach to
an architecture of autonomous mobile robots operating in human environments.
It replaced the use of data on a closed chain based on the long- and short-term
memory. RMI was used for the exchange of critical information, such as the module
that controls the hardware. RMI also allows the system to estimate when the con-
figuration has been completed. The system can then send information on the result
of the configuration (Spexard et al. 2008).

Westhoff et al. (2004) focuses on task-level programming and monitoring robots
in their daily operations. It is not a framework limited to robots and it could be used
in other distributed environments. During its development, the authors took advan-
tage of technologies available in Java, such as Jini, RMI and Java Native Interface.

CLIENT

Application Layer

Stubs Skeletons

RRL - Remote Reference Layer

TL - Transport Layer

RMI System

SERVER

Fig. 4.13  RMI architecture
(University of Seville 2010)

1414  Integration of Service Robots in the Smart Home

Woo et al. (2003) supported Java RMI over Bluetooth, GPRS and WLAN
technologies. As a conclusion of this, the good work of Java RMI was tested in
heterogeneous wireless environments, allowing parallel and distributed control.

In a study by researchers at the Information and Communications University in
Korea, RMI is used to access external ontologies in the development of a self-
expandable software. This kind of software is useful for intelligent robots for two
reasons. First, they study their environments and then they decide their appropriate
behavior based on what they have learnt about their surroundings.

DEVS/RMI is a distributed, self-adaptive and reconfigurable simulation environ-
ment for engineering studies. It is based on the standard implementation of DEVS,
in which Java RMI supports the synchronization of local and remote objects. It is
designed for the intensive testing of programs, and this is the reason for it support-
ing dynamic models (Zhang et al. 2005).

4.3.7 � Other Computer Science Standards

4.3.7.1 � DH Compliant

DH Compliant (DH Compliant 2010) is a system providing interoperability between
all devices existing in a home network. It is based on the UPnP architecture and is
currently under development by the University of Oviedo, the University of Seville
and a consortium of companies composed of Ingenium (Ingenium 2010), Domotica
Davinci (Domotica Davinci 2010), MoviRobotics (MoviRobotics 2010), (Applied
Research Associates) (ARA 2010) and the Cartif Foundation (Cartif 2010). The
main goal of DH Compliant architecture (Fig. 4.14) is to integrate consumer elec-
tronics devices, robots, sensors and other interesting components that may be useful
in a home automation framework.

The aim of the DH Compliant system is development and implementation that
allows the integration of service robots within the digital home. This architecture
will provide interactions between robots and digital homes to make life easier, more
secure and more comfortable. This protocol integrates the intelligence of a UPnP
control point and the functionality of a UPnP device in a single DHC device. This
entity network is managed by other entities that provide new services such as the
localization service, energy-saving service and the service for collaborative tasks
between robots.

4.3.7.2 � OSGi

OSGi (OSGi Alliance 2003) is a module system for the Java environment that
implements a components model, which needs JVMs. OSGi is based on a layer
model that includes, among others, a bundles layer that provides the applications
and components as packages (i.e. jar files), a services layer that provides communi-
cation between bundles through Java objects, and modules and security layers.

142 M.R.F. Alcalá et al.

OSGi may be a good alternative for the development of complex systems because
of its versatility and cross-platform feature (one JVM in each network node would
be necessary to run the application). Any framework that implements the OSGi
standard must provide applications modularity to decompose the application into
small packages. Each package is a collection class (jar and settings files). The
framework is conceptually divided into the following areas:

•	 Bundles. This is a set of Java classes and additional resources.
•	 Services. This connects bundles dynamically. There is also an API for services

management.
•	 Lifecycle. This is the API to manage the lifecycle and it spans install, start, stop,

update and uninstall.
•	 Modules. This defines how bundles import and export code.
•	 Security. This limits bundles’ functionality to predefined capabilities.
•	 Execution environment. This defines what methods and classes are available on

a specific platform.

Some examples of OSGi uses can be found in the literature. Gu et al. (2004) dis-
cussed an intelligent system (SOCAM) based on ontologies integrated with OSGi to
build a system that can deliver and manage context-aware services in a smart-home
environment. Meanwhile, Kang et al. (2005) fuse UPnP AV, which is used to provide
media services, with OSGi, which manages each UPnP entity as a bundle.

Fig. 4.14  DH Compliant architecture (University of Oviedo 2010)

143I.G. Alonso et al., Service Robotics within the Digital Home, Intelligent Systems,
Control and Automation: Science and Engineering 53, DOI 10.1007/978-94-007-1491-5_5,
© Springer Science+Business Media B.V. 2011

Abstract  The service robots market perspective indicates that the incursion of
these elements into the home will continue to rise according to a series of factors.
On the one hand, these factors include an increase in home automated facilities in
new built housing, the largest number of Internet connections in homes and the
price decrease of the components that shape the digital home. On the other hand, the
service robots forecast should take into account aspects that influence adjacent mar-
kets such as the economic crisis in the construction industry. In addition, demo-
graphic factors, the lack of skilled workers and rising life expectancy are aspects to
bear in mind in the forecast. Therefore, the scientific community must propose a
roadmap to settle the technological challenges that are appearing in an unstructured
and dynamic environment such as the home.

5.1 � Introduction

The price reduction of robotics should allow, as has happened in the world of
computing, users to have robots in their homes. According to the Strategic Research
Agenda for robotics in Europe (Bischoff and Guhl 2009), the robot population in
the world will reach 18 million during 2011. Further, the World Robotics 2010

A.A. Fernández (*) • P.F. de Dios
Infobotica Research Group, University of Oviedo, Oviedo, Spain
e-mail: alonsoalberto@uniovi.es; fernandezdpablo@uniovi.es

J.M. Sánchez
Domótica daVinci S.L., Tiñana-Siero, Asturias, Spain
e-mail: jorge.moreno@domoticadavinci.com

Chapter 5
Robotics Perspective

Alberto Alonso Fernández, Pablo Fernández de Dios,
and Jorge Moreno Sánchez

144 A.A. Fernández et al.

(IFR – Statistical Department 2010) report indicates that the forecast for 2010–2013
is 80,000 new service robots for professional use and some 11.4 million service
robots for personal use.

The application of service robots for personal and private use will be focused on
the accomplishment of domestic or social tasks. These objectives may lead to a
number of ethical, legal or social issues that should be addressed over time in legis-
lative actions and social interactions that support developing new market areas.

5.2 � Ethical, Legal and Societal Issues

Service robots can be defined as robots that operate semi or fully autonomously to
perform services useful to the welfare of human beings and work equipment, exclud-
ing manufacturing work. The aid offered by these robots to people in their daily
work, in their domestic tasks or as part of assistance to the handicapped and the
elderly raises questions about the uses of spaces in which humans exist and in their
collaboration with humans.

5.2.1 � Ethical Issues

The utilization of robots must be focused on helping humans; robots should never
replace humans in habitable environments. Likewise, a robot cannot be used to vio-
late intimacy. The top position in any hierarchy of control must be ensured to be
human. However, educational robots should not imitate human forms or behaviors
in order not to substitute for teachers. Further ethical issues can be derived from the
Universal Declaration of Human Rights.

5.2.2 � Legal Issues

In this regard, a robot that has stored or transmitted personal information must be
subject to legislation that will prevent intrusions into the privacy of users. This can
raise other legal debates such as the consideration of the robot as a subject or as private
property. Is the robot (or its manufacturer) responsible for its acts? Is the robot’s owner
the legal person in charge? The responses to these questions remain ambiguous.

In this context, when a robot takes wrong decisions, is the designer, producer,
commissioner or user responsible for the inappropriate actions of the robot? The
robot’s learning process must be controlled by the person who assumes legal respon-
sibility for it.

1455  Robotics Perspective

5.2.3 � Societal Issues

Some work profiles describe actions that can be efficiently carried out by robots,
such as digging or transporting dirt, or performing highly repetitive tasks. These can
be an advantage in improvement of quality of such tasks, but can lead to an increase
in the index of labor unemployment and thus social dissatisfaction with robots.
Finally, the representation of human forms in the body of the robot can also present
social rejection or acceptance according to the task in hand.

5.3 � Principal Markets

A roadmap is required to ensure a diversity of applications and solutions that incor-
porate full-scale general autonomous functionality. The Roadmap for US Robotics
(Collaborative 2009) considers a period of 10–15 years to see this wide variety of
applications.

5.3.1 � Demographic Factors

Several key factors can help identify trends in order to market service robots. One
key factor is the aging population, which can influence the growth of service robot-
ics in both a professional and domestic environment. The aging population will
produce a deficit in the workforce, which could then be replaced by robots; how-
ever, an increase in the population with mobility difficulties will favor an expansion
of the number of domestic service robots in charge of caring for people with limited
mobility (senior citizens or disabled persons).

According to a release of the US Bureau of Labor Statistics (2010), and as
pointed out by the Roadmap for US Robotics, the number of retired workers as a
percentage of the current workforce will double within 20 years. It will pass a ratio
of two retirees for every ten workers in 2009 to almost four retirees for every ten
workers in 2030.

Similar estimates have been made by the World Bank (Australian Government –
The Treasury 2002) for the US, placing it in the middle of an aging workforce
(Fig. 5.1). In Europe and Japan, aging is more pronounced (Fig. 5.2), whereas in
East Asia and the rest of the developing countries ratios will remain lower than they
are in developed countries (Fig. 5.3), although the increase in the ratios for most are
similar to those for the US, the UK and France.

146 A.A. Fernández et al.

Fig. 5.2  Ratio of retirees to workers (high level)

Fig. 5.3  Ratio of retirees to workers (low level)

Fig. 5.1  Ratio of retirees to workers (medium level)

1475  Robotics Perspective

5.3.2 � Market Pull

The professional and domestic service robots sector will be present in different markets
and can be identified through existing projects, demands and market requirements.

•	 Healthcare and Quality of Life. Current robotic applications provide teleoper-
ated solutions. The Intuitive Surgical’s daVinci surgical system (Ballantyne 2002)
represents an advance in laparoscopic surgery, but it actually conceals the vast
potential of robotics in the healthcare market to help control costs and empower
healthcare workers. Service robotics enable aging citizens to live longer in their
homes by facilitating household chores or removing architectural barriers.

•	 Manufacturing and Logistics. Service robots can perform logistical tasks in a
wide variety of environments such as hospitals, factory warehouses and transport
networks. Simple robots such as transit trains for passengers at airports are only
a reflection of the robotics applications in small-scale (public transport in hospi-
tals, offices and places) and large-scale logistics (autonomous road transport of
goods and people).

•	 Automotive and Transportation. Progress in the automotive and construction
of autonomous vehicles has begun to take its first steps with vehicles at Segway
(Segway 2010) or Honda U3-X (Honda Motor 2010) set to be introduced to pri-
vate transport. These vehicles use the movement of passengers for navigation but
they are not autonomous. Vehicle manufacturers have created intelligent cars
capable of helping drivers to park, counter-steer or improve their energy effi-
ciency. Initiatives such as the DARPA Urban Grand Challenge (DARPA 2007) in
the US, the ARGO research project (Parma University 2002) in Italy or the
EUREKA Prometheus Project (Williams 2002) invest large financial sums in the
development of autonomous vehicles. Its aim is to reduce the number of acci-
dents caused by human error and reduce fuel consumption.

•	 Homeland Security and Infrastructure Protection. Surveillance robots can play
a role in border protection, search and rescue, port inspection and private security.

•	 Entertainment and Education. In this area, the imagination is the limit. In
20 years, the utilization of motion simulators, rollercoaster educational aids,
personal sports trainers and novel games is forecast.

•	 Energy and Environment. Increasing productivity while reducing costs is the
common task of service robotics, and task automation contributes to reducing
energy costs and monitoring energy expenditure.

5.4 � Scientific and Technical Challenges

For robots to reach the desired levels of development and to comply with the require-
ments of tasks they can do, a series of technological challenges must be met. These
technological challenges are focused on reducing time and energy costs, increasing the
quality of products manufactured by robots and improving human–robot interactions.

148 A.A. Fernández et al.

5.4.1 � Positioning

This process is relevant to robot motion in a defined place. The land on which robots
must move vary: ground, water, air and space. Current position is based on the envi-
ronment and 2D models. 3D navigation is one of the most representative challenges.
3D models not only must contain world geometric layers but also maps containing
semantic information about the task as well as objects and features of the environ-
ment in which it is to be performed. These new navigation and positioning systems
must include object affordances because achieving semantic 3D navigation will
require novel methods for sensing, perception, mapping, localization, object recog-
nition, affordance recognition and planning.

5.4.2 � Manipulation and Grasping

Manipulation and grasping are required abilities in order to handle physical
objects. Such applications require a robot to interact physically with its environ-
ment. Nowadays, autonomous manipulation robots work well in highly controlled
industrial environments but cannot handle the environmental variability and
uncertainty associated with dynamic and unstructured environments. To introduce
robots into these changing environments, it is necessary to ensure that no cata-
strophic failure can occur; this implies the need for the robot to perceive its
unstructured environment in order to accommodate changes in planning and pri-
oritizing tasks dynamically.

5.4.3 � Sustainability

The manufacture and deployment of robots must take into account the growing con-
cerns about their environmental and social impact. The physical makeup of robots must
adhere to environmental requirements on sustainability with respect to their manufac-
ture, utilization and ultimate recycling. Robot design must include software and other
aspects that ensure the minimum consumption of resources during their lifecycles.

5.4.4 � Autonomy

Autonomy can be defined as a system’s ability to independently perform a task,
carry out a defined process, or make a system adjustment. Autonomous robots must
be pre-programmed, but in most domains autonomy must be limited to ensure the
hierarchy of control for humans.

1495  Robotics Perspective

5.4.5 � Configuration

A robot’s configuration is designed to specify a task or set up a system; a change
in a robot’s setup is usually performed by an operator when the system is not in
operational mode. It is done mainly through programming, instructing, initializ-
ing or testing. The technology challenge is to minimize the need for manual con-
figuration. This process will be simplified with new human–robot and robot–robot
interfaces.

5.4.6 � Adaptation

Robots must be able to make some changes in implementation or planning by them-
selves, without human intervention. These changes may take place in the short- or
long-term and affect different levels of the system. This adaptation process might
involve technological challenges such as cognitive decision making, changing the
operational parameters of the software or adjusting hardware depending on the
environment.

5.4.7 � Human–Robot Interaction

Mutual communication between robots and humans should be resolved by common
cognitive contexts and visions. This may involve changes in the environmental and
physical interactions between robots and people until it reaches a natural interaction
between them.

To improve the quality of work and reduce energy costs and time, the coopera-
tion of multiple robotic systems with a common goal must imply complete interop-
erability between robots. They can interact directly or through modification of the
environment. Currently, the cooperative tasks may be predefined or prescripted
under a centralized control system. Robots with manipulators will jointly carry out
a process in close proximity.

5.4.8 � Dependability

Dependability refers to the integrity of the robot while it performs tasks safely and
reliably. The robot is dependable if it is maintainable, available, robust and secure.
The robustness of the materials that compose robots and future self-diagnosis and
control applications will be crucial to prevent system degradation and extend the
time between maintenance.

150 A.A. Fernández et al.

5.4.9 � Physical Properties

The hardware and software design of a robot depends on the requirements of the
tasks and work environments. For example, robots operating in domestic environ-
ments must be tailored to a working environment designed for humans. The stan-
dardization and modularity of components will increase and design tools will be
improved.

5.4.10 � Process Quality

This factor determines the quality of the product or task fulfillment as well as the
consistency and success level of the robot. Depending on the atomicity of the task,
this term can be referred to as the level of task fulfillment. The production of robotic
systems will be significantly higher than that of humans in all tasks.

5.4.11 � Standardization

To ensure the quality of robotic systems and lower manufacturing costs, the stan-
dardization of robotic components must involve international collaboration. Robot
components must be interchangeable and usable off the shelf. Standards for robot–
robot and human–robot interactions will have to be developed.

5.5 � Robotic Advances

5.5.1 � Sensing

•	 Short-term (5 years): Gradual replacement of special hardware; 3D vision sen-
sors in low resolution; sensor fusion is task-specific and relies on calibration;
limited by processing power; use of attention mechanisms.

•	 Mid-term (10 years): High frame rate of visual sensors; greatly improved 3D
vision sensors; no moving parts in laser scanners; advanced task-dependent sensor
fusion; multiple sensor modalities; step change in visual serving; known events
interpreted.

•	 Long-term (15 years): Visual processes on sensor or dedicated processors;
multi-modal sensing for intrinsic safety; sensing on chip; perception tech-
niques take over from fusion (closer to human perception system); no longer
task-dependent.

1515  Robotics Perspective

5.5.2 � Hardware and Software Design

•	 Short-term (5 years): Hierarchical architectures running on a single system;
architecture may use multiple cores for specific purpose; separate tools exist to aid
the design of the aspects of robot and application; simplistic models, which can-
not be linked; shape memory alloys and electro-active polymers for microrobots;
some use of carbon/composite/metal foams; lack of standards for model descrip-
tions; simulation not as good as real-world experiments; long computation times.

•	 Mid-term (10 years): Hybrid or layered service-oriented architectures; loosely
coupled distributed modules (real-time agents); integrated tool chain for design
of robot and application (easily extendable); dynamic robot models; shape
memory alloys and electro-active polymers for robot reconfiguration; biomi-
metic/sensing materials; some use of nano-materials; standard language for
model description; interchangeable models; modeling of flexible and soft bodies;
improved cybernetics.

•	 Long-term (15 years): Component compositionality and self-configuration;
globally distributed, resource-aware architectures; integrated tools chain to cus-
tom-build robots; detailed, easy-to-use dynamic models for robot and environ-
ment; increased use of nano-materials; use of biomimetic materials and biological
tissue; intelligent materials and structures; real-time, dynamic modeling and inter-
pretation allow for the accurate assessment of the robot’s and the world’s state.

5.5.3 � Planning and Control

•	 Short-term (5 years): Manual programming superior to automated planning
(optimized process path based on human experience); randomized motions as
planning alternative; control through cascades; state–space controller; sliding
mode controller; feedback linearization.

•	 Mid-term (10 years): Automated mission and process planning using databases
of expert knowledge; predictive, distributed, self-calibrating, self-tuning
controllers.

•	 Long-term (15 years): Autonomous, online planning for tasks of high dimen-
sionality; learn from humans (often interactively); fault-tolerant controllers;
automatic reconfiguration of controllers.

5.5.4 � Cooperating Robots and Intelligence

•	 Short-term (5 years): Teams of robots; centralized control and communications;
tasks specified for each individual robot; use of a common map; parts of robot
systems use learning methods; well-defined conditions; learning from expert

152 A.A. Fernández et al.

teacher; task-specific end effectors; mostly pre-programmed or taught grasping
strategies; flexibility with tool changers.

•	 Mid-term (10 years): Distributed control; inter-agent communication; task
specified for team; games and swarm theories are applied; essential parts of con-
trollers use learning methods; learning by experience; learning by demonstra-
tion; multi-finger grippers for a variety of objects; grasps computed online;
gripping of human tools.

•	 Long-term (15 years): Cooperation without explicit representation of action;
skill-based or learning-based automation; complete robotics systems use learn-
ing methods (learning by observation, flexible conditions); dexterous hands;
grasping of all objects; use of multiple hands; human dexterity and assembly
skills.

5.5.5 � Real-Time Communication and Human–Machine
Interface

•	 Short-term (5 years): Numerous specialized protocols; Ethernet-based
communication starts to take over as de facto standard; mostly graphical or
text-based interfaces; few haptic devices and use of human interaction channels;
touch interfaces.

•	 Mid-term (10 years): New protocols using ontologies, logic, probabilistic or
geometric models, rule sets; human interaction channels, which humans have to
learn; some telepresence; haptic input devices; learning interfaces.

•	 Long-term (15 years): Components can figure out each other’s protocols; com-
ponents negotiate required quality of service; interaction using human channels
utilizing cognitive approaches; neural interfaces; non-invasive brain interfaces.

5.5.6 � Energy Management and Safety

•	 Short-term (5 years): Mostly electric, pneumatic or hydraulic motors; light-
weight high-density actuators; standard gears; mostly external power or local
storage; regenerative brakes available, but not used often; sensor-based physical
safety; hardware safety through redundancy; software safety through formal
approaches to programming.

•	 Mid-term (10 years): Continuously variable transmissions; ball–socket joints;
improved energy saving and power–weight ratio; local energy conversion/gen-
eration; regeneration is standard; planners conserve energy; model-based hard-
ware and software failure detection and isolation; application safety (explosives,
food, medicine, etc.).

•	 Long-term (15 years): High-energy efficiency; safe, powerful actuators; micro
actuation; use of smart materials; powerful pneumatics and hydraulics; efficient

1535  Robotics Perspective

wireless power transfer; system efficiency continues to increase; predictive
failure detection; safe automatic obstacle avoidance; detection of the intention of
a person.

5.5.7 � Navigation and Locomotion

•	 Short-term (5 years): Engineering solutions to locomotion; locomotion
inside the human body through external force fields; navigation expensive
(computation and sensors); localization and mapping in controlled environ-
ments solved.

•	 Mid-term (10 years): Biomimetic locomotion in/on water and on land; bipedal
locomotion in structured environments; some perception-based localization;
simultaneous localization and mapping for challenging environments; collision
avoidance considers dynamic objects.

•	 Long-term (15 years): Bipedal locomotion in unstructured environments
(mostly indoors); energy efficiency; autonomous in-body locomotion; simulta-
neous localization and mapping in unconstrained environments; collision avoid-
ance with dynamic, non-cooperative obstacles through perception.

5.6 � Service Robots Forecast

5.6.1 � Professional Service Robots

The evolution in sales of professional service robots from 2003 to 2008 (Karlsson
2004; IFR – Statistical Department 2009) is shown in Table 5.1. The sales data are

Table 5.1  Sales numbers of professional service robots in 2003, 2007 and 2008

Type of robot Sales in 2003 Sales in 2007 Sales in 2008

Field robotics 110 3,603 4,959
Professional cleaning 212 156 156
Inspection and maintenance systems 18 190 170
Construction and demolition 225 285 362
Logistics systems 28 475 533
Medical robotics 218 651 867
Defense, rescue and security applications 319 4,581 6,274
Underwater systems 496 155 182
Mobile platforms in general use 262 272 352
Public relations robots 6 25 41
Total number of units 2,302 10,395 13,904

154 A.A. Fernández et al.

divided into types of professional service robots, stand out sales for the field and the
defense followed by the logistics and healthcare.

Owing to the economic crisis that began in 2007, the sales forecast of profes-
sional service robots will suffer until 2012 (when it is estimated that all markets will
stabilize). This sales forecast can be observed in Fig. 5.4 as a percentage for each
type of robots. The number of robots to be sold in the period 2009–2012 is esti-
mated to be 49,415 units, which will involve an expenditure of $9.87 billion.

5.6.2 � Domestic Service Robots

The evolution in sales of domestic service robots from 2003 to 2008 (Karlsson
2004; IFR – Statistical Department 2009) is shown in Table 5.2. The sales data are
divided into types of domestic service robots, especially the sales for domestic tasks
(more specifically in the vacuum and floor cleaning sector).

The sales forecast for 2009–2012 is shown in Fig. 5.5. A high number of sales
of household robots is expected thanks to cheaper robotic devices and public
acceptance. Educational robots and interactive toys will also increase markedly.

Fig. 5.4  Professional service robots sales forecast (2009–2012)

1555  Robotics Perspective

There will be a tendency towards robotic maids to care for elderly or disabled persons
and for surveillance and home security. The number of robots to be sold in the
period 2009–2012 is estimated to be 11,591,700 units, which will involve an expen-
diture of $3.1 billion.

5.7 � Home Automation and the Digital Home

5.7.1 � History

As part of the development of western society, the family model is made up of a
marriage with children, house, garage, kitchen, lounge, toilets, bathrooms and bed-
rooms. Thus, it is logical that since the 1950s people have fantasized about the idea
of implementing all the developments achieved in the production industry and
transportation into the automation of homes.

The origin of home automation can be traced to the 1970s with the appearance of
the X10 protocol. In the 1980s and 1990s, many non-residential constructions were
built (they were called intelligent buildings). The intelligent building model failed

Table 5.2  Sales for domestic service robots in 2003, 2007 and 2008

Type of robot Sales in 2003 Sales in 2007 Sales in 2008

Robots for domestic tasks 397,500 660,536 966,968
Entertainment robots 136,968 929,902 785,922
Handicap assistance 65 2
Personal transportation 184
Home security and surveillance 258 300
Total number of units 534,717 1,590,698 1,753,190

Fig. 5.5  Domestic service robots sales forecast (2009–2012)

156 A.A. Fernández et al.

to materialize in residential construction. Construction techniques in electrical,
plumbing, sanitary and air conditioning installations have not changed fundamen-
tally since the 1950s except for the provision of radio, telephone, TV, personal com-
puters, mobile phones and Internet access at home. This failure is because economies
of scale have not been reached and technology standards have not been agreed,
which has fostered a high price.

The digital home is seated on four pillars (CEDOM – Home Automation Spanish
Association 2010):

Comfort: local and remote control lights and blinds on timers.•	
Safety: safety of goods and people. Technical alarms for flooding, fire, smoke, •	
gas leak and intrusion.
Leisure and communications: telephony, Internet, multimedia, data, TV.•	
Energy efficiency: controlling power consumption, gas, water and climate control.•	

Although in non-residential construction it is common to find a control data
network, a multimedia network in residential construction is still hard to find.
The application of home automation is considered exclusive and expensive,
but in the past 2 years great strides have been made with the popularization of
KONNEX.

5.7.2 � Market Trends

The current status of the construction market has led to a fall in related sales. Thus,
home automation has been affected, slowing the trend of exponential growth seen in
recent years. Table 5.3 shows a sales forecast for digital homes for 2011 in Spain.

The development of home automation will come with Internet access, which will
encourage the use of new technologies such as:

Semantic Web•	
Internet of Things•	
Augmented Reality•	
Smart Grids•	

Figure 5.6 shows the percentage of households (Eurostat 2010) with Internet
access in different states of the European Union and the rest of the world.

Table 5.3  Projected sales for 2011 based on the value of
home automation installations

Type of home automation installation Number of houses

Basic (1.000€) 2,000
Medium (3.000€) 1,000
Premium (12.000€) 200
Luxury (20.000€) 150

1575  Robotics Perspective

5.8 � Home Automation and Service Robots

5.8.1 � Baseline

Home Automation and robotics are immature markets regulated more by supply
than by demand requirements. Due to the idiosyncrasy of these markets, robotic and
home automation markets share a common feature: uncertainty. This factor makes
palpable changes in development times of high productivity and social recognition,
in contrast with other days of stagnation.

At present, in a global crisis, industry estimates are up in the air. Estimates have
had to be revised downwards. However, this same situation offers two great oppor-
tunities to develop markets and capacity for growth. The market for service robots
has undoubtedly a long-distance business in which functionality, technical training,
R&D and marketing should work well to bring the desired and final release.

100,00

90,00

80,00

70,00

60,00

50,00

40,00

30,00

20,00

10,00

0,00
2002 2003

European Union (27 countries)

France

Netherlands

United Kingdom

United States

Korea (Republic of) (South)

Germany (including ex-GDR from 1991)

Spain

Italy

Finland

Canada

Japan

Australia

2004 2005 2006 2007 2008 2009

Fig. 5.6  Percentage of homes with access to the Internet

158 A.A. Fernández et al.

So far, all comments are valid for both markets – both in full swing and independent
of each other. However, right now there are professionals in both sectors that offer
an intimate union between automation and service robotics in search of fringe benefits
and commonalities.

In the field of automation, technology is at a point of ripeness. Proprietary proto-
cols and even de facto standard features offer potential growth rather than proven.
Yet the public does not perceive the value it can bring by introducing new technolo-
gies into their buildings and homes. Services can be aimed at improving the quality
of life, safety of goods and people, energy efficiency and recreational features to
enjoy in our homes, public places or buildings.

Service robotics is at an earlier stage in terms of market maturity and home automa-
tion. Although the channels and equipment are gradually reaching stores, the majority
of the proposals are seen as experimental products that are only presented at trade fairs
and congresses. This is a major obstacle to the desired commercial development.

5.8.2 � Trends

As discussed in the previous section, the merging of robotics and automation
would offer more potential for further development than separately. Belonging
to the technology industry, both are in earlier maturing markets and both have
great technology. Factors to be taken into account in the market for robotics and
automation are:

The global financial crisis that began in 2009•	
The massive use of technology in everyday life•	
The lack of power supply for current demand•	
The gradual, inexorable introduction of technological equipment in buildings •	
and homes
Public and private improvements in the processes of research and development•	
A large, value-added financial contribution to development tasks, introducing •	
changes to the laboral model.
Achieving interoperability between the above mentioned markets offers several •	
advantages:
Service robotics add a closer and more usable interface to home automation, thus •	
removing one of the most important handicaps of current home automation,
where the user has a frosty relationship with their Smart Home system, often
limited to touch screens and switches.
The introduction of robotics into the home, with the help of the home automation •	
system, fosters a social concept of closeness and accelerates its growth in the
market.
Service robotics will leverage its impact in the market as a means for turning •	
itself into a popular technology, available to everybody and properly using the
services offered by home automation systems.

1595  Robotics Perspective

5.8.3 � Home Automation, Robotics and the Healthcare Sector

The model will develop hand in hand with the introduction of automation in the
management of the building, efficiently managing energy consumption, moni-
toring the vital signs of patients, offering priority access and activities, maxi-
mizing resources and improving the connectivity among patients, doctors and
families.

Robotics can pass information to patients, relatives and medical guides. Activities
such as accompanying the sick and elderly, creating dynamic and enabling activities
and stimulants, providing psychomotor and motor exercises for patients with these
needs, distributing food, generating menus, cooking, cleaning are all closely linked
to the direct interaction with intelligent man.

5.8.4 � Home Automation, Robotics and the Leisure Sector

Home automation is fast becoming one of the factors in the development in this sector.
We are consuming more leisure in our homes and public buildings, which will inev-
itably introduce a barrage of technology to facilitate and implement those needs.
These include video game consoles, the introduction of non-traditional sectors of
these markets (older adults), increasing and improving the quality of Internet connec-
tions, the sensations offered by the new interfaces of the equipment, mass consumption
and the increase in these electronics.

Service robotics has much yet to say in the leisure sector. Despite being penal-
ized by the overhead costs of the equipment, a leading position in which the
robots will become our best friends to enjoy leisure time with is slowly taking
shape. This will lead to improved user interaction and an empathy and enjoyment
of the game.

5.8.5 � Home Automation, Robotics and Senior Citizens

Home automation has become an interesting model in which public and private
entities telecare our elders. In an aging society, automation is providing an extra
service that you can now enjoy. The guardianship of elderly people in their homes
to improve their independence – through videoconferencing telemedicine, pattern-
ing and routines to provide proactive assistance services and interacting with friends
and family – are other areas where there is more work needed.

Service robotics offers a world of possibilities. Along with automation, the intro-
duction of services is multiplied exponentially, with assisting disabled persons, car-
rying out routine household tasks, generating alarms and social support some of the
most important.

160 A.A. Fernández et al.

5.8.6 � Home Automation, Robotics and Disabled Persons

Home automation is experiencing a tremendous growth in improving the quality of
life and autonomy of people with disabilities. However, the future is also bright in
areas such as enhancing autonomy in public buildings, customizing home adapta-
tions, safety management, increased user mobility, connectivity, medical or the
generation of custom adaptations each user.

The robotics field offers a great development including interaction with people,
social support, performing routine tasks at home, mobility of people, generating
alarms or increased autonomy of individuals.

5.8.7 � Home Automation, Robotics and Public Environments

Here, we are talking about public spaces such as streets, parks and gardens where
robots provide integrated security services, maintenance, the intelligent and inte-
grated management of traffic, announcements and notices and the integration of
services. In addition, this includes public buildings such as museums or city halls,
which implement energy efficiency criteria, access management and guidance and
support visits.

161I.G. Alonso et al., Service Robotics within the Digital Home, Intelligent Systems,
Control and Automation: Science and Engineering 53, DOI 10.1007/978-94-007-1491-5,
© Springer Science+Business Media B.V. 2011

4D/RCS  Reference model architecture for military unmanned vehicles on how
their software components should be identified and organized.

Anykode Marilou  Modeling and simulation environment for mobile robots,
humanoids, articulated arms and parallel robots operating in real-world condi-
tions that respect the laws of physics.

Architectural patterns  Concept that solves and delineates some essential cohe-
sive elements of a software architecture.

Autonomous  The capacity of a rational individual to make an informed, un-
coerced decision.

Bundles  Normal jar components with extra manifest headers in OSGi protocol.
Carmen  Carnegie Mellon Robot Navigation Toolkit acronym – this is an open

source toolkit for mobile robot control.
CLARAty  Integrated framework for reusable robotic software.
CORBA  Common Object Request Broker Architecture is the standard defined by

the Object Management Group that enables software components written in mul-
tiple computer languages and running on multiple computers to work together.

Development platform  Software design and programming of a system or software
package.

DH Compliant  Interoperability protocol between robotics and home automation
systems developed by the DHCompliant consortium.

Digital home  An extension of home automation concept adding TI.
DLNA  Digital Living Network Alliance – a non-profit collaborative trade organi-

zation and a protocol for audio/video media exchange.
GENA  General Event Notification Architecture, HTTP notification architecture

that transmits notifications between HTTP resources.
HTTP  Hypertext Transfer Protocol, networking protocol for distributed, collab-

orative, hypermedia information systems.
HTTPMU  Variant of HTTPU that uses IP multicast.
HTTPU  Extension of the HTTP/1.1 protocol using UDP as the data transport

instead of the usual TCP protocol.

Glossary

162 Glossary

Industrial Robot  Automatically controlled, reprogrammable, multipurpose
manipulator programmable in three or more axes.

Industrial Safety  Set of safety conditions for workers, materials and tools in an
industrial environment.

Interoperability  The ability of diverse systems and organizations to work together
(inter-operate).

JAUS  Joint Architecture for Unmanned Systems, which was originally an initia-
tive by the US Department of Defense.

JINI  Network architecture for the construction of distributed systems in the form
of modular cooperating services.

Logistics  The management of the flow of the goods, information and other resources
in a repair cycle between the points of consumption to meet the requirements of
costumers.

MARIE  Mobile and Autonomous Robotics Integration Environment acronym,
development environment for robotics platforms integration.

Microsoft Robotics Studio  Development of robotic platform point to point. Visual
programming tool focused to develop and debug robotics applications.

Middleware  Computer software that connects software components or people and
their applications

Miro  Middleware for Mobile Robot Applications.
NATO STANAG 4586  NATO Compliant Ground Control System for UAV.
NS-2/NS-3  Network Simulator, discrete event network simulator.
OMNET  Component-based, modular and open architecture discrete event network

simulator.
OpenRDK  Modular software framework focused on rapid development of distrib-

uted robotic systems.
OPNET  Optimized Network Engineering Tool, software tool for network model-

ing network performance.
Orca  Open source framework for developing component-based robotic systems.
OROCOS  Open Robot COntrol Software acronym –a project that provides a free

software toolkit for real-time robot arm and machine tool control.
OSGi  Open Services Gateway Initiative acronym – a module system and service

platform for the Java programming language that implements a complete and
dynamic component model.

Personal Robotics Assistants  Robots in charge of a person’s healthcare and
assistance in servant or professional labors.

Player/Stage/Gazebo  Free software robot interface and simulation system.
Professional Service Robots  Branch of service robots entrusted to provide

assistance with work.
RMI  Remote Method Invocation provides a simple and direct model for distri

buted computation with Java objects so that one can write distributed.
Robotic Kits  Building a robot from a kit is one of the best ways to get involved

with robotics.
Robot toys  Robots for entertainment.
Salutation  Technique for identifying resources.

163Glossary

Semantic Web services (SWS)  Web services with semantic information.
Service robotics  Science that studies service robots.
Service robots  Robots that operate semi or completely autonomously to realize

useful services for humans, excluding manufacturing.
Simulation platform  Software that allows the study of systems behavior before

implementation in a real environment.
Smart home  Synonym for the digital home.
SOAP  Simple Object Access Protocol is a protocol specification for exchanging

structured information in the implementation of WS in computer networks.
SSDP  Simple Service Discovery Protocol is a network protocol based on the Inter-

net Protocol Suite for the advertisement and discovery of network services and
presence information.

SysML  Systems Modeling Language is a general purpose modeling language for
systems engineering applications.

TCP  Transmission Control Protocol.
Teleassistance  Healthcare, in their own house, of elderly persons or with some

dependence degree.
Telepresence  A set of technologies that allow a person to feel as if they were pres-

ent, to give the appearance that they were present or to have an effect, via telero-
botics, at a place other than their true location.

UDP  User Datagram Protocol.
UPnP  Universal Plug and Play, a set of networking protocols for primarily residen-

tial networks without enterprise class devices that permits networked devices.
Urbi  Universal Robot Body Interface, open source cross-platform software plat-

form in C++ used to develop applications for robotics and complex systems.
USARSim  Open source high fidelity robot simulator that can be used for both

research and education.
Web services  Software system designed to support interoperable machine-to-

machine interaction over a network.
Webots  Professional robot simulator.
XML  Extensible Markup Language is a set of rules for encoding documents in

machine-readable form.

165

Journal Articles

Albus J, Huang H, Messina E (2002a) 4D/RCS A reference model architecture for unmanned
vehicle systems, version 2.0, NISTIR 6910, National Institute of Standards and Technology,
Gaithersburg, MD

Gomez H (2008) La base instalada de PC sobrepasa los 1.000 millones de unidades. Cio España.
24/06/2008. http://www.idg.es/cio/La_base_instalada_de_PC_sobrepasa_los_1.000_millones_de_
unidades/doc69106-mercado.htm

Pransky J (1996) Service robots. How should we define them? Serv Robot Int J 2(1):4–5

Journal Articles by DOI

Ahn Sang Chul, Kim Jin Hak, Lim Kiwoong, Ko Heedong, Kwon Yong-Moo, Kim Hyoung-Gon
(2005) UPnP approach for robot middleware. In: IEEE International Conference on Robotics
and Automation (ICRA), 2005, Barcelona, SPAIN, pp 1959–1963. doi: 10.1109/ROBOT.
2005.1570400

Albus J, Murphy K, Lacaze A, Legowik S, Balakirsky S, Hong T, Shneier M, Messina E (2002b)
4D/RCS sensory processing and world modeling on the Demo III experimental unmanned
ground vehicles. In: Proceedings of the 2002 IEEE international symposium on intelligent
control, pp 885–890. doi: 10.1109/ISIC.2002.1157879

Allard J, Chinta V, Gundala S, Richard GG (2003) Jini meets UPnP: an architecture for Jini/UPnP
interoperability. In: Proceedings of the 2003 symposium on applications and the internet, 2003,
Orlando, FL, pp 268–275. doi: 10.1109/SAINT.2003.1183059. http://www.computer.org/
portal/web/csdl/doi?doc=abs/proceedings/saint/2003/1872/00/18720268abs.htm

Arnold K (1999) The Jini architecture: dynamic services in a flexible network. In: Proceedings
of the 36th annual ACM/IEEE design automation conference, New Orleans, LA, USA, pp
157–162. doi: 10.1145/309847.309906

Bajaj S, Breslau L, Estrin D, Fall K, Heidemann J, Huang P, Kumar S, McCanne S, Rejaie R,
Sharma P, Varadhan K, Xu Y, Yu H, Zappala D (1999) Improving simulation for network
research. IEEE Computer (To appear, a preliminary draft is currently available as USC
technical report pp 99–702). doi: 10.1.1.44.7229

Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring. Surg
Endosc 16(10):1389–1402. doi: 10.1007/s00464-001-8283-7

References

166 References

Begum A, Lee M, Kim YJ (2010) A simple visual servoing and navigation algorithm for an
omnidirectional robot. In: 3rd international conference on human-centric computing (Human-
Com), 2010, Cebu, Philippines, pp 1–5. doi: 10.1109/HUMANCOM.2010.5563325

Cheng-Wei Chen, Chung-Kai Chen, Jyh-Cheng Chen, Chien-Tan Ko, Jenq-Kuen Lee, Hong-Wei
Lin, Wang-Jer Wu (2004) Java RMI over heterogeneous wireless networks. IEEE Int Con
ference Commun (ICC) 3:1391–1395. doi: 10.1109/ICC.2004.1312740 DOI: dx.doi.org

Coulson G, Blair G, Clarke M, Parlavantzas N (2002) The design of a configurable and reconfigu-
rable middleware platform. Distrib Comput 15(2):109–126. doi: 10.1007/s004460100064

Cousins S (2010) ROS on the PR2 [ROS topics]. IEEE Rob Autom Mag 17(3):23–25. doi: 10.1109/
MRA.2010.938502

Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, Weerawarana S (2002) Unraveling the Web
services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput 6(2):86–93.
doi: 10.1109/4236.991449

Ferguson P, Huston G (1998) What is a VPN? http://citeseerx.ist.psu.edu/viewdoc/summary? doi:
10.1.1.28.972

Furmento N, Lee W, Mayer A, Newhouse S, Darlington J (2002) ICENI: an open grid service
architecture implemented with Jini. In: SC conference, 0:37. IEEE Computer Society, Los
Alamitos, CA. doi: http://doi.ieeecomputersociety.org/10.1109/SC.2002.10027

Furmento N, Hau J, Lee W, Newhouse S, Darlington J (2004) Implementations of a service-oriented
architecture on top of Jini, JXTA and OGSI. In: Grid computing, 3165:249–261. Lecture notes in
computer science. Springer, Berlin/Heidelberg. http://dx.doi.org/10.1007/978-3-540-28642-4_11

Graf B, Hans M, Schraft RD (2004) Care-O-bot II—development of a next generation robotic
home assistant. Auton Robots 16(2):193–205. doi: 10.1023/B:AURO.0000016865.35796.e9
DOI: dx.doi.org

Gu T, Pung HK, Zhang DQ (2004) Toward an OSGi-based infrastructure for context-aware appli-
cations. IEEE Pervasive Comput 3(4):66–74. doi: 10.1109/MPRV.2004.19

Gupta R, Talwar S, Agrawal DP (2002) Jini home networking: a step toward pervasive computing.
Computer 35(8):34–40. doi: 10.1109/MC.2002.1023786

Hayes AT, Martinoli A, Goodman RM (2003) Swarm robotic odor localization. In: Proceedings of
the IEEE/RSJ international conference on intelligent robots and systems (IROS’01), Sendai.
doi: 10.1109/IROS.2001.976311

Jackson J (2007) Microsoft robotics studio: a technical introduction. IEEE Rob Autom Mag
14:82–87. doi: 10.1109/M-RA.2007.905745

Jones JL (2006) Robots at the tipping point: the road to iRobot Roomba. IEEE Rob Autom Mag
13(1):76–78. doi: 10.1109/MRA.2006.1598056

Kang DO, Kang K, Choi S, Lee J (2005) UPnP AV architectural multimedia system with a home
gateway powered by the OSGi platform. IEEE Trans Consum Electron 51(1):87–93. doi:
10.1109/TCE.2005.1405704

Kawamura K, Pack RT, Bishay M, Iskarous M (1996) Design philosophy for service robots. Rob
Autom Syst 18(1–2):109–116. doi: 10.1016/0921-8890(96)00005-X DOI: dx.doi.org

Kerstin S-E, Green A, Hüttenrauch H (2003) Social and collaborative aspects of interaction with a service
robot. Rob Autom Syst 42(3–4):223–234. doi: 10.1016/S0921-8890(02)00377-9 DOI: dx.doi.org

Kim D, Lee J, Kwon WH, Yuh IK (2002) Design and implementation of home network systems
using UPnP middleware for networked appliances. IEEE Trans Consum Electron 48:963. doi:
10.1109/TCE.2003.1196427

Knoop S, Vacek S, Zöllner R, Au C, Dillmann R (2004) A CORBA-based distributed software
architecture for control of service robots. Proc Int Conf Intell Robots Syst 4:3656–3661. doi:
10.1109/IROS.2004.1389983 DOI: dx.doi.org

Koenig N, Howard A (2004) Design and use paradigms for gazebo, an open-source multi-robot
simulator. In: IEEE/RSJ international conference on intelligent robots and systems, Taipei.
doi: 10.1109/IROS.2004.1389727

Koren Y, Borenstein J (1991) Potential field methods and their inherent limitations for
mobile robot navigation. IEEE Int Conf Robot Automation 2:1398–1404. doi: 10.1109/
ROBOT.1991.131810

167References

Lara R, Roman D, Polleres A, Fensel D (2004) A conceptual comparison of WSMO and OWL-S,
vol 3250. Springer, Berlin, pp 254–269. doi: 10.1007/978-3-540-30209-4_19

Mamen R (2003) Applying space technologies for human benefit; the Canadian experience and
global trends. In: Proceedings of international conference on recent advances in space tech-
nologies, RAST ‘03, Istanbul, pp 1–8. doi: 10.1109/RAST.2003.1303381

Marco TG, Cristina V, Paolo A, Luca P, Dario GA, Massimo P (2010) Design considerations about
a photovoltaic power system to supply a mobile robot. In: IEEE international symposium on
industrial electronics (ISIE), Bari, 2010, pp 1829–1834. doi: 10.1109/ISIE.2010.5637724

Matsumaru T (2009) Discrimination of emotion from movement and addition of emotion in move-
ment to improve human-coexistence robot’s personal affinity. In: The 18th IEEE international
symposium on robot and human interactive communication, RO-MAN 2009, Toyama,
pp 387–394. doi: 10.1109/ROMAN.2009.5326345

Michel O (1998) Webots: symbiosis between virtual and real mobile robots. Lecture Notes in
Computer Science. doi: 10.1007/3-540-68686-X_24

Michel O (2004) Cyberbotics Ltd. Webots TM: professional mobile robot simulation. Int J Adv
Robotic Syst 1(1):39–42. doi: 10.1.1.86.1278

Miller B, Pascoe R (1999) Mapping salutation architecture APIs to bluetooth service discovery
layer. Bluetooth Consortium 1.C.118/1.0 1. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi: 10.1.1.39.1063

Miller BA, Nixon T, Tai C, Wood MD (2001) Home networking with universal plug and play.
IEEE Commun Mag 39(12):104–109. doi: 10.1109/35.968819

Mohammed N, Al-Jaroodi J (2008) Characteristics of middleware for networked collaborative
robots. In: International symposium on collaborative technologies and systems, CTS 2008,
Irvine. doi: 10.1109/CTS.2008.4543973

Mok SM, Wu C (2006) Automation integration with UPnP modules, 5 pp. doi: 10.1109/
DELTA.2006.18

Morgan S (2000) Jini to the rescue [computer network interconnection technology]. IEEE Spectr
37(4):44–49. doi: 10.1109/6.833027

Nesnas I, Wright A, Bajracharya M, Simmons R, Estlin T, Kim WS (2003) CLARAty: an architec-
ture for reusable robotic software. In: SPIE Aerosense Conference, Orlando. doi:
10.1117/12.497223

Oh Yeon-Joo, Lee Hoon-Ki, Paik Eui-Hyun, Park Kwang-Roh, Kim Jung-Tae (2007) Implementa-
tion of the DLNA Proxy System for sharing home media contents. IEEE Trans Consum Elec-
tron 53(1):139–144. doi: 10.1109/TCE.2007.339515

Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K (2002) The intelligent
ASIMO: system overview and integration. In: IEEE/RSJ international conference on intelli-
gent robots and systems, 2002, Lausanne, vol 3, pp 2478–2483. doi: 10.1109/
IRDS.2002.1041641

Shoemaker CM, Bornstein JA (1998) The Demo III UGV program: a testbed for autonomous
navigation research. In: Intelligent control (ISIC).In: Proceedings held jointly with IEEE inter-
national symposium on computational intelligence in robotics and automation (CIRA), Hough-
ton, intelligent systems and semiotics (ISAS), Gaithersburg, pp 644–651. doi: 10.1109/
ISIC.1998.713784, doi: dx.doi.org

Suri N, Bradshaw JM, Carvalho MM, Cowin TB, Breedy MR, Groth PT, Saavedra R (2003) Agile
computing: bridging the gap between grid computing and ad-hoc peer-to-peer resource shar-
ing. In: Proceedings of 3rd IEEE/ACM international symposium on cluster computing and the
grid, CCGrid 2003, Tokyo, pp 618–625. doi: 10.1109/CCGRID.2003.1199423. http://
ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F8
544%2F27003%2F01199423.pdf%3Farnumber%3D1199423&authDecision=−203

Takeda K, Nasu Y, Capi G, Yamano M, Barolli L, Mitobe K (2001) A CORBA-based approach for
humanoid robot control. Ind Robot Int J 28(3):242–250. doi: 10.1108/01439910110389407
DOI: dx.doi.org

Vinoski S (1997) CORBA: integrating diverse applications within distributed heterogeneous
environments. IEEE Commun Mag 35:46–55. doi: 10.1109/35.565655 DOI: dx.doi.org

168 References

Volpe R, Nesnas I, Estlin T, Mutz D, Petras R, Das H (2001) The CLARAty architecture for
robotic autonomy. In: Aerospace conference, 2001, IEEE Proceedings, Big Sky. doi: 10.1109/
AERO.2001.931701

Wang LF, Tan KC, Prahlad V (2000) Developing Khepera robot applications in a Webots
environment. In: Proceedings of 2000 international symposium on micromechatronics and
human science, MHS 2000, Nagoya. doi: 10.1109/MHS.2000.903293

Westhoff D, Scherer T, Stanek, H, Zhang J, Knoll A (2004) A flexible framework for task-ori-
ented programming of service robots. IN VDI BERICHTE, 1841. doi: 10.1109/
ICIA.2005.1635052

Woo E, MacDonald BA, Trepanier F (2003) Distributed mobile robot application infrastructure.
In: Proceedings of international conference on intelligent robots and systems, Las Vegas, vol 2,
pp 1475–1480. doi: 10.1109/IROS.2003.1248852 DOI: dx.doi.org

Wooden D, Malchano M, Blankespoor K, Howardy A, Rizzi AA, Raibert M (2010) Autonomous
navigation for BigDog. In: IEEE international conference on robotics and automation (ICRA),
2010, Anchorage, pp 4736–4741. doi: 10.1109/ROBOT.2010.5509226

Zeng X, Bagrodia R, Gerla M (1998) GloMoSim: a library for parallel simulation of large-scale
wireless networks. In: Proceedings of twelfth workshop on parallel and distributed simulation,
PADS ’98, Banff. doi: 10.1109/PADS.1998.685281

Zhang Z, Cao Q, Zhang L, Lo C (2009) A CORBA-based cooperative mobile robot system. Ind
Robot Int J 36(1):36–44. doi: 10.1108/01439910910924657

Zlajpah L (2008) Simulation in robotics. Math Comput Simul 79(4):879–897. doi: 10.1016/
j.matcom.2008.02.017

Books

Bartlett N (2009) OSGI in practice. Amazon.com
Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. A new form of Web content that is

meaningful to computers will unleash a revolution of new possibilities. Scientific American
Magazine, May 17, 2001

Bischoff R, Guhl T (2009) Robotic visions to 2020 and beyond – The strategic research agenda
(SRA) for robotics in Europe. www. robotics-platform. eu/sra. Last accessed on 23 Mar 2010

Bottazzi S, Caselli S, Reggiani M, Amoretti M (2002) A software framework based on real-time
CORBA for telerobotic systems. In: IEEE international conference on intelligent robots and
systems, Lausanne, pp 3011–3017

Bräunl T, Graf B (2008) Embedded robotics – mobile robot design and applications with embed-
ded systems, 3rd edn. Springer-Verlag Berlin Heidelberg

Breazeal Cynthia L (2004) Designing sociable robots. MIT Press, Cambridge, MA/London
Chen H (2000) Developing a dynamic distributed intelligent agent framework based on the Jini

architecture, Master's thesis, University of Maryland, Baltimore County (January 2000)
Collaborative T (2009) From internet to robotics. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.159.4278&rep=rep1&type=pdf. Last accessed on 23 Mar 2010
Daconta MC, Obrst LJ, Smith KT (2003) The semantic web: a guide to the future of XML, Web

services, and knowledge management. Wiley, Indianapolis
English W (2007) Joint Architecture for Unmanned Systems (JAUGS). Reference architecture

specification, vol II, version 3.3
Everett HR, Laird RT, Carroll DM, Gilbreath GA, Heath-Pastore TA, Inderieden RS, Tran T,

Grant KJ, Jaffee DM (2000) Multiple Resource Host Architecture (MRHA) for the Mobile
Detection Assessment Response System (MDARS). SPAWAR Systems Technical Document
3026, Revision A

Gothing G, Hurdus J (2006) Implementation of JAUS on a 2004 CadillacSRX using a potential
fields architecture. AUVSI’s unmanned systems NorthAmerica. Orlando, FL

169References

He H (2003) What is service-oriented architecture. webservices
Henning M, Vinoski S (1999) Advanced CORBA programming with C++. Addison-Wesley

Professional, Reading, MA
IFR – Statistical Department (2009) World robotics 2009
IFR – Statistical Department (2010) World robotics 2010
Jeronimo M, Weast J (2003) UPnP design by example. A software developers guide to universal

plug and play. Intel Press, Hillsboro
Karlsson J (2004) World robotics 2004. United Nations, Geneva
Keshav S (1988) REAL: A network simulator. Citeseer, University of California, Berkeley
OSGi Alliance (2003) OSGi service platform: the OSGi alliance. IOS Press, Amsterdam,

The Netherlands
Schraft R-D, Schmierer G (2000) Service robots. A K Peters, Ltd, Natick
Spexard TP, Siepmann FHK, Sagerer G (2008) Memory-based Software Integration for Develop-

ment in Autonomous Robotics. In: Burgard W, Dillmann R, Plagemann C, Vahrenkamp N (ed)
Intelligent Autonomous Systems 10: IAS-10

Vajta L, Juhasz T (2005) The role of 3D simulation in the advanced robotic design, test and
control, cutting edge robotics, Vedran Kordic, Aleksandar Lazinica and Munir Merdan (Ed.),
ISBN: 3-86611-038-3, InTech

Online Documents (No DOI Available)

Allegro Software Development Corporation (2006) Networked digital media standards. A UPnP/
DLNA overview, Massachusetts. http://www.allegrosoft.com/UPnP_DLNA_White_Paper.pdf.
Accessed 12 Dec 2010

AnyKode (2010) anyKode Marilou – modeling and simulation environment for Robotics. http://
www.anykode.com/index.php. Accessed 3 Dec 2010

Aquabot (2010) Aquabot official dealer site. http://www.aquabots.com/. Accessed 1 Dec 2010
ARA (Applied Research Associates) (2010). http://www.ara.com/. Accessed 2 Dec 2010
Arruda K (2008) DTCP-IP for DLNA
Australian Government – The Treasury (2002) A survey of international fiscal policy issues –

current drivers and future challenges. http://www.treasury.gov.au/documents/382/HTML/
docshell.asp?URL=04Fiscalarticle.html. Accessed 1 Dec 2010

Avancha S, Joshi A, Finin T (2001) Enhancing the bluetooth service discovery protocol, Techical
Report TR-CS-01-08

Bagrodia R, Meyer R, Takai M, Chen Y, Zeng X, Martin J, Song HY (1998) Parsec: a parallel
simulation environment for complex systems. IEEE Computer Society, Los Alamitos

Balaguer B, Balakirsky S, Carpin S, Lewis M, Scrapper C (2008) USARSim: a validated simulator for
research in robotics and automation. In: Workshop on. “Robot Simulators”, Nice, France, Sept 2008

Beck D, Ferrein A, Lakemeyer G (2007) A simulation environment for middle-size robots with multi-
level abstraction. In: Proceedings of the 2007 International RoboCup Symposium, Atlanta, USA

Blair GS, Coulson G, Robin P, Papathomas M (1998) An architecture for next generation
mid-dleware. http://portal.acm.org/citation.cfm?id=1659232.1659249. Accessed 12 Dec 2010

Blind Driver Challenge (2010). National Federation of the Blind. http://www.blinddriverchallenge.
org/bdcg/Default.asp. Accessed 3 Dec 2010

Boston Dynamics (2010) Boston dynamics: dedicated to the science and art of how things move.
http://www.bostondynamics.com/robot_bigdog.html. Accessed 30 Nov 2010

Bray T, Paoli J, Sperberg-McQueen CM, Yergeau F, Maler E (2000) Extensible markup language
(XML). http://www.w3.org/TR/REC-xml

Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2008) Extensible markup language
(XML) 1.0, 5th edn. W3C Recommendation 26. http://www.w3.org/TR/2008/REC-xml-
20081126/. Accessed 2 Dec 2010

170 References

Brown KL, Christianson L (2005) OPNET Lab manual
Bruyninckx H (2003) Open robot control software: the OROCOS project. In: Proceedings of

the 2001 IEEE international conference on robotics and automation, ICRA 2001, Seoul,
May 2001

Cañas JM, Matellán V, Montúfar R, Tonanzintla M (2006) Programación de robots móviles.
Revista Iberoamericana de Automática e Informática Industrial, 3(2):99–110

Carnegie Mellon University Home Page (2010) http://www.cmu.edu/index.shtml. Accessed
20 Nov 2010

Carroll DM, Mikell K, Denewiler T (2004) Unmanned ground vehicles for integrated force protec-
tion. In: SPIE Proceedings of the 5422Cartif. http://www.cartif.com/. Accessed 2 Dec 2010

Cartif (2010) Fundación CARTIF – Centro Tecnológico Cartif. http://www.cartif.com/index.php/
es/quienes-somos/centro-tecnologico-cartif.html. Accessed 1 Dec 2010

CDL Systems, NATO STANAG 4586 (2010) http://www.cdlsystems.com/index.php/stanag4586.
Accessed 3 Dec 2010

CEDOM – Home Automation Spanish Association (2010) What is home automation? Systems
that integrate with home automation. Home automation system (Spanish Website). http://www.
cedom.es/que-es-domotica.php. Accessed 1 Dec 2010

Chang X (1999) Network simulations with OPNET. In: Proceedings of the 31st conference on
winter simulation: simulationa bridge to the future, Phoenix, vol 1, pp 307–314

Chrysanthakopoulos G, Nielsen H (2007) Microsoft robotics studio: architecture overview
[Online]. Available: http://www.Microsoft.Com/winme/0703/29490/Architecture_Overview/
Local/index.html

Clark MN (2005a) JAUS implementation: robots gather for successful interoperability experiment.
IEEE Rob Autom Mag. www.openjaus.com/. Accessed 2 Dec 2010

Clark MN (2005b) JAUS compliant systems offers interoperability across multiple and diverse
robot platforms, unmanned systems North America conference, Baltimore, MD. www.open-
jaus.com/. Accessed 2 Dec 2010

Collett THJ, MacDonald BA, Gerkey BP (2005) Player 2.0: toward a practical robot programming
framework. In: Proceedings of the Australasian conference on robotics and automation
(ACRA), Sydney

CONSER (2002) Collaborative simulation for education and research (CONSER). http://www.isi.
edu/conser/. Accessed 22 Nov 2010

Côté C, Létourneau D, Michaud F, Valin JM, Brosseau Y, Raievsky C, Lemay M, Tran V (2004)
Code reusability tools for programming mobile robots. In: Proceedings of international con-
ference on intelligent robots and systems, Sendai, Japan, vol 2, pp 1820 – 1825. doi: 10.1109/
IROS.2004.1389661

Cyberbotics (2009) Webots reference manual release 6.1.5. http://www.cyberbotics.com/reference.
pdf. Accessed 3 Dec 2010

DARPA (2007) DARPA urban challenge. http://www.darpa.mil/grandchallenge/index.asp.
Accessed 3 Dec 2010

De la Pinta JR, Maestre JM, Camacho EF, Alonso IG (2011) Robots in the smart home: a project
towards interoperability. International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC).
7(3):192–201

Defense Update (2007) STANAG 4586 – NATO complient ground control system for UAV. Inter-
national, Online Defense Magazine. http://defense-update.com/products/s/stanag_4586.htm.
Accessed 3 Dec 2010

DH Compliant (2010) http://www.dhcompliant.com/. Accessed 2 Dec 2010
DLNA (2007) DLNA overview and vision whitepaper. http://www.dlna.org/news/DLNA_white_

paper.pdf. Accessed 12 Dec 2010
Dobrescu R, Dobrescu M, Nicolae M (2007) Using UPnP services with an intelligent sensor

network node. In: Proceedings of the 7th wseas international conference on applied informatics
and communications, 2007. Vouliagmeni, GREECE, pp 373–376

Domotica Davinci (2010) http://www.domoticadavinci.com/. Accessed 2 Dec 2010
Erdei M, Wagner A, Sója K, Székely M (2001) A networked remote simulation architecture and its

remote OMNeT ++ implementation. 15th European Simulation Multiconference (ESM 2001),
CTU, Prague, Czech Republic. Modelling and simulation pp 235–242

171References

Eurostat (2010) Households having access to the Internet at home. http://appsso.eurostat.ec.europa.
eu/nui/show.do?dataset=isoc_pibi_hiac&lang=en. Accessed 1 Dec 2010

Fout T (2001) Universal plug and play in windows XP. https://www.isysguy.com/%5Cdocuments/
Library/DataCom%5CUniversalPlugandPlayinWindowsXP.pdf. Accessed 12 Dec 2010

Fuentes S (2007) Qué es DLNA: a fondo. http://alatest.se/apps/reviews/21399060/-
1/?ref=http%3A%2F%2Falatest.se%2Fprodukttester%2Fovriga-digitalkameror%2Fque-
es-dlna-a-fondo%2Fpo3-83010536%2C257%2F. Accessed 12 Dec 2010

Fumio O, Junji O, Hideaki H, Hirokazu S (2004) Open robot controller architecture (ORCA).
Nippon Kikai Gakkai Robotikusu, Mekatoronikusu Koenkai Koen Ronbunshu

Futurerobot (2010) Future robot. http://www.futurerobot.com/. Accessed 7 Dec 2010
General Atomics (2010) General atomics affiliates. http://www.ga.com/index.php. Accessed

1 Dec 2010
Gerkey BP, Vaughan RT, Howard A (2003) The player/stage project: tools for multi-robot and

distributed sensor systems. In: Proceedings of the 11th international conference on advanced
robotics ICAR 2003, Coimbra

Gostai (2010) The Urbi Software Development Kit. Version 2.0-49-g4358c61. Accessed 3 Dec 2010
Henderson TR, Roy S, Floyd S, Riley GF (2006) Ns-3 project goals. In: WNS2 ‘06 proceeding

from the 2006 workshop on ns-2: the IP network simulator, Pisa
Heredia E (2008) An overview of the DLNA architecture, Redmond, Washington
Hohl L, Tellez R, Michel O, Ijspeert AJ (2006) Aibo and webots: simulation, wireless remote

control and controller transfer. Rob Autom Syst 54(6):472–485
Holzner S (1993) The microsoft foundation class library programming. ISBN: 9781566861021
Honda (2010) Honda worldwide | ASIMO. http://world.honda.com/ASIMO/. Accessed

30 Noviembre 2010
Honda Motor Co (2010) Honda Worldwide | U3-X, Tokyo, Japan. http://world.honda.com/U3-X/.

Accessed 1 Dec 2010
IFR International Federation of Robotics (2010) http://www.ifr.org/. Accessed 1 Dec 2010
Ingenium (2010) http://www.ingeniumsl.com/website/es/index.html. Accessed 2 Dec 2010
Intelligent Autonomous Systems Group (2010) http://ias.cs.tum.edu/. Accessed 23 Nov 2010
Intelligent Cooperative Systems Laboratory (2010) http://www.ics.t.u-tokyo.ac.jp/. Accessed

23 Nov 2010
Irobot (2010) Irobot cleaning robots. http://store.irobot.com/home/index.jsp. Accessed 1 Dec 2010
iRobot Corp (2000) Mobility robot integration software user’s guide. http://www.irobot.com/
Jeronimo M (2004) It just works: UPnP in the digital home. http://www.artima.com/spontaneous/

upnp_digihome.html. Accessed 12 Dec 2010
KA LawnBott (2010) Kyodo America – LawnBott. http://www.lawnbott.com/. Accessed 7 Dec 2010
Kaage U, Kahmann V, Jondral F (2001) An OMNeT++ TCP model. In: Proceedings of communication

networks and distributed systems modeling and simulation conference, Prague, Czech Republic
Karakuri (2010) karakuri.info. http://www.karakuri.info/. Accessed 7 Dec 2010
Katholieke Universiteit Leuven Home Page (2010) http://www.kuleuven.be/english/. Accessed

20 Nov 2010
Kranz M, Rusu RB, Maldonado A, Beetz M, Schmidt A (2006) A player/stage system for contex-

taware intelligent environments. In: Proceedings of the System Support for Ubiquitous Com-
puting Workshop (UbiSys 2006), at the 8th Annual Conference on Ubiquitous Computing
(Ubicomp 2006), Orange County, California

LBNL’s Network Research Group (2010) http://ee.lbl.gov/. Accessed 21 Nov 2010
Maestre JM, Camacho EF (2009) Smart home interoperability: the domoesi project approach. Int

J Smart Home 3(3):31–44
Mellon Carnegie (2010) The robot hall of fame: unimate. http://www.robothalloffame.org/unimate.

html. Accessed 3 Dec 2010
Members of the UPnP Forum (2008) UPnP device architecture 1.1. http://www.upnp.org/specs/

arch/UPnP-arch-DeviceArchitecture-v1.1.pdf. Accessed 2 Dec 2010
Microsoft, MSDN Library (2010) UPnP concepts. http://msdn.microsoft.com/en-us/library/

ms899570.aspx. Accessed 2 Dec 2010
Microsoft Robotics Developer Studio (2010) http://www.microsoft.com/robotics/. Accessed

1 Dec 2010

172 References

Microsoft Robotics Studio (2010) Documentation microsoft robotics studio. http://msdn.microsoft.
com/en-us/robotics/cc136623. Accessed 24 Nov 2010

Mint Evolution Robotics (2010) Introducing Mint™. http://mintcleaner.com/. Accessed
1 Dec 2010

MIT media lab (2010) Huggable. http://robotic.media.mit.edu/projects/robots/huggable/overview/
overview.html. Accessed 7 Dec 2010

MobileRobots (2010) MobileRobots research and academic customer support. http://robots.
mobilerobots.com/wiki/Main_Page. Accessed 21 Nov 2010

Montemerlo M, Roy N, Thrun S (2003) Perspectives on standardization in mobile robot program-
ming: the Carnegie Mellon navigation (CARMEN) toolkit. In: Proceedings of international
conference on intelligent robots and systems, Las Vegas, USA, vol 1–4, pp 2436–2441. doi:
10.1109/IROS.2003.1249235

MoviRobotics (2010) http://www.movirobotics.com/. Accessed 2 Dec 2010
NASA New Millennium Program (2010) http://nmp.nasa.gov/. Accessed 7 Dec 2010
NATO, STANAG 4586 (Standard Interfaces of UAV Control System (UCS) for NATO UAV

Interoperability), NATO Standardization Agency (NSA), Brussels (2004)
Nguyen HG (2005) Overview and highlights of robotics research and development at the space and

naval warfare systems Center, San Diego. SPAWAR systems center. http://handle.dtic.
mil/100.2/ADA433768. Accessed 1 Dec 2010

NI LabVIEW (2010) NI LabVIEW – Improving the productivity of engineers and scientists. http://
www.ni.com/labview/. Accessed 12 Dicember 2010

NorthStar Evolution Robotics (2010) NorthStar system delivers robotic. http://www.evolution.
com/products/northstar/. Accessed 7 Dec 2010

OMG (Object Management Group) (1998) CORBAservices: common object services specifica-
tion. http://www.ing.iac.es/~docs/external/corba/CorbaServices.pdf. Accessed 2 Dec 2010

OMG’s CORBA Website (2010) http://www.corba.org/. Accessed 20 Nov 2010
Open Dynamics Engine – home (2010) http://www.ode.org/. Accessed 23 Nov 2010
OpenGL (2010) OpenGL – The industry standard for high performance graphics. http://www.

opengl.org/. Accessed 19 Nov 2010
OpenRDK Website (2010) http://openrdk.sourceforge.net/index.php. Accessed 21 Nov 2010
OPNET Home Page (2010) http://www.opnet.com/. Accessed 21 Nov 2010
Oracle (2010) When should I use RMI-IIOP? http://java.sun.com/j2se/1.5.0/docs/guide/rmi-iiop/

rmiiiopUsing.html. Accessed 2 Dec 2010
Pal Robotics (2010) Pal robotics/humanoid robots. http://www.pal-robotics.com/. Accessed 1 Dec 2010
Parma University (2002) ARGO project home page. http://www.argo.ce.unipr.it/ARGO/english/

index.html. Accessed 1 Dec 2010
Player Project (2010) http://playerstage.sourceforge.net/. Accessed 24 Nov 2010
Robobuilder (2010) Robobuilder: education and entertainment robotic DIY kit. http://www.

robobuilder.net/eng/. Accessed 1 Dec 2010
RoboCup (2010) http://www.robocup.org/. Accessed 26 Nov 2010
Robomow (2010) Lawn mowers. http://www.robomow.com/. Accessed 7 Dec 2010
Rognlie R (1995) C++ robots introduction website with samples. http://www.pbm.com/~lindahl/

pbem_articles/cpprobots_environment.html. Accessed 26 Nov 2010
RoSta (2010a) Architecture Patterns – RoSta. http://wiki.robot-standards.org/index.php/

Comparison_and_Evaluation_of_Middleware_and_Architecture. Accessed 3 Dec 2010
RoSta (2010b) Middleware – RoSta. http://wiki.robot-standards.org/index.php/Middleware.

Accessed 25 Nov 2010
SAE (2010) Society of Automotive Engineers. http://www.sae.org/. Accessed 2 Dec 2010
SAE, JAUS History and Domain Model (2006) Architecture framework committee. http://www.

sae.org/. Accessed 2 Dec 2010
SAE, JAUS Mobility Service Set (2009) Information Modeling and Definition Committee. http://

www.sae.org/. Accessed 3 Dec 2010
SAE, JAUS/SDP Transport Specification (2009) Network Environmental Committee. http://www.

sae.org/. Accessed 5 Dec 2010

173References

SAMAN (2001) Simulation augmented by measurement and analysis for networks (SAMAN).
http://www.isi.edu/saman/index.html. Accessed 21 Nov 2010

Samsung (2010) SAMSUNG España http://www.samsung.com/. Accessed 7 Dec 2010
Schlenoff C, Albus J, Messina E, Barbera AJ, Madhavan R (2006) Using 4D/RCS toaAddress AI

knowledge integration. AI Magazine, 27
Segway Inc (2010) Segway – The leader in personal, green transportation. http://www.segway.

com/. Accessed 1 Dec 2010
Spykee World (2010) Spykee, the spy robot. http://spykeeworld.com/spykee/UK/index.html.

Accessed 1 Dec 2010
Stepanov A, Lee M (1995) The standard template library
The ICSI Networking Group (2010) http://www.icir.org/. Accessed 22 Nov 2010
TORC. ByWire XGV (2010) – Hybrid escape drive-by-wire platform. http://www.torctech.com/.

Accessed 3 Dec 2010
Universität Ulm Home Page (2010) http://www.uni-ulm.de/. Accessed 20 Nov 2010
Université de Sherbrooke Home Page (2010) http://www.usherbrooke.ca/. Accessed 21 Nov 2010
University of Oviedo. Infobotica Research Group (2010) DhCompliant stack architecture v0.4.

http://156.35.46.38/data/files/Architecture/DHCompliantArchitecture0433.pdf. Accessed
3 Dec 2010

University of Seville (2010) Interoperability diagrams (technical report). http://nyquist.us.es/
dhcompliant/Interoperability_diagrams.pdf. Accessed 3 Dec 2010

UPnP Forum (2001) Universal Plug and Play vendor’s implementation guide. http://www.upnp.
org/download/UPnP_Vendor_Implementation_Guide_Jan2001.htm. Accessed 12 Dec 2010

UPnP Forum (2010). http://www.upnp.org/. Accessed 2 Dec 2010
Urbi Home Page (2010) http://www.urbiforge.org/index.php/Main/HomePage. Accessed

26 Nov 2010
US Bureau of Labor Statistics (2010) Employment Projections Home Page. http://www.bls.gov/

emp/. Accessed 1 Dec 2010
Utz H, Sablatnog S, Enderle S, Kraetzschmar G (2002) Miro – middleware for mobile robot

applications. IEEE RSJ Trans Robot Autom 18:493–497
Varga A (2001) The OMNeT++ discrete event simulation system. In: Proceedings of the European

simulation multiconference (ESM’2001), Prague, 2001
Varga A, Hornig R (2008) An overview of the OMNeT++ simulation environment. In: Proceedings

of the 1st international conference on simulation tools and techniques for communications,
networks and systems & workshops, Marseille, 2008

Vaughan RT, Gerkey BP, Howard A (2003) On device abstractions for portable, reusable robot
code. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and
systems (IROS), Las Vegas, USA, 2003

Veizades J, Perkins C, Guttman E, Kaplan S (1997) Service location protocol. http://tools.ietf.org/
search/rfc2165. Accessed 12 Dec 2010

VINT Project Website (1996) http://www.isi.edu/nsnam/vint/. Accessed 21 Nov 2010
W3C (2007) SOAP specifications http://www.w3.org/TR/soap/. Accessed 24 Nov 2010
W3C (2008) Guía Breve de Tecnologías XML. http://www.w3c.es/divulgacion/guiasbreves/

tecnologiasxml. Accessed 12 Dec 2010
Wade RL (2006) Joint architecture for unmanned systems. Aviation and missile research, develop-

ment and engineering Center (AMRDEC). http://www.dtic.mil/ndia/2006targets/Wade.pdf.
Accessed 3 Dec 2010

Wehrle K, Reber J, Kahmann V (2001) A simulation suite for internet nodes with the ability to
integrate arbitrary quality of service behavior. In: Proceedings of communication networks and
distributed systems modeling and simulation conference, Phoenix, 2001

Wendel A, Bischoff K (2009) Robotics visions to 2020 and beyond. http://www.eurosfaire.prd.
fr/7pc/doc/1286200019_g44_geoffpegman.pdf. Accessed 1 Dec 2010

Williams M (2002) PROMETHEUS-The European research programme for optimising the road
transport system in Europe. In: Proceedings of the IEEE colloquium on driver information, p 1,
London, UK

174 References

Willow Garage (2010) Overview | Willow Garage. http://www.willowgarage.com/pages/pr2/
overview. Accessed 1 Dec 2010

WorldRobotic (2008) IFR/WorldRobotics. http://www.worldrobotics.org/index.php. Accessed
3 Dec 2010

WowWee (2010) WowWee™ astonishing imagination. http://www.wowwee.com/. Accessed
1 Dec 2010

XNA Developer Center (2010) http://msdn.microsoft.com/en-us/aa937791.aspx. Accessed
25 Nov 2010

Yujin Robot (2010) Iclebo. http://www.iclebo.com/product/iclebosmart.php. Accessed 29 Nov 2010
Zhang M, Zeigler BP, Hammonds P (2005) DEVS/RMI-An auto-adaptive and reconfigurable

distributed simulation environment for engineering studies. ITEA J. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=?doi=10.1.1.137.5872. Accessed 30 Nov 2010

Dissertations

Baity S (2005) Development of a next-generation experimentation robotic vehicle (NERV) that
supports intelligent and autonomous systems research. Master of Science thesis, Mechanical
Engineering, Virginia Tech, Virginia

Barrientos A (2002) Nuevas aplicaciones de la robótica. Robots de servicio. http://www.disa.bi.
ehu.es/spanish/asignaturas/17219/Robots_Servicios-Barrientos.pdf

Bettstetter C, Renner C (2000) A comparison of service discovery protocols and implementation of
the service location protocol. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3730

Certo G (2009) Nao Model and Simulation for Webots, Swiss Federal Institute of Technology,
Lausanne

Cummings ML, Kirschbaum AR, Sulmistras A, Platts JT (2006) STANAG 4586 human supervisory
control implications, Air and Weapon Systems Department, Dstl Farnborough & the Office of
Naval Research

Farooq J, Bilal R (2006) Implementation and evaluation of IEEE 802.11 e wireless LAN in
GloMoSim, Umea University, Umea

Faruque RR (2006) A JAUS toolkit for LabVIEW, and a series of implementation case studies with
recommendations to the SAE AS-4 Standards Committee. Master of Science thesis, Mechani-
cal Engineering, Virginia Tech, Virginia

Fielding RT (2000) Architectural styles and the design of network-based software architectures
Hidalgo Bláquez VM, Cañas JM (2008) Visual detection of vehicles speed in jdec platform
Levine J, Vickers L (2001) Robots controlled through web services: a technogenesis summer

research. http://attila.stevens-tech.edu/webservices/robot.pdf
Lopez de Toro C, Ribas Xirgo L (2008) Anàlisi del, Microsoft Robotics Studio
Mojon S (2004) Using nonlinear oscillators to control the locomotion of a simulated biped robot.

http://apl.epfl.ch/webdav/site/birg/shared/import/migration/diploma_report_mojon.pdf.
Accessed 30 Nov 2010

Olleros GA (2007) Domotica: protocolo UPnP y Hogar Digital. Proyecto Fin de Carrera. Univer-
sidad de Sevilla, Sevilla. http://bibing.us.es/proyectos/abreproy/11557/fichero/Volumen+
I%252F1_%CDndice.pdf. Accessed 27 Nov 2010

Santana JM (2005) Evaluación Del protocolo De Descubrimiento De Servicios Upnp EN redes
Inalámbricas, Universidad De Malaga, Malaga

Satoshi K (2004) Cyberlink for java – Programming guide V 1.3.
Song H, Kim D, Lee K, Sung J (2005) UPnP-based sensor network management architecture,

ICMU. http://www.ishilab.net/icmu2005/papers/117390-1-050228235605.pdf
Zhu F, Mutka M, Ni L (2002) Classification of service discovery in pervasive computing environ-

ments, Michigan State University, East Lansing

	Service Robotics within the Digital Home
	Preface
	Acknowledgments
	Acknowledgments by Author
	Contents
	About the Authors
	Abbreviations
	Introduction
	Chapter 1: Interoperability Systems
	Chapter 2: Robotic Development
	Chapter 3: Service Robotics
	Chapter 4: Integration of Service Robots in the Smart Home
	Chapter 5: Robotics Perspective
	Glossary
	References

