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Preface

Studies of rational agency have become a major theme in many disciplines, making
logic meet with philosophy, computer science, game theory, cognitive science, and
other fields. So far, logical theories have mostly described the information that
agents have about relevant situations, how it flows, and brings about knowledge
update and belief revision. But typically, human beings act on their goals. To fully
understand their behavior, we need to take both information and evaluation, the
two main driving forces of rational agency, into account. The aim of this book is
to provide a clearer picture of how these two crucial forces show analogous static
and dynamic logical structure, and also, how they can live in harmony, entangled in
many ways.

To achieve this aim, the present book proposes a uniform logical theory of prefe-
rence, drawing together ideas from several areas: modal logics of betterness rela-
tions, dynamic epistemic logics of information change, and priority-based systems
for representing structured preference relations. We develop a two-level view of
preference that fits well with realistic architectures of agency, closer to cognitive
reality. But perhaps the key idea underlying this book is dynamics, the systematic
logical study of acts and events that change information, or agents’ evaluation of
the world, changing their preferences eventually. The result of our study is a formal
framework that has interesting theoretical features of its own, but also, at least as
importantly, has the potential of being applied in analyzing preferences in a wide
variety of fields. The book provides some first case studies of deontic reasoning and
of games to show its theory at work.

Overall, in this book I hope to provide readers with a broad view of the structure
of preference, and I argue that changes in preference should be taken on board as an
essential part of the enterprise of understanding agency in its proper generality.
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Chapter 1
Introduction

Humans are often said to be information-processing agents navigating a complex
world with their knowledge and beliefs. But preference is what colors our view
of that world, and what drives the actions that we take in it. Moreover, we influ-
ence each other’s preferences all the time by making evaluative statements, uttering
requests or commands, in ways that direct our search for information, and for actions
that best fit our goals.

A phenomenon of this wide importance has naturally been studied in many dis-
ciplines, especially in philosophy and the social sciences. This book takes a formal
point of view, being devoted to logical systems that describe preferences, changes
in preference and entanglement of preference and belief. I will plunge right in, and
immediately draw your attention to the first time when preference was extensively
discussed by a logician.

1.1 A Brief Historical Sketch of Preference Logic

1.1.1 Von Wright and the Basic Ideas

In his seminal book The Logic of Preference: An Essay from 1963, Georg-Henrik
von Wright started a full-scale logical study of notions that interest moral philoso-
phers. He charted this space with the following three dimensions, which of course
admit border-line cases:

– deontological or normative: right, duty, command, permission, prohibition,
– axiological: good and evil, the comparative notion of betterness,
– anthropological: need, want, decision, choice, motive, end, action.

The intuitive concept of preference was said to stand between the last two of
these groups: It is related to the axiological notion of betterness on one side, but it
is related just as well to the anthropological notion of choice. And as we shall see
later in this book, in a logical perspective, preference also fits with deontology.

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
DOI 10.1007/978-94-007-1344-4_1, C© Springer Science+Business Media B.V. 2011
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4 1 Introduction

Von Wright chose to make a primitive notion of preference rather than betterness
the starting-point of his inquiry.1 In particular, he went on to define a logical notion
of preference as a relation Pϕψ between propositions which states intuitively that
the agent finds every instance of ϕ better than every instance of ψ . Von Wright then
observed how the resulting notion satisfies a number of formal laws of reasoning,
such as transitivity (“Pϕψ and Pψχ imply Pϕχ”) or monotonicity (“Pϕψ implies
P(ϕ ∧ χ)ψ”). Starting from this foothold, reasoning with preference was drawn
into the scope of logic. A broad stream of studies on preference logic ensued, which
shows no sign of diminishing. We will not use von Wright’s system in this book,
but some modern modal versions. For details of the original system, we refer to the
Handbook chapter [101].2

We will soon say more about later developments in preference logic. But for the
purposes of this book, we immediately note two further themes in von Wright’s
work that stand out, precisely because he did not develop them, and they did not
become mainstream topics. Still, they seem crucial to the functioning of preference.

Extrinsic versus intrinsic preference First, while considering the relationship
between preference and betterness of worlds or objects, von Wright distinguished
two kinds of relation: extrinsic and intrinsic preference. He explains the difference
with the following example:

. . . a person says, for example, that he prefers claret to hock, because his doctor has told
him or he has found from experience that the first wine is better for his stomach or health in
general. In this case a judgement of betterness serves as a ground or reason for a preference.
I shall call preferences, which hold this relationship to betterness, extrinsic.

It could, however, also be the case that a person prefers claret to hock, not because he
thinks (opines) that the first wine is better for him, but simply because he likes the first
better (more). Then his liking the one wine better is not a reason for his preference. . . .

([197], p. 14)

Simply stated, the difference is principally that p is preferred extrinsically to q if it
is preferred because it is better in some explicit respect. If there is no such reason,
the preference is intrinsic.

The division between intrinsic and extrinsic is by no means the only natural way
of distinguishing things. One can also study varieties of moral preference, aesthetic
preference, economic preference, etc. But reason-based preference seems as funda-
mental and “logical” as intrinsic preference, even though von Wright did not return
to it in his later systems.

A first main goal of the present book is to fill this gap, by extending the litera-
ture on intrinsic preferences with formal logical systems for the extrinsic notion of
preference, allowing us to spell out explicit reasons. On the way there, we will also
make new contributions to the literature on intrinsic preferences, since we see this
as a case of extension, not replacement.

1 The earlier study [93] did propose logic systems for the notion of betterness.
2 Incidentally, von Wright’s reading for the above Pϕψ has a rider “other things being equal”,
meaning that one must keep the truth values of certain relevant predicates constant. We will discuss
these ceteris paribus aspects of preference later on.
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Preference change A second major phenomenon observed by von Wright, and then
immediately removed from his logical agenda, is found in the following quote:

The preferences which we shall study are a subject’s intrinsic preferences on one occa-
sion only. Thus we exclude both reasons for preferences and the possibility of changes in
preferences.

([197], p. 23)

But clearly, our preferences are not static! One may revise one’s preferences for
many legitimate reasons, and indeed, rational agency consists partly in dealing with
this flux. And just as with information, it is then the interplay of reasoning unpacking
current states and acts that generate new states which should be explained.

The second main issue dealt with in this book is therefore how to model pref-
erence change in formal logics. This leads to new dynamic versions of existing
preference logic, and interesting connections with other areas showing a similar
dynamics, such as belief revision theory.

Following von Wright’s work, many studies on preference logic appeared over
the last few decades, and those not just in philosophy. Due to its central character,
at the interface between evaluation, choice, action, moral reasoning, and games,
and even computation by intelligent agents, preference has become a core research
theme in many fields. In what follows, I will summarize some main issues, just
to put this book in perspective. My purpose is not to give an overview of the vast
literature (I give some basic references for that), but only to show how this book is
grounded in a historical tradition. I point out some issues from the literature that are
relevant to the present book, and I end by highlighting some particular proposals
that have inspired the main new themes developed in it.

1.1.2 Preference in Logic and Philosophy

Formal investigations on preference logic have been intensive in philosophical logic.
The best survey up to 2001 can be found in the Chapter Preference Logic by Sven
Ove Hansson in the Handbook of Philosophical Logic [101].

This literature added several important notions to von Wright’s original setting.
In particular, a distinction which has played an important role is that between pref-
erence over incompatible alternatives and preference over compatible alternatives,
based on early discussions in [198]. The former is over mutually exclusive alterna-
tives, while the latter does not obey this restriction. Here is a typical example:

In a discussion on musical pieces, someone may express preferences for orchestral music
over chamber music, and also for Baroque over Romantic music. We may then ask her
how she rates Baroque chamber music versus orchestral music from the Romantic period.
Assuming that these comparisons are all covered by one and the same preference relation,
some of the relata of this preference relation are not mutually exclusive.

([101], pp. 346–347)

Most philosophical logicians have concentrated on exclusionary preferences. How-
ever, in this book we will consider both. As we will show later, one of our logical
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systems is for preference over objects, which are naturally considered as exclusive
incompatible alternatives. But we will also work with preferences between proposi-
tions, which can be compatible, and indeed stand in many diverse relations.

Another much-debated issue has been whether certain principles or “structural
properties” are reasonable for preference. Here economists joined logicians, to dis-
cuss the axioms of rational preference. Many interesting scenarios have been pro-
posed that argue for or against certain formal principles, resulting in different logical
systems disagreeing in their basic principles of reasoning (cf. [124, 134, 167, 187],
etc.). However, a general critical result in [95] is worth noticing. In this paper, the
author showed that many axioms proposed for a general theory of preference imply
theorems which are too strange to be acceptable. But it is often possible to restrict
their domain of application to make them more plausible after all. We will sidestep
these debates. In general, our logical systems do not take a strong stand on structural
properties of preference, beyond the bare minimum of reflexivity and transitivity
(though we note that the latter has been questioned, too: cf. [76, 112]).

There are also obvious relations between preference and moral or more generally,
evaluative notions like “good” and “bad”. The issue then arises which notion is the
more primitive one. Several researchers have suggested definitions for “good” and
“bad” in terms of the dyadic predicate “better”.3 In this line, [97] presented a set of
logical properties for “good” and “bad”.

Interestingly, precisely the opposite view has been defended in the logical litera-
ture on semantics of natural language. Reference [22] defines binary comparatives
like “better” in terms of context-dependent predicates “good”, and [160] takes this
much further into a general analysis of comparative relations as based on a “sat-
isficing” view of achieving outcomes of actions.4 This book will follow the line
that takes betterness as primitive, although one might say that our later analysis of
extrinsic preference as based on unary constraints has some echoes of the linguistic
strategy deriving binary comparatives from unary properties.

Finally, again within philosophy, there has always been a strong connection
between preference and moral reasoning. This is clear in deontic logic, another
branch of philosophical logic going back to von Wright’s work, this time to his
[196]. While obligation is usually explained as truth in all “deontically accessi-
ble worlds”, the latter are really the best worlds in some moral comparison rela-
tion. Not surprisingly, then, preference relations have been introduced in deontic
logic to interpret both absolute and conditional obligations (cf. [98, 183]). Prefer-
ence also helped solve some persistent “deontic paradoxes”. Reference [59] gave
a deontic interpretation of the calculus of intrinsic preference to solve the problem
of supererogation, i.e., acting beyond the call of duty. In another direction, [184]
extended the existing temporal analysis of Chisholm Paradox of conditional obliga-
tion in [71] using a deontic logic that combines temporal and preferential notions.

3 A widespread idea is to define “good” as “better than its negation” and “bad” as “worse that its
negation”, as in [197] and [93]. Quantitative versions of this are found in [125].
4 It would be of interest to contrast their “context-crossing principles” with Hansson’s views.
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Finally, we mention [185], which improved solutions to deontic paradoxes by com-
bining preference logic with updates from the “dynamic semantics” of natural
language.

We too will look at deontic applications of our systems later on in this book,
since moral reasoning is a powerful area of concrete intuitions for preference repre-
sentation and preference dynamics.

1.1.3 Preference in Decision Theory and Game Theory

The notion of preference is also central to decision theory and game theory. Given a
set of feasible actions, a rational agent or player compares their outcomes, and takes
the action that leads to the outcome which she most prefers. Typically, to make this
work, outcomes are labeled by quantitative utility functions – though there are also
foundational studies based on qualitative preference orderings [95]. Moving back
to logic, [159] brought together the concepts of preference, utility and of cost that
play a key role in the theoretical foundations of economics, studying primarily the
metric aspects of these concepts, i.e., the possibility of measuring them.5 In terms
of axiomatizations, the standard approach takes weak preference (“better or equal
in value to”) as a primitive relation (cf. [170]), as we will also do in this book.

Of course, economists have also added further themes beyond what had been
considered by philosophers. One prominent case are tight connections between
preference and choice [170, 171]. Preference is seen as “hypothetical choice”, and
choice as revealed preference. Recently, revealed preference has become prominent
in understanding the concept of equilibrium in game theory (cf. [111]). Preference
is then no longer a primitive, but a notion constructed out of observed outcomes.
The observed outcomes of behaviour can be rationalized by postulating preferences
realizing one’s chosen equilibrium notion for decisions or games.

Of course, views of preference need not agree across fields. For instance, already
[197] pointed out that “it is obvious that there can exist intrinsic preferences, even
when there is no question of actually choosing between things” ([197], p. 15). In
this book, we will not take sides in this dispute, though we will discuss the issue
of revealed preference in our Chapter 12 that takes a look at game theory from the
perspective of our preference logics.6

1.1.4 Preference in Computer Science and Artificial Intelligence

From the 1980s onward, and especially through the 1990s, researchers in computer
science and AI have started paying attention to preference as well. Their motivations

5 Modern studies in this line are [52] and [186].
6 Another congenial area of formal studies on preferences for agents, and in particular, how these
can be rationally merged, is Social Choice Theory: cf. [75].
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are clear: “agents” are central to modern notions of computation, and agents reason
frequently about their preferences, desires, and goals. Thus, representing prefer-
ences and goals for decision-theoretic planning has become of central significance.
For instance, [60] studied general principles that govern agents’ reasoning in terms
of their belief, goals and actions and intentions. This inspired the well-known “B DI
model” in [155], which shows how different types of rational agents can be modeled
by imposing conditions on the persistence of agents’ beliefs, desires or intentions.7

Interestingly, notions from von Wright’s work have made their way directly into
the computational literature on agency. In particular, his idea that preferences can
often only be stated ceteris paribus has been taken up in [66] and [68], which studied
preference “all else being equal”. The other main sense of ceteris paribus, as “all else
being normal”, was taken up in [54], where preference relations are based on what
happens in the most likely or “normal” worlds. A recent development of ceteris
paribus preference in a modal logic framework is [39]. The eventual systems of
our book can deal with the normality variant, as we will show in our Chapter 5 on
doxastically entangled preference.8

Preference occurs in many other strands in the computational literature, but we
will not list of all of these here.9 In the course of our chapters, it will become clear
how methods from the computational logic tradition have influenced this book.

1.2 The Main New Themes in this Book

Our starting point was the preference logic of [197], its general methodology, and
some major conceptual distinctions that von Wright made. We also saw two major
issues that he noted, but left out of his logical analysis, viz. reason-based extrinsic
preference, and the dynamics of preference change. These will be the two main
new themes in this book. But on the side, we will also have a third theme, again
not explicitly taken up by von Wright, viz. the entanglement of preference and
belief, illustrating the crucial interplay of information and evaluation dynamics in
successful rational agency.

The main point of this book is to show how these crucial aspects of reason-
ing with preference can be treated in a uniform logical framework, which brings
together ideas from several different areas: (a) the subsequent development of pref-
erence logic, (b) the computational literature on agents, and (c) recent developments

7 Modern developments are found in [107, 129], and [195].
8 Adding the equality variant seems feasible, too, but we will not pursue it.
9 Some sources are the AI literature on circumscription (cf. [173]), qualitative decision theory for
agents planning actions to achieve specified goals (cf. [55, 67, 182]), and recent computational
studies of efficient preference representation (cf. [57, 62] and [188]). Preferences also occur in
the core theory of computation, e.g., in describing evolutions of systems using some measure of
“goodness” of execution: cf. [141] and [172].
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in the theory of belief revision and dynamic epistemic logic. In what follows I briefly
introduce my guiding intuitions, and the main ideas.

1.2.1 Richer Representations: Reasons for Preference

In many situations, it is quite natural to ask for a reason for stated preferences. As
von Wright says in his discussion of “extrinsic preferences”,

A person prefers claret to hock, because his doctor has told him or he has found from
experience that the first wine is better for his stomach or health in general.

Here, the first wine being better for one’s health is the reason for the preference
for claret over hock. Similar examples abound in real life: Say, I prefer one house
over another because the first is cheaper and of better quality than the second. As
the second example shows, such reasons may be of many kinds, since the criteria
that determine preference can be diverse. In line with this, reasons can be of various
kinds: from general principles to individual facts about objects. More generally,
preference is often a structured multi-criterion notion, as one can see in many areas,
from economics (cf. [161]) to linguistics (cf. [154] on optimality theory, where
grammatical analysis means choosing most preferred sentence readings).

All this also suggests a task for logic. Giving reasons is an eminently logical
task, making things susceptible to reasoning. We will therefore give logical models
for reason-based preference that have both a “betterness” order among worlds or
objects, and a structure of reasons inducing that betterness order, in the form of
so-called “priority graphs”. We will show how this richer format of representation
fits well with the existing tradition in preference logic, but also adds greater depth
of analysis for many old and new issues.

But giving reasons and reasoning with them at once brings in further issues:

1.2.2 Entanglement: Preference, Knowledge and Belief

Reasoning about preferences often involves agents’ information. I may prefer a cer-
tain object to another right now, because I do not yet know about some decisive
flaw. I may prefer taking an umbrella (despite the inconvenience of carrying it), if I
believe that it is going to rain. And in a similar vein, people’s obvious diversity qua
preferences is matched by their obvious diversity qua beliefs.

This “entanglement” of preference with information-based attitudes like belief,
or knowledge, seems essential to agency. This is of course not a new insight. Entan-
glement is the norm in decision theory and game theory when modeling decision
making under uncertainty ([113, 166]). And even more generally, a crucial notion
underlying probability theory is expected value, whose definition mixes probability
and numerical utility, the quantitative correlates of belief and preference.

Now entanglement also poses an obvious logical challenge. Informational atti-
tudes like knowledge and belief have been extensively studied: How do these



10 1 Introduction

systems interface with preference logic? We will show how this can be done, finding
various “degrees of entanglement” for informational and evaluational attitudes, in a
way that relates recent developments in various fields.

Finally, the preceding two themes strongly suggest a third, that we will introduce
now. It might be the main innovation in this book.

1.2.3 Preference Change

It is easy to observe that asking for reasons is often a prelude to argumentation,
where one tries to change someone else’s views. Indeed, merely giving information
can change preferences, witness the following twist to our von Wright’s scenario:

Suppose that before seeing his doctor, he preferred hock to claret. Now the doctor tells him
“The first wine is better for your health”. He then changes his preference, and will now
prefer claret to hock!

This seems so important and natural that we want a logical account of this pref-
erence change. But we will also go one step further. Recall the earlier distinction
between extrinsic and intrinsic preference. The latter can change too. I can fall out
of love with one of my two suitors without having to give a reason, my evaluation
of that person has just changed. Thus, preference change between objects does not
have to come about because some underlying structure changed: It can just be a
direct change in my tastes or feelings, as reflected in the way I order my alternatives.
This kind of change, too, should be described.

I will present a logical theory of both extrinsic and intrinsic preference changes.
My solution is in line with a “dynamic turn” that has already occurred in recent
studies of knowledge update and belief revision.10 In particular, we can use cur-
rent models of information change to also deal with preference change, drawing on
analogies with recent dynamic logics of information flow (cf. [14, 18, 29]).

1.2.4 The Total Theory

The logical theory developed in this book proposes a uniform framework for repre-
senting rich forms of intrinsic and extrinsic preference, as well as their entanglement
with knowledge and belief. Moreover, it treats statics and dynamics on a par: Acts
of preference change are an explicit part of the logic, allowing us to track an agent’s
informational and evaluational behavior over time.

With this theory in place, it is natural to return to some of the traditions lightly
reviewed in the above. One obvious related area is belief revision theory where our
techniques make a lot of sense.11 In this book, I will also discuss repercussions in

10 In this sense, the above entanglement of preference and belief also has a useful aspect, as a
source of analogies.
11 Reference [18] on “safe belief” and its dynamic axioms acknowledges [42], a pre-study for this
book.
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the areas of deontic logic (cf. Chapter 11 on changes in obligations and in norms)
and game theory (cf. Chapter 12 on entanglement in solution procedures, as well as
preference dynamics in games), where our ideas return in concrete settings leading
to many new questions.

1.3 Guide for the Reader

This book is aimed at people from various disciplines who are interested in studying
agency with logical models. We assume some prior acquaintance with epistemic and
dynamic logic (though we will summarize some basics), and we write for readers
familiar with the basics of first-order logic and modal logic. Here is a more detailed
description of the parts that are to follow:

1.3.1 Part II: Dynamics of Information

Chapter 2. Dynamic Epistemic Logic This chapter is a review of epistemic logic,
and especially, dynamic epistemic logic, to set up the methodology that we will
later use for preference in this whole book. As for dynamics, we mainly look at
“public announcement logic”, with a focus on the technical details that will play a
role in later chapters when we consider dynamics for preference. The more powerful
method of “product update” is introduced lightly, too. Overall, we stress features of
dynamic epistemic logic that are more broadly important from a methodological
point of view.

1.3.2 Part III: Preference Over Worlds

Chapter 3. Preference Over Worlds: Static Logic A modal semantics is given for
static intrinsic preferences. Models consist of a universe of possible worlds, rep-
resenting the different relevant situations, endowed with a primitive binary order
of “betterness”.12 This ordering may be connected (any two worlds stand in some
betterness relationship), but in general, we allow incomparable cases, and work with
pre-orders that are merely reflexive and transitive. Pre-orders set the level of gener-
ality aimed for throughout the later chapters of this book. We give complete axioma-
tizations from the literature for the modal logic of extrinsic preferences. In addition,
we discuss other basic themes, such as “generic preferences” between propositions.
This requires a study of “lifting” betterness order from worlds to sets of worlds, with
stipulations such as the ∀∃-rule, which says that every ϕ world has at least one better
ψ alternative world. These lifts, and many other types of statement can be described

12 Note how this makes betterness a preference over incompatible alternatives.
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in our standard modal language over betterness models. As an illustration, we study
the ∀∃-lift, and explore its logical properties in more detail.

Chapter 4. Preference Over Worlds: Dynamic Logic This chapter provides a for-
mat for studying preference dynamics in the appropriate generality. We start from
a simple test scenario that may be called a “suggestion”. Statements like sugges-
tions or commands upgrade agents’ preferences by changing the current better-
ness order among worlds. A dynamic betterness logic is presented that represents
such actions explicitly, and then axiomatizes their complete theory using dynamic-
epistemic-style reduction axioms. We show how this system automatically describes
changes in generic preferences. Beyond specific examples, we present a general for-
mat of “relation transformers” for which dynamic epistemic reduction axioms can
be derived automatically. As an illustration, we show how this system can handle
default reasoning and various policies for belief revision.

Chapter 5. Entanglement of Preference, Knowledge and Belief Preference, knowl-
edge and belief occur intertwined. This chapter investigates possible ways of entan-
gling these notions. We first explore a simple manner of combining knowledge and
preference languages, viz. juxtaposition of epistemic logic and preference logic. We
look at how this simple combination affects the dynamics, and we propose a new
update mechanism: update by “link-cutting”. Next, we show how this method can be
applied to the combination of preference and beliefs. Then we study a more intimate
way of combing preference and beliefs, with new merged “intersection modalities”,
proposing models and a complete logic. In the resulting language, we can talk of
preference and plausibility in much richer combinations. Finally, we show that the
new entangled models lead to richer notions of generic preference, too.

Chapter 6. Intermezzo: A Quantitative Approach While the main line in this book is
qualitative logics, we do make one excursion to numerical models. Our aim here is
mainly to show how no insuperable barrier separates the methods in this book from
the much larger world of quantitative approaches to preference and action. First,
we introduce a complete system of “epistemic evaluation logic” allowing for finer
gradations than what we had so far, and we define a matching notion of numerical
bisimulation. Then we define a new product update mechanism to deal with the
dynamics of preference in this richer framework. We also present the resulting com-
plete dynamic epistemic evaluation logic. As a special topic, we then show how this
update mechanism lends itself naturally to “parametrization”: allowing us to model
the phenomenon of diversity of agents which is so characteristic of real life. We end
with some comments on deontic reasoning in this setting.

1.3.3 Part IV: Preference from Priorities

Chapter 7. Preference from Priorities: Static Logic Now we move to richer models
for preference structure, as required by extrinsic preferences. This time, the primary
scenario is preferences over objects, again standing for incompatible alternatives.
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For this purpose, inspired by linguistic optimality theory, we introduce linear
“priority sequences” of constraints, i.e., relevant properties of objects. Through the
natural induced lexicographic ordering, priority sequences supply reasons for pref-
erence by comparing objects as to the properties they have or lack in this sequence.
We also determine the power of this method through structural representation the-
orems.13 Intuitively, these theorems say that one can always find a reason for some
given betterness pre-order. A complete preference logic is proposed and a proof of
a representation theorem for the simple language is presented. Finally, we make an
important generalization. Linear priority sequences induce connected orders, and
while this is an important special case, the proper generality for our preference
logic are the earlier pre-orders. We show how the general representation for our
preference then becomes a framework of “priority graphs”, inspired by the seminal
paper [6], which provides a natural and eventually more realistic generalization of
our earlier account.

Chapter 8. Belief-Based Preference In the real world, agents only have incomplete
information. Therefore, we now add epistemic and doxastic structure to our struc-
tured preference models. In particular, we introduce beliefs that help form prefer-
ences. We propose three different ways of defining preference in terms of priorities
and beliefs. In particular, we present a doxastic preference logic for the notion of
“decisive preference” and prove a representation theorem for that case. Next, we
extend our discussion to the multi-agent case, where we study both cooperative and
competitive agents, and again capture their characteristics in the form of represen-
tation theorems. Moreover, we look at generic preference over propositions in this
context, and propose a propositional doxastic preference logic. Finally, we discuss
connections between preference over objects and preference over propositions.

Chapter 9. Preference from Priorities: Dynamic Logic This chapter explores
dynamics in the present richer static setting. Changes of preference can now have
two different reasons: either changes in priority sequences or priority graphs, or
changes in belief structure inducing preference changes through entanglement. For
the latter, we describe two cases: Belief changes due to “hard information”, and
belief changes due to “soft information”. Again, the general dynamic-epistemic
approach works here, treating the relevant events triggering change as dynamic
actions that are subject to recursive reduction axioms.

1.3.4 Part V: A Two-Level Perspective on Preference

Chapter 10. A Two-Level Perspective on Preference In this chapter, we draw our
two earlier approaches together: intrinsic modal betterness dynamics and priority
dynamics. We propose a “two-level model” for preference structure and its dynam-
ics. This merges ideas from earlier chapters, but with some new twists. For instance,

13 As usual, these results may be viewed as simple versions of completeness theorems.
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we need to extend the general “program format” of Chapter 3 to the strict betterness
relations used in the priority graphs of Chapter 7. We also lift the representation
theorem for priority sequences to the latter more general setting, representing the
more realistic case of possibly incomparable or even conflicting priorities. We then
turn to connections between the two dynamics, at the level of worlds and at the level
of propositional priority structure. We prove a general inclusion result from “basic
graph priority changes” to PDL-definable modal transformers on betterness models.
But we also find examples that show that there is no total inter-level reduction of
perspectives, either way. Finally, we discuss what this means for the interplay of
extrinsic and intrinsic preferences. In particular, we find that intrinsic preference
can become extrinsic when we are willing to allow for a new form of dynamics,
less studied in dynamic logics so far, viz. language change. In all, having both
levels around in preference logic is important for two reasons. It allows for more
realistic and sophisticated modeling of preference scenarios, but it is also a source
of interesting new notions and open problems.

1.3.5 Part VI: Applications and Discussions

Chapter 11. Deontic Reasoning In this part, we confront our ideas with some major
areas where preference plays an important role. This first chapter shows how the
static and dynamic preference logics developed in the preceding parts can be applied
concretely to deontics. One key illustration are “contrary-to-duty obligations”, inter-
preted in terms of our reason-based priority graphs. We then discuss the perspective
on deontics obtained by juxtaposing the semantic view of standard deontic logic in
terms of betterness relations with the syntactic view of structured references. We
also apply our other main theme of preference change. In particular, we use the
techniques of Chapter 10 to study deontic betterness dynamics, through a corre-
spondence between “syntactic” normative changes, and semantic ones at the level
of deontic betterness. We show how this throws new light on some old paradoxes of
deontic reasoning. Finally, as an appendix, we add some thoughts on the linguistic
aspect of normative behavior. Commands are normally uttered in natural language,
using “imperatives”. A congenial approach to studying the meaning of imperatives
is “dynamic semantics” in terms of appropriate state changes for language users. We
briefly explore how our ideas can enrich existing dynamic semantics for imperatives.

Chapter 12. Games and Actions In this second applied chapter, we look at game
theory, another area where preference is essential to making sense of behavior.
Drawing on some recent literature on logic and games, we show how most of main
themes play in the concrete compass of solution methods for extensive games such
as “Backward Induction”. We find an excellent fit for our modal preference logics
over betterness models, entanglement of preference with information in standard
notions of rationality for players, and especially, information dynamics for both
knowledge and belief in the actual process of game solution. We link these with
various logical issues that have played in our framework: For instance, diversity of
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players turns out to connect with our interest in options for lifting betterness to set
preferences. Toward the end of the chapter, we discuss what the new topics of this
book might do, when thrown into this lively current research area. In particular, we
look at uses of preference change in extensive games, focusing on procedures for
rationalizing given behavior. We also briefly explore endowing games with richer
priority structure for players’ goals, and its possible consequences for notions of
strategic equilibrium.

1.3.6 Part VII: Finale

Chapter 13. Conclusion We conclude with a summary of the logic of preference
as developed in this book. After that, we briefly discuss where we see the main
lines ahead, namely, a treatment of group agents, long-term temporal processes,
links with probability and other quantitative features, and finally, more fine-grained
syntactic representations for preference.

1.4 Some Major Influences on This Book

The ideas in this book stand in a long tradition. In addition to the brief history that
we sketched earlier, we state a few particular links to earlier work.

First, the modal preference logic in this book started at least with [55], and then
[94]. The dissertation [83] is a modern version congenial to ours. These logics set
the pattern for our static base systems, though we have also incorporated some ideas
from the recent study [39].

Second, as to reasons for preference, even though most authors have concentrated
on intrinsic preferences, there are exceptions, witness the brief survey in [103]. Our
initial representation with priority sequences owes a lot to linguistic optimality the-
ory [154] which describes successful language use in a rule-free manner, in terms of
optimal satisfaction of syntactic, semantic, and pragmatic constraints. Our eventual
priority graphs are a specialization of a general mathematical framework for belief
merge and social choice proposed in the elegant algebraic study [6].

Third, the entanglement of preference and belief , too, has a long history. For
instance, [123] proposes a logic of “desires” whose semantics contains two ordering
relations of preference and normality, with desires referring to the best of one’s most
normal worlds. This is a typical example of the sort of entanglement that we have
analyzed. Another source are modal preference logics of games, that we acknowl-
edge separately below.

Four, our treatment of preference change has many ancestors, closer or more
distant. First, the idea that preference change might be formulated in dynamic logic
occurs as early as [33].14 More in the style of AG M belief revision theory (cf. [2]),

14 The idea that propositional dynamic logic of programs (cf. [104]) is relevant to deontics can
even be traced back to [142].
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[100] proposed postulates for four basic operations in preference change. This book,
however, has taken the “model construction” approach of dynamic epistemic logic
(DEL), something which will be obvious to any reader who is familiar with that
paradigm. There the emphasis is on logics for concrete dynamic actions that change
agents’ information and their corresponding attitudes. Some key sources here are
[14, 65], and [32].15 The idea that preference change can be dealt with in terms of
these methods also occurs in recent work by Tomoyuki Yamada, of which [200] is
a representative sample.

Finally, we mentioned some related sources that have been relevant to how we see
our links to neighboring areas. We have mentioned several papers linking preference
and deontic logic already, such as [98, 183]. But other contacts with philosophy
are relevant, too, and we see our work as similar in spirit to logical studies in the
philosophy of action, such as the dynamic logic of action in [203], or the logics of
action and intention in games of [164].16 Moving beyond philosophy proper, social
choice theory is a rich source of logics for preference aggregation by collective
agents, and [189] is a good sample of ideas that form a natural continuation of ours.
Next, [161] is a pioneering study on broader contacts between logic, belief revision
and economics. Finally, as for our special focus on game theory, some of our main
leads have come from [46, 82].

Published sources for this book The material in this book comes from the disser-
tation [131] plus a number of follow-up publications. Chapters 3 and 4 go back to
[42]. Chapter 6 elaborates some ideas from the master’s thesis [130], and [133].
Chapters 7, 8, and 9 go back to [117]. Chapter 10 is based on the paper [135]. Chap-
ter 11 is a version of [48], presented at DEON 2010. The appendix on imperatives
is the working paper [119]. Chapter 12 is new to this book, though I must thank the
authors of [46] for letting me use their unpublished paper as a red thread in the first
half. I thank my various co-authors in these publications for their kind permission
to use the material here.

15 Some further publications for what is sometimes called the “Amsterdam approach” are [23, 81,
152, 192], as well as the work on belief revision in [10, 29] and [18].
16 The philosophy of action contains many further instances of ideas in this book. E.g., its distinc-
tion between “recognitional” and “constructivist” views of practical reasoning [193] mirrors our
distinction between intrinsic and intrinsic preference.
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Chapter 2
Dynamic Epistemic Logic

2.1 Introduction

What is knowledge? How can we acquire knowledge? When can we say that we
know something? Do we know that we know something? Those are the issues that
puzzled Chinese philosophers about 2000 years ago, witness a famous dialogue
below between Zhuangzi (approx.369–286 BC) from the Daoism School and Huizi
(390–317 BC) from the School of Names:

One day Zhuangzi and Huizi are strolling on Bridge Hao.

Zhuangzi: “Look how happy the fish are just swimming around in the river.”

Huizi: “How do you know they are happy? You are not a fish.”

Zhuangzi: “And you are not me. How do you know I don’t know the fish are happy?”

Huizi: “Of course I’m not you, and I don’t know what you think; But I do know that you’re
not a fish, and so you couldn’t possibly know the fish are happy.”

Zhuangzi: “Look, when you asked me how I knew the fish were happy, you already knew
that I knew the fish were happy. I knew it from my feelings standing on this bridge.”

This is a typical interaction between two agents (or more, if you count the fish
in), in our modern jargon. The core issue under discussion is the following: When
can we say that one agent knows another agent’s feeling or his knowing something?

Similarly, in the West, the nature of knowledge was discussed already in Plato’s
Theaetetus and works by Aristotle, and the debate concerning the definition and
scope of knowledge has been going on ever since. The research field concerning
the above knowledge-related questions is generally called “epistemology”. Many
fascinating issues have been studied, for instance, the structure of knowledge itself
(cf. [58, 151] and [180]), the relations between knowledge, belief, justification, and
evidence (see e.g., [61] and [85]), or the debate between internalism and externalism
[69, 146].1

There is a vast body of philosophical literature here that is worth our attention.
But for the purposes of this book, we pick out only a few of these strands, and turn
to a more formal or logical perspective.

1 Reference [11] studied epistemic logic from both internal and external perspectives.

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
DOI 10.1007/978-94-007-1344-4_2, C© Springer Science+Business Media B.V. 2011
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In the circle of logic, Hintikka’s pioneering work [115] (Knowledge and Belief:
An Introduction to the Logic of the Two Notions) from 1962 analyzed the notions of
knowledge and belief for individual agents by means of modern formal logics for the
first time. He based his account on the possible world semantics which was getting
popular at that time. Later on the notion of common knowledge for groups of agents
was added in Lewis’ work [126]. The study of epistemic logic was under way then,
and various attempts have been made to capture the philosophical intuitions that we
have about knowledge. The notions of knowledge and belief also gained attention
in computer science and AI, as these subjects started the study of computation in
groups of intelligent agents: See [143] and [73]. The result was a far richer agenda
of topics and techniques for epistemic logic. And one more discipline entered this
mix in the mid-seventies. Knowledge and belief were studied in game theory too,
as game play involves players’ individual and common knowledge and beliefs. A
classic paper starting this interface of logic and game theory is [156].

Over the last three decades, information has come to play a big role in many
different fields, and philosophy and logic are no exception. And in line with this,
the information-driven dynamics of knowledge and belief has come to the fore.
Various proposals have been made in this regard. For instance, the AGM-paradigm
was put forward in the 1980s [2] and it described how to revise one’s beliefs when
new information comes in while remaining consistent. Non-monotonic logics (cf.
[140, 157], etc.) started around the same time, with one of its goals being to incor-
porate new incoming information that might be an exception to some initial rule.
While these approaches are well-known by now, in this chapter we are going to
introduce one more recent paradigm, that of dynamic epistemic logic (DEL). This
has slowly emerged since the 1990s (cf. e.g., [14, 32, 152], and [81]), and it aims
to provide a general logical mechanism for dealing with new information.2 In doing
so, DEL starts from basic epistemic logic, now reinterpreted as a theory of what
has been called “semantic information”. By now, DEL has become a very pow-
erful engine to handle knowledge and belief changes. In this book, this approach
will be adapted for the case of evaluation dynamics, resulting in changes in agents’
preferences.

To set up the basic background for our further investigation, we review the basics
of dynamic epistemic logic here. Please note that our treatment will be very brief and
mostly methodological. For complete didactic details and a genuine textbook-style
introduction, we refer to the cited sources.

2.2 Epistemic Logic

In what follows we immediately introduce the standard definitions of epistemic
models and logic, adopted from the previous literature (e.g., [73] and [50]).

2 References [65] and [32] are two comprehensive and more up-to-date references.
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Definition 2.1 (epistemic language) Let a set of propositional variables Φ, a finite
set of agents N be given. The epistemic language is defined by

ϕ := � | p | ¬ϕ | ϕ ∧ ψ | Kaϕ where p ∈ Φ, a ∈ N .

The language of epistemic logic is an extension of that of propositional language.
We follow the usual abbreviations in propositional logic:

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ).
ϕ → ψ := ¬(ϕ ∧ ¬ψ).
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ).

For the knowledge operator Kaϕ, we write 〈 Ka〉 to be its dual and the relation
between them is the following:

〈 Ka〉ϕ := ¬Ka¬ϕ.

The intended reading of Kaϕ is that “agent a knows that ϕ”, and that of 〈 Ka〉ϕ is
that “ it is consistent for agent a to know that ϕ.”

Definition 2.2 (epistemic models) An epistemic model is a tuple M = (S, {∼a |
a ∈ N }, V ), where S is a non-empty set of epistemically possible states,3 is an
equivalence relation ∼a on S, and V is a valuation function from Φ to subsets of S.

In this context, we interpret the knowledge operator with an equivalence relation
and take S5 as the logic system for knowledge. But this is optional in an approach.
There are extensive philosophical discussions about its justification. Various alterna-
tives haven been proposed in terms of model classes. We will not go into the details
on this issue here.

Definition 2.3 (truth conditions) Given an epistemic model M = (S, {∼a | a ∈
N }, V ) , and a state s ∈ S, we define M, s |� ϕ (formula ϕ is true in M at s) by
induction on ϕ:

M, s |� � iff always.

M, s |� p iff s ∈ V (p).

M, s |� ¬ϕ iff not M, s |� ϕ.

M, s |� ϕ ∧ ψ iff M, s |� ϕ and M, s |� ψ.

M, s |� Kaϕ iff for all t : if s ∼a t , then M, t |� ϕ.

3 In this book, possible states/worlds are denoted by variables w, v, s, t , but also sometimes x , y,
as seems convenient in the statement of notions and proofs.
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Theorem 2.4 The epistemic logic EL can be axiomatized completely by the follow-
ing axiom schemes and inference rules:

(1) Tautologies of propositional logic.
(2) Ka(ϕ → ψ)→ (Kaϕ → Kaψ).

(3) Kaϕ → ϕ.

(4) Kaϕ → Ka Kaϕ.

(5) ¬Kaϕ → Ka¬Kaϕ.

(6) If � ϕ, � ϕ → ψ , then � ψ .
(7) If � ϕ, then � Kaϕ.

The proof of this theorem can be found in any modal logic textbooks (e.g. [50]
and [47]). Axiom 2 expresses closure of knowledge under known consequences.
This form of logical omniscience can be questioned, but we will stick with it for
most of this chapter. Axioms 4 and 5 express what has been called positive and
negative introspection.

By now we have presented an epistemic logic characterizing the notion of
static knowledge. However, information flows, it keeps changing what we perceive,
and we obtain new knowledge over time. Consider the simplest scenario, public
announcements, which improve ignorance in social communication.

2.3 Public Announcement Logic

Public announcements abound in real life. News is publicly broadcast through tele-
vision or radio, making us know what is happening around the world. We often make
announcements in ordinary life, like announcing one’s marriage to one’s friends. As
a teacher, we assign homework to the students. Consider the following scenario:

Example 2.5 (homework assignment) After finishing the class, Professor Zhang
said: “The homework for today is Exercise 5 on Page 321.”

Let p denote the proposition “The homework for today is Exercise 5 on Page
321.” Before Professor Zhang said anything, the students did not know whether it
is the case that p. Let us consider things from one student a’s point of view, her
epistemic state can be described in the picture shown in Fig. 2.1:

Fig. 2.1 Before a public
announcement

s

p

ta

¬p

In this model, there are two possible worlds, s and t , proposition p holds at s but
not at t , s is the actual world. A dotted line between s and t denotes an epistemic
uncertainty equivalence relation, i.e. from the perspective of agent a, s and t cannot
be distinguished. Reflexive arrows are omitted throughout the text.
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However, after the announcement of p, a knows that p, pictured in Fig. 2.2.

Fig. 2.2 After a public
announcement

s

p

Now the world t in which p does not hold in the initial model is eliminated, only
one world s is left, where p holds. Note that it is a submodel of the original model.
Then a knows that p in this new model.

Public announcement logic (PAL) is meant to study the logical rules of knowl-
edge change under public announcements as illustrated above. It is a combination
of epistemic logic and one kind of dynamic action, namely, public announcement.
We now define the language of PAL:

Definition 2.6 (PAL language) Let a set of propositional variablesΦ, a finite set of
agents N be given. The language of public announcement logic is defined by

ϕ := � | p | ¬ϕ | ϕ ∧ ψ | Kaϕ | [!ϕ]ψ where p ∈ Φ and a ∈ N .

Compared with the static epistemics language, a dynamic modality [!ϕ]ψ is
added, with an intended reading “after announcing ϕ truthfully, ψ holds.”

Following the intuitions we gave for update with announcement, we now for-
mally define the updated model:

Definition 2.7 (updated model) Public announcements of true propositions ϕ
change the current model into its updated model as follows:

Consider any model M, formula ϕ is true at some world s. We define the
updated model (M|ϕ, s) (“M relativized to ϕ at s)” to be the submodel of M
whose domain is the set {t ∈ M | M, t |� ϕ}.

Definition 2.8 (truth condition) Omitting the standard clauses for the usual opera-
tors, the truth condition of the new dynamic formulas is defined as:

M, s |� [!ϕ]ψ iff if M, s |� ϕ, then M|ϕ, s |� ψ.

Note that we evaluate the formula ψ at those states where ϕ holds, this con-
dition is called the precondition for !ϕ. In the case of public announcement, this
simply means that the announced proposition must be true. Typically, informative
announcements update models with more uncertainties to a new model with fewer
uncertainties. This way of update is often described as “eliminative approach by
hard information”, as what we have seen in the above scenario. Agents obtain new
knowledge after the announcement. This language can make characteristic asser-
tions about knowledge change such as [!ϕ]Kaψ , which states what agent a will
know after having received the hard information that ϕ. The knowledge change
before and after the update is characterized in so called reduction axioms. Here
is the complete logical system of information flow under public announcement
(cf. [81, 152]):
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Theorem 2.9 PAL is axiomatized completely by the usual laws of epistemic logic
plus the following reduction axioms:

(1) [!ϕ]q ↔ (ϕ → q) for atomic facts q.
(2) [!ϕ]¬ψ ↔ (ϕ → ¬[!ϕ]ψ).
(3) [!ϕ](ψ ∧ χ)↔ ([!ϕ]ψ ∧ [!ϕ]χ).
(4) [!ϕ]Kaψ ↔ (ϕ → Ka[!ϕ]ψ).

As for inference rules, we have Generalization for the operator [!ϕ], as well as
Replacement of Equivalents.

Example 2.10 (soundness of reduction axioms) We do the crucial case of knowledge
after announcement. This compares two models: (M, s) and (M|ϕ, s) before and
after the update. It helps to draw pictures relating these to understand the following
proof. The formula [!ϕ]Kaψ says that, in M|ϕ, all worlds ∼a-accessible from s
satisfyψ . The corresponding worlds in M are those worlds which are ∼a-accessible
from s and which satisfy ψ . Moreover, given that truth values of formulas may
change in an update step, the correct description of these worlds in M is not that they
satisfy ϕ (which they do in M|ϕ), but rather [!ϕ]ψ : they become ψ after the update.
Finally, !ϕ is a partial operation, as ϕ has to be true for its public announcement.
Thus, we need to make our assertion on the right conditional on !ϕ being executable,
i.e., ϕ being true. Putting all this together, [!ϕ]Kaψ says the same as ϕ → Ka(ϕ →
[!ϕ]ψ). But given the effect of the operator [!ϕ] for a partial operation, we can
simplify this final formula to the equivalent ϕ → Ka[!ϕ]ψ .

At this point, readers may have felt that we should have added an axiom to deal
with stacked modalities. The relevant validity of PAL is this:

[!ϕ][!ψ]χ ↔ [!(ϕ ∧ [!ϕ]ψ)]χ .

However, perhaps in contrast with the reader’s expectations, such a principle is not
required for a complete axiomatization. The reason is that we can always start with
innermost dynamic modalities in given formulas, and reduce these out. At no stage
is there a need to reduce two stacked dynamic modalities immediately.4

Note that the dynamic “reduction axioms” take every formula of our dynamic-
epistemic language eventually to an equivalent formula inside the static pure epis-
temic language. Regarding logic, this means that PAL is complete, since the static
epistemic logic is complete, and PAL is decidable, since this is true for its static
epistemic base language.

4 I have benefited from a discussion of this point with Johan van Benthem. His new book [32]
contains a further analysis of this issue in terms of logical validities for various dynamic actions,
and concrete illustrations in the context of games and protocol update.
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2.4 Dynamic Epistemic Logic

Dynamic epistemic logic is a generalization of the public announcement logic, deal-
ing with more complex communications. Typically, there are uncertainties concern-
ing the events, agents do not know whether some event has happened or not. That
may be resulted from the following two cases: Either there was some problem with
the event itself, or there were some constraints on the receiver’s capacity. Consider
the following scenario:

Example 2.11 (two agents case) For an illustration, consider two students a and b
who were present when Professor Zhang said: “The homework for today is Exercise
5 on Page 321.” Student a heard what Professor Zhang said (call it p) because she
was sitting in front. But student b did not, as he was sitting a bit further to the back:
the professor might have said p, or the opposite ¬p.

Before the announcement, the epistemic situation can be pictured as (Fig. 2.3):

Fig. 2.3 Both agents do not
know

s

p

ta,b

¬p

Note that this is similar to the scenario depicted in Fig. 2.1 except that there are
two agents a and b now.

Turning now to the epistemic status of the two agents regarding the event taking
place, it can be modeled in the following diagram:

Fig. 2.4 Agent b does not
hear precisely

!p
b

!¬p

As in our ordinary epistemic models, this model contains two possible events,
“announcing p” and “announcing ¬ p”, with an uncertainty relation between them
for one of the agents. “Announcing p” is what actually happened. In this case, only
agent b is uncertain whether p or ¬p was announced.

Next, we want to know the epistemic status of agent a and b after this event has
happened. The product update we are going to introduce below gives us a general
mechanism to handle such scenarios. It was first proposed in [14]. What it models
are scenarios with possibly different observations by different agents, leading to
differences in information flow, and forms of privacy. The most creative idea was
to treat possible events as something similar to possible worlds, modeling agents’
observation of the events in terms of standard epistemic uncertainty relations, as
shown in Fig. 2.4. A second important idea is the fact that events come with precon-
ditions for their occurrence, since this is what makes their observation informative.
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Definition 2.12 (event models) An event model is a tuple E = (E, ∼a , PRE) such
that E is a non-empty set of events, ∼a is a binary epistemic relation on E , PRE is
a function from E to the collection of all epistemic propositions.

The intuition behind the function PRE is that it gives the preconditions for an
event: An event e can be performed at world s only if the world s fulfills the pre-
condition PRE(e).

Definition 2.13 (product update) Let an epistemic model M = (S,∼a, V ) and an
event model E = (E,∼a,PRE) be given, the product update model is defined to be
the model M ⊗ E = (S ⊗ E,∼′

a, V ′) such as

(1) S ⊗ E = {(s, e) ∈ S × E : (M, s) |� PRE(e)}.
(2) (s, e) ∼′

a (t, f ) iff both s ∼a t and e ∼a f.
(3) V ′(p) = {(s, e) ∈ S ⊗ E : s ∈ V (p)}.

As we can see from the definition, the product update model consists of all
updated worlds in which events have taken place. The new uncertainty relation
is determined by the previous relation between possible worlds and that between
possible events. The valuation for atomic propositions remains the same as in the
old worlds.

Let us return to Example 2.11 now. According to the definition of product update,
we obtain the following updated model (Fig. 2.5):

Fig. 2.5 Agent b still does
not know

(s, !p)
b

(t, !¬p)

Inspecting this model, b did not hear what Professor said and does not know
about the homework, but agent a heard and got to know. This fits our intuition
precisely.

Though the product update mechanism is very simple, it can be widely applied
to more complex scenarios, including private announcements in subgroups, security
of information channels, and games of imperfect information. For more details of
its technique and its scope, we refer the reader to [14] and [65].

The above notions suggests an extension of the epistemic language, defined in
the following.

Definition 2.14 (dynamic epistemic language) Let a set of proposition variables
Φ, a finite set of agents N , a set of events E be given. The dynamic epistemic
language is defined by the rule

ϕ := � | p | ¬ϕ | ϕ ∧ ψ | Kaϕ | [e]ϕ where p ∈ Φ, a ∈ N , and e ∈ E .

The intended reading of formula [e]ϕ is “after event e takes place, ϕ holds.”
We could also add the usual action operations of composition, choice, and iteration
from propositional dynamic logic to the event vocabulary, so that we can talk about
more complex events. But in this chapter, we will have no special use for these. The
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language has new dynamic modalities [e] referring to epistemic events, and these
are interpreted in the product update model as follows5:

M, s |� [e]ϕ iff if M, s |� PRE(e), then M ⊗ E, (s, e) |� ϕ.

There is a complete axiomatization for the dynamic logic of product update in
the given language. Instead of describing this logic in detail, we merely state its
most important reduction axiom, the one concerning knowledge. The following
valid equivalences encodes how knowledge changes when complex informational
events take place:

[e]Kaϕ ↔ PRE(e)→ ∧
f ∈E {Ka[ f ]ϕ : e ∼a f }.

Intuitively, saying that after an event e takes place the agent a knows ϕ, is equivalent
to saying that, if the event e can take place, a knows beforehand that after e (or any
other event f which a can not distinguish from e) happens, ϕ will hold.

Both the basic public announcement update and the more sophisticated product
update for private information with complex triggering events can be adapted to
handle preference or evaluation change. We will illustrate how this works step by
step in the coming chapters.6

2.5 Methodology

There are several major features to the DEL approach, which make it a gen-
eral methodology.7 So far, it has been applied in analyzing knowledge update,
information-driven changes in beliefs (cf. [16, 29]), changes in intentions [164], and
in preference: the main theme of this book ([83, 131]). Very recent applications
include the information dynamics of acts of inference [191] and of questions as acts
of issue management (cf. [43]).

Of course such applications often come with new twists. For instance, and very
importantly to what follows, update in beliefs or preferences cannot be an elimina-
tive model change in the public announcement style. Instead, it leaves the universe
of worlds the same, but it changes the ordering pattern through a systematic change
in the current relations between possible worlds. We will discuss some more gen-
eral methodological features of DEL here, to conclude this chapter, and prepare the
reader for what is to come.

5 Note that the pre-conditions in the event model are formalized in the dynamic epistemic language,
this might introduce circularities. One solution is to “view the preconditions as literal parts of event
models”. We refer to [32] and [65] for further dicussions.
6 In this book, we will not use the original privacy motivations for product update. In our later
applications to qualitative and quantitative preference change, the different events are rather differ-
ent “signals” that can apply to worlds, whose ordering tells us something about how agents are to
evaluate their relative betterness or plausibility.
7 For a first programmatic discussion in this vein, see [29].
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First, given a static epistemic logic, DEL “dynamifies” it and adds on a dynam-
ical superstructure. This dynamification is, in principle, independent from the base
system – we can choose any static system we like. But there are constraints here.
Whatever modal base logic we have chosen, its matching frame properties should
be kept after the update.8 This pattern of dynamification works well across a wide
range of logics. Indeed, DEL may be seen as a way of “upgrading” the operating
system of existing philosophical logic to much higher functionality.

Secondly, looking ahead, DEL describes what agents would know after some
dynamic event has happened. The knowledge change before and after the event
are characterized in so called reduction axioms. Reduction axioms are equivalences
taking each formula of our dynamic epistemic language eventually to an equivalent
formula in the static epistemic base language. As a result, if the static base logic
is complete or decidable, its dynamic extension is complete or decidable, too. The
earlier-mentioned upgrade comes for free.9

Thirdly, in applications of the paradigm, sometimes, we cannot find reduction
axioms for certain operators in our language. A typical example is common knowl-
edge, for which the earlier logic PAL has no reduction axiom. To solve this problem,
one must enrich the base language. For instance, one can introduce a new notion
of conditional common knowledge in the static language in order to find a PAL
reduction axiom for common knowledge.10

Finally, recent versions of PAL and DEL have back-pedaled a bit on the strict
reduction methodology. The reason is that the reduction axioms as stated have one
presupposition that may not always be natural: in checking their soundness, one
uses the fact that the action is always available. But many natural scenarios of
information flow have procedures restricting available informational events. Civi-
lized conversation need not allow all that is true to also be said, a feasible medical
procedure only allows for certain test on patients in certain orders, etc. To model
this, one needs a longer-term temporal perspective, with a protocol regulating the
sequences of successive informational events that can occur. As a result, dynamic
logics now acquire a temporal element with less drastic reduction axioms, though
they can still be axiomatized completely. See [35] for this temporal-style DEL and
its relations to epistemic-temporal logics of branching time. Reference [110] devel-
ops its underlying philosophical idea of “procedural information” in much more
detail, adding new applications to epistemology.

In the next part of this book, we will start our investigation of our main themes:
preference representation and preference dynamics. A simple modal model for pref-
erence will be introduced, and we will explore how to model events where new

8 Say, with epistemic S5, the frame still has equivalence relations after DEL update.
9 Still, the reduction does not settle computational complexity: Translation via the axioms may
increase formula length exponentially. Still, for the case of PAL, the complexity of satisfiability
remains that of epistemic logic, viz. Pspace-complete (cf. [138]).
10 This again requires a reduction axiom for conditional common knowledge, which can be done
as well. A good reference for such issues of language design in DEL is [34].
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information changes our preference, but also where preference changes occur that
are sui generis, such as commands. While the setting will be different, the reader
will recognize many of the ideas and techniques of this chapter in the following
chapters. She will hopefully agree that what worked for information dynamics, also
makes a lot of sense in this new area of agents’ evaluation of the worlds.
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Chapter 3
Preference over Worlds: Static Logic

3.1 Introduction

Preferences arise from comparisons between alternatives, say, outcomes, actions, or
situations. Such a comparison is typically associated with some ordering, indicating
that one alternative is “better” than another. For instance, when playing chess or
other games, choosing a move π1 instead of π2 is determined largely by a con-
sideration concerning the outcomes that π1 or π2 leads to. In general, individual
preferences can be used to predict behavior by rational agents, as studied in game
theory and decision theory. Preference logics in the literature study the abstract
properties of different comparative structures [101].

Preference statements can be weaker or stronger in what they say about alterna-
tives being compared – and also, they may be more “objective” or more “epistemic”.
A statement like “I prefer sunsets to sunrises” can be cast merely in terms of “what
is better for me”, or as a more complex propositional attitude involving my beliefs
about the relevant events. In this chapter, we take a somewhat objective approach,
where a binary primitive preference relation in possible worlds models supports
a unary modality “true in some world which is at least as good as the current one”
(similar models have been studied in [55] and [94]). We will call this relation “better-
ness” to distinguish it from richer notions of preference. Then we will use a standard
modal language to express preference and its related notions. We will show that this
language is very expressive, being able to express various kinds of preference that
agents may have between propositions, i.e., types of events.1

This chapter is structured as follows. In Section 3.2 we will introduce the lan-
guage and semantics for modal betterness logic. A complete axiomatization will
be stated. In Section 3.3 we will study expressive power, with a special interest in
defining preference over propositions (“generic preference”) in terms of lifting the
primitive betterness relation from possible worlds to an ordering over propositions,
viewed as sets of possible worlds. Various possible lifts will be considered. Finally,
as an illustration, Section 3.4 will focus on one type of lift, namely the ∀∃-version,

1 In a different setting, [44] showed how such a language, extended with hybrid modalities, defines
conditionals, Nash equilibrium, and Backward Induction solutions to games.

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
DOI 10.1007/978-94-007-1344-4_3, C© Springer Science+Business Media B.V. 2011
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and explore its logical properties in more detail. Our conclusion summarizes the
platform laid in this chapter for the rest of this book.

3.2 Modal Betterness Logic

As we commented in the above, semantical betterness relations are treated as modal-
ities in the language. We now introduce the language of modal betterness logic:

Definition 3.1 (modal betterness language) Take any set of propositional variables
Φ, with a variable p ranging over Φ. The modal betterness language LB is given by
the following inductive syntax rule:

ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈≤〉ϕ | 〈<〉ϕ | Eϕ.

The intended reading of 〈≤〉ϕ is “ϕ is true in some world that is at least as good
as the current world”, while 〈<〉ϕ says that “ϕ is true in some world that is strictly
better than the current world.”2 We will discuss how these two modalities help lift
betterness relations to preferences over propositions in Section 3.3, in particular, in
the case where the betterness relations lack connectedness. In general, these notions
are agent-relative, but in what follows we will mostly suppress this aspect, since it
is orthogonal to our main points. In addition, the auxiliary existential modality Eϕ
says that “there is some world where ϕ is true”. Combinations of these modalities
can capture a wide variety of binary preference statements comparing propositions,
again, we will show this soon.

As usual, we will write [≤]ϕ for the universal modality ¬〈≤〉¬ϕ, and we will
write [<]ϕ and Uϕ for the duals of 〈<〉ϕ and E , respectively. Either [≤] or 〈≤〉 can
be introduced as a primitive, we will take the technical convenience into account
and use both formats interchangeably in this context.

How is this formal language connected to “preference” as it occurs in natural
discourse? One may be inclined to read 〈≤〉ϕ as “some agent prefers ϕ”. But as with
other logical systems, there is a gap between the formalism and common usage. E.g.,
just saying that the agent sees some better world where ϕ holds seems too weak,
while the universal modality [≤]ϕ “in all better worlds” seems much too strong. Cf.
[102] for a thorough discussion of senses of preference, and ways in which formal
languages do or do not match up.

Here we just point out the following feature. Our approach emphasizes compar-
isons of worlds, rather than propositions, whereas common notions of preference
often play between propositions, or semantically, sets of worlds. Even so, the prefer-
ences between propositions can be defined in the present language, as a lift from the

2 We use two independent modalities here for weak and strict betterness. This may seem strange,
since strict order was definable in terms of weak order. But the point is that this definition cannot
be reproduced in a natural way inside our modal language, which therefore brings out reasoning
with both modalities on a par.
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betterness relations. We will study those lifts soon in Section 3.3. For the moment,
we just take this expressive power of our modal language for granted. The virtue
of working with simple base modalities, as we do, is that these “decompose” many
more complex preference statements in a perspicuous manner, while allowing for a
simple dynamic approach later on.

Definition 3.2 (modal betterness model) A modal betterness model is a tuple M =
(S,≤, V ) where S is a set of possible worlds, ≤ is a reflexive and transitive relation
(the ‘betterness’ pre-order) over these worlds, and V is a valuation assigning truth
values to proposition letters at worlds.3

We read s ≤ t as “t is at least as good as s”, or “t is weakly better than s”. If
s ≤ t but not t ≤ s, then t is strictly better than s, written as s < t . If s ≤ t and
t ≤ s, then s and t are indifferent.

Note that we do not require that our betterness relations be connected in the sense
of the Lewis sphere models for conditional logic. In general, we want to allow for
genuinely incomparable worlds where an agent has no preference either way, not
because she is indifferent, but because she has no means of comparing the worlds
at all. It is a very natural situation we may often encounter in real life. This is just
as in the semantics for the minimal conditional logic. Of course, in special settings,
such as the standard utility-based preference orderings of outcomes in a game, con-
nectedness may be quite appropriate.

Definition 3.3 (truth conditions) Given a modal betterness model M = (S,
≤, V ), and a world s ∈ S, we define M, s |� ϕ (formula ϕ is true in M at s)
in the usual manner by induction on the construction of the formula ϕ:

M, s |� � iff always.

M, s |� p iff s ∈ V (p).

M, s |� ¬ϕ iff not M, s |� ϕ.

M, s |� ϕ ∧ ψ iff M, s |� ϕ and M, s |� ψ.

M, s |� 〈≤〉ϕ iff for some t with s ≤ t , M, t |� ϕ.

M, s |� 〈<〉ϕ iff for some t with s < t , M, t |� ϕ.

M, s |� Eϕ iff for some world t in S, M, t |� ϕ.

Definition 3.4 (modal equivalence) Two models M, s and M′, t are modally
equivalent, written as M, s � M′, t if they satisfy the same formulas from LB.

3 In this chapter, we use pre-orders since we want the generality of possibly non-total preferences.
Total orders, the norm in areas like game theory, provide an interesting specialization for the results
in this chapter. We will study total ordered preference in Chapter 7.
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Definition 3.5 (bisimulation) Two models M, s and M′, t are bisimilar (written
M, s � M′, t) if there is a relation Z ⊆ S × S′ such that:

(1) If s Zt then for all p ∈ �, s ∈ V (p) iff t ∈ V (p).
(2) If s Zt and s ≤ s′(s < s′) then there is a t ′ ∈ S′ such that t ≤ t ′(t < t ′) and

s′Zt ′. (the forth condition).
(3) If s Zt and t ≤ t ′(t < t ′) then there is a s′ ∈ S such that s ≤ s′(s < s′) and

s′Zt ′. (the back condition).
(4) For all s ∈ S, there is a t ∈ W ′ such that s Zt .
(5) For all t ∈ S′, there is a s ∈ W such that s Zt .

This is what is called a total bisimulation, as it includes conditions 4 and 5. It is
easy to show that any two bisimular models are modally equivalent with regard to
our language, in other words, we say that the language is bisimulation-invariance.
Bisimular models are often used to show undefinability of certain operators in some
language. We will come back to this issue in Section 3.3.

As for the resulting logics, [39] give a complete axiomatization for the logic of
weak and strict betterness modalities. Essentially, the system consists of S4-axioms
for operator [≤], K for [<], and S5-axioms for universal modality U, plus some
axioms for interaction between operators. We restate it here, omitting the proof.

Theorem 3.6 The modal betterness logic is completely axiomatized by the following
set of principles:

(1) propositional tautologies
(2) [≤](ϕ → ψ)→ ([≤]ϕ → [≤]ψ)
(3) [<](ϕ → ψ)→ ([<]ϕ → [<]ψ)
(4) [≤]ϕ → ϕ

(5) [≤]ϕ → [≤][≤]ϕ
(6) U (ϕ → ψ)→ (Uϕ → Uψ)
(7) Uϕ → ϕ

(8) Uϕ → UUϕ
(9) ¬Uϕ → U¬Uϕ

(10) [≤]ϕ → [<]ϕ
(11) [<]ϕ → [≤][<]ϕ
(12) [<]ϕ → [<][≤]ϕ
(13) [≤]([≤]ϕ ∨ ψ) ∧ [<]ψ → ϕ ∨ [≤]ψ
(14) Uϕ → [≤]ϕ
(15) Eϕ ↔ ¬U¬ϕ
(16) 〈≤〉ϕ ↔ ¬[≤]¬ϕ
(17) 〈<〉ϕ ↔ ¬[<]¬ϕ

The correspondence between the above axioms and the frame properties can be
studied just as one does in standard modal logics [24]. Additional axioms in our
language impose further frame conditions on models. Nevertheless, we will work
with the minimal system described above, leaving such extras aside.
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3.3 Expressive Power

Our modal base language seems so simple and standard that it may be hard to
see what it can define by way of more complex notions relevant to preference.
In this section, we will show that it can express more than the reader might
have thought. We will give two examples: “generic preferences” and “conditional
preference”.

Preference between specific worlds, introduced above, is just as in decision the-
ory and game theory. But preference can be used to compare different sorts of
things. In game theory, we do need to compare kinds of situation. Starting with
von Wright, logicians have studied “generic preferences” between kinds of object,
or kinds of situation. Such scenarios, too, occur in many other fields in the literature,
with various interpretations of the basic relation y ≤ x . It is interpreted as “x is as
least as normal (or typical) as y” in [55] on conditional and default reasoning, as
“x at least as preferred or desirable as y” in [66], as “x is no more remote from
actuality than y” in [127] on counterfactuals, and as “x is as likely as y” in [94]
on qualitative reasoning with probability. In all these settings, it makes sense to
extend the given order on worlds to an order of propositions ϕ,ψ . For instance,
in real life, students may have preferences concerning courses, but they need to
also form an order over kinds of courses, say theoretical versus practical, i.e., over
sets of individual courses. Likewise, we may have preferences regarding individ-
ual commodities, but we often need a preference over sets of them. And similar
aggregation scenarios are abundant in social choice theory, for which an extensive
survey is [21].

In what follows, we will show that preference over propositions is definable
as a binary operator P(ϕ, ψ) in our modal logic, whose language is rich enough
to explicitly define “lifts” of betterness on worlds to a binary ordering on sets of
worlds. Studies of such lifts abound (cf. [42, 44] and [39]), and our purpose in this
section is merely to streamline some results.

3.3.1 Generic Preference: Quantifier Lifts

One obvious way of lifting world orders x ≤ y to proposition or set orders X � Y
uses definitional schemas that can be classified by the quantifiers which they involve.
As has been observed by many authors (cf. [39]), there are four obvious two-
quantifier combinations for lifting:

(1) X �∀∀ Y ⇔ ∀x ∈ X ∀y ∈ Y : x ≤ y;
(2) X �∀∃ Y ⇔ ∀x ∈ X ∃y ∈ Y : x ≤ y;
(3) X �∃∀ Y ⇔ ∃x ∈ X ∀y ∈ Y : x ≤ y;
(4) X �∃∃ Y ⇔ ∃x ∈ X ∃y ∈ Y : x ≤ y.
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Taking the strict version of the betterness relation gives four more combinations:

(5) X �∀∀ Y ⇔ ∀x ∈ X ∀y ∈ Y : x < y;
(6) X �∀∃ Y ⇔ ∀x ∈ X ∃y ∈ Y : x < y;
(7) X �∃∀ Y ⇔ ∃x ∈ X ∀y ∈ Y : x < y;
(8) X �∃∃ Y ⇔ ∃x ∈ X ∃y ∈ Y : x < y.

As usual, we can define X � Y as X � Y and ¬Y � X . One can argue for any of
these as a notion of generic preference. Reference [44] claims that �∀∀ is the notion
of “preference” intended by von Wright in his seminal work on preference logic
[197] and provides an axiomatization. But the tradition is much older, and (modal)
logics for preference relations over sets of possible worlds have been considered
by [55, 127] and [94], and other authors. In particular, [94] studied the above ∀∃-
combination.

We are not in the position to claim that one lift is more plausible than another,
but our main concern here is the logical properties of lifts, and the expressive power
of our modal betterness language.

3.3.2 Expressing Generic Preferences in LB

So far, our discussion of preference over propositions has been semantic-oriented.
A natural question is the following: can we express the above generic preferences
in the language LB? The answer is positive. We start with the following four:

Definition 3.7 (generic preference: ∀∃ and ∃∃) The ∀∃-preference and ∃∃-
preference can be defined in the language LB as follows:

(1) ϕ �∀∃ ψ := U (ϕ → 〈≤〉ψ)

(2) ϕ �∃∃ ψ := E(ϕ ∧ 〈≤〉ψ)

(3) ϕ �∀∃ ψ := U (ϕ → 〈<〉ψ)

(4) ϕ �∃∃ ψ := E(ϕ ∧ 〈<〉ψ)
We can read ϕ �∀∃ ψ as “for each ϕ-world, there exists a ψ-world which is as

good as that ϕ-world”, and read ϕ �∀∃ ψ as “for each ϕ-world, there exists a better
ψ-world”. Once again, this “majorization” is one very natural way of comparing
sets of possible worlds – and it has counterparts in many other areas which use
derived orders on powerset domains. In particular, [94] took this definition (with an
interpretation of “relative likelihood” between propositions) and gave a complete
logic for the case in which the basic order on S is a pre-order. It is also well-known
that Lewis gave a complete logic for preference relations over propositions in his
study of counterfactuals in [127], where the given order on S is quasi-linear.
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Now let us consider the remaining combinations. It turns out to be more complex
and interesting, having to do with the models under discussion in the following
sense. If the betterness relations satisfy the property of connectedness, we can make
use of the Definition 3.7 and define those cases as follows:

Definition 3.8 (generic preference: ∀∀ and ∃∀) The ∀∀-preference and also the
∃∀-preference can be defined in the language LB on connected models:

(1) ϕ �∀∀ ψ := U (ψ → [<]¬ϕ)

(2) ϕ �∃∀ ψ := E(ϕ ∧ [<]¬ψ)

(3) ϕ �∀∀ ψ := U (ψ → [≤]¬ϕ)

(4) ϕ �∃∀ ψ := E(ϕ ∧ [≤]¬ψ)
However, if we drop connectedness, basic modal definability fails:

Fact 3.9 The ∀∀ and ∃∀-meaning of propositional preference cannot be defined in
the modal betterness language LB on non-connected models.

Proof This can be shown by a standard argument, providing two bisimilar models
one of which satisfies the lift, and one of which does not (cf. [44]). �

Thus, some lifts would amount to genuine first-order extensions of the modal
base language, in the spirit of hybrid logics. While we will not pursue such
extensions in our book, many of the results that we develop will survive such
generalizations.4

3.3.3 Conditional Preference

Here is one more example that shows the expressive power of our basic language.
A widespread maximality operator [Best (ψ)]ϕ in the literature on conditional or
deontic logic says that the “best’ ψ-worlds in some relevant order satisfy some
proposition ϕ”. The counterpart of this notion may be called conditional preference,
and it can be expressed as follows in our language:

(1) Pψϕ := U (ψ → 〈≤〉(ψ ∧ [≤](ψ → ϕ))).

This says that ϕ is preferred on condition of ψ , if and only if, for all worlds that
satisfy ψ , there is a better ψ-state such that all ψ-states above it are ϕ. A similar
modal definition for conditionals was first proposed by [53] and [55]. Here, we

4 One example are the added “intersection modalities” of Chapter 5.
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restated it in our language. We omit the simple verification that this formula really
has the intended meaning, at least on finite models.

Interestingly, our base language even offers another definition, whose syntax is
even closer to the maximality clause for the antecedent. For instance, using the strict
betterness modality, [83, Ch. 3] defines conditional preference as

Pψϕ := U ((ψ ∧ ¬〈<〉ψ)→ ϕ).

A few comments are in order here. First, for these definitions to capture the
intended meaning of the maximality operator, finiteness, or more generally, converse
well-foundedness of the ordering should be assumed, to make sure that maximal
worlds exist satisfying given formulae. In the absence of converse well-foundedness,
as was observed in [55], Formula (1) expresses something more than maximality.

Next, what we showed here does not just apply to betterness and preference.
Following the same idea, given an order relation of “relative plausibility”, we can
define conditional beliefs, which will be important in many of our later chapters.
Formula (1) above then amounts to the standard syntactic “relativization” of abso-
lute belief (as truth in all most plausible worlds) to just the worlds satisfying the
antecedent. Moreover, we will often relativize this still further, restricting everything
to just the set of worlds that are epistemically accessible from the current one. Thus,
in Chapter 5, we will use a knowledge modality K instead of the universal modality
U when lifting “epistemically entangled” betterness relations, while dealing analo-
gously with plausibility relations.

For now, we just emphasize what all this has shown. Our basic modal better-
ness logic can encode quite a few complex properties of preference – as well as,
reinterpreting the basic world order, of related notions such as belief.

3.4 Preservation and Characterization of ∀∃-Preference

In this section, mainly an excursion, we will raise a few more semantic issues, to
further understanding the lifting phenomenon per se.

Among various kinds of lift, a natural question to ask is: Which lift is “the right
one”? This is hard to say, and the literature has never converged on any unique pro-
posal. There are some obvious necessary conditions, of course, such as the following
form of “conservatism”:

Extension rule: For all x, y ∈ X , {y} � {x} iff y ≤ x .

But this does not constrain our lifts very much, since all four quantifier combina-
tions satisfy it. We will not explore further constraints here. Instead, we concentrate
on one particular lift, namely, ∀∃-preference, and try to understand better how the
lift generally works. One question that comes to mind immediately is this: Can
the properties of an underlying preference on worlds be preserved when it is lifted
to the level of propositions? In particular, consider reflexivity and transitivity that
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we assumed for preference in Section 3.2. Can we show �∀∃(ϕ, ψ) has these two
properties? In fact, the answer is positive. We can even prove something stronger:

Fact 3.10 Reflexivity and transitivity of the relation ≤ are preserved in the lifted
relation �∀∃, but also vice versa.

Proof Reflexivity. To show that �∀∃(X, X), by Definition 3.7, we need that ∀x ∈
X∃y ∈ X : x ≤ y. Since we have x ≤ x , take y to be x , and we get the result.

In the other direction, we take X = {x}. Then apply �∀∃(X, X) to it to get ∀x ∈
X∃x ∈ X : x ≤ x . Since x is the only element of X , we get x ≤ x .

Transitivity. Assume that �∀∃(X,Y ) and �∀∃(Y, Z). We show that �∀∃(X, Z). By
Definition 3.7, this means we have ∀x ∈ X∃y ∈ U : x ≤ y and ∀y ∈ Y∃z ∈ Z :
y ≤ z. Then by transitivity of the base relation, we have that ∀x ∈ X∃z(x ≤ z, and
this is precisely �∀∃(X, Z).

In the other direction, let x ≤ y and y ≤ z. Take X = {x},Y = {y} and Z = {z}.
Applying �∀∃ , we see that X � Y and Y � Z , and hence by transitivity for sets,
X � Z . Unpacking this, we see that we must have x ≤ z. �

Likewise, we can prove that if �∀∃ is quasi-linear, then so is ≤. But the converse
direction does not hold.

Besides the three properties mentioned, many others make sense. In fact, the pre-
ceding argument suggests a general correspondence between relational properties
of orderings and their set liftings, which we do not pursue here.

Next, staying at the level of propositions, suppose we have a preference relation
that is a ∀∃-lift from a base relation over possible worlds. What are necessary and
sufficient conditions for being such a relation? The following theorem provides a
complete characterization:

Theorem 3.11 (characterization) A binary relation � over propositions satisfies
the following four properties iff it is a ∀∃-lifting of some preference relation over
the underlying possible worlds.

1. Y � X ⇒ Y
⋂

Z � X (left downward monotonicity)
2. Y � X ⇒ Y � X

⋃
Z (right upward monotonicity)

3. ∀i ∈ I,Yi � X ⇒ ⋃
i Yi � X. (left union property)

4. {y} �
⋃

i Xi ⇒ {y} � Xi for some i ∈ I . (right distributivity)

Proof (⇐) Assume that � is a ∀∃-lifting. We show that � has the four properties.

(1) Assume Y � X , i.e., ∀y ∈ Y∃x ∈ X : y ≤ x . Since Y
⋂

Z ⊆ Y , we also have
∀y ∈ Y

⋂
Z∃x ∈ X : y ≤ x , and hence Y

⋂
Z � X .

(2) Assume ∀y ∈ Y∃x ∈ X : y ≤ x . Since X ⊆ X
⋃

Z , we have ∀y ∈ Y∃x ∈
X

⋃
Z : y ≤ x : that is, Y � X

⋃
Z .

(3) Assume that for all i ∈ I , ∀y ∈ Yi∃x ∈ X : y ≤ x . Let y ∈ ⋃
i Yi , then for

some j : y ∈ Y j . By the assumption, we have ∀y ∈ Y j∃x ∈ X : y ≤ x , so
∃x ∈ X : y ≤ x . This shows that

⋃
i Yi � X.
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(4) Assume that ∀y ∈ {y}∃x ∈ ⋃
i Xi : y ≤ x . Then there exists some Xi with

∃x ∈ Xi : y ≤ x , that is: {y} � Xi for some i ∈ I .

(⇒) Going in the opposite direction, we first define an object ordering

y ≤ x iff {y} � {x}. (†)

Next, given any primitive relation Y � X with the above four properties, we show
that we always have

Y � X iff Y �∀∃ X.

where the latter relation is the lift of the just-defined object ordering.
(⇒) Assume that Y � X . For any y ∈ Y , {y} ⊆ Y by reflexivity. Then, by Property
(1) we get {y} � X . But then also {y} �

⋃
x∈X {x}, as X = ⋃

x∈X {x}. By Property
(4), there exists some x ∈ X with {y} � {x}, and hence, by Definition (†), y ≤ x .
This shows that, for any y ∈ Y , there exists some x ∈ X s.t. y ≤ x , which is to say
that Y �∀∃ X .

(⇐) Assume that ∀y ∈ Y∃x ∈ X : y ≤ x . By Definition (†), y ≤ x is equivalent to
{y}� {x}. Since {x} ⊆ X , by Property (2) we get that {y}� X . Thus, for any y ∈ Y ,
{y} � X . By Property (3) then,

⋃
y∈Y {y} � X , and this is just Y � X . �

We have spent so much time with this one generic preference because it occurs
quite widely in the literature, providing a typical use of our modal preference logic.
But of course, many other lifts could be analyzed in a similar manner.

3.5 Conclusion

We have introduced a static modal betterness language in this chapter, which admits
of a complete axiomatization for its valid forms of reasoning with preference. We
then showed that the betterness relation over possible worlds can be lifted to generic
preferences over propositions using various quantifier combinations. We discussed
different lifts, giving us a better impression of the expressive power and limitations
of our modal language. Finally, we characterized one lift completely, the widespread
and well-behaved notion of “∀∃-preference”.

This modal betterness language is just a launching platform in this book. As
we will see in the next chapter, it provides a natural model for the dynamics of
preference change, both at the basic level of modification in the betterness relations,
and derived from that, at the level of defined “lifted” generic preferences between
propositions.



Chapter 4
Preference over Worlds: Dynamic Logic

4.1 Introduction

In the preceding chapter, we have introduced a logical framework for static prefer-
ence. Continuing on this platform, our main concern in this chapter is the dynamics
of preference change. Our preferences are modified constantly through commands
of moral authorities, suggestions from friends who give good advice, or just changes
in our own evaluation of worlds and actions. Living in a society, our preference is
also affected by what others like or dislike, as vividly described in the Chinese
classic Record of Music1:

A ruler has only to be careful of what he likes and dislikes. What the ruler likes, his ministers
will practise; and whatever superiors do, their inferiors will follow.

Thus preference changes can have various triggers. In this chapter, we will con-
centrate on two kinds of trigger: informational events, and immediate betterness
changing events. We start with the latter, since they reveal more of what is intrinsic
to preference. Consider the following example:

Example 4.1 (taking a trip) Alice is indifferent between taking a trip (written as p)
and staying at home (¬p). Now her friend Bob comes along and says

“Let’s take a trip!”

Alice’s “taking” this suggestion means that any preference she might have had for
staying at home is removed from the current model.

This dynamic process is pictured below. Arrows point at equally or more pre-
ferred worlds.2 We can see from Fig. 4.1 that the two worlds s and t are indifferent
in the initial model.

1 The is the first work on music in Chinese history. It is believed that the book was written about
two thousands year ago, but the precise time and author are still controversial.
2 In addition to the arrows drawn, our betterness relations always have reflexive loops.

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
DOI 10.1007/978-94-007-1344-4_4, C© Springer Science+Business Media B.V. 2011
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Fig. 4.1 Initial model s

p

t

¬p

But in the upgraded model, the world s has become better, and hence preferable:

Fig. 4.2 Upgraded model s

p

t

¬p

Thus, in our scenario, a suggestion removes already existing preference links:
But it does not add new ones. This simple mechanism will be studied in greater
detail in Section 4.3, as a point of departure for more general kinds of betterness
upgrade. For the moment, by way of contrast, here is one more example, which
does not remove links, but rather adds them.

In Fig. 4.2 above, Alice now prefers the trip after Bob’s suggestion , so this has
become her priority, or in a deontic reading of the preference relation, her duty. But
in general, suggestions are weaker than commands. Taking the suggestion p does
not necessarily mean that the person will now prefer all p-worlds to the ¬p-ones. It
all depends on the preference structure already in place. If the agent was indifferent
between p and ¬p with arrows both ways, the suggestion induces a preference. But
the agent may be unable to compare the two situations at the first stage, as in the
following model with two unrelated worlds (Fig. 4.3):

Fig. 4.3 A model with two
unrelated worlds

s

p

t

¬p

A suggestion in the above relation-decreasing sense does not make the worlds
comparable. This is different with real commands like “Take that trip!”, maybe
coming from Alice’s boss Carol who thinks it is necessary for her to take a rest.
In such a case, we want to make sure Alice now prefers p. Then, we need to add
preference links to the picture, making the world with ¬p less preferred. Our later
proposals in this chapter also deal with upgrades that add links between worlds.

As for other relevant scenarios motivating our study, consider a process of plan-
ning. We start with just our own initial goals in mind, and may gradually introduce
preferences over actions as ways toward reaching the goal, as we learn more about
the actual world. These and other dynamic aspects of preference have been studied
by many authors, including [33, 100, 185, 200], and [199].

Related ideas of preference change play in dynamic semantics for conditional
logics (for instance, in [176] and [192]). In its static Lewis-style semantics, a con-
ditional ϕ ⇒ ψ says roughly the following about the current model:

ψ is true in all most-preferred ϕ-worlds (�)
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But one plausible way of accepting a conditional is, not as a true/false description
of a current preference, but rather as an instruction for adjusting that preference so
as to make (�) the case. Or even more simply than this, consider a default assertion

“Normally ϕ.”

As [192] points out, this does not eliminate ¬ϕ-worlds from our current model,
in the usual dynamic sense of information update. Accommodating this assertion
rather makes the ¬ϕ-worlds doxastically less preferred than ϕ-worlds.

The aim of this chapter is to provide a logical format for studying preference
dynamics in its appropriate generality. In Section 4.2, we start from a simple test
scenario called a “suggestion”, analyzing its induced betterness relation change, and
determining its complete dynamic betterness logic. We will also look at how this
systematically changes the generic preferences studied in Chapter 3. Section 4.3
will then generalize these results to a much wider family of patterns for dynamic
relation change. As a final illustration, Section 4.4 will show how the resulting
framework can also be applied to doxastic reasoning with defaults. We end up with
some discussion and general conclusions.

4.2 Dynamic Betterness Logic

4.2.1 Upgrade as Relation Change

With the paradigm of public announcement in mind, we consider Example 4.1 once
more, and define the mechanism of betterness change. Now, our static models are
of course the modal betterness relational structures of Section 3.2:

M = (S,≤, V )

Our triggers are informational events of publicly suggesting ϕ, written as follows:

�ϕ

Intuitively, acts of “taking a suggestion” lead to the following model change, remov-
ing preferences for ¬ϕ over ϕ:

Definition 4.2 (upgraded model) Given any modal betterness model (M, s), the
upgraded model (M�ϕ, s) is defined as follows:

(1) (M�ϕ, s) has the same domain, valuation, and actual world as (M, s), but
(2) the new betterness relations are now

≤∗=≤ −{(s, t) | M, s |� ϕ and M, t |� ¬ϕ}.3

Next, we define the new dynamic language formally below, it is an extension of
the static modal betterness language:

3 Reference [105] analyzes newly defined betterness relations in a set-theoretic format.
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Definition 4.3 (dynamic betterness language) Take any set of propositional vari-
ables Φ, with a variable p ranging over Φ. The dynamic betterness language is
given by a mutually recursive syntax rule:

ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈≤〉ϕ | 〈<〉ϕ | Eϕ | [π ]ϕ
π := �ϕ.

Here, the intended reading of the central new formula [�ϕ]ψ is that “after ϕ is pub-
licly suggested, ψ holds”.

Definition 4.4 Given a modal betterness model M, the truth definition for formulas
is as before, but with one new key clause for the action modality:

(M, s) |� [�ϕ]ψ iff M�ϕ, s |� ψ .

Differently from what we have seen for public announcements in Chapter 2, there
are no preconditions that need to be satisfied for actions of suggestion. This fits our
intuitions: People can suggest ideas that might turn out to be wrong.

As for an axiomatization, we have the following completeness result:

Theorem 4.5 Dynamic betterness logic is axiomatized by the following axioms4:

(1) All theorems of modal betterness logic.
(2) 〈�ϕ〉p ↔ p.
(3) 〈�ϕ〉¬ψ ↔ ¬〈�ϕ〉ψ.
(4) 〈�ϕ〉(ψ ∧ χ)↔ (〈�ϕ〉ψ ∧ 〈�ϕ〉χ).
(5) 〈�ϕ〉〈≤〉ψ ↔ (¬ϕ ∧ 〈≤〉〈�ϕ〉ψ) ∨ (〈≤〉(ϕ ∧ 〈�ϕ〉ψ)).
(6) 〈�ϕ〉Eψ ↔ E〈�ϕ〉ψ.
Proof This is a set of reduction principles for upgrade similar to those for public
announcement in Chapter 2. Axiom 2 for atomic sentences is even simpler – as we
have said in the above, there is no precondition for �ϕ: This operation can always be
performed. Given that, we just state that atomic facts do not change under upgrade.
The next two axioms express that upgrade is a function. Then comes a commutation
principle for preference (Axiom 5) which is crucial, as it encodes precisely how
we change the betterness relation. It says essentially this. After an upgrade for ϕ, a
betterness link leads from the current world to a ϕ-world if and only if this same link
existed before. This means that it has not been removed, ruling out the case where
it led from an actual world verifying ϕ to some other one verifying ¬ϕ. The three
cases where the link does persist are described more succinctly in the two disjuncts
on the right-hand side. Finally, as the upgrade may have changed truth values of

4 Just as with actions of public announcement in Chapter 2, the completeness theorem here does
not give us an explicit valid principle for dealing with iterated modalities 〈�ϕ〉〈�ψ〉χ . Indeed, there
is no such principle, as the effect of two consecutive suggestions may be genuinely different from
making just one suggestion. Consider a simpler principle 〈�ϕ〉〈�ϕ〉ψ ↔ 〈�ϕ〉ψ , it holds for factual
assertions ϕ. But it need not hold for non-factual ϕ which themselves refer to the ordering. After
the first �ϕ action, we have changed the ordering, and the worlds where ϕ is now true need not be
the same ones as those where ϕ was true before. Thus there is more structure to our dynamic logics
than what we have brought to light so far.
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formulas, we must be careful, and say that, before the upgrade, the link went to
a world satisfying 〈�ϕ〉 rather than ϕ. Axiom 6 is simply a commutation law for
betterness and existential modalities. �

This result is not the end of dynamic betterness logic, but the beginning. The
above style of thinking works for a whole family of completeness theorems for
betterness-changing operators, as we will see in the next section. The key to this is
choosing an appropriate abstraction level, namely an abstract reading of a sugges-
tion �(ϕ) as a sort of relational program

(?¬ϕ; R) ∪ (R; ?ϕ).

The technical computation behind our crucial reduction axiom is then this:

〈�ϕ〉〈R〉ψ ↔ 〈(?¬ϕ; R) ∪ (R; ?ϕ)〉〈�ϕ〉ψ
↔ 〈?¬ϕ; R〉〈�ϕ〉ψ ∨ 〈R; ?ϕ〉〈�ϕ〉ψ
↔ (¬ϕ ∧ 〈R〉〈�ϕ〉ψ) ∨ 〈R〉(ϕ ∧ 〈�ϕ〉ψ).

Similar results hold for dynamic logics with many other strong and weak commands
(cf. [29, 42] and [131]). More details on this will come later.

4.2.2 Dynamics of Generic Preferences

This dynamic betterness logic can explain general effects of changes in preference.
In particular, we can think of our upgrade system as transforming underlying world-
or object-comparison relations, but then, in the matching logic, recording also what
changes take place because of this at the level of propositions. Thus, given the
earlier-noted expressive power of the modal language for notions of preference
between propositions, we can derive principles telling us what new propositional
preferences are obtained after an upgrade action, and relate these to the propositional
preferences that we had before. As an illustration, consider the earlier ∀∃-notion of
preference:

ψ �∀∃ ϕ iff U (ψ → 〈≤〉ϕ).

Fact 4.6 The following equivalence is provable in dynamic betterness logic:

〈�A〉ψ �∀∃ ϕ iff (〈�A〉ψ)�∀∃ (〈�A〉ϕ) ∧ (〈�A〉ψ ∧ A)�∀∃ (〈�A〉ϕ ∧ A).

Proof This is a simple calculation showing how the dynamic betterness logic axiom
system works in practice:

〈�A〉ψ �∀∃ ϕ ↔ 〈�A〉U (ψ → 〈≤〉ϕ)
↔ U (〈�A〉(ψ → 〈≤〉ϕ))
↔ U (〈�A〉ψ → 〈�A〉〈≤〉ϕ)
↔ U (〈�A〉ψ → (¬A ∧ 〈≤〉〈�A〉ϕ) ∨ (〈≤〉(A ∧ 〈�A〉ϕ)))
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↔ U (〈�A〉ψ ∧ ¬A → 〈≤〉〈�A〉ϕ) ∧ U (〈�A〉ψ ∧ A → 〈≤〉(〈�A〉ϕ ∧ A))
↔ (〈�A〉ψ)�∀∃ (〈�A〉ϕ) ∧ (〈�A〉ψ ∧ A)�∀∃ (〈�A〉ϕ ∧ A).

�

A similar analysis applies to the other notions of generic preference considered
in Chapter 3. The required calculations are simple exercises.

One might want to be more radical here, drop the reduction, and insist on
dynamic preference-changing actions directly at the level of propositions, without
any dependence on an underlying world-level, deriving a world-level change only
afterwards. This is in line with syntactic versions of belief revision theory where
one is instructed to come to believe certain propositions. We will study this second
way of thinking in Chapter 7, and once more in Chapter 10.

4.3 Preservation and General Betterness Transformers

4.3.1 Preservation Properties of Upgrade

Perhaps the most pressing issue in adding a dynamic update component to a static
base logic is whether a proposed model changing operation stays inside the class
of intended static models. For the update associated with public announcements !ϕ,
this was so – and the reason is the general logical fact that submodels preserve uni-
versally defined relational properties like reflexivity, transitivity, and symmetry. For
our notion of upgrade, the properties to be preserved are reflexivity and transitivity
of betterness relations. This time, no general result comes to the rescue, since we
only have the following counterpart to the preservation result for submodels:

Fact 4.7 The first-order properties preserved under taking subrelations are pre-
cisely those definable using negated atoms, ∧ , ∨, ∃, ∀.

But neither reflexivity nor transitivity is of this particular syntactic form. Neverthe-
less, using some special properties of our act of suggestion, we can prove:

Fact 4.8 The operation M�ϕ preserves reflexivity and transitivity.

Proof Reflexivity is preserved since we never delete loops (s, s). As for transitivity,
suppose that s ≤∗ t ≤∗ u, while not s ≤∗ u. By the definition of �ϕ, we must
then have M, s |� ϕ and M, u |� ¬ϕ. Now consider the intermediate point t .
Case 1: M, t |� ϕ. Then the link (t, u) should have been removed from ≤. Case 2:
M, t |� ¬ϕ. In this case, the link (s, t) should have been removed. Either way, we
have obtained a contradiction. �

On the other hand, applying our upgrades �ϕ can lead to loss of connectedness
of the beternness order. Our earlier example in Section 4.1 already showed this: see
Fig. 4.3. To us, this is no problem, since we are working with pre-orders. Indeed,
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we see the fragility of connectedness under quite reasonable preference changes as
an argument against adopting connectedness in general.

4.3.2 Upgrade and Model Transformation

Here is one more technical point about our mechanism. To a logician, the standard
epistemic update !ϕ of Chapter 2 essentially relativizes a model M to a definable
sub-model M!ϕ (see Definition 2.7 again). The relation between evaluation on both
sides is expressed in the following standard result:

Fact 4.9 (relativization lemma) Formulas ϕ hold in the relativized model iff their
syntactically relativized versions were true in the old model:

M!ϕ |� ψ iff M |� (ψ)ϕ .

In this light, the PAL reduction axioms for public announcement merely express the
natural inductive facts about the modal assertion 〈!ϕ〉ψ referring to the left-hand
side, relating these on the right to relativization instructions creating (ψ)ϕ .

A very similar idea applies to betterness upgrade �ϕ. This time, the relevant
semantic operation on models is redefinition of base relations.5 In this light, the
reduction axioms for dynamic betterness logic reflect a simple inductive definition,
this time for what may be called syntactic re-interpretation of formulas. This oper-
ation leaves all logical operators unchanged, but it changes occurrences of the rede-
fined relation symbol by its definition. There is one slight difference though. Rela-
tion symbols for betterness only occur implicitly in our modal language, through
the modalities. This is why the key reduction axiom in the above reflects a format
of the following abstract recursive sort:

〈R := de f (R)〉〈R〉ϕ ↔ 〈de f (R)〉〈R := de f (R)〉ϕ.

4.3.3 A Program Format for Relation Change

The preceding observation is the key to a more general logic of preference dynamics.
Reference [42] is a first systematic study along this line. The above relatively modest
ordering change leaves the set of worlds the same, but it removes any preferences
the agent might have for ¬ϕ over ϕ among these. Clearly, it is just one of many
possible “betterness transformers”. To achieve greater generality, we use program
notation from propositional dynamic logic (PDL, [104]).

5 Reference [29] already noted how relativization and redefinition make up the standard notion
of “relative interpretation” between theories in logic when objects are kept fixed – while product
update relates to more complex reductions forming new objects as tuples of old objects.
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For instance, as we said, we can write “suggesting that ϕ” (�ϕ) as:

R := R − (?ϕ; R; ?¬ϕ).
where R is the given input relation, while the operations ?ϕ test whether the relevant
proposition ϕ or related ones hold. In particular, the disjunct (?ϕ; R; ?ϕ)means that
we keep all old betterness links that run from ϕ-worlds to ϕ-worlds. This definition
is equivalent in PDL to the following:

�ϕ(R) := (?¬ϕ; R) ∪ (R; ?ϕ).

Again this says, but now more compactly, that we keep all old R-links, except for
those that ran from ϕ-worlds to ¬ϕ-worlds.

But then, given the observed diversity of possible preference changes, from
weaker to stronger, we want to consider more general relation-changing operations.
For instance, if one wanted to add links, rather than just subtract them, the above
format would still work. E.g., the relation-extending stipulation

R := R ∪ (?¬ϕ;�; ?ϕ),

with � as the “universal relation”, makes every ϕ-world better than every ¬ϕ-world.
Natural stronger preference changes occur in belief revision based on plausibility

orders of worlds that show many similarities with betterness order. In this area, one
prominent relation transformer is ⇑ϕ (“radical revision with ϕ”: cf. the dynamic
logic in [29]). In preference terms, it is like a strong command revising the betterness
order, say, by incorporating the wish of some over-riding authority.

Definition 4.10 (radical command upgrade) Given any modal betterness model
(M, s) and formula ϕ, the radical command upgrade (M⇑ϕ, s) is the model with
relations defined as follows:

⇑ϕ(R) := (?ϕ; R; ?ϕ) ∪ (?¬ϕ; R; ?¬ϕ) ∪ (?¬ϕ;�; ?ϕ).

This reflects the intended meaning of this transformation: All ϕ-worlds become bet-
ter than all ¬ϕ-worlds, whether or not they were better before – but within these
two zones, the old ordering remains.6

While suggestions and radical commands are extremes on a spectrum, other
options exist. Here is one more notion form belief revision theory. Conservative
upgrade puts only the best ϕ-worlds on top, underneath, the old ordering remains.7

Again, this makes sense, now as a weaker command changing betterness order: The
new best worlds will satisfy ϕ, but we leave the agent more of her own original
betterness order. The latter is not irrelevant, since, as we have seen in Chapter 11, it
encodes her conditional responses to further information. Differences with radical
commands will then show up in judgments of “conditional betterness”.8

6 It is instructive to see the difference with �ϕ(R) in the above PDL-style format.
7 Conservative upgrade is a radical command to produce, not ϕ, but Best (ϕ).
8 Such judgments occur in the literature on conditional obligation: see [96].
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The above notions suggest a general syntax for definable betterness changes. In
fact, we can use programs starting from tests for formulas in the language, weak and
strict basic order relations as well as the universal relation, while allowing arbitrary
unions and sequential compositions:

π :=?ϕ | R | R< | � |; | ∪
These are interpreted as the standard PDL program operations of test ?ϕ, sequential
composition; and choice ∪.

Actually, our examples of suggestions and radical command upgrade used only
special flat forms in this program format, without sequential composition of base
relations. That is, they were unions of finite “trace expressions” of the form

‘?ϕ1; {R,�}; ?ϕ2; {R,�} ; ...’,
where {R,�} stands for either R or �. These flat forms will return later in our
treatment of reason-based preference change.

Many further relation transformers can be defined in a PDL format. Of interest
to us here is mainly the point that all drive an automatic formulation of dynamic
completeness theorems. Reference [42] proved a general result to this effect, noting
that the PDL-format allows us to push the dynamic modality inductively through the
program structure, providing a computation of the shape of the recursion axiom. In
our present setting, we extend this to the language with strict betterness modalities.9

Theorem 4.11 Consider any dynamic program π as defined above. There is a com-
plete dynamic betterness logic for this operation, and its reduction axioms for the
weak and strict modalities can be computed automatically.

Proof Consider any formula 〈R := π(R)〉ϕ, where we have made the intended
relation change for the current betterness order R explicit in the dynamic modality.

The inductive reduction axioms when ϕ is a propositional variable or a Boolean
complex are as in standard dynamic-epistemic logic, as presented in Chapter 2. Now
consider the two modalities: i.e., ϕ is either 〈R〉ϕ or 〈R<〉ϕ. It suffices to show how
these are affected, since the rest of the formula can be dealt with recursively, as
displayed in the following equivalence:

〈R := π(R)〉〈R〉ϕ ↔ 〈π(R)〉〈R := π(R)〉ϕ
Next, consider the inductive construction of the program π . We first rewrite any

formula 〈R := π(R)〉ϕ as far as possible by means of the well-known PDL-axioms
for test, union and composition.

The remaining dynamic modalities for base programs involve either the identity
R := R, and these modalities can evidently be dropped, or the atomic re-assignment
R := R<. We are done if we can show what happens in the latter case with both
modalities that can follow, weak and strict.

9 We do not consider dynamic actions that directly transform the strict betterness relation, since
these are less intuitive, while also presenting some technical difficulties.
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Here the case of 〈R := R<〉〈R〉ϕ is immediate: We replace the prefixed weak
modality 〈R〉 by the strict modality 〈R<〉 that we have in our language anyway.
Similarly, the other case of 〈R := R<〉〈R<〉ϕ appears to require a repeated strictness
modality 〈(R<)<〉ϕ. But this reduces to what we have:

(R<)< = R<.

Here is the simple Boolean calculation:

(R<)<xy ↔ R<xy ∧ ¬R<yx ↔ R<xy ∧ ¬(Ryx ∧ ¬Rxy)
↔ R<xy ∧ (¬Ryx ∨ Rxy)↔ (R<xy ∧ ¬Ryx) ∨ (R<xy ∧ Rxy)
↔ R<xy ∨ R<xy ↔ R<xy �

This concludes our general treatment of betterness transformers.

4.4 A Different Illustration: Default Reasoning

We have presented an upgrade mechanism for incoming triggers that changes bet-
terness relations. We now illustrate how this method also works in quite different
settings, viz. default reasoning.

4.4.1 Default Reasoning

Consider practical reasoning with default rules of the form “if ϕ, then ψ”:

“If I take the train right now, I will be home tonight”.

These are defeasible conditionals, which recommend concluding ψ from ϕ, but
without excluding the possibility of ϕ∧¬ψ-worlds, be it that the latter are now con-
sidered exceptional circumstances. Intuitively, the latter are not ruled out from our
current model, but only “downgraded” when a default rule is adopted. An influential
dynamic treatment of this sort of reasoning is [192], which makes the semantics of a
default conditional an instruction for changing the current preference order between
worlds. The simplest case has just one assertion ϕ which is being “recommended” –
in Veltman’s terms, an instruction of the linguistic form “Normally, ϕ”.

Now, in the perspective of this chapter, the same effect can be reached with-
out changing the standard semantics of the underlying language, but by adding an
explicit mechanism on top of that for getting the force of an act of default assertion.
Suppose that we want to give an incoming default rule “Normally, ϕ” priority, in
that after its processing, all best worlds are indeed ϕ-worlds. Here is a procedure
that will validate the preceding intuition. It is just the radical command upgrade
defined and described above, but now reinterpreted as a plausibility change.10

10 This “lexicographic” policy for belief revision was first suggested in [145].
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Fact 4.12 Relational default processing can be axiomatized completely.

Proof By the method of Section 4.2, the key reduction axiom follows automatically
from the given PDL-form, yielding

〈�ϕ〉〈≤〉ψ ↔ (ϕ∧〈≤〉(ϕ∧〈�ϕ〉ψ)∨(¬ϕ∧〈≤〉(¬ϕ∧〈�ϕ〉ψ))(¬ϕ∧E(ϕ∧〈�ϕ〉ψ)).
�

Thus, we have a plausible version of default logic in our upgrade setting. More-
over, their validities are axiomatizable in a systematic style via reduction axioms,
rather than more ad-hoc default logics found in the literature.

But things need not stop here. E.g., the relation-changing version puts heavy
emphasis on the last suggestion made, giving it the force of a command. This seems
too strong in many cases, as it gears everything toward the last thing heard. A more
reasonable scenario is this. We are given a sequence of instructions inducing pref-
erence changes, but they need not all be equally urgent. We need to find out our
total commitments eventually. But the way we integrate these instructions may be
partly left up to the policy that we choose, partly also to another parameter of the
scenario: viz. the relative force or authority of the issuers of the instructions or
commands. We will provide a proposal to deal with this issue in the context of
deontics in Chapter 11. One more particular setting where this happens is again
optimality theory. Ranked constraints determine the order of authority, but within
that, one counts numbers of violations. cf. [154] for a good exposition, and we will
explore the application of this idea in preference logics in Chapter 5.

Finally, default logic is naturally connected with belief revision, since new facts
may change earlier conclusions. More generally, an analysis of preference change
seems very congenial to analyzing belief revision, with world ordering by relative
plausibility (cf. [91, 163], and Chapter 5). Indeed, the paper [29] shows that the
techniques for handling relation change developed in this chapter can be used to
analyze various belief revision policies, and axiomatize their properties completely.

4.4.2 Complication: Coherence and Conflicting Suggestions

Despite the technical analogies between information update and betterness upgrade,
there are also intuitive differences. We end by discussing one of these.

Consider the intuitive notion of “coherence” in agency. In pure public announce-
ment logics, the only relevant aspects of coherence for a sequence of assertions seem
to be these:

(1) Do not make inconsistent and false assertions at the actual world; and, do not
waste anyone’s time.

(2) Do not make assertions which are common knowledge in the whole group, and
which do not change the model.

But in combination with betterness upgrade, we can make other distinctions. E.g.,
the effect of a sequence with two conflicting suggestions
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�p; �¬p

is not inconsistency, but it still has some strange aspects. Generally speaking, such
a sequence makes the ordering non-connected, as it removes arrows either way
between p-worlds and ¬p-worlds. It is an interesting issue that which sequences
of upgrades are coherent, in that they preserve the property of connectedness.

But in line with the main theme of this chapter, reality may be more dynamic than
mere coherence maintenance. One often dynamically resolves conflicts in sugges-
tions. One powerful way of doing this is by means of some authority ranking among
the issuers of those suggestions. This is somewhat like the reality of information
update. We often get contradictory information from different sources, and we need
some notion of reliability differentiating between these to get to any sensible total
update. Both issues go beyond the ambitions of this chapter, as they involve the gap
between actual informational events and their translation into the idealized model
changes offered by DEL, whether for update or upgrade. For the case of betterness
upgrade, we will consider a possible solution in Chapter 11.

4.5 Conclusion

To conclude this chapter, we say a few words on what we have done, and what we
have not. We have concentrated on the dynamics of betterness relations in chang-
ing possible worlds models. Our pilot example was a dynamic action of suggestion
that upgrades betterness relations. We also saw how such a logic will automatically
describe how lifted generic preferences transform under preference change. We then
saw how a complete dynamic betterness logic results, driven by DEL-style reduction
axioms. Next, we showed how this simple model can be extended to many other
general relation-transforming operators, deriving reduction axioms automatically,
provided the model changes are definable in a suitable program format. Finally, we
showed how this same circle of ideas applies to areas like belief revision via change
in plausibility relations, and to reasoning with defaults.

Nevertheless, some issues of importance have been left out here. First, in real
agency, the notion of preference is often entangled with beliefs and knowledge. The
delicate relation between these notions calls for further models and special attention.
Likewise, for dynamics, we now have separate systems for preference and belief,
but we also need to see how they interact. These phenomena have received little
attention in dynamic logic circles so far, and we will give them a try in Chapter 5.

Secondly, we have represented the notion of preference qualitatively in terms
of a binary betterness relation over possible worlds. But an equally dominant rep-
resentation in the literature are quantitative utility functions, as in decision theory,
game theory, and social choice theory. In such settings, preference change means
numerical “valuation change”. This quantitative approach is not the main line of
this book, but there is at least the challenge of seeing whether the proposals that we
have made here can survive the transition to such a richer setting. This will be the
topic of Chapter 6, a sort of intermezzo in the main stream of this book.



Chapter 5
Entanglement of Preference, Knowledge
and Belief

5.1 Introduction

Many of the meaningful scenarios where preference occurs have a mixed character.
For instance, in making rational decisions, an agent does not just take her prefer-
ences into account, but also what she knows or believes about the outcomes of her
actions. And in rational social decisions, she will also factor in what she knows
about the preferences of others.1 Knowledge, belief and preference are often deeply
entangled in our reasoning.

One locus where this entanglement plays very clearly are “generic preferences”
as lifts from the betterness relation, which naturally invite epistemic attitudes to
involve. Recall that in Chapter 3, we defined a pure preference between propositions
in the following manner:

ψ �∀∃ ϕ := U (ψ → 〈≤〉ϕ). (Ubett)

A universal modality U was used in this definition. It suggests that all possible
worlds in the model are involved in the comparison, as shown in Fig. 5.1.

Fig. 5.1 Genetic preference
defined by U and betterness

ϕψ

Basically, this is a comparison between all ψ-worlds and ϕ-worlds in the model.
However, in a more realistic setting, the following restriction is natural: We only
consider those possible worlds that are within our epistemic range. Thus, we only
compare worlds that are epistemically accessible:

For anyψ-world that is epistemically accessible to agent a in the model, there exists a world
which is as good as that world, where ϕ is true.

1 This phenomenon is called “interdependent preference” in the economic literature.
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This can be pictured in the following manner Fig. 5.2:

Fig. 5.2 Generic preference
defined by K and betterness

a

b

ϕψ

The part inside the black circle stands for the epistemically accessible worlds. We
see that only some of the ϕ-worlds are epistemically accessible. Note that the bet-
terness relation has two possible cases: It has a-arrows which mean that the better
ϕ-world is itself in the accessible part of the model, while b-arrows mean that the
better ϕ-world need not be in the accessible part of the model.

We write the above explanation into a formal definition:

ψ �∀∃ ϕ := K (ψ → 〈≤〉ϕ). (K bett)

Comparing the definitions (K bett) and (Ubett), we have simply replaced U with
K . In fact, looking back at Chapter 3, this is a straightforward step to take, since we
can simply combine knowledge with betterness operators, as we are indeed going
to do in the next section.

This is just a first step in investigating possible ways of entangling preference,
knowledge and beliefs. This chapter investigates these issues in more depth, along
the following lines. Section 5.2 studies a simple way of combining knowledge and
preference languages, by juxtaposition of epistemic and preference logic. We will
explore how this combination affects the dynamics, and we will propose a new
update mechanism in terms of “link-cutting”. In addition, in Section 5.3 we will
briefly discuss how these methods can be applied to the case of preference mixed
with beliefs. Section 5.4 then explores a more intimate way of combining preference
and beliefs, and a new merged model and logic will be proposed. In that logic, we
will be able to talk about preference and plausibility relations at the same time. We
end this chapter with some discussion of further forms of entanglement, and then
conclude.

5.2 Juxtaposing Knowledge and Betterness

5.2.1 Static Logic

A direct way of combining preference and knowledge is to simply put epistemic
logic and modal betterness logic together. The language is then as follows:

Definition 5.1 (epistemic betterness language) Take a set of propositional vari-
ables Φ, with p ranging over Φ. The epistemic betterness language is given by the
following inductive syntax rule:

ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ψ | Kϕ | [≤]ϕ | [<]ϕ | Uϕ.

Similarly, the new models combine epistemic and betterness models.
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Definition 5.2 (epistemic betterness model) An epistemic betterness model is a
tuple M = (S,∼,≤, V ), with S a set of possible worlds, ∼ the usual equivalence
relation of epistemic accessibility, ≤ is a reflexive and transitive betterness relation
over the worlds, and V a valuation for proposition letters.

Given our choice of epistemic betterness models, our epistemic betterness logic
can be axiomatized completely in a standard modal style. It is essentially a S5 sys-
tem for knowledge plus a S4 system for betterness (cf. [50]).

Theorem 5.3 Epistemic betterness logic is completely axiomatizable w.r.t epistemic
betterness models.

Proof The proof is entirely by standard techniques from the modal literature. �

5.2.1.1 Expressive Power

A combined language like this can define many notions that make intuitive sense,
such as having knowledge, or being ignorant, of someone’s preferences, with combi-
nations K 〈≤〉ϕ. It can also express the opposite combination 〈≤〉K¬ϕ, the logical
form of preferring to know it is not the case, say, that one has some unpleasant
disease.

In particular, there is the issue of epistemically “loading” the very notion of pref-
erence itself. As we have seen earlier in Chapter 3, the pure modal betterness part
of this language, with the help of the universal modality, can express a variety of
natural notions of preference between propositions (generic preference), including
the original one proposed by von Wright, as well as other natural options qua quan-
tifier combinations. But with our additional epistemic operators, we can also express
the interplay of betterness and knowledge. The following examples represent (i) an
intuition of self-reflection of “preference”, and (ii) an unfortunate but ubiquitous
phenomenon:

• 〈≤〉ϕ → K 〈≤〉ϕ: Positive Betterness Introspection.
• 〈≤〉ϕ ∧ K¬ϕ: Regret.

Additional axioms in our language impose further frame conditions on models.
Here is an example to show the spirit. They are based on standard modal frame-
correspondence techniques:

Fact 5.4 An epistemic betterness frame F = (S,∼,≤) makes the Betterness Intro-
spection Axiom 〈≤〉ϕ → K 〈≤〉ϕ true iff it satisfies the following condition:

∀s∀t∀u : (s ≤ t ∧ s ∼ u → u ≤ t).

In other words, we can add this introspection axiom to the axiomatic system
and get a slightly richer logic. However, in this chapter, we will keep it only as an
option. As we will show in the next subsection, the above frame condition cannot
be preserved in what we consider a natural betterness dynamics. We will return to
mixed epistemic-preference principles again soon.
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5.2.2 Dynamic Logic and Some New Operations

Given the static epistemic betterness logic, knowledge update and preference
upgrade do not lead wholly separate lives in our setting. For instance, if we want
to model the realistic phenomenon of “regret” about worlds that are no longer epis-
temic options, epistemic updates for !ϕ should not remove the ¬ϕ-worlds, since we
might still want to refer to them, and perhaps even mourn their absence.2

One way of doing this is by redefining the update of Chapter 2 for public
announcement as a milder relation-changing operation of “link-cutting”. This time,
instead of the earlier public announcement !ϕ, we write the relevant update action as

†ϕ

and we write the updated model as M†ϕ in order to distinguish it from what we
obtained by eliminating worlds. The correct semantic operation for †ϕ is this:

Definition 5.5 (link-cutting update) The link-cutting public update model M†ϕ is
the original model M with its worlds and valuation unchanged, but with accessibil-
ity relations ∼ replaced by the following version without any crossing between the
ϕ- and ¬ϕ-zones of M:

(?ϕ;∼; ?ϕ) ∪ (?¬ϕ;∼; ?¬ϕ)
Link-cutting has some interesting features. For instance, link cutting in the cur-

rent model is the same for the announcements †ϕ and †(¬ϕ): Both remove links
between ϕ-worlds and ¬ϕ-ones. This is reflected in the following truth condition of
the link-cutting action, as well as in the valid principles of the dynamic epistemic
betterness logic below.

Definition 5.6 Given an epistemic model M, the truth definition for the link-cutting
action modality is the following:

(M, s) |� [†ϕ]ψ iff M†ϕ, s |� ψ .

Theorem 5.7 The following formulas are valid principles of combined dynamic
epistemic betterness logic in its link-cutting version:

(1) 〈†ϕ〉p ↔ p.
(2) 〈†ϕ〉¬ψ ↔ ¬〈†ϕ〉ψ.
(3) 〈†ϕ〉(ψ ∧ χ)↔ (〈†ϕ〉ψ ∧ 〈†ϕ〉χ).
(4) 〈†ϕ〉〈K 〉ψ ↔ (ϕ ∧ 〈K 〉(ϕ ∧ 〈ϕ!〉ψ) ∨ (¬ϕ ∧ 〈K 〉(¬ϕ ∧ 〈ϕ!〉ψ)
(5) 〈†ϕ〉〈≤〉ψ ↔ 〈≤〉〈†ϕ〉ψ.
(6) 〈†ϕ〉Eψ ↔ E(〈†ϕ〉ψ ∨ 〈¬†ϕ〉ψ).
(7) 〈�ϕ〉p ↔ p.
(8) 〈�ϕ〉¬ψ ↔ ¬〈�ϕ〉ψ.

2 More concretely, in the games of Chapter 12, it is essential that agents be able to reason counter-
factually about their preferences, even in states of the game of which they know that these will not
occur.
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(9) 〈�ϕ〉(ψ ∧ χ)↔ (〈�ϕ〉ψ ∧ 〈�ϕ〉χ).
(10) 〈�ϕ〉〈K 〉ψ ↔ 〈K 〉〈�ϕ〉ψ.
(11) 〈�ϕ〉〈≤〉ψ ↔ (¬ϕ ∧ 〈≤〉〈�ϕ〉ψ) ∨ (〈≤〉(ϕ ∧ 〈�ϕ〉ψ)).
(12) 〈�ϕ〉Eψ ↔ E〈�ϕ〉ψ.
Proof The first four formulas are the well-known valid reduction axioms for public
announcement. The fifth formula, about commutation of 〈†ϕ〉 and 〈≤〉, expresses the
fact that epistemic update does not change any betterness relations. As we saw, the
usual updates !ϕ and the link-cutting updates †ϕ makes no difference with purely
epistemic dynamic axioms, but it does with global existential modalities over the
whole domain of the model. The usual reduction axiom for operator E is this:

〈!ϕ〉Eψ ↔ ϕ ∧ E〈!ϕ〉ψ.
But the axiom in the above is different, as Eϕ can still refer to worlds after the

update which used to be ¬ϕ.
Next in the list comes a similar set of reduction principles for the upgrade oper-

ation, but we have seen these earlier already in Chapter 4. �
The link-cutting update has a number of advantages. It was first proposed, in

[175] and [130] for modeling the behavior of memory-free agents, whose epistemic
accessibility relations are quite different from those for the idealized update agents
of standard dynamic epistemic logic. Moreover, in the present setting, in stating
regrets, we need the consistency of a formula like

K p ∧ 〈≤〉¬p.

Here is an intuitive reading: “Yes, I know that p, but it would be better if it weren’t...”
The modified link-cutting update allows us to have this consistently. More generally
speaking, in the setting of preference update, we cannot eliminate possible worlds–
and instead, what we do is to change the preference relations between them. Link-
cutting typically fits this spirit.

5.2.2.1 Loss of Positive Introspection

A combined epistemic betterness logic contains natural mixed epistemic-betterness
principles. One obvious candidate is betterness introspection: Agents know their
preferences, at least in the sense of knowing what is better for them. Now the issue
becomes whether such principles survive natural update operations. We find inter-
esting phenomena.

We have shown in Chapter 4 that the operation �ϕ preserves reflexivity and tran-
sitivity. But as we have stated concerning introspection, unfortunately, our upgrade
cannot preserve this property, witness the following scenario:

Example 5.8 (upgrade complications) Consider Fig. 5.3 below. There are two
worlds “asleep” and “awake”. We do not know if we are sleeping or awake. Initially,
we prefer being asleep, and we know our preference.

Now an upgrade happens, suggesting that real waking life is not so bad after all.
Then we still do not know if we are sleeping or awake, but at the “awake” world we
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Fig. 5.3 Before suggestion s

asleep

t

awake

prefer being awake (thought not to be the case at the “asleep” world). Focusing on
the “asleep” world in the new model, we still prefer being asleep there. But we no
longer know that we prefer it – since we might be in the “awake world” (Fig. 5.4).
Betterness Introspection fails!

Fig. 5.4 After suggestion s

asleep

t

awake

In some settings, betterness introspection seems plausible, and a desirable prop-
erty of models to be preserved. We can then change the notion of upgrade to deal
with this, e.g., by making sure that similar links are removed at epistemically indis-
tinguishable worlds, or study which special sorts of upgrade in our language have
the property of always preserving betterness introspection. The latter would then be
the “sensible” coherent series of suggestions.

This concludes our brief exploration of betterness merged with knowledge.
Things get more realistic, and also more interesting, when we merge betterness and
belief. Our next section explores this entanglement.

5.3 Connecting Belief with Betterness

Before turning to the entanglement of belief and betterness, let us first talk briefly
about beliefs, whose semantics shows many analogies with betterness models for
preference. The following discussion draws together a few points that have occurred
in earlier chapters.

5.3.1 Belief Statics and Dynamics on Their Own

Recall a semantics that we have discussed briefly already in Chapter 3, when explor-
ing the expressive power of our modal base language. Our betterness pre-orders
are formally exactly the same as plausibility models for a language of belief. And
indeed, as mentioned briefly in Chapter 3, they immediately support a doxastic lan-
guage with an absolute belief operator B and more generally, conditional beliefs
Bψϕ. The key truth conditions are as follows:

M, s |� Bϕ iff M, t |� ϕ for all worlds t which are minimal
for the ordering λxy. ≤s xy.

M, s |� Bψϕ iff M, t |� ϕ for all worlds t which are minimal
for λxy. ≤s xy in the set {u | M, u |� ψ}.
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Here the truth condition for the absolute operator B is essentially the same as
in KD45-models, with the “accessible worlds” of the latter system being the most
plausible ones. But we can compare less plausible worlds, too – and this is crucial to
understanding the logic of conditional belief. The logic of the latter is essentially the
minimal conditional logic over pre-orders: see [83] for an complete axiomatization,
along the lines of earlier work by Burgess and Veltman.

A few points are worth noticing here. The first is the difference in our basic
languages for what are formally the same models. For the betterness models of
Chapter 3, we took a simple base modality, while here, we take more complex
minimality versions with a more complex pattern of quantification pattern in their
truth condition. The latter seems crucial, being tied up with the well-known non-
monotonicity of conditional beliefs in their antecedent.

Still, the analogy is actually quite fruitful. In particular, it makes sense to intro-
duce an ordinary universal modality [�]ϕ on plausibility models after all, read as
“in all worlds that are at least as plausible as the current one”. If we take the set
of all worlds plausibility related to the current world (less, equally, or more plausi-
ble) as the latter’s epistemic range, then this universal modality is intermediate in
force between knowledge and belief. It has been called safe belief in the doxastic
literature, and [18] show how it makes a lot of sense as a notion of belief that is
stable under receiving truthful information.3 Indeed, as we have seen technically in
Chapter 3, for many purposes, safe belief suffices for defining absolute and condi-
tional belief in the minimality sense. For instance, conditional belief Bψϕ became
the following complex modal formula

Bψϕ := U (ψ → 〈�〉(ψ ∧ [�](ψ → ϕ))).

This way the logic of conditional belief lies encoded under translation in our
modal base logic.

Finally, in many recent papers, the semantic setting is a bit more complex, com-
bining epistemic and doxastic features. In that case, plausibility relations live inside
the epistemic range of the current world, entangling modalities of knowledge and
belief. In particular, one often finds an assumption of epistemic introspection for
beliefs, corresponding to an assumption that the plausibility order is the same for
any two epistemically indistinguishable worlds. We will not pursue this combination
here, but it does seem the natural setting eventually.

Finally, with all these analogies, the dynamics of belief change can be studied
using our techniques for preference. This was done in [29], which proposed valid
reduction axioms for two sorts of belief change, so-called radical revision and
conservative revision, where the former involves our earlier relation transformer

3 Safe belief has roots going back to the computational tradition on agency, cf. [174] and to philo-
sophical logic, cf. [179]. Interestingly, [15] cited our paper [42] on preference dynamics as one of
their inspirations.
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⇑A. For instance, van Benthem’s reduction axiom for beliefs after radical revi-
sion is:

[⇑A]Bϕ ↔ (E A ∧ B([⇑A]ϕ|A)) ∨ B[⇑A]ϕ.

Adding a reduction axiom for conditional belief from [29] to the valid principles
for plausibility upgrade, we immediately get a complete dynamic logic.

We end with a somewhat sobering observation. While these axioms for belief
change under hard or soft information look mysterious, and may be hard to discover,
they actually follow quite simply from our earlier analysis in Chapter 3 and 4!

Fact 5.9 The correct reduction axioms for absolute and conditional belief are auto-
matically computable from the axioms given for preference change in Chapter 4.

Proof The reason is a simple combination of our observations so far. First, con-
ditional belief is definable in terms of basic safe belief. Next, radical upgrade is
definable as a PDL program transformer on models. Therefore, by Theorem 4.11,
we can automatically compute its matching reduction axiom for the base modality.
Finally, given the definition of conditional belief in terms of base modalities, we can
use the latter reduction axiom to derive a reduction axiom for conditional belief – in
the same style as we did for lifted preferences in Chapter 4. It is easy to check that
this analysis derives, and to some extent explains, van Benthem’s original dynamic
logic of belief change. �

5.3.2 Beliefs Together with Betterness

Having explored the many analogies between belief and preference, we can combine
these two formally congenial notions. Beliefs combine with betterness in the same
way as we had for knowledge and betterness.

Now let us plunge in immediately, and resume our earlier discussion of entangled
preference, this time based on belief rather than knowledge. First, the comparison
can be expressed in the following:

For any ψ-world that is most plausible to agent i in the model, there exists a world which
is as good as that world, where ϕ is true.

Formally this gives us a new notion of generic preference:

ψ �∀∃ ϕ := B(ψ → 〈≤〉ϕ). (Bbett)

Figure 5.5 illustrates what we have in mind. In this picture, worlds lie ordered
according to their plausibility, as in Lewis’ spheres for conditional logic. The inside
of the black circle depicts the most plausible worlds. We consider the ψ-worlds
in this area, and again distinguish two sorts of betterness: Relations of “type a”
stay inside the most plausible region, relations of “type b” go outwards to the less
plausible, or even highly implausible regions.
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Fig. 5.5 Generic preference
defined by B and betterness

a

b

ψ

ϕ

For the record, we now define the obvious combined models as follows:

Definition 5.10 (doxastic betterness model) A doxastic betterness model is a tuple
M = (S,�,≤, V ), with S a set of possible worlds, � a doxastic relation of “at least
as plausible as”, and ≤ our earlier relation of “at least as good as”, with V again a
valuation for proposition letters.4

Definition 5.11 (doxastic betterness language) Take a set of propositional vari-
ables Φ, with p ranging over Φ. The doxastic betterness language is given by the
following inductive syntax rule:

ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ψ | Bϕ | B−ϕ | Bψϕ | [≤]ϕ | [<]ϕ | Uϕ.

Note that we have both strict and non-strict versions in the language for belief and
betterness operators, we will need the strict version soon when we compare our
model with an earlier proposal in [123]. The truth condition for the strict belief
operator is defined as follows:

M, s |� B−ϕ iff for all worlds t if s ≺ t , then M, t |� ϕ.5

Regarding the axiomatization, it is a combination of KD45 system for beliefs
and S4 system for betterness.

4 References [16] and [18] also uses the “as plausible as” relation to interpret the notion of safe
beliefs which hold in all worlds that are at least as plausible as the current one. This notion is like
our universal betterness modality, but then of course for belief rather than preference.
5 Given the notion of conditional belief, there is actually an alternative formulation for our for-
mulation of belief-based preference. The above version (Bbett) looks at all normal or optimal
worlds in the model, and then compares ϕ-worlds to ψ-worlds there in terms of betterness. The
other option would be this: take the preference for ψ over ϕ itself as a conditional belief , using the
following formula

Bψ 〈≤〉ϕ. (Bbett ′)

As is well-known, this is not equivalent to (Bbett), and it might be another candidate for belief-
based preference. Personally, we think that preference should not involve the conditional scenario
of “having received the information that ψ”. However, both definitions can be treated in the logic
we have proposed, and both are amenable to the style of dynamic analysis that we will consider
next.
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5.3.2.1 Comparison with an Earlier Proposal

A similar model with two relations was also proposed in [55]. It works like this:
M = (S,≤P ,≤N , V ), where S is a set of possible worlds, V a valuation function
and ≤P , ≤N are two transitive connected relations. x ≤P y means “y is as prefer-
able as x” and x ≤N y means “y is as normal as x”. [55] defines conditional ideal
goal (IG) by combining preference and normality relations:

Definition 5.12 M |� I G(ϕ |ψ) iff Max(≤P ,Max(≤N ,Mod(ψ))) ⊆ Mod(ϕ)

Intuitively, this says that ϕ is an ideal goal with condition ψ if and only if the
best of the most normal ψ worlds satisfy ϕ.

Fact 5.13 The notion of an ideal goal in [55] is definable in the modal doxastic
betterness language.

Proof Here is how we can define ideal goals in our language:

I G(ϕ | ψ) :=(ψ ∧ ¬〈B−〉ψ)∧¬〈<〉(ψ ∧ ¬〈B−〉ψ)→ ϕ �

Next, following [55, 123] defined preference using the above kind of semantic
model, and studied its properties in more detail. Here is their definition:

Definition 5.14 M |� ψ < ϕ iff for all w′ ∈ Max(≤N ,Mod(ψ)) there exists
w ∈ Max(≤N ,Mod(ϕ)) such that w′ <P w.

Readers will see the similarity between this definition and our definition (Bbett).
Indeed, we can easily obtain the following fact:

Fact 5.15 The notion of entangled preference in [123] is definable in our doxastic
betterness language. Moreover, all properties identified in that paper are formally
derivable in our complete doxastic betterness logic.

Proof To prove the first part, it is sufficient to see the following:

• The ∀∃ format of the definition is the same.
• “the most normal ϕ-worlds” are defined by “ϕ ∧ ¬〈B−〉ϕ” in our language.

We omit the mechanics of the formal proofs for the second claim. �

This concludes our discussion of preference combined with belief. The match
seems natural, and it even extends beyond what we said here. For instance, merely
combining what we have already seen in Chapter 3 and 4, we can now describe two
kinds of preference dynamics. One comes about through changes in the plausibility
relation, triggered by hard or soft information, the other comes about through sug-
gestion – or command-style changes in the betterness relations. The DEL method-
ology applies to both cases, and the result is a very rich theory of information and
evaluation change.
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5.4 Deeper Entanglement: Merged Belief and Betterness

5.4.1 Static Logic

Still, there is something left to be desired. The entangled definitions (K bett) and
(Bbett) share a common feature, namely, an arrow (of type b) leading to a better
ϕ-world can go outside of the accessible or most plausible part of the model. The
intuition behind this phenomenon is clear and reasonable in many cases. It may well
be that there exists better worlds, which the agent does not view as epistemically
possible, or most plausible.

Nevertheless, equally intuitive to us, sometimes we do want to just look at bet-
ter alternatives inside the relevant epistemic or doxastic zone. We have just seen
such considerations in [123]. Likewise, [39] discuss the “normality sense” of ceteris
paribus preference, restricting preference relations to just the normal worlds for the
agents. In this section, we therefore make a further proposal, making the entan-
glement of preference and belief even closer by intersecting the plausibility and
betterness relations directly in the model.

Definition 5.16 (merged doxastic betterness model) A merged doxastic betterness
model is a tuple M = (S,≤,�,≤∩�, V ), with S a non-empty set of possible
worlds with doxastic and betterness relations, but also the relation ≤∩� as the
intersection of the relations “at least as good as” and “at least as plausible as”, with
V again a valuation for propositional variables.

The original language had separate modal operators B and [≤], but now we
extend it with a new modality H . The new language is defined as follows:

Definition 5.17 (merged doxastic betterness language) Take a set of propositional
variables Φ and a set of nominals Nom, with p ranging over Φ and i ∈ Nom. The
merged doxastic betterness language is given by the following rule:

ϕ := ⊥ | p | i | ¬ϕ | ϕ ∧ ψ | Bϕ | [≤]ϕ | Hϕ | Uϕ.

One possible reading of Hϕ is that “Hopefully, it is the case that ϕ”. Note that
we have also introduced nominals from hybrid logics, for technical convenience in
what follows. Let us call the above language L. In addition, following [84] and [79],
we define one more notion, for technical reasons.

Definition 5.18 (necessity form in L) Let $ be a symbol not belonging to L. We
define inductively the notions of necessity forms in L.

l := $ | ψ → l | Bl | [≤]l | Ul | Hl.

Definition 5.19 (truth conditions) Given a merged doxastic betterness model M,
and a world s ∈ S, we define M, s |� ϕ (formula ϕ is true in M at s) by induction
on the construction of ϕ. We omit the standard cases:

M, s |� i iff V (i) = {s}.
M, s |� Hϕ iff for all t with both s ≤ t and s � t , it holds that M, t |� ϕ.
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With this new language over these enriched models, we can define one more
natural notion of generic preference:

ψ �∀∃ ϕ := B(ψ → 〈H〉ϕ). (B H )6

Intuitively, this says that:

For any most plausible ψ-world in the model, there exists a world which is as good as this
world, and at the same time, as plausible as this world, where ϕ is true.

Obviously, we can now talk about betterness relations restricted to the plausible part
of the model. In terms of Fig. 5.5, only arrows of “type a” remain.

Now let us quickly look at the expressive power of the modal language with the
new “hopefully” operator H . The following example shows that it is more expres-
sive than the language with separate operators B and [≤]. Can the notion of pref-
erence in (B H ) be defined in the original language with (iterated) modal operators
B and [≤] only? As we know from general modal logic, intersection modalities are
not invariant under bisimulation (cf. [50]). Indeed, here too, the answer is negative:

Fact 5.20 B(ψ → 〈H〉ϕ) (∗) is not definable in the standard bimodal language
with modal operators B and [≤].

Proof Suppose (∗)were definable. Then there would be a formula ϕ in the language
without H such that ϕ ↔ (∗) holds in every model. Now consider the two models
depicted in Fig. 5.6.

Fig. 5.6 Bisimilar models
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The betterness relation ≤ is pictured by solid lines with arrows, and the plau-
sibility relation � by dashed lines with arrows. The evaluation of the proposition
letters p and q can be read off from the picture. It is easy to see that these two
models are bisimilar with respect to both betterness and relative plausibility, with
the bisimulation indicated by the dotted lines.

Also, we have M, w1 |� B(p → 〈H〉q), since the p-world w1 can see a
world w2 which is both better and plausible where q is true. Then we should get
M, w1 |� ϕ, since ϕ ↔ (∗). Because M and M′ are bisimilar, we would then have

6 Actually, this same move would apply to Definition (K bett) as well. Requiring that the better
worlds stay inside the accessible worlds, we would have:

ψ �∀∃ ϕ := K (ψ → 〈∼ ∩ ≤〉ϕ) (K bett ′).

This means that we keep only the a-arrows in Fig. 5.2.
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M′, v1 |� ϕ. So we should also have M′, v1 |� B(p → 〈H〉q). But instead, we have
M′, v1 � B(p → 〈H〉q), because the p-world v1 can see v2 which is plausible but
not better, and v3 which is better but not plausible. So there is no world which is
both better and plausible, while satisfying q. This is a contradiction. �

This argument shows that the new language indeed has richer expressive power.
Here is an axiomatization for merged doxastic betterness models:

Theorem 5.21 The merged doxastic betterness logic is completely axiomatized by
the usual propositional tautologies, S5-principles for U, KD45-principles for B, S4-
principles for [≤] and the following principles and inference rules:

(1) H(ϕ → ψ)→ (Hϕ → Hψ)
(2) Hϕ → H Hϕ
(3) H(Hϕ → ϕ)

(4) E(i ∧ ϕ)→ U (i → ϕ)

(5) Ei
(6) Uϕ → Bϕ
(7) Uϕ → [≤]ϕ
(8) Uϕ → Hϕ
(9) Bϕ → Hϕ

(10) [≤]ϕ → Hϕ
(11) (〈 B〉i ∧ 〈≤〉i → 〈 H〉 i)∧ (〈 H〉 i → 〈 B〉i∧ 〈≤〉i)
(12) Modus ponens: If � ϕ and � ϕ → ψ , then � ψ .
(13) Generalization for the operator B, U, [≤] and H
(14) If � l(¬ i)(i ∈ Nom), then � l(⊥), where l is in necessity form.

Proof The proof can be found in the recent note [204]. �

Here ends our study of static logics of informationally entangled preferences.

5.4.2 Dynamic Logic

But now we have a challenge. For the first time, we have significantly extended
our modal base language. Will the dynamic methodology of this book survive this
generalization?

Let us now move to dynamic events of preference change, and consider changes
to the merged relations. To simplify things, we only look at our three characteristic
actions: radical revision ⇑ϕ that changes plausibility relations, suggestion �ϕ that
changes betterness relations, and standard public announcement !ϕ that changes the
domain of worlds. As it happens, DEL reduction axioms still work:

Theorem 5.22 The following equivalences are valid:

(1) 〈�ϕ〉〈H〉ψ ↔ (ϕ ∧ 〈H〉(ϕ ∧ 〈�ϕ〉ψ)) ∨ (¬ϕ ∧ 〈H〉〈�ϕ〉ψ).
(2) 〈⇑ϕ〉〈H〉ψ ↔ (ϕ ∧ 〈H〉(ϕ ∧ 〈⇑ϕ〉ψ)) ∨ (¬ϕ ∧ 〈H〉(¬ϕ ∧ 〈⇑ϕ〉ψ)) ∨

(¬ϕ ∧ 〈≤〉(ϕ ∧ 〈⇑ϕ〉ψ)).
(3) 〈!ϕ〉〈H〉ψ ↔ ϕ ∧ 〈H〉〈!ϕ〉ψ.
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Proof We only explain the most interesting Axiom 2 as an illustration. Assume that
〈⇑ϕ〉〈H〉ϕ. Recall that radical revision 〈⇑ϕ〉 only changes the plausibility relation,
leaving the betterness relation intact. The new plausibility relation can be written as
follows, as we have seen in Chapter 4:

(?ϕ; R; ?ϕ) ∪ (?¬ϕ; R; ?¬ϕ) ∪ (?¬ϕ;�; ?ϕ)

Seen from the initial model, we can therefore distinguish three cases, and these
are just the three disjuncts displayed on the right-hand side. Note that for the last one
we only need to insert the old betterness relation 〈≤〉, since the plausibility relation
(?¬ϕ;�; ?ϕ) is new. �

In particular, what we see here is that intersection modalities, while asking for
some special devices like nominals in the static logic, do not pose any new difficul-
ties in terms of dynamic reduction axioms.7

By adding the above axioms to the complete static logic introduced in the previ-
ous section, we obtain a complete dynamic logic for entangled preference changes.
Thus, the DEL-methodology of this book also works in this extended setting.

5.5 Discussion and Conclusion

Generic preferences revisited In this chapter, we have proposed several new def-
initions for the notion of generic preference. They involve either knowledge plus
betterness, or belief plus betterness, or new merges like “hope”. Dynamic changes to
plausibility relation and betterness relation can still be dealt with in DEL approach,
yielding reduction axioms for the new entangled operators. Following our calcu-
lation of generic preferences in the pure modal betterness language, calculating
reduction axioms for the new mixed cases is a routine exercise.

Other forms of entanglement Of course, there is a long tradition of combining
preference and beliefs in decision theory ([113, 166]). There most models rely
on a numerical representation where utility and uncertainty are commensurate. For
instance, an agent may not know the outcomes of her actions, but will use a probabil-
ity distribution over outcomes to compute an expected value of an action. The latter
notion, explained in any textbook on probability and utility, deeply entangles the
agents’ betterness relations and her beliefs about possible outcomes. By contrast,
our logical approach is qualitative, though the reader will see a more quantitative
version of our ideas in DEL style in Chapter 6 below. We leave a thorough compar-
ison of our work with probabilistic systems for another occasion.8

7 To be fully precise, we would also have to show how the various operations considered here deal
with the nominals extending our static language. We refer the reader to [204] for technical details
of this particular topic.
8 Dynamic epistemic methods are certainly compatible with probabilistic approaches. See [17, 37,
165] for some recent probabilistic versions of DEL.
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Conclusion This chapter has investigated the issue of entanglement, i.e., various
ways of combining preference with epistemic knowledge or doxastic beliefs. The
first model proposed was a simple juxtaposition of betterness logic and epistemic
logic. We studied both its static and its dynamic logic. Link-cutting, as a less drastic
mechanism of information update for this new setting, was extensively discussed.
Then we applied our methods to the case of betterness and beliefs, showing first how
belief statics and dynamics can be fruitfully developed in analogy with our prefer-
ence logics. Then we showed how a similar approach worked for belief-entangled
preference. Next, we moved one step further, proposing a new entangled preference
modality intersecting betterness and plausibility at the level of the semantic models.
The expressive power of this new language was discussed, and then we showed that
both its static and dynamic logic still yield to the general techniques of this book.

Overall, this chapter has shown how the methods of this book can develop quite
rich systems of information and evaluation dynamics working together. After a
quantitative intermezzo on these same themes in the next chapter, we will return
to preference itself in Part IV, suggesting that we need, and can get, richer styles of
modeling than we have given so far.



Chapter 6
Intermezzo: A Quantitative Approach

6.1 Introduction

The notion of preference arises from comparisons of alternatives. To formalize such
comparisons and study them, there are two ways to go. We can represent preference
in terms of qualitative binary relations, as we did in our modeling in Chapter 3,
following a long logical tradition ([83, 100, 122] and [92]). Or we can introduce
a utility or evaluation function which will assign values to the alternatives being
compared. The latter quantitative method has been dominant in many research areas,
e.g., game theory and social choice theory (cf. [74, 113, 114] and [63]).

Of course, there is a philosophical background behind the utility approach. The
doctrine of utilitarianism saw the maximization of utility as a moral criterion for the
organization of society.1 In economics, utility is a measure of relative satisfaction,
and in this sense, preference is then considered in the context of consequentialism.

The distinction in approaches makes no difference for the importance of our
key topics so far, such as preference change. Given a measure of utility, one may
speak meaningfully of increasing or decreasing utility, and indeed, explain eco-
nomic behavior dynamically in terms of attempts to increase one’s utility.

In this chapter, we want to briefly explore how our concerns fare in a quantitative
setting. Our treatment will be brief and anecdotal, since our main aim is showing
how the qualitative methods of this book also work in principle for quantitative
settings. But there are a few things to be said at the outset, where we assume that
our readers already know some basics.

First, it is not our intention to explain everything about utility theory and eval-
uation functions. We will just use ideas and results from utility theory to better
understand preference and preference change in the context of information process-
ing. Secondly, the connection between preference and utility to keep in mind is this:

1 This position was held by famous utilitarians such as Jeremy Bentham (1748–1832) and John
Stuart Mill (1806–1876). It has even been claimed that this position is found millennia earlier in
China with Mozi.

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
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An alternative with a higher utility value is preferred to one with a lower value.2

Thirdly, assuming ordinal utilities, the magnitude of utilities has no meaning, only
their ranking. Still, we often want to model strength of preferences in many real
situations: The numbers matter, and we will explore this perspective, too.

Our eventual aim is to show how our dynamic epistemic methodology fits with
quantitative approaches. We will introduce ideas of evaluation into the DEL frame-
work and see how to model preference change then, making a junction with utility
theory.

Here is a simple quantitative scenario extending an earlier example:

Example 6.1 (buying a house, revisited) Suppose that Alice plans to buy a new apart-
ment. There are two candidate apartments d1 and d2 available, located in different
places. She has her own preference judgement based on her current knowledge. To
mark her evaluation difference, she assigns two numbers to d1 and d2, respectively.
A newspaper article that “the government is planning to build a park near d1” may
increase her value for d1. In contrast, getting to know that the crime rate is going up
in the neighborhood of d1 may decrease her value for d1.

The idea is that one starts off with initial values for the options, and keeps
scoring in accordance with the new information, adding points if the information
has a positive influence on the option, or dropping points in case it has a negative
effect. A number zero would be added when there is no effect, say, when the new
information is irrelevant. But of course, point scores could also just happen without
informational triggers, like the intrinsic betterness changes that we have studied
earlier. Both kinds of evaluation change can then trigger preference changes.

The chapter is organized as follows. An epistemic evaluation logic will be intro-
duced in Section 6.2, with an axiomatization for which we prove completeness.
In Section 6.3 we will study the dynamics of preference in this framework, using
a new mechanisms of numerical product update. A matching dynamic epistemic
evaluation logic will be presented, too. With this in place, we then discuss how
to parametrize the update mechanism to various types of agents, while still getting
reduction axioms. Section 6.4 is about the expressiveness of the evaluation language,
while the issue of preference strength is considered as well. Section 6.5 will look at
a few examples in a deontic context with a quantitative view.3 We end the chapter
with the conclusions that we draw from all this.

6.2 Epistemic Evaluation Logic

Following [176], a language of graded belief modalities has been introduced to
indicate the strength or degree of beliefs in [10]. Possible worlds in the model

2 A well-known result is that a preference relation that is complete, reflexive, transitive and con-
tinuous can be represented by a continuous utility function. In this chapter, we only consider
representable preferences.
3 We will discuss deontic applications in much greater detail in Chapter 11.
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were then ordered according to their plausibility, which is represented by numerical
devices. Here we take a similar idea for preference, and define a simpler language
with numerical evaluation atoms developed in [130], which is more workable and
perspicuous.

Definition 6.2 (epistemic evaluation language) Let a finite set of proposition vari-
ables Φ and a set of agents N be given. The epistemic evaluation language LE is
defined by the rule:

ϕ := � | p | ¬ϕ | ϕ ∧ ψ | qm
a | Kaϕ where p ∈ �, a ∈ N , and m ∈ Z.

Note that the language is an extension of epistemic language. A propositional
constant qm

a is added to the language for each agent a ∈ N and each value m ∈ Z.
The intended reading of the formula qm

a is “the agent a assigns the state where
she stands the value at most m”. In what follows, again we will try to suppress the
subscription when it is clear in context.

Definition 6.3 (epistemic evaluation models) An evaluation model for the epis-
temic evaluation language is a tuple M = (S,∼, v, V ) such that S is a non-empty
set of states, ∼ is an epistemic equivalence relation on S, v is an evaluation function
assigning each state an element from {−∞} ∪ Z ∪ {∞}4, and V is a function
assigning to each propositional variable p in Φ a subset V (p) of S.

Semantically speaking, each possible world is associated with some number,
denoting the value that the agent has towards that world. As we explained in
Section 6.1, evaluation functions induce a total ordering in an obvious way, namely,
from v(s) ≤ v(t) we can obtain s ≤ t . In this manner, we are making use of
the information about the qualitative ordering encoded in the evaluation functions.
However, we will see that the quantitative information part will play a big role
in many situations in the following sections. For instance, considering information
about the intensity of preference will lead to a new definition of bisimulation.

Definition 6.4 (truth conditions) Suppose s is a state in a model M = (S,∼, v, V ).
We can inductively define the notion of a formula ϕ being true in M at state s. Here
we omit those standard clauses and only give one for the propositional constant:

M, s 	 qm iff v(s) ≤ m, where m ∈ Z.

For the sake of comparison, we give the definition for Bmϕ in the language LA

of [10] as follows:

M, s 	 Bmϕ iff for all t ∈ S: if s ∼ t and v(t) ≤ m, then M, t 	 ϕ.5

4 In [10] the range is natural numbers up to a maximal element (Max). The values are normalized
to Max . For me the distance between the numbers seems essential, so normalization is not an
option. Similarly I like to be able to subtract unrestrictedly.
5 Let us look at the relation between LA and LE . From LA to LE , we can define a translation: a for-
mula of the form Bmϕ is translated into K (qm → ϕ). This is to say that in the language LE , we can
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Epistemic Evaluation Logic (EEL) consists of the following axioms and deriva-
tion rules:

(1) All propositional tautologies.
(2) K (ϕ → ψ)→ (Kϕ → Kψ).
(3) Kϕ → ϕ.

(4) Kϕ → K Kϕ.
(5) ¬Kϕ → K¬Kϕ.
(6) qm → qn for all m ≤ n ∈ Z.
(7) If � ϕ and � ϕ → ψ , then � ψ .
(8) If � ϕ, then � Kϕ.

Theorem 6.5 (soundness) EEL is sound over epistemic evaluation models.

Axiom 6 is essential here. According to the natural properties that Z has, we can
easily conclude that the preference is reflexive, complete (total) and transitive.

We assume the standard notion of a formal proof. In case a formula ϕ is provable
in EEL, we write �EEL ϕ.

Theorem 6.6 (completeness) EEL is complete with respect to evaluation models.

Proof The proof is standard. First we define the canonical model as follows: Mc =
(Sc,∼, v, V ) is the structure with

• Sc = {sS : S maximal EEL-consistent set}.
• ∼ = {(sS, sT ): S/K ⊆ T }. where S/K = {ϕ: Kϕ ∈ S}.
• v(sS) = min{m : qm ∈ S} (∞ if {m : qm ∈ S} is empty, −∞ if

{m : qm ∈ S} = Z).
• sS ∈ V (p) iff p ∈ S.

We need to show that

ϕ ∈ T iff Mc, sT |� ϕ.

This can be done by induction on the structure of the formula ϕ. We only consider
the case of the constant qm :

(⇒) Assume qm ∈ T . We have v(sT ) ≤ m. Then by Definition 6.4, we get
Mc, sT |� qm .

(⇐) Assume Mc, sT |� qm . We know qv(sT )∈ T and v(sT )≤ m. By axiom 6,
qv(sT ) → qm . So, we get qm ∈ T . This is to say that we have proved that

Every EEL-consistent set � of formulas is satisfied in some epistemic model.

express the same notions as [10] without introducing additional belief operators. This advantage
leads to the much simpler completeness proof we will see. It becomes even more prominent when
constructing reduction axioms for dynamics in the later sections. On the other hand, we can easily
translate LE back into LA: qm will be ¬Bm⊥, which means that LA and LE are equivalent.
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Completeness of epistemic evaluation logic now follows in the usual manner.6 �

Having set up the base language for evaluation models, we now proceed to the
dynamic superstructure that we have in mind.

6.3 Dynamic Epistemic Evaluation Logic

6.3.1 Evaluation Product Update

Before defining things formally, let us consider the example in our Section 6.1 first.

Example 6.7 Assume that in the initial model S0, agent a has the same value for s
and t where d1 would be chosen at s and d2 at t . This means there is no particular
preference for Alice, she gives 0 to both of them, pictured below (Fig. 6.1):

Fig. 6.1 Initial model S0 s

0

t

0

Afterward, the newspaper tells Alice that “the government is planning to build a park
near d1” (p). This positively affects the value of s in the model S0, but unfortunately
has no effect on t . The initial model S0 is then updated to S1 (Fig. 6.2):

Fig. 6.2 Updated model S1
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In the new model S1, clearly, a would prefer d1 over d2, as the value for s′ is now
greater than that for t ′.

The story goes on, the new information “the crime rate is going up in the neigh-
borhood of d1”(q) causes values to decrease. The resulting model is depicted in
Fig. 6.3.

Fig. 6.3 Updated model S2
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t

0

With these value changes, preference changes accordingly: As before, agent a
has no preference between d1 and d2.

6 The main reason why this argument can remain so simple, compared to earlier numerical systems,
is our use of propositional constants for values of worlds.
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This example shows how incoming information changes values of the states con-
stantly. To model a phenomenon of this sort, we define a new sort of “event models”
in the DEL style (cf. [14, 65]), that describe the change to take place.

Definition 6.8 (evaluation event model) A evaluation event model is a tuple E =
(E , ∼, v, PRE) such that E is a non-empty set of events, ∼ is a binary epistemic
relation on E , v is an evaluation function assigning each action an element from Z,
PRE is a function from E to the set of all epistemic propositions.

Based on the values they assign to events, the evaluation functions v indicate how
agents (are to) evaluate events. Note that this is a major change as compared with
standard uses of evaluation: We do not just evaluate static states of affairs, but we
can also evaluate actions or events!7

Definition 6.9 (evaluation product update) Let an evaluation model M =
(S,∼,v, V ) and an evaluation event model E = (E,∼, v,PRE) be given. The
evaluation product update model is then defined to be the model M ⊗ E =
(S ⊗ E,∼′,v′, V ′) such that

• S ⊗ E = {(s, e) ∈ S × E}.
• (s, e) ∼′ (t, f) iff both s ∼ t and e ∼ f .
• v′(s, e) = v(s)+ v(e) (Addition rule).
• V ′(p) = {(s, e) ∈ S ⊗ E : s ∈ V (p)}.

Note that we keep all world/event pairs (s, e) represented in the new model,
as even the non-realized options may be ones that we still have regrets about. For
the evaluation update clause, we have simply taken the sum of the values for the
previous state and for the event.8 This “Addition Rule” is best understood by looking
at Example 6.7 again, though the evaluation event model there is quite simple. In
general, an evaluation event model can be much more complex, and also, the update
process can go on for a very long time. What remains constant at each stage is that
agents prefer things with a higher score.

However, several issues remain to be discussed here. First of all, the sources of
information may not all be equally reliable. In order to propose a realistic evaluation
update rule, the reliability of information must be taken into account. A related
issue concerns the different forces of information. In multi-agent settings, the same
information may have a different force for different agents. For instance, agent a
may take a piece of information seriously, while agent b does not do so. These two
aspects are parameterized in the following new update rule.

Definition 6.10 (parametrized update rule) Let μ(e) be a reliability function, and
λ(e) a relative force function. The domains of these two functions are the set of

7 Actually, there are two different plausible interpretations here. One either thinks of the event as
a command to change one’s evaluation of some current state, or as something which itself has a
value that leads to a prescribed value change in the world where the event takes place.
8 Other numerical rules are possible, but most of our later points would apply then as well.
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events, and the ranges of these functions are N.9 Given the value for the previous
state s and event e, the new value for state (s, e) is defined by the following equation:

v′(s, e) = v(s)+ v(e) · μ(e) · λ(e).
Returning to the first step of Example 6.7, suppose that agent a only half trusts

what the newspaper said, namely μ(e) = 5. Moreover, the relative force of the
park building information is 4, i.e. λ(e) = 4, which means that she thinks it rather
important. Then the value of s′ in the model S1 would be calculated as

v′(s, e) = 0 + 1 · 5 · 4 = 20

With the parametrized rule, we can understand better how information is being
processed. But things need not stop here. One could propose other evaluation update
rules to interpret more complex situations. For example, the agent may give more
weight to the previous state (behave conservatively), which seems to call for a
parameter associated with the value for s in the above rule, as was proposed for
belief revision of diverse agents in [130] and [132]. Or in some situations, one needs
to consider dependencies between information that comes later and that comes ear-
lier (cf. [37]). We will not pursue these issues here.

6.3.2 Dynamic Epistemic Evaluation Logic

We are now ready to define a logic for dynamic evaluation update mechanisms. In
this section we confine ourselves to the Addition Rule only.

Definition 6.11 (dynamic epistemic evaluation language) Let a set of proposi-
tional variables Φ, and a set of events E be given. The dynamic epistemic language
is defined by the rule

ϕ := � | p | ¬ϕ | ϕ ∧ ψ | qm | Kϕ | [e]ϕ where p ∈ Φ, e ∈ E ,
and m ∈ Z.

We will not include the usual action operations like composition, choice, or iter-
ation that form composite action scenarios. These do not add anything essentially
related to our numerical setting. What is typical for the latter setting are formulas of
the form [e]qm , for which we will find reduction axioms as follows:

Theorem 6.12 (soundness) Dynamic epistemic evaluation logic (DEEL) consists of
the following formulas, and it is sound w.r.t. evaluation product update models:

(1) [e]p ↔ p.
(2) [e]¬ϕ ↔ ¬[e]ϕ.
(3) [e](ϕ ∧ ψ)↔ [e]ϕ ∧ [e]ψ .
(4) [e]Kϕ ↔ PRE(e)→ ∧

f ∈E {K [ f ]ϕ : e ∼ f }.

9 In practice, one will normally choose a small natural number, say, between 0 and 10, to denote
the reliability or the relative force.
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(5) [e]qm ↔ qm−v(e).

Proof To prove the validity of the above axioms, we consider two models: (M, s)
and (M ⊗ E, s) before and after the update. Axiom (1) says that the update will
not change the objective valuation of atomic propositions. And Axioms (2) and (3)
are just Boolean operations, easy to see. Axiom (4) was explained in Chapter 2,
what is different here is that the general event model was considered. In Axiom
(5), the formula [e]qm says that, in M ⊗ E , the agent a assign the value at most m
to the world s where she stands. According to the Addition rule, the value of s in
(M ⊗ E, s) is the sum of the value for s in M and that for e in E . Thus the right
value for the world s in M is at most m − v(e). This is what Axiom (5) says. �

Theorem 6.13 (completeness) The logic DEEL is in fact axiomatized completely
by the above reduction axioms.

Proof We have seen the soundness of the above reduction axioms. Note that they
are all equivalences, which makes them clearly sufficient for eventually turning
every formula from the dynamic language into a static one. Then we can use the
completeness theorem for our static evaluation language in Section 6.2. �

One final issue remains to be discussed: Do other update rules define a complete
logic, and in particular, the parametrized rule? There is no general results here.
But the parametrized rule does suggest the following reduction axiom. Although
it seems a bit clumsy, its validity can be proved in a similar way to Axiom (5).

[e]qm ↔ PRE(e)→ qm−v(e)·μ(e)·λ(e)

However, once we go further, and introduce weights for the previous state, this
job becomes harder. If the update rule is simply algebraically expressible, we can
still get a complete logic, though clearly a simple subtraction will no longer work.

6.4 Excursion: Bisimulation for Evaluation Languages

Our numerical languages show many further analogies with the modal framework
of this book. To get a good understanding of the expressiveness of the evaluation
language presented in Section 6.2 we look at its behaviour under bisimulation, a
fundamental notion in modal logics. First we formulate a standard notion of bisim-
ulation for evaluation models10:

Definition 6.14 (evaluation bisimulation) Let M = (S, v, V ) and M′ =
(S′, v′, V ′) be two evaluation models. A non-empty binary relation Z ⊆ S × S′
is called an evaluation bisimulation between M and M′ if the following conditions
are satisfied:

10 The conditions for the epistemic relations ∼ are omitted, as they are routine.
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(1) If s Zs′ then s and s′ satisfy the same propositional variables.
(2) If s Zs′ and v(s) ≤ v(t) (or s 
 t), then there exists t ′ in M′ such that t Zt ′ and

v′(s′) ≤ v′(t ′) (or s′ 
 t ′) (the forth condition).
(3) If s Zs′ and v′(s′) ≤ v′(t ′) (or s′ 
 t ′), then there exists t in M such that t Zt ′

and v(s) ≤ v(t) (or s 
 t) (the back condition).

While this notion looks plausible, we do encounter a phenomenon unlike stan-
dard DEL. In a dynamic setting, this notion does not quite suffice!

Example 6.15 (numerically bisimilar models) From the viewpoint of the above eval-
uation bisimulation, it makes sense to identify the two models M and M′ below,
where we mark worlds by their values. After all, the pure preference pattern is the
same in both. This would be in accordance with ordinal utility theory (Fig. 6.4).

Fig. 6.4 Models M and M′
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But our intuition shows that the values make a difference. Consider the event
model E which updates all ϕ-worlds (s in the pictures) with 1 each time it is applied.
Applying E once to the model on the left keeps the preference intact, but on the
right, it voids it. All this seems to suggest that we need a new notion of bisimulation
definition for evaluation models to express the strength of preferences. Our proposal
uses the following notion:

Definition 6.16 (distance) The distance between two possible states s and t in an
evaluation model is defined as D(s, t) =| v(s)− v(t) | .

In Example 6.15 the distance between s and t is 2 in the model on the left, but it
is 1 on the right. Now we can define a more sensitive notion:

Definition 6.17 (distance bisimulation) Let M = (S, v, V ) and M′ = (S′, v′, V ′)
be two evaluation models. A non-empty binary relation Z ⊆ S×S′ is called distance
bisimulation between M and M′ if the following conditions are satisfied:

(1) If s Zs′ then s and s′ satisfy the same propositional variables.
(2) If s Zs′, s ≤ t (t ≤ s) and D(s, t) = k, then there exists t ′ in M′ such that t Zt ′,

s′ ≤ t ′(t ′ ≤ s′) and D(s′, t ′) = k (the forth condition).
(3) If s Zs′, s′ ≤ t ′(t ′ ≤ s′) and D(s′, t ′) = k, then there exists t in M such that

t Zt ′, s ≤ t (t ≤ s) and D(s, t) = k (the back condition).

As usual, we say two evaluation models are bisimilar when there is some evalua-
tion bisimilation linking two states in the two models. Intuitively, if the same efforts
are made to get from one state to another in each model, then the two models are
bisimilar.

This means that with the notion of comparative distance, we can say things like
“d1 is preferable over d2 more than d1 is preferable over d3”. This simply means
D(s1, s2) > D(s1, s3) in the model, where d1, d2 and d3 are chosen in s1, s2 and
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s3, respectively. This metric quality is something that most languages of qualitative
preference are not able to express.

We will not follow this line of investigation here, but it seems quite interesting
to relate our system to the modal languages for geometry studied in [13], or to the
numerical similarity relations in [194] and [99].

6.5 Excursion: Numerical Measures in Deontics

We now continue with a further use of our numerical systems. While we will study
deontics at greater length in Chapter 11, it also appeals to us here for its concrete
interpretation of the ideas introduced so far. Our aim is to show how, in this area,
the logical issues in this chapter correspond to questions of independent interest.

Deontic logic: statics and dynamics Deontic logic (cf. [8]) started as the study of
assertions of obligation like “it ought to be the case that ϕ” (written Oϕ) emanating
from some moral authority. The underlying intuition of interpreting such sentences
is the following: It ought to be the case that ϕ if ϕ is true in all best possible worlds
as seen from the current one. This naturally suggests a deontic betterness ordering
among worlds, linking deontics to preference. We will see in a moment how this
motivates a richer quantitative version as well.

Likewise, we can think of the deontic setting dynamically: Obligations may
change due to incoming new information, or they can change through moral com-
mands, treated as actions themselves. There is a whole tradition along these lines,
viewing deontic actions as programs of some sort, including [141, 142, 185, 203],
and others.

In particular, the recent paper [200] takes the dynamic epistemic paradigm to
obligation changes brought about by acts of commanding in a multi-agent context.
Here is the key reduction axiom proposed in [199]:

[!aϕ]Oaψ ↔ Oa(ϕ → [!aϕ]ψ),
where the intended interpretation of Oaϕ is “it is obligatory for the agent a (∈ N )
that ϕ”, and [!aϕ] is intended to represent the action of commanding an agent a to
see to it that ϕ.

Yamada’s system can be translated into the qualitative relation-changing version
of preference update presented in Chapter 4 (cf. [42]). But here, we are after an
enrichment that makes a lot of sense in a setting of deontic actions.

Force of commands and parametrized numerical update Commands often come
with a weight, and these weights may differ for various reasons. Either the strength
of the moral authority is greater or larger, but also: Maybe the authority herself has
a range of imperative strength, from mild suggestions to full-blown orders. Here is
where our earlier evaluation event models apply. We can now indicate the “weight”
of a command in terms of numerical points, as pictured in the following event model
(Fig. 6.5):
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Fig. 6.5 Commands with
weight
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where command e comes with more strength than f does.
The earlier update mechanism for evaluation update now applies to obligation

change as well, but with a more refined view of the effects. In particular, it brings
new insights into a difficulty that has often been discussed: what to do with conflict-
ing commands. Let us look at a variation of the key example in [199]:

Example 6.18 (Conflicts among authorities) You are reading an article in the office
that you share with your two bosses and a few other colleagues. It is a hot summer
noon, the temperature is above 30 degree Celsius. You can open the window, turn on
the air conditioner, or you can concentrate on your reading and ignore the heat. Then
your boss A commands you to open the window, but boss B immediately commands
you not to do that. What effects do their commands have on the current situation?
Which one do you obey?

Reference [199] handles this problem through a theorem of the form

[!a(ϕ ∧ ¬ϕ)]Oaψ (“Dead End”)

It says that contradictory commands lead to an obligatory dead end, an impasse in
the agent’s situation. But this implicitly rules one important aspect of the situation,
i.e. the hierarchy of authorities. Your two bosses may well stand at different levels
of authority, and you may refuse to open the window if boss B is in a higher position
than A. This shows that in a deontic setting, managing conflict is much more than
managing consistency. To model the possible contradictory commands carried by
different authorities, our current system provides at least one new way-out. It is
through the following rephrased update rule:

Definition 6.19 (parametrized deontic update rule) Consider any DEL-style
event model. Let η(e) be an “authority function”, and λ(e) a “relative force func-
tion”. The domains of both these two functions are the set of events in the model,
and the ranges are the natural numbers N. Given the value for the previous state s
and the new event e, the new value for state (s, e) is defined as follows:

v′a(s, e) = va(s)+ va(e) · η(e) · λ(e).11

By introducing a hierarchy of authorities into the above update rule, we actually
deal with the problem of relative authority and conflicting commands within the
logic. One promising way to take this issue further would be an explicit hierarchy
of sources, and this is exactly what we will do in the priority-based analysis of
preference in Chapters 7 through 9.12

11 This also makes immediate sense in a multi-agent context, employing relative forces. One agent
a may take the boss’s commands seriously, whereas agent b may not.
12 Another relevant approach are the DEL models for trust developed in [109].
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Numerical default reasoning In line with these deontic examples, numerical
dynamics also makes sense for a topic that we already discussed in a qualitative
setting in Chapter 4, viz. default reasoning. Here, too, agents receive new informa-
tion which does not necessarily eliminate worlds, but changes their evaluations of
these. A typical example is the instruction “Normally, ϕ” in [192], which changes
the preference ordering between worlds so as to give the ϕ worlds a higher position.
While we will revisit the qualitative aspects of this connection at great length toward
the end of Chapter 11, here we just make a point about a numerical dimension.

To model default-style evaluation update with a “normally” statement, we might
take an event model E including two events “see ϕ”, “see ¬ϕ” with different values,
say 1 and 0. Executing the product update with E then leads to a new model where
the ϕ-worlds have each gained one point, upgrading their position in the agent’s
pattern of plausibilities.

This rule is different from our earlier upgrade rules in that it does not make all
ϕ-worlds automatically better than all ¬ϕ-worlds. It all depends on their previous
scores.13 In this way, the earlier dynamic evaluation language becomes a sort of
refined numerical default language, where the expression [“see ϕ”] ψ plays the role
of a default conditional “if ϕ then ψ”. A complete evaluation default logic can be
deduced directly from our general logic DEEL. But DEEL seems to be much richer
than standard default logics, since by varying event values in E , one can describe the
behavior of a whole family of different default conditionals. It all depends on which
numerical strengths an agent wishes to assign to the antecedents.14

6.6 Conclusion

We have presented a quantitative semantics for preference in terms of evaluation
models. A new language with propositional value-constants was proposed, which
turned out to be both concise and expressive. Moreover, we saw how this quanti-
tative perspective suggests a more refined way of dealing with preference changes
when processing new information. For this purpose, we generalized the standard
dynamic-epistemic mechanism of product update, proposing a new Addition Rule,
later also in a parametrized version, to model subtleties of value change. A match-
ing complete dynamic epistemic evaluation logic was presented. Next, we looked
at forms of bisimulation for the evaluation language, and found how these can be
used to express strength of preferences. We then applied these ideas in deontic set-
tings, proposing a solution to the well-known problem of contradictory obligations
through conflicting commands.

13 This is closer to Veltman’s intuition that worlds are ordered by how many stated regularities
they have satisfied in a longer discourse.
14 As for a comparison with the dynamic semantics for defaults in [192], I suspect that the latter
can be embedded into DEEL, but not vice versa.
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This chapter is just a first step towards a full-scale quantitative study of prefer-
ence and preference change. But we hope that, even at this stage, the reader will
have seen how the qualitative paradigm of this book can be taken further than she
may have thought.

This chapter also ends our studies on modal betterness models of preference.
From the next chapter onward, we will focus on reasons for preference, leading to
richer priority-based structures and their static and dynamic logics.



Part IV
Preference from Priorities



Chapter 7
Preference from Priorities: Static Logic

In this chapter, we will change the atmosphere of our topics and our logical methods
a bit: Worlds will make place for objects, modal logic for first-order logic, and there
will be differences in style as well. Eventually, however, all will fit back into one
uniform paradigm for this book.

7.1 Introduction

In his pioneering book discussed in Chapter 1, von Wright distinguished three types
of preference according to the objects that we are comparing: (i) (the use of) one
instrument is preferred to (the use of) another instrument, (ii) one way of doing a
thing is preferred to another way of doing the same thing, or (iii) one state of affairs
is preferred to another state of affairs ([197] p. 12). Let us keep this distinction for
the moment, though this is not exhaustive, and different types of preference can
often be translated to each other.

If we consider the preference models used in Part III as mainly concerning states
of affairs, this chapter will add one more type: preference between objects. Com-
paring objects naturally leads us to think of properties those objects have, and the
reasons for our preferences. Thus, conceptually, the approach taken in this part is
different from that of the previous one. Let us immediately single out its distinctive
characteristics. Most previous work has taken preference to be a primitive notion
of betterness between worlds, without considering how it comes into being. We
take a different angle here and explore both preference and its origin. We think that
preference can often be reasonably derived from a more basic source, which we
will call a priority base. In this manner we get two levels: the priority base, and the
preference among objects derived from it. This richer perspective will shed light on
the reasoning underlying preference, so that we are able to discuss why we prefer
one thing over another. There are many ways to get preference from a priority base:
A good overview can be found in [62]. In what follows, we will adopt one inspired
by linguistic optimality theory.

When preference is employed to compare alternatives, one requirement we
impose is that we consider only mutually exclusive alternatives. Objects are, of
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course, congenitally mutually exclusive. Although the priority base approach is
particularly well suited to compare preference between objects, it can be applied
to the comparison of other types of alternatives as well. In the next chapter, we will
show how to apply the priority base approach to propositions.

When comparing objects, the kind of situation to be thought of is again our run-
ning example of buying a house:

Example 7.1 (buying a house) Alice is going to buy a house. For her, there are sev-
eral things to consider: the cost, the quality and the neighborhood, strictly in that
order. All these criteria are clear-cut for her. For instance, the cost is good if it is
inside her budget, otherwise it is bad. Her decision is then determined by the fact
whether the alternatives have the desirable properties, and also by the given order of
importance for the properties.

In other words, Alice’s preference regarding houses is derived from the priority
order of the properties that she considers. This chapter aims at developing a logic to
model such situations.

There are several points to be stressed before we start, in order to avoid misunder-
standings. First, our intuition of a priority base is related to earlier ideas on graded
semantics, in particular, the spheres semantics of [127] for conditionals. We take
a more syntactical approach in this chapter, but that is largely a question of taste.1

Secondly, we will mostly consider a linearly ordered priority base. This is simple,
giving us a quasi-linear order of preference among objects. But our approach can
be adapted to the more general partially ordered case, as we will indicate at the end
of the chapter. Indeed, eventually, that is the general framework we will advocate,
for instance, in Chapter 10. Finally, although the two-level perspective may look
unfamiliar, it results on the preference side in logics that are rather like ordinary
propositional modal logics. The bridge between the two levels is then given by
results that show that any model of these modal logics can be seen as having been
constructed from a priority base. These representation theorems provide a bridge to
the usual purely modal completeness results.

The chapter is structured as follows. In Section 7.2, we start with a simple lan-
guage to study the rigid case in which the priorities lead to a clear and unambiguous
preference ordering. In addition, we show that the priority sequence approach is
equivalent to Lewis’ sphere semantics. In Section 7.3 we review some basics about
ordering. Next, in Section 7.4 a complete preference logic is proposed and a proof
is presented of a representation theorem for the simple language. In Section 7.5, we
discuss how one can generalize our approach from linear orders to partially ordered
priority bases, and what comes last are a few conclusions.

1 In Chapter 10, we will discuss cases where the syntactic view is really richer.
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7.2 From Priorities to Preference

7.2.1 Priority-Based Preference

To discuss preference over objects, we use a first-order logic with constants
d0, d1 . . . ; variables x0, x1, . . . ; and predicates P, Q, P0, P1, . . . . In practice, we
are thinking of finite domains, monadic predicates, simple formulas, usually quan-
tifier free or even variable free.

Given a priority base, there are various ways to get preference. The definition
below is directly inspired by optimality theory. In optimality theory a set of condi-
tions is applied to the alternatives generated by the grammatical or phonological the-
ory, to produce an optimal solution. It is by no means sure that the optimal solution
satisfies all the conditions. There may be no such alternative. The conditions, called
constraints, are strictly ordered according to their importance, and the alternative
that satisfies the earlier conditions best (in a way described more precisely below) is
considered to be the optimal one. This way of choosing the optimal alternative nat-
urally induces a preference ordering among all the alternatives. We are interested in
formally studying the way the constraints induce the preference ordering among the
alternatives. The attitude in our investigations is somewhat differently directed than
in optimality theory.2 To take a neutral stance we use the words priority sequence
instead of constraint sequence.

Definition 7.2 (priority sequence) A priority sequence is a finite ordered sequence
of formulas (priorities) written as follows:

C1 � C2 · · · � Cn (n ∈ N),

where each of Cm (1 ≤ m ≤ n) is a formula from the language, and there is exactly
one free variable x , which is a common one to each Cm .

We will use symbols like C to denote priority sequences. The priority sequence
is linearly ordered. It is to be read in such a way that the earlier priorities count
strictly heavier than the later ones, for example, C1 ∧¬C2 ∧· · ·∧¬Cm is preferable
over ¬C1 ∧ C2 ∧ · · · ∧ Cm and C1 ∧ C2 ∧ C3 ∧ ¬C4 ∧ ¬C5 is preferable over
C1 ∧ C2 ∧ ¬C3 ∧ C4 ∧ C5. A difference with optimality theory is that we look
at satisfaction of the priorities whereas in optimality theory infractions of the con-
straints are stressed. This is more a psychological than a formal difference. However,
optimality theory knows multiple infractions of the constraints and then counts the
number of these infractions. We do not obtain this with our simple objects, but we
think that possibility can be achieved by considering composite objects, like strings.

2 Note that in optimality theory the optimal alternative is chosen unconsciously; we are thinking
mostly of applications where conscious choices are made. Also, in optimality theory the application
of the constraints to the alternatives lead to a clear and unambiguous result: either the constraint
clearly is true of the alternative or it is not, and that is something that is not sensitive to change. We
will loosen this condition and consider issues that arise when changes do occur.
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Definition 7.3 (preference) Given a priority sequence of length n, two objects x
and y, Pref(x, y) is defined as follows:

Pref1(x, y) := C1(x) ∧ ¬C1(y),
Prefk+1(x, y) := Prefk(x, y) ∨ (Eqk(x, y) ∧ Ck+1(x) ∧ ¬Ck+1(y)), k < n,
Pref(x, y) := Prefn(x, y),3

where the auxiliary binary predicate Eqk(x, y) stands for (C1(x)↔ C1(y))∧ · · · ∧
(Ck(x)↔ Ck(y)).4 In the following we will write Pref for the non-strict version of
preference.

In Example 7.1, Alice has the following priority sequence:

C(x)� Q(x)� N (x),

where C(x), Q(x) and N (x) are intended to mean “x has low cost”, “x is of good
quality” and “x has a nice neighborhood”, respectively. Consider two houses d1
and d2 with the following properties: C(d1),C(d2),¬Q(d1),¬Q(d2), N (d1) and
¬N (d2). According to the definition, Alice prefers d1 over d2, i.e., Pref(d1, d2).

The method introduced in the above easily applies when the priorities become
graded. Take the Example 7.1, if Alice is more particular, she may split the cost
C into C1 very low cost, C2 low cost, C3 medium cost, similarly for the other
priorities. This is very natural in real life. The original priority sequence C(x) �
Q(x)� N (x) may change into

C1(x)� C2(x)� Q1(x)� C3(x)� Q2(x)� N 1(x)� . . . .

Preference derived from such a priority sequence gets refined, we would have a
better grasp on the situation we are in.

7.2.2 Syntactic Versus Semantic Views

As we mentioned at the beginning, we have chosen a syntactic approach expressing
priorities by formulas. If we switch to a semantic point of view, the priority sequence
translates into pointing out a sequence of n sets in the model. The elements of the
model will be objects rather than worlds as is usual in this kind of study. But one
should see this really as an insignificant difference. If one prefers, one may for
instance in Example 7.1 replace house d by the situation in which Alice has bought
the house d.

When one points out sets in a model, Lewis’ sphere semantics ([127] pp. 98–99)
comes to mind immediately. The n sets in the model obtained from the priority base
are in principle unrelated. In the sphere semantics the sets which are pointed out

3 Unlike in Chapter 8 belief does not enter into this definition. This means that Pref(x, y) can be
read as x is superior to y, or under complete information x is preferable over y.
4 This way of deriving an ordering from a priority sequence is the “leximin ordering” of [62].
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are linearly ordered by inclusion. To compare with the priority base we switch to
a syntactical variant of sphere semantics, a sequence of formulas G1, . . . ,Gm such
that Gi (x) implies G j (x) if i ≤ j . These formulas express the preferability in a
more direct way, G1(x) is the most preferable, Gm(x) the least. In what follows,
we will show that the two approaches are equivalent in the sense that they can be
translated into each other.

Theorem 7.4 A priority sequence C1 � C2 · · · � Cm gives rise to a G-sequence
of length 2m. In the other direction a priority sequence can be obtained from a
G-sequence logarithmic in the length of the G-sequence.

Proof Let us just look at the case that m = 3. Assuming that we have the priority
sequence C1 � C2 � C3, the preference of objects is decided by where their
properties occur in the following list:

R1 : C1 ∧ C2 ∧ C3;
R2 : C1 ∧ C2 ∧ ¬C3;
R3 : C1 ∧ ¬C2 ∧ C3;
R4 : C1 ∧ ¬C2 ∧ ¬C3;
R5 : ¬C1 ∧ C2 ∧ C3;
R6 : ¬C1 ∧ C2 ∧ ¬C3;
R7 : ¬C1 ∧ ¬C2 ∧ C3;
R8 : ¬C1 ∧ ¬C2 ∧ ¬C3.

The Gi s are constructed as disjunctions of members of this list. In their most
simple form, they can be stated as follows:

G1 : R1;
G2 : R1 ∨ R2;
...

G8 : R1 ∨ R2 · · · ∨ R8.

On the other hand, given a Gi -sequence, we can define Ci in the following:

C1 = R1 ∨ R2 ∨ R3 ∨ R4;
C2 = R1 ∨ R2 ∨ R5 ∨ R6;
C3 = R1 ∨ R3 ∨ R5 ∨ R7.

And again this can be simply read off from a picture of the G-spheres. The rela-
tionship between Ci , Ri , and Gi can be seen from the Fig. 7.1. �

Remark 7.5 In applying our method to such spheres, the definition of Pref(x, y)
comes out to be ∀i(y ∈ Gi → x ∈ Gi ). The whole discussion implies of course
that our method can be applied to spheres as well as to any other approach which
can be reduced to spheres.

Remark 7.6 As we pointed out at the beginning, one can define preference from a
priority sequence C in various different ways, all of which we can handle. Here is
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Fig. 7.1 Ci , Ri , and Gi

one of these ways, called best-out ordering in [62], as an illustration. We define the
preference as follows:

Pref(x, y) iff ∃C j ∈ C(∀Ci � C j ((Ci (x) ∧ Ci (y)) ∧ (C j (x) ∧ ¬C j (y)))).

In this case, we only continue along the priority sequence as long as we receive
positive information. Returning to Example 7.1, taking this option means that we
only get the conclusions Pref(d1, d2) and Pref(d2, d1): d1 and d2 are equally prefer-
able, since after observing that ¬Q(d1),¬Q(d2), Alice won’t consider the factor N
at all.

7.3 Order: Some Basics

In this section we will just run through the types of order that we will use in the
current context. A relation < is a linear order if < is irreflexive, transitive and
asymmetric, and satisfies connectedness:

x < y ∨ x = y ∨ y < x

More precisely, < is called a strict linear order. A non-strict linear order ≤ is a
reflexive, transitive, antisymmetric and connected relation. It is for various reasons
useful to introduce non-strict variants of orderings as well.

Mathematically, strict and non-strict linear orders translate into each other:

(1) x < y ↔ x ≤ y ∧ x  = y, or
(2) x < y ↔ x ≤ y ∧ ¬(y ≤ x),
(3) x ≤ y ↔ x < y ∨ x = y, or
(4) x ≤ y ↔ x < y ∨ (¬(x < y) ∧ ¬(y < x)).

Optimality theory only considers linearly ordered constraints. These will be seen
to lead to a quasi-linear order of preferences, i.e. a relation ≤ that satisfies all the
requirements of a non-strict linear order but antisymmetry. A quasi-linear ordering
contains clusters of elements that are “equally large”. Such elements are ≤ each
other. Most naturally one would take for the strict variant < an irreflexive, transi-
tive, connected relation. If one does that, strict and non-strict orderings can still be
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translated into each other (only by using alternatives (2) and (4) in the above though,
not (1) and (3)). However, Pref is normally taken to be an asymmetric relation,
and we agree with that, so we take the option of < as an irreflexive, transitive,
asymmetric relation. Then < is definable in terms of ≤ by use of (2), but not ≤ in
terms of < . That is clear from the picture below (Fig. 7.2), an irreflexive, transitive,
asymmetric relation cannot distinguish between the two given orderings.

Fig. 7.2 Incomparability and indifference

One needs an additional equivalence relation x ∼ y to express that x and y
are elements in the same cluster and they are indifferent. We will write Eq for ∼,
expressing two elements are equivalent. x ∼ y can be defined by

(5) x ∼ y ↔ x ≤ y ∧ y ≤ x .

Then, in the other direction, x ≤ y can be defined in terms of < and ∼:

(6) x ≤ y ↔ x < y ∨ x ∼ y.

It is certainly possible to extend our discussion to partially ordered sets of con-
straints, and we will make this excursion in Section 7.5. The preference relation will
no longer be a quasi-linear order, but a so-called quasi-order: In the non-strict case a
reflexive and transitive relation, in the strict case an asymmetric, transitive relation.
One can still use (2) to obtain a strict quasi-order from a non-strict one, and use (6)
to obtain a non-strict quasi-order from a strict one and ∼. However, we will see in
the next chapter that in some contexts involving beliefs these translations no longer
give the intended result. In such a case one has to be satisfied with the fact that (5)
still holds and that < as well as ∼ imply ≤ .

7.4 Preference Logic and a Representation Theorem

Clearly, no matter what the priorities are, the non-strict preference relation has the
following general properties:

(1) Pref(x, x),
(2) Pref(x, y) ∨ Pref(y, x),
(3) Pref(x, y) ∧ Pref(y, z)→ Pref(x, z).

(1), (2) and (3) express reflexivity, connectedness and transitivity, respectively.
Thus, Pref is a quasi-linear relation; it lacks antisymmetry.
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Unsurprisingly, (1), (2) and (3) are a complete set of principles for preference.
We will put this in the form of a representation theorem as we announced in the
introduction. In this case it is a rather trivial matter, but it is worthwhile to execute it
completely as an introduction to the later variants. We reduce the first order language
for preference to its core:

Definition 7.7 (reduced preference language) LetΦ be a set of propositional vari-
ables, and D be a finite domain of objects, the reduced preference language is
defined as follows:

ϕ := p | ¬ϕ | ϕ ∧ ψ | Pref(di , d j ) where p ∈ Φ and di ∈ D.

The reduced preference language contains the propositional calculus. From this
point onwards we refer to the language with variables, quantifiers, predicates as the
extended preference language. In the reduced language, we rewrite the axioms of
preference logic as follows:

(1) Pref(di , di ),
(2) Pref(di , d j ) ∨ Pref(d j , di ),
(3) Pref(di , d j ) ∧ Pref(d j , dk)→ Pref(di , dk).

We call this axiom system P.

Theorem 7.8 (representation theorem) � P ϕ iff ϕ is valid in all models
obtained from priority sequences.

Proof The direction from left to right is obvious. Assume formula ϕ(d1, . . . ,

dn, p1, . . . , pk) is not derivable in P. Then a non-strict quasi-linear ordering of the
d1, . . . , dn exists, which, together with a valuation of the atoms p1, . . . , pk in ϕ
falsifies ϕ(d1, . . . , dn). Let us assume that we have a linear order (adaptation to the
more general case of quasi-linear order is simple), and also, w.l.o.g. that the ordering
is d1 > d2 > · · · > dn . Then we introduce an extended language containing unary
predicates P1, . . . , Pn with a priority sequence P1 � P2 · · · � Pn and let Pi apply
to di only. Clearly, the preference order of d1, . . . , dn with respect to the given
priority sequence is from left to right. We have transformed the model into one in
which the defined preference has the required properties.5 �
Remark 7.9 It is instructive to execute the above proof for the reduced language
containing some additional predicates Q1, . . . , Qk . One would like then to obtain
a priority sequence of formulas in the language built up from Q1 to Qk . This is
possible if in the model M each pair of constants di and d j is distinguishable by
formulas in this language, i.e., for each i and j , there exists a formula ϕi j such
that M |� ϕi j (di )and M |� ¬ϕi j (d j ). In such a case, the formula ψi = ∧

i  = j ϕi j

satisfies only di . And ψ1 � · · · � ψn is the priority sequence as required. It is
necessary to introduce new predicates when two constants are indistinguishable.

5 Note that, although we used n priorities in the proof to make the procedure easy to describe, in
general 2log(n)+ 1 priorities are sufficient for the purpose.
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A trivial method to do this is to allow identity in the language, x = d1 obviously
distinguishes d1 and d2.

Let us at this point stress once more what the content of a representation theorem
is. It tells us that the way we have obtained the preference relations, namely from a
priority sequence, does not affect the general reasoning about preference, its logic.
The above proof shows this in a rather strong way: If we have a model in which the
preference relation behaves in a certain manner, then we can think of this preference
as derived from a priority sequence without disturbing the model as it is.

It is good to point out here that if one considers the objects as worlds and replaces
the monadic predicates by propositional variables, the results so far can be restated
in hybrid logic (see e.g., [49]), provided formulas are restricted to be quantifier
free. This has advantages and disadvantages. Stating the results in hybrid logic has
the advantage that it makes the results more directly comparable to those of other
papers that consider preference between worlds or propositions rather than objects.
The approach here allows more complex predicate-logical formulas to be used as
constraints. Also, it allows generalizations to belief contexts in the following chap-
ter. At this time we do not see how to obtain these benefits in hybrid logic.

7.5 Discussion and Conclusion

We now indicate how the approach taken here can be taken further.

Generalizing to partially ordered priorities A new situation occurs when there
are several priorities of incomparable strength. Take Example 7.1 again, but this
time, instead of considering three properties, Alice also takes “transportation con-
venience” into account. For her, though, neighborhood and transportation conve-
nience are incomparable. Abstractly speaking, this means that the priority sequence
is now partially ordered. This is the more general case of priority-based preference,
when criteria are incomparable, or in conflict. We will see many illustrations in later
chapters.

We show in the following how to define preference based on a partially ordered
priority sequence. In other words, we consider a set of priorities C1...,Cn with the
relation � between them a partial order.

Definition 7.10 (preference from partial-ordered priorities) We define Prefn(x, y)
by induction, where {n1, ..., nk} is the set of immediate predecessors of n.

Prefn(x, y) := Prefn1
(x, y)∧...∧ Prefnk

(x, y)∧((Cn(y)→ Cn(x))∨(Prefn1
(x, y)

∨... ∨ Prefnk
(x, y))),

where as always Prefm(x, y)↔ Prefm(x, y) ∧ ¬Prefm(y, x).
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This definition is, for finite partial orders, equivalent to better-known lexico-
graphic orders from the literature: cf. [89] and [6].6 We will come back to the
partially ordered priorities in great detail in Chapter 10, where we will shift the
presentation to a mathematically more elegant general format of priority graphs
instead of priority sequences.

Much more can be said about the logical theory of partially ordered priorities and
their induced betterness orders, but we leave this to later in this book.

Priorities versus generic preferences Finally, we ask a question that may have
occurred to the reader already. How are priority sequences of propositions related
to the orderings of propositions produced by set lifting of betterness relations, as in
Chapter 3? Intuitively, there need not be any strong connection here, since priority
ordering is about relative importance, rather than preference. Nevertheless, in some
special cases, we can say more. Here are some simple results of this sort on the
earlier �∀∃-lifting. Priority order and lifted generic preference can coincide then
when we work with special sets of worlds:

Definition 7.11 A set X is upward closed if

∀x, y ∈ X (y ∈ X ∧ y ≤ x → x ∈ X).

Fact 7.12 Consider only sets X that are upward closed. We define

y ≤ x iff ∀X (x ∈ X ↔ y ∈ X) ∨ ∃X (x ∈ X ∧ y /∈ X).

Then the �∀∃-lifting of this object ordering becomes equivalent to set inclusion, and
the latter is equivalent to the priority sequence:

X ⊆ Y ⇔ X � Y.

Much more general questions arise here when transformations are repeated.
Given a priority order and its induced betterness order, when can the former be
retrieved as a quantifier lift of the latter? And also, given a world order, and some
lift, say �∀∃, used as a priority order on the powerset P(S), when can the relation on
S be retrieved as the derived order of �∀∃? Answering such questions would show
us further connections between the two levels of worlds and propositions, when both
relative importance and preference are involved in lifting and deriving. We will not
pursue these matters here – but there is certainly more harmony than what we have
uncovered so far.

Conclusion In this chapter we put the reasons for preference at center stage, and
we studied how to then represent preference and its logic. Our main intuitions were
about comparing objects, though everything we have said also applies to preference

6 More discussion on the relation between partially ordered priorities and G-spheres, is found in
[128] and, when it is unordered, [121].
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between worlds. We showed how preference over objects can be derived from under-
lying priorities, ordered sequences of properties of these objects. Using a fragment
of the first-order language, we proposed a set of valid principles for preference, and
we matched the usual completeness result with a representation theorem telling us
which object orderings are the ones induced by linear priority sequences. Finally, we
discussed some further issues, in particular, extensions of our preference definitions
to cases where the priorities are partially ordered (a topic that will be pursued in
much greater detail in Chapter 10), and connections between ordered priorities and
the generic preferences of Chapter 3, showing that in some particular situations they
can coincide indeed.

All our results in this chapter presuppose that an agent has complete information
when forming her preference. A more realistic situation is that agents may be uncer-
tain about certain things, relying on her beliefs to make preference judgements. This
is the topic we will take up in the next chapter.



Chapter 8
Belief-Based Preference

8.1 Introduction

In this chapter, we resume the issue of “entanglement” of preference and
information-based notions like knowledge and belief, that we have studied already
in Chapter 5. How does this play when preference comes with richer priority
structure?

To plunge right in, let us consider a variation of Example 7.1:

Example 8.1 (buying a house under uncertainty) Alice is going to buy a house. For
her there are several things to consider: the cost, the quality and the neighborhood,
strictly in that order. Consider two houses d1 and d2 that Alice hopes to choose
from. Alice only has partial information. Let us assume that she believes that d1
and d2 have the following properties: C(d1),C(d2),¬Q(d1),¬Q(d2), N (d1) and
¬ N (d2).

The definition of preference proposed in Chapter 7 does not apply here anymore,
as beliefs have entered now. Alice’s decision is not determined by her complete
information, but by her beliefs under uncertainties. In a more general sense, this
allows us to consider more complex scenarios. For instance, do we believe certain
properties from the priority base to apply or not? Or even more dramatically, can we
form a priority base on the basis of our beliefs? Handling uncertainties of this kind
calls for a combination of a doxastic language and a preference language.

For this purpose, the preference language defined in the previous chapter will be
extended now with belief operators Bϕ. When we do this, it may seem that we are
heading into doxastic predicate logic. This is true, but we are not going to be affected
by the existing difficult issues in interpreting modal predicate logics (cf. [80]). What
we are using in this context is just a very limited part of such a language.1 We
will take the standard modal system KD45 as the logic for belief, though we are

1 It would be interesting to consider what more a full doxastic predicate logic language can bring
to our preference setting, but we will leave this question to other occasions.
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aware of the philosophical debates about beliefs and the many options for designing
appropriate logical systems.2

This chapter is structured as follows. in Section 8.2 we propose three different
ways of defining preference in terms of priorities and beliefs. In particular, we will
present a doxastic preference logic for the notion of “decisive preference” and prove
an extended representation theorem for that case. Section 8.3 will extend our dis-
cussions to multi-agent case, in which we will particularly study both cooperative
agents and competitive agents, and describe their characteristics in representation
theorems. In Section 8.4 we move to preference over propositions, and propose
a propositional doxastic preference logic. And also, we will explore the relation-
ship between preference over objects and preference over propositions. Finally, we
restate our main points in the conclusions.

8.2 Doxastic Preference Logic

8.2.1 Three Notions of Belief-Based Preference

Working with beliefs, we will first give several definitions of preference in terms
of priority sequence in this section. Interestingly, the definitions we consider in the
following spell out different “procedures” an agent may follow to decide her pref-
erence when processing the incomplete information about the relevant properties.
Which procedure is taken strongly depends on the domain or the type of agents.
Moreover, we consider a simpler scenario, namely, in the new language, the defini-
tion of priority sequence remains the same, i.e., a priority Ci is a formula from the
language without belief operators.3

Definition 8.2 (decisive preference) Given a priority sequence of length n, two
objects x and y, Pref(x, y) is defined as follows:

Pref1(x, y) := BC1(x) ∧ ¬BC1(y),
Prefk+1(x, y) := Prefk(x, y) ∨ (Eqk(x, y) ∧ BCk+1(x) ∧ ¬BCk+1(y)), k < n,
Pref(x, y) := Prefn(x, y),

where Eqk(x, y) stands for (BC1(x)↔ BC1(y)) ∧ · · · ∧ (BCk(x)↔ BCk(y)).

To determine the preference relation, one just runs through the sequence of rele-
vant properties to check whether one believes them of the objects. But at least two
other options of defining preference seem reasonable as well.

Definition 8.3 (conservative preference) Given a priority sequence of length n,
two objects x and y, Pref(x, y) is defined below:

2 Readers who liked our plausibility models for belief in Chapters 4, 5, may also just continue
thinking in these terms when reading what we have to say about the doxastic modality Bϕ.
3 It would be also interesting to look at non-factual priorities containing beliefs of the agents.
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Pref1(x, y) := BC1(x) ∧ B¬C1(y),
Prefk+1(x, y) := Prefk(x, y) ∨ (Eqk(x, y) ∧ BCk+1(x) ∧ B¬Ck+1(y)), k < n,
Pref(x, y) := Prefn(x, y)

where Eqk(x, y) stands for (BC1(x) ↔ BC1(y)) ∧ (B¬C1(x) ↔ B¬C1(y)) ∧
· · · ∧ (BCk(x)↔ BCk(y)) ∧ (B¬Ck(x)↔ B¬Ck(y)).

Definition 8.4 (deliberate preference) Given a priority sequence of length n, two
objects x and y, Pref(x, y) is defined below:

Supe1(x, y)4 := C1(x) ∧ ¬C1(y),
Supek+1(x, y) := Supek(x, y) ∨ (Eqk(x, y) ∧ Ck+1(x) ∧ ¬Ck+1(y)), k < n,
Supe(x, y) := Supen(x, y),
Pref(x, y) := B(Supe(x, y)),

where Eqk(x, y) stands for (C1(x)↔ C1(y)) ∧ · · · ∧ (Ck(x)↔ Ck(y)).

To better understand the difference between the above three definitions, we look
at the Example 8.1 again, but in three different variations:

A. Alice favors Definition 8.2: She looks at what information she can get, she reads
that d1 has low cost, about d2 there is no information. This immediately makes
her decide for d1. This will remains so, no matter what she hears about quality or
neighborhood.

B. Bob favors Definition 8.3: The same thing happens to him. But he reacts dif-
ferently than Alice. He has no preference, and that will remain so as long as
he hears nothing about the cost of d2, no matter what he hears about quality or
neighborhood.

C. Cora favors Definition 8.4: She also has the same information. On that basis
Cora cannot decide either. But some more information about quality and neigh-
borhood helps her to decide. For instance, suppose she hears that d1 has good
quality or is in a good neighborhood, and d2 is not of good quality and not in a
good neighborhood. Then Cora believes that, no matter what, d1 is superior, so
d1 is her preference. Note that such kind of information could not help Bob to
decide.

Speaking more generally in terms of the behaviors of the above agents, it seems
that Alice always decides what she prefers on the basis of the limited informa-
tion she has. In contrast, Bob chooses to wait and require more information. Cora
behaves somewhat differently, she first tries to do some reasoning with all the avail-
able information before making her decision. This suggests yet another perspective
on diversity of agents than discussed in [132].

Clearly, then, we have the following fact:

4 Superiority is just defined as preference was in Chapter 7.
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Fact 8.5

• Totality holds for Definition 8.2, but not for Definition 8.3 or 8.4;
• Among the above three definitions, Definition 8.3 is the strongest in the sense that

if Pref(x, y) holds according to Definition 8.3, then Pref(x, y) holds according
to Definition 8.2 and 8.4 as well.

It is striking that, if in Definition 8.4, one plausibly also defines Pref(x, y) as
B(Supe(x, y)), then the normal relation between Pref and Pref no longer holds:
Pref is not definable with Pref any more, or even Pref in terms of Pref and Eq.

For all three definitions, we have the following theorem.

Theorem 8.6 Pref(x, y)↔ BPref(x, y).

Proof In fact we prove something more general in KD45. Namely, if α is a propo-
sitional combination of B-statements, then �KD45 α ↔ Bα.

From left to right, since α is a propositional combination of B-statements, it
can be transformed into conjunctive normal form: β1 ∨ · · · ∨ βk . It is clear that
�KD45 βi → Bβi for each i , because each member γ of the conjunction βi implies
Bγ . If A = β1 ∨ · · · ∨ βk holds then some βi holds, so Bβi , so Bα. Then we
immediately have: �KD45 ¬α → B¬α (∗) as well, since ¬α is also a propositional
combination of B-statements if α is.

From right to left: Suppose Bα and ¬α. Then B¬α by (∗), so B⊥, but this is
impossible in KD45, therefore α holds.

The theorem follows since Pref(x, y) is in all three cases indeed a propositional
combination of B-statements. �

Corollary 8.7 ¬Pref(x, y)↔ B¬Pref(x, y).

Actually, we think it is proper that Theorem 8.6 and Corollary 8.7 hold because
we believe that preference describes a state of mind in the same way that belief does.
Just as one believes what one believes, one believes what one prefers.

8.2.2 Doxastic Preference Logic

If we stick to Definition 8.2, we can generalize the representation result from the
previous chapter. Let us consider the reduced language built up from standard propo-
sitional letters, plus Pref(di , d j ) by the connectives, and belief operators B. Again
we have the normal principles of KD45 for B.

Theorem 8.8 The following principles axiomatize exactly the valid ones.

(1) Pref(di , di ).

(2) Pref(di , d j ) ∨ Pref(d j , di ).
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(3) Pref(di , d j ) ∧ Pref(d j , dk)→ Pref(di , dk).

(4) ¬B⊥.

(5) Bϕ → B Bϕ.

(6) ¬Bϕ → B¬Bϕ.
(7) Pref(di , d j )↔ BPref(di , d j ).

We now consider the KD45-P system including the above valid principles,
Modus ponens(M P), as well as Generalization for the operator B.

Definition 8.9 (doxastic preference model) A doxastic preference model of
KD45-P is a tuple (S, D, R, {�s}s∈S, V ), where S is a non-empty set of worlds, D
is a set of constants, R is a euclidean, transitive, and serial accessibility relation on S.
Namely, it satisfies ∀xyz((Rxy∧Rxz)→ Ryz), ∀xyz((Rxy ∧ Ryz)→ Rxz), and
∀x∃y Rxy. For each s, �s is a quasi-linear order on D, which is the same throughout
each euclidean class. V is evaluation function in an ordinary manner.

We remind the reader that in most respects euclidean classes are equivalence
classes except that a number of points are irreflexive and have R relations just
towards the reflexive members (the equivalence part) of the class.

Theorem 8.10 The KD45-P system is complete.

Proof The canonical model of this logic KD45-P has the required properties: The
belief accessibility relation R is euclidean, transitive, and serial. This means that
with regard to R the model falls apart into euclidean classes. In each node Pref is a
quasi-linear order of the constants. Within a euclidean class the preference order is
constant (by BPref ↔ Pref). This suffices to prove completeness. �

Theorem 8.11 The logic KD45-P has the finite model property.

Proof By standard methods. �

Theorem 8.12 (representation theorem) � KD45−P ϕ iff ϕ is valid in all models
obtained from priority sequences.

Proof Suppose that �KD45−P ϕ(d1, ..., dn, p1, ..., pm). By Theorem 8.10, there is a
model with a world w in which ϕ is falsified. We restrict the model to the euclidean
class where w resides. Since the ordering of the constants is the same throughout
euclidean classes, the ordering of the constants is now the same throughout the
whole model. We can proceed as in Theorem 7.9 defining the predicates P1, . . . , Pn

in a constant manner throughout the model. �

Remark 8.13 The three definitions above are not the only definitions that might be
considered. For instance, we can give a variation (∗) of Definition 8.3. For simplicity,
we just use one predicate C .

Pref(x, y) := ¬B¬C(x) ∧ B¬C(y). (∗)
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This means the agent can decide on her preference in a situation in which on the
one hand she is not totally ready to believe C(x), but considers it consistent with
what she assumes, on the other hand, she distinctly believes ¬C(y). Compared with
Definition 8.3, (∗) is weaker in the sense that it does not require explicit positive
beliefs concerning C(x).

We can even combine Definition 8.2 and (∗), obtaining the following:

Pref(x, y) := (BC(x) ∧ ¬BC(y)) ∨ (¬B¬C(x) ∧ B¬C(y)). (∗∗)

Contrary to (∗), this gives a quasi-linear order.
Similarly, for Definition 8.4, if instead of B(Supe(x, y)), we use ¬B¬(Supe(x, y)),

a weaker preference definition is obtained.

8.3 Extension to the Multi-agent Case

8.3.1 Multi-agent Doxastic Preference Logic

This section extends the results of Section 8.2 to the many agent case. This will gen-
erally turn out to be more or less a routine matter. But at the end of the section, we
will see that the priority base approach gives us a start of an analysis of cooperation
and competition of agents. We consider agents here as cooperative if they have the
same goals (priorities), competitive if they have opposite goals. This foreshadows
the direction one may take to apply our approach to games. The language we are
using is defined as follows:

Definition 8.14 (reduced doxastic preference language) Let Φ be a set of propo-
sitional variables, N be a group of agents, and D be a finite domain of objects, the
reduced doxastic preference language for many agents is defined in the following:

ϕ := p | ¬ϕ | ϕ ∧ψ | Prefa(di , d j ) | Baϕ where p ∈ Φ, a ∈ N and di ∈ D.

Similarly to Prefa expressing non-strict preference, we will use Prefa to denote
the strict version. When we want to use the extended language, we add variables
and the statements P(di ).

Definition 8.15 (priority sequence for agent a) A priority sequence for agent a is
a finite ordered sequence of formulas written as follows: C1 �a C2 · · · �a Cn(n ∈
N), where each Cm (1 ≤ m ≤ n) is a formula from the language of Definition 8.14,
with one single free variable x , but without Pref and B.

Here we take decisive preference to define an agent’s preference. But the results
of this section apply to other definitions just as well. It seems quite reasonable to
allow in this definition of Prefa formulas that contain Bb and Prefb for agents b
other than a. But we leave this for a future occasion.
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Definition 8.16 (preference for agent a) Given a priority sequence of length n, two
objects x and y, Prefa(x, y) is defined as follows:

Prefa1(x, y) := BaC1(x) ∧ ¬BaC1(y),

Prefak+1(x, y) := Prefak (x, y) ∨ (Eqk(x, y) ∧ BaCk+1(x) ∧ ¬BaCk+1(y)), k < n,

Prefa(x, y) := Prefan(x, y),

where Eqk(x, y) stands for (BaC1(x)↔ BaC1(y))∧· · ·∧(BaCk(x)↔ BaCk(y)).

Definition 8.17 The doxastic preference logic for many agents KD45-PG is consists
of the following principles,

(1) Prefa(di , di ).

(2) Prefa(di , d j ) ∨ Prefa(d j , di ).

(3) Prefa(di , d j ) ∧ Prefa(d j , dk)→ Prefa(di , dk).

(4) ¬Ba⊥.

(5) Baϕ → Ba Baϕ.

(6) ¬Baϕ → Ba¬Baϕ.

(7) Prefa(di , d j )↔ BaPrefa(di , d j ).

As usual, it also includes Modus ponens(M P), as well as Generalization for the
operators Ba . It is easy to see that the above principles are valid for Prefa extracted
from a priority sequence.

Theorem 8.18 The doxastic preference logic for many agents KD45-PG is com-
pletely axiomatized by the stated principles.

Proof The canonical model of this logic KD45-PG has the required properties: The
belief accessibility relation Ra is euclidean, transitive, and serial. This means that
with regard to Ra the model falls apart into a-euclidean classes. Again, in each
node Prefa is a quasi-linear order of the constants and within an a-euclidean class
the a-preference order is constant. This quasi-linearity and constancy are of course
the required properties for the preference relation. Same for the other agents. This
shows completeness of the logic. �

Theorem 8.19 The logic KD45-PG has the finite model property.

Proof By standard methods. �

Similarly, a representation theorem can be obtained by showing that the model
could have been obtained from priority sequences C1 �a C2 · · · �a Cm(m ∈ N)

for all the agents.

Theorem 8.20 (representation theorem) � KD45−PG ϕ iff ϕ is valid in all models
with each Prefa obtained from a priority sequence.
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Proof Let there be k agents a0, . . . , ak−1 and suppose ϕ(d1, . . . , dn). We provide
each agent a j with her own priority sequence Pn× j+1 �a j Pn× j+2 �a j · · · �a j

Pn×( j+1). It is sufficient to show that any model for KD45-PG for the reduced lan-
guage can be extended by valuations for the Pj (di )’s in such a way that the prefer-
ence relations are preserved. For each ai -euclidean class, we follow the same pro-
cedure for d1, . . . , dn w.r.t. Pn× j+1, Pn× j+2, ..., Pn×( j+1) as in Theorem 7.9 w.r.t
P1, . . . , Pn . The preference orders obtained in this manner are exactly the Prefa j

relations in the model. �

8.3.2 Cooperative and Competitive Agents

In the above case, the priority sequences for different agents are separate, and thus
very different. Still stronger representation theorems can be obtained by requiring
that the priority sequences for different agents are related, e.g. in the case of cooper-
ative agents that they are equal. We will consider the two agent case in the following.

Theorem 8.21 (two cooperative agents) � KD45−PG ϕ iff ϕ is valid in all models
obtained from priority sequences shared by two cooperative agents.

Proof The two agents are a and b. We now have the priority sequence P1 �a

P2 �a · · · �a Pn , same for b. It is sufficient to show that any model M with
worlds W for KD45-PG for the reduced language can be extended by valuations
for the Pj (di )’s in such a way that the preference relations are preserved. We start
by making all Pj (di )’s true everywhere in the model. Next we extend the model as
follows. For each a-euclidean class E in the model carry out the following proce-
dure. Extend M with a complete copy ME of M for all of the reduced language i.e.
without the predicates Pj . Add Ra relations from any of the w in E to the copies vE

such that w Ra v. Now carry out the same procedure as in the proof of Theorem 7.9
in E’s copy EE . What we do in the rest of ME is irrelevant. Now, in w, a will
believe in Pj (di ) exactly as in the model in the previous proof, the overall truth of
Pj (di ) in the a-euclidean class E in the original model has been made irrelevant.
The preference orders obtained in this manner are exactly the Prefa relations in the
model. All formulas in the reduced language keep their original valuation because
the model ME is bisimilar for the reduced language to the old model M as is the
union of M and ME .

Finally do the same thing for b: Add for each b-euclidean class in M a whole new
copy, and repeat the procedure followed for a. Both a and b will have preferences
with regard to the same priority sequence. �

For competitive agents we assume that if agent a has a priority sequence D1 �a

D2 � · · · �a Dm(m ∈ N), then the opponent b has priority sequence ¬Dm �b

¬Dm−1 � · · · �b ¬D1.

Theorem 8.22 (two competitive agents) � KD45−PG ϕ iff ϕ is valid in all models
obtained from priority sequences for competitive agents.
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Proof Let’s assume two agents a and b. For a we take a priority sequence P1 �a

P2 �a · · · �a Pn �a Pn+1 �a · · · �a P2n , and for b, we take ¬P2n �b

¬P2n−1 �b · · · �b ¬Pn �b ¬Pn−1 �b · · · �b ¬P1 . It is sufficient to show
that any model M with worlds W for KD45-PG for the reduced language can be
extended by valuations for the Pj (di )’s in such a way that the preference relations
are preserved. We start by making all P1(di ) . . . Pn(di ) true everywhere in the model
and Pn+1(di ) . . . P2n(di ) all false everywhere in the model. Next we extend the
model as follows.

For each a-euclidean class E in the model carry out the following procedure.
Extend M with a complete copy ME of M for all of the reduced language i.e.
without the predicates Pj . Add Ra relations from any of the w in E to the copies
vE such that w Ra v. Now define the values of the P1(di ) . . . Pn(di ) in EE as in the
previous proof and make all Pm(di ) true everywhere for m > n. The preference
orders obtained in this manner are exactly the Prefa relations in the model.

For each b-euclidean class E in the model carry out the following procedure.
Extend M with a complete copy ME of M for all of the reduced language i.e.
without the predicates Pj . Add Rb relations from any of the w in E to the copies
vE such that w Rb v. Now define the values of the ¬P2n(di ) . . .¬Pn+1(di ) in EE as
for P1(di ) . . . Pn(di ) in the previous proof and make all Pm(di ) true everywhere for
m ≤ n. The preference orders obtained in this manner are exactly the Prefb relations
in the model.

All formulas in the reduced language keep their original valuation because the
model ME is bisimilar for the reduced language to the old model M as is the union
of M and all the ME . �

Discussion These last representation theorems show that they are as is to be
expected not only a strength but also a weakness. The weakness here is that they
show that cooperation and competition cannot be differentiated in this language.
On the other hand, the theorems are not trivial, one might think for example that
if a and b cooperate, Ba Pre fb(c, d) would imply Prefa(c, d). This is of course
completely false, a and b can even when they have the same priorities have quite
different beliefs about how the priorities apply to the constants. But the theorems
show that no principles can be found that are valid only for cooperative agents.
Moreover they show that if one wants to prove that Ba Pre fb(c, d) → Prefa(c, d)
is not valid for cooperative agents a counterexample to it in which the agents do not
cooperate suffices.

8.4 Preference over Propositions

Most other authors on preference have discussed preference over propositions rather
than objects. In this section, we will show that the current approach can be applied
to preference over propositions as well. Following the previous section on belief-
based preferences, we will propose a propositional system combining preference
and beliefs. And we specially take the line that preference is a state of mind and
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that therefore one prefers one alternative over another if and only if one believes
one does. If we take this line, the most obvious way would be to go to second-order
logic and consider priority sequence A1(ϕ) � A2(ϕ) � . . . ,� An(ϕ), where
the Ai are properties of propositions. However, we find it close to our intuitions to
stay first-order as much as possible. With that in mind, we define the new priority
sequence for the propositional case as follows.

Definition 8.23 (propositional priority sequence) A propositional priority
sequence is a finite ordered sequence of formulas written as follows:

ϕ1(x)� ϕ2(x)� · · · � ϕn(x) (n ∈ N),

where each of ϕm(x) is a propositional formula with an additional propositional
variable, x , which is a common one to each ϕm(x).

Formulas ϕ(x) can express properties of propositions, for instance, applied to ψ ,
x → p1 expresses that ψ implies p1, “ψ has the property p1”.

We apply our approach in previous sections to define preference in terms of
beliefs. As we have seen in Section 8.2, there are various ways to do it. We are
guided by the definition of decisive preference in formulating the following:

Definition 8.24 (preference over propositions) Given a propositional priority
sequence of length n, we define preference over propositions ψ and θ as follows:

Pref(ψ, θ) iff for some i , (Bϕ1(ψ)↔ Bϕ1(θ)) ∧ · · · ∧ (Bϕi−1(ψ)

↔ Bϕi−1(θ)) ∧ (Bϕi (ψ) ∧ ¬Bϕi (θ)).

Note that preference between propositions is in this case almost a preference
between mutually exclusive alternatives: In the general case one can conclude
beyond the quasi-linear order that derives directly from our method only that if
B(ψ ↔ θ), then ψ and θ are equally preferable. Otherwise, any proposition can be
preferable over any other.

For some purposes (this will get clearer in the proof of the representation theorem
below), we need a further generalization, as in this slightly more complex definition:

Definition 8.25 A propositional priority sequence is a finite ordered sequence of
sets of formulas written as follows:

�1 � �2 � · · · � �n,

.where each set �i consists of propositional formulas that have an additional propo-
sitional variable, x , which is a common one to each �i .

A new matching definition of preference is then given by:

Definition 8.26 Given a propositional priority sequence of length n, we define pref-
erence over propositions ψ and θ as follows:
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Pref(ψ, θ) iff ∃i(∀ j < i(∃ϕ ∈ �j Bϕ(ψ)↔ ∃ϕ ∈ �j Bϕ(θ))∧
(∃ϕ ∈ �i Bϕ(ψ) ∧ ∀ϕ ∈ �i¬Bϕ(θ))).

Remark 8.27 In fact, the priority set �m could be expressed by one formula

∨

ϕ∈�m

Bϕ.

But then we would have to use B in the formulas of the priority sequence, which we
prefer not to.

The axiom system BP that arises from these considerations combines preference
and beliefs in the following manner:

(1) Pref(ϕ, ϕ).

(2) Pref(ϕ, ψ) ∧ Pref(ψ, θ)→ Pref(ϕ, θ).

(3) Pref(ϕ, ψ) ∨ Pref(ψ, ϕ).

(4) BPref(ϕ, ψ)↔ Pref(ϕ, ψ).

(5) B(ϕ ↔ ψ)→ Pref(ϕ, ψ) ∧ Pref(ψ, ϕ).

As usual, it also includes Modus ponens (MP), as well as the Generalization
Rule for the operator B. The first three are standard for preference, and we have
seen the analogue of (4) in Section 8.2. (5) is new, as a connection between beliefs
and preference. It expresses that if two propositions are indistinguishable on the
plausible worlds they should be equally preferable. It is easy to see that the above
axioms are valid in the models defined as follows.

Definition 8.28 (BP-model) A model of BP is a tuple (S, R, {�s}s∈S, V ), where
S is a non-empty set of worlds, R is a euclidean, transitive, and serial accessibility
relation on S. Namely, it satisfies ∀xyz((Rxy∧Rxz)→ Ryz), ∀xyz((Rxy∧Ryz →
Rxz), and ∀x∃y Rxy. Moreover, for each s, �s is a quasi-linear order on proposi-
tions (subsets of S), which is constant throughout each euclidean class and which is
determined by the part of the propositions that lies within the ‘plausibility part’ of
the euclidean class. V is an evaluation function in an ordinary manner.

Theorem 8.29 The BP system is complete w.r.t the above models.

Proof Assume �BP θ . Take the canonical model M = (S, R, V ) for the formu-
las using only the propositional variables of θ . To each world of S a quasi-linear
order of all formulas is associated, and it only depends on the extension of the
formula (the set of nodes where the formula is true) in the plausible part of the
model. This order is constant throughout the euclidean class defined by R. ¬θ can
be extended to a maximal consistent set �. We consider the submodel generated
by �, M′ = (S′, R, V ), which naturally is an euclidean class. Since each world
in S′ has access to the same worlds, each world that satisfies the same atoms
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satisfies the same formulas. In fact, each formula ϕ in this model is equivalent
to a purely propositional formula, a formula without B or Pref. To see this, one
just has to realize that Bψ is in the model either equivalent to � or ⊥, and the
same holds for Pref(ψ, θ). (Note that this argument only applies because we have
just one euclidean class.) Now apply a p-morphism to M′ which identifies worlds
that satisfy the same formula. This gives a finite model consisting of one euclidean
class with a constant order that still falsifies θ . Moreover, each world is character-
ized by a formula ±p1 ∧ · · · ∧ ±pk that expresses which atoms are true in it. In
consequence, each subset of the model (proposition) is also definable by a purely
propositional formula, a disjunction of the formulas ±p1,∧ · · ·∧±pk describing its
elements. �

Similarly, we have a representation method establishing the next result:

Theorem 8.30 (representation theorem) �BP ϕ iff ϕ is valid in all models obtained
from priority sequences.

Proof The order of the finitely many formulas defining all the subsets of the models
can be represented as a sequence

�1, . . . , �k,

where �1 are the best propositions (ϕ,ψ ∈ �1 implies ϕ �ψ and ψ � ϕ, �i are the
next best propositions, etc. Then the following is the priority sequence which results
in the given order:

{x ↔ ϕ | ϕ ∈ �1} � · · · � {x ↔ ϕ | ϕ ∈ �k}.

�

So far our discussions on the preference relation over propositions are rather
general. We do not presuppose any restriction on such a relation. However, if we
think that the preference relation over propositions is a result of lifting a preference
relation over possible worlds (as discussed before), we specify its meaning in a
more precise way, following the obvious option of choosing different combinations
of quantifiers. For example, we can take ∀∃ preference relations over the propo-
sitions, i.e., preference relations over propositions lifted from preference relations
over worlds in the ∀∃ manner. Regarding the axiomatization, we will then have to
add the following two axioms to the above BP system, obtaining a new system
BP∀∃. The latter has two more axioms:

• B(ϕ → ψ)→ Pref(ψ, ϕ).
• Pref(ϕ, ϕ1) ∧ Pref(ϕ, ϕ2)→ Pref(ϕ, ϕ1 ∨ ϕ2).

Theorem 8.31 The logic B P∀∃ is complete.
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Proof By an adaption of the proof by [94]. The difference is this: [94] uses a combi-
nation of preference and the universal modality. Instead, our system is a combination
of preference and belief. This means that what is preferred in our system is decided
by the plausibility structure of the model. However, this does not affect Halpern’s
completeness proof much, and we can still use it. �

Remark 8.32 In fact, [≤]ϕ in Chapter 3 can be defined now as Pref(ϕ,�). Then the

preference used in the system BP∀∃ is simply the following:

Pref(ϕ, ψ)↔ B(ψ → 〈≤〉ϕ).

Similarly, we get a representation-based result for this special case:

Theorem 8.33 (representation theorem) �BP∀∃ ϕ iff ϕ is valid in all ∀∃-models
obtained from priority sequences.

The proof is same as for the basic system.

8.4.1 Preference over Propositions and Preference over Objects

Finally, to conclude this subsection, recall that we had a logic system to discuss pref-
erence over objects when beliefs are involved. With our new system just presented,
we can talk about preference over propositions. But what is the relation between
these two systems? The following theorem provides an answer.

Theorem 8.34 �KD45−P ϕ(d1, . . . , dn) iff �BP ϕ(p1, . . . , pn) where the
propositional variables p1, . . . , pn do not occur in ϕ(d1, . . . , dn).

Proof In order to prove this theorem, we need to prove the following lemma:

Lemma 8.35 If �KD45−P ϕ(d1, . . . , dn), then for each n there is a model M |� ¬ϕ
with at least n elements.

Proof Assume that we only have a model M = (S, R, V ) in which S has m ele-
ments, where m < n. Take one element of S, say s, and make copies of it, say, s1,
s2,. . . , sk , till we get at least n elements. If s Rt , then we make si Rt , and if t Rs, then
t Rsi . In this way we get a new model with at least n elements. It is bisimilar to the
original model. �

Now we are ready to prove the theorem.
(⇒) It is easy to see that all the KD45-P axioms and rules are valid in BP if one
replaces each di by pi .
(⇐) It is sufficient to transform any finite KD45-P model M with only one
euclidean class into a BP model M′ with at least n possible worlds in which
for each s and each ψ , M′, s |� ψ(p1, . . . , pn) iff M, s |� ψ(d1, . . . , dn). Let
M = (S, R,≤, V ), then M′ = (S′, R,�, V ′), where V ′ is like V except that for
the p1, . . . , pn , we assign V ′(pi ) = V ′(p j ) if di ≤ d j ∧ d j ≤ di , otherwise,
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V ′(pi )  = V ′(p j ).
5 According to Lemma 8.35, there are enough subsets to do this.

Finally, we set V ′(pi )�V ′(p j ) iff di < d j and extend � to other sets in an arbitrary
manner. �

If one thinks of propositional variables as representing basic propositions, then
this theorem says that reasoning about preference over objects is the same as rea-
soning about preference over basic propositions. This is not surprising if one thinks
of basic propositions as exclusive alternatives, just like objects. Of course, the logic
of preference over propositions in general is more expressive. One can look at this
latter fact in two different ways: (i) the logic over preference over all propositions as
essentially richer than the logic of basic propositions or objects, or (ii) the essence
of the logic of propositions is contained in the basic propositions (represented by
the propositional variables) and the rest needs to be carried along in the theory to
obtain a good logical system–though it may be of little value by itself.6

By applying the method of [94] we can again adapt the above proof to obtain:

Theorem 8.36 �KD45−P ϕ(d1, . . . , dn) iff �BP∀∃ ϕ(p1, . . . , pn) where the
propositional variables p1, . . . , pn do not occur in ϕ(d1, . . . , dn).

Up to now we have used decisive preference. Another option is to use deliberate
preference. Let us look at this in a rather general manner. Assume that Supe(ϕ, ψ)
has the property in a model that for each ϕ, ψ ,

|� (ϕ ↔ ϕ′) ∧ (ψ ↔ ψ ′)→ (Supe(ϕ, ψ)↔ Supe(ϕ′, ψ ′)),

we then say “superior” is a local property in that model. We can now state the
following propositions.

Theorem 8.37 If we define Pref(ϕ, ψ) as B(Supe(ϕ, ψ)) in any model where
Supe(ϕ, ψ) is a local partial order, then Pref(ϕ, ψ) satisfies the principles of BP,
except possibly connectedness.

It is to be noted that

ϕ → 〈≤〉ψ

is not a local property even if ≤ is a subrelation of R. Nevertheless, in case ≤ is a
subrelation of R, B(ϕ → 〈≤〉ψ) does satisfy the principles of BP minus connect-
edness, and the additional BP∀∃ axioms, as we commented in Remark 8.32. For this
purpose the following weakening of locality is sufficient:

|� (ϕ ↔ ϕ′) ∧ B(ϕ ↔ ϕ′) ∧ (ψ ↔ ψ ′) ∧ B(ψ ↔ ψ ′)
→ (Supe(ϕ, ψ)↔ Supe(ϕ′, ψ ′)).

5 Note that the V ′(pi ) are only relevant for the ordering � because the pi ’s only occur directly
under the Pref in ϕ(p1, . . . , pn).

6 In Chapter 10, we will return to the role of structured propositions in priority graphs, showing
how their “internal algebra” can be relevant to preference reasoning after all.
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8.5 Conclusion

In this chapter, we have studied preference and priorities together with beliefs, as
such entanglements occur naturally in real life scenarios. We constructed a new
doxastic preference logic, which extended the standard logic of belief. We proved
completeness and representation theorems for it, both in single-agent and multi-
agent versions. This led us to consider interesting connections between preference
and beliefs. Again, we strengthened the usual completeness results for logics of
this kind to representation theorems. In the multi-agent case, these representation
theorems were applied to cooperative and competitive agents. Finally, we proposed
a new system combining beliefs and preference over propositions. To conclude this
chapter, we studied the relationship between preference over objects and preference
over propositions. We showed that if we think of propositional variables as repre-
senting basic propositions, then reasoning about preference over objects is the same
as reasoning about preference between basic propositions.

So far, what we have explored in this part are static properties or aspects of
priority-based preference, both pure and belief-entangled. In the next chapter, we
will look at our earlier main concern of the dynamics of changing preferences,
which turns out to go well with our richer modeling of the reasons underlying
preference.



Chapter 9
Preference from Priorities: Dynamic Logic

9.1 Introduction

In the preceding two chapters, a rich notion of priority-based preference has been
studied in stable situations. Various ways of deriving preferences from a priority
sequence have been proposed, both under complete and under incomplete informa-
tion. In this chapter we take up one of the main themes of this book, and address
the dynamics of changes in preferences in this richer setting. What we find is that
our earlier methods for plain betterness orderings generalize in an obvious manner,
with a few adaptations. Therefore, this chapter will be short, since the connection,
once seen, is straightforward.

As in earlier chapters, to motivate what will follow, we look at two variations of
our running example of buying a house (Example 7.1):

Example 9.1 (buying with changing priorities) Alice is going to buy a house. For
her, there are several things to consider: the cost, the quality and the neighborhood,
strictly in that order. One day, Alice luckily wins a lottery prize of ten million dol-
lars. This changes her situation dramatically. Now she considers the quality most
important, then neighborhood, then the cost.

This example shows vividly how possible changes in a priority sequence can
happen, due to events that have taken place. Other sorts of changes can happen as
well, for instance, something may become important that agents should take into
account, or something that becomes trivial, and agents should drop it from conside-
ration. Accordingly, in each of these cases, preference should change too. We will
study all these cases in this chapter with one mechanism, which actually borrows
quite a few ideas from our earlier dynamic epistemic treatment in Chapters 4 and 5.

Here is one more relevant scenario. This time, the preference change does not
come from an evaluation change, but from an information change:

Example 9.2 (buying with changing beliefs) This time, Alice only considers the
house’s cost (C) and its neighborhood (N ), with C(x) � N (x). There are two
houses d1 and d2 available. The real situation is that C(d1), N (d1),C(d2) and
¬N (d2). First Alice prefers d2 over d1 because she believes that C(d2) and N (d1).

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
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However, now Alice reads in a reliable newspaper that C(d1). She accepts this infor-
mation. Accordingly, she changes her preference.

Dynamic changes in Alice’s preference are now due to her belief change. For
belief-based preference, this is easy to understand: When beliefs change, so do our
preferences.

In other words, both changes in priority sequence and changes in belief can cause
preference change. In this chapter we study both.1

This chapter is organized as follows. In Section 9.2 we will focus on priority
changes, and the preference changes which they cause. Section 9.3 will deal with
belief change that leads to preference change, and we will look at both cases of
Chapters 4, 5: Belief changes due to “hard information”, and belief changes due to
“soft information”. Taking the DEL approach to our priority structures, we treat the
relevant events as dynamic actions and find their matching reduction axioms. Our
conclusions from all this are in Section 9.4.

9.2 Preference Change due to Priority Change

In this section, we will focus on the priority changes, and the preference changes
they cause. To this purpose, we start by making the priority sequence explicit in the
preference. We do this first for the case of complete information in language without
belief. Let C be a priority sequence with length n as in Definition 7.2. Then we write
PrefC(x, y) for the preference defined from that priority sequence.

Let us consider the following possible operations:

(1) C�C for adding C to the right of C,
(2) C�C for adding C to the left of C,
(3) C− for the sequence C with its final element deleted,
(4) Ci�i+1 for C with its i th and i+1th priorities switched.

Those operations reflect possible changes to the priority sequence. The first one
and the second one introduce something new into the sequence, as the least impor-
tant element and the most important element, respectively. The third one deletes the
existing least important element. The final one shifts the importance of the adjoining
two elements of the priority sequence. In terms of the preference before and after
such changes, it is clear that we have the following relationships:

PrefC�C (x, y)↔ PrefC(x, y) ∨ (EqC(x, y) ∧ C(x) ∧ ¬C(y)),
PrefC�C(x, y)↔ (C(x) ∧ ¬C(y)) ∨ ((C(x)↔ C(y)) ∧ PrefC(x, y)),
PrefC−(x, y)↔ PrefC,n−1(x, y),

1 Note that priority change leads to a preference change in a way similar to “entrenchment change”
in belief revision theory (see [162]). Still, we stick to the methodology of dynamic epistemic logic,
now applied to belief.



9.3 Preference Change due to Belief Change 117

PrefCi�i+1(x, y)↔ PrefC,i−1(x, y)∨ (EqC,i−1(x, y)∧ Ci+1(x)∧¬Ci+1(y))∨
(EqC,i−1(x, y) ∧ (Ci+1(x)↔ Ci+1(y)) ∧ Ci (x) ∧ ¬Ci (y))∨
(EqC,i+1(x, y) ∧ PrefC(x, y)).

These relationships enable us to describe preference change due to changes of
the priority sequence in the manner of dynamic epistemic logic. To do that, we
introduce the following four dynamic actions: [+C] of adding C to the right, [C+]
of adding C to the left, [−] of dropping the last element of a priority sequence of
length n, and [i↔ i+1] of interchanging the i th and i+1th elements. Then we obtain
the following reduction axioms:

[+C]Pref(x, y)↔ Pref(x, y) ∨ (Eq(x, y) ∧ C(x) ∧ ¬C(y)),

[C+]Pref(x, y)↔ ((C(x) ∧ ¬C(y)) ∨ ((C(x)↔ C(y)) ∧ Pref(x, y))),

[−]Pref(x, y)↔ Prefn−1(x, y),

[i ↔ i + 1]Pref(x, y)↔ Prefi−1(x, y) ∨ (Eqi−1(x, y) ∧ Ci+1(x)∧
¬Ci+1(y)) ∨ (Prefi (x, y) ∧ (Ci+1(x)↔ Ci+1(y))) ∨ (Eqi+1(x, y)∧
Pref(x, y)).

Of course, the first two are the more satisfactory ones, as the right hand side is
constructed solely on the basis of the previous Pref and the added priority C . Note
that one of the first two, plus the third and the fourth are sufficient to represent any
change whatsoever in the priority sequence. Noteworthy also is that operator [C+]
has exactly the same effects on a model as the operator “suggestion C” [�C] in
Chapter 3. We will discuss more connections of this sort in Chapter 10.

In the context of incomplete information when we have the language of belief,
we can obtain similar reduction axioms for Definitions 8.2 and 8.3. For instance, for
Definition 8.2, we need only replace C by BC and ¬C by ¬BC . For Definition 8.4,
the situation is very complicated, reduction axioms are simply not possible. To see
this, we return to the Example of Cora. Suppose Cora has a preference on the basis
of cost and quality, and she also has the given information relating quality and neigh-
borhood. Then her new preference after “neighborhood” has been adjoined to the
priority sequence is not a function of her previous preference and her beliefs about
the neighborhood. The beliefs relating quality and neighborhood are central for her
reasoning, but they are neither contained in the beliefs supporting her previous pre-
ference, nor in the beliefs about the neighborhood per se.

9.3 Preference Change due to Belief Change

Now we move to the other source which causes preference change, namely, a change
in belief. Such a thing often occurs in real life, new information comes in, one
changes one’s beliefs. Technically, the update mechanisms of [15] and [29] can
immediately be applied to our system with belief. As preference is defined in terms
of beliefs, we can calculate preference changes from belief change. We distinguish
the two cases that the belief change is caused by an update with so-called hard
information and an update with soft information.
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9.3.1 Hard Information

Consider the Example 9.2 again, let us assume that Alice treats the information
obtained as hard information. She simply adds new information to her stock of
beliefs. Figure 9.1 shows the situation before Alice’s reading the newspaper.

Fig. 9.1 Initial model

C(d1)

C(d2), N(d1) C(d2), N(d1)

not C(d1)

As usual, the dotted line denotes that Alice is uncertain about the two situations.
In particular, she does not know whether C(d1) holds or not. After she reads that
C(d1), the situation becomes Fig. 9.2. The ¬C(d1)-world is eliminated from the
model: Alice has updated her beliefs. Now she prefers d1 over d2.

Fig. 9.2 Updated model

C(d1)
C(d2),  N(d1)

We have assumed that we are using the elimination semantics (e.g. [27, 73], etc.)
in which public announcement of the sentence A leads to the elimination of the ¬A
worlds from the model. We have the reduction axiom:

[!A]PrefC(x, y) ↔ A → PrefA→C(x, y),

where, if C is the priority sequence C1 � · · · � Cn , A → C is defined as A →
C1 � · · · � A → Cn .

We can go even further if we use conditional beliefs Bψϕ as introduced in [29],
with the meaning ϕ is believed under the condition of ψ . Naturally one can also
introduce conditional preference Prefψ(x, y), by replacing B in the definitions in
Chapter 8 by Bψ . Assuming A is a formula without belief operators, an easy calcu-
lation gives us another form of the reduction axiom:

[!A]Pref(x, y) ↔ A → PrefA(x, y).

This concludes our discussion on preference change caused by belief change
when information is fully accepted.

9.3.2 Soft Information

When incoming information is not as solid as considered in the above, we have to
take into account the possibilities that the new information is not consistent with
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the beliefs the agent holds. Either the new information is unreliable, or the agent’s
beliefs are untenable. Let us switch to a semantical point of view for a moment.
To discuss the impact of soft information on beliefs, the models are graded by a
plausibility ordering �. For the one agent case one may just as well consider the
model to consist of one euclidean class. The ordering of this euclidean class is such
that the worlds in the equivalence part are the most plausible worlds. For all the
worlds w in the equivalence part and all the worlds u outside it, w ≺ u. Otherwise
v ≺ v′ can only obtain between worlds outside the equivalence part. To be able to
refer to the elements in the model, instead of only to the worlds accessible by the
R-relation, we introduce the universal modality U and its dual E . For the update by
soft information, there are various approaches, we choose the lexicographic upgrade
⇑A introduced by [192] and [163], adopted by [29] for this purpose:

After the incoming information A, the ordering ≤ is updated by making all A-worlds strictly
better than all ¬A-worlds keeping among the A-worlds the old orders intact and doing the
same for the ¬A-worlds.

After the update the R-relations just point to the best A-worlds. The reduction
axiom for belief proposed in [29] is:

[⇑A]Bϕ ↔ (E A ∧ B A([⇑A]ϕ) ∨ (¬E A ∧ B[⇑A]ϕ))

We apply this only to priority formulas ϕ which do not have belief operators, and
obtain for this restricted case a simpler form:

[⇑A]Bϕ ↔ (E A ∧ B Aϕ) ∨ (¬E A ∧ Bϕ).

From this one easily derive the reduction axiom for preference:

[⇑A]Pref(x, y)↔ (E A ∧ PrefA(x, y)) ∨ (¬E A ∧ Pref(x, y)).

Or in a form closer to the one for hard information:

[⇑A]Pref(x, y)↔ (E A → PrefA(x, y)) ∧ (¬E A → Pref(x, y)).

The reduction axiom for conditional preference is then the following:

[⇑A]Prefψ(x, y)↔
(E(A ∧ ψ)→ PrefA∧ψ(x, y)) ∧ (¬E(A ∧ ψ)→ Prefψ(x, y)).

By the fact that we have these reduction axioms here, the completeness analysis
in [29] for dynamic logics of belief can be extended straightforwardly to a dynamic
preference logic. We will not spell out the details here.

9.4 Conclusion

This chapter explored how to model dynamic changes of preference within the
framework of reason-based preference. In line with the various ways of defining
preference proposed in the previous two chapters, two main cases have been consid-
ered. The preference change may be due to a change in the priority base, or it may be
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caused by a belief change. For the first case, we have looked at four possible natural
operations on the priority base that transform agents’ priorities. For the later case, we
studied belief change under hard information, and under soft information, applying
the recent DEL approach to this area – and we found complete reduction axioms
for those cases. Our central example was the operation of “radical” lexicographic
belief upgrade, and we showed how earlier results on belief revision in Chapters
4, 5 can be adopted smoothly to the richer setting with priority-based preference.
As we shall see later in Chapter 10, these results are not confined to linear priority
orders and connected betterness relations: They generalize easily to partial priority
orders and betterness pre-orders.

The fundamental new contribution of this part of our book is that, for the first
time, reasons for preference have been included in a systematic logical account.
In doing so, we provided a formalization for the notion of extrinsic preference pro-
posed by von Wright. All this suggests that, in order to truly understand preference, a
more structured setting is called for. In the next Part V of this book, we will combine
the results achieved in Part III with those in Part IV, and elaborate this richer view of
preference in greater logical detail. Following that, in Part VI of this book, we will
show how this combination also makes sense in major areas of application, such as
deontics and game theory.



Part V
A Two-Level Perspective on Preference



Chapter 10
A Two-Level Perspective on Preference

10.1 Introduction

In Part III of this book,we presented a modal logic approach to preference and pref-
erence change via betterness relations. Then, in Part IV, we developed what might
be seen as a competing priority-based view of preference. These two perspectives
had different intuitions, both plausible and attractive. Even so, the question natu-
rally arises how the two are related. The aim of the present chapter is to draw a
comparison, connect them, and try to integrate them.

Clearly, despite the difference in starting point, the agendas and methods of
Part III and Part IV are very similar. There is preference structure which eventually
shows in possible worlds models, there are matching logical languages, and there are
dynamic actions that change preferences in a systematic manner. Can we have the
benefits of both? The purpose of this Chapter is to develop a two-level perspective on
preference models and preference change, that one can argue for from a conceptual,
but also a technical point of view. Conceptually, our main point is that von Wright’s
distinction between “intrinsic” and “extrinsic” preference, discussed in Chapter 1,
leaves both kinds natural as an aspect of human agency. We do not want to choose
between them, we want to be able to have both, and perhaps even switch between
them as the occasion arises. Technically, our main consideration is simply this: A
combination of the two views is quite feasible, and indeed, it makes us see a number
of interesting new logical questions. That, too, is a good reason for embarking on a
merge of our two preference levels.

To achieve all this, we will combine the systems of Chapters 3 and 7, putting
betterness and priority structure together. While this works well, we also get some
immediate issues. Notably, in this “two-level view”, there will then be two different
logics for preference change: one as dynamics of changing betterness orders, and
another as priority dynamics of changing reasons. In this chapter, we will study their
correlations in some technical detail. Our analysis finds some promising correspon-
dence results between the two levels, but we will also show that there is no simple
algorithm reducing changes at one level to those at the other. Thus, we conclude
once more that both levels are needed, also from a dynamic perspective. But we do
end with some thoughts on how the two levels can transform into each other, using
a technical representation result that will be explained below.
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More precisely, this chapter is organized as follows. Section 10.2 then merges
ideas from [117] and [6], extending the linear priority sequence to partial ordered
priority graphs. In particular, we extend the main representation theorem in [117] for
priority-induced total betterness relations to pre-orders, representing the more real-
istic case of possibly incomparable or even conflicting priorities. Now changes can
also take place at the level of priorities, and Section 10.3 studies its basic dynamics.

Next we discuss what logics are naturally supported by these priority structures,
and Section 10.4 explores, in particular, an interesting new interplay between an
“external” language of graph composition and the “internal” language of prioritized
descriptive propositions inside graphs.

We then turn to connections between the two paradigms. Given the occurrence
of dynamic changes at the two levels, Section 10.5 investigates their connections,
finding a general inclusion result from basic priority changes to PDL-definable bet-
terness transformers. But also, we find examples that show that there is no inclusion,
either way. Section 10.6 then discusses what this means for the interplay of extrinsic
and intrinsic preferences, in terms of logics and languages, though we do not pro-
pose any large merged system. Instead, we point out some new issues about prefer-
ence that arise here, different from the existing literature, such as the fundamental
role of dynamic operations of language change between the two levels.

We conclude that having both levels around in preference logic is important for
two reasons. First, it allows for more realistic and sophisticated modeling of pref-
erence scenarios – a theme developed at greater length for natural language and
general preference in [131], and for deontic reasoning in Chapter 11 below. But at
the same time, we show that the two-level view also has intrinsic attractions, being
a source of interesting new notions and logical problems.

10.2 An Extension to Priority Graphs

The idea of introducing priority in preference logic as discussed here comes from
[117] (explained in Chapter 7), in which betterness order of objects or worlds is
derived from a linearly ordered priority graph of “important propositions”, viewed
as properties of worlds or objects. However, we take a more general approach here,
since an assumption of linear order seems unrealistic for the priorities that determine
most of our preferences. Our main structures will be strict partial orders of propo-
sitions (“directed acyclic graphs”). In what follows, we start with some basic defi-
nitions, borrowing ideas from the seminal paper [6] that allow for partially ordered
priorities and pre-ordered betterness relations.

10.2.1 Priority Graphs and Extrinsic Betterness

The following definitions contain a “free parameter” for a language L that can be
interpreted in the earlier modal betterness models. For simplicity, we will take this
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to be a simple propositional language of properties – though generalizations are
possible.

Definition 10.1 (priority graph) A priority graph G = (P,<) is a strictly partially
ordered set of propositions in a language L .

Here is how one derives a betterness relation from a priority graph.

Definition 10.2 (betterness from a priority graph) Let G = (P,<) be a priority
graph, and M a model in which the language L defines properties of objects. The
induced betterness relation ≤G is defined as follows:

y ≤G x := ∀P∈G ((Py → Px) ∨ ∃P ′<P(P ′x ∧ ¬P ′y)).

This is best understood as follows. In principle, y ≤G x requires that x has every
property in the graph that y has. But there is a possibility of “compensation”: In
case y has P while x does not, this is still admissible, provided that there is some
property P ′ with higher priority in the graph where x does better: x has P ′ while y
lacks it.1

Remark 10.3 (on notation for propositions) For reasons of readability, we switch
notation here, and use capital letters P , A and B for propositions that occur in
priority graphs, rather than Greek letters ϕ, ψ .

For totally ordered graphs G , graph-induced betterness order reduces to the usual
lexicographic ordering (for details, cf. [131]):

y≤lin
G x := ∀P∈G (Px↔Py) ∨ ∃P ′∈G (∀P<P ′(Px↔Py)∧ (P ′x∧¬P ′y)).

At an opposite extreme, flat priority graphs have no links between different
propositions. In that case, our definition reduces to an order known from the area of
default reasoning (cf. [192]):

y ≤ f lat
G x := ∀P∈G (Py → Px).

We refer to [6] for many mathematical properties of priority graphs, a few of
which will be used later. For now, just note that, given a priority graph G and
a derived model MG = (S,≤G , V ), the latter may be viewed as a reason-based
betterness model in the sense discussed in Chapter 3.

10.2.2 An Extended Representation Theorem

The relations induced by priority graphs in betterness models have various special
features. For instance, it is easy to see the following:

1 There are a few differences here with the general approach in [6] that we do not spell out. In
particular, to make things comparable, note that each unary property P is naturally associated with
the binary relation P such that for all x and y, x Py iff Px implies Py.
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Fact 10.4 Priority graphs induce pre-orders in which betterness relations hold uni-
formly between whole “zones” of the model consisting of all worlds satisfying the
same propositions in our graph language.

This observation points the way to a more general issue. We have now described
how preference orders arise extrinsically from a priority structure. A natural con-
verse question is the following. If we start with a given betterness order, can we
always find some priority graph from which the given order is derived? The answer
is the following representation result, generalizing an earlier one for total orders
from [117]:

Theorem 10.5 Let M = (S,≤, V ) be any modal model, without constraints on its
relation. The following two statements are equivalent:

(a) The relation ≤ is a reflexive and transitive order.
(b) There is a priority graph G = (P,<) such that, for all worlds x, y ∈ S, y ≤ x

iff y ≤G x.

Proof In the direction from (b) to (a), it is easy to see from Definition 10.2 that all
relations ≤G induced by priority graphs are pre-orders.

Conversely, consider the direction from (a) to (b).We first define a “cluster” as a
maximal subset X of S such that ∀y, z ∈X : y ≤ z. Clusters exist by Zorn’s Lemma,
and different clusters are disjoint by their maximality. Each point x of the model M
belongs to a cluster, which we call Cx . Next, we define a natural ordering of clusters
reflecting that of the worlds.

C ′ � C if ∃y ∈ C ′, ∃x ∈ C : y ≤ x .

Next, we prove a connection with the given pre-order among objects:

Lemma 10.6 y ≤ x iff Cy � Cx .

Proof (⇒) By definition, x ∈ Cx and y ∈ Cy , so Cy � Cx .
(⇐) If Cy � Cx , then by definition ∃u ∈ Cx , v ∈ Cy with v ≤ u. So u ≤ x (since x
∈ Cx ) and y ≤ v (since y∈Cy) – and by transitivity, we also have y ≤ x . �

Now, consider the set of all clusters, viewed as nodes in a graph. We impose
an order of greater priority in the upward direction of the preceding cluster order.2

Note that this is not just a pre-order, but a strict acyclic partial order, since we have
identified objects in equivalence classes. Therefore, we indeed have a priority graph
G • in the sense of the above definition.

Now we need to show that the relation induced by the graph G • matches up with
the given betterness relation ≤ in the model M:

Lemma 10.7 y ≤ x iff y ≤G • x.

2 This choice of direction is just a convention – but we need to fix one in our proof.
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From left to right, assume that y ≤ x . We must show that y ≤G • x , i.e.,
∀P∈G •((Py → Px) ∨ ∃P ′<P(P ′x ∧ ¬P ′y)). So, consider any cluster propo-
sition P . If Py → Px , we are done. So, let Py ∧ ¬Px . Then we have P = Cy ,
since as before, our cluster propositions form a disjoint partition. Moreover, we
have Cy � Cx , by Lemma 10.6 applied to y ≤ x . But then, since Cy  = Cx (they
are disjoint, as x is not in Cy), we get Cy � Cx . It is easy to see that Cx is the
“compensating” property P ′ for x that we need for an appeal to the second disjunct
in Definition 10.2.

From right to left, let y ≤G • x . Consider the predicate P = Cy , for which Py
holds. First assume that Px . Since P (= Cy) is a cluster, we have y ≤ x . Next,
let ¬Px . By the “compensation clause” of y ≤ x , it follows that ∃P ′ < P: P ′x ∧
¬P ′y. Clearly, this predicate P ′ can only be Cx , and so Cy � Cx , Cy � Cx , and by
Lemma 10.6 once more, we get y ≤ x . �

This representation theorem may be viewed in several ways. It tells us that the
general logic of derived extrinsic betterness orderings is still just that of the earlier
pre-orders. But it also tells us that any pre-order can be “rationalized” as an extrinsic
reason-based one without disturbing the model as it is. We will return to this second
perspective in Section 10.4 below.

10.3 Basic Operations on Priority Graphs

A priority graph as a structured set of propositions naturally suggests dynamic
changes. New properties may become important to agents’ preferences, old ones
may become less important, or totally irrelevant. In this section, we introduce some
basic update operations on priority graphs.

10.3.1 Basic Graph Update

We start with very simple changes, represented in an algebraic format. These involve
the following two basic operations from [6]. Given any two priority graphs G , G ′,

• the sequential composition G ;G ′ adds the graph G on top of G ′ in the order: All
nodes in the first come before all those in the second,

• the parallel composition G ‖G ′ is the disjoint union of the graphs G and G ′,
without any order links between them.

One can either think about syntactic operations on actual graphs here, or about
corresponding terms in an algebraic formalism: We refer to the above-cited paper
for details of the match. What follows can be understood while freely switching
between these two perspectives.

Give a priority graph G , there are obvious options for placing a new proposition
A. One can make it the highest priority, or the lowest, or one may also rank it just
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side by side with G . Generalizing this placement of old and new material in a current
graph suggest the following notion:

Definition 10.8 (basic graph updates) Let “A” stand for the priority graph with one
single node A. The set α(G , A) of basic graph updates is defined by the following
inductive syntax rule:

α(G , A) := A | G1;G2 | G1‖G2.

Basic graph updates are about the simplest syntactic ways of combining a given
priority graph G with a new proposition A.

But clearly, there are other operations that change priority graphs. An obvious
counterpart to insertions are deletions, acts of “dropping an issue”:

Definition 10.9 (top deletion) The operation of top deletion on a (non-empty) pri-
ority graph G deletes all propositions that are not dominated by another in the
graph order, leaving the rest in its old order. We write del(G ) for the result of a
top deletion.

Still further operations would permute propositions in graphs, changing relative
importance (Chapter 9, [83]), or insert new propositions in intermediate positions.
But the present examples will suffice for showing the dynamics of what may be
called “priority management”.

10.3.2 Graph Algebra

Describing the dynamics at the present level invites algebraic analysis in a language
of terms and identities.

Here are some basic algebraic laws that hold for sequential and parallel compo-
sition of graphs from [6]3:

Fact 10.10 The following laws hold for graph-induced betterness relations:

(1) ≤G1‖G2 = ≤G1 ∩≤G2 .
(2) ≤G1;G2 = (≤G1 ∩≤G2)∪ ≤<G1

.

Based on these facts, we sometimes write a short-hand G1‖G2 ≡ G1 ∩ G2 and
also G1;G2 ≡ (G1 ∩ G2) ∪ G<

1 when matters are clear in context.
Next, call two priority graphs equivalent (denoted as ≡) if they induce the same

relation in every model. The same notion makes sense for algebraic terms, viewed
as describing priority graphs, and validity then has the obvious meaning.

As an illustration, we list a few simple algebraic properties that are validated by
the above definitions, as well as two useful identities for strict relations that will
return in Section 10.5 below:

3 Again, these should be read keeping in mind the close connection between priority graphs and
algebraic terms formed with the operations ; , ‖.
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Fact 10.11 The following algebraic equations are valid:

(1) G ;G ≡ G .
(2) G ‖ G ≡ G .
(3) G1 ‖ G2 ≡ G2 ‖G1.

(4) (G1 ‖ G2)
< ≡ (G<

1 ‖ G2) ∪ (G1 ‖ G<
2 ).

(5) (G1;G2)
< ≡ (G<

1 ∪ (G1 ‖ G<
2 )).

We leave the simple proofs of these identities to the reader.

10.4 Logics for Priority and Extrinsic Preference

Like the earlier betterness structure of possible worlds, priority structure invites
simple logical languages that can bring out key features of reasoning. We will define
a few of these, linking up with the existing literature, and suggesting a number of
new topics that deserve attention. But our aim in this chapter are not the logical
systems per se. We discuss them mainly as additional evidence for the naturalness
of making priority structure explicit.

10.4.1 Modal Logic of Graph-Induced Betterness

The simplest way of putting priority structure into a modal language of the sort we
have used many times before for betterness models is found in [83]. We introduce
modalities that are labeled by priority graphs inducing the accessibility relations.
Moreover, in this setting, it is useful to add a device from hybrid modal logic, viz.
nominals: special proposition letters that are true at one world only (cf. [9] for a full
account of this device).

Definition 10.12 (modal graph language) LetΦ be a set of propositional variables
with p ∈ Φ, and Nom a set of nominals with n ∈ Nom. Let G be a set of graphs with
the variable G ranging over G. The modal graph language is then defined by the
following syntax rule:

ϕ := n | p | ¬ϕ | ψ ∧ ϕ | 〈G 〉ϕ | 〈G 〉<ϕ | Eϕ.
G := G1;G2 | G1 ‖ G2.

If we drop the graph symbols, we get the basic betterness modalities. The seman-
tic structures described by the modal graph language may be viewed as having fam-
ilies of extrinsic betterness relations, with the priority graphs supplying the reasons
for the preference.4

Definition 10.13 (modal graph model) A modal graph model is a tuple M =
(S,G,≤G , V ), where S is a non-empty set of possible worlds, G a set of graphs, ≤G

4 We will discuss possible co-existence of extrinsic graph-based with intrinsic primitive betterness
relations in Section 10.4.2 below.
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a family of betterness relations induced by graphs G ∈ G , and V :Φ∪Nom → P(S)
is a valuation assigning sets of worlds to propositional variables, and singleton sets
of worlds to members of Nom.

Definition 10.14 (truth definition) Given a modal graph model M, the truth defi-
nition for formulas is as follows, omitting obvious Boolean cases:

(1) M, s |� n iff {s} = V (n).
(2) M, s |� p iff {s} ∈ V (p).
(3) M, s |� 〈G 〉ϕ iff for some t with s ≤G t , M, t |� ϕ.

(4) M, s |� 〈G 〉<ϕ iff for some t with s <G t , M, t |� ϕ.

Now, given the analysis of graph-induced relations in Section 10.4, complex rela-
tions ≤G can be recursively reduced to basic betterness relations using the graphs
identities stated in Fact 10.10:

G1‖G2 ≡ G1 ∩ G2 and G1;G2 ≡ (G1 ∩ G2) ∪ G<
1 .

As for the logic of this language of extrinsic preference – at least when the graphs
are finite, [83] presents a complete axiomatization. Its main axioms follow the iden-
tities formulated in Facts 5.3 and 5.4:

〈G1‖G2〉n ↔ 〈G1〉n ∧ 〈G2〉n.
〈G1‖G2〉<n ↔ (〈G1〉<n ∧ 〈G2〉n)∨(〈G1〉n ∧ 〈G2〉<n).
〈G1;G2〉n ↔ (〈G1〉n ∧ 〈G2〉n) ∨ 〈G1〉<n.
〈G1;G2〉<n ↔ (〈G1〉n ∧ 〈G2〉<n) ∨ 〈G1〉<n.

These axioms allow one to reduce complex priority relations to simple ones, after
which the whole language reduces to the modal logic of weak and strict atomic
betterness orders (cf. Chapter 4). In particular, this modal graph logic encodes the
graph algebra of [6], while it also remains decidable.5

10.4.2 Internal Versus External Graph Language

The preceding language describes graph-induced betterness structure at worlds.
However, it does not describe the equally natural “internal language” L of the
graphs, that we used to define priority graphs in the first place. Confusing the two
may lead to curious phenomena:

Example 10.15 (dangers of self-reference) If assertions inside graphs can contain
modalities for the induced strict betterness order <, then we can have a graph con-
sisting of just the proposition A =〈<〉� (alone, and hence in top position) saying
that “there is a strictly better world”. But this gives a sort of Liar Paradox: A world
satisfying this A should be maximal in the induced order, but by the definition of A
it cannot be maximal!

5 There is a translation into the decidable two-variable fragment of first-order logic.
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Finding “harmless” modal extensions for the purely propositional internal graph
language seems an interesting open problem. In what follows we stick with the basic
case, emphasizing other issues.

An evident next task is an extension of our system for valid reasoning. We already
have the general graph algebra for ; and ‖ of [6]: see Section 10.3.2 above. But
the internal language also generates further valid principles. For instance, one can
replace propositions in priority graphs by logical equivalents without change in their
induced relations. Here is a general fact:

Theorem 10.16 The modal logic encoding both the external and the internal graph
algebra is completely axiomatizable.

Proof This can be shown as follows. We already have the above complete modal
logic for the external algebra of ; and ‖. The only thing we need to add is a descrip-
tion of specific propositions in graphs. And given the earlier reduction argument
for complex graphs, it suffices to just give a valid axiom for graphs consisting of a
single proposition A. Here it is:

〈A〉ϕ ↔ (E(A ∧ ϕ) ∨ (¬A ∧ Eϕ)).

It is easy to check that this equivalence valid. �

The attraction of this logic shows in concrete graph transformations:

Example 10.17 (distributive normal form under priority) The graph A; B is equiv-
alent to the graph A ∧ B; A ∧ ¬B; ¬A ∧ B; ¬A ∧ ¬B. This can be shown by
computing the relations in both cases using the above special axiom (Fig. 10.1).

Fig. 10.1 Two equivalent
graphs

In particular, the proof of Theorem 4.4 in our earlier Chapter 4 suggests a general
principle that holds in this internal graph algebra. Its representation method for pre-
orders introduced a graph of propositions that formed a disjoint partition of the
whole domain of worlds. Likewise, using the above completeness theorem, one can
prove:

Fact 10.18 Each priority graph has an equivalent graph whose propositions form
a partition of the logical space.6

6 The main idea is that, like with distributive normal forms in propositional logic, one can effec-
tively transform any given priority graph into an equivalent one where the propositions are com-
plete conjunctions of literals for all relevant proposition letters.
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Many other language issues make sense for priority structures, but the themes
introduced here may suffice to show their interest.7 By making graphs explicit, we
have replaced dynamics by statics, since talking about a graph update will now
match earlier reduction axioms. For instance, 〈A;G 〉ϕ↔ 〈⇑〉〈G 〉A.

Also, finding a logic for deleting items from a graph is an open problem in [83].
But it depends on how one casts the language. E.g., restricting attention to linear
graphs, add an operator ‘head’ from graphs to their topmost proposition, and an
operator ‘tail’ producing the rest of the graph. Now we do get a logic of deletion,
with obvious valid principles such as 〈G 〉ϕ ↔ 〈head(G ); tail(G )〉ϕ.

More syntactic views of priority graphs Our final point is very different in thrust. The
above logics all view priority graphs from a semantic perspective, by focusing on
their derived betterness orders. But it is also very natural to view priority graphs as
syntactic objects where syntactic manipulations can have effects of their own, even
when they do not change the induced betterness order. This more fine-grained view
lies behind the syntactic “agenda dynamics” of [39]. A syntactic change in a graph
may be viewed as an intensional change in the presentation of one’s reasons for
preference, akin to performing an inference step.8 Indeed, fine-grained deductive
exploration of the effects of priority structure occurs, for instance, in much legal
reasoning (cf. [90]). We think that adding such a more syntactic view of preference
structure, with a matching more fine-grained graph dynamics makes sense, but leave
this for another occasion.

While language design is not the main topic of this chapter, this Section will have
illustrated that the priority level suggests much richer “preference logics” than the
usual formalisms going by that name.

10.5 Relating Betterness and Priority Dynamics

Having completed our development of priority-based preference logic, the question
arises how graph update matches with the betterness dynamics in Chapter 4. To
study the connection, we first introduce a technical notion:

Definition 10.19 Let α: (G , A) → G ′, with G , G ′ priority graphs, and A a new
proposition. Let σ be a map from (≤, A) to ≤′, where ≤ and ≤′ are betterness
relations over worlds. We say that α induces σ , if always:

σ(≤G , A) = ≤α(G ,A)
We call the operation α PDL-definable if it induces a relation transformer σ that is
PDL-definable in the format of Chapter 4.

7 One obvious connection is with the dynamic betterness logics of Chapter 4.
8 Reference [190] extends current semantic dynamic epistemic logic to systems that can deal with
syntactic acts of inference.
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10.5.1 Cases of Harmony

We first look at two uniformly definable cases where priority dynamics is a per-
fect match with betterness dynamics. We start with our pilot example for betterness
change from Chapter 4, that of “suggestions”.

Fact 10.20 Taking a suggestion A given some betterness relation over worlds is
induced by the following basic graph update at the priority level: G ‖A. More pre-
cisely, the following diagram commutes:

(G ,<)
‖A ��

��

((G ‖A),<)

��
(W,≤) �A �� (W, �A(≤))

Proof We need to prove the following equivalence:

y ≤G ‖A x iff y �A(≤G ) x .

(⇐) After �A the relation between y and x becomes this:

�A(≤G ) := (?A;≤G ; ?A) ∪ (?¬A;≤G ; ?¬A) ∪ (?¬A;≤G ; ?A).

In terms of a relation between arbitrary worlds x and y, the above three cases give
the implication Ay → Ax . By y ≤G x , we also have that ∀P∈ G : Py → Px . Hence
we get ∀P ∈ G ‖A((Py → Px) ∨ ∃P ′ < P (P ′x ∧ ¬ P ′y)), and this is precisely
what y ≤G ‖A x says.

(⇒) Let y ≤G ‖A x , that is, ∀P ∈ G ‖A((Py → Px) ∨ ∃P ′ < P (P ′x ∧ ¬ P ′y)).
In particular, it cannot be the case that Ay ∧¬Ax . Thus, out of all pairs in the given
relation R, those satisfying (?A;≤G ; ?¬A) can no longer occur. This is precisely
how we defined the relation y �A(≤G ) x . �

Simple as it is, this argument shows how natural order-changing operations at
both levels of our preference models can be tightly correlated.

Next, consider a priority graph (G ,<), with a new proposition A added on top.
The dynamics at the two levels is now correlated as follows:

Fact 10.21 Prefixing a new proposition A to a priority graph (G ,<) induces the
radical upgrade operation ⇑A on possible worlds models. More precisely, the fol-
lowing diagram commutes:

(G ,<)
A;G ��

��

((A;G ),<)

��
(W,≤) ⇑A �� (W,⇑ A(≤))
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Proof Again, we have to prove a simple equivalence:

y ≤A;G x iff y ⇑A(≤G ) x .

(⇐) After the operation ⇑A, the relation between y and x is:

⇑A(≤G ) := (?A;≤G ; ?A) ∪ (?¬A;≤G ; ?¬A) ∪ (?¬A;�; ?A)

Call these disjuncts (a), (b) and (c), respectively. We prove y ≤A;G x , i.e.:

∀P ∈ A;G : ((Py → Px) ∨ ∃P ′ < P(P ′x ∧ ¬P ′y))
With disjunct (a) and (b), the new predicate A in top position does not distinguish
the worlds x, y , and hence their order is determined by just that in G . With disjunct
(c), since (Ax ∧ ¬Ay), for any pair of y and x , A is the compensating predicate G ′
in A;G that we need for Definition 10.2. Thus in all cases, we have y ≤A;G x .

(⇒) Let y ≤A;G x . There are two cases. (i) For all P ∈ A;G (Py → Px). In
particular then, Ay → Ax , and we get disjuncts (a) and (b). (ii) For all P ∈ A;G ,
there is a P ′ ∈ A;G such that (P ′x ∧ ¬P ′y). Then P ′ = A or P ′ ∈ G . If P ′ = A,
Ax ∧ ¬Ay, and we get disjunct (c). If P ′∈G , then, by the prefixing, A < P ′, by
assumption we have Ay → Ax , and again we get truth of the disjuncts (a) and (b).

�
These perspicuous diagrams show that the two kinds of dynamics can dovetail

very well, reinforcing our general idea of two level preference.

10.5.2 General Connections

We now develop this theme in more generality. For a start, one can think of the
preceding connections in two different ways: from priority-level transformers to
matching world-level relation transformers, or vice versa, from world-level trans-
formers to inducing priority-level transformers. We will show that some positive
matches hold, explaining our examples.

Theorem 10.22 Basic graph updates induce PDL-betterness transformers.

Proof There are various ways to prove this result, that have independent interest,
but here we only give one by brute enumeration:

Lemma 10.23 All basic graph updates reduce to a finite set of cases.

Up to graph equivalence, all basic graph updates reduce to the 5 cases listed in
Tables 10.1 and 10.2. These two tables show closure under the two basic operations;
and ‖, respectively:

We just do a few cases as an example, using our earlier observations in
Section 10.3 on valid principles for the algebra of equivalent priority graphs:

Table 10.1 Sequential
composition

; A G A;G G ; A A ‖ G

A A A;G A;G A;G A;G
G G ; A G G ; A G ; A G ; A
A;G A;G A;G A;G A;G A;G
G ; A G ; A G ; A G ; A G ; A G ; A
A ‖ G A ‖ G A ‖ G A ‖ G A ‖ G A ‖ G
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Table 10.2 Parallel
composition

‖ A G A;G G ; A A ‖ G

A A A ‖ G A;G G ; A A ‖ G
G A ‖ G G A ‖ G G ; A A ‖ G
A;G A;G A ‖ G A;G A ‖ G A ‖ G
G ; A A ‖ G G ; A A ‖ G G ; A A ‖ G
A ‖ G A ‖ G A ‖ G A ‖ G A ‖ G A ‖ G

(1) (A;G ); (A ‖ G )
≡ ((A;G ) ∩ (A ∩ G )) ∪ (A;G )<
≡ (((A ∩ G ) ∩ A<) ∩ (A ∩ G )) ∪ (A< ∪ (A ∩ G<))

≡ ((A ∩ G ) ∪ (A< ∩ G )) ∪ (A< ∪ (A ∩ G<))

≡ (A ∩ G ) ∪ (A< ∪ (A ∩ G<))

≡ (A ∩ G ) ∪ A<

≡ A;G

(2) (A ‖ G ); (A;G )
≡ ((A ∩ G ) ∩ (A;G )) ∪ (A ‖ G )<

≡ ((A ∩ G ) ∩ ((A ∩ G ) ∪ A<)) ∪ ((A< ∩ G ) ∪ (A ∩ G<))

≡ (A ∩ G ) ∪ (A< ∩ G ) ∪ (A< ∩ G ) ∪ (A ∩ G<)

≡ (A ∩ G ) ∪ (A< ∩ G ) ∪ (A ∩ G<)

≡ A ∩ G
≡ A ‖ G

(3) (A;G ) ‖ (G ; A)
≡ ((A ∩ G ) ∪ A<) ∩ (G ∩ A) ∪ P<)
≡ (((A ∩ G ) ∪ A<) ∩ (G ∩ A)) ∪ (((A ∩ G ) ∪ A<) ∩ P<)
≡ ((A ∩ G ∪ (A< ∩ P)) ∪ ((A ∩ P<) ∪ (A< ∩ P<))
≡ (A ∩ G ) ∪ (A ∩ P<)
≡ A ∩ G
≡ A ‖ G .

Using these tables, a simple induction shows that all basic graph updates as
defined above fall in the listed finite set.

Our final observation is that all these operations indeed induce PDL-definable
betterness transformers, by the analysis in Section 10.5.1. �

We can even see a little more, by inspecting the form of the PDL programs for
basic graph updates. These are all “flat forms” in the sense of Section 4.3, without
iterated occurrences of the input relation R.9

Finally, we can extend the scope of the theorem a bit by allowing the “empty
priority graph” that puts no restrictions on orderings. It clearly induces the universal

9 This can also be used in an alternative proof for Theorem 10.22: In particular, the flat-format
definable relations are closed under taking intersections.
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relation between worlds, matching the universal modality, and this was indeed one
more atomic relation in the PDL-format of Chapter 4.

10.5.3 Obstacles to a Complete Match

Despite our positive result, we doubt that a general reduction is possible between
world-level and graph-level preference transformations. For a start, this has to do
with general obstacles to defining induced maps:

Fact 10.24 The top deletion operation del(G ) is not PDL-definable.

Proof Assume that some relation transformer σ defines graph top deletion in the
sense of Definition 10.3.1. Consider the following two graphs (Fig. 10.2):

Fig. 10.2 Deletion

Here, G consists of two propositions A and B, A on top of B, while G ′ has three
propositions, two copies of A on top of B, one A on top of the other. Then, syn-
tactically, del(G ) is the new graph that contains only B, and while del(G ′) is the
original graph G .

Clearly, we then have the following two facts:

(a) ≤G=≤G ′ , whereas (b) ≤del(G )  =≤del(G ′).

But, by our assumption, the relation transformer σ also satisfies

≤del(G )= σ(≤G ) = σ(≤G ′) =≤del(G ′).

This is the required contradiction. �

This counter-example illustrates a more general difference in dynamics: Deletion
in graphs is hard to mimic at the level of induced orderings, as we throw away
syntactic information that is not visible in the input model.10

But also conversely, there is no general match. Not all simply definable betterness
transformers in Chapter 4 have inducing graph counterparts:

Fact 10.25 Not all PDL-definable operations are graph-definable.

10 Similar difficulties with deletion were found for “agenda dynamics” in [83].
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Proof Here is a counter-example. Not all betterness transformers preserve the base
properties of reflexivity and transitivity. To see this, consider ?A; R, that is: “keep
the old relation only when A is true”. This does not preserve reflexivity, as ¬A-
worlds have no relations any more. So this relation-transformer cannot be defined
using a partial priority graph. �

This betterness transformer amounts to a refusal to henceforth make betterness
comparisons at worlds that lack property A. We regard such more general betterness
transformers as bona fide mind changes of an agent.11

10.6 Discussion and Conclusion

The conclusion that we draw from our technical analysis in the preceding section
is that, while priority dynamics and betterness dynamics have a significant overlap,
they also have features of their own that resist reduction. This reinforces our earlier
point, made for independent reasons of natural modeling, that we want both intrinsic
and extrinsic preference as options for agents, with extrinsic preferences having their
reasons encoded in priority graphs that are part of the model.

Two-level models Thus, we think that preference logic should work over “two-level
models” having both priority structure and betterness relations (cf. [131]). Indeed,
even in those cases where the betterness is indeed priority-based, and a “reduction”
would be possible in principle, the two levels still offer an interesting option between
two ways of describing dynamics. For instance, [48] present illustrations of how this
freedom works as different strategies for achieving the same evaluation change for
worlds in deontic and legal reasoning. But in general, two-level models may be
“sui generis”, having both reason-based extrinsic and primitive intrinsic betterness
relations, and different actions at both levels changing these.

We will not explore the formal logic of this combined perspective in this chapter,
but we end with a point of language dynamics.

Intrinsic preference, extrinsic preference, and language change In the spirit of this
chapter, one can now use two-level models having both a graph-based extrinsic
betterness relation and an intrinsic betterness relation that may reflect the agent’s
feelings or prejudices. But the contrast is relative, not absolute.12 In particular, this
contrast can be dissolved by means of a form of dynamics that is largely outside the
scope of dynamic-epistemic logic, the main paradigm used in this chapter, viz. the
phenomenon of language change.

11 It is an interesting open problem if all PDL-flat-format-definable betterness transformers that
always generate pre-orders are definable by syntactic graph updates.
12 A nice illustration is deontic logic. If I obey the command of a higher moral authority, I may
acquire an extrinsic preference, whose reason is obeying a superior. But for that higher agent, that
same preference may be intrinsic: “The king’s whim is my law”.
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An agent can literally rationalize a given intrinsic betterness relation by provid-
ing reasons for it. Sometimes, this may even be done within the given language, say,
when the indifference classes (“clusters”) of the relation are definable in terms of
our modal formulas.13 Alternatively, one can think of this someone else observing
an agent’s preferences, and postulating reasons for them. This is closer to the notion
of “revealed preference” as studied in the economics literature: cf. [111] and our
brief discussion in Chapter 12. But then, in general, the reasons may have to come
from some other, usually richer language than the original one that we started with:
We are witnessing a dynamic act of language creation.

Now, here is where our earlier representation result Theorem 10.5 comes in once
more. What it shows is that pre-orders can always be rationalized in terms of suit-
able propositions partitioning the domain of worlds. And hence, it licenses, at least
in principle, language extensions that can rationalize any given intrinsic betterness
order. In our view this language dynamics is the right way of viewing the contrast
between intrinsic and extrinsic preference. As a consequence, while not going back
on our claim that two levels are needed in an account of preference, these levels of
representation can be in flux, with changes from one to the other.14

Conclusion In this chapter, we have explored the idea that preference should be
represented at two levels, both as betterness among worlds and as priority among
propositions. We have shown that both levels support significant logical structure,
and that the two are connected, though not reducible, in interesting ways. Our main
results are technical, extending and explaining earlier work in preference dynamics.
But we do think that the resulting picture of preference offers a more realistic view
of how preferences are structured and can be changed, that can be applied to many
areas. One of these is deontic reasoning, as we will demonstrate in Chapter 11 below.
Another illustration is belief revision, as we have briefly indicated in Chapter 9.

This more richly structured picture of preference statics and dynamics is the final
version of the theory proposed in this book. The remaining chapters will provide
some exploration of its repercussions in other areas.

13 It is an interesting technical problem just when such definitions are possible.
14 This dynamic take on what may be called the “act of representation” has independent logical
interest: Representation constructions suggest language dynamics.
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Chapter 11
Deontic Reasoning

11.1 Introduction

Deontic logic is the logical study of normative concepts such as obligation, prohibi-
tion, permission and commitment. As we will see in this chapter, it is a very natural
setting for with preference logic, both in its static versions (cf. [96, 183]) and in
terms of the new dynamic systems of this book [48].

Normative concepts can be naturally made sense of in terms of an “ideality”
ordering ≤ on possible worlds, as stated in Moore’s work Principia Ethica:

[...] to assert that a certain line of conduct is [...] absolutely right or obligatory, is obviously
to assert that more good or less evil will exist in the world, if it is adopted, than if anything
else be done instead.1

Depending on the properties of ≤, different logics will then be obtained. In particu-
lar, [96] starts with a ≤ which is only reflexive, moving then to total pre-orders.

In this chapter we are going to re-explore established ideas developed for the
preference-based semantics of deontic logic in the light of recent studies in the
modal logic of preference (in particular, the preceding parts of this book as well as
[83]). Our treatment starts from the well-known semantics for dyadic obligation first
introduced in [96], where dyadic obligations of the type “it is obligatory that ϕ under
condition ψ” are interpreted by making use of a comparative “ideality relation” and
the notion of maximality:

(1) M, s |� O(ϕ | ψ) iff Max(||ψ ||M) ⊆ ||ϕ||M.
where ||.||M denotes the truth-set function of M and M is a model built on a pos-
sible worlds frame F = (S,≤). In this frame, the states in S are ordered according
to the ideality relation ≤. Although Formula (1) has been an object of many criti-
cisms,2 variations gave rise to several studies in the preference-based semantics of

1 Cited in [78, p. 6].
2 One criticism is that Formula (1) makes conditional obligations lack the property of antecedent
strengthening (see [181]). This, however, makes perfect sense in our view as it is precisely what
needs to follow from the idea of “most ideal worlds”.

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
DOI 10.1007/978-94-007-1344-4_11, C© Springer Science+Business Media B.V. 2011
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deontic logic, which enjoyed considerable attention up till the 1990s.3 In this light,
the present chapter provides a “fresh look at an old idea” and offers an attempt at
reviving this tradition by reinterpreting it in the light of recent developments in the
modal logic of preference. More specifically, the insights given by Formula (1), will
be extended by developing the following points: (i) the ideality order–which is much
like our earlier “betterness” relation–can be fruitfully viewed as generated by a set
of explicitly prioritized criteria; (ii) both the betterness relation and the priorities on
criteria naturally support a dynamic point of view, giving rise to a richer system of
deontic dynamics as based on preference logic. This latter point also brings deontic
logic closer to the family of dynamic logics of belief and preference change [32].

More in detail, this chapter is structured as follows. Section 11.2 introduces the
machinery of priority sequences from Chapter 7 to provide an original account
of “contrary-to-duty-obligations (CTDs)”. We will make a brief logical excursion
showing how the deontically important notion of “best” can be defined in our frame-
work. Section 11.3 then capitalizes on this richer modeling, and applies the type of
perspective on deontics obtained by juxtaposing the “semantic” view of deontics
yielded by betterness relations with the “syntactic” view of deontics yielded by pri-
ority sequences. In particular, we discuss two classical topics: Anderson’s reduction,
and the Chisholm Paradox. Section 11.4 continues with applying some further tech-
niques introduced in Chapter 10 to study betterness dynamics, identifying, in partic-
ular, a correspondence between “syntactic” normative changes, and “semantic” ones
at the level of the betterness relation. Section 11.5 concludes with our broader views.
Finally, we have added an Appendix (based on the working paper [119]) showing
how the ideas of this chapter find a natural continuation in a more linguistic topic
related to deontic reasoning, viz. the semantics of imperative expressions.

11.2 Priorities, Betterness and CTDs

The betterness relation between states involved in the preference-based semantics
of obligations (Formula 1) is, often, a sort of betterness derived from some kind of
explicit “coding” of what is better in terms of relevant properties, as the following
quote from St. Paul illustrates in a lively manner:

It is good for a man not to touch a woman. But if they cannot contain, let them
marry: for it is better to marry than to burn. [177, Ch. 7]4

This is, in the terminology of deontic logic, a typical contrary-to-duty structure [153]
expressing what states are best, what states are best among the non-best ones, and
so on, up to a finite depth. In the following sections we will briefly discuss this type
of structures in the light of notions and results developed in Part III and IV, and
illustrate them by formalizing a classical example of CTD obligations.

3 See [183] for an overview of this area of investigation.
4 This passage is cited in [78, p. 6].
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11.2.1 Priority Sequences

This section introduces the formal notions shaping the sort of ideality ordering with
which we will work. To adopt the current context, we re-state some definitions in
our new notations.

Definition 11.1 (P-sequence) Let L(P) be a propositional language built on the set
of atoms P, S a non-empty set of states and I : P −→ 2S a valuation function. A
P-sequence for I is a tuple BI = (B,<) where5:

• B ⊂ L(P) with |B| < ω;
• < is a strict linear order on B;
• for all ϕ,ψ ∈ B, ϕ < ψ iff ||ψ ||I ⊂ ||ϕ||I .

where ||ϕ||I denotes the truth-set of ϕ according to I. The set of all P-sequences
for I is denoted BI . Given a P-sequence BI for I denote with Max(BI) the maxi-
mum element of BI . Also, we denote with Max+(BI) the maximum element of BI
which has a non-empty denotation according to I, if it exists, or � otherwise.

In other words, a priority sequence is a finite chain of distinct propositional for-
mulae ϕn < · · · < ϕ1 from a language L(P)whose denotations form a finite ascend-
ing chain of sets ||ϕ1||I ⊂ · · · ⊂ ||ϕn||I .6 For this reason they can be referred to as
lists ϕ1, . . . , ϕn of elements with |B| = n.7 It is worth stressing that a P-sequence is
always relative to a valuation function for its propositions. If ||ϕ1||I and ||ϕ2||I are
incomparable with respect to set-theoretic inclusion, then they cannot be part of the
same P-sequence for I.

We now define a simple way to order states according to a given P-sequence.

Definition 11.2 (deriving preferences from P-sequences) Let B = (B,<) be a
P-sequence, S a non-empty set of states and I : P −→ 2S a valuation function. The
preference relation ≤I M

B ⊆ S2 is defined as follows:

(2) s ≤I M
B s′ := ∀ϕ ∈ B : s ∈ ||ϕ|| ⇒ s′ ∈ ||ϕ||.

where I M is just a mnemonics for “implication”. Given a P-sequence B for a valu-
ation I, Formula (2) generates also a Kripke model MI M

B = (S,≤I M
B , I).

Intuitively, Definition 11.2 orders states in S according to which elements of the
P-sequence they satisfy. If a state satisfies a property in the sequence, then it also
satisfies, by Definition 11.1, all <-worse properties in the sequence. We therefore
obtain an order on states with the following properties.

5 When no confusion arises we will often drop the superscript in BI .
6 When no confusion arises we will often drop the subscript in ||ϕ||I .
7 It might be instructive to notice that Definition 11.1 could be restated by requiring the elements
of the sequence to be disjoint in I, instead of being ordered according to a finite ⊆-chain (see [131]
for further details).
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Fact 11.3 (Properties of ≤IM
B ) Let B = (B,<) = (ϕ1, . . . , ϕn) be a P-sequence

for I : P −→ 2S. It holds that:

(1) Relation ≤I M
B is a total pre-order

(2) If ϕi < ϕ j then for all s ∈ ||ϕi ||, s′ ∈ ||ϕ j ||: s ≤I M
B s′;

(3) If ϕi < ϕ j then for all s ∈ ||ϕi ∧ ¬ϕ j ||, s′ ∈ ||ϕ j ||: s <I M
B s′.

Proof The first claim is straightforward as to reflexivity, transitivity and connect-
edness. As to converse well-foundedness, note that P-sequences are finite. So, if
the cardinality of a P-sequence is n, it generates a total pre-order consisting of at
most n + 1 clusters of equally good states. Hence the strict part of the pre-order
contains only bounded chains. The second and third claims follow directly from
Definitions 11.1 and 11.2. �

The following is worth noticing. Given a P-sequence ϕn < · · · < ϕ1, the ≤I M
B -

minimal states in S are the one satisfying ¬ϕn , if such states exists. In fact, it can
be the case that ||ϕn|| = S, i.e., ϕn = �. In such a case, the ≤I M

B -minimal states
are therefore the states satisfying ¬ϕn−1. This suggests that any ϕn < · · · < ϕ1
P-sequence such that ||ϕn||  = S could be completed to a sequence ϕn+1 < ϕn <

· · · < ϕ1 where ϕn+1 = �.

11.2.2 P-Sequences and CTDs

The example below is a “classic” of deontic logic and illustrates in a straightforward
way the problem of CTDs [77]. We show how P-sequences can represent it in a
natural way.

Example 11.4 (gentle murder) Here is the example:

Here is the problem: Let us suppose a legal system which forbids all kinds of murder, but
which considers murdering violently to be a worse crime than murdering gently. [. . . ] The
system then captures its views about murder by means of a number of rules, including these
two:

1. It is obligatory under the law that Smith not murder Jones.
2. It is obligatory that, if Smith murders Jones, Smith murders Jones gently. [77, p. 194]

The scenario makes explicit two classes of ideality: a class (let us call it I1) in
which Smith does not murder Jones, i.e. I1 := ¬m; another one (let us call it I2),
in which either Smith does not murder Jones or he murders him gently, i.e., I2 :=
¬m ∨ (m ∧ g). We thus have a P-sequence B such that I2 < I1. Such P-sequence
is sufficient to order the states – according to the corresponding ≤I M

B relation – in
three clusters such that the most ideal states are the ones satisfying I1, the worse
but not worst states are the ones that satisfy V1 := ¬I1 but at the same time I2 and,
finally, the worst states are the ones satisfying V2 := ¬I2 (and hence V1 too). This
is depicted in Fig. 11.1.
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Fig. 11.1 Gentle murder

I1 V1 ∧ I2 V1 ∧ V2

> >

To sum up, the intuition behind a P-sequence p1, . . . , pn for a given interpreta-
tion function is that each atom pi gives rise to a bipartition {I(pi ),−I(pi )} of the
domain of discourse S, and the more we move towards the right-hand side (i.e., the
bottom) of the sequence the more atoms pi are falsified. As shown by Example 11.2,
in a deontic reading this simply means that, the more we move towards the right-
hand side of the sequence the more violations hold.

11.2.3 “To Make the Best of Sad Circumstances”

Although Example 11.2 has nicely illustrated how a CTD structure can be rendered
by a P-sequence, it still remains to be shown how the basic CTD reasoning oper-
ates on such structures. The idea is to express how “to make the best out of sad
circumstances” [96]. On a P-sequence this means, intuitively, take the best states
that survive the “sad circumstances”. To make this precise we have to introduce the
following refinement of Definition 11.1, which relativizes the notion of P-sequence
to the occurrence of given circumstances.

Definition 11.5 (restricted P-sequences) Let B = (B,<), with |B| = n and B ⊂
L(P), be a P-sequence for I : P −→ 2S . The restriction of B to a formula ψ of
L(P) is a structure Bψ = (Bψ,<ψ) where:

• Bψ := {ϕi ∧ ψ | ϕi ∈ B};
• <ψ := {(ϕi ∧ ψ, ϕ j ∧ ψ) | (ϕi , ϕ j ) ∈<}.
Given a restricted P-sequence Bψ for I, we denote with Max(Bψ) the maximum
element of Bψ . Also, we denote with Max+(Bψ) the maximum element of Bψ
which has a non-empty denotation according to I, if it exists, or ψ otherwise.

Intuitively, the restriction of a P-sequence with respect to (the interpretation)
of a formula ψ simply intersects the elements of the original P-sequence with ψ
and keeps the original linear order. The result of such operation bears effects for
the Max+ of the P-sequence. Typically, Max+(B) might differ from Max+(Bψ)
as ||1B ∧ ψ || (i.e., the intersection of the maximum element of B with ψ) might
be empty. Notice that if all elements in Bψ turn out to be empty for a given I,
Max+(Bψ) is taken to be ψ itself (cf. Definition 11.1).

Example 11.6 (gentle murder (continued)) Consider the P-sequence of the Gentle
murder given in Example 11.2: B = (I1, I2). The restricted P-sequence BV1 is
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then (I1 ∧ V1, I2 ∧ V1). In such a sequence the top element has necessarily an
empty denotation. This means that the best among the still available states are the
states Max+(BV1) = I2 ∧ V1 (see Definition 11.5). Another interesting restricted
P-sequence in the Gentle murder context is BV2 , which describes what the original
P-sequence prescribes under the assumption that also the CTD obligation “kill gen-
tly” has been violated. In this case Max+(BV2) = V2, that is to say, if also the last
CTD obligation has been violated, then we end up in a set of all equally bad states.
This illustrates a characteristic feature of all finite CTD structures.

Stated more positively, our approach, including the logical elaboration to follow,
provides a simple perspective the robustness of norms and laws viewed as CTD
structures: They can still function when transgressions have taken place.

Other major deontic puzzles can be dealt with as in Examples 11.2–11.6. As
an illustration, Section 11.3.2 will propose an analysis of the Chisholm Paradox.
Before moving to the next section, it is worth mentioning that representing CTD
structures as finite chains of properties is not a new idea in the literature on deontic
logic. To the best of our knowledge, this idea was first adumbrated informally in
[78]. The first formal account of CTD structures as sequences of formulae is to be
found in [86], where an elegant Gentzen calculus is developed for handling formulae
of the type ϕ1 ⊗ . . .⊗ ϕn with ⊗ a connective representing a sort of “sub-ideality”
relation in a CTD structure. Unlike this proof-theoretic approach, our approach is
geared towards semantics and aims at connecting such CTD structures to modal
logics interpreted on orders, and ultimately to conditional obligations in the standard
maximality-based semantics (Chapter 3).8

11.2.4 ‘Best’ in Modal Betterness Logic

In this chapter we assume all results about modal betterness logic obtained in
Chapter 3. Here, we repeat some relevant parts of our discussion of the expressive
power of that language, and see how to define “best”, as this notion plays a central
role in deontic contexts.

The very first semantics for dyadic deontic logic [96] interpreted formulae
O(ϕ | ψ) as “all the best ψ-states are ϕ” (Formula 1). Within our logic language, a
maximality operator can be defined as follows:

(3) [Best(ψ)] ϕ := U (ψ → 〈≤〉(ψ ∧ [≤](ψ → ϕ))).

That is, the best ψ-states are ϕ if and only if, for all states, either they are not ψ
or there is a better ψ-state such that all states above it are either not ψ or ϕ. As we

8 With respect to this, the interesting question arises of whether the Gentzen calculus developed
in [86] is complete for our semantics, or whether it could be embedded in the logic presented in
Chapter 3.
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mentioned before, this definition was first proposed, together with some variants, by
[53] and [55]. Here, we restated it using the universal modality.9

Similar to the case of conditional preference and conditional beliefs, we should
assume converse well-foundedness for the maximality operator, to avoid empty sets
of maximals for some formulae.

Example 11.7 (gentle murder (continued)) Consider the P-sequence for valuation I
of the Gentle murder introduced in Example 11.2, and let ≤I M

B be the total pre-order
generated by that sequence. We have that, for any state s in the model MI M

B =
(S,≤I M

B , I):

MI M
B , s |� [Best(�)] I1.

MI M
B , s |� [Best(V1)] I2.

MI M
B , s |� [Best(V2)] V2.

It is easy to see that the maximality statements formulated above correspond
with the analysis via restricted P-sequences provided in Example 11.6. In a way,
Examples 11.6 and 11.7 depict two complementary views of obligation. The next
section investigates this connection in more detail.

11.3 Deontics as Founded on Classification and Betterness

We briefly sum up the technical results thus far about our logical framework:

• CTD structures can be represented syntactically as P-sequences;
• P-sequences determine total pre-orders with a conversely well-founded strict

part, and we can reason about such structures within a suitable modal logic.

Given a P-sequence B, these two insights suggest two ways of defining dyadic obli-
gation operators: (i) what ought to be the case is what the best non-empty property
of the P-sequence logically implies; (ii) what ought to be the case is what holds in
the best states. In formulae:

(4) O(ϕ | ψ) := U (Max+(Bψ)→ ϕ).
(5) O(ϕ | ψ) := [Best(ψ)] ϕ.

where we recall that Max+(Bψ) denotes the best non-empty element of B in the
restriction of B to ψ (see Definition 11.5). The second formula is the very first
semantics of dyadic deontic logic, already discussed in Chapter 3. The first is remi-
niscent of the Andersonian-Kangerian reduction of deontic logic.10

9 Other variants of Formula (3) are possible. For instance, [83, Ch. 3] proposes [Best(ψ)] ϕ :=
U ((ψ ∧ ¬〈<〉ψ)→ ϕ) for the case that models are finite.
10 We will come back to this aspect in Section 11.3.1.
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Formulae (4) and (5) are an interesting dichotomy in the definition of “ought”.
While Formula (4) resorts to a “classification” stating that ϕ is what necessarily
follows from a given (syntactic) standard of behavior – the P-sequence – under
circumstances ϕ, Formula (5) simply resorts to a given (semantic) betterness relation
on states and the notion of maximality. The present section shows how they coincide,
thus illustrating the two faces of the notion of obligation. To say it with St. Thomas
Aquinas:

Voluntas [. . . ] bonorum consonat legi, a qua malorum voluntas discordat. [178, ia.2ae 96,5]

That is to say, the preferences of the good men are in accordance with the law, and
those of the bad men in discordance.

11.3.1 Connecting Obligations to What is the Best

Given a P-sequence, there is full accordance between defining what is obligatory
as what is true in the best states of the order yielded by the P-sequence, or as what
logically follows from the highest ranked property in the P-sequence. In other words,
there is full correspondence between the “letter” of the law (the P-sequence), and its
content (the betterness ordering).

Theorem 11.8 (“What is obligatory is that which follows from the best”) Let
B = (B,<) be a P-sequence. For any model MI M

B derived from B as in Definition
11.2 and state s it holds that:

MI M
B , s |� [Best(ψ)] ϕ ⇐⇒ MI M

B , s |� U (Max+(Bψ)→ ϕ).

where Bψ is the restriction of B to ψ (Definition 11.5).

Proof A proof can be obtained by the subsequent application, in this order, Defini-
tion on truth conditions, Definitions 11.2 and 11.5:

MI M
B , s |� [Best(ψ)] ϕ ⇐⇒ ∀s′ ∈ Max((‖ψ‖,≤I M

B )) : MI M
B , s′ |� ϕ

⇐⇒ ∀s′ ∈ ‖ψ‖ s.t. [∀s′′ ∈ ‖ψ‖ : s′′ ≤I M
B s′] : MI M

B , s′ |� ϕ

⇐⇒ ∀s′ ∈ ‖ψ‖ s.t. [∀s′′ ∈ ‖ψ‖,∀Ii ∈ B : s′′ ∈ I(Ii )⇒
s′ ∈ I(Ii )] : MI M

B , s′ |� ϕ

⇐⇒ ∀s′ ∈ ‖Max+(Bψ)‖ : MI M
B , s′ |� ϕ

⇐⇒ ∀s′ s.t. MI M
B |� Max+(Bψ) : MI M

B , s′ |� ϕ

⇐⇒ ∀s′ : MI M
B , s′ |� Max+(Bψ)→ ϕ

⇐⇒ MI M
B , s |� U (Max+(Bψ)→ ϕ)

�
In words, ϕ is the best that can hold given ψ if and only if ϕ is what is required

by ideality under the circumstances ψ . Or, to put it yet otherwise, ϕ is what the law
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says is a primary obligation under circumstances ψ . We might suggestively say that
Theorem 11.8 captures the ethical truism that “what ought to be the case is what is
best under the given circumstances”.

11.3.1.1 Anderson’s Reduction and P-Sequences

Anderson’s [5] and Kanger’s [120] reduction of deontic logic consists in a definition
of O-formulae to alethic modal logic �-formulae containing a designated violation
or ideality constant:

(6) Oϕ :=�(¬ϕ → V).
(7) Oϕ :=�(I → ϕ).

These are obviously equivalent under the assumption that V ↔ ¬I is a valid
principle. It is well-known that this reductionist view of deontic logic inherits a
number of the weaknesses of deontic logic – among which the impossibility of
representing CT Ds satisfactorily. In this section, we briefly show how P-sequences
offer a natural extension to Anderson’s and Kanger’s reduction.

We call a Kangerian-Andersonian P-sequence any P-sequence consisting of ide-
ality atoms (or an inverse sequence of violation atoms). We have the following
result. The following corollary further illustrates Theorem 11.8 in the light of
Kangerian-Andersonian P-sequences.

Corollary 11.9 (obligations from better to worse) Let B = (B,<) = (I1, . . . , In)
be a Kangerian-Andersonian P-sequence for I of n non-empty elements. For any
model MI M

B and state s it holds that:

(8) MI M
B , s |� O(ϕ | �)⇐⇒ MI M

B , s |� U (I1 → ϕ).

(9) MI M
B , s |� O(ϕ | I1)⇐⇒ MI M

B , s |� U (I1 → ϕ).

(10) MI M
B , s |� O(ϕ | Vi )⇐⇒ MI M

B , s |� U (Ii+1 → ϕ) for 1 ≤ i < n.

(11) MI M
B , s |� O(ϕ | Vn)⇐⇒ MI M

B , s |� U (Vn → ϕ).

where O(ψ | ϕ) is defined by Formula (4) or (5).

Proof Formulae (9)–(10) are instances of Theorem 11.8. �

Formula (8) establishes that an unconditional obligation O(ϕ | �) corresponds
to what the most ideal states dictate. The corollary also shows how the content of
obligations changes as we move from most ideal to least ideal circumstances. If we
are in most ideal states, where I1 holds, than what ought to be the case is in fact
what already is the case (Formula (9)). Formula (10) states that, if it is the case that
the i th ideality has been violated, where the i th is not the last one in the sequence,
then what ought to be is what follows from the (i + 1)th ideality. In other words, if
a norm is violated we look at the one telling us what to do if that is the case, that
is, we move downwards in the P-sequence. Finally, if we are in least ideal states,
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where In is false, then what ought to be the case is again what is already the case
(Formula (11)).

All in all, the corollary offers a reinterpretation and generalization of the
Andersonian-Kangerian reduction, where statements of the type �(Ii → ϕ) are
interpreted as assertions concerning the relative inclusions of state labels (e.g., “all
Ii -states are ϕ-states”), or of the ideality and sub-ideality relations proposed in [116],
where such relations are taken to be the total pre-orders generated by a P-sequence.

11.3.2 Chisholm Paradox Revisited

Next, we put our ideas to work on another classic of deontic reasoning, the Chisholm
Paradox. We follow the presentation given in [7].

1. It ought to be that Smith refrains from robbing Jones.
2. Smith robs Jones.
3. If Smith robs Jones, he ought to be punished for robbery.
4. It ought to be the case that, if Smith refrains from robbing Jones, he is not pun-

ished for robbery.

Once “Smith robbing Jones” is represented by r and “Smith refraining from rob-
bing Jones” by ¬r and, similarly, “Smith being punished” by p while “Smith not
being punished” by ¬p, this set of ordinary language sentences – also called the
Chisholm’s set – can receive the following four formalizations within a proposi-
tional modal language with modal operator O:

i) O¬r ii) O¬r ii i) O¬r iv) O¬r
r r r r
r → Op O(r → p) r → Op O(r → p)

¬r → O¬p O(¬r → ¬p) O(¬r → ¬p) ¬r → O¬p

But it becomes quickly clear that none of such formalization work: In (i) the 4th
statement ¬r → O¬p is a logical consequence of the 2nd r , which is not the case
in the ordinary language formulation; in (ii) the 3rd statement O(r → p) is a logical
consequence of the 1st O¬r , which is also not the case in the ordinary language
formulation; finally, in (iii) and (iv) both Op and O¬p are logical consequences of
the set and hence, by standard modal principles, O⊥ also follows, which should not
be satisfiable O-formula.

The preceding Chisholm set of constraints displays the same structure as the ear-
lier gentle murder scenario. So let us see how it can be dealt with in our framework.
The first essential step is to have a model-theoretic look at the “paradox”, just like
we did in Example 11.2.

Example 11.10 (Chisholm’s models) Let P := {p, r, I1, I2,V1,V2} and assume
V1 := ¬I1 and V2 := ¬I2. Consider the following P-sequence for valuation I:



11.3 Deontics as Founded on Classification and Betterness 151

B = ({I1, I2}, {(I2, I1), (I1, I1), (I2, I2))

Here type I1 is strictly preferred to type I2 and the resulting betterness model
MI M

B = (S,≤∗
B, I). A model MI M

B = (S,≤I M
B , I) is a Chisholm’s model if the

following formulae are valid:

(12) O(¬r | �).
(13) O(p | r).
(14) O(¬p | ¬r).

or, equivalently by Theorem 11.8, if the following formulae are valid:

(15) U (I1 → ¬r).
(16) U (r → (I2 → p)).
(17) U (I1 → ¬p).

Recall that the P-sequence for I requires I(V2) ⊂ I(V1), and therefore that
U ((I1 → I2) ∧ ¬(I2 → I1)) is a validity. The Chisholm’s scenario is thus naturally
modeled by the r -states of a Chisholm’s model, and in such states the ≤I M

B -maximal
states are p-states.

In the above representations, no paradox arises. Instead, the formalization helps
making explicit a semantically precise interpretation of the ordinary language for-
mulation of the Chisholm’s set. Formulae (12) and (15)–which are equivalent by
Corollary 11.9–all state that the most ideal states are ¬r -states. Formulae (13) and
(14) represent the CTD obligation of the Chisholm’s scenario: Under the circum-
stance that r then it is most ideal that p. Finally, and probably most interestingly,
Formulae (14) and (17) make clear that, in fact, the most ideal states are states in
which no punishment occurs, since, by Corollary 11.9, it follows that they are all
equivalent to O(¬p | �).

To get back to ordinary language, Example 11.10 shows that a natural and con-
sistent interpretation of the Chisholm’s scenario would go as follows:

1. It is most ideal that Smith refrains to rob Jones;
2. Smith robs Jones;
3. The most ideal states under the assumption that Smith robs Jones are states in

which Smith is punished;
4. It is most ideal that Smith is not punished.

To conclude, notice also that this reading of the scenario fits again the type of struc-
ture depicted earlier in Fig. 11.1, which was introduced originally to illustrate the
gentle murder example.
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11.4 Betterness Dynamics and Deontics

So far we have proposed a rich structured model for deontics under static circum-
stances. But deontic reasoning is crucially also about change, as events happen that
change our evaluation of states-of-affairs in the world. Our concern in this section
is deontic dynamics. In a way, we have already addressed a notion of dynamics by
dealing with conditional obligations (Formula (1)), that is, the simplest type of deon-
tic dynamics where changes in the condition determine changes in the normative
consequences. This type of dynamics does not modify the betterness relation and
is achieved via a maximality-based definition. In the remaining of this section we
will address “genuine” changes in the betterness relation, as well as in the explicit
codifications of betterness represented by the P-sequences.

11.4.1 Two Level Dynamics in Deontics

In the current framework we can handle dynamical changes that are located both at
the level of P-sequences and at the level of states. The operations that were consid-
ered in Chapter 10 for those two kinds of dynamics apply naturally here.

Before getting started with the formal definitions, in order to illustrate the intu-
itions backing this section we add a dynamic twist to the “classic” example used in
the presentation of the static framework: the gentle murder.

Example 11.11 (gentle murder dynamified) Let us start with the P-sequence consist-
ing of B = (¬m). By Definition 11.2, this generates a dychotomous total pre-order
where all ¬m states are above all m states: “It is obligatory under the law that Smith
not murder Jones”. Suppose this is the given deontic state-of-affairs. Now, how can
we refine it in order to introduce the sub-ideal obligation to kill gently: “It is obliga-
tory that, if Smith murders Jones, Smith murders Jones gently”? Or, in other words,
how can we model the introduction, in the legal code, of this contrary-to-duty? Intu-
itively, this can happen in two ways:

1. We refine the given betterness ordering “on the go” by requesting a further bipar-
tition of the violation states, putting the m ∧ g-states above the m ∧ ¬g-states.
This can be seen as the successful execution of a command of the sort “if you
murder then murder gently!”.

2. We introduce a new law “from scratch”, where m → g is explicitly stated as
a class of possibly sub-ideal states. This can be seen as the enactment of a new
P-sequence altogether: (¬m,m → g), which is the P-sequence we have already
encountered in Example 11.2.11

The example illustrates how a CTD sequence can be dynamically created either
by the utterance of a sequence of commands each stating what ought to be the case
in a sub-ideal situation, or by the direct enactment of a whole P-sequence. These
two points of view on the creation of obligations of a CTD type are the dynamic

11 Notice that m → g is equivalent to ¬m ∨ (m ∧ g).
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counterpart of the two-level deontic logic studied in the preceding sections. In what
follows our focus are the close ties between changes on betterness relation and
changes at the level of P-sequences.

To formalize such connections, recall the technical notion in Definition 10.19
from Chapter 10. It states that a priority change α induces a betterness change σ if
and only if the new total pre-order obtained via σ is the same as the one derived from
the P-sequence after the changes dictated by α. More precisely, given a definition
for deriving betterness relations from P-sequence (e.g., Definition 11.2), for any
P-sequence B and new formula ϕ, the following holds:

σ(≤B, ϕ) =≤α(B,ϕ) .

Now, let σ be the betterness upgrade operation defined in Definition 4.10,
and let α be the operation of postfixing a P-sequence B with a new formula
ϕ (in symbols B;ϕ), that is, of adding a least propositional formula in the
P-sequence. In Chapter 10, we saw how the latter operation induces the former
under Definition 11.2.

Theorem 11.12 (correspondence of the two-level dynamics in CTDs) Let ≤ be
derived from a P-sequence B = (B,<) = (I1, . . . , In), and let ϕ be of the form
¬In → ψ , with ψ a propositional formula such that ||ψ || ⊃ ∅. The following
diagram then commutes:

B ;ϕ ��

I M
��

B;ϕ
I M

��(
S,≤I M

B
) ⇑ϕ ��

(
S,⇑ ϕ (≤I M

B
))

This theorem is, in a way, a dynamic variant of the kind of static correspondence
shown in Theorem 10.21 in Chapter 10. It makes the two faces of deontics explicit,
also from a dynamic point of view. It is then easy to see that Example 11.11 repre-
sents precisely an instance of Theorem 11.12 where I := ¬m: In words, the same

deontic change can be obtained both by “refining” the order dictated by the given
law, via subsequent orders (of a certain syntactic form), as well as by enacting a new
“law” which correspondingly extends the given one.

Although this representation of Example 11.11 nicely captures a specific type
of dynamics involved in CTDs, it is clearly just one example of the possible appli-
cations of a two-level analysis of deontic scenarios. For instance, at the level of
P-sequences, besides adding a new proposition, we can also delete criteria, and study
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the effect of that as a transformation on the betterness ordering. Also, so far we have
only considered just one way (i.e., Definition 11.2) of deriving deontic betterness
from a P-sequence. Will other definitions taking a norm system to individual pref-
erences still allow for the commutative diagrams of Theorem 11.12? All these are
options for future investigation opened up by the present framework.

11.4.2 Discussion: Betterness Dynamics and Norm Change

The dynamic aspects of norms – the so-called norm change problem – have recently
gained much attention from researchers in deontic logic, legal theory and multi-
agent systems. Before concluding this section on deontic dynamics we briefly want
to put our work in perspective with some of the more recent contributions available
in the literature on this topic, highlight similarities and future research lines.

In our view, existing approaches to norm change fall into two main groups. In
syntactic approaches – inspired by legal practice – norm change is an operation
performed directly on the explicit provisions in the “code” of the normative system,
[51, 87, 88]. In semantic approaches, norm change follows the dynamic logic update
paradigm (e.g., [12]). Our betterness dynamics belongs to this latter group. Thus, it
can be naturally related to the sort of context dynamics – and the related dynamics
of counts-as rules – studied in [12] via the bridge offered by Corollary 11.9: Obli-
gations defined via ideality and maximality are special kinds of classifications of an
Andersonian-Kangerian type.

Also, the dynamic logic connection enables a unified treatment of two kinds of
change that mix harmoniously in deontic reasoning: “information change” given
a fixed normative order, and “evaluation change” when the normative order itself
changes. Their interplay reflects the entanglement of obligation, knowledge and
belief studied in Chapters 5, 8, and [149].

Finally, despite its semantic flavor, the study of dynamics we propose here
bridges very well with more syntactic analysis of norm change. In fact, Theo-
rem 11.12 can be viewed as establishing a precise match between changes at the
level of models with changes at the level of syntax of a normative code, i.e.,
the P-sequences. And this is not an accident of our simple total orders. Although
our analysis has focused on linearly ordered P-sequences and the induced total
pre-orders – fitting for CTDs – the logical machinery presented here easily gen-
eralizes to pre-orders (see [6] and Chapters 7, 10). Future work along these lines
would look at more elaborate syntactic representations in line with our approach.
These might include graph structures of criteria and laws, maintaining a normative
syntax-semantics correspondence along the lines of Theorem 11.12 (see a recent
study of [40]).

11.5 Conclusion

This chapter has revisited the preference-based semantics of deontic logic first pre-
sented in [96], and then developed it further into a richer medium for analyzing
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deontic reasoning. This was done in two related ways: by introducing a two-level
perspective on deontic ideality which enables a two-faceted modal analysis of deon-
tic concepts (Theorem 11.8), and also a rich view of deontic dynamics as betterness
change in tandem with norm change (Theorem 11.12).

Although our analysis has focused on linearly ordered P-sequences and their
generated total pre-orders–particularly fitting for CT Ds–the logical machinery pre-
sented here easily generalizes to the weaker structures of pre-orders (see [6] and
Chapter 10). A generalization to arbitrary pre-orders, however, would be worth
pursuing from a “constructive” point of view, when studying complex legal codes
as structures that emerge from the order-theoretical composition of P-sequences
viewed as basic building blocks of normative codes. In exploring this, our analysis
of betterness dynamics should be pushed further by exploring further operations on
P-sequences and orders suggested by moral and legal reasoning.

Finally, as we have seen in Chapters 5, 8, preference tends to occur entangled
with informational attitudes like knowledge and belief. The same is true in deontic
and legal settings, where information can be crucial to our rights and duties (cf.
[149]).12 Thus, just like in other parts of this book, deontic betterness dynamics
must eventually interact with the dynamics of acquiring relevant information, and
its resulting changes in attitudes such as knowledge and beliefs.

11.6 Appendix: A Semantic Excursion on Imperatives

11.6.1 Motivation

Imperatives occur ubiquitously in linguistic communication between individuals.
To act successfully in society, we have to fully understand their meaning, as they
lead to an implementation of actions. And as far as the dynamics of normative
reasoning is considered, imperatives are the linguistic triggers that change our pref-
erences, or other structures crucial to our rights and obligations. Thus, issues in the
semantics of natural languages may be close to issues of normativity and agency in
general.

Dynamic semantics and dynamic logic Logical studies of imperatives have been
pursued for a long time, but starting from the 1990s, new frameworks have appeared.
Here is one that is especially relevant to what we have done in this chapter.

Following the idea that “You know the meaning of a sentence if you know the
change it brings about in the cognitive state of anyone who wants to incorporate the
information conveyed by it”, a dynamic update semantics was proposed for natural
language default rules in [192]. This style of thinking was later applied to impera-
tive expressions in [118, 139]. This approach falls within the influential tradition of
“dynamic semantics” for natural language, where expressions of familiar languages
get new dynamic meanings: cf. [150] for further details.

12 Whether we are guilty of neglect, say, may depend on whether we took steps to make sure that
we knew the relevant facts – even though no one is held morally to be omniscient.
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By now, another style is also available. The DEL approach that adds explicit
modalities for speech acts to a classical base logic was introduced in Chapter 2 for
use in logics of agency. It, too, has been adopted to deal with the speech act of
commands. Notably, [199] and [200] introduced a new dynamic action of “com-
manding” into static deontic logic, and dealt with imperatives in the framework of
dynamic deontic logics. In this book, we have no view on which of these approach
better fits natural language (if one has to choose at all). But we do want to point
out that, construed either way, the perspective of this chapter has a contribution to
make.

A case study: conflicting commands So far, the main purpose of both mentioned
approaches has been to understand the meaning of one single imperative. Not much
attention has been paid to the larger setting of imperative discourse, where there my
typically be conflicting commands. Consider the following two examples, the first
of which is a variation of Yamada’s motivating example in [199]:

Example 11.13 Suppose you are reading an article on logic in the office you share
with your two bosses, a1 and a2 and a few other colleagues. We assume that a2 is
of a higher rank. While you are reading, the temperature of the room rises, and it
is now above 30 degrees Celsius. There is a window and an air conditioner. You
can open the window, or turn on the air conditioner. You can also concentrate on
the article and ignore the heat. Then, suddenly, you hear your boss a1’s voice. She
commanded you to open the window. Right after that, a2’s voice comes up, saying
he prefers that the window is not opened (This can be taken as an command “do not
open the window”). What effects do those commands have on the current situation?

The next example shows the problem in an even more explicit manner:

Example 11.14 A general, a captain and a colonel utter the following sentences,
respectively, to an agent b:

(1) The general a1: Do A! Do B!
(2) The captain a2: Do B! Do C!
(3) The colonel a3: Don’t do A! Don’t do C!

It is clear that there are conflicting orders, w.r.t action A and C. Intuitively, instead
of getting stuck, agent b will come up with the following plan after a deliberation:
She should do A, do B, but not do C. b’s reasoning rests on the following fact,
the authorities of a1, a2 and a3 are ranked as follows: a1 � a3 � a2. According
to this ranking, she can make her decision on which orders to obey, which orders
to disobey. Thinking in terms of priorities and preference from Part IV, authorities
amount to priorities, it will give us a preference over actions.

The above-mentioned frameworks cannot meaningfully handle such complex
cases. The main problem is that their focus has always been on the addressee, not
on the agents uttering the command. Inspired by the above model of priority-based
preference, the aim of this section is to propose a solution to the problem of con-
flicting commands, in both mentioned frameworks.

What follows is just a small case study in dynamic semantics, relying heavily on
the basic framework for imperatives put in place by the cited references.
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11.6.2 Update Semantics for Conflicting Imperatives

A new update system is a tuple (L ,Σ, [·], A,�), where A is a finite set of agents,
i.e. speakers. � is a partial order on the set A. Intuitively, � is an authority order of
the speakers. Now we formulate the semantics in details, incorporating the authori-
ties in the framework presented in the preceding.

Definition 11.15 (agent-oriented language L ) Let Y be the standard language of
propositional logic. Define the set L of imperatives as follows:

L = {!aϕ | ϕ ∈ Y , a ∈ A}

We see that imperatives are relative to specific speakers.

Definition 11.16 (force structures with authorities) Let L be the set of literals of
Y . Let L′ = {la | l ∈ L, a ∈ A}. Let B = {X ⊆ L′ | X is finite, and for any la, lb ∈
X, a = b}. Each J ∈ B is called a choice scope. Let F = {X ⊆ B | X is finite}.
Each K ∈ F is a force structure. The empty set ∅ is called the minimal force struc-
ture. Those force structures containing ∅ are called absurd ones.

Here is an example of force structures that involve authorities:

Example 11.17 Consider the structure K1 = {{pa,¬qa}, {rb}, {sa, qa}}, which can
be represented by the following picture:

pa

¬qa

rb
sa

qa

We see that in force structures, literals are relative to specific speakers. Each literal
can be viewed as an atomic imperative force. In this sense, we can say that impera-
tive forces are relative to particular speakers.

Definition 11.18 (track with authorities) Let K = {X1, . . . , Xn} be any force
structure. We define tracks for K . For any Xi , let X ′

i be the smallest set such that
both pa and ¬pa are in X ′

i for any pa occurring in Xi . T = X ′′
1 ∪ · · · ∪ X ′′

n is a track
for K if and only if:

(1) X ′′
i ⊆ X ′

i and X ′′
i ∩ Xi  = ∅;

(2) For any pa occurring in Xi , one and only one of pa and ¬pa is in X ′′
i .

T is consistent if and only if there are no pa and pb such that both pa and ¬pa

are in T , but either a � b ∧ b � a or ¬(a � b) ∧ ¬(b � a).
T is resolvable if and only if there are no pa and pb such that both pa and ¬pb

are in T but either a � b ∧ ¬(b � a) or ¬(a � b) ∧ b � a.

Note that a consistent track might not be resolvable, and also vice versa.
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Definition 11.19 (imperatives and force structures) F is the set of force structures.
Let K be any force structure. T+ and T− are two functions from F×L to F, which
are defined in the following way:

(1) T+(K , !a p) =
{{{pa}}
{X∪{pa} | X∈K }

if K = ∅
otherwise

T−(K , !a p) =
{{{¬pa}}
{X∪{¬pa} | X∈K }

if K = ∅
otherwise

(2) T+(K , !a(¬ϕ)) = T−(K , !aϕ)
T−(K , !a(¬ϕ)) = T+(K , !aϕ)

(3) T+(K , !a(ϕ ∧ ψ)) = T+(K , !aϕ) ∪ T+(K , !aψ)
T−(K , !a(ϕ ∧ ψ)) = T−(T−(K , !aϕ), !aψ)

(4) T+(K , !a(ϕ ∨ ψ)) = T+(T+(K , !aϕ), !aψ)
T−(K , !a(ϕ ∨ ψ)) = T−(K , !aϕ) ∪ T−(K , !aψ)

For any imperative !aϕ, T+(∅, !aϕ) is its corresponding force structure.
Next, we define the notions of compatibility and harmony for force structures.

Definition 11.20 (compatibility) Let K1 and K2 be any force structures. We say
that K1 and K2 are compatible if and only if

(1) For any track T1 of K1, there is a track T2 such that T1 ∪ T2 is consistent;
(2) For any track T2 of K2, there is a track T1 such that T1 ∪ T2 is consistent.

Definition 11.21 (harmony) Let K1 and K2 be any force structures. We say that K1
and K2 are harmonious if and only if

(1) For any track T1 of K1, there is a track T2 such that T1 ∪ T2 is resolvable;
(2) For any track T2 of K2, there is a track T1 such that T1 ∪ T2 is resolvable.

In what follows, we only consider the simplest case, namely, those imperatives
whose force structures contain single choice scopes. As we know, force structures
containing single choice scopes only has one track.

Consider two arbitrary force structures K and K ′. LetΣ = {K1, . . . , Kn}, where
each set Ki satisfies the following condition:

(1) Ki ⊆ K ∪ K ′;
(2) The track of Ki is resolvable;
(3) For any K ′

i ⊆ K ∪ K ′, if Ki ⊂ K ′
i , then the track of K ′

i is not resolvable.

Definition 11.22 (update function) Define the function U as follows: U (K , K ′) =
K ′′, with K ′′ the greatest element ofΣ . The update function [·] is defined as follows:

K [!aϕ] =

⎧
⎪⎨

⎪⎩

U (K , T+(∅, !aϕ)) K and T+(∅, !aϕ) are consistent and compatible

{∅} otherwise



11.6 Appendix: A Semantic Excursion on Imperatives 159

With all our techniques ready, we come back to Example 11.14:

(1) The general a1: Do A! Do B!
(2) The captain a2: Do B! Do C!
(3) The colonel a3: Don’t do A! Don’t do C!

Suppose that starting point of update is ∅. After the captain’s orders, the force
structure of the agent b is this: {{Aa1}, {Ba1}, {Ba2}, {Ca2}}. It can be verified
that {{Aa1}, {Ba1}, {Ba2}, {Ca2}}[!a3(¬A)][!a3(¬C)] = {{Aa1}, {Ba1}, {Ba2}, {Ca2}}[!a3(¬C)] = {{Aa1}, {Ba1}, {Ba2}, {¬Ca3}}. The only track of the force structure
{{Aa1}, {Ba1}, {Ba2}, {¬Ca3}} is consistent and resolvable. This implies that agent b
has to do A and B, and he is forbidden to do C. This is precisely what happens in
real life. We take orders, with a consideration on the resources of information. This
ends our investigation in update semantics.

However, using the same ideas, we can introduce the authorities into the DEL-
style dynamic deontic logic. Essentially, the sequence of authorities gives rise to an
ordering or a choice over the commands that the agent gets. Accordingly, the agent
updates with right information in the right order. In what follows, we will adapt such
an idea to Yamada’s framework, providing some basic definitions. We will leave the
systematic study to other occasions.

11.6.2.1 Dynamic Deontic Logics for Conflicting Commands

Definition 11.23 (static deontic language) Let p ∈ Φ, a set of proposition letters,
and i, j ∈ N , a finite set of agents, � is a partial order over N . The static deontic
language is given by:

ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ψ | Uϕ | O(i, j)ϕ

Intuitively, the formula of the form O(i, j)ϕ means that it is obligatory upon the agent
i with respect to the authority j that i should see to it that ϕ. Note that the set N is
now an ordered set of agents.

Definition 11.24 (semantics) A deontic model is a tuple M = (S, {�(i, j) | i, j ∈
N }), with S a set of possible worlds, V a valuation for proposition letters. Moreover,
�(i, j) is an arbitrary relation over the worlds.

Definition 11.25 (truth conditions) Given a deontic model M = (S, {�(i, j)

| i, j ∈ N }), and a world s ∈ S, we define the relation M, s |� ϕ (formula ϕ is
true in M at s) by induction on ϕ:

M, s |� O(i, j)ϕ iff for all t ∈ S such that s �(i, j) t , M, t |� ϕ.

In order to talk about changes that acts of commanding bring about, we extend
the deontic language by adding action modalities to it:

Definition 11.26 Let p ∈ Φ, a set of proposition letters, and i, j ∈ N , a finite set of
agents, � is a partial order over N . The dynamic deontic language is given by:
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ϕ := ⊥ | p | ¬ϕ | ϕ ∧ ψ | Uϕ| O(i, j)ϕ | [π ]ϕ
π := !(i, j)ϕ

A formula of the form [!(i, j)ϕ]ψ means that after an act of commanding addressed
to an agent i by an authority j to the effect that i should see to it that ϕ, ψ holds.

Definition 11.27 (deliberation function) Consider a finite partially-ordered set of
agent A, and any atomic command p and its negation ¬p issued by different author-
ities, we define a deliberation function for the addressee i :

f (p(i, j),¬ p(i,k)) =

⎧
⎪⎨

⎪⎩

p(i, j) if j � k;
¬p(i,k) if k � j.

This function describes the process of agent’s resolving conflicts and reaching
a harmony ordering over commands she has received. Once this process is done,
the rest of her work is routine. In the following, we give the truth definition for the
relevant dynamic modality:

Definition 11.28 Given a deontic model M = (S, {�(i, j) | i, j ∈ N }), and a world
s ∈ S, the truth definition for formulas is as before, but with one new clause for the
action modalities:

M, s |� [!(i, j)ϕ]ψ iff M!(i, j)ϕ, s |� ψ,

where M!(i, j)ϕ is a deontic model obtained from M by replacing �(i, j)

with �(i, j) −{(s, t) |M, t |� ¬ϕ}.

11.6.2.2 Conclusion

We have shown how ideas from the richer representation style of this chapter can
be used to enrich existing dynamic semantics for natural language. In particular, the
preference-changing events studied in this book often come couched in linguistic
expressions whose meaning is clearly relevant to our analysis of agency. Even so,
our aim in presenting a small case study of imperatives has not been to make grand
claims about the proper treatment of natural language. We only established this:
Ideas can flow across from our dynamic preference logics to what initially may look
like quite different frameworks.



Chapter 12
Games and Actions

12.1 Introduction

Our main focus in this book has been the representation of preferences of one agent,
their entanglement with informational attitudes like beliefs, and the various events
that dynamically change these informational and evaluative attitudes. But like all
aspects of agency, such single steps are the building blocks for something larger,
viz. interaction between different agents over time. For instance, a learning process
is typically a long-term history where an agent interacts with a source of informa-
tion, and where both knowledge, beliefs, and goals may change over time. At its
most pregnant, this longer-term interactive aspects occurs in games, where many of
our main concerns occur very concretely – including significant meetings between
information and evaluation.

Consider this simple example from the literature (cf. [28]):

Example 12.1 (a simple game) There are two players, Abelard (A) and Eloise (E),
with possible actions are “going left” and “going right”. Their payoff is represented
by the pairs at the leaves of the game tree. E.g. (1, 0) expresses that A gets 1 and E
gets 0. The game as drawn starts with A’s move, then follows E’s move, unless A
goes left, ending the game at once (Fig. 12.1).

Fig. 12.1 A simple game

A

x E

y z

1, 0

0, 100 99, 99

What would A do first? The famous Backward Induction procedure1 claims that
A would go left, after which the game is over. Its reasoning is as follows. After
comparing (0, 100) and (99, 99), A believes that E would go left when it becomes

1 For more information about Backward Induction and its history, see [147].
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her turn, since that choice will give her the best pay-off. In that case, A gets 0. So A
will go left at the beginning, to make sure he gets 1 which is better than 0.

This game scenario vividly shows us how players form beliefs about the behavior
of others, and then choose their actions based on their further beliefs and preferences
in games. What we see then is a concrete scenario for many of notions so far, pref-
erence and belief entangled, but now mixed with a third ingredient of action. In this
chapter, we will investigate how the preference logics of this book interface with
game theory. We will find many promising links, though developing a full-fledged
merged theory would be beyond the scope of this book. There is a large and fast-
growing body of research on logic and games, for which references will be given
in what follows. The following account of some relevant themes draws heavily on
[46],2 but eventually, I turn to my own considerations in the light of this book.

This chapter proceeds in the following stages. First, in Section 12.2, I briefly
explain how modal preference logic occurs in strategic games, with strategy profiles
now serving as concrete structured worlds, instead of the abstract worlds used in
Chapter 3. This illustrates at once several themes from this book, especially, the
entanglement of preference and epistemic notions, and the need for extended lan-
guages, in defining such “entangled” notions as best response and Nash Equilibrium.
In Section 12.3, I look at games in extensive form and illustrate how preference
mixes with action to yield a logical definition for the Backward Induction solution.
The key notion in this analysis is that of rationality, an entangled notion of best
action given one’s beliefs about the future course of the game. Next, in Section 12.4,
I review some recent proposals for a dynamic analysis of game solution. The key
feature here are repeated announcements of hard information of rationality until a
stable limit is reached, or alternatively, repeated soft upgrades making rationality
more plausible.

Next, in Section 12.5, I connect up more closely with the main concerns of this
book. First I consider some new directions that my preference logics might learn
from the focus on games. My examples will be game-theoretic scenarios behind
the examples in earlier chapters, new forms of set lifting for preference, analogies
between action and belief, logics with preference directly on actions rather than
worlds, and diversity of agents. After that, in Section 12.6, I reverse the direction,
and discuss how the main concerns in this book might affect the logical study
of games. In particular, I make some proposals concerning the role of preference
change, and priority structure in games. Generalizing from the case of games, I
conclude with some general thoughts on long-term temporal perspective in prefer-
ence modeling.

12.2 Preference Logic in Strategic Games

We start with a simple point of departure for much recent literature (cf. the survey
[106]). Games are natural models for many of the logical languages found in this
book: in particular, epistemic, doxastic and modal preference logics.

2 I thank the authors for their permission to use relevant material from their survey.
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We first briefly consider strategic games as a simple setting where our earlier
abstract possible worlds models acquire concrete structure.

Definition 12.2 (strategic game) A strategic game G for a set of n players N con-
sists of the following two components:

(1) a nonempty set Ai of actions for each i ∈ N ,
(2) a utility function or preference ordering on the set of outcomes.

For simplicity, one often identifies the outcomes of G with the set S =Πi∈N Ai of
strategy profiles. Given a strategy profile σ ∈ S with σ = (a1, . . . , an), σi denotes
the i-th projection (i.e., σi = ai ) and σ−i the choices of all agents except agent i :
σ−i = (a1, . . . , ai−1, ai+1, . . . , an).

Game models and modal logics Now, from a logical perspective, it is natural to
treat the set S of strategy profiles as “possible worlds” carrying three relations3:

• σ ≥i σ
′ iff player i weakly prefers the outcome σ over the outcome σ ′,

• σ ∼i σ
′ iff σi = σ ′

i : This epistemic relation represents player i’s “view of the
game” when a player has chosen her move, but does not know that of the others
(cf. [31]),

• σ ≈i σ
′ iff σ−i = σ ′−i : this relation of “action freedom” gives the alternative

choices for player i when the other players’ actions are fixed (cf. [168]).

Such “modal game models” M = (S, {∼i }i∈N , {≈i }i∈N , {≥i }i∈N ) can obviously
interpret modal languages of the kind used in this book for knowledge and prefer-
ence, while even adding one for action. Here is how, in an obvious notation:

• σ |� �ϕ if for all σ ′ if σ ∼i σ
′ then σ ′ |� ϕ.

• σ |� �ϕ if for all σ ′ if σ ≈i σ
′ then σ ′ |� ϕ.

• σ |� 〈≥i 〉ϕ if there exists σ ′ such that σ ′ ≥i σ and σ ′ |� ϕ.

Logical issues: definability and complexity The logic of these game models imme-
diately illustrates some of our earlier key issues, but now in a concrete setting. For
instance, the abstract “entanglement” of information and evaluation in Chapter 5
now shows in the connections between the three relations in the above models, as
one moves across rows and columns of a game matrix. Here are two concrete issues
which illustrate how our earlier concerns tie in with logical properties of the system.

Preference and best response To this setting of available actions, information, and
freedom, the preference structure of our book adds further interesting features. One
benchmark for modal game logics has been the definition of the strategy profiles that
are in Nash Equilibrium, or rather, the usual notion of best response for a player. The
latter is not definable in our modal language so far. The bisimulation-based argument
is similar to one we gave for epistemically entangled preference in Chapter 5, and
indeed, as we did there, we need to add an intersection modality

M, σ |� [≈i ∩ >i ]ϕ iff for each σ ′ if σ(≈i ∩ >i )σ
′ then M, σ ′ |� ϕ.

3 More abstract worlds might carry strategy profiles without being identical to them.
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Then we can define best response for player i by means of the modal formula

¬〈≈i ∩ >i 〉�.

Thus, equilibrium notions in games exemplify the “deep entanglement” of pref-
erence with other notions that we identified earlier.

Logical validities What is the modal calculus of reasoning for strategic games?
First, given the nature of our three relations, the separate logics are as earlier in
our book: Modal S4 for preference, and modal S5 for epistemic outlook and action
freedom, since the latter are clearly equivalence relations. What is of greater interest,
and logical delicacy, is the interaction of the three modalities. For instance, the
following combination of two modalities makes ϕ true in each world of a game
model:

� � ϕ

Thus, the modal game language has the earlier “universal modality” of our pref-
erence logics for free. Moreover, this modality can be defined in two ways, since

The equivalence � � ϕ ↔ ��ϕ is valid in strategic game models.

This validity depends on the geometrical “grid property” of game matrices that

if x ∼i y ≈i z, then there exists a world u with x ≈i u ∼i z.

Pitfalls of complexity But now games show us something that has not really sur-
faced in our earlier discussions of entanglement. The above geometric grid condition
looks like a pleasant pictorial feature of matrices, but its logical effects are delicate.
The general logic of such a bi-modal language on grid models is not decidable,
and not even axiomatizable.4 Thus, from our point of view, strategic games have a
bitter-sweet flavour. They provide concrete instances of the abstract models in this
book, but their regular structure may also lead to very complex combined logics of
agency.

Our main point with this warm-up discussion is just this. Simple strategic games
are a concrete model for the logics in this book, with vivid intuitions behind them.
They also show how combining preference with natural other features of agency
may result in quite rich and unpredictable logical systems.5

12.3 Preference Logic in Extensive Games

Preference plays even more substantially in the setting of extensive games that
record the actual course of play. We demonstrate this with a recent case study
of Backward Induction, a famous procedure for solving extensive games that was

4 cf. [144] and [45] for formal details.
5 There is a much more literature on these topics. cf. [25, 26, 56, 106], and [137].
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already introduced briefly at the beginning of this chapter. We start with static logics,
and subsequently, bring in the information dynamics of Chapters 2 and 4.

12.3.1 Dynamic Logic of Actions and Strategies

An extensive game mixes action structure and preference structure. One obvious
language for describing the former is propositional dynamic logic (PDL), a system
used already in Chapters 4 and 10. We recall some basics.

Let Act be a set of primitive actions. An action model is a tuple M =
(S, {Ra | a ∈ Act}, V ) where S is an abstract set of states, or stages in an extensive
game, and for each a ∈ Act, Ra ⊆ S × S is a binary transition relation describing
possible transitions from states s to s′ by executing the action a.

On top of this atomic repertoire, the tree-like structure of extensive games also
supports complex action expressions, constructed by the standard regular operations
of “indeterministic choice” (∪), “sequential composition” (;) and “unbounded fini-
tary iteration” (∗, also called Kleene star):

α := a | α ∪ β | α;β | α∗.

The key dynamic modality [α]ϕ then says that “after the move described by the
program expression α is taken, ϕ is true”:

M, s |� [α]ϕ iff for each t , if s Rαt then M, t |� ϕ.

PDL has been used to define solution concepts on extensive games by many
authors (cf. [105, 106] and [25], and for defining explicit strategies in [30]).

12.3.2 Adding Preferences: The Case of Backward Induction

As before, the complete picture must bring in players’ preferences on top of PDL,
again along the lines of our modal preference logic of Chapter 3.

To show how this works, we consider a standard pilot example: the Backward
Induction (BI) algorithm for finite games, as in our initial Example 12.1. In its usual
format, this procedure marks nodes of an extensive game tree with values for the
players encoding the best that they can guarantee by appropriate play henceforth,
and assuming that all others do likewise. For better fit with our logical setting,
we will work with a relational version of the BI algorithm. In ordinary parlance,
a strategy restrict one’s choices in some way, not necessarily unique – like a plan.
Technically, this makes a strategy a sub-relation of the total move relation in a game.

Relational BI First, mark all moves as active. Call a move a dominated if it has a sibling
move all of whose reachable endpoints via active nodes are preferred by the current player to
all reachable endpoints via a itself. We work in stages: At each stage, mark dominated moves
in the ∀∀ sense of preference as passive, leaving all others active. Here, the “reachable
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endpoints” by an active move are all those that can still be reached via a sequence of moves
that are still active at this stage.

The driving idea behind relational BI is the following form of Rationality:

I do not play a move when I have another move whose outcomes I prefer.

This procedure is cautious, in that players avoid “strictly dominated moves”.6

Dominance and lifted set preference There is an interesting connection here with
our earlier notion of generic preference between sets of worlds (Chapter 3). Prefer-
ences between moves that stand for different sets of outcomes call for a notion of
lifting the given preference on end-points of the game to sets X,Y of end-points.
And the way we do this matters. The quantification pattern used for lifting in the
above algorithm was the ∀∀ clause (cf. [39]) that

∀x ∈ X∀y ∈ Y x <i y.

But other stipulations make sense. For instance, our running example in
Chapter 3 was rather the following quantifier combination:

∀x ∈ X∃y ∈ Y x <i y.

In game-theoretic terms, this says that we should choose a move with the highest
maximal value that can be achieved. This is not the standard approach, however,
which would rather try to choose a move guaranteeing the highest minimal values,
expressed by the quantifier combination

∀x ∈ X∃y ∈ Y x >i y.

But now, our earlier notions of set lifting acquire a very concrete meaning. They
are not abstract options to be decided by philosophizing: They rather express dif-
ferent legitimate styles of play, either more cautious, or more risk-taking. One game
might be played by agents following different policies of this sort. In other words, in
principle, the technical diversity of Chapter 3 was not a drawback, but an advantage
in realistic modeling of games.

12.3.3 Backward Induction in Preference-Action Logic

The power of combining dynamic logic with preference logic shows in this result
from [44] defining Backward Induction:

Theorem 12.3 For each extensive game form, the strategy profile σ is a backward
induction solution iff σ is played at the root of a tree satisfying the following modal
axiom for all propositions p and players i7:

6 Rationality is a sweeping form of “entanglement”, a bridge law between what we know or believe
about the outcomes of our actions and how we evaluate these.
7 Here movei = ⋃

a is an i-move a, turni is a propositional variable saying that it is i’s turn to move,
and end is a propositional variable true at only end nodes.
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(turni ∧ 〈σ ∗〉(end ∧ p))→ [movei ]〈σ ∗〉(end ∧ 〈≥i 〉p)

The meaning of the crucial axiom follows by a modal frame correspondence:

Fact 12.4 A game frame makes (turni ∧ [σ ∗](end → p)) → [movei ]〈σ ∗〉(end ∧
〈≥i 〉p) true for all i at all nodes iff the frame has this property for all i :

RAT: No alternative move for the current player i guarantees outcomes via further
play using σ that are all strictly better for i than all outcomes resulting from starting
at the current move and then playing σ all the way down the tree.

A picture from [82] reflects this notion of rationality, that we discussed before.
This is how the entanglement of preference and action shows in a concrete setting
(Fig. 12.2):

Fig. 12.2 Entanglement of
preference and action

x

y z

σ

via σ via σ

≥
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More formally, R AT is this confluence property for action and preference:

CF
∧

i

∀x∀y((turni (x) ∧ x σ y)→

(x move y ∧ ∀z(x move z → ∃u∃v(end(u) ∧ end(v) ∧ y σ ∗ v ∧ z σ ∗ u ∧ u ≤i v)))

Now, a simple inductive proof on finite game trees shows for our algorithm:

Theorem 12.5 BI is the largest subrelation S of the move relation in a game satis-
fying (i) S has a successor at each intermediate node and (ii) S satisfies CF.8

This concludes our survey of recent static analysis of the logic behind extensive
games. But in the spirit of this book, these leave something to be desired. A crucial
feature remains implicit: The dynamics of deliberation and information flow that
determine players’ expectations beforehand, and their actual play as a game unfolds.
We now turn to this.9

8 The definition of S can be stated in a well-known logic of computation, viz. first-order fixed-
point logic LFP(FO) [70]. The dissertation [82] has details on this way of defining game solution
methods.
9 The following section mainly follows the topics and results of [38, 82].
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12.4 Solution Dynamics in Extensive Games

In a dynamic perspective, the main interest of a solution concept is the way in which
its outcomes are reached, its “rational procedure”. In particular, Backward Induction
is really also a procedure for creating players’ expectations, and these involve an
entangled mixture of beliefs and preferences, as we have studied in Chapters 5 and 8.
This will now be given a more precise sense.

Knowledge and iterated public announcement of rationality An early dynamic take
on Backward Induction was proposed in [31]. The process of pre-play deliberation
is modeled there as repeated announcements of the assertion that

rat: players are “rational” in the sense of never playing a strictly dominated move in our
earlier ∀∀-sense of set preference.

This proposition rat may be true or false at nodes of a game tree, and hence, every
time it is publicly announced, the extensive game may get smaller, in the manner
of our public announcement logic PAL of Chapter 2. Iterated announcements then
produce a shrinking nested sequence of models, and this sequence must reach a limit
(!rat,M)#, a first model where announcing the rationality proposition rat no longer
rules out any nodes in the game tree.

Theorem 12.6 In any game M, (!rat,M)# is the actual subtree computed by BI.

Thus, the actual BI play is the limit sub-model, where rat holds throughout. In a
term from the literature, Rationality is a “self-fulfilling” proposition: Its announce-
ment eventually makes it true everywhere. In this way, games add an interesting
social twist to our analysis of preference and action for individual agents.10

Belief and iterated plausibility upgrade However, as we said, Backward Induc-
tion creates expectations, i.e., beliefs about the future course of a game. Thus, the
BI procedure does not eliminate nodes of the initial game, but endows them with
progressive expectations on how the game will proceed. This is the plausibility
dynamics that we studied in Chapter 3, now performing a soft announcement of
the proposition rat, where the appropriate action is our earlier radical upgrade on
end nodes of the game, viewed as completed histories or worlds:

Example 12.7 (the BI procedure with soft upgrades) We start with all endpoints of
the game tree incomparable. Next, at each stage, we compare sibling nodes, using
the following notion of belief-entangled preference:

A move x for player i dominates a sibling move y in beliefs if the most plausible end nodes
reachable after x along any path in the whole game tree are all better for the active player
than all the most plausible end nodes that are reachable in the game after y.

Rationality∗ (rat∗) then says that no player plays a move that is dominated in
beliefs. Now we perform what is essentially a radical upgrade ⇑ rat∗:

10 There are also “self-refuting” propositions, becoming false everywhere in the limit model of
their repeated announcement. This happens, for instance, with the repeated ignorance assertions in
the Muddy Children puzzle (cf. [73]).
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If a game move x dominates move y in beliefs, make all end nodes reachable from x more
plausible than those reachable from y, while keeping the old order inside these zones.

This changes the plausibility order, and hence the pattern of dominance-in-belief,
so that iteration makes sense. Consider our initial Example 12.1 once more. Here
are the update stages, with letters x, y, z standing for the end nodes of the game:

A

x E

y z
0, 100 0, 100 0, 10099, 99 99, 99 99, 99

x y z ⇑rat
=⇒

A

x E

y z

1, 01, 0 1, 0

x y > z ⇑rat
=⇒

A

x E

y z

x > y > z

Fig. 12.3 Changes in plausibility relations

In the first tree, going right is not yet dominated in beliefs for A by going left. rat∗
only has bite at E’s turn, and the first upgrade makes (0, 100) more plausible than
(99, 99). After this upgrade, going right has become dominated in beliefs, and a new
upgrade takes place, making A’s going left most plausible. Here is a general result
proved in [32, 38]:

Theorem 12.8 The Backward Induction strategy is encoded in the final plausibility
order for end nodes after iterated radical upgrade with rationality-in-belief.

Thus, the algorithmic view of Backward Induction and its procedural doxastic
analysis in terms of forming preference-entangled beliefs amount to the same thing.

While the literature that we have followed here is after a dynamic analysis of
game solution, the main points for us are about the role of preference. One is how,
again, the abstract preference logics of our earlier chapters now acquire a concrete
meaning in simple action scenarios. The other point is that preference becomes a
much more exciting driving force in logical systems when it is combined with other
logical notions. But as we will see in a moment, there may be a price to pay.

Logic of preference and action: the complexity of entanglement The game logics
of preference and action that result from the above analysis are not our main con-
cern. We merely note that, as with strategic games, interesting questions arise about
complexity of the combined systems (cf. [82]).

First consider an analogy with combined logics of action and knowledge. In this
area, many authors have noted that apparently harmless “bridge assumptions” of
Perfect Recall for agents with flawless memory make the validities undecidable,
non-axiomatizable, and sometimes even of much higher complexity. The reason is
that these assumptions generate commuting diagrams for actions move and epis-
temic uncertainty ∼ satisfying the following “confluence property”:

∀x∀y((x move y ∧ y ∼ z)→ ∃u(x ∼ u ∧ u move z)).



170 12 Games and Actions

These patterns then serve as the basic grid cells in encodings of complex “tiling
problems” in the logic. Thus, the logical theory of games for players with perfect
memory is more complex than that of forgetful agents (cf. [45]).

But grid-like patterns may also arise for other reasons. Recall the above non-
epistemic property CF of rationality, that mixed action and preference in the style
of Fig. 12.3. This, too, is a sort of geometrical confluence. Can it be that Rationality,
an entanglement property for preference and action meant to make behaviour simple
and predictable, actually makes its logical theory complex?

12.5 From Games to Preference Logic

We have presented some recent work on logic of games as a concrete illustration
of how two major topics of this book fare in a concrete setting: preference structure
and update dynamics. In doing so, we encountered quite a few of our earlier themes.
We start with some obvious connections.

Game versions of preference scenarios For a start, many of our earlier preference
scenarios could naturally be cast as multi-agent games. For instance, deontic rea-
soning involves preferences of interacting moral actors and moral authorities, or
more practically, buying a house involves an interplay of buyers and sellers with not
necessarily the same preferences, and so on.11 Games always seem on the horizon
as the next level of realism in modeling a scenario.

Varieties of set-lifted preference We encountered our technical theme of set lifting
for betterness on worlds to generic preferences between propositions as a concrete
issue of modeling different types of player, all rational, but differing in how they
construe preference between sets of outcomes. The variety of options in Chapter 3
now became a legitimate variety for different players of a game.

Games even suggest new notions of set lifting beyond what we considered earlier.
One example would be to just conjoin earlier stipulations, as in preferring moves
with both the highest maximum outcome and the highest minimum outcome. But
players can go even further, looking more deeply into the structure of the sets being
compared. In Chapter 5, we defined doxastic preference for set Y over set X as a
comparison between only the most plausible members of Y and X . But now, let us
go on, and look beyond this ’minimal fringe:

Example 12.9 (deep-level comparison) Let A start the following game with two
moves. Going left gives value 0, going right yields a turn for E , where she has
two moves, one of which makes her better off, while A gets 0, and one of which
makes E worse off, but A gets 1 (Fig. 12.4):

Fig. 12.4 Deep-level
comparison

A

x E

y z

0, 99

0, 100 1, 99

11 Game-theoretic solution procedures have been applied to moral deliberation in [136].
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Intuitively, A would choose going right toward E , even though he do not believe
that it will improve his outcome. At least, it has a possibility of getting more, and
he loses nothing compared to his move ending just with 0.

Here the comparison is between, first, the most plausible objects in the sets, and
if that leads to indifference, then between the next most plausible objects in the
sets, and so on. Finding the logic of this “deep comparison” between sets seems an
interesting open problem in the spirit of Chapter 5.12

Action, preference, and revealed belief Game solution methods like BI also illus-
trate our earlier concern with links between action, preference and belief. As sug-
gested in [20], a notion of “best action” is at the same time one of revealed belief
and preference. Technically, this is because relational strategies correspond with
plausibility relations. In particular, each sub-relation R of the total move relation
in an extensive game induces a total plausibility order ord(R) on endpoints of the
game:

x ord(R) y iff, looking upwards at the first node z in the game tree where the
histories of the endpoints x, y diverged, if x was reached via an R move from
z, then so is y.

In terms of our earlier upgrade analysis, the precise facts are these:

Fact 12.10 There is a one-to-one correspondence between sub-relations of the total
move relation of a game and connected orders of the leaves.13

Fact 12.11 In terms of inductive computation stages, for each game tree M and any
k, rel((⇑ rat∗)k,M) = BI k.

Thus, creating belief structure via upgrade is tightly correlated with determining
what are our best actions.

We conclude with two more radical ways in which games may affect preference
logic as presented in this book.

Preference directly on actions? Let us reconsider the very locus of preference in
betterness relations. Should these relations run between worlds, as we have assumed,
and then between sets of worlds as possible outcomes of actions, or could they also
run directly between actions? The choice is reminiscent of one in deontics, between
“deontology”, where actions themselves can be good or bad, versus “utilitarianism”,
where actions are only good or bad in terms of how we evaluate their outcomes.
Backward Induction, though starting from betterness on endpoints, derived how
moves can be better than other moves. But in practice, one often just wants to know
these best moves, and thus, it would be interesting to also put betterness directly
between actions. In fact, [141] and [172] are precedents for this in the computational
literature on agency.14

12 Deep comparisons are reminiscent of how one computes a probabilistic expected value.
13 This has a technical proviso: These leaf orders must be “node-compatible”: cf. [82].
14 Concretely, one might do this as follows, taking a cue from the DEL event models in Chapter 2.
Start with models for PDL with preference between states. This interprets a standard dynamic
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Agent diversity Here is a second new perspective that has been only an under-
current in this book. One clear trend in logical analysis of games might be called
agent diversity. In line with [46, 179] argues that game solution crucially needs
assumptions about belief revision policies and other features of players.15 There
is no need to assume that players’ styles of behavior are all the same. This theme
of diversity fits well with the options that we have seen for set-lifted preferences:
as naturally different styles of behavior, more cautious or more greedy. And it fits
even more with the dynamic aspects of this book, where plausibility or betterness
upgrades can come in many kinds, allowing agents great differences in behavior.
Agent diversity has been studied more systematically in [41] and [132], looking at
agents’ powers of observation, inference, belief revision, and introspection.16 Doing
full justice to this important phenomenon is beyond the scope of this book.

12.6 From Preference Logic to Games

We have now seen two things in this chapter: Games form a natural model for the
notions and concerns of this book, and also, they suggest new issues about the latter.
Now we reverse the perspective, and ask whether the main themes of this book
might have something of their own to add to current logical studies of games. We
will discuss two main examples, having to do with our main themes of preference
change and priority structure.

12.6.1 Preference Change in Games

We start with the simplest scenario of information dynamics in Chapter 2.

12.6.1.1 Game Change by Informational Events

In the preceding sections, we have already seen how the information dynamics of
our book makes sense for games. Still, these examples, like the analysis of the
Backward Induction procedure, may be considered a sort of “off-line” deliberative

language plus a preference modality. Now let actions by themselves – or better, single transi-
tions between states as in Arrow Logic (cf. [23]) – form a modal model, with a binary betterness
relation ≤ between transitions that can have unary atomic properties p, q, ... The matching double
modal language now also has formulas expressing properties of actions. One useful modal operator
E N Dϕ would say about a transition (arrow) a that the state-formula ϕ holds at the end-point of the
a. And a second preference modality 〈<〉ψ , now on actions, will say that transition a sees a better
transition b satisfying ψ . The logic will now also have axioms relating state and action modalities,
depending on how one sees between preferring actions and preferring their outcomes. Backward
Induction was one way of creating such links, but there may be others.
15 Their slogan is that we need a “Theory of Play” going beyond game theory.
16 Quantitative forms of diversity occurred in Chapter 6 with weighing rules for past experience
and current observation. It is worthy of mentioning that [3] and [4] studied behaviors of resource-
bounded agents.
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dynamics about games, not internal “on-line dynamics” for players as the game
proceeds (cf. [20] for this distinction). Still the systems in this book can also serve
the latter.

An early real game-changing scenario occurs in [148] on announcing intentions,
where an agent says in the course of a game that she will restrict her behavior to only
certain moves or strategies. This public announcement transforms the current game
tree into a smaller one. Another example is the analysis of promises in [28], where
again an important game transformation takes place under public announcement.

Example 12.12 (making a promise) In our running game example

A

x E

y z

1, 0

0, 100 99, 99

Now E can promise A that “I will not go left when you have gone right.” In the
style of Chapter 2, this public announcement changes the game into (Fig. 12.5)

Fig. 12.5 After making a
promise

A

x E

z
99, 99

1, 0

Now, we can both be assured of getting an outcome of 99, as opposed to the meagre
outcome 1, 0 predicted by standard BI.17

Game change in dynamic logic The two cited papers show how standard dynamic-
epistemic logics apply in this setting, given a suitable static language over game
models which describes players’ moves, preferences, and beliefs:

Theorem 12.13 There is a complete logic of public announcements over extensive
games of perfect information which consist of a standard static base logic plus a
complete set of reduction axioms for the announcement modalities over the relevant
move and preference modalities of the game language.

As an illustration, here is the reduction axiom for making a move a:

〈!ϕ〉〈a〉ψ ↔ (ϕ ∧ 〈a〉〈!ϕ〉ψ).
Reduction axioms for preference, knowledge and belief are as in Chapters 2, 4.18

17 Interestingly, from a deontic point of view, we made both players better off by restricting the
freedom of one. Conversely then, an increase in freedom is not always a good thing.
18 An interesting further issue is how public announcement changes effects of complex strategies in
a game [30]. Consider the strategy modality {σ }ψ saying that playing σ always leads to end points
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12.6.1.2 Game Change by Evaluational Events

Can games also change by the acts of preference change that we have studied in
this book? This seems less obvious, since one might think that a game only arises
when all this has stabilized. For instance, suppose that a player has two moves a, b,
preferring the outcome of a to that of b. Now at the start, she performs a preference
change to b over a. The obvious thing to do seems to just say that the real game is
now another one, with the preferences switched (Fig. 12.6):

Fig. 12.6 Preference change
inside a game

A

a b<

A

a b>

⇒

With preference changes inside a game, the transformation works on subgames. But
one may also be interested in what actually happened during a play of the initial
game, and then mind changes as to preference should be recorded explicitly. These
changes could be of many forms.

Changing one’s preferences post facto Suppose that an agent preferred the result
of move a over that of move b, but she has in fact chosen b. She may now change
her preference, and say “it was the best after all”. This could be considered a form
of internal rationalization. Conversely, the agent might choose the preferred move
a, but afterwards, reverse her preference: “the grass is greener on the other side”
once it has become unattainable.19

But of course, the preference change need not always be first-person. Rationali-
zation is also a process undertaken by others, to make sense of observed behavior.
Here is a folklore result, that we discuss in a version from [28]:

Rationalizing actions by preferences Rationality in the sense of decision theory
or Backward Induction is very tenacious. One reason is its role, not in predicting
human behavior, but in rationally reconstructing it. Suppose that your preferences
between the outcomes of some game are not known. Then one can always ascribe
preferences to you that make your actions rational. Here is a way of doing this.

Let a finite two-player extensive game G specify A’s preferences, but not E’s.
The strategies σA, σE for playing G are given, yielding an expanded game model M.
Now, when can A rationalize the observed behaviour σE to make the two strategies
the Backward Induction solution of the game? What is clearly necessary here is a
certain minimal quality of A’s own moves, in fact, a form of our earlier Rationality
assumption in BI:

A’s strategy chooses a move that is not strictly dominated in outcomes by another available
move of his, given that the players follow σA, σE .

satisfyingψ . Here is a valid reduction axiom for reasoning about effects of strategies in the changed
game: 〈!ϕ〉{σ }ψ ↔ (ϕ ∧ {σ |ϕ}〈!ϕ〉ψ . Its notation {σ |ϕ} refers to an obvious “relativization” of a
PDL program σ to the submodel defined by ϕ.
19 Impossibility can also be epistemic. I thought that I could reach the fruits and steal them. Now
I cannot, and I think they have probably been sour anyway. This phenomenon has been discussed
in decision theory and philosophy, cf. [72] on “sour grapes”.
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Let us call such a game “best-responsive” for A. The following is folklore:

Fact 12.14 In any game that is best-responsive for A, there exists a preference
relation for E among outcomes making the unique path that plays the two given
strategies σA, σE against each other the Backward Induction solution.

Proof The proof in [28] is a bit sketchy. Here is a more precise argument. A bottom-
up procedure works as follows. A starts with final choices for players near the end
of the game tree, assigning values reflecting preferences for E that make the given
strategies the BI solution. The inductive step then works as follows. Assume that the
subgames following all moves at the current top node have already been rationalized
to yield the Backward Induction solution. There are two cases. (i) If the current node
is A’s turn, then best-responsiveness tells us that A’s actual move is automatically
optimal. (ii) If the current node is E’s turn, then consider E’s local σE move. We
cannot be sure that its subgame guarantees a maximal value for E compared with
the subgames for her other available moves. But we can change things to make this
the case without changing anything essential, by raising all values in the chosen
subgame by a suitably large number. This transformation is harmless:

Raising all E’s values of outcomes in a sub-game by a fixed amount N does not change the
BI-solution, though it raises the total value by N .

�

Example 12.15 (rationalizing bottom-up) Here is an illustration of this procedure.
Bold face lines are the given moves of the players, and numbers at the leaves indicate
successive outcome values that are postulated for E . In the final step, an increase
has been made as described above (Fig. 12.7).

Of course, utility numbers for E can be assigned in many ways to justify BI:
Rationalizations are usually not unique. One can also reformulate the algorithm with
qualitative betterness changes. For some purposes, this would even be simpler.20

Clearly this is just one rationalization scenario, but it shows the general spirit.

E

A A

E E

E

A A

E E

0 1 1 0

E

A A

E E

0 1 2 1

Fig. 12.7 Rationalizing bottom-up

20 Indeed, given that Backward Induction is played on a certain set of preferences, one can ratio-
nalize the given preferences, in the sense of our earlier discussion, to new very special preferences
that simplify the reasoning. For instance, in our initial running example, one might make the actual
outcome the very best for all without changing the BI strategy.
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Interestingly, one can also run the given procedure top-down, by making all out-
comes of moves chosen by E better for her than the alternatives, and inside the
sub-games resulting at each step, repeating this to creates finer preferences. The
driving idea is this instruction:

Make outcomes of actually chosen subtrees better for E than of those that were bypassed.
This “upgrade” recipe is then iterated inside all subgame, until we reach the leaves.21

Actually, this procedure works better with successive relation changes for pref-
erence than with numbers, that need to be revised all the time to keep subgames in
the proper preference relationships. Even so, we give a small numerical illustration,
with a few stages of the construction (Fig. 12.8):

E

A A

E E

E

A A

0 E 1 E

0 0 1 1

E

A A

0 E 2 E

1 1 3 3

E

A A

0 E 3 E

1 2 5 4

Fig. 12.8 Rationalizing top-down

12.6.2 Rationalization Procedures and Game Change

Now we are at a point where we can bring our preference dynamics of Chapter 4
to bear, in the same style as we did with information dynamics in earlier sections.
In our view, a rationalization procedure is a natural game-theoretic process, just
as much as Backward Induction itself, and it, too, invites logical analysis. But this
time, the driving dynamics is not informational actions, but actions of preference
upgrade.

We give an “on-line version” here in the earlier sense of following the actual
top-down direction of play of a game. Our solution involves a slight generalization
of the upgrades in Chapter 4, as will be clear from the proof of the following result:

Theorem 12.16 Rationalization may be seen as successive preference upgrades fol-
lowing the observation of moves of a game.

Proof We will not give a complete technical analysis here, but outline the main idea
to a point where the reader can see how it works.

We can view the public observation of each successive move of a game according
to the players’ given strategies as a process with two steps, a public announcement
followed by a preference upgrade:

21 We leave the simple proof of correctness to the reader here.
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• The first step is that we restrict, with a PAL-style update !ϕ, the space of all
possible histories of the game to just those on which the given move occurs. Here
the relevant assertion ϕ = “Move a was played”, where a is the actual move.

• The next step “interprets” this observation to an upgrade ⇑(ϕ) for the same asser-
tion ϕ, at least when E is the active player. For, if the player that moves is E , then
the histories following her chosen move must be (made) better for her than those
following the other available moves that she did not take.

Iterating these steps will gradually introduce refined preferences in step with
our earlier top-down algorithm. By the end of the game, the given strategies have
become aligned with Backward Induction. This may again be proved by an induc-
tion, whose details we leave to the reader.

Actually, there is a little lack of precision here hat we must address. Consider
any finite game tree. The description we just gave works at the first stage. But now
consider the second stage of the game. The moves prescribed there can be different
depending on the subgame that we are in. Thus, the upgrades that we talked about
must be more complex, involving upgrades with assertions that are relativized to
subsets of the total space of histories. To deal with this, we need new operations

⇑ψ (ϕ)

which make the ϕ-worlds better only among the ψ-worlds of the total model. One
can define these formally, since their intended update effect is obvious.22 One can
then also add them to our earlier dynamic languages and write recursion axioms for
them. We leave these details unspecified, since our main concern here is just making
the connection between upgrade and rationalization. �

This “on-line” analysis applies to the above top-down algorithm. It would be of
interest to also reconstruct the bottom-up algorithm, more in the “off-line” style of
Section 12.4 with just one single action-preference upgrade that gets iterated until
the right preference order is constructed. We have not been able to find such an
assertion, so we must leave this as an open problem.

12.6.2.1 Dynamic Preference Logics of Game Change

We have hopefully said enough to make it plausible that, in this setting, our earlier
dynamic preference logics directly apply to games, just as we saw earlier with public
announcement logic for changing games:

Theorem 12.17 The dynamic logic of information plus preference change in exten-
sive games is completely axiomatizable.

Proof The axiomatization merely puts together various components found in this
book. On top of the chosen static base logic, we need the axioms for preference,

22 For instance, it fits in the PDL-program format of Chapter 4.
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action, and knowledge modalities under playing moves and public announcements
of Chapters 4, 5, and Theorem 12.13. To these, we then merely add the reduction
axioms for these same operators under radical upgrade as in Chapter 4.23 �

12.6.2.2 Excursion: Game Change Under Entangled Dynamics

The preceding analysis fixed BI as a target of rationalization, given some freedom
in construing players’ preferences. But there are many other scenarios for recon-
structing games. One would entangle preference with belief, the way we have done
so often before. Here is a simple example.

Example 12.18 (rationalizing in terms of beliefs) Suppose A moves right in the
game of our initial Example 12.1. One can interpret this rationally if we assume
that A believes that E will go right as well in the next move. This rationalization is
not in terms of preferences, these are now assumed to be given beforehand, but in
terms of A’s beliefs about E . Note that this style of rationalizing need not produce
the BI solution – if the players’ beliefs are too strange.

This, too, leads to rationalization procedures, as analyzed again in [28]. Consider
a game where a strategy σA is given, as well as A’s preferences (those of E do
not matter in what follows). Assuming some minimal rationality again,24 we (or
the other player E) can rationalize this by assigning a suitable strategy to player E .
Equivalently, as we have seen in an earlier section, this may be seen as assigning a
suitable belief for A.

Example 12.19 (rationalization in beliefs) Figure 12.9 depicts a game with A’s
moves marked as bold-face arrows, and the necessary rationalizing beliefs indicated
by the dotted arrows. The numbers at leaves stand for values for A.

In the diagram, A’s initial choice for going left has been rationalized by forc-
ing its outcome 4, by assuming that E will go left, which is better than the forced

Fig. 12.9 Rationalization in
beliefs

A

EE

A A A A

1 4 2 1 3 E 5 6

5 2

23 The axiom for the move modality 〈a〉 is a simple operator commutation. A full version would
need a small extension to “relativized upgrades” mentioned above.
24 This time, the given σA never prescribes a move that is strictly dominated assuming that further
play proceeds via the given strategy for A and any moves for E .
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outcome 3 on the right – now assuming that E will go left there, too. One step
further down, things are correct automatically for A’s final choices, since minimal
rationality guarantees that these are BI-optimal already. The only different case is
the subtree with outcomes 3, 5, 2. Here the same procedure works as the initial
one: We compare the outcome 3 with the outcome 2, and “force” the latter by the
expectation that after the move not chosen, E would go right.

Again in what follows we make the argument in [28] a bit more precise. The
general procedure is simply this:

Rationalizing in beliefs Working top-down, at turns for A, we consider his chosen
move a. The minimal rationality tells us that for each alternative move b, there
exists an endpoint u following a via further play along σA and any moves for E ,
and likewise such a reachable endpoint v after b such that A weakly prefers u to
v.25 Doing this for all alternative moves b, we can take the endpoint u with the
maximal value for A here, which will work for all different v’s chosen for different
b. Now choose A’s beliefs simply as follows:

Following move a, A expects E to follow the moves leading to the endpoint u (given his
playing σA), and following the other moves b, he expects E to take the moves leading to
their endpoints v.

It is easy to see that, proceeding down the game tree, this belief assignment makes
A’s behavior rational: No move of his is ever “dominated-in-beliefs”, in the sense
of our earlier analysis of game solution.

This procedure of assigning beliefs can be analyzed in the plausibility-changing
style that we have used in Section 12.4 for Backward Induction. We will not pursue
this line here. Once again, the procedure may result in weird behavior, if we cannot
find an independent reason for the postulated beliefs.26

12.6.2.3 Conclusion: Many Scenarios

With these examples, we have shown how games support many dynamic scenar-
ios of reasoning, that involve both information change and preference change. Of
course, the few examples that we looked at are just a start. For instance, it is not
clear at all why we would want the rationalization to always end in the Backward
Induction solution. If we drop the “minimal rationality” assumptions of the above
algorithms, we still get outcomes, where players now have wilder styles of play, that
can still make sense. Also, rationalization is just one procedure, and it is “off-line”
in our earlier sense. Thus, it is not yet the real thing in terms of logics for “on-line”
actual mind changes of players.

25 Note the analogy with the Confluence Property pictured in Section 12.4.
26 Reference [31] explains A’s “irrational move” of going right in our running example in terms of
running risks for the common good, expecting E to return the favor.
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Even so, we have shown that preference dynamics and dynamic preference logics
are a natural fit with natural issues concerning games, extending earlier work on
their logical analysis.

12.6.3 Adding Priority to Game Representation

Next, we briefly consider the other main theme of this book: richer representations
of preference including prioritized criteria that create betterness among worlds or
outcomes of a game.

The notion of priority-based preference makes sense in games, too. Though we
cannot read priorities directly from games, they are present in the form of underly-
ing goals that each player wants to achieve.27 Goals are expressed by propositions,
ordered linearly or just partially, depending on the mental tidiness of players. From
ordered goals, we can derive concrete preferences that players have over outcomes
of the game, using the methods of Chapters 7 and 10.

What this additional structure allows us to do is make much finer comparisons
between preferences of players, and the degree to which these are aligned.28 Let us
just illustrate two extreme cases in the setting of linear priority sequences:

(1) Two agents A and E are cooperative if they share the same priorities, ordered
in the same manner. I.e., we have D1 �a D2 � · · · �a Dm(m ∈ N) and
D1 �b D2 � · · · �b Dm(m ∈ N).

(2) Two agents are competitive if one has a priority order D1 �a D2 � · · · �a

Dm(m ∈ N), while the other has ¬Dm �b ¬Dm−1 � · · · �b ¬D1(m ∈ N).

In fact, Chapter 8 had several relevant completeness results for this setting:

Theorem 12.20 (cooperative and competitive agents) � KD45−PG ϕ iff ϕ is
valid in all models obtained from priority sequences shared by two cooperative
agents. Likewise, � KD45−PG ϕ iff ϕ is valid in all models obtained from priority
sequences for competitive agents.

Clearly, most actual games will have players whose goals lie in between these
two extremes.

Evaluating games in terms of priority But then, we can also define more fine-
grained notions of equilibrium and purpose of a game, in terms of players trying
to achieve shared goals, and competing on ones where they differ–guided by their
priority structure. We will not explore this in detail, but here are some possible
directions.

First, priority graphs suggest a generalization in games from connected to arbi-
trary pre-orders over outcomes. The main novelty is then that players can be either
“indifferent” between outcomes, but also may find them “incomparable”. Game

27 A concrete DEL-related use of goals is made in the “knowledge games” of [1].
28 Alignment can be very hard to judge if we just have players’ extensional comparison lists of
outcomes: just as we cannot say much about voters’ similarities or dissimilarities in thinking if we
only look at their voting records.
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solution methods like Backward Induction can be adapted to this setting, since we
can still define their driving notion of rationality like before, as avoiding strictly
dominated moves. But clearly, this generalization changes players’ evaluation of
outcomes from “the best” to “some best”. A yet more refined view of outcomes
would retain the structure of priority graphs, and see which subgraphs players can
realize through their strategies. In particular, I might “win”, realizing some of my
topmost goals, but even though you “lose” in one sense, you might still realize a
considerable part of your prioritized agenda.

Another interesting use of priority graphs is the following. Chapter 10 exten-
sively explored natural operations of graph merge, depending on how we construct
authority relations between the players: either on a par (intersection of the individual
preferences) or in a hierarchy (sequential composition of individual preferences).
This offers a more refined view of possible coalitions in a game than the usual
unstructured sets of players.

Finally, one more exciting viewpoint would be the one that we explored in
Chapter 11 for deontics: How to use priorities for studying the dynamics of play
in games. Many similar considerations apply. The set of goals might now change in
the course of a game, and so might their alignment, changing the degree of “coor-
dination” between the players. This, too, must remain on our list of things to do,
though we do think that our illustrations in Chapter 11 might easily be extended to
meaningful game-theoretic scenarios.

We will not pursue these suggestions here, but we do think they might lead us to
rethink the usual numerical notions and methods for game solution.

This concludes our tentative exploration of how the main perspectives from this
book can be linked to issues in the logical analysis of games.

12.7 Preference in a Long-Term Perspective

Finally, the finite games that we have considered are just one instance of something
more general: the temporal evolution of information and evaluational processes. As
we have observed in Chapter 2, one recent trend in dynamic epistemic logic has been
the incorporation of crucial “procedural information” about the long term process
one is in. Only such processes give direction to information gain and evaluation
change. This study has resulted in merges of dynamic logics for local steps of infor-
mation change with epistemic and doxastic temporal logics (cf. [35, 64]).

Very much the same is true for the preference dynamics of this book. Preferences
tend to guide our behavior over time, and the latter may have structures of its own
that are not reducible to single local steps of information or command. In fact, we
have already seen some specific longer-term preference dynamics in this chapter,
namely, in our rationalization procedures of Section 12.6. There, we considered
what would happen in the limit of very simple procedures of repeatedly performing
the same step of preference change.29

29 Another relevant case would be the infinite games of evolutionary game theory: cf. [108].
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Even in such simple scenarios, many logical subtleties emerge. For instance, it is
not clear whether our procedures will always stabilize to one fixed model. Indeed,
for the closely related case of plausibility change, [19] have shown that “cycles”
can occur where repeated radical upgrade with the same assertion can lead to oscil-
lating preference patterns. Thus, the temporal logic of preference change might be
full of surprises. On the positive side, though, there are also many instances where
preference logic might use already existing results. In particular, we think that the
complete and decidable “protocol versions” of dynamic-epistemic logic found in
[110] can easily be generalized to deal with preference change. Likewise, we think
that the methods of this book could combine with the logics of explicit protocols
in [202].

Clearly, then, the story of this chapter is just the start of a longer road ahead.

12.8 Conclusion

We have shown how preference logic fits naturally with games, the prime area where
information and evaluation meet. We have seen in some detail how the technical
notions of this book occur there, and we have suggested how our new themes of
dynamics and priority might have a contribution to make to the currently emerging
interfaces of logic and game theory.
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Chapter 13
Conclusion

This book has presented a uniform logical theory of preference, drawing together
ideas from several areas: modal logics of betterness relations, dynamic epistemic
logics of information change, and priority-based systems of representing structured
relations. Our chapters have added successive components of this theory, showing
how it can be developed with logical techniques, suitably adapted to deal with
preference structure. The result is a framework that has interesting theoretical fea-
tures of its own, witness the sequence of technical results in this book on complete-
ness, definability, and other architectural features of our systems. But we can also
use the system of this book for analyzing preferences in a wide variety of fields,
from epistemology and ethics to computer science and game theory. The evidence
for this so far consists in a few case studies on deontic reasoning and on games in our
final chapters, while we would also mention the use of our techniques in modeling
beliefs and belief revision, thanks to the analogy between betterness and plausibility
relations.

I would also like to summarize the Grand Picture that has driven this investigation
for me. When I look at human behavior, what strikes me most is the duality of two
systems in all of language use and agency: the dynamics of information and of
evaluation. It seems to me that only that interplay “makes sense” of what we do
in the full meaning of that phrase, and only their harmony creates truly “rational”
behavior. This book has been an attempt at providing a clearer picture of how these
two crucial systems show analogous static and dynamic logical structure, and also,
how they can live in harmony, entangled in many ways that we do not yet always
understand fully. That I see as the real message behind the array of technical logics
with epistemic, doxastic, and preference features developed in this book.

I also hope to have convinced the reader that, in doing all this, preference logic
can be “much richer than it is”, including a broader view of representation than
simple modal structures, and taking preference dynamics on board as a serious and
essential part of the enterprize. Moreover, I hope to have shown how the framework
of this book, once mastered, can yield new applications beyond the concrete pilot
examples that we have given. But that, of course, also depends on what further
studies will be undertaken from the perspective offered here. I conclude with a few
topics that are on my own agenda right now.

F. Liu, Reasoning about Preference Dynamics, Synthese Library 354,
DOI 10.1007/978-94-007-1344-4_13, C© Springer Science+Business Media B.V. 2011
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Of course, along the way, this book has left many loose ends, with open problems
about exploring the systems that we have defined. But more than that, I would men-
tion four further directions.

First, I have mostly considered preferences for single agents, while rational
agency clearly also involves groups. We would like to study social preferences,
which are tied up with social relations in communities. For instance, there is a
distinction between my preferences, my friends’ preferences and our aggregated
preferences. A first exploration of a logic of communities may be found in [169].
A similar distinction plays in social choice theory once we start analyzing the delibe-
ration phase prior to voting where individual preferences may shift, while collective
ones get created. Technically, it is a simple task to extend everything in this book to
a multi-agent setting – and the main reason why we have not done so was a desire
to avoid prolixity of subscript notation. But thinking about what would be collective
preferences, or even simple counterparts to the usual epistemic notions of common
and distributed knowledge or belief for groups seems much harder. The priority
graphs of [6] that we used in Chapter 10 for representing reason-based preference
of a single agent, were originally intended to model preference merge for groups of
agents. This seems a good starting point, but the real work remains to be done.

Next, it should be noted that, just like information dynamics, preference change
does not just involve myopic single steps. It often takes place in longer scenarios
over time, when agents try to achieve goals in the long run. Of course, we can iterate
the dynamic operators in our logics to describe specified numbers of consecutive
“local dynamic” updates or upgrades. But we also want limit behavior without a
preset bound. To some extent, this theme has surfaced in Chapter 12 on preference
in extensive games that model strategic behavior of agents interacting over time. To
fully understand the logical temporal dynamics of preference, we need to integrate
time into the current framework, as has been done for dynamic epistemic and dox-
astic logic in [45, 64, 158, 201], and other publications. For a start, we need to see
what preference adds here in terms of features of its own.

While both preceding topics might be seen as moving to larger scales: in aggrega-
tion of agents, or in number of time steps, there is also an open problem of smaller
scale and more fine-grained syntactic representation. The treatment of preference
in this book has been mostly at the standard semantic level of semantic informa-
tion, suppressing distinctions between logically equivalent expressions. While this is
sound methodology, it also leaves out some crucial things. In the area of information
dynamics, one of these things is the dynamic role of inference: obviously significant,
but actually, producing no change at all in current semantic ranges. There are some
attempts at creating more fine-grained syntactic dynamic logics of acts of inference
and reasoning (cf. [191]), but no general framework has emerged yet. Likewise,
the theme of syntax has been an undercurrent in this book. One part of this is the
same as for information dynamics: Acts of inference can affect our preferences as
much as our knowledge or belief. Once I become explicitly aware of some features
of an object, my preference for it may change. And also in our priority graphs for
structured preferences, we saw syntactic structure right up front: These graphs are
syntactic objects, admitting of syntactic manipulation. To make it very concrete:
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A “change in the law” tends to be a syntactic change, not a semantic one. I see a
systematic development of more fine-grained syntactic aspects of preference as a
third major desideratum.

Finally, there are also evident broader questions relating our logical framework to
other approaches. In particular, I have adopted a qualitative approach to preference
representation. But in areas like decision theory, game theory, and social choice
theory, usually, numerical utility functions represent preference. Likewise, for mod-
eling beliefs under uncertainties, numerical probabilities are used widely. In the
area of belief revision, and to some extent also in DEL these days (cf. [10, 36, 165],
and [15]), this is a well-known interface. Can the logical systems for preference
proposed in this book interface with quantitative utilities in a natural manner?
I appended a first attempt in Chapter 6, using DEL methodology to upgrade numer-
ical “plausibility values”, using ideas from [10] and [130], but much more remains
to be done.

I am not saying that it will be easy to fulfill all of these further desiderata. But
I do think that the logical perspective offered in this book has opened up a way
to go.
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