
Chapter 4
Generalized-Ensemble Algorithms
for Simulations of Complex Molecular
Systems
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Abstract In molecular simulations of complex systems with many degrees of
freedom, conventional Monte Carlo and molecular dynamics simulations in canoni-
cal ensemble or isobaric-isothermal ensemble suffer from a great difficulty, in which
simulations tend to get trapped in states of energy local minima. A simulation in gen-
eralized ensemble performs a random walk in specified variables and overcomes this
difficulty. In this chapter, we review the generalized-ensemble algorithms. Replica-
exchange method, multicanonical algorithm, and their extensions are described.
Some simulation results based on these generalized-ensemble algorithms are also
presented.
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4.1 Introduction

In complex molecular systems such as biomolecular systems, conventional Monte
Carlo (MC) and molecular dynamics (MD) simulations at low temperatures in the
canonical ensemble and those at low temperatures or high pressures in the isobaric-
isothermal ensemble tend to get trapped in states of energy local minima, giving
results in error. In order to overcome this difficulty, a class of simulation methods,
which are referred to as the generalized-ensemble algorithms, are often employed
(for reviews, see e.g., Refs. [1–5]). In a generalized-ensemble simulation, each state
is weighted by a non-Boltzmann probability weight factor so that a random walk in
potential energy space may be realized. The random walk allows the simulation to
overcome any energy barrier and to sample much wider conformational space than
by conventional methods. The generalized-ensemble algorithm was introduced to
the molecular simulation field almost 20 years ago [6].

One of the most well-known generalized-ensemble algorithms is perhaps replica-
exchange method (REM) [7] (see Ref. [8] for the MD version). Multiple replicas
of the system in the canonical ensemble at different temperatures are simulated
simultaneously, and every few steps, a pair of replicas at neighboring temperatures
is exchanged. This causes a random walk in temperature for each replica, and the
simulation can avoid getting trapped in states of energy local minima.

REM was extended to multidimensions/multivariables so that not only tempera-
ture but also other parameter values of the system are exchanged, and the method
is referred to as multidimensional replica-exchange method (MREM) [9]. Various
special cases of MREM were then proposed [10–15] (MREM is also known as
Hamiltonian replica-exchange method [10]).

Another widely used generalized-ensemble algorithm is multicanonical algo-
rithm (MUCA) [16, 17] (for a textbook, see, e.g., Ref. [18]; see also Refs. [19, 20]
for the MD version). The probability weight factor, which is referred to as the
multicanonical weight factor, is defined to be inversely proportional to the density
of states so that a flat distribution in potential energy may be obtained. The uniform
distribution induces a free random walk in the potential energy space, and the
multiple-minima problem is overcome.

MUCA was extended so that flat distributions in parameters other than potential
energy and/or multidimensional parameter space may be realized [21–28].

We remark that general formulations for multidimensional/multivariable
generalized-ensemble algorithms (including REM and MUCA) were recently
worked out [29–31].

In this chapter, we describe both REM and MUCA. We then present sev-
eral of newly developed generalized-ensemble algorithms that are multidimen-
sional/multicomponent extensions of REM and MUCA. The first algorithm is an
example of MREM and referred to as the van der Waals replica-exchange method
(vWREM) [32], where different values of van der Waals radius are exchanged. The
second one is the multioverlap algorithm (MUOV), which performs a random walk
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in the overlap space instead of the potential energy space [33–35]. Further extension
of MUOV, which is referred to the multicanonical-multioverlap algorithm (MUCA-
MUOV) [36–38] and realizes a random walk both in the potential energy space
and the overlap space, is then given. The fourth method that we present here is
the multibaric-multithermal algorithm (MUBATH), which realizes a random walk
both in the potential energy space and in the volume space [39–45]. We remark that
other generalized-ensemble algorithms for the isobaric-isothermal ensemble have
also been developed [46–49]. Finally, examples of some simulation results based on
these methods are presented.

4.2 Generalized-Ensemble Algorithms

4.2.1 Replica-Exchange Method

Let us consider a system of N atoms of mass mk (k D 1; : : : ; N ) with their
coordinate vectors and momentum vectors denoted by q � fq1; : : : ; qN g and
p � fp1; : : : ;pN g, respectively. The Hamiltonian H.q; p/ of the system is the
sum of the kinetic energyK.p/ and the potential energyE.q/:

H.q; p/ D K.p/CE.q/; (4.1)

where

K.p/ D
NX

kD1

pk
2

2mk

: (4.2)

In the canonical ensemble at temperature T , each state x � .q; p/ with the
HamiltonianH.q; p/ is weighted by the Boltzmann factor:

WB.xIT / D exp .�ˇH.q; p// ; (4.3)

where the inverse temperature ˇ is defined by ˇ D 1=kBT (kB is the Boltzmann
constant). The average kinetic energy at temperature T is then given by

hK.p/iT D
*
NX

kD1

pk
2

2mk

+

T

D 3

2
NkBT: (4.4)

Because the coordinates q and momenta p are decoupled in Eq. 4.1, we can
suppress the kinetic energy part and can write the Boltzmann factor as

WB.xIT / / WB.EIT / D exp.�ˇE/: (4.5)
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The canonical probability distribution of potential energy PNVT.EIT / is then
given by the product of the density of states n.E/ and the Boltzmann weight factor
WB.EIT /:

PNVT.EIT / / n.E/WB.EIT /: (4.6)

Because n.E/ is a rapidly increasing function and the Boltzmann factor decreases
exponentially, the canonical ensemble yields a bell-shaped distribution of potential
energy which has a maximum around the average potential energy at temperature
T . The conventional MC or MD simulations at constant temperature are expected
to yield PNVT.EIT /. A MC simulation based on the Metropolis algorithm [50]
is performed with the following transition probability from a state x of potential
energyE to a state x0 of potential energyE 0:

w.x ! x0/ D min

�
1;
WB.E

0IT /
WB.EIT /

�
D min .1; exp .�ˇ�E// ; (4.7)

where

�E D E 0 �E: (4.8)

A MD simulation, on the other hand, is based on the following Newton equations of
motion:

Pqk D pk

mk

; (4.9)

Ppk D � @E

@qk
D Fk; (4.10)

where Fk is the force acting on the kth atom (k D 1; � � � ; N ). This set of
equations actually yield the microcanonical ensemble, however, and we have to add
a thermostat in order to obtain the canonical ensemble at temperature T . Here, we
just follow Nosé’s prescription [51, 52], and we have

Pqk D pk

mk

; (4.11)

Ppk D � @E

@qk
� Ps
s

pk D Fk � Ps
s

pk; (4.12)

Ps D s
Ps

Q
; (4.13)

PPs D
NX

kD1

pk
2

mk

� 3NkBT D 3NkB .T .t/ � T / ; (4.14)
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where s is Nosé’s scaling parameter, Ps is its conjugate momentum, Q is its mass,
and the “instantaneous temperature” T .t/ is defined by

T .t/ D 1

3NkB

NX

kD1

pk.t/
2

mk

: (4.15)

However, in practice, it is very difficult to obtain accurate canonical distributions
of complex systems at low temperatures by conventional MC or MD simulation
methods. This is because simulations at low temperatures tend to get trapped in
one or a few of local-minimum-energy states. This difficulty is overcome by, for in-
stance, the generalized-ensemble algorithms, which greatly enhance conformational
sampling.

The replica-exchange method (REM) [7] is one of effective generalized-
ensemble algorithms. The system for REM consists of M noninteracting copies
(or replicas) of the original system in the canonical ensemble at M different
temperatures Tm (m D 1; : : : ;M ). We arrange the replicas so that there is
always exactly one replica at each temperature. Then there exists a one-to-one
correspondence between replicas and temperatures; the label i (i D 1; : : : ;M ) for
replicas is a permutation of the label m (m D 1; : : : ;M ) for temperatures, and
vice versa: �

i D i.m/ � f .m/;

m D m.i/ � f �1.i/; (4.16)

where f .m/ is a permutation function of m and f �1.i/ is its inverse.

Let X D
n
x
Œi.1/�
1 ; : : : ; x

Œi.M/�
M

o
D
n
x
Œ1�

m.1/; : : : ; x
ŒM�

m.M/

o
stand for a “state” in this

generalized ensemble. Each “substate” xŒi�m is specified by the coordinates qŒi � and
momenta pŒi� of N atoms in replica i at temperature Tm:

xŒi�m � �
qŒi �; pŒi �

�
m
: (4.17)

Because the replicas are noninteracting, the weight factor for the state X in this
generalized ensemble is given by the product of Boltzmann factors for each replica
(or at each temperature):

WREM.X/ D
MY

iD1
exp

˚�ˇm.i/H
�
qŒi �; pŒi �

�� D
MY

mD1
exp

˚�ˇmH
�
qŒi.m/�; pŒi.m/�

��
;

(4.18)

where i.m/ andm.i/ are the permutation functions in Eq. 4.16.
We now consider exchanging a pair of replicas in this ensemble. Suppose we

exchange replicas i and j which are at temperatures Tm and Tn, respectively:

X D ˚
: : : ; xŒi �m ; : : : ; x

Œj �
n ; : : :

� �! X 0 D ˚
: : : ; xŒj �0m ; : : : ; xŒi �0n ; : : :

�
: (4.19)
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Here, i , j , m, and n are related by the permutation functions in Eq. 4.16, and the
exchange of replicas introduces a new permutation function f 0:

�
i D f .m/ �! j D f 0.m/;
j D f .n/ �! i D f 0.n/:

(4.20)

The exchange of replicas can be written in more detail as

8
<

:
x
Œi�
m � �

qŒi �; pŒi �
�
m

�! x
Œj �0
m � �

qŒj �; pŒj �0
�
m
;

x
Œj �
n � �

qŒj �; pŒj �
�
n

�! x
Œi�0
n � �

qŒi �; pŒi �0
�
n
;

(4.21)

where the definitions for pŒi�0 and pŒj �0 will be given below.
In the original implementation of the REM [7], Monte Carlo method was used,

and only the coordinates q (and the potential energy functionE.q/) had to be taken
into account. In molecular dynamics method, on the other hand, we also have to
deal with the momenta p. We proposed the following momentum assignment in
Eq. 4.21 [8]:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

pŒi�0 �
s
Tn

Tm
pŒi�;

pŒj �0 �
s
Tm

Tn
pŒj �;

(4.22)

which we believe is the simplest and the most natural. This assignment means
that we just rescale uniformly the velocities of all the atoms in the replicas by the
square root of the ratio of the two temperatures so that the temperature condition in
Eq. 4.4 may be satisfied immediately after replica exchange is accepted. We remark
that general momentum rescaling formulae were derived for various thermostats in
Ref. [53].

The transition probability of this replica-exchange process is given by the usual
Metropolis criterion:

w.X ! X 0/ � w
�
xŒi�m

ˇ̌
xŒj �n

� D min

�
1;
WREM.X

0/
WREM.X/

�
D min .1; exp .��// ;

(4.23)

where in the second expression (i.e., w.xŒi �m jxŒj �n /), we explicitly wrote the pair of
replicas (and temperatures) to be exchanged. From Eq. 4.22, the kinetic energy terms
all cancel out in Eq. 4.23, and � becomes

� D ˇm
�
E
�
qŒj �

� �E �qŒi ��� � ˇn
�
E
�
qŒj �

� � E
�
qŒi �
��
; (4.24)

D .ˇm � ˇn/
�
E
�
qŒj �

�� E
�
qŒi �
��
: (4.25)
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Here, i , j , m, and n are related by the permutation functions in Eq. 4.16 before the
replica exchange: �

i D f .m/;

j D f .n/:
(4.26)

Note that after introducing the momentum rescaling in Eq. 4.22, we have the same
Metropolis criterion for replica exchanges, i.e., Eqs. 4.23 and 4.25, for both MC and
MD versions.

Without loss of generality, we can assume T1 <T2 < � � � <TM . The lowest
temperature T1 should be sufficiently low so that the simulation can explore
the global-minimum-energy region, and the highest temperature TM should be
sufficiently high so that no trapping in an energy-local-minimum state occurs.
A REM simulation is then realized by alternately performing the following two
steps:

1. Each replica in canonical ensemble of the fixed temperature is simulated
simultaneously and independently for a certain MC or MD steps.

2. A pair of replicas at neighboring temperatures, say xŒi�m and xŒj �mC1, is exchanged

with the probability w
�
x
Œi�
m

ˇ̌
ˇxŒj �mC1

	
in Eq. 4.23.

A random walk in “temperature space” is realized for each replica, which in turn
induces a random walk in potential energy space. This alleviates the problem of
getting trapped in states of energy local minima.

After a long production run of a REM simulation, the canonical expectation value
of a physical quantity A at temperature Tm (m D 1; : : : ;M ) can be calculated by
the usual arithmetic mean:

hAiTm D 1

nm

nmX

kD1
A .xm.k// ; (4.27)

where xm.k/ (k D 1; : : : ; nm) are the configurations obtained at temperature Tm and
nm is the total number of measurements made at T D Tm. The expectation value at
any intermediate temperature T (D 1=kBˇ) can also be obtained as follows:

hAiT D

X

E

A.E/PNVT.EIT /
X

E

PNVT.EIT /
D

X

E

A.E/n.E/ exp.�ˇE/
X

E

n.E/ exp.�ˇE/
: (4.28)

Here, the explicit form of the physical quantity A should be known as a function
of potential energy E . For instance, A.E/ D E gives the average potential energy
hEiT as a function of temperature, and A.E/ D ˇ2.E � hEiT /2 gives specific heat.
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The density of states n.E/ in Eq. 4.28 is given by the multiple-histogram
reweighting techniques [54, 55] as follows (an extension of the multiple-histogram
method is also referred to as the weighted histogram analysis method (WHAM)
[55]). Let Nm.E/ and nm be respectively the potential energy histogram and the
total number of samples obtained at temperature Tm D 1=kBˇm (m D 1; � � � ;M ).
The best estimate of the density of states is then given by [54, 55]

n.E/ D

MX

mD1
g�1
m Nm.E/

MX

mD1
g�1
m nm exp.fm � ˇmE/

; (4.29)

where we have for each m (D 1; : : : ;M )

exp.�fm/ D
X

E

n.E/ exp.�ˇmE/: (4.30)

Here, gm D 1 C 2�m, and �m is the integrated autocorrelation time at temperature
Tm. For many systems, the quantity gm can safely be set to be a constant in the
reweighting formulae [55], and hereafter, we set gm D 1. Note that Eqs. 4.29 and
4.30 are solved self-consistently by iteration [54, 55] to obtain the density of states
n.E/ and the dimensionless Helmholtz free energy fm.

Moreover, the ensemble averages of any physical quantity A (including those
that cannot be expressed as functions of potential energy) at any temperature T
(D1=kBˇ) can now be obtained from the “trajectory” of configurations of the
production run. Namely, we first obtain fm (m D 1; � � � ;M ) by solving Eqs. 4.29
and 4.30 self-consistently, and then we have [56]

hAiT D

MX

mD1

nmX

kD1
A.xm.k//

1

MX

`D1
n` exp Œf` � ˇ`E.xm.k//�

exp Œ�ˇE.xm.k//�

MX

mD1

nmX

kD1

1

MX

`D1
n` exp Œf` � ˇ`E.xm.k//�

exp Œ�ˇE.xm.k//�
;

(4.31)

where xm.k/ (k D 1; � � � ; nm) are the configurations obtained at temperature Tm.
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4.2.2 Extensions of the Replica-Exchange Method

4.2.2.1 Multidimensional Replica-Exchange Method

We now describe the multidimensional replica-exchange method (MREM) [9]. The
crucial observation that led to this algorithm is as follows: As long as we have
M noninteracting replicas of the original system, the Hamiltonian H.q; p/ of the
system does not have to be identical among the replicas, and it can depend on a
parameter with different parameter values for different replicas.

Let us consider a generalized potential energy function E�.x/, which depends
on L parameters � D .�.1/; : : : ; �.L//, of a system in state x. The system
for MREM consists of M noninteracting replicas of the original system in the
“canonical ensemble” with M.D M0 � M1 � � � � � ML/ different parameter sets
ƒm (m D 1; : : : ;M ), where ƒm � .Tm0;�m/ � .Tm0; �

.1/
m1 ; : : : ; �

.L/
mL/ with

m0 D 1; : : : ;M0;m` D 1; : : : ;M` (` D 1; : : : ; L). Because the replicas are
noninteracting, the weight factor is given by the product of Boltzmann-like factors
for each replica:

WMREM �
M0Y

m0D1

M1Y

m1D1
� � �

MLY

mLD1
exp

�
�ˇm0E�m

	
: (4.32)

Without loss of generality, we can order the parameters so that T1<T2< � � � <
TM0 and �.`/1 < �

.`/
2 < � � � < �

.`/
M`

(for each ` D 1; � � � ; L). A MREM simulation is
realized by alternately performing the following two steps:

1. For each replica, a “canonical” MC or MD simulation at the fixed parameter
values is carried out simultaneously and independently for a certain steps.

2. We exchange a pair of replicas i and j which are at the parameter sets ƒm and
ƒmC1, respectively. The transition probability for this replica-exchange process
is given by

w.ƒm $ ƒmC1/ D min .1; exp.��// ; (4.33)

where we have

� D .ˇm0 � ˇm0C1/
�
E�m

�
qŒj �

� �E�m

�
qŒi �
�	
; (4.34)

for T -exchange, and

� D ˇm0

h�
E�m`

.qŒj �/� E�m`
.qŒi �/

	
�
�
E�m`C1

.qŒj �/� E�m`C1
.qŒi �/

	i
;

(4.35)

for �.`/-exchange (for one of ` D 1; � � � ; L). Here, qŒi � and qŒj � stand for
configuration variables for replicas i and j , respectively, before the replica
exchange.
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4.2.2.2 van der Waals Replica-Exchange Method

We now describe a special example of MREM, which we refer to as the van der
Waals Replica-Exchange Method (vWREM) [32].

We consider a system consisting of solute molecule(s) in explicit solvent. We can
write the total potential energy as follows:

E�.q/ D Ep.qp/C Eps.qp; qs/C Es.qs/; (4.36)

where Ep is the potential energy for the atoms in the solute only, Eps is the
interaction term between solute atoms and solvent atoms, and Es is the potential
energy for the atoms of the solvent molecules only. Here, q D fqp; qsg, where qp and
qs are the coordinate vectors of the solute atoms and the solvent atoms, respectively,

and denoted by qp �
n
q1; : : : ; qNp

o
and qs �

n
qNpC1; : : : ; qN

o
. (Np is the total

number of atoms in the solute.)
We are more concerned with effective sampling of the conformational space

of the solute itself than that of the solvent molecules. The steric hindrance of the
solute conformations are governed by the van der Waals radii of each atom in the
solute. Namely, when the van der Waals radii are large, the solute molecule is bulky,
and we have more steric hindrance among the solute atoms by the Lennard-Jones
interactions, and when it is small, the solute molecule can move more freely. We
thus introduce a parameter � that scales the van der Waals radius of each atom in
the solute by

�k` �! ��k` (4.37)

and write the Lennard-Jones energy term within Ep in Eq. 4.36 as follows:

V�
�
qp
� D

Np�1X

kD1

NpX

`DkC1
4�k`

(�
��k`

rk`

�12
�
�
��k`

rk`

�6)
; (4.38)

where rk` is the distance between atoms k and ` in the solute and �k` and �k` are the
corresponding Lennard-Jones parameters. The original potential energy is recovered
when � D 1, and the steric hindrance of solute conformations is reduced when
� < 1. We remark that this is the only �-dependent term in E� in Eq. 4.36.

We prepare M values of �, �m (m D 1; : : : ;M ). Without loss of generality, we
can assume that the parameter values are ordered as �1 < � � � < �M . Here, we
consider the case in which temperature is fixed to be T0 D 1=kBˇ0. The vWREM
is realized by alternately performing the following two steps:

1. For each replica, a canonical MC or MD simulation at the corresponding
parameter value �m is carried out simultaneously and independently for a certain
steps with the corresponding Boltzmann factor of Eq. 4.3 for each replica.
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2. We exchange a pair of replicas i and j which are at the neighboring parameter
values �m and �mC1, respectively. The transition probability for this replica-
exchange process is given by Eq. 4.33, where� in Eq. 4.35 now reads

� D ˇ0

h�
V�m

�
qŒj �p

	
� V�m

�
qŒi �p

		
�
�
V�mC1

�
qŒj �p

	
� V�mC1

�
qŒi �p

		i
:

(4.39)

Here, V� is the Lennard-Jones potential energy in Eq. 4.38 among the solute
atoms only.

Note that because the � dependence of E� exists only in V�, the rest of the terms
have been canceled out in Eq. 4.35.

We see that Eq. 4.39 includes only the coordinates qp of the atoms in the
solute only and is independent of the coordinates qs of solvent molecules. Because
Np � N usually holds, the difficulty in the usual REM that the number of required
replicas increases with the number of degrees of freedom is much alleviated in this
formalism.

We remark that in order to further enhance the conformational sampling, we
can perform a two-dimensional REM in both temperature and �, using Eqs. 4.34
and 4.35.

4.2.2.3 Reweighting Techniques

The results from MREM simulations with different parameter values can be
analyzed by the reweighting techniques [54, 55]. Suppose that we have carried out
a MREM simulation at a constant temperature T0 with M replicas corresponding to
M parameter values �m (m D 1; : : : ;M ).

For appropriate reaction coordinates �1 and �2, the canonical probability distribu-
tion PT;�.�1; �2/ with any parameter value � at any temperature T can be calculated
from

PT;�.�1; �2/ D
X

E�1 ;:::;E�M

MX

mD1
Nm.E�1 ; : : : ; E�M I �1; �2/e�ˇE�

MX

mD1
nme

fT0;�m�ˇ0E�m
; (4.40)

and

e�fT0;�m D
X

�1;�2

PT0;�m.�1; �2/: (4.41)
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Here, Nm.E�1 ; : : : ; E�M I �1; �2/ is the histogram of the M -dimensional energy
distributions at the parameter value �m and the reaction coordinate values .�1; �2/,
which was obtained by the MREM simulation, and nm is the total number of
samples obtained at the parameter value �m. Note that this probability distribution
is not normalized. Equations 4.40 and 4.41 are solved self-consistently by iteration.
Note also that these equations can be easily generalized to any reaction coordinates
.�1; �2; : : :/.

From the probability distribution PT;�.�1; �2/ in Eq. 4.40, the expectation
value of a physical quantity A with any parameter value � at any temperature
T is given by

hAiT;� D

X

�1;�2

A.�1; �2/PT;�.�1; �2/

X

�1;�2

PT;�.�1; �2/
: (4.42)

We can also calculate the free energy (or the potential of mean force) as a function
of the reaction coordinates �1 and �2 with any parameter value � at any temperature
T from

FT;�.�1; �2/ D �kBT lnPT;�.�1; �2/: (4.43)

By utilizing these equations, therefore, we can obtain various physical quantities
from the MREM simulations with the original and non-original parameter values.
We remark that although we wrote any T in Eqs. 4.40, 4.42, and 4.43 above, the
valid T value is limited in the vicinity of T0. We also need the T -exchange process
in Eq. 4.34 in order to have accurate average quantities for a wide range of T values.

4.2.3 Multicanonical Algorithm

The next generalized-ensemble algorithm that we present is the multicanonical
algorithm (MUCA) [16,17]. In the multicanonical ensemble, each state is weighted
by a non-Boltzmann weight factorWMUCA.E/ (which we refer to as the multicanon-
ical weight factor) so that a uniform potential energy distribution PMUCA.E/ may
be obtained:

PMUCA.E/ / n.E/WMUCA.E/ � constant: (4.44)

The flat distribution implies that a free one-dimensional random walk in the
potential energy space is realized in this ensemble. This allows the simulation to
escape from any local-minimum-energy states and to sample the configurational
space much more widely than the conventional canonical MC or MD methods.
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The definition in Eq. 4.44 implies that the multicanonical weight factor is
inversely proportional to the density of states, and we can write it as follows:

WMUCA.E/ � exp Œ�ˇ0EMUCA.EIT0/� D 1

n.E/
; (4.45)

where we have chosen an arbitrary reference temperature, T0 D 1=kBˇ0, and the
“multicanonical potential energy” is defined by

EMUCA.EIT0/ � kBT0 lnn.E/ D T0S.E/: (4.46)

Here, S.E/ is the entropy in the microcanonical ensemble. Because the density of
states of the system is usually unknown, the multicanonical weight factor has to be
determined numerically by iterations of short preliminary runs [16, 17].

A multicanonical MC simulation is performed, for instance, with the usual
Metropolis criterion [50]: The transition probability of state x with potential energy
E to state x0 with potential energyE 0 is given by

w.x ! x0/ D min

�
1;
WMUCA.E

0/
WMUCA.E/

�
D min

�
1;
n.E/

n.E 0/

�

D min .1; exp .�ˇ0�EMUCA// ; (4.47)

where
�EMUCA D EMUCA.E

0IT0/� EMUCA.EIT0/: (4.48)

The MD algorithm in the multicanonical ensemble also naturally follows from
Eq. 4.45, in which the regular constant temperature MD simulation (with T D T0)
is performed by replacing E by EMUCA in Eq. 4.12 [19, 20]:

Ppk D �@EMUCA.EIT0/
@qk

� Ps
s

pk D @EMUCA.EIT0/
@E

F k � Ps
s

pk: (4.49)

Let NMUCA.E/ be the histogram of potential energy distribution PMUCA.E/

obtained by the production run. The best estimate of the density of states can then
be given by the single-histogram reweighting techniques [57] as follows (see the
proportionality relation in Eq. 4.44):

n.E/ D NMUCA.E/

WMUCA.E/
: (4.50)

By substituting this quantity into Eq. 4.28, one can calculate ensemble averages
of physical quantity A.E/ as a function of temperature. Moreover, the ensemble
averages of any physical quantity A (including those that cannot be expressed as
functions of potential energy) at any temperature T (D 1=kBˇ) can also be obtained
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as long as one stores the “trajectory” of configurations from the production run.
Namely, we have

hAiT D

nsX

kD1
A.xk/W

�1
MUCA.E.xk// exp Œ�ˇE.xk/�

nsX

kD1
W �1

MUCA.E.xk// exp Œ�ˇE.xk/�
; (4.51)

where xk is the configuration at the kth MC (or MD) step and ns is the total number
of configurations stored.

4.2.4 Extensions of Multicanonical Algorithm

4.2.4.1 Multioverlap Algorithm and Multicanonical-Multioverlap
Algorithm

While MUCA yields a flat distribution in potential energy and performs a random
walk in potential energy space, we can, in principle, choose any other variable
and induce a random walk in that variable. One such example is the multioverlap
algorithm (MUOV) [33–35]. Here, we choose a protein system and define the
overlap in the space of dihedral angles by [58]

O D 1 � d; (4.52)

where d is the dihedral-angle distance given by

d D 1

n	

X

i

da.
i ; 

0
i /: (4.53)


i is the dihedral angle i , and 
0i is the dihedral angle i of the reference
conformation. The distance da.
i ; 
0i / between two dihedral angles is defined by

da.
i ; 

0
i / D min.j
i � 
0i j; 2	 � j
i � 
0i j/: (4.54)

The dihedral-angle distance d in Eq. 4.53 takes a value in the range 0 � d � 1. If
d D 0, all dihedral angles are coincident with those of the reference conformation.
The dihedral-angle distance is thus an indicator of how similar the conformation is to
the reference conformation. As one can see in Eq. 4.52, the dihedral-angle distance
d is equivalent to the overlap O . We will deal with the dihedral-angle distance
instead of the overlap hereafter.
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In the multioverlap ensemble at a constant temperature T0, the probability
distribution is given by the following non-Boltzmann weight factor, which we refer
to as the multioverlap weight factor:

Wmuov.d;EIT0/ D e�ˇ0Emuov ; (4.55)

where Emuov is the “multioverlap potential energy” defined by

Emuov.d;EIT0/ D E � kBT0f .d IT0/: (4.56)

The function f .d IT0/ is the dimensionless free energy at dihedral-angle distance d .
The generalization to the multidimensional dihedral-angle distance space is

straightforward, and the multioverlap weight factor is given by

Wmuov.d1; : : : ; dL;EIT0/ D e�ˇ0Emuov � e�ˇ0ECf .d1;:::;dLIT0/; (4.57)

where L is the number of the reference conformations and di is the dihedral-
angle distance, with respect to reference conformation i .i D 1; : : : ; L/. The
function f .d1; : : : ; dLIT0/ is the dimensionless free energy with the fixed
value of dihedral-angle distances d1; � � � ; dL. The dimensionless free energy
f .d1; : : : ; dLIT0/ is defined so that the probability distribution of dihedral-angle
distances Pmuov.d1; : : : ; dLIT0/ is flat:

Pmuov.d1; : : : ; dLIT0/ D
Z
dE Pmuov.d1; : : : ; dL;EIT0/

/
Z
dE n.d1; : : : ; dL;E/Wmuov.d1; : : : ; dL;EIT0/

D
Z
dE n.d1; : : : ; dL;E/e

�ˇ0ECf .d1;��� ;dLIT0/

� constant; (4.58)

where Pmuov.d1; : : : ; dL;EIT0/ is the probability distribution of potential energy
and dihedral-angle distances, and n.d1; : : : ; dL;E/ is its density of states.

The MD algorithm in the multioverlap ensemble also naturally follows from
Eq. 4.57, in which the regular constant temperature MD simulation (with T D T0)
is performed by replacing E by Emuov in Eq. 4.12 [35, 36]:

Ppk D �@Emuov

@qk
.d1; : : : ; dL;EIT0/ � Ps

s
pk

D F k C kBT0
@f

@qk
.d1; : : : ; dLIT0/� Ps

s
pk: (4.59)



84 H. Okumura et al.

The multioverlap weight factor, or the dimensionless free energy, is not a priori
known and has to be determined by the usual iterations of short simulations
[2, 18]. Suppose that we have determined an appropriate dimensionless free energy
f .d1; : : : ; dLIT0/ at temperature T0 and that we have made a production run at this
temperature. The results of the multioverlap production run can then be analyzed
by the reweighting techniques [57]. Namely, the expectation value of a physical
quantity A at any temperature T is given by

hAiT D

X

d1;��� ;dL;E

A.d1; � � � ; dL; E/Nmuov.d1; � � � ; dL; E/Wmuov.d1; � � � ; dL; EIT0/�1e�ˇE

X

d1;��� ;dL;E

Nmuov.d1; � � � ; dL; E/Wmuov.d1; � � � ; dL; EIT0/�1e�ˇE

D

X

d1;��� ;dL;E

A.d1; � � � ; dL; E/Nmuov.d1; � � � ; dL; E/e�.ˇ�ˇ0/E�f .d1 ;��� ;dLIT0/

X

d1;��� ;dL;E

Nmuov.d1; � � � ; dL; E/e�.ˇ�ˇ0/E�f .d1 ;��� ;dLIT0/
; (4.60)

where Nmuov.d1; : : : ; dL;E/ is the histogram of the probability distribution
Pmuov.d1; : : : ; dL;EIT0/ of potential energy and dihedral-angle distances that
was obtained by the multioverlap production run.

The multioverlap algorithm can further be combined with the multicanonical
algorithm as follows (this method is referred to as the multicanonical-multioverlap
algorithm (MUCA-MUOV)) [36]. In analogy with the multicanonical ensemble in
Eq. 4.44 or the multioverlap ensemble in Eq. 4.58, by employing the non-Boltzmann
weight factor Wmcmo.d1; : : : ; dL;E/, which we refer to as the multicanonical-
multioverlap weight factor, a uniform probability distribution with respect to the
potential energy and dihedral-angle distances is obtained:

Pmcmo.d1; : : : ; dL;E/ / n.d1; : : : ; dL;E/Wmcmo.d1; : : : ; dL;E/ � constant:
(4.61)

In this method, we obtain a random walk not only in the dihedral-angle distance
space but also in the potential energy space.

4.2.4.2 Multibaric-Multithermal Algorithm

Besides the canonical ensemble, molecular simulations in the isobaric-isothermal
ensemble are also commonly used. This is because most experiments are carried
out under the constant pressure and constant temperature conditions. The canonical
probability distribution PB.EIT0/ in Eq. 4.6 is here replaced by the isobaric-
isothermal distribution PNPT.E; V IT0; P0/ for potential energy E and volume V :

PNPT.E; V IT0; P0/ � n.E; V /e�ˇ0H: (4.62)
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Here, the density of states n.E; V / is given as a function of bothE and V , and H is
the “enthalpy” (without the kinetic energy contributions):

H D E C P0V; (4.63)

where P0 is the pressure at which simulations are performed. This weight factor
produces an isobaric-isothermal ensemble at constant temperature (T0) and constant
pressure (P0). This ensemble has bell-shaped distributions in both E and V .

As for the MD methods in this ensemble, we just present the Nosé-Andersen
algorithm [51, 52, 59]. The equations of motion in Eqs. 4.11–4.14 are now general-
ized as follows:

Pqk D pk

mk

C
PV
3V

qk; (4.64)
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Q
; (4.66)
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D s ŒP.t/ � P0� ; (4.69)

where M is the artificial mass associated with the volume, PV is the conjugate
momentum for the volume, and the “instantaneous pressure” P.t/ is defined by

P.t/ D 1
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iD1
qi .t/ � F i .t/

!
: (4.70)

We now introduce the idea of the multicanonical technique into the isobaric-
isothermal ensemble method and refer to this generalized-ensemble algorithm as
the multibaric-multithermal algorithm (MUBATH) [39, 40, 42, 43]. The molecular
simulations in this generalized ensemble perform random walks both in the potential
energy space and in the volume space.
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In the multibaric-multithermal ensemble, each state is sampled by the multibaric-
multithermal weight factor Wmbt.E; V / � expf�ˇ0Hmbt.E; V /g (Hmbt is referred
to as the multibaric-multithermal enthalpy) so that a uniform distribution in both
potential energy and volume may be obtained:

Pmbt.E; V / / n.E; V /Wmbt.E; V / D n.E; V / expf�ˇ0Hmbt.E; V /g � constant:
(4.71)

In order to perform the multibaric-multithermal MD simulation, we just solve
the above equations of motion (Eqs. 4.64–4.69) for the regular isobaric-isothermal
ensemble (with T D T0 and P D P0), where the enthalpy H is replaced by the
multibaric-multithermal enthalpy Hmbt in Eqs. 4.65 and 4.69 [42].

The multibaric-multithermal weight factor is, however, not a priori known and
has to be determined by the usual iterations of short simulations [2, 18]. After
an optimal weight factor Wmbt.E; V / is obtained, a long production simulation is
performed for data collection. We employ the reweighting techniques [57] for the
results of the production run to calculate the isobaric-isothermal-ensemble averages.
The probability distribution PNPT.E; V IT;P / of potential energy and volume in
the isobaric-isothermal ensemble at the desired temperature T and pressure P is
given by

PNPT.E; V IT;P / D Nmbt.E; V / Wmbt.E; V /
�1 e�ˇ.ECPV /

X

E;V

Nmbt.E; V / Wmbt.E; V /
�1 e�ˇ.ECPV / ; (4.72)

where Nmbt.E; V / is the histogram of the probability distribution Pmbt.E; V / of
potential energy and volume that was obtained by the multibaric-multithermal
production run. The expectation value of a physical quantity A at T and P is then
obtained from

hAiT;P D
X

E;V

A.E; V / PNPT.E; V IT;P /: (4.73)

4.3 Examples of Simulation Results

We now present several examples of the simulation results by the generalized-
ensemble algorithms described in the previous section.

The first example is a vWREM simulation of a small peptide [32]. In order
to demonstrate the effectiveness of vWREM, in which we exchange pairs of the
van der Waals radius parameter values, we applied the vWREM MD algorithm,
which we refer to as the vWREMD, to the system of an alanine dipeptide in explicit
water solvent and compared the results with those obtained by the replica-exchange
MD (REMD) simulation [8] and conventional canonical MD simulations. The N-
terminus and the C-terminus were blocked by the acetyl group and the N-methyl
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Fig. 4.1 The common initial conformation of the alanine dipeptide for the vWREMD, REMD,
and canonical MD simulations. Reprinted from Ref. [32] with kind permission of © The American
Institute of Physics (2010)

group, respectively. The number of water molecules was 67. The force field that
we adopted was the AMBER parm96 parameter set [60], and the model for the
water molecules was the TIP3P rigid-body model [61]. The vWREMD, REMD,
and canonical MD simulations were carried out with the symplectic integrator with
rigid-body water molecules, in which the temperature was controlled by the Nosé-
Poincaré thermostat [44,45,62–65]. The system was put in a cubic unit cell with the
side length of 13.4 Å, and we imposed the periodic boundary conditions.

In the vWREMD simulation, we needed only four replicas (M D 4). That is,
we employed four different parameter values �m .m D 1; : : : ; 4/, and their values
were �1 D 0:85, �2 D 0:9, �3 D 0:95, and �4 D 1:0. The original potential energy
corresponds to the scale factor �4 D 1:0. The temperature of the system T0 was
set to be 300 K for all the replicas in the vWREMD simulation. We also employed
four replicas for the REMD simulation to compare the sampling efficiency with
those of the vWREMD simulation, and the four different temperatures were 300 K,
315 K, 335 K, and 360 K, and these temperatures were determined so that exchanges
between pairs of replicas were accepted sufficiently. Moreover, we carried out four
canonical MD simulations at 300 K, and the difference among these four simulations
was initial velocities. We employed the original parameter value � D 1:0 for the
REMD and canonical MD simulations. The initial conformations were the same for
all the simulations, and the initial backbone dihedral angles � and  of the alanine
dipeptide were set .�;  / D .180ı; 180ı/, as shown in Fig. 4.1. The total time of the
MD simulations was 2.5 ns per replica for the vWREMD and REMD simulations
and 2.5 ns for each canonical simulation, including equilibration for 0.1 ns.

Figure 4.2 shows the time series of the backbone dihedral angles � for the
vWREMD, REMD, and the conventional canonical MD simulations. From the
figure, we see that the samplings in the � space in the vWREMD simulation were
the most effective, then those in the REMD simulation, and the least effective in the
conventional MD simulation.

The second example is a multioverlap MD simulation of the system of a
pentapeptide, Met-enkephalin, in vacuum [34]. The amino-acid sequence is Tyr-
Gly-Gly-Phe-Met. The N-terminus and the C-terminus were blocked with the acetyl
group and the N-methyl group, respectively. The force field that we adopted is
the CHARMM param 22 parameter set [66]. Our multioverlap MD simulations
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Fig. 4.2 Time series of the dihedral angle � during the vWREMD simulation (left), REMD
simulation (center), and canonical MD simulation (right)

Fig. 4.3 (a) Reference conformation 1 and (b) reference conformation 2. The side chains are
suppressed, and only backbone structures are shown. The dotted lines denote the hydrogen
bonds. The N-terminus and the C-terminus are on the right-hand side and on the left-hand side,
respectively

were performed by implementing the method in the CHARMM macromolecular
mechanics program [67].

We considered two energy-local-minimum states of Met-enkephalin as reference
conformations. In Fig. 4.3, we show these two reference conformations. We then set
L D 2 in Eq. 4.57, and the dimensionless free energy is expressed as f .d1; d2IT0/.
The multioverlap MD simulation was carried out at T0 D 300K with a time step
of 0.5 fs.

Figure 4.4 shows the time series of the dihedral-angle distances with respect
to each of the two reference conformations. While Fig. 4.4a, b shows the results
of the conventional canonical MD simulation at T0 D 300K, Fig. 4.4c, d shows
the results of the multioverlap MD simulation at the same temperature. When
d1 D 0, the values of dihedral angles of backbone completely coincide with those of
reference conformation 1 and d2 D 0:122. Conversely, when d2 D 0, d1 D 0:122.
When d1 .d2/ is near zero, the conformation is similar to reference conformation
1 (2). Therefore, Fig. 4.4 implies that the multioverlap MD simulation performed a
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Fig. 4.4 The time series of the dihedral-angle distances d1 and d2. (a) and (b) are from the
conventional canonical MD simulation, and (c) and (d) are the results from the multioverlap MD
simulation at T0 D 300K

random walk in the dihedral-angle distance space between reference conformation
1 and reference conformation 2, whereas the usual canonical MD simulation got
trapped in a local-minimum state near conformation 2.

The free energy F.d1; d2IT / (or the potential of mean force) at temperature T is
defined by

F.d1; d2IT / D �kBT lnPB.d1; d2IT /; (4.74)

where PB.d1; d2IT / is the reweighted canonical probability distribution of d1 and
d2 at T and given by (see Eq. 4.60)

PB.d1; d2IT / D

X

E

Nmuov.d1; d2; E/e
�.ˇ�ˇ0/E�f .d1;d2IT0/

X

d1;d2;E

Nmuov.d1; d2; E/e
�.ˇ�ˇ0/E�f .d1;d2IT0/ : (4.75)
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Fig. 4.5 The free-energy landscape obtained from (a) the conventional canonical MD simulation
and (b) the multioverlap MD simulation at T0 D 300K. Contour lines are drawn every 1 kcal/mol.
The labels A and B locate the local-minimum states. The label C stands for the saddle point, or the
transition state, between these two local-minimum states

In Fig. 4.5, we illustrate the free-energy landscapes with respect to the dihedral-
angle distances that were calculated from the results of the conventional canonical
MD simulation and those of the multioverlap MD simulation. While in Fig. 4.5a
only one local-minimum state exists near reference conformation 2, in Fig. 4.5b,
we find a local-minimum state A and a local-minimum state B near reference
conformation 1 and reference conformation 2, respectively. This result again implies
that the canonical MD simulation got trapped in the latter local-minimum state. The
local-minimum state B near reference conformation 2 corresponds to the global-
minimum state at 300 K. The local-minimum state A near reference conformation
1 is another local-minimum state at 300 K. The free-energy difference between the
global-minimum state (B) and the local-minimum state (A) is about 3 kcal=mol.

The saddle point C in Fig. 4.5b corresponds to the transition state between
the global-minimum state (B) and the local-minimum state (A). The free-energy
difference between B and C is about 5 kcal/mol and that between A and C is
2 kcal/mol. Because kBT � 0:6 kcal=mol at T D 300K, these barrier heights are
rather high. This is why the conventional canonical MD simulation got trapped in
the vicinity of the global-minimum state B.

Our next simulation is the multicanonical-multioverlap MD simulation of
Alzheimer’s amyloid-ˇ (Aˇ) peptide fragment [37]. The amino-acid sequence
was Ace-GAIIGLMVGGVVIA-Nme. In multicanonical-multioverlap simulations,
we must have a reference conformation. We adopted the conformation that was
obtained from the corresponding part in the conformation whose PDB ID code
is 2BEG. Here, we took into account only the backbone dihedral angles � (the
rotation angles around the N–C˛ bonds) and  (the rotation angles around the
C˛–C bonds) of the residues 30–41 of Aˇ(29–42) as the reference dihedral angles
in our simulations. The force field that we adopted is the CHARMM 22 parameter
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Fig. 4.6 Typical conformations of the Aˇ(29–42) molecule at 300 K when two molecules are
spatially separated. Reprinted from Ref. [37] with kind permission of © The American Chemical
Association (2008)

set [66]. We employed the GB/SA model [68–70] as an implicit solvent model. We
also introduced the harmonic constraint k.r � r0/

2=2 when the distance between
the center of mass of two Aˇ(29–42) molecules exceeded 20 Å in order to avoid
the states in which two molecules are too much spatially separated. Here, r is the
distance between the center of mass of two molecules, and k is a force constant
whose value is 200 kcal/(mol Å2), and the value of r0 is set 20 Å.

In Fig. 4.6, we show conformations of Aˇ(29–42) monomer in the case when
the distance between the center of mass of two peptides is more than 15 Å at
300 K. We identified three major metastable states. These states correspond to low
concentrations of Aˇ(29–42) peptides or to their monomeric states. Conformation
1 in Fig. 4.6 is a ˇ-helix-like structure, conformation 2 is an ˛-helix (or sometimes
	-helix) structure, and conformation 3 is an intramolecular antiparallel ˇ-sheet
(ˇ-hairpin) structure. When the Aˇ(29–42) peptide is in a monomeric state,
therefore, it seems that the conformations of Aˇ(29–42) peptides have the same
structure as those in Fig. 4.6.

We show the free-energy landscape of the dimer system at 300 K in Fig. 4.7a.
The free-energy landscape was obtained from the results of the multicanonical-
multioverlap MD simulation by the reweighting techniques. The abscissa is the
number of backbone C˛ intermolecular contacts, and we regard a pair of C˛ atoms
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Fig. 4.7 (a) Free-energy landscape of an Aˇ(29–42) dimer system at 300 K. The ordinate is an
indicator of structure for helix and strand. When the value of the ordinate is close to 1, conforma-
tions of Aˇ(29–42) become helical. Conversely, if the value is close to 0, the conformations have
extended forms. The abscissa is the number of backbone C˛ intermolecular contacts. Contour lines
are drawn every 1 kcal/mol. (b) Typical structures in the corresponding local-minimum states in
(a). The arrows indicate possible pathways of the early stages of amyloidogenesis. Reprinted from
Ref. [37] with kind permission of © The American Chemical Association (2008)

as being in contact if the distance between the two atoms is within 6.5 Å. d˛ and dˇ
in the label of the ordinate are dihedral-angle distances, which we introduced to set
the reaction coordinates of the free-energy data analysis. When the value of d˛ (dˇ)
is close to 0, the structures of Aˇ(29–42) molecules are helical (extended strand).
From the free-energy landscape in Fig. 4.7a, we identified seven local-minimum
states. In Fig. 4.7b, we show typical conformations of the Aˇ(29–42) in each local-
minimum state.

From Figs. 4.6 and 4.7, we deduce the dimerization (oligomerization) process,
which corresponds to a seeding process in amyloidogenesis, for Aˇ(29–42) peptides
as follows: Stage 1: When the Aˇ(29–42) peptides are in the monomeric state, the
peptides are mainly in one of the three conformational states in Fig. 4.6. Stage 2:
Aˇ(29–42) peptides come close to each other and create dimers (or oligomers) as a
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result of hydrophobic effects. If the structures are intramolecular antiparallelˇ-sheet
structures before dimerization, such as conformation 3 in Fig. 4.6, the conformation
after dimerization will correspond to conformation 2 in the local-minimum state E in
Fig. 4.7b. If the structures are like conformation 1 or 2 in Fig. 4.6, on the other hand,
the Aˇ(29–42) dimer will have structures like those of the conformations in A or B
in Fig. 4.7b. Stage 3: If the conformations in stage 2 are in states A or B in Fig. 4.7b,
then the peptides have helical conformations with extended parts like those in C.
If the conformations in stage 2 are already in E in Fig. 4.7b, on the other hand, this
corresponds to Stage 4 below. Stage 4: The extended parts will create intermolecular
ˇ-ladders such as those in D or E. Stage 5: The intramolecular secondary structures
are broken, and the peptides will have a fully extended form such as those in F. Stage
6: The Aˇ(29–42) dimer has intermolecular parallel or antiparallelˇ-sheet structure
like those in G. These pathways are summarized in Fig. 4.7b (see the arrows). In
the early process of amyloidogenesis, these intermolecular parallel or antiparallel
ˇ-sheet structure can be a seed of amyloid fibrils.

We now present the results of a multibaric-multithermal MD simulation [42]. We
considered a Lennard-Jones 12–6 potential system. The length and the energy are
scaled in units of the Lennard-Jones diameter � and the depth of the potential �,
respectively. We use an asterisk (	) for quantities reduced by � and �.

We used 500 particles (N D 500) in a cubic unit cell with periodic boundary
conditions. We started the multibaric-multithermal weight factor determination from
a regular isobaric-isothermal simulation at T �

0 D 2:0 and P �
0 D 3:0 (the multibaric-

multithermal production run was also performed at this set of temperature and
pressure values). These temperature and pressure values are respectively higher than
the critical temperature T �

c and the critical pressureP �
c [71,72]. Recent reliable data

are T �
c D 1:3207.4/ and P �

c D 0:1288.5/ [72]. The cutoff radius r�
c was taken to be

r�
c D 4:0. A cutoff correction was added for the pressure and the potential energy.

In order to carry out the multibaric-multithermal MD simulation in Eqs. 4.64–
4.69 with the replacement of H by Hmbt, we employed the Nosé-Poincaré formalism
[44,45,62–65]. This gives the same equations of motion as the Nosé thermostat and
provides a symplectic integrator. Therefore, it has an advantage that the secular
deviation of the Hamiltonian is suppressed. We have recently shown that this
integrator is also very effective for rigid-body molecules [64]. We performed a long
production run of 106 MD steps.

In Fig. 4.8a, we show the probability distribution PNPT.E
�=N; V �=N/ from

the isobaric-isothermal simulation that was carried out first. It is a bell-shaped
distribution. As the iteration of the multibaric-multithermal weight factor deter-
mination proceeds, Pmbt.E

�=N; V �=N/ will become flat and broad gradually.
Figure 4.8b depicts the probability distribution Pmbt.E

�=N; V �=N/ from the
multibaric-multithermal simulation that was finally performed. It shows a flat
distribution, and the multibaric-multithermal MD simulation indeed sampled the
conformational space in wider ranges of E�=N and V �=N than the conventional
isobaric-isothermal MD simulation.
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Fig. 4.8 (a) The probability distribution PNPT.E
�=N; V �=N / in the isobaric-isothermal MD

simulation at .T �
0 ; P

�
0 / D .2:0; 3:0/ and (b) the probability distribution Pmbt.E

�=N; V �=N /

in the multibaric-multithermal MD simulation. Reprinted from Ref. [42] with kind permission of
© Elsevier (2004)
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0 / D .1:6; 3:0/ and (b) the multibaric-multithermal MD
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Fig. 4.11 The probability distributions P.�;  / of the backbone dihedral angles � and  at T D
298K and P D 0:1MPa, which were obtained by the reweighting techniques from the results of
the multibaric-multithermal MD simulation (a) in the AMBER parm99 force field and (b) in the
AMBER parm96 force field. (a0) and (b0) are the contour map of (a) and that of (b), respectively.
Reprinted from Ref. [45] with kind permission of © The American Chemical Society (2008)

The time series of E�=N from two conventional isobaric-isothermal MD simu-
lations at (T �

0 , P �
0 ) = (1.6, 3.0) and (2.4, 3.0) are given in Fig. 4.9a. The potential

energy fluctuates in narrow ranges of E�=N D �4:0 
 �3:5 at the higher
temperature of T �

0 D 2:4 and in the ranges of E�=N D �5:1 
 �4:7 and
at the lower temperature of T �

0 D 1:6. On the other hand, Fig. 4.9b shows that
the multibaric-multithermal MD simulation realizes a random walk in the potential
energy space and covers a wide energy range.

A similar situation is observed in V �=N . In Fig. 4.10a the time series of two
conventional isobaric-isothermal MD simulations at (T �

0 , P �
0 ) = (2.0, 2.2) and (2.0,

3.8), is shown. The volume fluctuations are only in the range of V �=N D 1:3 
 1:4

and V �=N D 1:5 
 1:6 at P �
0 D 3:8 and at P �

0 D 2:2, respectively. On the
other hand, the multibaric-multithermal MD simulation performs a random walk
that covers even a wider volume range, as shown in Fig. 4.10b.

We applied the MUBATH MD algorithm to a system consisting of one alanine
dipeptide molecule and 63 water molecules. We used enough water molecules
so that the alanine dipeptide molecule was always held perfectly within the
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Fig. 4.12 The population ratiosW=WPII against the PII state as functions of pressure P at constant
temperature of T D 298K, which was obtained by the reweighting techniques from the results of
the multibaric-multithermal MD simulation. Reprinted from Ref. [45] with kind permission of
© The American Chemical Society (2008)

simulation box. We used both AMBER parm99 [73] and AMBER parm96 [60]
force fields for the alanine dipeptide molecule and the TIP3P [61] rigid-body model
for the water molecules. We employed a cubic unit cell with periodic boundary
conditions. The electrostatic potential was calculated by the Ewald method. We
calculated the van der Waals interaction, which is given by the Lennard-Jones 12–6
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Table 4.1 Differences �V / (cm3mol�1) in partial molar volume of the
C5; ˛R; ˛P; ˛L, and Cax

7 states from that of the PII state calculated by the
MUBATH MD simulations. Raman experimental data are taken from Ref. [75]

State AMBER parm99 AMBER parm96 Raman

C5 1.5 ˙ 0.9 �0.3 ˙ 0.9 0.1 ˙ 0.3
˛R 1.8 ˙ 0.8 �2.0 ˙ 2.0 1.1 ˙ 0.2
˛P 0.6 ˙ 0.8 0.1 ˙ 1.2 –
˛L �5.2 ˙ 1.0 �10.2 ˙ 5.6 –
Cax
7 – 9.4 ˙ 4.1 –

term, for all pairs of the atoms within the minimum image convention instead of
introducing the spherical potential cutoff. The time step was taken to be�t D 0:5 fs.

Figure 4.11 shows P.�;  / obtained from the MUBATH MD simulations by the
reweighting techniques at T = 298 K andP = 0.1 MPa. In the case of longer peptides
or proteins, the ˛R state corresponds to an ˛-helix structure, and the PII and C5 states
correspond to a ˇ-strand structure. It is known that, in general, the AMBER parm99
force field tends to form an ˛-helix structure, and the AMBER parm96 force field
tends to form a ˇ-sheet structure [74]. The distributions P.�;  / in Fig. 4.11 are
consistent with this feature.

Figure 4.12 shows the population ratio of each state and the PII state as a
function of P at the constant temperature of T D 298K. A pressure increase at
constant temperature generally causes a decrease in the volume. The decreases in
the population ratio of some state and the PII state mean that the volume of that state
is larger than that of the PII state. The difference in partial molar volume�V of the
C5 state from that of the PII state, for example, is calculated from the derivative of
log.WC5=WPII/ with respect to P by

�V D �RT


@ log.WC5=WPII/

@P

�

T

: (4.76)

The difference between the partial molar volume of the other states and that of
the PII state was also obtained in the same way. The values of �V are shown in
Table 4.1. Note that all the experimental data lie in between the corresponding
simulation results with the two force fields.

4.4 Conclusions

In this chapter, we described two powerful generalized-ensemble algorithms,
namely, replica-exchange method (REM) and multicanonical algorithm (MUCA),
which are effective for molecular simulations. We also introduced multidimen-
sional/multivariable extensions of the two methods, namely, MREM, vWREM,
MUOV, MUCA-MUOV, and MUBATH. These generalized-ensemble algorithms
are particularly useful for biomolecular simulations.
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