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Abstract Protein kinase B/Akt plays a critical role in the regulation of cardiac
hypertrophy, angiogenesis and apoptosis. The evidences that elevation of Akt in car-
diomyocytes in vivo and in vitro protects against apoptosis after ischemia/reperfusion
injury provide possibility that agents targeting Akt activation become a novel
therapeutic strategy for limiting myocardial injury following ischemia. Vanadium
compounds inhibiting protein tyrosine phosphatases are potent activator of the Akt
signaling pathways and elicit cardioprotection in heart ischemia/reperfusion injury
along with cardiac functional recovery in rats. In addition, vanadium compounds has
strong anti-hypertrophic in the pressure overload-induced hypertrophy in ovariec-
tomized and aortic-banded rats. The elevation of Akt activity and Akt-dependent
eNOS phosphorylation are central roles on vanadium compound-induced anti-
hypertrophy and heart failure in the ovariectomized and aortic-banded rats. Taken
together, vanadium compounds are potential therapeutics for ischemia/reperfusion-
induced myocardial injury and heart failure associated with hypertension in the
postmenopausal women.
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9.1 Introduction

In the cardiovascular system, protein kinase B (PKB)/Akt plays an important role
in the regulation of cardiac hypertrophy, angiogenesis, and apoptosis [1–5]. The
Akt subfamily comprises three mammalian isoforms, PKB˛/Akt1, PKB“/Akt2
and PKB� /Akt3, which are products of distinct genes and share a conserved
structure that includes three functional domains: an N-terminal pleckstrin homology
domain, a central kinase domain, and a C-terminal regulatory domain containing
the hydrophobic motif phosphorylation site [FxxF(S/T)Y] [6]. Among the three
Akt genes, only Akt1 and Akt2 are highly expressed in the heart. Consistent with
the general trophic function of Akt, the Akt1 whole-genome-knockout mice weigh
approximately 20% less than wild-type littermates and have a proportional reduction
in size of all somatic tissues, including the heart [7, 8]. In contrast, Akt2-knockout
mice have only a modest reduction in organ size [9]. Thus, data from Akt-knockout
mice support a critical role specifically for Akt1 in normal growth of the heart [10].
The observation that acute activation of Akt in cardiomyocytes in vivo and in vitro
protects against apoptosis after ischemia/reperfusion injury provide possibility that
agents targeting Akt activation become a novel therapeutic strategy for limiting
myocardial injury following ischemia [11].

9.2 Cardioprotection with Vanadium Compound
in Myocardial Infarction

9.2.1 Vanadium Compounds as Akt Activator

Vanadium compounds are potent activator of the Akt signaling pathways
[12–15] and elicit cardioprotection in heart ischemia/reperfusion injury along with
cardiac functional recovery in rats [1, 2, 15, 16]. Vanadium compounds inhibit
protein tyrosine phosphatases [12, 13] and promote an increase in protein tyrosine
phosphorylation, leading to the upregulation of Akt [12, 14]. An increase in
tyrosine phosphorylation in the heart via increased tyrosine kinase activity has
been implicated in the signal transduction pathway of cardioprotection by ischemic
preconditioning [17–19] which is the most potent endogenous mechanism to limit
myocardial infarct size. Among several oxidation states of vanadium II to V,
vanadium ion in living cells exists exclusively as vanadyl (IV) cation and a small
amount as vanadate (V) anion [20]. Furthermore, vanadyl (VO2C) compounds,
of oxidation state IV, under physiological conditions are subject to oxidation by
a variety of oxidants, including molecular oxidant and vanadate compounds, of
oxidation state V are thought to undergo reduction to state IV in the cell [21–24].
To develop a novel therapeutic drug to protect cardiomyocytes from heart diseases,
we selected a novel vanadyl (IV) compound having the VO2C chelate, bis(1-oxy-2-
pyridinethiolato) oxovanadium(IV), [VO(OPT)], which is a potent activator of the
Akt signaling pathway both in vivo and in vitro [12–14, 25].
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9.2.2 Pharmacotoxicity of Vanadium Compounds

The toxicity of vanadium compounds is low. The most common toxic effects
reported for inorganic vanadium compounds are diarrhea, decreased food uptake,
dehydration and reduced body weight gain [14] which can, however, be corrected
by adding sodium chloride to drinking water, adjusting the pH of the solution to
neutrality and by gradually increasing the dose of vanadium [26, 27]. Organic
vanadium compounds were much safer than inorganic vanadium salts and do not
cause any gastrointestinal discomfort, hepatic or renal toxicity [25, 28]. Along with
the previous studies, we also did not found any gastrointestinal, hepatic or renal
toxicity in the VO(OPT) treated rats [29, 30].

Recent work has demonstrated that vanadium compounds inhibited serum- and
growth factor-stimulated mitogenesis [31, 32] and possess anti-tumor activity [33,
34]. Many other studies have, however, failed to detect any change in the levels of
urea, creatinine, glutamic oxaloacetic transaminase and glutamic pyruvic transam-
inase, indices of kidney and liver functions [35–37]. Moreover, no significant
changes in the histopathology of several tissues, including the liver, spleen, stomach,
heart and lung, have been observed among control and vanadyl sulfate-treated
animals [38]. Electron microscopic examination of ob/ob mice treated with vanadate
for 47 days revealed no sign of hepatotoxicity [27].

In patients treated with vanadium salts, gastrointestinal discomfort was the most
common toxic effect, which could be corrected by decreasing the dose level [39].
Moreover, clinical studies have been of short duration (up to 6 weeks) and utilized
lower doses than those administered in animal experiments; thus, the long-term
toxicity of vanadium in humans remains to be explored. Clearly, at present, there
is no consensus on the toxic effects of vanadium compounds, and detailed and
systematic investigations are needed to evaluate the toxicity of various vanadium
compounds before undertaking long-term clinical trials in humans. It should be
noted that use of chelating agents and organo-vanadium compounds, such as
VO(OPT), have shown significantly reduced vanadium toxicity and may serve as
more potent cardioprotective agents than inorganic vanadium salts.

9.2.3 Cardioprotection of VO(OPT) in Ischemia/Reperfusion
Injury

We tested whether VO(OPT) treatment has cardioprotective effect against myocar-
dial ischemia/reperfusion injuries in rats. Rats were subjected to 30 min ischemia
followed by 24 h reperfusion to define the cytoprotective effect of VO(OPT) (0.5
and 1.25 mg V/kg) on myocardial infarct size. The infarct sizes in the VO(OPT)
treated group (53 ˙ 7% and 37 ˙ 2% in 0.5 and 1.25 mg V/kg, respectively) were
significantly smaller than that in the vehicle group (67 ˙ 4%) [1]. This observation
indicated that VO(OPT) has cardioprotective effect on ischemia/reperfusion induced
myocardial infarction.
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Sodium orthovanadate restores ischemia-induced decrease in Akt phospho-
rylation on Ser-473 in the gerbil hippocampus, thereby rescuing hippocampal
neurons from ischemia-induced cell death [40]. Akt activation has been shown
to reduce cardiomyocyte apoptosis, thereby preventing myocardial injury after
transient ischemia [11]. We confirmed that post-treatment with VO(OPT) signifi-
cantly rescues decreased Akt activity after myocardial ischemia/reperfusion and the
preserved Akt activity possibly accounts for the VO(OPT)-induced cytoprotective
action in cardiomyocytes. Activated Akt is believed to suppress apoptosis through
phosphorylation of several substrates, including the Bcl-2 family member, Bad [41]
and Forkhead transcription factors (FOXO) [42, 43]. We confirmed downstream
targets of Akt to mediate anti-apoptotic signaling in cardiomyocytes. Significant
decrease in phosphorylation of Bad and Forkhead transcription factors (FKHR and
FKHRL1) are closely correlated with decreased Akt activity following myocardial
ischemia/reperfusion injury. Phosphorylation of Bad and Forkhead transcription
factors were markedly potentiated in cardiomyocytes by treatment with VO(OPT),
similar to its response to Akt activity. These results suggest that both Bad and
FOXOs are Akt targets and mediate cardioprotective action by inhibiting them
following treatment with VO(OPT). Like FKHR, FKHRL1 has been shown to
induce apoptosis in the brain [44] and fibroblasts through up-regulation of the Fas
ligand expression and activation of the death receptor pathway [45]. We also found
significantly increased expression of both Fas ligand and Bim after myocardial
ischemia/reperfusion and significant inhibition by treatment with VO(OPT) [1].

Recent findings showed that FKHRL1 is regulated by Akt activity in endothe-
lial cells and that FKHRL1 dephosphorylation promotes apoptosis by negatively
regulating FLIP expression [46]. Moreover, Akt was found to rescue endothelial
cells from Fas/Fas ligand-mediated cell death through up-regulation of FLIP level
[47]. Similar with the previous studies, we found significant FLIP degradation after
ischemia/reperfusion [48, 49] and treatment with VO(OPT) significantly increased
FLIP expression in cardiomyocytes. The increased FLIP expression was correlated
with decreased Fas ligand expression in VO(OPT)-treated group compared with
vehicle-treated group. Taken together, inactivation of FKHR and FKHRL1 by
treatment with VO(OPT) after ischemia/reperfusion likely promotes expression of
FLIP, thereby inhibiting cardiomyocyte [1] apoptosis

Cardiomyocyte apoptosis is one of the major contributors in the development
of myocardial infarct [50], which is related to the pathogenesis of heart failure
after ischemia. Accumulating evidences indicate that apoptosis, different type
of cell death form necrosis, plays essential role in cardiomyocyte death after
ischemia/reperfusion [50]. Therefore, we examined whether VO(OPT) has anti-
apoptotic effects in cardiomyocytes by measuring Caspase 3, Caspase 7 and
Caspase 9 processing as a marker of apoptosis. Interestingly, short-term infusion of
VO(OPT) significantly reduced cardiomyocyte apoptosis after ischemia/reperfusion
as indicated by dose-dependent inhibition of Caspase-3, -7 and -9 processing
[3]. The results confirm anti-apoptotic effects of VO(OPT) against myocardial
ischemia/reperfusion injury.
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Fig. 9.1 Putative mechanism of myocardial protection by VO(OPT). Binding of trophic/survival
factors to tyrosine kinase receptors activate Akt through PI3K and phosphatidylinositol-dependent
kinase-1(PDK1) activation. Ischemia/reperfusion caused inactivation of Akt, thereby promoting
apoptotic pathways including the Bad, Forkhead transcription factors (FOXO; FKHR and FKHRL-
1) and FLIP via the Fas pathways. Treatment with VO(OPT) activates and/or preserves Akt
activity after ischemia-reperfusion leading to the phosphorylation and thereby inactivation of Bad
and Forkhead transcription factors thus preventing apoptosis by Fas ligand and Bim. VO(OPT)
treatment also preserves ischemia-reperfusion induced breakdown of FLIP and thereby preventing
cell death via Fas pathways. Therefore, the cytoprotective action of VO(OPT) is mediated by the
Akt-Forkhead transcription factor-FLIP mediated pathway

VO(OPT) treatment protects the heart form ischemia/reperfusion-induced car-
diac injury, thereby improving cardiac contractile dysfunction in rats. VO(OPT)
induced cardioprotection is mainly elicited by Akt activation after myocardial
ischemia/reperfusion. Akt activation induces phosphorylation of proapoptotic pro-
tein Bad, thereby reducing mitochondria-dependent apoptosis. Moreover, VO(OPT)
treatment abolished dephosphorylation of forkhead transcription factors after is-
chemia/reperfusion injury, thereby inhibiting expression of Fas ligand and Bim.
Furthermore, VO(OPT) treatment after ischemia/reperfusion promoted expression
of FLIP through Akt activation, thereby further inhibiting activation of Fas/Fas-
ligand intracellular signal. Taken together, VO(OPT) treatment at reperfusion is
likely beneficial as a cardioprotective drug in subjects undergoing reperfusion
therapy following a myocardial infarction (Fig. 9.1).
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9.3 Cardioprotection of Vanadium Compounds
in the Postmenopause

9.3.1 Cardiovascular Diseases in the Postmenopausal Women

Menopause is the permanent cessation of menstruation and ovarian follicular
production of estrogens and progesterone. The mean age at menopause is 51 years,
and 95% of women reach menopause between the ages of 45 and 55 [51]. Over
the past 20 years, numerous observational, retrospective, interventional, and meta-
analytic studies [52] as well as studies using animal models have supported the
hypothesis that ovarian steroids exert important protective actions in women and
the absence of sex hormones after menopause makes postmenopausal women
more vulnerable than younger premenopausal women to cardiovascular diseases
(CVD). Indeed, CVD is the leading cause of morbidity and mortality among
postmenopausal women in westernized societies [53] and accounts for nearly half
of all deaths in women [54]. The Framingham study showed that the incidence
of CVD is higher among postmenopausal than in premenopausal women, even
among women of the same age [55]. Women who also experience early menopause,
both naturally and surgically (bilateral oophorectomy), also have increased risk of
coronary events [56].

Approximately 1 in 8 women above age 55 years has undergone bilateral
oophorectomy before reaching natural menopause [56, 57]. Bilateral oophorectomy
may be performed for a benign disease or for prophylaxis against ovarian cancer,
and is usually performed along with hysterectomy (in nearly 90% of cases)
[58]. Of the more than 600,000 hysterectomies performed annually in the United
States, approximately half include bilateral oophorectomy [59]. In addition, the
practice of prophylactic oophorectomy has increased over time and became more
than doubled between 1965 and 1990 [60]. Meanwhile, reports now link pre-
menopausal oophorectomy with serious health consequences including premature
death, cardiovascular and neurologic disease, and osteoporosis in addition to
menopausal symptoms, psychiatric symptoms, and impaired sexual function [61].
The preponderance of evidence suggests that bilateral oophorectomy is associ-
ated with increased cardiovascular risk and premature death, and that oophorec-
tomy at a young age further increases this risk [62]. Estrogen therapy started
early after surgical or natural menopause at a young age appears to reduce this
risk [62–65].

Clinical and experimental studies have established that sex influences the patterns
of LV hypertrophy [66]. In response to pressure overload, such as hypertension or
aortic stenosis, human male hearts exhibit LV dilatation or eccentric hypertrophy,
whereas female hearts tend to maintain normal chamber size but develop increased
wall thickness, consistent more with concentric hypertrophy [67]. Evidences of
sex hormones influence on the patterns of hypertrophy is revealed from studies
demonstrating that physiological replacement of 17“-estradiol, the main circulating
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form of estrogen in premenopausal women, to ovariectomized female mice limits
pressure overload–induced LV hypertrophy [68, 69].

Despite well established models of myocardial hypertrophy and heart failure
using rodents, there has been lack of suitable animal models to study post-
menopausal hypertension and hypertrophic cardiac remodeling. Although nonhu-
man primates, sheep, rabbits, mice and rats have all been used as models of various
menopausal changes [70], progress in elucidating the mechanisms responsible for
postmenopausal hypertension and hypertrophic remodeling has been hampered
by the lack of a suitable animal model. Therefore, despite impressive progress
in the diagnosis and treatment of hypertrophy, more research on postmenopausal
cardiac decompensation under stress is absolutely needed, and adequate animal
models are critical to fill the gap between basic science discovery and clinics.
An ideal model of postmenopausal cardiac hypertrophy and heart failure should
meet various requirements to mimic a complex syndrome characterized by cardiac,
hemodynamic and neurohumoral alterations as close as possible. We focused on
the molecular mechanisms that contribute to cardioprotective effects of estrogen on
LV hypertrophy in response to pressure overload in a rat model of postmenopausal
phenotypes to develop novel therapeutic strategy instead of hormone replacement
therapy in the postmenopausal women.

9.3.2 Development of Postmenopausal Cardiac
Hypertrophy Models

There have been attempts to elucidate the cardioprotective effect of estrogen in
pressure overload induced hypertrophy by using ovariectomized animals [71, 72],
however, these have rarely taken into account the effect of menopause on cardiac
adverse remodeling and the transition to heart failure. In any case, there is no
normotensive animal model that exhibits hypertrophy and decompensation with
postmenopausal phenotypes. Female spontaneously hypertensive rats (SHR) rep-
resent some postmenopausal phenotypes as they stop cycling at age 10–12 months
and have low estradiol levels comparable to postmenopausal women [73]. However,
the sex difference in blood pressure no longer exists because of the increase in blood
pressure in old females, whereas blood pressure in male SHR remains fairly stable
after age 8 months [73]. Dahl salt-sensitive (DS) hypertensive rats also represent
some characteristics of postmenopause as they exhibit increases in blood pressure
with aging [74]. When the young female DS rats are ovariectomized and fed a high-
salt diet, the blood pressure increases to higher levels than in intact females [74].
Still it is not known at what age these animals cease cycling and what happens
to their blood pressure after cessation of cycling. In addition to the rat models,
the follicular-stimulating hormone receptor knockout mouse also exhibits some of
the characteristics of postmenopausal women [75]. These mice have low plasma
estradiol levels, have functionally active estrogen receptors, increased testosterone
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levels, hypertension, hypercholesterolemia, and weight gain when compared with
their wild-type counterparts [75]. However, these animals did not exhibit increased
oxidative stress or endothelial dysfunction at age of 14–16 weeks, factors common
to postmenopausal women [75].

To produce left ventricular pressure overload in the ovariectomized rats, we
introduced a model of transverse aortic constriction in the abdominal aorta be-
tween the right and left renal arteries [2, 4, 76]. Serum estrogen level was
significantly decreased following ovariectomy (OVX) compared with the sham
rats (sham: 56.6 ˙ 8.3 pg/ml; OVX: 3.6 ˙ 2.3 pg/ml). Pressure overload (PO)-
induced hypertrophy had no effect on the serum estrogen level as seen both in
the PO (60.8 ˙ 13.6 pg/ml) and OVX-PO (3.4 ˙ 1.2 pg/ml) group rats. Following
ovariectomy, body weight (BW) was significantly increased compared to sham
animals. Significant increases in LV weight were also seen in the OVX-PO group
compared to sham, OVX and PO groups without significant changes in right
ventricle weight.

9.3.3 Anti-hypertrophic Effect of VO(OPT)

Consistent with my previous observation, LV weight and LW significantly increased
in the ovariectomized pressure overloaded (OVX-PO) group compared with the
OVX group, without significant changes in right ventricle weight [2]. VO(OPT)
(2.5 mgV/kg, p.o.) treatment on the sham and OVX rats have no effect on the mor-
phometric parameters [4]. VO(OPT) treatment significantly and dose-dependently
decreased the elevated LV weights and lung weight (LW). Notably, the ratio of
HW to BW markedly increased in OVX-PO group compared with OVX group.
VO(OPT) (2.5 mg/kg) treatment significantly inhibited the elevated the HW/BW
ratio (P < 0.01 vs. OVX-PO) (Fig. 9.2). The LW/BW ratio was also significantly
increased in OVX-PO group compared with OVX group. VO(OPT) treatment dose-
dependently decreased the elevated LW/BW ratio. Moreover, oral treatment with
VO(OPT) (2.5 mg V/kg) for 14 days have no effect on HW/BW ratio and HW/LW
ratio in sham-operated animals [4].

Since treatment with VO(OPT) (1.25 and 2.5 mg V/kg) restored HR and MABP,
we evaluated LV functions in OVX-PO heart with or without treatment of VO(OPT).
Consistent with my previous observation [2], left ventricular end diastolic pressure
(LVEDP) was significantly increased in the OVX-PO group compared with OVX
group. VO(OPT) treatment dose-dependently restored elevated LVEDP. Similarly,
left ventricular developed pressure (LVDP) significantly increased in OVX-PO
group and VO(OPT) treatment dose-dependently restored elevated LVDP. The rate
of LV contraction (Cdp/dt) and relaxation (�dp/dt) also significantly increased in
OVX-PO [2] and VO(OPT) treatment dose-dependently restored the elevated LV
contraction (Cdp/dt) and relaxation (�dp/dt). In agreement with earlier studies [29,
30], the treatment with VO(OPT) containing 2.5 mg V/kg resulted in slight decrease
in body weight and food intake compared to vehicle treated rats but these changes
are not significant [4].
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Fig. 9.2 Effect of VO(OPT) on heart weight (HW)/body weight (BW) (a) and lung weight (LW)/
body weight BW (b) ratio. Each bar represents the mean ˙ S.E.M.�, P < 0.05 and ���, P < 0.001
versus OVX group; #, P < 0.05 and ##, P < 0.01 versus OVX-PO-vehicle treated group (Modified
from [4])

9.3.4 Impaired Cardiac Akt/eNOS Signaling in Postmenopause

Akt phosphorylation at Ser-473 was significantly reduced in the hearts of OVX-
PO rats compared with the OVX group, indicating that Akt signaling is markedly
impaired in pressure overload-induced heart failure concomitant with severe cardiac
hypertrophy. Akt Thr-308 phosphorylation also decreases only in the OVX-PO
group. To define the role of Akt activity in cardiac hypertrophy and heart failure,
we evaluated the time course of cardiac hypertrophy, heart failure, and the left ven-
tricular Akt activity. Heart weigh/body weight ratio is increased time dependently
from 1 to 4 weeks following PO in OVX rats [4]. LV Akt phosphorylation at Ser
473 was increased 1 week after PO, thereafter decreased time dependently with
significant decreased level observer 4 weeks after PO in OVX rats. On the contrary,
no significant change was observed in the total Akt level [4]. Importantly, VO(OPT)
treatment markedly and dose-dependently increased Akt activity as assessed by
increased phosphorylation at Ser 473 and at Thr 308 (Fig. 9.3).
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Fig. 9.3 Effects of VO(OPT) on Akt and eNOS phosphorylation in the left ventricle. Repre-
sentative Western blot analysis using cell extracts from OVX (n D 8), OVX-PO-vehicle (n D 8),
OVX-PO-VO(OPT) containing 1.25 mg/kg vanadium (V 1.25) (n D 8) and OVX-PO-VO(OPT)
containing 2.5 mg/kg vanadium (V 2.5) (n D 8) treated hearts probed with phospho-Akt (Ser-473)
and phospho-Akt (Thr-308) (a) and eNOS and phospho-eNOS (Ser 1179) (b). Data are expressed
as percentages of the value of OVX rats. Each column represents the mean ˙ S.E.M. ��, P < 0.01
versus the OVX group; ## P < 0.01 and ### P < 0.001 versus the OVX-PO-vehicle treated group
(Modified from [4])

Since eNOS is physiological substrate for Akt in human vascular endothelial
cells [77], we determine whether VO(OPT)-induced Akt activation results in
increased eNOS phosphorylation and its activity. The time course studies revealed
that both eNOS and Akt mediated eNOS phosphorylation at Ser 1179 decreased
time dependently following PO-treatment with significant decreased level observed
4 weeks after PO in OVX rats [4]. Consistent with our previous observation [2], we
also observed severe impairment of eNOS expression following OVX-PO treatment.
I here found a slight but not significant reduction of eNOS phosphorylation at Ser
1179. Notably, VO(OPT) treatment dose-dependently increased eNOS phosphory-
lation (Fig. 9.3). VO(OPT) also significantly increased eNOS expression.

9.3.5 Prevention of “-Adrenergic Induced Heart Attack
with VO(OPT)

“-adrenoceptor (“-AR) agonists differently affect heart rate during the estrous cycle
in female rats and in ovariectomized rats with or without estrogen replacement
[78]. Ovariectomy also increases susceptibility to the effects of “-AR agonists
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Fig. 9.4 Kaplan-Meier survival analysis following chronic isoproterenol treatment. Five mg/kg
isoproterenol (Isp 5) was administered daily to sham, sham-PO, OVX, OVX-PO-vehicle, OVX-
PO-VO(OPT) containing 1.25 mg/kg vanadium (V 1.25) and OVX-PO-VO(OPT) containing
2.5 mg/kg vanadium (V 2.5) treated groups. Survival over 28 days was monitored. ���, P < 0.001
versus the sham group; ##, P < 0.01 and ###, P < 0.001 versus the OVX-PO-vehicle treated group
(Modified from [4])

[79]. Importantly, Kam et al. [80] demonstrated that “-AR stimulation with iso-
proterenol led to a significantly greater increase in electrical stimulation-induced
Ca2C elevation, Ca2C-uptake through cardiac L-type Ca2C channels, heart rate
and contractility in hearts of ovariectomized rats compared to sham rats. These
responses were rescued by estrogen replacement. Several studies hypothesized that
excessive adrenergic activation could initiate the progression from compensated LV
hypertrophy in hypertension to cardiac dysfunction and that this effect is primarily
through adverse LV remodeling.

Similar with aortic banding [2], chronic administration of “-AR agonist to rats
led to adverse cardiac injury through impaired Akt-eNOS signaling pathways and
ovariectomy further aggravated the cardiac injury suggesting the cardioprotective
role of ovarian hormones [4]. Kaplan-Meier survival data in indicate that chronic
“-adrenergic stimulation with isoproterenol has no effect of the survival of sham and
pressure overloaded female rats (Fig. 9.4). Remarkably, treatment with isoproterenol
on the ovariectomized rats tended to increase mortality with a survival rate of
84% at 28 days. Interestingly, the most significant mortality occurred in the OVX-
PO rats with a survival rate of 0% at 21 days following chronic “-adrenergic
stimulation (Fig. 9.4) [4]. These observations indicate that decompensation against
cardiac stress such as isoproterenol treatment occurs only in OVX and OVX-
PO rats. Treatment with the Akt activator VO(OPT) dose dependently increased
survival following acute cardiac stress caused by chronic “-adrenergic stimulation
[1, 3], suggesting that cardiac remodeling and recovered cardiac functions by
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VO(OPT) treatment contributes the reduced mortality (Fig. 9.4). Thus, simulta-
neous impairment of Akt-eNOS signaling by ovariectomy contributed to cardiac
decompensation during PO-induced hypertrophy, deteriorated heart functions and
thereby increased mortality during chronic “-adrenergic stimulation. Potentiation
of the Akt and eNOS signaling pathways by treatment with VO(OPT) after OVX-
PO likely contributes to increased survival following acute cardiac stress caused by
chronic “-adrenergic stimulation. These results contribute to our understanding of
the mechanisms underlying increased cardiac injuries in postmenopausal women by
chronic “-adrenergic activation and bear relevance to further clinical management
strategies to prevent adverse cardiac remodeling.

9.4 Crosstalk of Estrogen Receptor and Akt/eNOS Signaling

9.4.1 Cardioprotection Through Estrogen Receptor

Both in vivo and in vitro studies indicates that estrogen have cardioprotective
effects. However, despite these positive results, hormone replacement therapy has
not been shown to consistently lower blood pressure in postmenopausal women.
Moreover, in women who have experienced surgical menopause, estrogen replace-
ment therapy also did not result in significant sustained reductions in blood pressure.
The mechanisms responsible for increased prevalence of cardiovascular diseases
in postmenopausal women are complex and multifaceted. They are not nearly
so simple as a reduction in estradiol. We focused on evaluating the molecular
mechanisms responsible cardiac injuries in postmenopausal women and character-
ized the postmenopausal OVX-PO model to provide a suitable animal model to
quantitatively evaluate some of the mechanisms and hoped that the information
could be extrapolated to women.

Ovarian hormones are believed to possess cardiovascular protective effects, and
they seem to play a role in the gender-related differences in the development of
hypertension in experimental models [81, 82]. Naturally, ovariectomy causes a
significant reduction in estradiol and progesterone levels [74, 83]. Comparison of
estradiol levels with MABP in DS rats suggests that the OVX-induced increase in
MABP is associated with decreased levels of plasma estrogen because estradiol
replacement was able to prevent the OVX-induced hypertension [74]. Moreover,
estradiol supplementation did not markedly alter circulating progesterone levels
in both young and aged DS rats [74]. Furthermore, progesterone levels did not
correlate with the difference in MABP between the OVX and OVX-estrogen groups
in DS rats [74]. This lack of effect of progesterone supports previous reports in
deoxycorticosterone salt hypertension showing that progesterone had no effect on
the development of hypertension in OVX rats [82].
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9.4.2 Stimulation of Akt/eNOS Signaling Through
Estrogen Receptor

Signaling through phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important
for the physiological growth and inhibition of pathological hypertrophy [11, 84, 85].
Moreover, physiological hypertrophy induced by exercise training also requires the
activation of myocardial Akt. By contrast, pathological hypertrophies induced by
pressure overload cause an inactivation of Akt signaling pathway [86]. It is evident
that the E2-activated PI3K/Akt pathway functions as one of the acute nongenomic
actions of E2 in various types of cells [87]. Studies indicate that young women
possess higher levels of nuclear-localized phospho-Akt (Serine 473) relative to
comparably aged men or postmenopausal women [88] and Phospho-Akt (Serine
473) is also localized to the nucleus of cultured cardiomyocytes after exposure
to E2 [88]. Previous studies have demonstrated that OVX-reduced Akt activation
occurs with decreased myocyte contractile function and impaired intracellular
calcium handling, whereas E2-upregulated Akt is associated with restored cardiac
contractility and intracellular calcium homeostasis [89]. Moreover, activation of
the PI3K/Akt pathway is required for E2-suppressed apoptosis and E2-protected
myocardial function in the heart following ischemia [68]. Estrogen receptor a
mediates increased activation of PI3K/Akt signaling and improved myocardial
function in female hearts following acute ischemia [90]. Recent study also suggests
that E2-mediated improvement in cardiac function following trauma-hemorrhage
is mediated by an increase in cardiac Akt activation [91]. In endothelial cells,
estrogen receptors localize to caveolae and their stimulation activate eNOS activity
via PI3K/Akt signaling [92, 93]. Strikingly, Grasselli et al. [94] demonstrated that
estrogen receptor alpha and eNOS form a complex and translocate to nucleus
to bind to the estrogen response element in the promoter region of telomerase
catalytic subunit gene, thereby leading to the increase telomerase activity. Since
the telomerase activity is critical to determine the lifespan of a cell. This is the first
report to define enhancement of telomerase activity by eNOS activation and NO
production.

9.4.3 Stimulation of Nitric Oxide Production Through
Estrogen Receptor

Men and postmenopausal women may have less endogenous nitric oxide (NO)
production, shown by less vasoconstriction following inhibition of NO synthase
by L-N-monomethyl-arginine (L-NMMA), than premenopausal women. After es-
trogen therapy, L-NMMA resulted in greater constriction consistent with estrogen
restoring vascular NO activity to levels seen in premenopausal women [95]. Other
studies have shown improvement in endothelial function with estrogen therapy
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with a greater improvement in hypertensive postmenopausal women [96]. Acute
estrogen deprivation after oophorectomy in healthy women results in impaired
endothelium-dependent vasodilatation as a result of reduced NO availability [97].
Estrogen therapy improves endothelium-dependent vasodilatation after oophorec-
tomy and also natural menopause [98]. However, among a broader sample of
postmenopausal women, HRT results in improved flow-mediated dilation only
among women with no cardiovascular risk factors [99, 100]. Studies indicate that
estrogen activates eNOS activity through Akt pathway, thereby promoting NO
production in heart [87]. Moreover, estrogen mediated Akt activation results in
eNOS activation in cultured human endothelial cells [77] and in intact elastic
and muscular arteries in vivo [101]. Upregulation of PI3K/Akt by administration
of E2 results in endothelial nitric oxide synthase activation via a transcription-
independent mechanism [77]. Localization and activity of eNOS are regulated by
making a complex with a chaperone protein, heat shock protein 90 and caveolin-3
in cardiomyocytes, especially in caveolae [102]. I also found significantly increased
expression of the eNOS regulatory proteins like HSP-90 and caveolin-3 in the
hearts of the OVX rats and pressure overload downregulated their expression on
the OVX-PO rats [2]. More extensive studies are required to determine tempo-
ral changes and immunohistochemical localization of HSP-90 and eNOS after
OVX-PO.

Under physiological conditions, myosin light chain (MLC) phosphorylation
correlates with increased maximum tension or dp/dt values [103]. In the post-
menopausal hypertrophy rat model, I found that phosphorylation was markedly
increased only in OVX-PO rats. By contrast, total MLC content was significantly
decreased in OVX-PO rats. The increased MLC phosphorylation/total MLC ratio
was likely associated in part with an increase in ˙ dP/dtmax in heart contractile
function [2]. Nitric oxide in vascular smooth muscle activates soluble guanylyl
cyclase (sGC) to increase cGMP formation, thereby leading to a decrease in [Ca2C]i

with subsequent inhibition of myosin light chain phosphorylation and contraction
[104, 105]. My data suggest that ovariectomy followed by pressure overload
subsequently increases MLC phosphorylation accompanied by increased cardiac
contractility, as observed particularly in OVX-PO rats (Fig. 9.5).

Detailed in vivo and in vitro studies suggest that underlying mechanisms of
estrogen mediated cardioprotection against myocardial hypertrophy are multi-
fold. Estradiol-mediated activation of PI3K signaling blocks angiotensin II- or
endothelin-1-initiated cardiomyocyte hypertrophy in vitro via upregulation of the
gene encoding modulatory calcineurin-interacting protein (MCIP), a calcineurin
antagonist. 17b-estradiol stimulates both the transcriptional transactivation and
mRNA stability of the MCIP gene. Interestingly, Estradiol-induced PI3K signaling
to MCIP up-regulation does not occur through AKT, as indicated by silencing
Akt [106]. As the MCIP1 gene utilizes four different promoters, in a cell context-
specific fashion, and so a detailed in vivo analysis is required to further clarify this
effect.
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Fig. 9.5 Putative mechanism of VO(OPT) mediated cardioprotection. In normal female heart,
eNOS is localized to the caveolae through its interaction with caveolin 3 and compartmentalized
with L-type Ca2C channel and b-aderenergic receptor. Activation of Akt signaling ultimately
leads to eNOS phosphorylation, eNOS activation and thereby activates nitric oxide signaling
pathways. The resulting combination of these effects subsequently confers ventricular dilation and
cardioprotection. Pressure overload-induced hypertrophy severely impairs eNOS and Akt signaling
pathways, thereby imbalances the NO mediated cardioprotective action. Treatment with VO(OPT)
activate the Akt activity and enhances Akt mediated eNOS activity and subsequently confers
cardioprotection against myocardial hypertrophy

9.5 Conclusion

Despite numerous studies on postmenopausal cardiac remodeling in hypertension
and hypertrophy, we are just beginning to understand the pathophysiology of
postmenopausal cardiovascular diseases. Particularly in light of the disappointing
cardioprotective results obtained in several clinical trials with hormone replacement
therapy, the mechanisms underlying estrogen-mediated cardioprotective action
merit further study. In normal female heart, estrogen-mediated increased Akt-eNOS
signaling restores the impaired nitric oxide signaling pathways and subsequently
confers cardioprotection. In our postmenopausal model of cardiac hypertrophy by
ovariectomy and pressure overload, impaired Akt-eNOS signaling imbalances the
physiological protective mechanism by nitric oxide. Therefore, menopause likely
accounts for cardiac decompensation against chronic stress through impairment of
functions of eNOS and Akt signaling, and showed increased mortality following
acute cardiac stress caused by chronic “-adrenergic stimulation. The novel model
of postmenopausal cardiac decompensation using OVX-PO rats and elucidation
of the mechanisms of detrimental cardiac remodeling are attractive for testing
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cardioprotective drugs in hypertension-induced cardiac injury in postmenopausal
women. Furthermore, Akt/eNOS signaling is central dogma of cardiac remodeling
following ischemia and hypertension and vanadium compound therapy instead of
HRT is clinically relevant for cardioprotection not only in ischemic injury but also
postmenopausal heart disease.
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