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Abstract This chapter deals with empirical findings on the teaching and learning 
of mathematical modelling, with a focus on grades 8–10, that is, 14–16-year-old 
students. The emphasis lies on the actual behaviour of students and teachers in 
learning environments with modelling tasks. Most examples in this chapter are 
taken from our own empirical investigations in the context of the project DISUM. 
In the first section, the terms used in this chapter are recollected from a cognitive 
point of view by means of examples, and reasons are summarised why modelling 
is an important and also demanding activity for students and teachers. In the second 
section, examples are given of students’ difficulties when solving modelling tasks, 
and some important findings concerning students dealing with modelling tasks are 
presented. The third section concentrates on teachers; examples of successful inter-
ventions are given, as well as some findings concerning teachers treating modelling 
examples in the classroom. In the fourth section, some implications for teaching 
modelling are summarised, and some encouraging (though not yet fully satisfying) 
results on the advancement of modelling competency are presented.

1  A Cognitive View on Mathematical Modelling

In this chapter, the actual dealing of students and teachers with modelling tasks is 
to be investigated. In order to describe, interpret and explain what is happening not 
only on the surface but also in teachers’ and students’ minds, a cognitive view on 
modelling is necessary. Hence, when clarifying some basic notions in this first section, 
this is done from a cognitive point of view.
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The following first example is meant to set the scene:

Example 1: “Giant’s shoes”

In a sports centre on the Philippines, 
Florentino Anonuevo Jr. polishes a 
pair of shoes. They are, according 
to the Guinness Book of Records, 
the world’s biggest, with a width of 
2.37 m and a length of 5.29 m.

Approximately how tall would a 
giant be for these shoes to fit? Explain 
your solution. 

This is a mathematical modelling task since the essential demand of the task is 
to translate between reality and mathematics (make assumptions on how the height 
of a man is related to the size of his shoes, establish appropriate mathematical 
relationships, interpret results of calculations and check the validity of these results). 
Reality means the “rest of the world” (Pollak 1979) outside mathematics, including 
nature, society, other scientific disciplines or everyday life.

That such modelling tasks are very difficult for many students is shown by a 
solution of “Giant’s shoes” obtained by a pair of grade 9 students in a laboratory 
session. They multiplied width and length and thus reached the answer “The giant 
would be 12.53 m tall”, as shown in Fig. 3.1.

This kind of solution is rather common and was observed many times in our 
investigations (see also Sect. 2), not only with weaker students but also with 
students from Gymnasium (the high ability track in the German school system). 
So, a pair of grade 9 Gymnasium students applied the Pythagorean Theorem in 
“Giant’s shoes” and thus got to the answer 33.6 m. Also in this solution, no check 
was carried out concerning units (in both cases, the unit of the calculated result 
would have been m² instead of m).

This example and all the following ones are taken from the project DISUM 
(“Didaktische Interventionsformen für einen selbständigkeitsorientierten aufga-
ben gesteuerten Unterricht am Beispiel Mathematik”, in English “Didactical interven-
tion modes for mathematics teaching oriented towards self-regulation and directed 
by tasks”; see Blum and Leiß 2008 for a description of this project). DISUM is an 
interdisciplinary project between mathematics education (W. Blum), pedagogy  

Fig. 3.1 Students’ solution of task “Giant’s shoes”
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(R. Messner, both University of Kassel) and educational psychology (R. Pekrun, 
University of Munich), which aims at investigating how students and teachers 
deal with cognitively demanding modelling tasks and what effects various learning 
environments for modelling have on students’ competency development. The 
focus in DISUM is on grades 8–10 (14–16-year-olds), which will also be the focus 
of this chapter.

The DISUM examples are all “medium-size” modelling tasks which can be 
solved within one lesson. The spectrum of tasks suitable for teaching is, of course, 
much bigger, reaching from straightforward standard applications to authentic 
modelling problems or complex modelling projects where the data collection alone 
takes several hours or days (compare, for instance, the “modelling weeks” presented 
in Kaiser and Schwarz 2006).

Why is modelling so difficult for students? In particular, because of the cognitive 
demands of modelling tasks; modelling involves translating between mathematics 
and reality in both directions, and for that, appropriate mathematical ideas 
(“Grundvorstellungen”, see Blum 1998; Hofe 1998) as well as real-world knowledge 
are necessary. In addition, modelling is inseparably linked with other mathematical 
competencies (Blomhøj and Jensen 2007; Niss 2003), in particular designing and 
applying problem solving strategies, reading texts as well as working mathematically 
(reasoning, calculating, …). Helpful for cognitive analyses of modelling tasks are 
models of the “modelling cycle” which show typical ways of solving such tasks. 
In literature, there is a considerable variety of such models (see Borromeo Ferri 
2006 for an overview). In the DISUM project, a seven-step model proved particularly 
helpful (Fig. 3.2, taken from Blum and Leiß 2007).

The following example (Blum and Leiß 2006) is meant to illustrate this model 
in some more detail.

Example 2: “Filling up”

Mrs. Stone lives in Trier, 20 km away 
from the border of Luxemburg. To  
fill up her VW Golf she drives to 
Luxemburg where immediately behind 
the border there is a petrol station. 
There you have to pay 1.10 Euro for 
one litre of petrol whereas in Trier you 
have to pay 1.35 Euro.

Is it worthwhile for Mrs. Stone to 
drive to Luxemburg? Give reasons for 
your answer. 

The first step is to understand the given problem situation, that is the problem 
solver has to construct a situation model which here involves at least two gas stations 
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and the 20 km connection. The second step is to structure the situation by bringing 
certain variables into play, especially tank volume and consumption rate of the 
Golf, and to simplify the situation by defining what “worthwhile” should mean, 
leading to a real model of the situation. In the standard model, “worthwhile” means 
only “minimising the costs of filling up and driving”. Mathematisation, the third 
step, transforms the real model into a mathematical model which consists here of 
certain equations, perhaps with variables. The fourth step is working mathematically 
(calculating etc.), which yields mathematical results. In step five, these are 
interpreted in the real world as real results, ending up in a recommendation for 
Mrs. Stone of what to do. A validation of these results, step six, may show that it 
is appropriate or necessary to go round the loop a second time, for instance in order 
to take into account more factors such as time or air pollution. Dependent on which 
factors have been chosen, the recommendations for Mrs. Stone might be quite 
different. The seventh and final step is an exposure of the final solution.

This particular model of the modelling process comes from two sources. The 
notion of “situation model” has its origin in the research on texts (Kintsch and 
Greeno 1985; Staub and Reusser 1995; Verschaffel et al. 2000), whereas the other 
components stem from applied mathematical problem solving (Burghes 1986; 
Burkhardt 2006; Pollak 1979). There are several advantages of this model: step one 
– a particularly individual construction process, the first cognitive barrier for stu-
dents – is separated, and all other steps are also essential stages in students’ actual 
modelling processes and potential cognitive barriers, though generally not in linear 
order (for more details see Sect. 2).

With this model as a background, modelling competency can be defined (see 
Niss et al. 2007) as the ability to construct and to use mathematical models by 
carrying out those various modelling steps appropriately as well as to analyse or to 
compare given models. It is a natural hypothesis that these modelling steps corres-
pond to sub-competencies (Kaiser 2007; Maaß 2006) of modelling. The main goal 
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Fig. 3.2 DISUM model of the modelling process
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of teaching is that students develop modelling competency with – using the notions 
of Niss et al. (see Blomhøj and Jensen 2007; Jensen 2007; Niss 2003) – a degree of 
coverage, a radius of action and a technical level as extensive as possible.

Why is modelling so important for students? Mathematical models and model-
ling are everywhere around us, often in connection with powerful technological 
tools. Preparing students for responsible citizenship and for participation in societal 
developments presupposes modelling competency. More precisely (compare Blum 
and Niss 1991), mathematical modelling is meant to:

Help students’ to better understand the world.•	
Support mathematics learning (motivation, concept formation, comprehension, •	
retaining).
Contribute to the development of various mathematical competencies and appro-•	
priate attitudes.
Contribute to an adequate picture of mathematics.•	

By modelling, mathematics becomes more meaningful for learners (this is, of 
course, not the only possibility for that). Underlying all these justifications of 
modelling are the main goals of mathematics teaching in secondary schools (Niss 
1996). The goals correspond to different perspectives on modelling in the sense of 
Kaiser et al. (2006). For realising these goals and, in particular, developing model-
ling competency with students, a large variety of modelling tasks has to be treated.

There is a tendency in several countries to include more mathematical modelling 
in the curriculum. In Germany, for instance, mathematical modelling is one of six 
compulsory competencies in the new national “Education Standards” for mathe-
matics. However, in everyday mathematics teaching in most countries, there is still 
only little modelling. Mostly “word problems” are treated where, after “undressing” 
the given context, the essential aim is exercising mathematics. For competency 
development and for learning support also word problems are legitimate and help-
ful; it is only important to be honest about the true nature of reality-oriented tasks 
and problems. However, word problems are not at all sufficient for fulfilling all 
goals intended with modelling. Why is the situation in schools like this, why are 
there only so few modelling examples in everyday classrooms, why do we find such 
a gap between the educational debate (and even official curricula), on the one hand, 
and classroom practice, on the other hand? The main reason is certainly that model-
ling is difficult also for teachers; as real-world knowledge is needed, teaching 
becomes more open and less predictable, and all the competencies required from 
students have, of course, to be acquired by the teachers themselves (see, e.g., 
Burkhardt 2004; DeLange 1987; Freudenthal 1973; Ikeda 2007; Pollak 1979).

2  How Do Students Deal with Modelling Tasks?

Studies such as PISA (see, e.g., OECD 2005, 2007) have shown several times: 
modelling tasks are difficult for students all around the world. Analyses carried out 
by the PISA Mathematics Expert Group (see Turner et al. in press) have shown that 
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the difficulty of modelling tasks can be substantially explained by the inherent 
cognitive complexity of these tasks, measured by the necessary competencies.

All potential cognitive barriers are empirically observable, specific for individual 
tasks and individual students (see also, e.g., Galbraith and Stillman 2006). In the 
following, I will show some typical examples of students’ difficulties with modelling 
tasks, taken from DISUM studies.

•	 Step 1 constructing: See the introductory example “Giant’s shoes”; this is an 
instance of the well-known superficial solution strategy “Ignore the context, just 
extract all data from the text and do something with these according to a familiar 
schema” which in everyday classrooms is very often successful for solving word 
problems (for impressive examples of this strategy, see Baruk 1985 or Verschaffel 
et al. 2000).

•	 Step 2 simplifying: This is an authentic solution of example 2 “Filling up”: “You 
cannot know if it is worthwhile since you don’t know what the Golf consumes. 
You also don’t know how much she wants to fill up”. Obviously, the student has 
constructed an appropriate situation model, but he is not used to making 
assumptions.

The next few examples of difficulties relate to a third modelling example.

Example 3: “Fire-brigade”

From which maximal height can the Munich fire-brigade rescue persons 
with this engine?
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•	 Step 3 mathematising: Often, after a successful construction of a real model of 
the problem situation in “fire-brigade”, students forget to include the height of 
the engine into their model.
Step 4, the •	 intra-mathematical part, may, of course, be arbitrarily difficult. Step 5 
is usually less difficult; here is an example:

•	 Step 5 interpreting: After correctly carrying out the first three modelling steps 
and successfully applying Pythagoras’ theorem, a student’s final answer was 
“The ladder is 27.49 m long if it is extended”. Apart from the meaningless accu-
racy and the usual mistake of ignoring the engine’s height, the student has obvi-
ously forgotten what his calculation actually meant.

•	 Step 6 validating: The introductory example “Giant’s shoes” also provides an 
example of a missing validation since it is obvious that someone has to be more than 
only two-and-a-half times as tall as his shoe length (or can giants look like this?).

Particularly interesting are students’ individual modelling routes during the pro-
cess of solving modelling tasks. The notion of modelling route (Borromeo Ferri 2007) 
is used to describe a specific modelling process in detail, referring to the various steps 
of the modelling cycle (with the above model of the modelling cycle as a powerful 
analytical instrument). As Borromeo Ferri’s analyses have shown, all these steps can 
actually be observed, though generally not in the same linear order (for detailed 
analyses of modelling processes, see also Leiß 2007 and Matos and Carreira 1997). 
There seem to be preferences of students for working more within mathematics or 
more within reality, depending on the individual thinking styles (for this notion, see 
Borromeo Ferri 2004); details are reported in Borromeo Ferri and Blum (2010).

Seeing students successfully performing certain modelling steps and having 
difficulties with other steps points again to the supposition that these steps corres-
pond to sub-competencies of a global modelling competency. It is a particularly 
challenging open research question to establish a theoretically and empirically 
based competence model for mathematical modelling. Essential parts of such a model 
will be to identify distinct sub-competencies, to differentiate between various 
cognitive levels of such sub-competencies, and to set up connections between 
sub-competencies, modelling competency as a whole and other competencies such 
as reading. The proficiency levels identified in the context of PISA mathematics 
can be interpreted as a first attempt towards such a competence model (see OECD 
2005, p. 260 ff). Another attempt was made in the context of the German Education 
Standards. Roughly speaking, the following five levels were identified:

Applying simple standard models.•	
Direct modelling from familiar contexts.•	
Few-step modelling.•	
Multi-step modelling.•	
Complex modelling or evaluating models.•	

In the following, I will mention some more empirical findings concerning students’ 
dealing with modelling tasks. An important observation is related to strategies. In 
most cases, there is no conscious use of problem-solving strategies by students. 



22 W. Blum

This explains many of the observed difficulties since it is known from several studies 
that strategies (meta-cognitive activities) are helpful also for modelling (Burkhardt 
and Pollak 2006; Kramarski et al. 2002; Matos and Carreira 1997; Schoenfeld 
1994; Stillman and Galbraith 1998; Tanner and Jones 1993) for an overview see 
Greer and Verschaffel in Blum and Leiß 2007). To put it more sharply: There are 
many indications that meta-cognitive activities are not only helpful but even neces-
sary for the development of modelling competency. Indispensable for this to hap-
pen is an appropriate support by the teacher (see Sect. 3).

Another important result concerns the transfer of knowledge. We know from 
several studies in the frame of situated cognition that learning is always dependent on 
the specific learning context, and hence a simple transfer from one situation to others 
cannot be expected (Brown et al. 1989; De Corte et al. 1996; Niss 1999). This holds 
for the learning of mathematical modelling in particular, so modelling has to be learnt 
specifically. Therefore, a sufficiently broad variation of contexts (real-world situations 
as well as mathematical domains) by the teacher is necessary, as well as making 
transfers between situations and domains explicitly conscious for students.

A global remark: Several studies have shown that mathematical modelling can 
be learnt in certain environments, in spite of all the difficulties associated with 
the teaching and learning of modelling (Abrantes 1993; Galbraith and Clathworthy 
1990; Kaiser-Messmer 1987; Maaß 2007; see also Sect. 4). The decisive variable 
for successful teaching seems to be “quality teaching.” This will be addressed in 
the next section.

3  How Do Teachers Treat Modelling in the Classroom?

Concerning mathematics teaching and learning, the perhaps most important finding 
is one that may sound rather trivial but is not at all trivial (Antonius et al. 2007; Pauli 
and Reusser 2000): Teachers are indispensable, there is a fundamental distinction 
between students working independently with teacher’s support and students work-
ing alone. Meta-analyses (e.g., Lipowsky 2006) have shown that teachers really 
matter a lot for students’ mathematics learning, more than other variables such as 
class size or type of school. What makes the difference is, of course, the way of 
teaching. There is extensive empirical evidence that teaching effects can at most be 
expected on the basis of quality mathematics teaching. What could that mean? Here 
is the working definition we use in DISUM (compare, e.g., Blum and Leiß 2008):

A •	 demanding orchestration of teaching the mathematical subject matter (by giving 
students vast opportunities to acquire mathematical competencies and making 
connections within and outside mathematics).
Permanent •	 cognitive activation of the learners (by stimulating cognitive and 
meta-cognitive activities, fostering students’ independence and handling mistakes 
constructively).
An effective and learner-oriented •	 classroom management (by varying methods 
flexibly, using time effectively, separating learning and assessment, etc.).
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For quality teaching, it is crucial that a permanent balance between (minimal) 
teacher guidance and (maximal) students’ independence is maintained, according 
to Maria Montessori’s famous hundred-year-old maxim: “Help me to do it by 
myself” (see the “principle of minimal support”, Aebli 1985). In particular, when 
students are dealing with mathematical tasks, this balance can be achieved best by 
individual, adaptive, independence-preserving teacher interventions. In a modelling 
context, often strategic interventions are most adequate, that means interventions 
which give hints to students on a meta-level (“Imagine the real situation clearly!”, 
“Make a sketch!”, “What do you aim at?”, “How far have you got?”, “What is still 
missing?”, “Does this result fit to the real situation?”, etc.). In everyday mathematics 
teaching, those quality criteria are often violated. In particular, teachers’ interventions 
are mostly not independence-preserving, and there is nearly no stimulation of students’ 
solution strategies.

Learning environments for modelling are generated by appropriate modelling 
tasks in a general sense. Here are a few well-tried proposals from literature:

“Sense-making by meaningful tasks” (Freudenthal •	 1973; Verschaffel et al. 2000).
“Model-eliciting activities” by challenging tasks (Lesh and Doerr •	 2003).
“Authentic tasks” (Kaiser and Schwarz •	 2010; Palm 2007).

And more generally (in the words of Alsina 2007): “Less chalk, less words, less 
symbols – more objects, more context, more actions”. Often helpful in such modelling 
contexts are suitable technological aids (Henn 2007).

Classroom observations (see, e.g., Leikin and Levav-Waynberg 2007) show that 
the teacher’s own favourite solution of a given task is often imposed on the students 
through his interventions, mostly without even noticing it, also due to an insuffi-
cient knowledge of the richness of the “task space” on the teacher’s side. However, 
we know that it is important to encourage various individual solutions (Hiebert and 
Carpenter 1992; Krainer 1993; Schoenfeld 1988), also to match different thinking 
styles of students, and particularly as a basis for retrospective reflections after the 
students’ presentations. To this end, it is necessary for teachers to have an intimate 
knowledge of the cognitive demands of given tasks. In the project COACTIV (see 
Krauss et al. 2008), we have found that the teacher’s ability to produce multiple 
solutions of tasks is one significant predictor of his students’ achievement gains.

More generally, the following elements are necessary for teachers to treat 
modelling adequately:

Knowledge of task spaces of modelling tasks (including cognitive demands of •	
tasks and own preferences for special solutions).
Knowledge of a broad spectrum of tasks, also for assessment purposes (concern-•	
ing assessment see, e.g., Haines and Crouch 2001; Houston 2007; Niss 1993; 
Vos 2007).
Ability to diagnose students’ difficulties during modelling processes.•	
Knowledge of a broad spectrum of intervention modes (Leiß •	 2007) and ability 
to use appropriate interventions.
Appropriate beliefs (Kaiser and Maaß •	 2007).
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(compare also Doerr 2007). It is an interesting open research question in which 
elements of teachers’ competencies precisely are necessary and how these elements 
contribute to successful teaching.

4  Some Ideas for Teaching Modelling

There is, of course, no general “king’s route” for teaching modelling. However, 
some implications of the findings reported in Sects. 2 and 3 are plausible (not 
spectacular but not at all trivial!).

Implication 1: The criteria for quality teaching (see Sect. 3) have to be considered 
also for teaching modelling; teachers ought to realise a permanent balance between 
students’ independence and their guidance, in particular by their flexible and adaptive 
interventions.

Implication 2: In order to reach the goals associated with modelling, a broad spec-
trum of tasks ought to be used for teaching and for assessment, covering various 
topics, contexts, (sub-)competencies and cognitive levels.

Implication 3: Teachers ought to support students’ individual modelling routes and 
encourage multiple solutions.

Implication 4: Teachers ought to foster adequate student strategies for solving 
modelling tasks and stimulate various meta-cognitive activities, especially reflec-
tions on solution processes and on similarities between different situations and 
contexts.

A few more reflections on Implication 4. For modelling tasks, a specific  
strategic tool is fortunately available, the modelling cycle. The seven-step schema 
(presented in Sect. 1) is appropriate and even indispensable for research and 
teaching purposes. For students, the following four-step schema (developed in 
the DISUM project) called Solution Plan is certainly more appropriate:

Step 1. Understanding task (Read the text precisely and imagine the situation 
clearly! What is required from you? Make a sketch!).

Step 2. Searching mathematics (Look for the data you need; if necessary, make 
assumptions! Look for mathematical relations!).

Step 3. Using mathematics (Use appropriate mathematical procedures!).

Step 4. Explaining result (Round off and link the result to the task! Is your result 
reasonable? If not, go back to 1! If yes, write down your final answer!).

As can be seen, steps 2 and 3 from the seven-step schema (Fig. 3.1) are united 
to one step here (step 2), and the same holds for steps 5, 6 and 7 of the seven-step 
schema (step 4 here). There are some structural similarities of this “Solution Plan” 
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for modelling tasks to George Polya’s famous general problem-solving cycle 
(compare Polya 1957), but this plan is more specific because it is conceived only 
for modelling tasks. The Solution Plan is not meant as a schema that has to be used 
by students but as an aid for difficulties that might occur in the course of the solution 
process. The goal is that students learn to use this plan independently whenever 
appropriate. Recent experiences have shown that a careful and stepwise introduc-
tion of this plan is necessary, as well as repeated exercises in how to use it. If this 
is taken into account, even students from Hauptschule (the low ability track in the 
German school system) are able to successfully handle this plan. However, a 
systematic study into the effects of the Solution Plan is still to be carried out (and 
is planned for 2011). A related approach is the use of “Worked-out Examples” (for 
details, see Zöttl et al. this volume).

Finally, I will present some more encouraging empirical results from the DISUM 
project. We have developed a so-called operative-strategic teaching unit for model-
ling (for grades 8/9, embedded in the unit on the Pythagorean Theorem). The 
essential guiding principles for this teaching unit were:

Teaching aiming at students’ active and independent knowledge construc tion •	
(realising the balance between teacher’s guidance and students’ independence).
Systematic change between independent work in groups (coached by the •	
teacher) and whole-class activities (especially for comparison of different solu-
tions and retrospective reflections).
Teacher’s coaching based on concrete four-step solutions for all tasks and on •	
individual diagnoses (students did not have the Solution Plan, in order to keep 
the number of variables small enough).

In autumn 2006 (4 classes) and in autumn 2007 (21 classes), we have compared 
the effects of this “operative-strategic” teaching with a so-called directive teaching 
and with students working totally alone, both concerning students’ achievement and 
attitudes. The most important guiding principles for “directive” teaching were:

Development of common solution patterns by the teacher.•	
Systematic change between whole-class teaching, oriented towards a fictive •	
“average student”, and students’ individual work in exercises.

The students working alone came from those 18 classes that were reduced to 16 
learners in advance by means of a standardised mathematical ability test, in order to 
homogenise the classes for better comparability. Both “operative-strategic” and “direc-
tive” teaching were conceived as optimised teaching styles and realised by experienced 
teachers from a reform project (“SINUS”, see Blum and Leiß 2008). All teachers were 
particularly trained for this purpose. All classes came from Realschule (the medium 
ability track in Germany). Our study had a classical design (see Fig. 3.3):

Ability test/Pre-test/Treatment (10 lessons with various modelling tasks, including 
“Filling up” and “Fire-brigade”) with accompanying questionnaires/Post-test/
Follow-up test (3 months later).
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In all groups and teaching styles, the same modelling tasks were treated in the 
same order (see Fig. 3.3).

The tests comprised both modelling tasks and classical mathematical tasks close 
to the curriculum. According to our knowledge, this study was unique insofar as it 
was a quasi-experimental study with more than 600 students yielding both quantita-
tive (tests and questionnaires) and qualitative (videos) data. Since two optimised 
teaching styles were implemented, one could possibly expect no differences between 
the two treatments concerning students’ achievement and attitudes. However, there 
were remarkable differences. In the following, some important results are reported 
(more details will be presented in another paper).

Most remarkably: Both students’ in “operative-strategic” and in “directive” classes 
made significant progress (.45 resp. .25 SD), but not so students work ing alone. 
The difference in progress was also significant, in favour of the more independence-
oriented teaching style, and the progress of these classes was also more enduring 
than the progress of “directive” classes. The progress of “directive” students was 
essentially due to their progress in the technical “Pythagorean” tasks. Only “operative-
strategic” students made significant progress in their modelling competency. 
The best results were achieved in those classes where, according to our ratings, the 
balance between students’ independence and teacher’s guidance was realised best, 
with a mix ture of different kinds of adaptive interventions and, most importantly 
to note, with a clear emphasis on meta-cognitive activities (according to Implica-
tion 4 above).

However, from a normative point of view, these results are still rather disappoin-
ting: The progress after ten hours of teachers’ big efforts to train students in model-
ling is only less than half one standard deviation. In fact, there is a big potential for 
improving the design:

Solution Plan for students as well.•	
Directive phases also as part of the independence-oriented design, especially  •	
in the beginning (teacher as a “model modeller” according to “cognitive 
apprenticeship”).
More time for practising sub-competencies.•	

It is the intention of future phases of the DISUM project to investigate these 
aspects in more detail.

What do these results tell us about the question in the title of this chapter: Can 
modelling be taught and learnt? The global answer is: There are several indications 
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that modelling can be taught and learnt, provided some basic quality principles are 
fulfilled. Although the teaching units designed so far worldwide can certainly still 
be improved considerably, we should not wait for future studies before we begin to 
implement the reported insights into everyday classrooms as well as into teacher 
education (Lingefjaerd 2007). At the same time, there should be more research since 
there are still a lot of open questions (compare the lists of research questions in Blum 
et al. 2002; DaPonte 1993; Niss 2001), among many others the following:

How can technological devices be appropriately used for developing modelling •	
competency?
What do competence models for modelling look like?•	
Modelling competency has to be built up in long-term learning processes. What •	
is actually achievable regarding long-term competency development?
How can the interplay between modelling and other competencies be advanced •	
systematically?

Particularly, the final question points to the ultimate goal of mathematics 
teaching: a comprehensive mathematical education of all students.
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