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v

Applications and modelling and their learning and teaching in school and university 
have become a prominent topic in the last decades in view of the growing world-
wide relevance of the usage of mathematics in science, technology and everyday 
life. However, although it is consensus that modelling shall play an important role 
in mathematics education, the situation in school and university is not satisfactory. 
Given the worldwide impending shortage of youngsters who are interested in 
mathematics and science it is highly necessary to discuss possible changes of 
mathematics education in school and tertiary education towards the inclusion of 
real world examples and the competencies to use mathematics to solve real world 
problems.

This situation is the starting point of this new and innovative book series estab-
lished by Springer, “International Perspectives on the Teaching and Learning of 
Mathematical Modelling”, where the aim is to promote academic discussion on 
the teaching and learning of mathematical modelling at various educational levels 
all over the world. The series will publish books from various theoretical perspec-
tives around the world dealing with teaching and learning of mathematical model-
ling at secondary and tertiary level. This series will enable the International 
Community of Teachers of Mathematical Modelling and Applications (ICTMA), 
an ICMI affiliated Study Group, to publish books coming out of its biennial con-
ference series. ICTMA is a worldwide unique group, in which not only mathemat-
ics educators aiming for education at school level are included, but also applied 
mathematicians interested in teaching and learning modelling at tertiary level are 
represented.

The planned books will display the worldwide state of the art in this field, most 
recent research results and new theoretical developments, and will be of interest for 
a wide audience. Themes dealt with in the books will be teaching and learning of 
mathematical modelling at primary, secondary and tertiary level including the usage 
of technology in modelling, psychological aspects of modelling and its teaching, 
modelling competencies, curricular aspects, modelling examples and courses, 
teacher education and teacher education courses. Herewith the book aims to support 
the discussion on mathematical modelling and its teaching internationally and will 
promote the teaching and learning of mathematical modelling all over the world in 
schools and universities.

Series Preface
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The series is supported by an editorial board of internationally well-known 
scholars, who bring in their long experience in the field as well as their expertise to 
this series. The members of the editorial board are: Maria Salett Biembengut 
(Brazil), Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia), 
Toshikazu Ikeda (Japan), Mogens Niss (Denmark), Jinxing Xie (China).

We hope this new book series will inspire readers in the present and the future to 
promote the teaching and learning of mathematical modelling all over the world.

Gabriele Kaiser
Gloria Stillman

Series Editors
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The 14th International Conference on the Teaching of Mathematical Modelling and 
Applications (ICTMA14) took place at the University of Hamburg from July 
27–31, 2009, welcomed by the Senate of the Free and Hanseatic City of Hamburg. 
One hundred and fifty participants from 30 countries participated in the confe rence, 
the majority coming from Germany, but with strong groups from China and Japan, 
from Scandinavia, Australia, Brazil, and South Africa. Furthermore, ICTMA14 
attracted researchers from many countries all over the world, such as Singapore, 
Taiwan, Turkey, Nigeria, or Cyprus. The attendance of so many researchers from 
all parts of the world shows that the discussion on the teaching of applications and 
modelling has been established and is now an important topic all over the world.

Furthermore, the attendance of researchers from all over the world, coming from 
both mathematics and mathematics education, shows the special flavour of this 
conference, namely, that it attracts researchers who work as mathematicians and are 
interested in the teaching of mathematical modelling and applications at tertiary 
level as well as mathematics educators who carry out research in the teaching and 
learning of mathematics, especially concerning mathematical modelling and appli-
cations at school level.

The reason for this interesting characteristic lies in the origin of ICTMA: When 
this conference series began in 1983 at Exeter University in England, initiated by 
David Burghes, together with John Berry, Ian Huntley and Alfredo Moscardini, its 
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main focus lay in the teaching of modelling at tertiary level. The founders of 
ICTMA, although the conference series was not named ICTMA yet at that time, 
came from British polytechnics, had introduced new courses in their curriculum 
called modelling courses, and intended to start a scientific debate on the evaluation 
of these courses. The introduction of these new courses was an answer to the 
requirements of industry, which needed better trained engineers, technicians, and 
mathematicians who were able to meet the challenges of the technological develop-
ment, that is, to use mathematical models in order to solve real-world problems. 
The success of this conference series might seem quite unexpected, although already 
at the first conference 125 delegates from 23 different countries were present.

Chris Haines was one of these very first researchers at the ICTMA conferences 
and his plenary paper together with a reaction by Katja Maaß is printed in this book 
in Part 5. At this first conference, Henry Pollak gave the opening speech and his 
influence on this debate is still present and can be found in many papers of this 
book. The debate in this area continued and led to the organisation of the second 
conference on this theme which took place in 1985, once more in Exeter, with the 
majority of the participants still from England. ICTMA-3 then moved to Kassel in 
Germany, with Werner Blum as the chair of this conference and Gabriele Kaiser as 
co-chair. So, with ICTMA-14, the conference series has returned to Germany after 
22 years. Werner Blum presented his recent research at ICTMA-14 on the teaching 
and learning of applications and modelling by a plenary lecture, which can be 
found in Part 1 of this book followed by the reaction of Marcelo Borba.

At the Kassel conference in 1987, the acronym ICTMA was introduced by add-
ing the phrase “and applications” to the original conference title. This third confer-
ence was well attended by more than 200 participants, many of them school 
teachers for whom a special “teacher’s day” was offered. At this time, the empha-
sis of the conference moved from tertiary education to the teaching of modelling 
and applications at all levels, especially at secondary school level. Many projects 
especially from England were present, such as the challenging materials by the 
Shell Centre developed by Hugh Burkhardt and his group, as well as materials 
from the Spode group and the Enterprising mathematics course, all developed by 
David Burghes and his group who were highly active at this time. From the USA, 
writers from the huge project COMAP attended. It was at this time that Werner 
Blum started to work as continuing editor of ICTMA, and he has been involved in 
most of the proceedings ever since.

The conference was still strongly European based, so consequently ICTMA-4 
took place in Roskilde (Denmark) organised by Mogens Niss who has contributed 
with his work strongly to several conferences of this series. Mogens Niss empha-
sised working groups as a special working form into the conference and invited 
plenary speakers who introduced more philosophical aspects into the debate. The 
discussion on modelling competencies, which is a highly important theme until 
now, began to evolve at this conference.

In 1991, ICTMA-5 was organised by Jan De Lange from the Freudenthal Institute 
and took place in Noordwijkerhout (Netherlands). Societal aspects and the con-
nection of modelling and technology were important topics at this conference. 
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Also, contributions from the primary school level were more prominent at this con-
ference than ever before. After that conference, it was consensus that ICTMA should 
become more international and so ICTMA-6 took place at the University of Delaware 
in Newark (USA), organised by Cliff Sloyer. New researchers came in, for example, 
Peter Galbraith from Australia who later served as the second president of ICTMA.

ICTMA-7 was organised by Ken Houston, the first president of ICTMA, and 
hence went back to Europe, to the University of Ulster in Northern Ireland. At this 
conference, assessment became an important topic and the development of model-
ling tests started, strongly influenced by Ken Houston, Chris Haines, Rosalinde 
Crouch, John Izard, and many other Australian colleagues. With such a strong 
Australian presence, it was quite natural to run the next conference in Australia, so 
ICTMA-8 was organised by Peter Galbraith in Brisbane and brought in many more 
Australian researchers into this conference series, for example Gloria Stillman, a 
former PhD student of Peter Galbraith.

With ICTMA-9, the conference returned to Europe. Joao Filipe Matos organised 
it in Lisbon with Susana Carreira as co-chair, who presents her latest research results 
in this book in Part 2. At this time, the discussion on psychological and cognitive 
aspects became much more intense, strongly influenced by the Portuguese researchers, 
what was continued at ICTMA-14 with a plenary talk by Gloria Stillman and a 
reaction by Rita Borromeo Ferri, which can be found in Part 2 of this book.

In 2001, ICTMA made a big jump to China and was organised by Qi-Xiao Ye 
and Qi-Juan Jing in Beijing. ICTMA-10 was attended by 150 participants with 
the majority coming from China. This move has strengthened the visibility of the 
Chinese researchers within the international debate on the teaching and learning of 
mathematical modelling and applications, and several papers of Chinese researchers 
are present in this book in which they report their ongoing research to establish 
modelling courses at different age levels, with modelling contests being an important 
part of their activities.

In 2003, ICTMA returned to the USA, organised by Sue Lamon in Milwaukee, 
Wisconsin, and brought in several new American researchers. It was followed 
by ICTMA-12, which took place in Europe another time in 2005, being organised by 
Chris Haines in London. This conference stressed in several plenary talks the relation 
between mathematics and industry and related strongly to the origin of ICTMA, 
that is to modelling courses at polytechnics.

In 2007, Richard Lesh hosted ICTMA-13 at Indiana University in Bloomington 
(USA), bringing in many new American participants with various research back-
grounds. That led subsequently to a broad thematic coverage of many aspects 
related to modelling with a strong emphasis on the relation between industrial 
applications and modelling. Recent work of Richard Lesh was presented as a plenary 
lecture at ICTMA-14 jointly with Helen Doerr and their contribution can be found 
in Part 3 of this book. An accompanying satellite conference took place in the same 
year in Kathmandu organised by Bhadra Tuladar (for details of the historical devel-
opment of ICTMA, see also Houston et al. 2008).

When summarizing the historical development of ICTMA, we can see a growing 
interest in the teaching and learning of mathematical modelling and applications in 
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school and university. This development has culminated in an ICMI study on this 
theme which reflects the current state of the art of the educational debate (see Blum 
et al. 2007).

One striking feature of the current debate on the teaching and learning of appli-
cations and modelling is its diversity which has been developed over the last 30 
years. Many different research perspectives have been developed with different 
foci, different aims, and different methods, so not only the development of new 
teaching courses or learning environments and their evaluation are important, but 
also various theoretical aspects are prominent in the debate as well. This diversity 
has led to the development of different research perspectives which are character-
ised by different goals and aims connected with the teaching and learning of math-
ematical modelling and applications, often on the basis of different theoretical 
orientations. These differences led, in particular, by the discussions at the 
Congresses of the European Society for Research in Mathematics Education 
(CERME) to the develop ment of a framework of different research perspectives 
which was structuring these ICTMA conferences and consequently also this book. 
The classification developed by Kaiser and Sriraman (2006) distinguishes, amongst 
others, a so-called realistic or applied modelling perspective which aims to promote 
the understanding and solving of real-world problems. Closely related to this 
approach is the model-eliciting perspective in which students are to learn to elicit 
new models and new situations within the modelling process. Many researchers 
emphasise pedagogical goals, that is modelling promotes, apart from modelling 
competencies, more subject-bound goals like the introduction of new mathematical 
concepts and the structuring of teaching and learning processes. Another perspec-
tive emphasises more general goals, for example, the critical understanding of the 
surrounding world. Quite distinct from these perspectives, a meta-perspective can 
be discriminated, which is more orientated towards the analysis of cognitive pro-
cesses within modelling activities.

As became obvious in the description of the historical development of the 
ICTMA conferences and their thematic structures, these foci have emerged over the 
last three decades and they are all well represented in the four plenary contributions 
with three commentaries by discussants and the 52 selected peer-reviewed research 
papers published in this volume. This research diversity is reflected in the structure 
of this book with eight parts, which all contain specific overviews leading into the 
theme of the particular part of the book. 

The first part on “Modelling from primary to upper secondary school: Findings 
of empirical research” is introduced by Thomas Lingefjärd. Empirical analyses in 
its 12 papers, together with the plenary paper by Werner Blum and a reaction by 
Marcelo Borba, address various possibilities for introducing modelling into mathe-
matical instruction at several age levels. The second part, “Looking deeper into 
modelling processes: Studies with a cognitive perspective”, starts with an overview 
by Susana Carreira and concentrates with its five papers, jointly with the plenary 
paper by Gloria Stillman and a reaction by Rita Borromeo Ferri, on the analysis of 
the cognitive processes, especially meta-cognition, that take place during model-
ling. The third part “Modelling in teacher education” contains, together with the 



51 Trends in Teaching and Learning of Mathematical Modelling – Preface 

plenary paper by Richard Lesh and Helen Doerr, three chapters with an introduction 
by Jill Brown and centres its debates on the necessity and possible ways to introduce 
modelling in teacher education. Part four on “Using technologies: New possible 
ways of learning modelling” is introduced by Gilbert Greefrath and explores in its 
three papers the challenges of the introduction of new technologies into the teaching 
and learning processes of modelling. The fifth part on “Modelling competency: 
Learning, applying and developing competencies” with an introduction by Morten 
Blomhøj displays, together with the plenary paper by Chris Haines and a reaction 
by Katja Maaß, in its six papers the current debate on ways to learn, support, and 
measure modelling competencies. Part six on “Modelling in tertiary education” 
contains an overview by Peter Galbraith and presents in its six papers the current 
state of the art on teaching and learning modelling at tertiary level. In part seven on 
“Modelling examples and modelling projects: Concrete cases,” Hugh Burkhardt 
introduces the theme, and the 12 papers describe various teaching courses and 
projects from all over the world. Finally, part eight on “Theoretical and curricular 
reflections on modelling” is introduced by Pauline Vos and explores in its five 
chapters various aspects of modelling from a theoretical and curricular level.

International cooperation is the motor and the heart of scientific development. So 
we hope this new book will contribute to the promoting and fostering of the teaching 
and learning of mathematical modelling and applications all over the world.

The present book is the first book in a newly established series International 
Perspectives on the Teaching and Learning of Mathematical Modelling, the aim of 
which is to promote academic discussion on the teaching and learning of mathemat-
ical modelling at various educational levels all over the world. This series will 
provide the reader on a regular basis with insight into the development of the state 
of the art on research in mathematical modelling and its teaching and learning.
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The study of any phenomenon is enhanced by attention to the various habitats in 
which it can be situated, and that is certainly true of mathematical modelling as an 
educational phenomenon. Activities in mathematical modelling take strikingly 
different forms as they are institutionalised across the world. This chapter will offer 
challenging insights into mathematical modelling activities around the world and at 
different levels of educational systems. Several different research paradigms and/or 
theoretical frameworks are discussed and used to present and discuss different 
findings and results.

Some of the papers use a variety of theories connected to the mathematical 
modelling cycle as frameworks for illustrating quite different aspects. In this 
classification, we find papers by Blum, Girnat, and Eichler, and Schaap, Vos, and 
Goedhart. The fact that these papers are quite different underlines that the mathe-
matical modelling cycle may very well be, and obviously also is, used in many 
different ways. Schaap, Vos, and Goedhart also ask for an extension of the current 
view of the modelling cycle.

Werner Blum uses several theoretical frameworks when outlining stages of the 
mathematical modelling cycle pointing out how easy it is for a novice modeller to 
make mistakes at every stage. Blum underlines and emphasises how complicated 
the question of what a mathematical modelling competency is and the many different 
sub-competencies one needs to be good at mathematical modelling. He argues 
that meta-cognitive activities are not only helpful but also necessary for the development 
of modelling competency. In the DISUM project, different ways to help teachers to 
teach mathematical modelling have been tested, and Blum reports on successful 
and unsuccessful approaches.

Boris Girnat and Andreas Eichler used a classification developed by Kaiser in 
the 1980s taking a pragmatic approach or scientific-humanist approach to mathe-
matical modelling in conjunction with views of mathematics as static or dynamic 

T. Lingefjärd (*) 
University of Gothenburg, Gothenburg, Sweden 
e-mail: Thomas.Lingefjard@gu.se

Chapter 2
Modelling from Primary to Upper  
Secondary School: Findings of Empirical 
Research – Overview

Thomas Lingefjärd 

G. Kaiser et al. (eds.), Trends in Teaching and Learning of Mathematical Modelling, 
International Perspectives on the Teaching and Learning of Mathematical Modelling,  
DOI 10.1007/978-94-007-0910-2_2, © Springer Science+Business Media B.V. 2011



10 T. Lingefjärd

to provide a framework to classify the views of German teachers in their study. 
They found that teachers’ beliefs about modelling were dependent on the relevant 
content area of mathematics. Apparently, key elements of the modelling cycle must 
be rejected when the learning focus is geometry and a static view of mathematics 
dominates. Nevertheless, the teaching and learning of geometry can occur in a 
context where, even when deductive approaches dominate, applications of geometry to 
the real world and solution of realistic tasks play an important role. In contrast, in 
analytical geometry and stochastics, the teachers appeared to lack any rationale for 
emphasising applications over modelling. The authors question whether these re s-
ponses are a result of beliefs about the relationship between mathematics and modelling 
or due to a lack of convincing modelling examples across mathematical areas.

Sanne Schaap, Pauline Vos, and Martin Goedhart report the creation of a frame-
work based on both opportunities and blockages that students experience in the 
mathematical modelling process. The framework builds on work developed within 
the modelling debate in the last decade. Six students were paired into three groups 
and five different mathematical modelling problems were distributed so each group 
worked on four different modelling problems. Two of the problems, The Swimming 
Pool Task and The Horizon Task, are discussed in this chapter.

The following blockages were identified: lacking algebraic skills, overlooking 
essential elements in the problem text, impeding formulation of the problem text, 
and blockage in communication. The following opportunities were found: rereading 
the problem text, subconsciously simplifying the situation, slowing down the process 
by taking one’s time, verifying the model by estimation, and assuming that a solution 
is valid. Some of the factors are not identifiable by the modelling cycle and the 
authors suggest that a framework for blockages and opportunities in the mathematical 
modelling process should be extended to also include metacognitive competencies 
that overarch the modelling cycle.

Some of the papers relate to the use of so-called real-world problems. The studies 
by Andreas Busse and Thomas Lingefjärd and Stephanie Meier, are different but 
similar in some ways. While both papers examine the use of real-world problems 
in specific secondary school classrooms, the reports from the discussion in the class-
rooms are quite different.

Andreas Busse describes how four secondary school students in a German 
higher track school handled three different real-world mathematical modelling 
tasks. Real-world problems always have contextual properties, which will be inter-
preted differently by different users. Busse uses frameworks from cognitive science 
as well as from the modelling debate in order to examine his tasks.

Andreas Busse posits “Ideal Types” for dealing with real-world mathematical 
modelling problems as: Reality bounded (the problem is fully characterised by the 
real-world context); Mathematically bounded (the real-world appearance is a deco-
ration and the problem is solved exclusively by mathematical methods); Integrated 
(personal contextual knowledge interacts and develops through the given informa-
tion leading to a solution process invoking mathematical methods); Ambivalent 
(there is an ambivalence concerning how the problem should be solved in order to 
be legitimate). Neither mathematical modelling problems nor students’ views or 
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strategies for solving real-world problems fall into just one category. Nevertheless, 
it is important for any teacher to realise that students’ contextual experiences and 
understanding might be very different from each other’s and from their own ideas 
and experience.

Thomas Lingefjärd and Stefanie Meier illustrate how two upper secondary 
teachers, one in Germany and one in Sweden, taught the same mathematical model-
ling project in their classes. Both teachers wanted to teach the same modelling 
problem and both had classes with students aged 18–19 years old. The teachers’ 
idea was to either illustrate similarities or differences in the teaching and learning 
of this mathematical modelling project, which was about the phenomenon of sun 
hours during a day depending on location on the globe and time of year. Although 
this is a well-known phenomenon for most youths and grown-ups, it is also rather 
difficult to really understand.

Lingefjärd and Meier examine the dialogue between the students in the two 
classrooms and analyse how the students attempt to understand the complexity of 
the problem. By using Goffman’s theory of framing, it is evident that the students, 
in order to manage the handling of the analysis of the complex sun hour pheno-
menon, try to simplify and take shortcuts at the expense of an acceptable solution. 
It is concluded by the authors that the more open a mathematical modelling process 
becomes, the harder it is for the teachers to control the work of the students. The 
students are after all adults who are rational and will try to find a way out of a 
problematic situation, or from a problematic framing.

One of the papers, namely, the one by Van Doreen, De Bock, Vleugels, and 
Verschaffel, describes the correlation between how 6th graders classify word 
problems and how they solve word problems.

Wim Van Doreen, Dirk De Bock, Kim Vleugels, and Lieven Verschaffel describe 
how seventy-five 6th graders from five classes in three different schools, both per-
formed a classification and a solution task regarding word problems. The students 
were given nine cards with different word problems, nine envelopes, and a pencil. 
Three of the word problems were proportional, three were additive, and three were 
constant. The students were asked not to solve the problems, but to figure out which 
word problems belonged together and had something in common. Subsequently, 
the students were asked to solve nine different word problems. Half of the students 
did this exercise in reverse order.

The result shows that the students who did the classification task before they 
solved the solution task performed significantly better than the students who did 
this in reverse order. Most likely, the classification task made the students more 
aware of differences among the word problems, an awareness they then managed 
to transfer to the solution task. It is concluded that classroom attention to discussion 
of similarities and differences in mathematical problems is probably essential when 
learning mathematics.

Four of the papers discuss the relation between mathematical competencies or 
mathematical knowledge needed to work with mathematical modelling. Whilst this 
is also part of the mathematical modelling cycle, the issue is a more direct focus in 
these papers. George Ekol’s paper examines how mathematicians view mathematical 
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modelling, whilst Dawn Ng discusses this matter related to 7th graders mathemati-
sation of mathematical modelling. Roxana Grigoras, Fco. Javier García, and Stefan 
Halverscheid investigated how the formulation of a mathematical modelling task 
triggers the depth of mathematics preservice mathematics teachers and 8th graders 
used in the modelling process. Yoshiki Nisawa and Seiji Moriya describe how a 
multivariable function course was conducted with 30 university students, aiming at 
becoming mathematics teachers in high school. The purpose of the multivariable 
course was to help the prospective teachers to understand the general concept of 
function better.

George Ekol discusses how four applied mathematicians view mathematical 
modelling. If mathematical modelling in the classroom is to link with the real 
world, then there has to be an enculturation process where students, teachers, 
researchers, and educators share a language and practices, and develop knowledge 
through communication. The findings from interviews with the mathematicians 
were that they viewed four themes as significant for mathematical modelling: 
Finding similar examples or phenomena, connecting physical phenomena with 
abstract concepts, building a model from the ground up, and communicating a 
mathematical model solution. One of the applied mathematicians also expressed 
the importance of “play,” as in exploring concepts through guessing, estimating, 
simulating, checking, and cross-checking and in a playful way using tools at 
hand.

Dawn Ng explains how interdisciplinary project work was introduced as an 
educational initiative at all school levels in Singapore. Dawn’s study aimed at 
answering: What are the types of mathematical knowledge application and student 
difficulties faced during participation in a design-based interdisciplinary project?

Research studies on interdisciplinary project work involving the nature of 
mathe matics application have seldom been carried out. In her study, Dawn Ng 
observed a cohort of 617 students (aged 13–14) across three Singapore government 
secondary schools and tracked the progress of 10 case-study groups. She found that 
students did not apply all the expected mathematical knowledge and skills. 
Furthermore, limited activation of real-world knowledge in mathematical applica-
tion and decision making by the majority of the groups indicated that students may 
learn mathematics in isolation of its use in the real-world and form certain beliefs 
about the nature of mathematics. Effective groups spent more time on attaining 
project requirements, had members who added value to discussions, worked 
together for more accurate and appropriate mathematical knowledge application, 
and engaged more mathematically with the tasks. Nevertheless, even effective 
groups had difficulty sustaining their interest in the project and maintaining quality 
mathematical outcomes toward the end of the project. These findings underline 
how difficult it is to change the teaching of mathematics into a more explorative 
subject.

Roxana Grigoras, Fco. Javier García, and Stefan Halverscheid ask the question: 
How does the formulation of a modelling task without numbers influence the 
degree of mathematics the students will use to handle the problem? A task was 
given in three different versions to both preservice mathematics teachers and 8th 
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graders. In order to analyse students’ utterances, the authors used the theory that 
modelling is mainly a cyclic process where continuous transitions between mathe-
matics and the rest of the world occur as described by Niss, Blum, and Galbraith. 
The Anthropological Theory of Didactics by Chevallard was used to understand the 
performed experiments from an institutional perspective. The results show that 
younger students made few and only tacit assumptions, whilst the preservice teachers 
made more assumptions with the majority explicitly stated. ATD showed that the 
two teams differed in the techniques and technologies they made use of; however, 
no real difference in terms of complexity of the mathematical level was noticed 
between the teams.

Yoshiki Nisawa and Seiji Moriya report from a study in which the authors wanted 
to introduce mathematical modelling containing multivariable functions at the high 
school level in order to solve the problem of university students not understanding 
the concept of functions due to their previous mathematical education and teaching 
and learning methods. A multivariable function course was given to 30 university 
students, aiming at becoming mathematics teachers in high school. Students com-
pleted a questionnaire after the course and the results showed that students under-
stood single variable function better when they had studied multivariable functions. 
In particular, students understood through mathematical modelling that the events 
in their surroundings are not decided by one factor but by two or more factors, 
and, therefore, these can be modelled using multivariable functions. Another result 
was that a change was noticed in the students’ attitude toward functions.

Finally, we have two papers mainly concerned with beliefs or attitudes, as mani-
fested in the papers by Shih-Yi Yu and Ching-Kuch Chang and by Förster. Both 
these papers address attitudes of secondary school mathematics teachers.

Shih-Yi Yu and Ching-Kuch Chang present how 16 secondary mathematics 
teachers were engaged in working with different MEAs (Modelling-Eliciting 
Activities). The concept of MEAs was mainly developed by Lesh and Doerr (see 
this volume). The teachers worked in smaller groups and wrote reports where they 
reflected on the activities. During this 9-week course, the teachers revealed many 
opinions about MEAs and about the teaching of mathematical modelling. Despite 
the teachers agreeing that MEAs probably would enhance their students’ problem-
solving abilities, they still thought that there were too many obstacles to implement 
MEAs in their mathematical classes. The researchers also had difficulties to engage 
teachers in reading the research literature about different modelling perspectives.

Frank Förster reports from a study involving questioning eight in-service teachers 
teaching grade 7–13 of upper secondary schools in Northern Germany with several 
years of teaching experience (2 up to 20 years). Building on results of research on 
beliefs (the author sought the teachers’ beliefs on “global instructional goals,” the 
“picture of mathematics,” and the “reasons for or against applications,” as well as 
the connections between them. The researcher concludes that there was an unex-
pected high consistency between the picture of mathematics, the global goals 
concerning teaching and the selection, and reasons for or against applications and 
that application-examples often come from the teachers’ own university education. 
Also, the German traineeship for teachers has effects, because frequently the trainees 
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are encouraged by the instructors to teach applications. However, if the closer contact 
with applications does not start until this traineeship, this “retrofitting” of compe-
tencies in applications is considered by the teachers as amateurish (dilettantish) and 
after their traineeship they do not teach applications any further. A positive attitude 
to applications and knowledge about applications and modelling is essential to  
be established in school or when training in university study at the latest.

Together, these 12 papers illustrate how widespread, international, and rich the 
world of mathematical modelling is. They also provide an interesting overview of 
how many theoretical frameworks may be used in different ways in order to investigate 
different aspects of learning or teaching mathematical modelling.
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Abstract This chapter deals with empirical findings on the teaching and learning 
of mathematical modelling, with a focus on grades 8–10, that is, 14–16-year-old 
students. The emphasis lies on the actual behaviour of students and teachers in 
learning environments with modelling tasks. Most examples in this chapter are 
taken from our own empirical investigations in the context of the project DISUM. 
In the first section, the terms used in this chapter are recollected from a cognitive 
point of view by means of examples, and reasons are summarised why modelling 
is an important and also demanding activity for students and teachers. In the second 
section, examples are given of students’ difficulties when solving modelling tasks, 
and some important findings concerning students dealing with modelling tasks are 
presented. The third section concentrates on teachers; examples of successful inter-
ventions are given, as well as some findings concerning teachers treating modelling 
examples in the classroom. In the fourth section, some implications for teaching 
modelling are summarised, and some encouraging (though not yet fully satisfying) 
results on the advancement of modelling competency are presented.

1  A Cognitive View on Mathematical Modelling

In this chapter, the actual dealing of students and teachers with modelling tasks is 
to be investigated. In order to describe, interpret and explain what is happening not 
only on the surface but also in teachers’ and students’ minds, a cognitive view on 
modelling is necessary. Hence, when clarifying some basic notions in this first section, 
this is done from a cognitive point of view.
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The following first example is meant to set the scene:

Example 1: “Giant’s shoes”

In a sports centre on the Philippines, 
Florentino Anonuevo Jr. polishes a 
pair of shoes. They are, according 
to the Guinness Book of Records, 
the world’s biggest, with a width of 
2.37 m and a length of 5.29 m.

Approximately how tall would a 
giant be for these shoes to fit? Explain 
your solution. 

This is a mathematical modelling task since the essential demand of the task is 
to translate between reality and mathematics (make assumptions on how the height 
of a man is related to the size of his shoes, establish appropriate mathematical 
relationships, interpret results of calculations and check the validity of these results). 
Reality means the “rest of the world” (Pollak 1979) outside mathematics, including 
nature, society, other scientific disciplines or everyday life.

That such modelling tasks are very difficult for many students is shown by a 
solution of “Giant’s shoes” obtained by a pair of grade 9 students in a laboratory 
session. They multiplied width and length and thus reached the answer “The giant 
would be 12.53 m tall”, as shown in Fig. 3.1.

This kind of solution is rather common and was observed many times in our 
investigations (see also Sect. 2), not only with weaker students but also with 
students from Gymnasium (the high ability track in the German school system). 
So, a pair of grade 9 Gymnasium students applied the Pythagorean Theorem in 
“Giant’s shoes” and thus got to the answer 33.6 m. Also in this solution, no check 
was carried out concerning units (in both cases, the unit of the calculated result 
would have been m² instead of m).

This example and all the following ones are taken from the project DISUM 
(“Didaktische Interventionsformen für einen selbständigkeitsorientierten aufga-
ben gesteuerten Unterricht am Beispiel Mathematik”, in English “Didactical interven-
tion modes for mathematics teaching oriented towards self-regulation and directed 
by tasks”; see Blum and Leiß 2008 for a description of this project). DISUM is an 
interdisciplinary project between mathematics education (W. Blum), pedagogy  

Fig. 3.1 Students’ solution of task “Giant’s shoes”
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(R. Messner, both University of Kassel) and educational psychology (R. Pekrun, 
University of Munich), which aims at investigating how students and teachers 
deal with cognitively demanding modelling tasks and what effects various learning 
environments for modelling have on students’ competency development. The 
focus in DISUM is on grades 8–10 (14–16-year-olds), which will also be the focus 
of this chapter.

The DISUM examples are all “medium-size” modelling tasks which can be 
solved within one lesson. The spectrum of tasks suitable for teaching is, of course, 
much bigger, reaching from straightforward standard applications to authentic 
modelling problems or complex modelling projects where the data collection alone 
takes several hours or days (compare, for instance, the “modelling weeks” presented 
in Kaiser and Schwarz 2006).

Why is modelling so difficult for students? In particular, because of the cognitive 
demands of modelling tasks; modelling involves translating between mathematics 
and reality in both directions, and for that, appropriate mathematical ideas 
(“Grundvorstellungen”, see Blum 1998; Hofe 1998) as well as real-world knowledge 
are necessary. In addition, modelling is inseparably linked with other mathematical 
competencies (Blomhøj and Jensen 2007; Niss 2003), in particular designing and 
applying problem solving strategies, reading texts as well as working mathematically 
(reasoning, calculating, …). Helpful for cognitive analyses of modelling tasks are 
models of the “modelling cycle” which show typical ways of solving such tasks. 
In literature, there is a considerable variety of such models (see Borromeo Ferri 
2006 for an overview). In the DISUM project, a seven-step model proved particularly 
helpful (Fig. 3.2, taken from Blum and Leiß 2007).

The following example (Blum and Leiß 2006) is meant to illustrate this model 
in some more detail.

Example 2: “Filling up”

Mrs. Stone lives in Trier, 20 km away 
from the border of Luxemburg. To  
fill up her VW Golf she drives to 
Luxemburg where immediately behind 
the border there is a petrol station. 
There you have to pay 1.10 Euro for 
one litre of petrol whereas in Trier you 
have to pay 1.35 Euro.

Is it worthwhile for Mrs. Stone to 
drive to Luxemburg? Give reasons for 
your answer. 

The first step is to understand the given problem situation, that is the problem 
solver has to construct a situation model which here involves at least two gas stations 
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and the 20 km connection. The second step is to structure the situation by bringing 
certain variables into play, especially tank volume and consumption rate of the 
Golf, and to simplify the situation by defining what “worthwhile” should mean, 
leading to a real model of the situation. In the standard model, “worthwhile” means 
only “minimising the costs of filling up and driving”. Mathematisation, the third 
step, transforms the real model into a mathematical model which consists here of 
certain equations, perhaps with variables. The fourth step is working mathematically 
(calculating etc.), which yields mathematical results. In step five, these are 
interpreted in the real world as real results, ending up in a recommendation for 
Mrs. Stone of what to do. A validation of these results, step six, may show that it 
is appropriate or necessary to go round the loop a second time, for instance in order 
to take into account more factors such as time or air pollution. Dependent on which 
factors have been chosen, the recommendations for Mrs. Stone might be quite 
different. The seventh and final step is an exposure of the final solution.

This particular model of the modelling process comes from two sources. The 
notion of “situation model” has its origin in the research on texts (Kintsch and 
Greeno 1985; Staub and Reusser 1995; Verschaffel et al. 2000), whereas the other 
components stem from applied mathematical problem solving (Burghes 1986; 
Burkhardt 2006; Pollak 1979). There are several advantages of this model: step one 
– a particularly individual construction process, the first cognitive barrier for stu-
dents – is separated, and all other steps are also essential stages in students’ actual 
modelling processes and potential cognitive barriers, though generally not in linear 
order (for more details see Sect. 2).

With this model as a background, modelling competency can be defined (see 
Niss et al. 2007) as the ability to construct and to use mathematical models by 
carrying out those various modelling steps appropriately as well as to analyse or to 
compare given models. It is a natural hypothesis that these modelling steps corres-
pond to sub-competencies (Kaiser 2007; Maaß 2006) of modelling. The main goal 
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of teaching is that students develop modelling competency with – using the notions 
of Niss et al. (see Blomhøj and Jensen 2007; Jensen 2007; Niss 2003) – a degree of 
coverage, a radius of action and a technical level as extensive as possible.

Why is modelling so important for students? Mathematical models and model-
ling are everywhere around us, often in connection with powerful technological 
tools. Preparing students for responsible citizenship and for participation in societal 
developments presupposes modelling competency. More precisely (compare Blum 
and Niss 1991), mathematical modelling is meant to:

Help students’ to better understand the world.•	
Support mathematics learning (motivation, concept formation, comprehension, •	
retaining).
Contribute to the development of various mathematical competencies and appro-•	
priate attitudes.
Contribute to an adequate picture of mathematics.•	

By modelling, mathematics becomes more meaningful for learners (this is, of 
course, not the only possibility for that). Underlying all these justifications of 
modelling are the main goals of mathematics teaching in secondary schools (Niss 
1996). The goals correspond to different perspectives on modelling in the sense of 
Kaiser et al. (2006). For realising these goals and, in particular, developing model-
ling competency with students, a large variety of modelling tasks has to be treated.

There is a tendency in several countries to include more mathematical modelling 
in the curriculum. In Germany, for instance, mathematical modelling is one of six 
compulsory competencies in the new national “Education Standards” for mathe-
matics. However, in everyday mathematics teaching in most countries, there is still 
only little modelling. Mostly “word problems” are treated where, after “undressing” 
the given context, the essential aim is exercising mathematics. For competency 
development and for learning support also word problems are legitimate and help-
ful; it is only important to be honest about the true nature of reality-oriented tasks 
and problems. However, word problems are not at all sufficient for fulfilling all 
goals intended with modelling. Why is the situation in schools like this, why are 
there only so few modelling examples in everyday classrooms, why do we find such 
a gap between the educational debate (and even official curricula), on the one hand, 
and classroom practice, on the other hand? The main reason is certainly that model-
ling is difficult also for teachers; as real-world knowledge is needed, teaching 
becomes more open and less predictable, and all the competencies required from 
students have, of course, to be acquired by the teachers themselves (see, e.g., 
Burkhardt 2004; DeLange 1987; Freudenthal 1973; Ikeda 2007; Pollak 1979).

2  How Do Students Deal with Modelling Tasks?

Studies such as PISA (see, e.g., OECD 2005, 2007) have shown several times: 
modelling tasks are difficult for students all around the world. Analyses carried out 
by the PISA Mathematics Expert Group (see Turner et al. in press) have shown that 
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the difficulty of modelling tasks can be substantially explained by the inherent 
cognitive complexity of these tasks, measured by the necessary competencies.

All potential cognitive barriers are empirically observable, specific for individual 
tasks and individual students (see also, e.g., Galbraith and Stillman 2006). In the 
following, I will show some typical examples of students’ difficulties with modelling 
tasks, taken from DISUM studies.

•	 Step 1 constructing: See the introductory example “Giant’s shoes”; this is an 
instance of the well-known superficial solution strategy “Ignore the context, just 
extract all data from the text and do something with these according to a familiar 
schema” which in everyday classrooms is very often successful for solving word 
problems (for impressive examples of this strategy, see Baruk 1985 or Verschaffel 
et al. 2000).

•	 Step 2 simplifying: This is an authentic solution of example 2 “Filling up”: “You 
cannot know if it is worthwhile since you don’t know what the Golf consumes. 
You also don’t know how much she wants to fill up”. Obviously, the student has 
constructed an appropriate situation model, but he is not used to making 
assumptions.

The next few examples of difficulties relate to a third modelling example.

Example 3: “Fire-brigade”

From which maximal height can the Munich fire-brigade rescue persons 
with this engine?
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•	 Step 3 mathematising: Often, after a successful construction of a real model of 
the problem situation in “fire-brigade”, students forget to include the height of 
the engine into their model.
Step 4, the •	 intra-mathematical part, may, of course, be arbitrarily difficult. Step 5 
is usually less difficult; here is an example:

•	 Step 5 interpreting: After correctly carrying out the first three modelling steps 
and successfully applying Pythagoras’ theorem, a student’s final answer was 
“The ladder is 27.49 m long if it is extended”. Apart from the meaningless accu-
racy and the usual mistake of ignoring the engine’s height, the student has obvi-
ously forgotten what his calculation actually meant.

•	 Step 6 validating: The introductory example “Giant’s shoes” also provides an 
example of a missing validation since it is obvious that someone has to be more than 
only two-and-a-half times as tall as his shoe length (or can giants look like this?).

Particularly interesting are students’ individual modelling routes during the pro-
cess of solving modelling tasks. The notion of modelling route (Borromeo Ferri 2007) 
is used to describe a specific modelling process in detail, referring to the various steps 
of the modelling cycle (with the above model of the modelling cycle as a powerful 
analytical instrument). As Borromeo Ferri’s analyses have shown, all these steps can 
actually be observed, though generally not in the same linear order (for detailed 
analyses of modelling processes, see also Leiß 2007 and Matos and Carreira 1997). 
There seem to be preferences of students for working more within mathematics or 
more within reality, depending on the individual thinking styles (for this notion, see 
Borromeo Ferri 2004); details are reported in Borromeo Ferri and Blum (2010).

Seeing students successfully performing certain modelling steps and having 
difficulties with other steps points again to the supposition that these steps corres-
pond to sub-competencies of a global modelling competency. It is a particularly 
challenging open research question to establish a theoretically and empirically 
based competence model for mathematical modelling. Essential parts of such a model 
will be to identify distinct sub-competencies, to differentiate between various 
cognitive levels of such sub-competencies, and to set up connections between 
sub-competencies, modelling competency as a whole and other competencies such 
as reading. The proficiency levels identified in the context of PISA mathematics 
can be interpreted as a first attempt towards such a competence model (see OECD 
2005, p. 260 ff). Another attempt was made in the context of the German Education 
Standards. Roughly speaking, the following five levels were identified:

Applying simple standard models.•	
Direct modelling from familiar contexts.•	
Few-step modelling.•	
Multi-step modelling.•	
Complex modelling or evaluating models.•	

In the following, I will mention some more empirical findings concerning students’ 
dealing with modelling tasks. An important observation is related to strategies. In 
most cases, there is no conscious use of problem-solving strategies by students. 
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This explains many of the observed difficulties since it is known from several studies 
that strategies (meta-cognitive activities) are helpful also for modelling (Burkhardt 
and Pollak 2006; Kramarski et al. 2002; Matos and Carreira 1997; Schoenfeld 
1994; Stillman and Galbraith 1998; Tanner and Jones 1993) for an overview see 
Greer and Verschaffel in Blum and Leiß 2007). To put it more sharply: There are 
many indications that meta-cognitive activities are not only helpful but even neces-
sary for the development of modelling competency. Indispensable for this to hap-
pen is an appropriate support by the teacher (see Sect. 3).

Another important result concerns the transfer of knowledge. We know from 
several studies in the frame of situated cognition that learning is always dependent on 
the specific learning context, and hence a simple transfer from one situation to others 
cannot be expected (Brown et al. 1989; De Corte et al. 1996; Niss 1999). This holds 
for the learning of mathematical modelling in particular, so modelling has to be learnt 
specifically. Therefore, a sufficiently broad variation of contexts (real-world situations 
as well as mathematical domains) by the teacher is necessary, as well as making 
transfers between situations and domains explicitly conscious for students.

A global remark: Several studies have shown that mathematical modelling can 
be learnt in certain environments, in spite of all the difficulties associated with 
the teaching and learning of modelling (Abrantes 1993; Galbraith and Clathworthy 
1990; Kaiser-Messmer 1987; Maaß 2007; see also Sect. 4). The decisive variable 
for successful teaching seems to be “quality teaching.” This will be addressed in 
the next section.

3  How Do Teachers Treat Modelling in the Classroom?

Concerning mathematics teaching and learning, the perhaps most important finding 
is one that may sound rather trivial but is not at all trivial (Antonius et al. 2007; Pauli 
and Reusser 2000): Teachers are indispensable, there is a fundamental distinction 
between students working independently with teacher’s support and students work-
ing alone. Meta-analyses (e.g., Lipowsky 2006) have shown that teachers really 
matter a lot for students’ mathematics learning, more than other variables such as 
class size or type of school. What makes the difference is, of course, the way of 
teaching. There is extensive empirical evidence that teaching effects can at most be 
expected on the basis of quality mathematics teaching. What could that mean? Here 
is the working definition we use in DISUM (compare, e.g., Blum and Leiß 2008):

A •	 demanding orchestration of teaching the mathematical subject matter (by giving 
students vast opportunities to acquire mathematical competencies and making 
connections within and outside mathematics).
Permanent •	 cognitive activation of the learners (by stimulating cognitive and 
meta-cognitive activities, fostering students’ independence and handling mistakes 
constructively).
An effective and learner-oriented •	 classroom management (by varying methods 
flexibly, using time effectively, separating learning and assessment, etc.).
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For quality teaching, it is crucial that a permanent balance between (minimal) 
teacher guidance and (maximal) students’ independence is maintained, according 
to Maria Montessori’s famous hundred-year-old maxim: “Help me to do it by 
myself” (see the “principle of minimal support”, Aebli 1985). In particular, when 
students are dealing with mathematical tasks, this balance can be achieved best by 
individual, adaptive, independence-preserving teacher interventions. In a modelling 
context, often strategic interventions are most adequate, that means interventions 
which give hints to students on a meta-level (“Imagine the real situation clearly!”, 
“Make a sketch!”, “What do you aim at?”, “How far have you got?”, “What is still 
missing?”, “Does this result fit to the real situation?”, etc.). In everyday mathematics 
teaching, those quality criteria are often violated. In particular, teachers’ interventions 
are mostly not independence-preserving, and there is nearly no stimulation of students’ 
solution strategies.

Learning environments for modelling are generated by appropriate modelling 
tasks in a general sense. Here are a few well-tried proposals from literature:

“Sense-making by meaningful tasks” (Freudenthal •	 1973; Verschaffel et al. 2000).
“Model-eliciting activities” by challenging tasks (Lesh and Doerr •	 2003).
“Authentic tasks” (Kaiser and Schwarz •	 2010; Palm 2007).

And more generally (in the words of Alsina 2007): “Less chalk, less words, less 
symbols – more objects, more context, more actions”. Often helpful in such modelling 
contexts are suitable technological aids (Henn 2007).

Classroom observations (see, e.g., Leikin and Levav-Waynberg 2007) show that 
the teacher’s own favourite solution of a given task is often imposed on the students 
through his interventions, mostly without even noticing it, also due to an insuffi-
cient knowledge of the richness of the “task space” on the teacher’s side. However, 
we know that it is important to encourage various individual solutions (Hiebert and 
Carpenter 1992; Krainer 1993; Schoenfeld 1988), also to match different thinking 
styles of students, and particularly as a basis for retrospective reflections after the 
students’ presentations. To this end, it is necessary for teachers to have an intimate 
knowledge of the cognitive demands of given tasks. In the project COACTIV (see 
Krauss et al. 2008), we have found that the teacher’s ability to produce multiple 
solutions of tasks is one significant predictor of his students’ achievement gains.

More generally, the following elements are necessary for teachers to treat 
modelling adequately:

Knowledge of task spaces of modelling tasks (including cognitive demands of •	
tasks and own preferences for special solutions).
Knowledge of a broad spectrum of tasks, also for assessment purposes (concern-•	
ing assessment see, e.g., Haines and Crouch 2001; Houston 2007; Niss 1993; 
Vos 2007).
Ability to diagnose students’ difficulties during modelling processes.•	
Knowledge of a broad spectrum of intervention modes (Leiß •	 2007) and ability 
to use appropriate interventions.
Appropriate beliefs (Kaiser and Maaß •	 2007).
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(compare also Doerr 2007). It is an interesting open research question in which 
elements of teachers’ competencies precisely are necessary and how these elements 
contribute to successful teaching.

4  Some Ideas for Teaching Modelling

There is, of course, no general “king’s route” for teaching modelling. However, 
some implications of the findings reported in Sects. 2 and 3 are plausible (not 
spectacular but not at all trivial!).

Implication 1: The criteria for quality teaching (see Sect. 3) have to be considered 
also for teaching modelling; teachers ought to realise a permanent balance between 
students’ independence and their guidance, in particular by their flexible and adaptive 
interventions.

Implication 2: In order to reach the goals associated with modelling, a broad spec-
trum of tasks ought to be used for teaching and for assessment, covering various 
topics, contexts, (sub-)competencies and cognitive levels.

Implication 3: Teachers ought to support students’ individual modelling routes and 
encourage multiple solutions.

Implication 4: Teachers ought to foster adequate student strategies for solving 
modelling tasks and stimulate various meta-cognitive activities, especially reflec-
tions on solution processes and on similarities between different situations and 
contexts.

A few more reflections on Implication 4. For modelling tasks, a specific  
strategic tool is fortunately available, the modelling cycle. The seven-step schema 
(presented in Sect. 1) is appropriate and even indispensable for research and 
teaching purposes. For students, the following four-step schema (developed in 
the DISUM project) called Solution Plan is certainly more appropriate:

Step 1. Understanding task (Read the text precisely and imagine the situation 
clearly! What is required from you? Make a sketch!).

Step 2. Searching mathematics (Look for the data you need; if necessary, make 
assumptions! Look for mathematical relations!).

Step 3. Using mathematics (Use appropriate mathematical procedures!).

Step 4. Explaining result (Round off and link the result to the task! Is your result 
reasonable? If not, go back to 1! If yes, write down your final answer!).

As can be seen, steps 2 and 3 from the seven-step schema (Fig. 3.1) are united 
to one step here (step 2), and the same holds for steps 5, 6 and 7 of the seven-step 
schema (step 4 here). There are some structural similarities of this “Solution Plan” 



253 Can Modelling Be Taught and Learnt? Some Answers from Empirical Research 

for modelling tasks to George Polya’s famous general problem-solving cycle 
(compare Polya 1957), but this plan is more specific because it is conceived only 
for modelling tasks. The Solution Plan is not meant as a schema that has to be used 
by students but as an aid for difficulties that might occur in the course of the solution 
process. The goal is that students learn to use this plan independently whenever 
appropriate. Recent experiences have shown that a careful and stepwise introduc-
tion of this plan is necessary, as well as repeated exercises in how to use it. If this 
is taken into account, even students from Hauptschule (the low ability track in the 
German school system) are able to successfully handle this plan. However, a 
systematic study into the effects of the Solution Plan is still to be carried out (and 
is planned for 2011). A related approach is the use of “Worked-out Examples” (for 
details, see Zöttl et al. this volume).

Finally, I will present some more encouraging empirical results from the DISUM 
project. We have developed a so-called operative-strategic teaching unit for model-
ling (for grades 8/9, embedded in the unit on the Pythagorean Theorem). The 
essential guiding principles for this teaching unit were:

Teaching aiming at students’ active and independent knowledge construc tion •	
(realising the balance between teacher’s guidance and students’ independence).
Systematic change between independent work in groups (coached by the •	
teacher) and whole-class activities (especially for comparison of different solu-
tions and retrospective reflections).
Teacher’s coaching based on concrete four-step solutions for all tasks and on •	
individual diagnoses (students did not have the Solution Plan, in order to keep 
the number of variables small enough).

In autumn 2006 (4 classes) and in autumn 2007 (21 classes), we have compared 
the effects of this “operative-strategic” teaching with a so-called directive teaching 
and with students working totally alone, both concerning students’ achievement and 
attitudes. The most important guiding principles for “directive” teaching were:

Development of common solution patterns by the teacher.•	
Systematic change between whole-class teaching, oriented towards a fictive •	
“average student”, and students’ individual work in exercises.

The students working alone came from those 18 classes that were reduced to 16 
learners in advance by means of a standardised mathematical ability test, in order to 
homogenise the classes for better comparability. Both “operative-strategic” and “direc-
tive” teaching were conceived as optimised teaching styles and realised by experienced 
teachers from a reform project (“SINUS”, see Blum and Leiß 2008). All teachers were 
particularly trained for this purpose. All classes came from Realschule (the medium 
ability track in Germany). Our study had a classical design (see Fig. 3.3):

Ability test/Pre-test/Treatment (10 lessons with various modelling tasks, including 
“Filling up” and “Fire-brigade”) with accompanying questionnaires/Post-test/
Follow-up test (3 months later).
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In all groups and teaching styles, the same modelling tasks were treated in the 
same order (see Fig. 3.3).

The tests comprised both modelling tasks and classical mathematical tasks close 
to the curriculum. According to our knowledge, this study was unique insofar as it 
was a quasi-experimental study with more than 600 students yielding both quantita-
tive (tests and questionnaires) and qualitative (videos) data. Since two optimised 
teaching styles were implemented, one could possibly expect no differences between 
the two treatments concerning students’ achievement and attitudes. However, there 
were remarkable differences. In the following, some important results are reported 
(more details will be presented in another paper).

Most remarkably: Both students’ in “operative-strategic” and in “directive” classes 
made significant progress (.45 resp. .25 SD), but not so students work ing alone. 
The difference in progress was also significant, in favour of the more independence-
oriented teaching style, and the progress of these classes was also more enduring 
than the progress of “directive” classes. The progress of “directive” students was 
essentially due to their progress in the technical “Pythagorean” tasks. Only “operative-
strategic” students made significant progress in their modelling competency. 
The best results were achieved in those classes where, according to our ratings, the 
balance between students’ independence and teacher’s guidance was realised best, 
with a mix ture of different kinds of adaptive interventions and, most importantly 
to note, with a clear emphasis on meta-cognitive activities (according to Implica-
tion 4 above).

However, from a normative point of view, these results are still rather disappoin-
ting: The progress after ten hours of teachers’ big efforts to train students in model-
ling is only less than half one standard deviation. In fact, there is a big potential for 
improving the design:

Solution Plan for students as well.•	
Directive phases also as part of the independence-oriented design, especially  •	
in the beginning (teacher as a “model modeller” according to “cognitive 
apprenticeship”).
More time for practising sub-competencies.•	

It is the intention of future phases of the DISUM project to investigate these 
aspects in more detail.

What do these results tell us about the question in the title of this chapter: Can 
modelling be taught and learnt? The global answer is: There are several indications 
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that modelling can be taught and learnt, provided some basic quality principles are 
fulfilled. Although the teaching units designed so far worldwide can certainly still 
be improved considerably, we should not wait for future studies before we begin to 
implement the reported insights into everyday classrooms as well as into teacher 
education (Lingefjaerd 2007). At the same time, there should be more research since 
there are still a lot of open questions (compare the lists of research questions in Blum 
et al. 2002; DaPonte 1993; Niss 2001), among many others the following:

How can technological devices be appropriately used for developing modelling •	
competency?
What do competence models for modelling look like?•	
Modelling competency has to be built up in long-term learning processes. What •	
is actually achievable regarding long-term competency development?
How can the interplay between modelling and other competencies be advanced •	
systematically?

Particularly, the final question points to the ultimate goal of mathematics 
teaching: a comprehensive mathematical education of all students.
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1  Introduction

The questions, whether mathematical modelling can be learnt and what we know 
from empirical research, are highly relevant not only for the current research on 
modelling, but they are as well essential for curricular changes introducing model-
ling into schools. Werner Blum tackles these questions in his paper from several 
perspectives and shows important research regarding the possibilities of students 
and teachers learning and teaching modelling, respectively. Blum dedicates his 
research to cognitive analysis of students who are involved in developing modelling 
tasks with the help of teachers.

Building on some of the important research developed in the area, he sets the 
stage for his argument defining modelling competency 

as the ability to construct and to use mathematical models by carrying out those various 
modelling steps appropriately as well as to analyse or to compare given models. It is a natu-
ral hypothesis that these modelling steps correspond to sub-competencies (Kaiser 2007; 
Maaß 2006) of modelling. The main goal of teaching is that students develop modelling 
competency with – using the notions of Niss et al. (see Blomhøj and Jensen 2007; Jensen  
2007; Niss 2003) – a degree of coverage, a radius of action under a technical level as 
extensive as possible.

Blum claims that these sub-competencies are related to the steps students take 
to solve modelling tasks: constructing, simplifying, mathematizing, intra- 
mathematical tasks, interpreting, validating. He uses two problems to help the 
 readers understand his ideas, the Giant problem and Fuel problem. The first one is 
more of an open problem and the second more related to the optimization problems 
that can be found in textbooks. He also refers to other problems in order to make 
his ideas clearer.
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He then presents the difficulties faced by teachers to orchestrate the classroom 
that is involved in solving modelling problems and discusses the steps that students 
use to solve problems. His chapter is anchored on strong reference to research 
developed in the field. My comments should then be understood as a means of 
expanding the very important ideas presented by Blum in the preceding chapter.

2  View of Modelling

The very first idea that the reader may want to consider is what view of modelling 
is embedded in Blum’s chapter. Blum’s view is one in which the problem is pre-
sented to students by the teacher as a story that is connected to other realms of the 
students’ experiences. It is similar to problem solving in the sense that the teacher 
maintains the role of presenting a problem and the student responds to the teacher’s 
input. As we know there are different views of modelling when we consider the role 
of teacher and students. One possibility is to have students choosing the theme to 
be studied as is done in some of the Danish and Brazilian traditions (see Borba and 
Villarreal 2005). We propose to enrich the modelling approach by such a compe-
tency designing a problem within a chosen theme, because it seems to be essential 
in order to promote autonomous learning processes. Alternatively, in some cases, 
the students may decide not to design a problem or a “research” question and opt 
instead to study and discuss the theme of their choice using mathematics and other 
established fields of knowledge. There is extensive research in Brazil illustrating 
this. In one study, for example, students enrolled in a first-year biology course 
chose mad cow disease as their topic of study and ended up merging biology and 
mathematics. Others chose photosynthesis and came up with topics, such as the 
logistic curve, which was not included in the syllabus of the calculus discipline they 
were enrolled in, as Fig. 4.1 illustrates.
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Fig. 4.1 Speed of photosynthesis increases as pollution increases over time
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On the other hand, some students chose themes that did not develop into a 
 problem. It is the case of the students who chose Nietzsche as a theme. They stud-
ied the life of the philosopher and elaborated a project, with the help of the teacher 
that included the view of mathematics expressed by the famous thinker. This never 
became a problem in any usual sense of the word. Is this problematic for schooling? 
Must students be solving problems or demonstrating in mathematics classes?

Answers to these questions are beyond the scope of both this commentary and 
Blum’s chapter, but it does help to show that there are other possibilities of modelling 
to be investigated using Blum’s analysis of students’ cognition and teachers’ compe-
tencies. On the other hand, little of the kind of research conducted by Blum has been 
done in classrooms where modelling is seen as a practice that emphasize students’ 
choice of the theme. Both kinds of research could benefit from one another.

In the Brazilian tradition, recently Herminio and Borba (2010) studied what 
drives students’ interests and how this drive changes over time as a group chooses 
a theme to study. Anchored on the discussion carried out by Dewey (1978), we 
make a critical analysis of the Brazilian tradition of modelling in which much 
importance is given to the students’ choice of theme of interest. It would be inter-
esting if cognitive analysis like the one proposed by Blum was incorporated into 
Brazilian studies to consider aspects such as goal orientation and motives of the 
ones involved in modelling projects.

3  Technology and Modelling

The research presented in this book by different authors and studies described in 
Borba and Villarreal (2005) show many examples of problems and modelling 
activities that were designed to be solved using software or the Internet. It seems to 
be necessary in the future to include technology in modelling activities. The exam-
ples by Blum mostly do not make use of technology. It would be interesting to find 
out what happen if studies like Werner Blum’s were developed within a modelling 
approach in which problems were designed to be explored using information and 
communication technology (ICT). Not much has been done in terms of cognitive 
analysis in this kind of modelling project.

4  Critical Perspective and Cognition

In Brazil, a perspective on modelling is prominent, which is described by many 
authors, such as Kaiser and Sriraman (2006), as the social-critical perspective. In 
this perspective, learning of mathematics is connected to a critical reading of soci-
ety as well. In this sense, it is fairly reasonable to say that connecting learning 
mathematics to a critical reading of the world (Freire 1976) may demand new 
 “cognitive activities,” a terminology used by Blum. In this regard, it may not be 
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fruitful, as is the case in some areas of mathematical education, to see critical edu-
cation and cognitive perspectives as a dichotomy. It would be interesting to see the 
design of the study developed by Blum and others incorporated into a task that 
engages students in a critical perspective as well.

5  Teachers and Modelling

Last, but definitely not least, Blum’s paper pointed to competencies that teachers 
should have to teach modelling. He suggests that orchestrating a class with different 
groups developing different solutions at different paces is something that may bring 
uneasiness to teachers who engage in modelling activities.

Werner Blum claims that for teaching modelling you may have in mind some 
principles: 

The criteria for quality teaching (see Sect. 3) have to be considered also for teaching mod-
elling; teachers ought to realise a permanent balance between students’ independence and 
their guidance, in particular by their flexible and adaptive interventions …. In order to 
reach the goals associated with modelling, a broad spectrum of tasks ought to be used for 
teaching and for assessment, covering various topics, contexts, (sub-)competencies, and 
cognitive levels …. Teachers ought to support students individual modelling routes and 
encourage multiple solution …. Teachers ought to foster adequate student strategies for 
solving modelling tasks and stimulate various meta-cognitive activities, especially reflec-
tions on solution processes and on similarities between different situations and contexts.

There is much to be unpacked in the principles brought by Blum for those who 
would like to be involved in teaching modelling. This unpacking is a task for the 
community, and I would encourage them to consider the following questions, as 
well: How would one consider these principles if other perspectives of modelling are 
considered as well? How about if we consider technology in the classroom? Or if we 
consider it part of our task to teach students to be critical of the world they live in as 
they learn mathematics? These questions may contribute to making an already 
important agenda outlined by Blum regarding the teaching of modelling even more 
complex. I hope we can tackle some of these issues in the next ICTMA.

6  Final Considerations

Werner Blum’s work connects cognitive analysis and modelling. By presenting a 
careful analysis of cognitive processes of teachers and students involved in model-
ling activities, he invites researchers who are focusing on other domains of 
 modelling, or other conceptions to do the same. It also invites researchers to con-
sider other cognitive approaches to analyze students’ and teachers’ actions. For 
instance, one could use, as was done in previous ICTMA proceedings, activity 
theory, a perspective that focuses on students’ motives as they are involved in a task. 
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In  summary, I believe that Blum’s chapter brings new ideas to the field and inspires 
new research as we try to change curriculum structure in school through our 
research on modelling.
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Abstract Using a triangulation of methods by applying a three-step design 
 consisting of observation, stimulated recall and interview, upper secondary stu-
dents’ handling of real-world contexts was investigated. It was found that a real-
world context given in a task is not only interpreted very individually but is also 
dynamic in a sense that the contextual ideas change and develop during the process 
of working on the task. Furthermore, data analysis led to four different ideal types 
of dealing with the real-word context: reality bound, integrating, mathematics 
bound, ambivalent. Based on the theoretical background of situated learning, these 
ideal types can be understood as effects of – often implicitly given – sociomath-
ematical norms concerning the permissible amount of extramathematical reasoning 
when working on a mathematical problem.

1  Introduction

A couple of years ago, some enthusiasm among many teachers could be observed. 
A lot of expectations and hopes were associated with a real-world-orientated 
mathematics classroom. It was especially expected that students would be highly 
motivated and would find easier access to mathematics. Burkhardt (1981, p. iv; 
emphasis in original) optimistically wrote: 

However, realistic situations are easier to tackle than purely mathematical topics in that 
here ‘commonsense’ provides essential and helpful guidance, and because there are no 
right answers that must be found but only some answers which are better than others. 

Reality in the mathematics classroom has been different: real-world problems 
alone neither motivate students nor do they make the learning of mathematics easier. 
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Students sometimes see the absence of a unique solution and the need to include 
commonsense as an additional barrier.

Another hope is closely associated with the extramathematical field which a task 
is embedded in: the real-world context. Quite often, it is assumed that a suitable real-
world context makes the approach to a problem easier. Another aspect  
of real-world contexts refers to gender roles in task texts: Depending on the perspec-
tive either real-world contexts that are assumed to be close to girls are used, or, in the 
opposite, especially those contexts are preferred that neglect traditional gender roles 
(e.g., Niederdrenk-Felgner 1995). In any case, real-world contexts seem to be 
 important. However, students might look on this topic differently: When asked about 
the  importance of a well-balanced appearance of males and females in tasks, students 
answered that it was all the same for them; the real-world contexts of most tasks were 
very artificial anyway so that the contexts do not have any meaning for real life 
(Niederdrenk-Felgner 1995, p. 54). This comment suggests that analysing the role of 
real-world contexts might be more difficult than expected in some circles.

In the following, some aspects of the current discussion are presented. After that, 
the research question is formulated, followed by considerations on methodology 
and methods. Afterwards, results of this empirical investigation are given and 
embedded in a broader theoretical context.

2  Some Aspects of the Current Discussion  
and Research Question

Although the real-world context might play an important role when discussing an 
application and modelling classroom, no (or at least no standardised) definition 
does exist, even different names can be found, for example, situational context 
(Stern and Lehrndorfer 1992), task context (Stillman 2000) and real-world context 
(Stillman et al. 2008). A comprehensive definition will be proposed later.

Several researchers claim a fostering effect of familiar real-world contexts on the 
learning of mathematics (among many others, e.g., Wiest 2002). On the other hand, 
there are strong hints that the familiarity of a real-world context might have an 
opposite effect: It can be a barrier to the successful solution of the task (among 
others Boaler 1993). Further analyses show that a positive effect of familiar real-
world contexts can often be observed with primary school children (most research 
has been done in this age group) whilst opposite or more complex effects are related 
to older students.1

Another aspect of real-world contexts is based on observations that not every-
body seems to perceive the real-world context of a given task in the same way, 
obviously there is an individual factor (among others Boaler 1993).

So, there are two areas where the research seems to be vague so far:

How do •	 secondary school students deal with the real-world context?
What role does the •	 individual perception of a real-world context offered in a task 
play?

1 For more details see Busse (2009).



395 Upper Secondary Students’ Handling of Real-World Contexts

To investigate these questions, a definition of real-world context is needed, 
which also includes individual aspects. For this reason, the following comprehen-
sive definition is used in this study:

The real-world context of a realistic task comprises all aspects of the verbally or nonver-
bally, implicitly or explicitly offered extra-mathematical surrounding in which the task is 
embedded, as well as its individual interpretation by the person who works on the task.

3  Methodology and Methods

3.1  Methodological Remarks

The explorative character of the research question suggests a methodological 
embedding, which emphasises in-depth insights. For this reason, a qualitative 
approach was chosen. In contrast to the quantitative paradigm where the selection 
of cases is based on the idea of statistical representativity, in a qualitative study, the 
cases are supposed to mirror the range of possible phenomena (“representativeness 
of concepts”, Strauss and Corbin 1990).

When investigating complex questions, the approach of triangulation has 
become a powerful tool. According to Denzin (1970, p. 297) triangulation means 
“… the combination of methodologies in the study of the same phenomena.” While 
some years ago, triangulation used to be considered mainly as a tool of validation, 
more recently it is seen from a different angle. This change of view is based on the 
insight, that “What goes on in one setting is not a simple corrective to what happens 
elsewhere – each must be understood in its own terms.” (Silverman 1985, p. 21). 
The aim of triangulation 

…should be less to achieve convergences in the sense of a confirmation of aspects already 
found. The triangulation of methods and perspectives is instructive especially when divergent 
perspectives can be clarified, (…). In this case a new perspective emerges that requires theo-
retical explanations. (Flick 2000, p. 318, emphasis in original, translation by the author.)

In order to reduce the complexity of the analyses, the Weberian notion of ideal 
types (Idealtypen, Weber 1922/1985) is used. By unilateral exaggeration of some 
and fusion of other aspects, an essential structure becomes apparent. The purpose 
of creating ideal types is not exclusively to categorise facts, but to emphasise the 
characteristics of the real case by contrasting it to an ideal type.

3.2  Methods

Four pairs of 16–17-year-old students were chosen. They came from four different 
schools. In addition, both sexes as well as different mathematical abilities were 
equally represented. These eight students were asked to solve three different tasks 
in pairs, so 24 cases can be distinguished. The tasks differed in their real-world 
contexts and their degrees of open-endedness. So, the tasks as well as the choice of 
participants contributed to a broad range of possible phenomena (see above).
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As a first step, the students were videotaped while working in pairs. Secondly, 
they watched individually (together with the researcher) the video record. The 
playback was interrupted at certain moments in order to provide the student with 
the opportunity to comment on his or her thoughts about the real-world context that 
had occurred while working on the task (stimulated recall). In a third step (inter-
view), the interviewee was asked more detailed questions about these statements. 
This three-step design enables the researcher to reconstruct different levels of 
action separately although they have taken place simultaneously.

By this methodical approach, a set of data – containing three different kinds of 
data – is created. Due to the three different conditions in which the data are collected, 
each kind of data has certain characteristics, for example, relating to the role of the 
researcher, the time which has elapsed since working on the task, or the means of 
collection. The three steps can be considered as three different perspectives on the 
research question, thus a triangulation of methods is realised. Consequently, data 
analysis had to take this into consideration: First, the different kinds of data were 
analysed separately. After that, the three partial analyses were brought together to 
a comprehensive case analysis. These 24 case analyses were compared and 
 contrasted with each other, and finally clustered. These clusters were – according 
to Weber (1922/1985) – idealised to ideal types.2

3.3  Tasks

Three tasks were given to the students. These tasks follow in Figs. 5.1–5.3. The first 
task is Home for Aged People (see Fig. 5.1). Since no criterion for an optimal 

2 A more comprehensive discussion of methodological and methodical aspects can be found in 
Busse and Borromeo Ferri (2003).

Fig. 5.1 Home for Aged People Task
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 position is explicitly given in this task, one has to deal with a certain openness in 
order to solve it. A criterion has to be found on one’s own, possibly considering 
contextual reflections. There is more than just one possible answer, so the students 
have to give reasons for their choices. The real-world context offered in the Home 
for Aged People Task lies in the field of social problems.

The second task, the Transmission Task (Fig. 5.2), is contextually strongly asso-
ciated with physics and – depending on how it is tackled – there might be a unique 

Fig. 5.2 Transmission Task

A transmission changes the rotation speed from one 
wheel to another. That is known for example from a 
bicycle: In the front there is a large cogwheel, at the 
back a small one. When the large cogwheel in the front 
rotates once  the small cogwheel at the back rotates
several times.  
If for example the radius of the large cogwheel in the front is twice as large as the 
radius of the small one behind, the latter rotates twice when the large one in the 
front rotates once. A gear transmission changes the radius of one cogwheel or the 
radii of both cogwheels to change the transmission ratio.  

Look at the following continuously adjustable gear transmission. 

Between two cones of the same kind a drive belt is placed horizontally. When the 
left cone rotates, the right cone is driven by the belt. The belt can be moved up 
and down while remaining horizontal. According to the position of the belt, the 
transmission ratio varies. The position of the belt is given by the variable x.
Height and radius of the cones are to be taken from the illustration.  

It is assumed that the left cone rotates uniformly exactly once a second.  

Where must the belt be positioned so that the right cone rotates exactly 

Is it possible to achieve any rotation speed of the right cone by varying the 
position x of the belt? Give reasons.  

three times a second?
a)

b)
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solution. However, contextual aspects could be involved, for example, the role of 
the dimensions of the belt.

The third task, the Oil Task (Fig. 5.3), offers a wide range of possible real-world 
aspects. Depending on the modelling assumptions, how the consumption develops 
in the future different solutions are possible.

4  Results

4.1  General Results

It could be confirmed that real-world contexts are interpreted very individually 
depending on different previous personal experiences. Usually different aspects are 
chosen from the task to form an individual context; for example, while one student 
embedded the Oil Task in the scientific context of chemistry another student empha-
sised aspects of personal responsibility for the natural environment (see Busse and 
Kaiser 2003). Thus, it seems sensible not to talk about the real-world context of a 
task but to use the notion of contextual idea (“sachkontextuale Vorstellung”, Busse 
2009) to indicate the mental representation of the real-world context offered in the 
task. In addition, it was found that contextual ideas are dynamic. They do not appear 

Fig. 5.3 Oil Task
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at the beginning of a task and remain unchanged throughout; rather they come into 
being, develop and change in the course of working on the task.

So, the idea that an attractive real-world context can serve as a special starting 
moti vation has to be qualified: It cannot be known for sure in advance which 
contextual ideas an individual develops and when in the course of the solution these 
ideas appear.

4.2  Ideal Types

The analysis of the 24 empirical cases led to four theoretical ideal types that 
describe different ways of dealing with the real-world context (cf. Busse 2005):

Reality bound: The task is fully characterised by the real problem described in the 
task. Only extramathematical concepts and methods, no mathematisations are 
applied.

Mathematics bound: The real-world context is a mere decoration. Only contextual 
information explicitly given in the task text is used, no additional personal contextual 
knowledge is applied. The task is solved exclusively by mathematical methods.

Integrating: Personal contextual knowledge, which exceeds the contextual informa-
tion given in the task text, is used in order to mathematise the problem and to validate 
the solution. During the solution process, mathematical methods are applied.

Ambivalent: There is an ambivalence concerning the legitimacy of the way the 
task is supposed to be solved: Internally, a contextually accentuated reasoning is 
preferred while externally a mathematical reasoning is chosen. These two ways of 
reasoning coexist without forming a coherent whole.

In Fig. 5.4, these four ideal types are presented graphically. The lower two 
arrows indicate how the two extremes form a new quality; the upper two arrows 
illustrate how the type ambivalent is torn between the two extremes.

Fig. 5.4 Ideal types of 
dealing with the real-world 
context
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In order to create the ideal type ambivalent, the above-mentioned approach of 
triangulation followed by a separate analysis played an important role. When 
analysing the data, there were students whose reasoning sounded mathematical 
 during the solving process; but later during the stimulated recall and the interview, it 
appeared that the actual solving process was in fact reality based. So, these students 
translated their reality-based solving process into mathematical language. This 
 phenomenon can be explained by compliance with certain sociomathematical norms 
(e.g., Yackel and Cobb 1996). It is assumed that the norms in question do not permit 
contextual reasoning in a classroom-like situation (like the first step of the three-step 
design), but do allow this if the situation becomes more distant from the mathematics 
classroom (like in the two other steps of the three-step design). In other words, 
sociomathematical norms are considered as situated (cf. Lave and Wenger 1991). The 
existence of the ideal type ambivalent underlines the important role of social- 
mathematical norms and their situatedness in the field of application and modelling.

4.3  Case Synopsis

The total of 24 cases can be described by the four ideal types. Some cases are 
described by more than one ideal type. A synopsis of 6 of the 24 cases is presented 
in Table 5.1.

Table 5.1 Synopsis of 6 of the 24 cases

Student

Task

Home for Aged People Transmission Oil

Karla mathematics bound mathematics bound/integrating ambivalent
Evelyn ambivalent/reality bound mathematics bound mathematics bound

On the basis of the results from these two students, it is evident that neither a 
person nor a task is permanently linked to a certain ideal type, but there are hints 
for preferences. Considering all 24 cases, the Transmission Task is more often 
associated with the ideal type mathematics bound than the other tasks. On the 
other hand, Table 5.1 suggests that there might be personal preferences for certain 
ideal types.

Deeper analyses of the data showed that an emotional involvement or a special 
interest in a certain real-world context is often linked to aspects of contextual 
reaso ning. For example, Karla, who might generally prefer a more mathematical 
manner of reasoning, included contextual aspects when it came to the Oil Task. 
Karla embedded the Oil Task in the context of responsibility for the natural envi-
ronment, a topic that worried her very much. In a similar way, Evelyn included – in 
contrast to her actions in the other tasks – contextual reasoning when solving the 
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Home for Aged People Task. This change of focus might have been due to Evelyn 
being very committed to social problems and her wish to work as a volunteer with 
elderly people.

5  Final Remarks

The results of this study show, to a high degree, the important role of individual 
aspects when dealing with the real-world context of a task. Although many ques-
tions are still unanswered it becomes clear that teachers as well as researchers have 
to take this individuality into account. In school, teachers have to be aware that a 
student’s contextual ideas might differ from theirs. Also, the way in which real-
world contexts are used varies from person to person. The system of ideal types 
might help analysing learning problems concerning this matter.

Another important aspect is the observation that sociomathematical norms con-
cerning the permitted use of real-world contexts are often implicit which might 
cause some irritation among students and can lead to ambivalent behaviour. A more 
explicit teaching of these norms must take place. This can be realised by including 
the teaching of a modelling cycle in the mathematics classroom.
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Abstract Upper primary school children often routinely apply proportional methods 
to missing-value problems, also when this is inappropriate. We tested whether this 
tendency can be broken if children would pay more attention to the initial phases of 
the modelling process. Seventy-five 6th graders were asked to classify nine word 
problems with different underlying mathematical models and to solve a parallel ver-
sion of these problems. Half of the children first did the solution and then the classifi-
cation task, for the others the order was opposite. The results suggest a small positive 
impact of a preceding classification task on students’ later solutions, while solving the 
word problems first proved to negatively affect later classifications.

1  Theoretical and Empirical Background

Contemporary reform documents and curricula in most countries more or less 
explicitly assume that one of the most important goals of mathematics education is 
that students gain the competence to make sense of everyday-life situations and 
complex systems stemming from our modern society, which can be called “model-
ling competencies” (Blum et al. 2002; Lesh and Lehrer 2003). Although mathemat-
ical modelling is generally associated with courses at the tertiary or, to an increasing 
extent, secondary level of education, an early exposure to essential modelling ideas 
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can provide a solid base for competently applying mathematics even at the primary 
school level (Usiskin 2007, 2008). In this chapter, we report a study on word prob-
lem classification that proved to be a promising modelling task at the primary level, 
having a relatively profound effect in breaking pupils’ well-documented tendency 
to overuse the linear or proportional model (De Bock et al. 2007).

Proportionality is recognised as an important mathematical topic receiving much 
attention throughout primary and secondary mathematics education. The reason lies in 
the fact that proportional relationships are the underlying model for approaching numer-
ous practical and theoretical problem situations within mathematics and science. 
However, numerous documents and research reports on a wide variety of mathematical 
domains, and dealing with students of diverse ages, mention pupils’ tendency to apply 
the proportional model irrespective of the mathematical model(s) underlying the prob-
lem situation (Van Dooren et al. 2008). In a mature mathematical modelling approach 
(see, e.g. Verschaffel et al. 2000), essential steps would be: (1) understanding the prob-
lem, (2) selecting relevant relations and translating them into mathematical statements, 
(3) con duc ting the necessary calculations, (4) interpreting and evaluating the result. A 
study using in-depth interviews (De Bock et al. 2002), however, revealed that pupils 
almost completely bypass all steps except step 3. Their decision on the mathematical 
operations mainly was based on routinely recognizing the problem type, the actual 
calculating work received most time and attention, and after checking for basic calcula-
tion errors, the result was immediately communicated as the answer.

In line with the above interpretation, the overuse of proportionality might be 
broken if pupils pay more attention to the initial steps of the modelling cycle, that 
is, the understanding of the relevant aspects of the problem situation and their 
translation in mathematical terms. So, when pupils are engaged in a task with pro-
portional and non-proportional word problems without the need to actually produce 
computational answers, they might be stimulated to engage in a qualitatively differ-
ent kind of mathematical thinking, and develop a disposition toward differentiating 
proportional and non-proportional problems. This assumption was tested by admin-
istering a type of task that is rather uncommon in the mathematics classroom: the 
classification of a set of word problems.

Interest in the value of problem classification and reflection on the relatedness 
of problems is rather old. Polya (1957) indicated that when devising a plan to solve 
a mathematical problem, a useful heuristic is to think of related problems. Seminal 
work was also done by Krutetskii (1976), who indicated that high-ability students 
differ from low-ability students on their skills to distinguish relevant information 
(related to mathematical structure) from irrelevant information (contextual details), 
to perceive rapidly and accurately the mathematical struc ture of problems, and to 
generalise across a wider range of mathematically similar problems. Studies that 
actually used problem classification tasks, however, are rare.

The study by Silver (1979) is well-known. Silver asked 8th graders to classify word 
problems according to their mathematical relatedness. Afterward, he did a didactical 
intervention in which the problems were solved and correct solutions were presented 
and discussed. Then, again, he offered the classification task. In analysing pupils’ clas-
sifications and the criteria they had used, Silver distinguished classifications based on 
mathematical structure, contextual details, question form, and pseudostructure 
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(e.g. relating to the kind of quantity measured: speed, price, weight, …). Silver found 
strong correlations between the quality of pupils’ classifications and their problem 
solving performance. Also, classifications were more relating to the mathematical 
structure after the intervention than before, but the pseudostructure of word problems 
remained an important criterion for pupils’ classifications.

2  Method

2.1  Subjects, Tasks and Procedure

Seventy-five 6th graders – belonging to five classes in three different primary schools 
in a middle-sized Flemish city – completed a classification task and a solution task.

In the solution task, pupils were given a traditional paper-and-pencil word problem 
test, containing nine experimental word problems with different underlying mathe-
matical models: three proportional, three additive, and three constant ones. These dif-
ferent types of word problems had already been used and validated in pre vious research 
(Van Dooren et al. 2005). Proportional problems are characterised by a multiplicative 
relationship between the variables, implying that a proportional strategy leads to the 
correct answer (e.g. Johan and Herman both bought some roses. All roses are equally 
expensive, but Johan bought fewer roses. Johan bought 4 roses while Herman bought 
20 roses. When you know that Johan had to pay 16 Euro, how much did Herman have 
to pay?). Additive problems have a constant difference between the two variables, so a 
correct approach is to add this difference to a third value (e.g. Ellen and Kim are run-
ning around a track. They run equally fast, but Kim began earlier. When Ellen has run 
5 laps, Kim has run 15 laps. When Ellen has run 30 laps, how many has Kim run?). 
Constant problems have no relationship at all between the two variables. The value of 
the second variable does not change, so the correct answer is mentioned in the word 
problem (e.g. Jan and Tom are planting tulips. They use the same kind of tulip bulbs, 
but Jan plants fewer tulips. Jan plants 6 tulips while Tom plants 18 tulips. When you 
know that Jan’s tulips bloom after 24 weeks, how long will it take Tom’s tulips to 
bloom?). The word problems appeared in random order in the booklets, but a booklet 
never started with a proportional word problem to avoid that – from the start – pupils 
would expect the test to be about proportional reasoning. For the same reason, we also 
included six buffer items in the test.

For the classification task, pupils were given a box containing an instruction 
sheet, a set of nine cards (each containing one word problem), nine envelopes, and 
a pencil. Again, three of the word problems were proportional, three additive, and 
three constant. The instructions for pupils were kept somewhat vague because we 
wanted to see which criteria pupils would use spontaneously while classifying: 
“This box contains 9 cards with word problems. You don’t need to solve them. 
Rather, you need to figure out which word problems belong together. Try to make 
groups of problems that – in your view – have something in common. Put each 
group in an envelope, and write on the envelope what the word problems have in 
common. Use as many envelopes as necessary.”
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Both tasks were administered immediately after each other, but their order was 
manipulated. Half of the pupils got the solution task before the classification task 
(SC-condition, n = 38), the other half got the solution task after the classification 
task (CS-condition, n = 37). Because both tasks relied on nine experimental word 
problems, two parallel problem sets were constructed, each containing three 
proportional, three additive, and three constant word problems. In both conditions, 
pupils who got Set I in the classification task got Set II in the solution task and vice 
versa, so that in principle, differences between both sets would be cancelled out.

2.2  Analysis

Pupils’ responses to the problems in the solution task were classified as correct  
(C, correct answer was given), proportional error (P, proportional strategy applied 
to an additive or constant word problem), or other error (O, another solution  
procedure was followed). Obviously, for proportional problems, only two  categories 
(C- and O-answers) were used.

For the classification task, the data are more complex. Two aspects of pupils’ clas-
sifications were analysed. The first aspect concerns the quality of the classifications, 
the second the kind of justifications pupils provided (as written on their envelopes).

The first aspect involves the extent to which pupils’ classifications took into 
account the different mathematical models underlying the word problems. For each 
pupil, scores were calculated using the following rules:

First, the group with the largest number of proportional problems (“P-group”) •	
was identified. It acted as a reference group: If children would experience dif-
ficulties distinguishing proportional and non-proportional problems, they would 
probably consider some non-proportional problems as proportional, and thus 
include non-proportional problems in the P-group.
Next, among the remaining problems, the “A-group” and “C-group” were •	
 identified (the groups with the largest number of additive and constant problems, 
respectively). When more than one group could be labelled as A- or C-group, 
the group having the highest score (see next point) was chosen.
Every group (P, A, and C) got two scores: An uncorrected and a corrected score. •	
We explain these for the P-group. (It is completely parallel for the A- and 
C-group.) The uncorrected score for the P-group (Pu) is the number of propor-
tional problems in the P-group. The corrected score (Pc) is Pu minus the number 
of other problems in that group. If no A- or C-group could be distinguished, 
these scores were set to 0.

The second aspect was the quality of the justifications given by pupils. The jus-
tifications for the P-, A-, and C-group of every pupil were labelled using the 
 following distinctions:

Superficial:•	  Referring to aspects unrelated to the mathematical model: problem 
contexts (e.g. “these are about plants – tulips and roses”, “they all deal with 
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cooking”), common words (e.g. “they both have the word when”), or numbers 
(e.g. “there is a 4 in the problems”, “all numbers are even”).
Implicit:•	  Referring to the mathematical model in the problems, but not unequiv-
ocally or explicitly to one particular model. For example, “the more pies – the 
more apples, the more you buy – the more you pay” does not per se refer to 
proportional situations, and “they all relate to the speed with which activities are 
done” does not grasp the additive character of situations.
Explicit:•	  Referring clearly and unambiguously to the (proportional, additive, or 
constant) mathematical model underlying the problems (e.g. referring to a pro-
portional model “three times this so three times that, and in the other problem 
both things are doubled”, or referring to the additive model “one person has 
more than the other, but the difference stays the same” or for the constant prob-
lems “these are tricky questions: nothing changes”).
Rest:•	  There is no justification written, or it is totally incomprehensible. This 
label is also assigned when the particular group does not exist.

Our classification of justifications is similar to that of Silver (1979, see above), 
with the exception of the “question form” category (because this was controlled in 
our set of problems). Also, our “implicit” category was more inclusive than the 
“pseudostructure” category of Silver.

3  Results

3.1  Solution Task

Table 6.1 presents the answers to the solution task. A first observation is that the 
proportional problems elicited many more correct answers (2.68 out of 3 problems, 
on average) than the additive (0.88) and constant (0.61) problems. A repeated mea-
sures logistic regression analysis indicated that this difference was significant, 
c² (2) = 23.87, p < 0.0001. For the additive and constant problems, almost two out 
of three answers were proportional, indicating that pupils strongly tended to apply 
proportional calculations to the two types of non-proportional problems.

More importantly, pupils in the CS-condition performed significantly better than 
pupils in the SC-condition, c² (1) = 10.72, p = 0.0011. Even though the Problem 

Table 6.1 Mean numbers of correct (C), proportional (P), and other (O) answers on the three 
proportional, additive and constant problems

Proportional problems Additive problems Constant problems

C O C P O C P O

SC-condition 2.61 0.39 0.65 2.08 0.26 0.24 2.08 0.68
CS-condition 2.76 0.24 1.11 1.86 0.03 1.00 1.70 0.30
Total 2.68 0.32 0.88 1.97 0.15 0.61 1.89 0.49
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Type × Condition interaction effect was not significant, c² (2) = 2.76, p = 0.2514, the 
most pronounced differences occurred for the additive problems (1.11 correct 
answers in the CS-condition vs. 0.65 in the SC-condition) and constant problems 
(1.00 vs. 0.24), whilst the difference was much smaller for the proportional prob-
lems (2.76 vs. 2.61).

Table 6.1 further reveals two explanations for these better performances: First, 
CS-condition pupils applied fewer proportional strategies than SC-condition pupils 
(1.70 vs. 2.08 and 1.86 vs. 2.08 proportional errors for the constant and additive 
problems, respectively), c² (1) = 4.73, p = 0.0297. Second, CS-condition pupils also 
made significantly fewer other errors than SC-condition pupils (0.30 vs. 0.68 and 
0.03 vs. 0.26 for the constant and additive problems, respectively), c² (1) = 8.05, 
p = 0.0045.

3.2  Classification Task

Table 6.2 provides an overview of the different scores regarding the quality of pupils’ 
classifications. First of all, this table reveals a high mean Pu-score of 2.37 (on a total 
of 3). Most pupils put at least 2 – many even all 3 – proportional problems in one 
single group. In contrast with the high Pu-score, the mean Pc-score is only 0.40, 
indicating that pupils frequently also put some (on average almost 2) additive and/or 
constant problems in the P-group, instead of putting them in separate groups.

For the additive and constant problems, the uncorrected scores (Au and Cu) are 
1.73 and 1.71, respectively. These scores are lower than the one for the proportional 
problems. This is inherent to our scoring rules, because we first determined a 
P-group (which often also included some additive and constant problems) so that, 
on average, less than three additive and constant problems were left to create A- and 
C-groups. But still, the size of the Au- and Cu-values indicates that many pupils did 
make separate groups for the additive and constant problems. As was the case for 
the proportional problems, also for the non-proportional problems the corrected 
scores (Ac and Cc) are somewhat lower than the uncorrected ones (Au and Cu), but 
the difference is not as pronounced as for the proportional problems (1.73 vs. 1.35 
for the additive problems, and 1.71 vs. 1.27 for the constant problems, respec-
tively). So, even though other problems were sometimes included in the A- and 
C-groups (i.e. on average about 0.40 word problems in each group), this happened 
less often than for the P-group (on average almost two word problems).

In sum, the results presented so far point out that most pupils created a group 
containing proportional word problems, but often also some additive and/or constant 
problems were included in this group, suggesting that not only in their problem 
solving but also in their classification activities, pupils had difficulties to distinguish 
all non-proportional word problems from the proportional ones. Nevertheless, there 
was evidence that pupils distinguished some non-proportional problems, and made 
separate groups of proportional, additive, and constant word problems, even though 
their classifications were often imperfect.
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We also compared the classifications in the two conditions. As can be seen in 
Table 6.2, the scores for the proportional problems (Pu and Pc) hardly differ for the 
SC- and CS-condition (a finding that parallels what was found for the solution 
task). However, classification scores for the additive and constant problems are 
somewhat higher in the CS-condition than in the SC-condition (except for the  
Au-scores, which are approximately equal). So, whereas doing the classification 
task first has a beneficial impact on performance on the solution task (particularly 
on non-proportional problems), the reverse is not the case: Doing the solution task 
first does not improve performance on the classification task. On the contrary, it has 
a slightly negative impact on children’s classifications.

With respect to quality of justifications, Table 6.3 gives an overview of the vari-
ous justifications for the P-, A-, and C-groups (for the explanation of the different 
labels, see the Analysis part in the Method section). A first observation is that 
explicit justifications are very rare for all three groups of word problems. They 
occurred in a maximum of 7 out of 75 cases. Second, many of the justifications are 
implicit, particularly for the C-group, but also for the other two groups. Third, also 
many superficial justifications were observed in all three groups. Of course, this 
does not necessarily imply that pupils actually used these superficial criteria while 
classifying. Their classifications were often in accordance with the underlying 
mathematical models, so children might have used criteria that acted tacitly, with 
superficial justifications occurring post hoc, in response to the instruction to pro-
vide justification for their classification. And fourth, the kinds of justifications are 
very comparable for the SC- and CS-condition. So, even though many pupils made 
appropriate – sometimes even perfect – classifications of the nine word problems 
in terms of their underlying mathematical models, they were rarely able to justify 
their classifications explicitly.

Table 6.3 Number of superficial (S), implicit (I), explicit (E), and other (R) justifications given 
by pupils to the P-, A-, and C-groups

P-group A-group C-group

S I E R S I E R S I E R

SC-condition 19 13 2 4 12 18 3 5 12 19 3 4
CS-condition 16 14 3 4 14 17 4 2  7 22 4 4
Total 35 27 5 8 26 35 7 7 19 41 7 8

Table 6.2 Mean uncorrected (Pu, Au, Cu) and corrected  
(Pc, Ac, Cc) scores for the classification task

P-group A-group C-group

Pu Pc Au Ac Cu Cc

SC-condition 2.34 0.42 1.76 1.18 1.58 1.05
CS-condition 2.41 0.38 1.70 1.51 1.84 1.49
Total 2.37 0.40 1.73 1.35 1.71 1.27
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4  Conclusions and Discussion

Previous studies (e.g. Van Dooren et al. 2005) have shown that pupils strongly tend 
to use proportional solution methods for missing-value word problems, even when 
this is inappropriate. It was also suggested that pupils’ immature and even distorted 
disposition toward mathematical modelling plays an important role: After a 
reflex-like recognition of the type of word problem, pupils quickly jump to the 
actual calculating work, and afterward, the result is immediately communicated 
without any further interpretation or critical reflection. The current study assumed 
that – if pupils would work on an unfamiliar task not focused on producing compu-
tational answers but on reflecting on commonalities and differences within a set of 
word problems – they might engage in a deeper kind of mathematical thinking, and 
 distinguish more easily between proportional and non-proportional problems, 
which, in its turn, might have a beneficial effect on their problem solving skills.

Taken as a whole, the results supported this assumption. On the solution task, 
pupils were prone to the overuse of proportional methods: Performances on propor-
tional problems were very good, but almost 4 out of 6 non-proportional problems 
were solved proportionally, as observed in previous studies (De Bock et al. 2007). 
As expected, pupils’ behaviour on the classification task, however, was different. 
Nearly all pupils classified the proportional problems in one group, but they typi-
cally also included a few non-proportional (additive and constant) word problems. 
Many pupils also made a group of additive problems and another group of constant 
problems. Most often, pupils did not provide adequate explicit justifications for 
their groupings, but justified them implicitly.

The difference between the two conditions provided convincing evidence for the 
potentially positive effect of the classification task. Pupils who received the solu-
tion task after the classification task performed significantly better on the solution 
task than those who immediately started with the solution task, suggesting that the 
classification task made them more aware of differences among the word problems, 
which pupils transferred to the solution task. This observation is remarkable, con-
sidering that pupils’ overuse of proportionality is deeply rooted (De Bock et al. 
2007), while the classification task was a rather subtle and limited intervention, 
especially for pupils as young as 6th graders: No classification criteria were pro-
vided, no feedback was given, and the usefulness of the classifications for the 
subsequent solution task was never mentioned.

The positive results on the classification task also have implications for educa-
tional practice. They support the assumption that the overuse of proportionality is 
to a large extent due to pupils’ superficial approach to word problems – jumping 
too quickly to the calculating work and immediately reporting the outcome – rather 
than to being really unable to distinguish proportional from non-proportional word 
problems. As such, explicit classroom attention to discussing similarities and dis-
similarities between word problems (both in terms of superficial contextual features 
and in terms of deeper underlying structures) seems a very promising approach in 
order to eradicate the overuse of proportional methods.
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Abstract What is it that the applied mathematicians actually do in applications and 
modelling at the undergraduate level, and what might we learn from those experi-
ences? A qualitative study was designed to answer this question. Mathematicians 
involved in applications and modelling from a university department were inter-
viewed over a period of 6 months. Part of the interview involved interacting with 
dynamic conceptual models designed on Dynamic Geometry Sketchpad software. 
We anticipated that these applied mathematicians would favor the use of dynamic 
models in their teaching. What we found out was that there is a strong advocacy 
supporting “play” in modelling, because apart from the fun and the interest it gen-
erates, it might also lead to discovery and a sense of wonder. We identified four 
other themes from the interviews with respect to modelling and application: find-
ing similar examples or phenomena; connecting physical phenomena with visual 
concepts; building models from the ground up; and communicating broader context 
of a modelling solution. These categories not only add to the list of competencies 
already identified in other studies, but they show a strong need for multidisciplinary 
collaboration in modelling and application.

1  Introduction

Mathematical modelling and applications is a central theme in mathematics 
 education, evidenced by the many publications in journals, conference proceed-
ings, and programs of the International Community of Teachers of Modelling and 
Applications (ICTMA), International Congress on Mathematical Education (ICME), 
and the International Commission on Mathematical Instruction (ICMI). In teaching 
and learning, modelling is variously covered from elementary school to tertiary 
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 education (Greer et al. 2007). This study reports on modelling from the perspective 
of applied mathematicians actively involved in undergraduate teaching and 
research. We take the position that the learning of mathematics will help develop 
competencies for extra-mathematical purposes. Extra-mathematical worlds are 
other domains outside mathematics, but which are in many ways served by 
 mathematical applications (Blum et al. 2007).

With respect to the application of mathematics in the extra-mathematical or real 
world, Burkhardt (2006) reflects:

…there is no point in educating human automata; they are losing their jobs all over the 
world. Society now needs thinkers, who can use their mathematics for their own and for 
their society’s purposes. Mathematics education needs to focus on developing these capa-
bilities (p. 183).

Burkhardt’s reflection in essence points to the urgency for mathematics educa-
tion to take its rightful place in society, and play the role of linking mathematics 
learning with application, especially in tackling problems encountered outside 
mathematics itself.

Much research has been done on what kinds of competencies students need in 
order to engage in modelling. (Blomhøj and Jensen 2007; De Bock et al. 2007; 
Greer and Verschaffel 2007; Henning and Keune 2007; Houston 2007; Singer 
2007). These studies describe a range of modelling skills, which serve to guide the 
teaching and learning, and assessment of modelling as a discipline. For example, 
the studies propose that modelling should be properly incorporated into the curri-
cula, and should start in the early years of school, taking into account the appropri-
ate mathematical disposition of the students. This is a crucial point, given that in 
general, modelling is not taught on its own, but within mathematics, making its 
status in the curricula unclear. A challenge for the teacher is then to incorporate 
appropriate models that help the students relate what they are doing in a mathemat-
ics modelling class to extra-mathematical world problems, without over simplify-
ing the mathematics (see for example Greer and Verschaffel 2007, p. 220).

We propose in this chapter that if mathematical modelling in the classroom is to 
link with the real world, then there has to be some enculturation process where 
students, teachers, researchers, and educators, share a language and practices, and 
develop knowledge through communication (Lerman 1996; Nardi 2008; Sierpinska 
1994; Vygotsky 1962; Wenger 1998). In that respect, our study focuses on one 
group in this shared community: the applied mathematicians. As part of the encul-
turation process, students need to learn what applied mathematicians do, what tools 
and language they use in the modelling processes. For their part, applied mathema-
ticians have to understand the needs of the students by putting together learning 
activities and programs that build their competencies. In this study, applied mathe-
maticians also assume the roles of researchers and teachers.

We seek to find out what modelling experiences applied mathematicians would 
give to their undergraduate students, by addressing the following specific questions:

 1. From the perspective of applied mathematicians, what mathematical modelling 
experiences are needed at undergraduate level?

 2. What might we learn from those experiences to inform teaching?
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The purpose of the study is to record the modelling experiences of the applied 
mathematicians that will inform the teaching and the practice at that level. Our data 
comprise the narrative gathered from applied mathematicians, paying attention to 
the use of language and practices that are taken for granted in that community.

2  Methodology

Applied mathematicians in a university department of mathematics were asked by 
email if they would agree to be interviewed. Initially, it was not easy to find conve-
nient time as many had commitments. The interviews were scheduled on an indi-
vidual basis, convenient to each member contacted; the resulting interview period 
stretched over 6 months. There were ten respondents, all were interviewed, but in 
this chapter, only four interviews with applied mathematicians are presented because 
of space. The interviews took place in the mathematicians’ offices, to cut down on 
their time of moving to another location, but this also gave the interviewers an 
opportunity to see the work space of the interviewees, for instance, the tools, 
equipment, materials, and resources they mostly use in their teaching and research.

The interviews followed a qualitative design (Creswell 2008), with open ques-
tions. The initial responses were often followed by probes to get further clarifica-
tion on what the interviewees meant. At the beginning of the interview, the 
interviewees briefly described their areas of teaching and research, and the prob-
lems they were working on. Later on, they described their mode of work on the 
problems: For ins tance, did they use computers, drawings, paper, and pencil, and if 
so, on what kinds of problems were these tools used? Did they use mathematical 
concepts differently from their colleagues in pure mathematics? In the final phase 
of the interview, they were introduced to dynamic conceptual models (dynamic 
number line, and matrix transformations) designed on Dynamic Geometry 
Sketchpad (DGS) software. We conjectured that applied mathematicians would 
support the use of dynamic models; such models help students focus on the behav-
iour of things that are moving, and hence the concepts involved. After interacting 
with these models for about 30 min, they gave their feedback, relating it to their 
own practice and experiences. In the analysis of the video transcript, we looked for 
themes that related to the practices and language that are taken for granted in the 
community of applied mathematicians.

3  Results

The original data comprised video recordings. After transcribing the data, four 
major themes stood out from the applied mathematicians with respect to the model-
ling competencies they would like their students to have:

 1. Finding similar examples or phenomena.
 2. Connecting physical phenomena with abstract concepts.
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 3. Building models from the ground up.
 4. Communicating broader context of a modelling solution.

We briefly discuss each of the four themes in the following paragraphs. We 
note that Joan, Jeff, Bob, and John (all pseudonyms) are the applied mathemati-
cians, and Nathalie is the interviewer. The response to questions does not follow 
the order of names.

3.1  Finding Similar Examples or Phenomena

01. Nathalie: Can you talk a little bit about the mathematics … what is needed to 
mobilize the math in modelling …, what is it that you are good at?

02. Jeff: Part of it is having an encyclopedic collection of things that are impor-
tant. You know that this thing has been done for these sorts of problem so you 
could extract things that are similar.

Here, in Jeff’s response we observe that modelling requires an open approach 
to dealing with problems, but it also demands some degree of preparedness to 
handle the problems. On the other hand, transfer of experience from one area to 
another is essential. That implies that students can draw on examples from other 
subjects such as physics, chemistry, biology, and bring them to enhance their mod-
elling competences.

03. Nathalie: What else does the “encyclopedic” collection include?
04. Jeff: Having a wider understanding. In this process they have to identify what 

the tools are, and then also they have to know how to use the tools once they 
have identified the problem.

Use of “tools” is important in modelling. The tools mentioned by Jeff could be 
physical such as pencil and paper, or use of diagrams, computer simulations, but 
they could also be nonphysical tools such as a procedure or algorithm that one uses 
to solve a modelling problem. All these imply some knowledge of the problem 
area one is working on, and related information, or experience that have been built 
over time.

In the next interview, Joan described a modelling problem she had to deal with 
in biology.

05. Nathalie: So where did you start … when you wanted to model that, did you 
think of an equation, did you think of something more geometric?

06. Joan: The data was very suggestive of things that we’d seen in other contexts, 
so we had to think about what types of mathematical objects would give rise to 
such pictures.

07. Joan: That was much harder and I have to confess that the model was cobbled 
with different terms that each individually described certain aspects.
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What are those “mathematical objects” Joan refers to in [06]? Sfard (1994) 
brings in the theory of reification – a transition from an operational to a structural 
mode of thinking in the formation of a mathematical concept. Although reification 
is beyond the scope of this chapter, it is worth mentioning here, just in case there 
might be any parallels to what Joan went through in [06].What comes out clearly 
from Joan, though is that she draws from her experience to make connections to 
similar situations she had seen in other contexts.

3.2  Connecting Physical Phenomena with Abstract Concepts

08. Nathalie: About the concepts that you use in modelling do you feel that they 
differ at all from what somebody doing pure mathematics might use?

 09. Jeff: I think the concepts are not any different; it’s just a question of what 
types of problem you are interested in. The basic tools are, how can I write 
something down which describes certain aspects of what I’m interested in, in 
some sense?

 10. Jeff: In terms of someone from pure mathematics, the questions that they are 
interested in are slightly different but the basic ideas are being able to make 
some abstract representation of what it is that they are thinking about. That’s 
the starting point and that’s always the same.

Bob’s response to the same question does not differ very much from Jeff’s.

 11. Bob: Well, in modelling you have to have some physical model of what the 
object is, its structure, shape. So you have to write down the equations that 
actually describe that.

Having a physical model and abstracting this to a mathematical model is a key 
component of modelling. Students should not ignore the structure and shape of 
objects in modelling situations, because these can provide some hints for formulat-
ing mathematical solutions.

3.3  Building Modelling from the Ground up

 12. Nathalie: Ok, so all of these [dynamic models] that you have looked at … we 
think of them as ways that help students focus on the behavior of things that are 
moving, …

 13. Nathalie: …and our hypothesis is that the dynamic models might help them 
with modelling or applied situation. What’s your reaction to that?

 14. John: When I look at a tool like this one [dynamic models] my first question is 
what would I use it for? I’m always keen on anything that gets people to play, 
anything that brings a sense of discovery and wonder, the fun thing.
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 15. John: Well, there is certainly a lot of test cases and playing around, proto typing 
small cases, “what if I had to fit a square into a circle, what would really 
happen?”

We observe that John does not object to using dynamic models. This also sup-
ports our original conjecture that dynamic models might help students develop 
competencies in applied situations.

Jeff, still referring to the same question [12.13] says:

 16. Jeff: Ah, you think of adjusting a parameter and seeing the consequences, for 
example in a dynamical system, you have some function that has a parameter, 
and as you adjust the parameter, the function is going to change.

We observe unanimity among the applied mathematicians about the use of 
dynamic tools or technology for experimentation purposes (what if?), prototyping, 
play, wonder, fun, and discovery. Modelling should incorporate all these attributes. 
Evidence from research also supports use of technology for exploration purposes. 
Papert (1980) has very good examples.

3.4  Communicating Broader Context  
of a Modelling Solution

 17. Nathalie: Is there a different culture of writing in applied mathematics?
 18. John: In applied math, there is always a lot of communication between the 

people who are working on the problem together, so a lot of writing, starting 
right away with something broader, with a lot more background, in some 
sense.

 19. John: [With respect to students’ modelling] after working their solutions, some 
will say, ok, that is the solution, even if they made a mistake. You look at the 
solution and it can’t be anything physical. The physical world doesn’t work 
that way.

 20. John: But they are resistant that they might be able to apply their intuition about 
the real world to the solution of the model.

Communication in general is arguably the most challenging aspect of modelling. 
Students tend to ignore it as not the main part of modelling but indeed it is a very 
significant part of modelling. Clear communication is important because without it, 
the process is incomplete. So students need to develop the skill of communicating 
their results, and the best way is through practice, through individual and group 
projects.

Modelling solutions should be realistic and amenable to the extra-mathematical 
world or physical reality (Blum et al. 2007). In communicating this solution, some 
background information is necessary to inform nonexperts in the subject area what 
the solutions to the problems are and some implications of the solution.
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4  Discussion and Summary

The study probed the modelling experiences of four applied mathematicians, who 
are teachers at undergraduate level as well as being researchers. Four major themes 
emerged from the interviews:

•	 Finding similar examples or phenomena: the importance of drawing examples 
from one’s experiences and using them in the modelling situation.

•	 Connecting physical phenomena with abstract concepts: Moving from a physical 
model to a mathematical model, and [after solving], interpreting and communi-
cating the solution in the real setting outside mathematics.

•	 Building a model from the ground up: starting with a simple idea about a 
problem and experimenting, using appropriate tools, until the problem 
becomes clearer.

•	 Communicating a mathematical modelling solution: recognizing the impor-
tance of clear communication of results that accommodates a wider audience, 
other than the expert audience themselves.

These four themes address the question of competencies needed in undergradu-
ate mathematical modelling, although their application extends outside education. 
We agree with Burkhardt that mathematics education should contribute to devel-
oping the capabilities of students for their own benefit, and for the benefit of 
society as a whole. The other insight we get from this study is the notion of “play” 
in modelling.

I’m always keen on anything that gets people to play, anything that brings a sense of 
 discovery and wonder, the fun thing (John, line 13).

This remark is rather surprising because at undergraduate level, play is not usu-
ally considered part of serious learning. On the other hand, John is probably advo-
cating a different game, perhaps a more serious game than just “play.” A game 
where students explore concepts through testing, guessing, estimating, simulating, 
checking and cross-checking, in a “playful” way using tools that they have.

Furthermore, modelling demands adaptive expertise in nature and is a social 
activity which should be properly supported by good curricula (Greer and 
Verschaffel 2007). In the context of our study, adaptive expertise means an ability 
to interpret the context, environment, of a modelling problem, and to apply the 
requisite mathematical tools in resolving the task.

Having a wider understanding. In this process they have to identify what the tools are, 
and then also [they] have to know how to use the tools once they have identified the 
problem [10].

We have argued in this chapter that modelling is also a multidisciplinary under-
taking because one must draw from many areas to formulate a mathematical prob-
lem. “Wider understanding” [10], also implies that students are being challenged to 
look beyond their subject areas, draw from different areas of learning, and also 
from their personal experiences.
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The data was very suggestive of things that we’d seen in other contexts, so we had to think 
about what types of mathematical objects would give rise to such pictures [06].

This clearly demonstrates a multidisciplinary approach to mathematical 
 modelling and application. Overall, we believe that our conjectures have been well 
supported by the data that we collected.
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Abstract As a result of the standard-based curricula, in several countries secondary 
teachers’ beliefs about applications or modelling have developed in the scope of 
mathematics education. In contrast, German secondary teachers rarely integrate 
applications or modelling into their instructional practice. This research report is 
focused on teachers’ beliefs that hinder or promote integrating applications or mod-
elling into their teaching practice. The objective of this approach was to reconstruct 
the teachers’ belief systems concerning applications. The undefined term “beliefs” 
is specified by the psychological construct of “subjective theories.” In this chapter, 
results with reference to the subjective theories of teachers with respect to model-
ling will be presented. Furthermore, some recommendations concerning teacher 
training will be sketched.

1  The Call for Applications in Mathematics Curriculum  
is Quite Old!

Everything flows. The way of teaching mathematics undergoes steady changes. To be 
more precise, there are two aspects in particular that have been altered over the years at a 
slow but steady pace. Firstly, one strives to simplify the teaching subjects. … Secondly, the 
approach to teaching mathematics increasingly seeks to adapt the needs of everyday life. 
This effort is reflected especially in the selection and status of the so-called real-world 
problems. (Heinrich Kempinsky 1928, p. 9. Translation by author).

Today, applications are in vogue: Even if there were always oscillations between 
utilitarian periods and puristic periods in teaching mathematics over the last 100 years 
(Kaiser 1995; Niss 2000) and, after a “weaker period” in the 1990s, today applica-
tions are brought back into focus by the TIMSS and PISA discussion – as one can see 
by newer German schoolbooks or in recent German curricula and didactical journals.
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But applications still miss out in the mainstream classroom at least in German 
secondary schools: For years we asked freshmen at the Technical University of 
Braunschweig: “What applications of mathematics do you remember from school?” 
The most common answer was: “None.” Often applications were mentioned as pure 
mathematical applications like curve sketching as an “application of differential 
calculus.” There are still only a few research studies to support this thesis, but a lot 
of direct or indirect evidence by many studies (e.g., BIQUA 2007; Hiebert et al. 
2003; Hugener 2008; Kaiser 1999; Neubrand 2004; Stigler and Hiebert 1999).

The burning issue is: Will there be changes made by the new German standards-
based curricula (i.e., Bildungsstandards, KMK 2004; the Kerncurricula e.g., for 
Niedersachen, Niedersächsisches Kultusministerium 2006)? Not necessarily, we 
think, and particularly not automatically, as the following analysis will show.

2  A First Root Cause Analysis: Focusing on Teachers

How teachers make sense of their professional world, the knowledge and beliefs they bring 
with them to the task, and how teachers’ understanding of teaching, learning, children, and 
the subject matter informs their everyday practice are important questions that need an 
investigation of the cognitive and affective aspects of teachers’ professional lives 
(Calderhead 1996, p. 709).

Is it possible to identify issues that can explain the gap between the educational 
demands for applications and modelling and the instructional practice in the class-
room? We use the following didactic triangle (see Fig. 8.1) as a simple model for 
teachers’ actions (Tietze et al. 1997, pp. 74 f.). The model incorporates the mathe-
matical subject, students, and teacher and, as indicated by the arrows, the interac-
tions between teacher and students, and within the group of students and the 
involvement of the teacher and the student with the subject. From the qualitative 
point of view, the dialogue between the persons involved and the subject matter is 
a dialogue that can change both person and subject matter. Last but not least, we 
take into account the conditions that frame school teaching.

The key persons in changing or reforming mathematics education and to apply 
new curricula are teachers (e.g., Fernandes 1995; Wilson and Cooney 2002). 

Fig. 8.1 Didactic triangle
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Focusing on teachers as the main actors for planning and performing teaching in 
school is just one possible perspective. One could also focus on the framing by 
investigating the effect of curriculum, assessment, or even social expectations (of 
parents, society, or even the business world) on mathematical teaching. One could 
focus on subject matter as the context of schoolbooks or learning material for 
teaching applications that also have a significant influence. Alternatively, one could 
focus on the students, including their mathematical competencies, their attitudes to 
applications and modelling, and the students’ expectations of their mathematical 
teaching as the research of Maaß (2004) has shown, a factor, that should not be 
underestimated.

For now, the focus will be on teachers as the main actors in the educational process. 
Two, at first glance, very simple questions arise: Do not teachers want to teach 
appli cations and modelling in the classroom? Which would correspond with the 
teachers’ motives? Or: Cannot they teach applications and modelling? Taking into 
account the application competencies of the teachers and/or the objective or subjec-
tively felt barriers that hinder them from teaching applications.

3  Why a Qualitative Case Study?: Methodology and Methods

Questionnaire-based quantitative studies of teachers’ cognitions and attitudes to 
applications and modelling show that the great majority have a quite positive atti-
tude to applications and want to increase the number of applications but see a lot of 
barriers connected with applications in the classroom and even self-distrust of their 
own application competencies. Barriers mentioned are, for example, “too few mate-
rials for teaching applications,” “applications are hard stuff and therefore only rel-
evant for high-performers,” “applications are difficult to assess” and most of all: 
“There is not enough teaching time for applications” (e.g., Grigutsch et al. 1998; 
Humenberger 1997; Tietze 1990, 1992; Zimmermann 2002).

From this quantitative research, a lot of questions remain open, especially: If 
teachers want to teach applications and modelling in the classroom, why do they 
not create the framing conditions to reach their goals? And that’s where the quali-
tative study starts with the following research questions: (1) What are the teachers’ 
reasons to integrate or to ignore modelling in their teaching practice? (2) Is it 
 possible to identify issues that can explain the gap between the educational demands 
of modelling and the instructional practice?

3.1  Theoretical Constructs

The research is based on the following constructs: Teaching and planning of teach-
ing are actions (and not behaviour) of teachers (Theory of action, Hofer 1986). 
Sources and reasons for actions are not observable, but have to be reconstructed by 
interpretation (Interpretative paradigm, Wilson 1973). We have an epistemological 
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conception of man (psychology of the reflexive subject, Groeben and Scheele 1977, 
2000), which means especially that researcher and researched are structurally 
equal, so it is possible to communicate about the reasons and intentions of the 
teachers – and to validate these reconstructions.

Building on results of research on beliefs (Leder et al. 2002; Thompson 1984, 
1992), the aspects of research (see Fig. 8.2) are the following: We look for “global 
instructional goals,” the “picture of mathematics,” and the “reasons for or against 
applications,” as well as the connections between them. To describe these aspects, 
we use the following descriptive constructs, which are explained below: “Subjective 
theories” as a background theory for beliefs, “goal hierarchies” and again the “pic-
ture of mathematics” as a descriptive tool. All together, we call it the subjective 
structure of a teacher.

Subjective theories resemble scientific theories in structure as well as in function 
(explanation, prediction, technology) but are, in comparison to scientific theories, less 
coherent and consistent, are usually implicit and not explicit, and have an important 
function of orientation for the teachers (Groeben and Scheele 1977, 2000). 
Furthermore, most importantly, they are subjective and not objective theories.

To structure the subjective theories we use goal hierarchies, which we gain by 
goal-tool-argumentation (“Ziel-Mittel-Argumentation” according to König 1975; 
q.v. Scheele and Groeben 1988). Added are specific assumptions about the struc-
ture and the function of subjective theories (Groeben et al. 1988) which we use but 
will not mention any further in this chapter.

A brief example is given. From an interview there is the statement: “Applications 
motivate the students.” This statement is now transferred into a descriptive sentence: 
“If one wants to motivate students one can teach applications.” From this descrip-
tion, two prescriptive sentences can be derived: “One should motivate students” and 
“One should teach applications” as shown in schema in Fig. 8.3.

So, we have “motivation” as a goal and the “teaching of applications” as a tool 
to achieve “motivation” in this hierarchy. By adding further information from the 

Fig. 8.2 Subjective structures
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interview, we can develop a chain of arguments and a more or less complex 
goal-tool-structure – either in search of higher goals (goal-perspective) or in search 
of suitable tools (tool-perspective).

To sum up with the example, the teacher might have also said: “Applications 
convey a representative picture of mathematics”. There are at least two ways to 
interpret this and you have to reconstruct from the data, which interpretation is 
adequate. (1) To teach a representative picture of mathematics and to motivate the 
students are goals at the same level and for both goals the teaching of applications 
is a suitable tool. (2) To teach a representative picture of mathematics is the main 
goal. The tool for this goal (i.e., applications) is now becoming a goal for the next 
level. The first interpretation of the sentence “Applications motivate the students” 
is altered to “If you teach applications you motivate students” which means applica-
tion leads to motivation as a consequence. The important difference between these 
interpretations is that in the first case we can see applications as a tool and in the 
second one as a goal in the hierarchy.

Note: Due to space restriction, we leave out an explication of the construct 
“picture of mathematics” in this chapter – roughly speaking, it is a mixture of beliefs 
about mathematics and content knowledge of applications (see Förster 2008).

3.2  Study Design

Understanding action as an inner process depending on situations determines an 
inquiry in the form of case studies (Stake 2000). The definition of the cases is 
according to theoretical sampling (Glaser and Strauss 1967). The main study 
involved the questioning of eight in-service teachers grade 7–13 of secondary 
schools (A-level) in Northern Germany with several years of teaching experience 
(at least 2, up to 20 years). Data were mainly collected by (in-depth) interviews up 
to 4 h with open and semi-structured parts. The interviews were prepared by evalu-
ating a standardized questionnaire (mainly statistical data such as age of the 
teacher, type of school, and also schoolbooks and teaching material used).

Interpretation was based on an adoption of qualitative content analysis 
(Mayring 1995) and methods of qualitative teaching research (e.g., Corbin and 
Strauss 2008; Jungwirth and Krummheuer 2008) and went through the following 

Prescriptive sentence One should  
motivate students.

Descriptive sentence If one wants to  
motivate students …  

… one can  
teach applications.

Prescriptive sentence One should  
teach applications .

Goal Level Goal/Tool-Level

Fig. 8.3 An example of goal-tool-argumentation
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steps: transcription of the interview, sequential interpretation of the transcription (to 
gain the subjective theories), summing up global analysis (to gain patterns in the 
goal hierarchy), intrapersonal description of the teachers (to gain the subjective 
structure of the teacher), and interpersonal analysis (to gain different types of 
 subjective structures).

4  Discussion and Some Selected Results

The following discussion focuses on one main result of the study. The process of 
interpretation of the interviews is not outlined. While primarily one case will be 
discussed, some results of other cases are used to complete the case description.

Figure 8.4 shows an “overview map” derived from the goal-tool-structure of 
Teacher A representing the global instructional goals, as part of the subjective 
structure. Omitted are subsidiary goals, the connections between the two excerpts, 
as well as most of the substructure of the connections within the excerpts.

Teacher A’s main instructional goals are significance for the future and ful-
fillment of curriculum plan. Significance for the future means university and 
vocational preparation and school attainment. Firstly, students have to learn logical 
thinking. This goes with the transfer hypothesis that logical thinking in mathe-
matics leads to logical thinking towards everyday-life problems. That of course is 
objectively not true – but that does not matter to Teacher A as long as his subjective 
structure is coherent! (An explanation of why in the subjective structure of 
Teacher A’s logical thinking can be achieved by accuracy in working would take 
too long to explain here, but it “makes sense” within the subjective structure (see 
Förster 2008).

Looking at the School attainment: For Teacher A “no one is left behind” in his 
teaching – to ensure students pass the examinations means repetition and exercising 
and training of techniques as a stockpiling of knowledge. This altogether needs a lot 
of teaching time – which of course is not an explicit goal, but a necessary tool in 
the goal-tool hierarchy – and the needed time is missing for other goals.

Fig. 8.4 Global goals of Teacher A (excerpts)
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Where are the applications? We look at the right side of Fig. 8.4: Fulfillment of 
plan goes hand in hand with the goal (!) to motivate the students for the content 
they have to learn at any rate. One way to motivate the students is to teach simple 
everyday-life applications – simple enough to motivate. However, Teacher A can 
also show the significance of mathematics to be motivated for example by episodes 
of mathematical history, which can be told to the students “in passing.” Last but not 
least, the enthusiasm of the teacher can motivate by his choosing the right  packaging 
for mathematical content. We will come back to these aspects, but first have a look 
at the type of applications Teacher A uses in his teaching: Everyday life  applications 
have to be simple to understand (nonmathematical background) and simple to teach 
(teaching time). As a consequence, there can be no complex modelling. Examples 
are height determinations of trees, simple financial mathematics (especially interest 
calculations), volume of a conically shaped wine glass, volume of a cigar, the 
Pythagorean knotted rope, pieces of cake (fractions) and some applications in phys-
ics. These examples correspond very well with Teacher A’s subjective definition of 
application derived from the interviews: “Everything (!), that students know from 
their everyday life (or can at least imagine) and that can be associated with math-
ematics, is (!) an interesting application.”

This brings us to the right packaging: Teacher A mentions a task from a school-
book: In a picture, an expander is hanging from the ceiling of the room. By Hooke’s 
law with a proportional function the elongation of the expander, respectively, the 
weight-force, can be computed by elongation = const. × weight of person. After a 
short explanation of the expander and after introducing “Silke and Dirk,” this is a 
quite normal, fairly boring word problem. So what’s the point to Teacher A that’s 
worth mentioning this task in the interview? Teacher A transfers the situation in the 
picture into his classroom. He brings an expander with him. He lets the student try 
out the expander and finally he screws the expander to the ceiling of the classroom 
and comes to the same questions – but with the real expander. Surely not a real-
world problem, but his students are interested by the packaging. As mentioned 
before, time for applications is limited by the main goals – so for this teacher appli-
cations are merely a tool for motivation.

To explain (or at least illustrate) the origin of the three different types of “teacher’s 
subjective substructures according to applications,” we are closing with a brief look 
at the position of applications in the hierarchy of goals of two other teachers and 
summarize these three types in the following Fig. 8.5.

Fig. 8.5 Position of  
applications in the hierarchy 
of goals
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Teacher B sees applications as a central goal of teaching corresponding with the 
goal (and tool) of teaching applied mathematics. The goals have higher aims as 
empowered citizen, problem solving (inside and outside mathematics), a positive 
attitude towards mathematics, and learning to ask questions. This teacher also has 
high professional pretension and he gets the needed teaching time by using the 
handheld computer as a tool in the hands of the students. Motivation is not a goal, 
but a consequence of the other goals.

In contrast, Teacher C is a structuralist sensu (Eichler 2007), happy with con-
text-free mathematics. Therefore, you have to search for applications, which are 
merely a tool for illustrating mathematical content and quite isolated from the rest 
of the goal hierarchy.

The first column of Fig. 8.5 leads to attaching word problems to a traditional 
form of mathematical teaching without modelling. The second propagates context-
free problems – and sporadic use of applications – corresponding with very high, 
nearly unrealisable expectations in terms of a realistic context for the applications. 
The third approach allows more complex applications, sometimes corresponding 
with high expectations of the mathematics involved in the applications. For type 
one and three, there will be no search for tools to overcome the barriers that hinder 
these teachers to have applications in their teaching.

5  Conclusion

Quite clearly, there is a fundamental need to understand everything that underlies the way 
in which mathematics teachers approach their subject before suggestions and recommenda-
tions concerning good classroom practice can be made. (Eichler 2007, p. 208).

There is an unexpected high consistency between the picture of mathematics, the 
global goals concerning teaching and the selection, and reasons for or against appli-
cations. It was not expected to be so clearly defined. This is also important because 
one aspect of the research on teachers’ beliefs is the conclusion that they have a 
high impact on students’ beliefs (Chapman 2001). And, the students of today are 
the teachers of tomorrow. Motivation is the dominant argument for applications. 
The assumption, mathematics is per se formative toward active, creative, and flex-
ible individuals, makes applications as an independent and clear goal abundant. 
And, therefore potential applicability of mathematics is sufficient for these teachers 
– in correspondence with their picture of mathematics. Realistic modelling and 
further educational demands do not play any (important) role in the classroom and 
there is often a mixture of applications and applied mathematics.

Interesting is the role of the second teaching subject of the German teachers. We 
expected higher competence in applications especially with physics and other natu-
ral science teachers, but we also found limiting factors as the immense time expo-
sure for the second subject (especially physics) when taught as an experimental 
subject and different approaches that teachers have to applications in their different 
subjects – “applications in physics: of course” but “applications in mathematics: no 
need for them.”
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Tertiary Education has effects on teaching of applications: For instance, appli-
cation examples often come from the teachers’ own university education. Also 
the German traineeship for teachers has effects, because frequently the trainees 
are encouraged by the instructors to teach applications. However, if the closer 
contact with applications does not start until this traineeship, this “retrofitting” of 
competencies in applications is considered by the teachers as amateurish (dilet-
tantish) and after their traineeship they will not teach applications any further. So 
a positive attitude to applications and knowledge about  applications and model-
ling should be set up in school or in university study at the latest. Starting late 
will be too late!
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Abstract This chapter presents two combined qualitative studies on secondary 
teachers’ beliefs on modelling in geometry and stochastics. The teachers’ views on 
modelling, which are described in detail, differ considerably in both parts of math-
ematics from a pragmatic approach to modelling. In case of elementary geometry, 
a conflict with a traditional view on geometry is detected and elucidated. In case of 
stochastics, the need for data and real situations are revealed as controversial. The 
chapter ends with the invitation to analyse the parts of factual school mathematics 
including teachers’ beliefs more specifically, that is, to compare applied-oriented 
aims with other didactical requests, and to design tasks which are supposed to be a 
response to the teachers’ hesitations on modelling analysed before.

1  Teachers’ Beliefs and Individual Curricula

“That what teachers believe is a significant determiner of what gets taught, how it 
gets taught, and what gets learned in the classroom” (Wilson and Cooney 2002). 
Based on this rationale, teachers’ beliefs have become a vivid research focus of 
mathematics education (Philipp 2007). In this chapter, we will present the core 
results of two combined studies concerning secondary teachers’ beliefs on applica-
tions in geometry and stochastics, respectively. The studies rest upon small samples 
(less than 18) and follow a qualitative methodology based on in-depth interpreta-
tions of semi-structured interviews. All the teachers consulted are employed at 
German higher-level secondary schools (Gymnasien).

The studies share the same theoretical framework and research question, namely, 
the reconstruction of teachers’ individual curricula on teaching geometry and stochas-
tics. Individual curricula are supposed to possess similar constituents and the same 
purpose as written curricula to guide the instructional practice to specific goals of 
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education. Intended curricula are the “blue prints” of individual curricula, that is, the 
teachers’ instructional intentions whether they can be implemented in classroom 
practice exactly or not (Eichler 2007). Hence, our questions were directed to teaching 
goals, teaching methods, and the students’ learning. The studies suggest that applied-
oriented goals are seen as subordinate ones among others and that there are significant 
differences in elementary geometry, analytical geometry, and stochastics. These dif-
ferences, but also some unsuspected similarities between analytical geometry and 
stochastics, lead to the decision to present these studies combined and to deliberate 
on the special position of elementary geometry.

2  Theoretical Background, Data, and Evaluation

The design of the interviews and the interpretation of the data are based on the research 
programme of subjective theories (Groeben et al. 1988), which is intended to recon-
struct the background theories that professionals use to manage their job-related 
behaviour. According to this background theory, the interviews are designed as semi-
structured ones. They start with open questions on the professionals’ intentions and 
knowledge and lead to confronting questions, derived from literature, subsequently. 
All the interviews were held and transcribed by the authors. The participants were not 
chosen by specific criteria, but volunteered for the interviews in response to an imper-
sonal invitation. In our cases, we began with open questions on the teachers’ goal of 
education and confronted them with divergent opinions (cf. 3). To summarise, the 
interviews involve questions about (1) goals of the mathematics curriculum, (2) goals 
of the geometry and stochastics curriculum, (3) content of the geometry or stochastics 
curriculum, and (4) students’ learning and teaching methods. The evaluation process 
is guided by a so-called dialogue-hermeneutic methodology (Groeben and Scheele 
2001), which contains two steps: Firstly, the interpreter explicates the central subjec-
tive notions by “defining” paraphrases and links between them similar to a concept 
map and reconstructs the argumentative structure of each interview by a hierarchical 
diagram, containing top-level goals of education on the highest level and derivative 
goals, contents, and methods on lower levels (Eichler 2007, cf. Fig. 3 for an example). 
These diagrams are intended to express the implicit means-ends relations the teachers 
take for granted when structuring their classroom practice. Secondly, the paraphrases, 
concept maps, and diagrams are discussed with the teachers; and the teachers have the 
chance to approve, to dismiss or to change the researcher’s suggestion. This is the 
dialogical part of the methodology, which is intended to enforce the reliability.

3  Applications and Model Building

We now describe the topics used for confronting questions on the applied- 
oriented aspects during the interviews. We assume that the main questions of 
teaching applied-oriented mathematics are as follows: What is the relationship 
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between general mathematical concepts or theories and specific empirical 
knowledge on singular situations (Kaiser 1995)? Is mathematics seen from a 
static or dynamic point of view (Hersh 1986)? In how far do the teachers’ ideas 
match the concept of modelling, which is often seen as “one of the main com-
ponents of the theory for teaching and learning mathematical modelling” (Kaiser 
et al. 2006, p. 82)?

The concept of modelling is typically explained by one of the common model-
ling cycles (Kaiser 1995). To leave the teachers room for personal perspectives, we 
used a simple version of these cycles (Fig. 9.1). In addition to conceptual topics, 
we were also interested in normative aspects. These opinions were analysed 
against the background of Kaiser-Meßmer’s classification (Kaiser-Meßmer 1986): 
The extremities are seen in the pragmatic and the scientific-humanistic approach. 
Whereas the latter emphasises mathematical concepts, theories, and taxonomies, 
using real-world situations as subordinate tools to develop mathematical concepts 
based on manifold realistic associations, the pragmatic view stresses empirical 
knowledge and a reflection on the relationship between mathematics and reality 
on a meta-level: (1) Utilitarian aims: The real-world situation and the gain of 
empirical knowledge are taken seriously. (2) Methodological aims: It is a goal to 
achieve general competencies and meta-knowledge about applying mathematics. 
(3) Scientific aims: Applied mathematics is to be perceived as model building, 
which includes reflections on modelling and an introduction of its basic concepts 
in classroom practice.

We were interested in localising the teachers’ standpoints in this area of tension 
and in finding reasons why a teacher prefers one or the other position by posing 
questions derived from the topics above during the interview. The questions are not 
quoted here literally, since they vary from interview to interview in some minor 

Fig. 9.1 Modelling cycle used in our studies
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details according to the open structure of the method, which provides questions 
merely as adapted responses to the teachers’ former statements. In terms of 
intended curricula, this task consists of in reconstructing the location of applying 
mathematics within the teachers’ intended curricula and in revealing connections 
and conflicts with other goals.

4  Geometry

The study on geometry consists of nine interviews. We refer to the corresponding 
teachers by the letters A to I. The findings on elementary geometry, taught from 
grade 7 to grade 10, differs from the ones on analytical geometry, taught from grade 
11 to grade 13. Hence, we present them separately.

4.1  Elementary Geometry

Seven of nine teachers express a seemingly paradoxical opinion: They regard 
geometry as an applied part of mathematics par excellence, but not as very suitable 
for model building, though being open-minded about modelling in other parts of 
mathematics.

Mr. A: I think, the better applications can be found in algebra or stochastics, per 
cent calculations, linear optimisation. It is important to get a deeper 
insight into reality by modelling. In geometry, there are such things  
as dividing a pizza by a compass. I saw a trainee teacher do so. That’s 
ridiculous.

Mr. B: Geometry as a tool to get access to the real world is not in the first place, 
and it is rightly not in the first place. An application is useful to introduce 
a new subject, to legitimise it, and to test the competencies of this field by 
realistic tasks in the end. But in between, a lot has to be done without any 
reference to the real world, detached from these accessory parts which are 
not important to the mathematical model.

Mr. F: Applications are motivating, but it is important to me that my pupils also 
switch to an abstract level, practise pure geometry. In order to do so, 
concrete figures, measuring and so on are rather obstacles than aids.

Mr. C: If someone asserted in [the] case of the Pythagorean Theorem “Proved 
by measuring, the theorem holds”, then something of value would disap-
pear, something which is genuinely mathematical. … If geometry just 
consisted of measuring, calculations, drawing, constructing, and land sur-
veying, then I would regard it as poor.

Mrs. G: Besides proof abilities, problem solving is in fact the most important thing 
I want to convey in my lessons on geometry.
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Summarising these quotations, our teachers do not see mathematics education 
from a comprehensive applied-oriented approach, but as split into the common 
disciplines of school mathematics. Insofar, applied-oriented goals are not top-level 
aims, but have to find their places within the local curricula of the particular 
disciplines. The range of goals is occupied by several categories, mainly abilities in 
proving, defining, problem solving, and constructing. Applying geometry is only a 
further goal among others; and deduction and problem solving are seen as the main 
objectives of geometry than getting “access to the real world”. Insofar, certain 
unease about teaching geometry applied-oriented arises from the various goals of 
education to handle in conjunction. Additionally some conflicts go deeper and are 
bounded to a classical Euclidean view on geometry (Girnat 2009a): Even though 
geometry is applied, the justification of every assertion has to be done purely 
deductively on known axioms and theorems, whereas referring to experience is 
regarded as a sign of a deficient understanding. Hence, some essential parts of a 
modelling cycle are in contrary to the settings of a proving or problem-solving task 
(cf. Holland 2007, pp. 170–195) (Table 9.1).

It may be comprehensible to avoid geometrical applications “in between” to 
prevent students getting confused by different standards and challenges of model-
ling, proving, and problem solving. This challenge is suspected to be unique to 
geometry, since it seems to be the only part of school mathematics which allows 
regarding its objects “naturally” from two different perspectives (Girnat 2009a): 
from a theoretical Euclidean point of view and from a more empirical perspective 
of modelling. Since teachers have to fulfil both of them, the academic debate is 
requested to state an answer on how to deal with these disparities.

As a further finding, it is interesting to see what most of our teachers perceive 
as “good” geometrical applications. Typically, the examples possess a two-step 
structure: In the first step, geometry is used to calculate some boundary condi-
tions, for example, some lengths, areas, or volumes. Afterwards, these values are 
committed to a second step, which normally includes a non-geometrical question, 
for example, some price, weight, or velocity calculations. Especially Mr. A men-
tioned that the interesting insights primarily arise in the second step. Even in 
case of optimisations (when a geometrical value is adjusted afterwards), the issues 
and structure of model building typically arise only in the second step, whereas 
in the first one, the geometrical background is taken for granted. Here, a static 

Table 9.1 Differences between modelling and proving or problem solving

Model building Proving/problem-solving task

Object of interest Singular situation General theorem or 
configuration

Access to objects By measurement/experience By construction descriptions
Building a real model By simplification Not allowed
Mathematical treatment Inventing a mathematical model Using known operators
Validation Empirically By deductive arguments
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view of mathematics is predominant, forming geometry as being “propaedeutic” 
to model building. Insofar, this view of modelling can be illustrated as follows 
(Fig. 9.2).

This observation is interesting for two reasons: It could give some advice to man-
age the disparities between modelling and a Euclidean view on geometry: In joining 
both steps, a static and dynamic view and a pragmatic and scientific-humanistic 
approach can be combined in the same task. The reason why we call this use of 
geometry propaedeutic and why this function cannot be integrated into the model-
ling cycle under “mathematise” is as follows: Geometrical concepts and theorems 
are already used to structure and to simplify the real situation, that is, to build the 
real model. Hence, they are prior to any kind of mathematisation in the sense of 
the modelling cycle. This observation seems to be unique to geometry, since geo-
metrical terms are part of the vocabulary we naturally use to describe the objects 
surrounding us and, therefore, geometry has a different, and quasi-unavoidable 
reference to reality, more than other parts of mathematics (Girnat 2009b). Thus, 
it is ques tionable if it makes sense to distinguish between a real model and a 
mathematical model or even to use the word “model” at all as far as geometry 
alone is concerned.

4.2  Analytical Geometry

Goals of education are manifold in elementary geometry, and, hence, our teachers’ 
opinions cannot to be described by a single model. On the contrary, in the case of 
analytical geometry (AG), it is possible to present a single curriculum which eight 
of nine teachers possess. The basic structure can be described by a hierarchical 
diagram of educational goals (Fig. 9.3).

Fig. 9.2 Geometry as propaedeutic to model building
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The uniformity may be enhanced by the fact that the school leaving certificate is 
more standardised than the examinations in the lower secondary school. Nevertheless, 
the limitation to issues of intersection and distances and the focus on problem solv-
ing is openly approved:

Mr. B:  Analytical geometry, that is just the metric Euclidean geometry: relative 
positions, calculating angles, distances, intersections.

Mr. C: Calculating distances without knowing the methods completely and, 
finally, inventing a formula to calculate distances, these are the things the 
focus has to be on.

In Fig. 9.3, the disadvantageous consequences of such a curriculum on applied 
mathematics are marked by dotted lines, forming the “trilemma” of application in 
analytical geometry:

 1. If AG is taught as described in Fig. 9.3, it will be difficult to find realistic 
applications.

 2. If AG is enriched by the concept of time and some basic physical theory instead, 
most of our teachers will regard AG as unfair to pupils who have not chosen 
physics and to teachers who do not teach science as a second subject.

 3. If AG is enriched by parts of linear algebra which are not interpreted geometri-
cally, but as tools of social and biological science instead, most of our teachers 
will regard AG as mathematically too simple or will fear an inappropriate restric-
tion of the “real core” of AG or will accuse these applications as being not real-
istic, since “not everything in the world is linear” (Mr. A).

In contrast to elementary geometry, the main obstacles for applications do not 
bear on two opposing approaches to geometrical objects, but on the focus on prob-
lem solving and on preparing pupils for academic studies.

If analytical geometry is taught
as described in the interview,

it will be focussed on problems
of intersection and problems
of calculating distances

to provide
algorithms
for low-per-
formers

to prepare
students for
studies in
science or
mathematics

to allow prob-
lem-solving
tasks concern-
ing typical an-
alitical methods 

to get 
acquain-
tance to a
whole 
theory

limiting AG to
geometrically
simple objects
(points, straight
lines, planes,
spheres)

avoiding the
concept of
time

focussed on
matrices as
geometrically
interpreted
linear maps

providing
a small
base to
manage
realistic
modelling

Fig. 9.3 Main aspects of the predominant intended curriculum in analytical geometry
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5  Stochastics

The settings of the second study are equal to the first one, but rest upon 17 interviews. 
The teachers are denoted by a to q. In contrast to geometry, the teachers’ intended 
curricula are more diversified, and all the possible combinations of Kaiser’s clas-
sification are instantiated, leading to the following prototypes (Eichler 2007): 
Shown in Table 9.2.

Both types of the humanistic-scientific approach provide statements which are 
familiar from the geometrical part of this chapter: Traditionalists approve insights 
into formalism and mathematical theories; structuralists tend to stress problem 
solving. The only difference is the fact that these opinions are not supported by a 
traditional educational theory, as it exists in the case of a Euclidean view on geom-
etry and provides some kind of legitimisation to these points of view. Much more 
interesting are the more pragmatic types, which are in principle open minded to an 
applied-oriented approach, including “real” model building. But two of Mrs. f’s 
tasks and Mr. d’s comments are indicators for a different interpretation:

Mrs. f:  Task 1: “In a German city, 30% of the population are infected with  
HIV, …”; task 2: “The probability of a hamburger having two slices of 
tomatoes is 10%. In case you buy three hamburgers, …”

Mr. d:  And that’s what I am trying to illustrate here as well, that you get models 
of approach this way, but of course become better afterwards … that there 
are quite often problems you can solve with maths, … that students are 
enabled to categorise mathematical models better.

Similar to this illustration, even the pragmatic teachers of our study differ from 
some essential properties of the applied-oriented approach mentioned above: At 
first, some of the teachers, like Mrs. f, take empirical knowledge on a specific situ-
ation not very seriously and replace real data by partly ludicrous dummy data, 
starting the modelling cycle at a simulated, not realistic “real model” and taking the 
“recognition of the need for data” as an essential topic of the current debate on 
stochastics ad absurdum (Wild and Pfannkuch 1999).

Table 9.2 Prototypes of teachers’ intended curricula

Static Dynamic

Humanistic-scientific Traditionalists: establishing a 
theoretical base, including 
algorithmic skills and 
insights into the abstract 
structure of mathematics,  
not involving applications.

Structuralists: encouraging students’ 
understanding of the abstract 
system of mathematics in a 
process of abstraction, starting 
from applications.

Pragmatic Application preparers: making 
students grasp the interplay 
between theory and 
applications (first theory, 
then applications).

Every-day-life-preparers: developing 
statistical methods in a process, 
making students cope with real 
stochastic problems and  
criticise them.
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Furthermore, as seen in Mr d’s quotation, the methodological aims are partly 
turned into their opposite: There is no process which consists of analysing a situa-
tion and inventing a fitting model. Instead, there are some pre-established models, 
and the students’ task is to recognise properties of the situation in order to choose 
an “adequate” model and, then, to work the chosen one over for deepening the 
mathematical understanding of this model. Why this model may be empirically 
adequate is not discussed. For these reasons, “absurd” data are sufficient as “model 
indicators”; but exactly the aspect of building a model and evaluating its empirical 
relevance is suspended, which leads to omitting its most important meta-scientific 
feature: Building a model is typically not determined into one direction; but just the 
insight that there are many possibilities to treat a situation mathematically and that 
there is no “unique solution” is avoided by several teachers. As a result, the intended 
or unconscious scientific aim of such an approach is not perceiving applied math-
ematics as model building, but as choosing fitting operators (in disguise of known 
models) in the sense of problem solving. Only a few teachers mentioned some 
data-related aspects, like Mr. d, connected to real situations in a process where 
mathematics is seen as a tool to describe the world. But even in these cases in which 
developing mathematical methods is not the primary goal in itself, but as a tool to 
enable students to cope with real problems, the process of building a model is 
not detectable. Overall, this is an interesting consequence, also perceivable in 
geometry: Scientific aims of applying mathematics are typically not pursued on an 
abstract level (like the process of model building as a general approach to applied 
mathematics), but on more concrete ones which are bounded to specific disciplines: 
In stochastics, that means the selection of the fitting model (like the correct urn 
problem or the adequate average); in geometry, there are problems of measurement, 
choosing an adequate formula, or dividing an object into known figures.

6  Conclusions

Our studies underline the importance on empirical investigations of teachers’ 
beliefs: Although our teachers try to match the same written curriculum, the out-
come differs considerably. The focus on intended curricula has served as a useful 
tool to reveal the reasons why the written curriculum is interpreted differently. 
These findings are not only a preliminary work to design representative studies on 
larger samples, but highlight some crucial topics worth discussion: In case of 
elementary geometry, model building is in conflict with aspects of traditional 
approaches to geometry and with educational goals of proving and problem-solving 
tasks. These oppositional requests have to be clarified in the academic debate and 
to be balanced for a realisable combination in practice (cf. 2.1). In case of stochas-
tics and analytical geometry, the main question is: Do we have convincing ratio-
nales for emphasising modelling in a strict sense instead of only using mathematical 
applications to motivate and illustrate mathematical content? Our studies namely 
suggest that teachers mostly plan their lessons in view of the mathematical content 
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and think in separated mathematical subdisciplines, leading to a preference for 
content specific, purely mathematical problem solving or even schematic tasks 
(cf. 2.2 and 3). This invokes two challenges: Firstly, it seems advisable to consider 
the various parts of school mathematics more differentiated and to integrate and 
balance didactical requests which are not focussed on applications. Secondly, it 
poses the question if there are really convincing examples which are both realistic 
applications and fruitful occasions to establish a broad theoretical background of 
mathematics for every discipline (i.e., algebra, geometry, stochastics, and analysis), 
for every grade, and for proving and problem-solving tasks or if the teachers’ 
hesitation indicates a lack of mathematically rich applied-oriented tasks.
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Abstract Modelling tasks without numbers break with the usual mathematical 
contract on modelling tasks. At the same time, the approach provokes modelling 
actions by making it less evident to employ standard procedures in mathematics. 
This partial rupture of the didactical contract is analysed with the help of the 
Anthropological Theory of Didactics. Having established the a priori analysis for 
certain tasks without numbers, the theory of epistemic actions is used to describe 
at a micro-level modelling actions which appear in this setting.

1  Introduction

Mathematising activities take place while modelling contextual situations by math-
ematical means. These mathematising activities can emerge without the engaged 
persons, in our case, the students, being aware of the processes taking place during 
their work, in order to get to a solution of the initial problem. It is therefore even 
more desirable to obtain a better understanding and analysis of students’ mathemat-
ical behaviour in solving modelling tasks. Modelling engages many processes, and 
mathematising is the crucial one, if we want students to become independent mod-
ellers. In general, the didactical contract that rules modelling in school is directing 
students to a specific mathematical topic, usually previously introduced or dealt 
with in the classroom. Therefore, the process of mathematising is often eased by 
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the fact that students are implicitly pointed to go in a particular direction. But this 
facility can have as effect a superficial treating of the problem, or even hinder devel-
oping modelling competencies.

The present study positions itself in the modelling interest area and more exactly 
in the meta-perspective segment, that is, where the cognitive processes of students 
while modelling, are addressed. Other authors opted for similar cognitive approaches, 
for example Galbraith and Stillman (2006), where attention is drawn on the kinds of 
mental activity that the individuals have engaged in during transitions between real 
and mathematical world in the modelling process. Matos and Carreira’s (1995) 
research stresses learners’ cognitive processes. A particular  modelling cycle perspec-
tive is offered by Crouch and Haines (2004). It regards the basic stages in modelling, 
namely transition from real world to mathematical world, formulating and working 
with a mathematical model, then moving back from the mathematical model to the 
real world. Borromeo Ferri’s (2007) view lies probably closest to our micro-level 
perspective of looking at the process; nevertheless a categorisation in terms of think-
ing styles or modelling routes is, so far, beyond the scope of our study. In this paper, 
whilst drawing on these previous results, we will go further, through a combination 
of different theoretical frameworks, in order to find answers to questions like the 
following: How does the formulation of a modelling task without numbers influence 
the degree of mathematics that students will use to handle the problem? If comparing 
results coming from slightly different task formulations, which phase(s) of mathe-
matisation can be identified as making the distinction in students’ approaches? Are 
there other reasons which make students treat this particular kind of modelling tasks 
in a specific way? How do they decide using mathematics?

2  Framework

Two main different frameworks have been used for our case study. In this paper, 
modelling is mainly conceived as a cyclic process where continuous transitions 
between mathematics and the rest of the world occur (for a detailed description, see 
Niss et al. 2007). For a deeper empirical analysis, in this work we will consider, on 
the one hand, a structural approach, which was developed to identify epistemic 
actions within the modelling cycle (Halverscheid 2008). This will provide us with 
a tool for visualising students’ utterances. On the other hand, the Anthropological 
Theory of Didactics (ATD) (Chevallard 1999) will help us grasp more about the 
performed experiments, from an institutional perspective, and provides some tools 
for explaining how the mathematising process emerges.

2.1  ATD and Modelling

The most specific particularity of the ATD is that mathematics is considered as a 
human activity. As any other human activity (Chevallard 1999), it is modelled in 
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terms of praxeologies. A mathematical praxeology is basically made up of two 
parts, the praxis (practical, the ‘know how’ block) and the logos (theoretical, the 
‘know why’ block), each of the parts consisting of two components. The practical 
block includes the type of tasks and techniques for solving them, while the theoreti-
cal block contains the technology, which justifies the technique, and the theory, 
which testifies the technology itself (Chevallard 2007).

In the ATD framework (Bosch et al. 2006a), doing mathematics and learning 
mathematics are considered in an integrated way. The process of study tries to 
 capture the nature of mathematical praxeologies both (A) as a process and (B) as 
the result of this process. In every process of study, some specific moments can be 
potentially identified, called the didactic moments, which shape the dynamic nature 
of any mathematical activity (see Fig. 10.1).

There are therefore two aspects with respect to the didactic praxeologies (Bosch 
et al. 2006b): first one (A) is the process of study, or the mathematical construction, 
and the second one (B) is the result of this construction, which in turn is the math-
ematical praxeology itself. Didactical praxeologies aim at creating the conditions 
for the mathematical praxeologies to emerge and evolve. Figure 10.1 visualises the 
relation between mathematical and didactic praxeologies.

Artaud (2007) uses the expression ‘mixed praxeologies’ when there is a praxeol-
ogy that involves extra-mathematical elements. Given that the modelling process, 
by its nature, is made up of intra- and extra-mathematical elements, we could say 
that each time modelling occurs, and therefore mathematising processes with it, 
mixed praxeologies are activated.

Praxeology always arises as an answer A to a question Q; when … question Q is a non-
mathematical one, the answer A, if including mathematics, is a mixed mathematical praxe-
ology, that is a praxeology in which mathematics is mingled with the ‘real world area’ that 
can be other academic science (Artaud 2007, p. 373).

Fig. 10.1 Mathematical and didactic praxeology in a nutshell
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Modelling is then the process making possible to come from the initial question Q 
to a mathematical question Q

M
, to which an answer A

M
 (which could be well-known) 

will be produced. Then a mathematical praxeology will be brought out or might be 
generated by using didactic praxeology.

2.2  Structural Analysis

The structural analysis involves actions that are observable empirically. These 
observed actions are structured according to the role the experiments play in these. 
The structural analysis divides the actions in ‘the rest of the world’ and the ‘math-
ematical world’ according to the basic modelling framework (see, e.g. Blum and 
Niss 1991). Data will be encoded in a diagram which structures the processes 
according to the mathematical modelling framework. The diagrams are organised 
along the timescale (see Figs. 10.5 and 10.6).

If an epistemic action concerns the nature of a real setting and not primarily its 
model in the mathematical world, it is considered as belonging to the ‘rest of the 
world’. For instance, this is the case if the results of an experiment are described or 
if data in the experiment is discussed. Then, the action is depicted as a straight verti-
cal line on the left-hand side. Analogously, actions which work out mathematical 
problems within a mathematical model are placed as straight dashed vertical lines 
at the right-hand side of the diagram.

In addition, there are actions which link the mathematical model and the real world. 
These actions are placed in the centre of the diagram. If a mathematical model is devel-
oped from a real model, this is described by a line from the upper left to the lower right. 
If mathematical results are interpreted in a real model or in a real situation, respectively, 
this is expressed by a line from the upper right to the lower left (Fig. 10.2).

It is obvious that mixed forms of this will appear. We do not introduce an inter-
mediate category for those actions which cannot be definitely classified to either of 
the two worlds, that is the dichotomy of the modelling framework is maintained. 
Either an action is classified to ‘the rest of the world’ or to ‘the mathematical 
world’. In graphical illustrations of the modelling cycle, the ‘rest of the world’ is 
by tradition sketched on the left-hand side and ‘the mathematical world’ on the 
right-hand side. The lines move back and forth from the left-hand side to the right-
hand side. Actions on the same topic are represented by a continuous path.

Actions to...
understand the real 
problem and to set up 
a real model

develop a 
mathematical model 
from a real model

work out mathematical 
problems within a 
mathematical model

interpret mathematical 
results in a real model 
or in a real situation 
respectively

Fig. 10.2 Symbols for different types of actions
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3  Empirical Design

The present study is part of a wider research, where various tasks with a hidden 
mathematical character have been previously experimented. Because the space 
is limited, we will be focusing on the ‘Mars task’. The research includes video-
taped  sessions, post-interviews and sometimes questionnaires. Three variants  
of the following assignment were the basic material for both bachelor students 
(pre-service mathematics teachers) and 8th graders who worked on it.

Fig. 10.3 Craters land on Mars surface

An astronaut is sent to Mars. His landing place is where the square can be 
seen. His mission is to drive on the surface of Mars and to investigate the 
craters. From the Earth, you can pilot his mobile-station. In which order 
would you let the astronaut study the craters? Find out which aspects are to 
be considered. Keep in mind that the astronaut should come back to the 
landing-place (square as it can be seen in Fig. 10.3), from where he is sup-
posed to fly back to the Earth.

A second variant of this task was different through the fact that it lacked the 
requirement ‘Find out which aspects are to be considered’, whereas the third vari-
ant was exactly as the second one, but it was printed out on millimetre paper, 
before being handed to students.

Teams of two to three volunteer students were videotaped and were given about 
50 min at their disposal for working on different variants of the tasks, every team 
worked on a single variant, not being aware of other existing versions. Through 
the team work, the so-called peer mediation (Chevallard 2007) was intended to be 
stimulated, this going hand in hand with the ‘diffusion of knowledge’ which didac-
tics is supposed to be, as ATD sustains. The 8th grade students had no special 
experience with modelling tasks, though they were occasionally asked to solve 
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such type of problems before, whereas the bachelor students turned out to have 
had met and quite intensively worked on modelling tasks previously. Teachers had 
to be there for eventual clarifications of task formulation matters, but not giving 
hints as to how to solve it. Each student was in his (her) usual environment, the 8th 
graders in the school classroom and the mathematics students in the university 
laboratory.

4  A Priori Analysis

The given task offers a problem embedded in a situation that is open enough to 
let students develop different mathematical techniques. The generative question 
is: Given a set of craters in Mars, which is the best (optimal) way to visit those, 
considering that a starting and ending point are given? Various ways of structuring 
the Mars situation are conceivable for giving rise to diverse mathematical praxeolo-
gies, depending on how the word ‘best’ is interpreted. In an a priori analysis, two 
different activities can be considered. We will refer to them as a topological activity 
and a metric activity.

Figuring that ‘best’ means the possibility of going through every crater without 
visiting one twice or more times, a topological activity can be considered as an 
enumeration-like activity that would activate graph theory techniques. The picture 
of Mars’ craters can lead to different graphs, each crater being a vertex and an edge 
being a path between two craters (similar to the famous Königsberg problem). In 
this context, ‘optimal’ can be viewed as finding a path which does not repeat a 
crater (except the starting and ending point, which is the same), visiting all of them. 
‘Optimal’ could also be interpreted by the students as finding the path for which the 
number of visited craters is minimal. In this way of modelling the situation, dis-
tance is not taken into account, which makes the model interesting, but somehow 
weak. Exploring two distinct solutions for the task, one could be assessed better 
than the other, if fewer craters are repeated. But if both repeat the same number of 
craters (and obviously, do not omit any crater, and start and finish where the square 
is located), there is no mean to compare them. From the logos, graph theory and 
topological properties are involved.

Combined with the topological activity, a metric activity will examine not only 
the possibility of visiting all the craters, without repeating, but also the measure of 
the distance between craters. That makes the task even more complex: topological 
techniques have to be combined with metric ones. ‘Optimal’ means now not only 
to cover all the craters, but also with a minimal distance. In terms of the modelling 
process, the impossibility of the first praxeology to compare various solutions leads 
to the necessity of new tools (praxeologies of increasing complexity). Now there 
are new ways to determine whether one solution is better than another, including 
those cases that could not be contrasted in the topological activity. From the logos, 
also measure theory elements are involved.
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5  Findings

Several bachelor student teams, as well as 8th graders were examined, but only a 
few of their results turned out worthwhile to be studied. On a macro-level and in 
a comparative view, it cannot be said that a considerable background knowledge 
progress was observed, at least not concerning the mathematical methods and algo-
rithms used. The young students proceeded basically in choosing various paths, 
which were afterwards compared with respect to the minimal distance contained in 
it. The bachelor students have approached the given task, and hence have generated 
the corresponding mathematical problem, in a rather more mature manner than the 
young students, but did not make use of clearly stated mathematical concepts. 
Particularly interesting in their solution was the noticeable awareness that they were 
working on a mathematical modelling task, and knew exactly what modelling 
implies: simplifying, making assumptions, excluding, validating against reality.

Assumptions turned out to be modelling specific elements which clearly differ-
entiated the students’ solving approach: younger students have made very few and 
just tacit assumptions, whereas the bachelor students turned out to have made 
 substantially more assumptions, most of them being explicitly stated. This helped 
them a lot while modelling, gave a mature style to their work behaviour and quali-
fied them, in turn, as experienced modellers.

When being investigated with ATD tools, the mathematical praxeologies of 
the analysed transcripts of two teams look like in Fig. 10.4 (one pre-service 
mathematics teacher – left column, the other one of the 8th grade students – right 
column). As can be seen in their table form representation, their results differ in the 
techniques and technologies they have made use of. No real difference in com-
plexity of the mathematical levels is showing between the teams, although the 
younger students followed a somehow simplistic and straightforward approach. 
The pre-service mathematics teachers seemed to be formed to go for elaborated 
mathematical solutions, but superior mathematics did not provide them the actual 
tools to solve the problem, in this case. Many Bachelor students mentioned the 
Dijkstra algorithm as being able to help for finding the optimal path, but none of 
the teams succeeded in practically applying the algorithm, so it remained at the 
stage of suggestion, or, in the best case, a good idea.

In the Figs. 10.5 and 10.6 it can be seen how the separation between the real 
world and the mathematical world (see details in Grigoraş and Halverscheid 2008) 
is depicted, with the aid of the epistemic actions within the modelling process. The 
topological and metric activities from our a priori analysis have occurred, as expected, 
in a combined manner. Students were arguing about how to follow the suggested 
path, first, the outer circle (the imaginary circle the craters points are circumscribed 
to), then the inner circle. Then they compared this idea with an eventual zigzag pattern, 
which seemed to have been unfavourable, concerning the optimality criteria.

Passages from students’ transcripts, as in Fig. 10.5, where the entire path is ‘real 
world → passing to the mathematical world → working in the mathematical world → 
then back to the real world’, are occasional occurrences. It was observed that bachelor 
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2:23
2:29

2:41

2:53

3:54

S1: Yes, first to drive on the outer circle and then take the inner 
circle.

S2: Right, because then we wouldn’t have to travel forth and 
back.

S1: And if we drive zick-zack from the outer to the 
inner… that is now the question, whether this is longer 
than the two circles together.
S2: That should be calculated…  

S1: Yes, we have in any case to 
return to the landing point, because 
from there we return back again.

topological

metric

topological

Legend
Real world
Mathematical action
Mathematising activity
Transfer to real world 

Fig. 10.5 A priori ATD analysis reflected in the epistemic actions by bachelor students

Task (min1):

Finding the optimal (the term will be defined by the solvers and 
treated according to the particular meaning given) way
between a number of 'points' (places of slightly different shape,
geometrical-like)

Techniques 

Practical
block   

(praxis )

It integrates
types of
(problems and)
tasks and
techniques
to solve them.

Choosing basically two paths, 
then by means of comparison,
selecting the 'best' one (path 1):

1. the given 'points' imagining as
lying on an inner and an outer 
circle, the path being the route 
covering the outer circle, 
followed by the inner one (min 
02:23) 

2. imagining the 'points' as lying
on parallel lines, which can be 
covered one by one,  from left to
the right (min 02:53) 

Choosing basically two 
paths in form of a circle 
(min 02:22), then by means 
of comparison, selecting the 
'best' one (‘from inside to 
outside, in circle’ – min 
04:06), meaning ‘the fastest’ 
(min 03:38), ‘the most 
direct’ (min 03:44), ‘the 
shortest’ (min 07:58) 

TechnologiesTheoretical 
block
(logos)  

It integrates the 
technologies
q and theories 
Q used to
describe,
explain and
justify the
practical block.

Contain properties of a circle,
respectively calculating the
circumference of the circle
(path 1, min 10:42), as well as
measuring the length of the
parallel lines (path 2, min
15:17) 

Measuring distances between
neighbouring craters with the
ruler (min 05:32), then
summing up, and deciding for
the minimal total distance
(min 14:56) 

Theories: 

Measuring 

Fig. 10.4 Mathematical praxeologies constructed from bachelor, respectively, 8th grade students’ 
transcripts
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students delivered considerably more such complete and continuous paths than the 
younger students, where the transfer from one world to the other is sometimes done 
instantaneously. In younger students’ transcripts, fewer paths between the worlds 
have been found (Fig. 10.6), but single instances either in the real or in the mathe-
matical world. It is questionable whether the modelling experience played a definite 
role in such path discontinuities, or the task itself does particularly stimulate a 
thorough sequel from one modelling environment to the other, including the tracks 
in between.

6  Summary and Conclusions

It was expected that the three variations of the same task will have as effect different 
levels of mathematising in students’ solutions. Unlike this prediction, different teams 
of students working on different variants of the task delivered solutions where no 
indication about this distinction was found. Nevertheless, other interesting aspects 
came out, like for example, background and modelling experience led to a signifi-
cantly deeper approach and more sophisticated solution, where the used terminology 
(e.g. ‘modelling means simplifying and excluding’, ‘we would simply neglect the 
minimal deviation’, ‘we went so long through the modelling cycle, so that it cannot 
be done anymore’), as well as the solving strategy denoted the team of bachelor 
students as experts in modelling, even though their solution was not a perfect one. 
The present study showed that, it could be the case, as our bachelor students sample 
turned out to show, that some solvers know very well that they are modelling, and 
therefore proceed with the whole ‘modelling arsenal’ they possess.

2:22
2:31

2:40

3:38
3:44
3:46
3:53
4:06

4:26

5:32

S2: One...one has to drive once around the craters… I do not 
know. Once around!

Legend
Real world
Mathematical action
Mathematising activity
Transfer to real world 

S1: In the circle, that is the fastest.

S2: The most direct way, I would say.  

S1: Yes, because if he goes criss-cross it will take longer, if 
he once goes to...

S2: The most direct way is to drive from the outside to the 
inside and to investigate the individual craters.

S1: ...from inside to 
outside in a circle.

S1: Do you 
have a ruler?

Fig. 10.6 Epistemic actions by the 8th grade students
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ATD helped in organising the solving strategy in such terms, so that institutional 
items can be understood and checked for, as can be seen in Fig. 10.4. Using the 
epistemic actions within modelling processes, a conceptual and visualisation tool 
was developed, yielding a scheme as seen in the Figs. 10.5 and 10.6, where students’ 
utterances hold as mathematising indicators.

The structural analysis scheme is used to gather and structure empirical data 
within the modelling framework. As an educational target, conforming with the view 
of learning as ‘learning from the situation’, it is hoped that our specific kind of tasks 
encapsulates potential knowledge (Chevallard 2007) and carries the students through 
those situations where they can learn. Since modelling situations are very complex 
and since it is not yet evident what modelling knowledge is, the structural analysis 
was used to identify relevant actions in the framework. Deeper analyses of the 
modelling situations are necessary to understand the interplay of tasks, techniques, 
technology and theories in modelling situations.

In the ATD, mathematising is not identified as a separate process, but it is 
inserted inside the praxeology. Mathematising is not considered as a general pro-
cess (involving some cognitive differentiated schemas), but as a part of the process 
that the praxeology is describing in itself. It is different to try to mathematise a situ-
ation than when trying to work inside the model. From the ATD perspective, what 
is different here is the kind of problem the solver faces and the techniques used for 
solving. That is, what is different is the kind of praxeology, but not the theoretical 
construct.

For a better integration of the two theoretical frameworks, on one side, the exist-
ing modelling cycles together with transitions between worlds, and on the other 
side, the ATD with its mathematical and didactical praxeologies, we currently see 
as meaningful a correspondence between the steps in the modelling cycle and the 
six stages of the didactical praxeologies that could be built up. Such a mapping 
could serve as an analysis tool of what children at a certain age know, and more 
importantly do not know for solving certain tasks and problems coming from the 
real world and not having obvious mathematical character. On this basis, the pro-
cess of didactical transposition (institution → teacher → student) could be improved, 
by considering the weaknesses and enriching the teaching model, more precisely, 
the mathematical praxeology to be used in order to meet the students’ mathematical 
knowledge level.

As for a teaching practice suggestion, modelling tasks where no numbers are 
given and apparently nothing to be calculated is asked for, appear to break up the 
classical mathematical culture of the classroom. The emphasis falls on elaborating 
strategies, learning to think, and in fact the biggest challenge is how the real situation 
comes out to be translated in a mathematical problem, and not the mathematical 
solving itself. Therefore, it would probably be good to contemplate, so that this kind 
of task could become employed as a teaching method, too. Students would benefit 
for sure, at least from two viewpoints, one being the elaborate and systematic plan 
of action which they are demanded to develop, as well as the immediate gain offered 
by mathematics, even in situations which do not seem to ask for applying it.
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Abstract A mutual teaching project was set up between a gymnasium in Sweden 
and a gymnasium in Germany within the aims of the Comenius Network project 
“Developing Quality in Mathematics Education II”. The main objective was that 
the two teachers wanted to let their students work on the same modelling assignment 
to observe the similarities and the differences between how the teachers and the 
students handled this project. We will deal with the question: How does the commu-
nication between students, teacher, and computer influence the modelling process?

1  Introduction

In the Sun hour project, the students were expected to find or develop a suitable 
mathematical model for the phenomenon of possible daily sun hours at different 
geographical positions around the world.

The modelling assignment was given as an open problem formulation:

Form 4 groups and work on a suitable mathematical model to describe the phe-
nomenon sunrise/sunset and the change of the daylight time for your town and 
others. The model should be able to account for differences in location. Describe 
situations in which this model could be useful and how it could be used.

The Earth’s orbit around the sun is an ellipse with the sun at its focus. At certain 
times of the year, the Earth is nearer to the sun and moves faster than when it is 
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further away, so that the sun appears to move faster across the sky. Furthermore, the 
axis of the Earth is tilted 23.5° to the direction of motion around the orbit and this 
also affects the time it takes for the sun to appear and move around the Earth.

Kirsch (1994) develops in a first step a formula for calculating the sun hours at 
given latitude by using measured data. The result is: = +0 ( ) 12.23 4.37* cos( )L n n , 
where 12.23 is the average of the longest and shortest, and 4.37 the difference 
between the longest and the average sun hours per day. To come to a better justified 
formula, he suggests visualizing what is happening here with a globe and a lamp as the 
sun. Instead of using the real Earth’s orbit in the shape of an ellipse, he uses a circle. 
Further on, he simplifies the number of days per month to 30 days. The sun hours 
for 1 day at specific latitude can be calculated with the relation: length of the illumi-
nated part to circumference of the latitude times 24 h.

With that and the model in Fig. 11.1, he develops the formula:

L
max

= - e b
2

*arccos( tan( ) tan( ))
15

 for the maximum of sun hours at given latitude.

Connecting this to the first formula he developed a first sufficient, but not exact 
heuristic approach, which is given by:  = + - +1 max( ) 12 ( 12) cos( )L n L n .

This is a first conclusion about the sun hours per day in relation to date and latitude. 
The graphs in Fig. 11.2 show the graphs for Dortmund and Gothenburg calculated 
with L

1
 and also included: data from the Internet. The obvious diffe rences give 

many reasons for discussing the mathematical model with students. For a detailed 
analysis see Kirsch (1994).

Another approach is to take a picture of the Sun every week at a fixed time for 
a whole year. What kind of curve would the Sun trace out in the course of the year? 
If you think carefully you would probably, after some considerations, decide that 
the Sun would move up and down along a straight line parallel to the Earth’s axis. 
If you took the picture at noon, you would expect a symmetric curve up and down 

Polarkreis
N

u

u

d
2

r

R

R
 sin β

Äquator

c

β

ε

ω

a

b

r

Fig. 11.1 Model of the Earth (Kirsch 1994, p. 6)
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along the meridian. The meridian is the great semicircle between the north and 
south points on the horizon that passes through the zenith, the point straight above 
you. However, we instead get a strange sort of curve called the “analemma,” which 
represents the equation of time. The equation of time is the difference between true 
local time and local mean time, both taken at a given place at the same time.

This implies a rather complex model both in terms of epistemological competence 
and in cognitive competence for determination of the daylight time in relation to 
different values of longitude and/or latitude of the globe.

The final presentations of the students were videotaped by the authors of this 
chapter. The videotaped presentations play a vital role in our research-based con-
clusions further on in this chapter.

2  Classroom Circumstances

2.1  Classroom Experiences in Sweden

The Swedish students were enrolled in the upper secondary school science program 
and were the age of 17–18 years. The assignment was given as part of the 
Mathematics course D. The above instructions were handed out together with a 
short introduction to the project. During the videotaped lesson, the students had 
90 min to work on their models and afterwards the results were presented. The 
Swedish students were divided into groups of 3–4 students during a time frame 
from 09.00 to 14.00. Most groups managed to find appropriate data for the times of 
sunrise and sunset for Gothenburg city. The Swedish meteorological institute, 
SMHI, seemed to possess the most comprehensive database. A few groups had also 
collected data for other towns as well. None of the groups had started to think about 
possible functions for modelling the data. (See Andersson et al. 2009).
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Most groups had focused on trying to model the daylight hour variation 
through a trigonometric model. Once all the data has been entered into 
Graphmatica, this is done quite easily. The challenge here lies more in adapting 
the model to different latitudes. This was only done completely by one group. 
This group was also able to identify possible limitations of their model, such as 
that it is only valid between the polar circles for instance. One group got hooked 
up in the formulation about atmospheric refraction in the instructions. Most of the 
groups managed to develop a mathematical model that would model the variations 
in daylight hours, even if not all groups were able to find a more general model 
that could be used for different latitudes. See Andersson et al. (2009) for example 
graphs of students’ work.

2.2  Classroom Experiences in Germany

The mathematics class consisted of 13 students (age 17–18 years). The project day 
began at 7.50 and lasted until 13.10. The last 90 min were used to present results 
of the mathematical modelling work the students had done earlier.

The students worked together in 5 groups with 2 or 3 students in every group. 
The teacher did not intervene in the work of the students so their interests and first 
results varied a lot. One group was interested in a functional correlation. They 
investigated what “the change of daylight” means in a first approach. They generated 
different questions like: To what extent does the daylight time change at different 
dates and at a constant point of time to different positions in longitude or latitude? 
(See Andersson et al. 2009).

Another group decided to investigate the declination of the sun related to the 
rotation of the earth around the sun (which means over the year at the same daytime) 
and also the rotation around itself over a day. They designed an illustrative and 
possible geometrical model for the change of the declination of the sun when 
viewed by an observer at a fixed point on the Earth’s surface during one day.

A third group also searched the Internet and focused on the equation of time. 
From their search results, two students analyzed the equation to understand the 
effect of a linear combination of two trigonometric functions. With the use of 
Excel and scroll bars, they examined the effect of different parameters of the 
equation.

In both classrooms, it was obvious that the students started with collecting data. 
These data were then represented by graphs with the help of a computer algebra 
system. This approach has been suggested by Kirsch (1994): “A first access can be 
a list e.g. in a calendar of the times of sunrise and dawn” (Kirsch 1994, p. 1). 
Kirsch’s approach is then to represent this data with trigonometric functions. This 
is what the Swedish students did as well. But entering data into the computer and 
receive graphs in return, does not at all reduce the complexity of the problem as we 
will see in the dialogues from the two classrooms. See Fig. 11.3 for a sense of this 
complexity.
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3  Researchers’ View of the Project

3.1  Theoretical Frameworks

In a sophisticated mathematical modelling task such as the sun hour project, there 
is a third silent partner in the didactical contract (Brousseau 1997) beside the 
teacher and the students – the computer. Another way of understanding the role and 
function of the didactic contract is to view it as a part of what Goffman (1986) calls 
the framing of a social situation. In Goffman’s analytical perspective, the concept 
frame implies that there is a definition of a situation, which the participants share 
and most often take for granted. A frame can be seen as the participants’ shared 
response to the question “what is going on here” (Goffman 1986, p. 8). We humans 
constantly produce and construe events, actions, and utterances in line with the 
framing we perceive as relevant.

Given their understanding of what it is that is going on, individuals fit their actions to this 
understanding and ordinarily find that the ongoing world support[s] this fitting. These 
organizational premises – sustained both in the mind and in activity – I call the frame of 
the activity. (Goffman 1986, p. 247).

The focus on framing thus put an emphasis on the actors’ perspective on the 
situation they are engaged in. The fact that students are engaged in mathematics 
learning in a classroom context is hence not extraneous to their activity; this is what 
structures what they are attempting to accomplish. Their meaning-making practices, 
including how they read the task, what is relevant to attend to, and what is an 
expected outcome, are all embedded in, intertwined with, and structured by, their 
involvement in this particular setting.

We will also reflect on what role the computer has in the framing of this situation, 
according to our notion of the computer as a silent partner in the modelling process.

Fig. 11.3 The complexity of different representations of the sun hour phenomenon
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3.2  Analyzing the Work in the Swedish Classroom

The observed group included both girls and boys who all were fluent in Swedish. 
For ethical reasons, we do not indicate the gender of any of the students we refer 
to. The group members are labeled Student 1, Student 2, etc. In the translation of 
what the students said from Swedish into English, the essence of what the students 
said has been considered. In many cases, the translation has been verbatim and with 
an effort to use translated words that seemed suitable for the context at hand. 
Figures in brackets are numbered items from the transcript, illustrating that this 
chapter only accounts for some of the discussion that took place. Obviously, it is a 
major challenge to avoid using one’s a priori assumptions to select and analyze 
some parts of the transcripts, thereby also neglecting other parts. It is also important 
to realize that the observer’s presence most likely affects the framing or social 
structure of the situation. To make the analysis of the transcripts more objective, it 
has been done in mutual exchange of both authors.

Student 1 and Student 2 start powering up their notebooks while the other three 
organize their various notes. After a while, the group has two computers running 
and a lot of notes around them as the following discussion starts.

Student 1: Hey, have you done your part of the Graphmatica stuff you were sup-
posed to? And have you brought the Earth globe you talked about? We 
need to get organized now, right? [1]

Student 4: The Graphmatica presentation is almost finished; I just need some min-
utes to get the new data set into the curve fitting. [2]

We interpret this conversation as framing by Student 1 and Student 4, bordering 
the problem and the presentation task within a specific social contextual framing that 
is well known to all group members: They have to get organized and prepare their 
presentation.

Student 3 gives Student 4 a USB stick and the data set is transferred into the 
computer. Student 4 starts to work on the computer; Student 5 presents an Earth 
globe.

Student 3: He (the teacher) said something about the curve fitting procedure last 
time in class, didn’t he? He said something about quality control. Do 
you remember? [3]

Student 3 is framing the structure of their activity within a mathematical framing, 
a framing of the mathematical theory of curve fitting, mathematical modelling, and 
regression coefficient. He/she wants to give a starting point for the mathematical 
discussion.

Student 3 quickly enters some figures into the calculator and responds:

Student 3: I have another number, called r, here in the calculator. Is that the same? 
[7]

Student 1: I do not understand what this c2 means. We have a value of c2 = 1200 or 
something. Is that good? [8]
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Student 3: Well, I think that he (the teacher) told us last week that any mathemati-
cal model can fit better or worse and therefore you need to have a qual-
ity control and that is what we have in this c2. But what is r? Is it the 
same? [11]

Student 3 looks around, eyeing the classmates in the group in order to see 
whether his or her framing of the problem makes sense and if they understand his/
her question. The group grunts in a positive but not explicitly clear way, although 
our mutual interpretation is that they are accepting Student 3’s framing. Some of 
the students are also stumbling between frames in utterances [14]–[17].

Student 1: Right. So we have a quality of 1200, is that what you are a saying? [14]
Student 3: Well, yes, and maybe we need to check that number somehow. Wasn’t 

there a table or something? [15]
Student 5: Yes, you are right! Good work! We can check it through a table, but we 

do not need to do that now. Let’s see. We just tell the others that our 
model is good, since we have c2 equal to 1200. Great! Are we done 
now? [16]

Student 3: Here, check my calculator. This r value is pretty low? See here. [17]

In [14]–[17], Students 1, 3, and 5 are working inside the mathematical framing 
while Students 2 and 4 are listening and making notes on paper. The students are 
stumbling within the mathematical framing, more or less lost in a totally wrong 
assumption about the meaning of c2. From the inside, it sounds as if all the students 
are lost. Student 5 gives a solution for the problem which depends on just ignoring it. 
Student 3 still tries to understand what c2 and r mean, but obviously has no idea how 
to solve that problem. So, one of the students walks over to the teachers and asks him 
something. The teacher responds and the student comes back to the group and says:

Hey, go out to the Internet and Google on “the meaning of c2”. It seems as if we are deadly 
wrong.

There is a minute of active reading until the group concludes that they were 
wrong.

Student 5: But then it is catastrophic! We have 1200 and should have 12! Help! 
What should we do? We need to do something! [22]

Student 5 looks around, but all the students in the group are silent and say nothing. 
Even the dominant Student 1 is silent and seems lost.

Goffman (1974/1986) suggests that when we face situations where the framing 
is problematic, we end up in uncertainty about how to act in that situation; we do 
not understand the situation. As a result, the group becomes silent and especially 
Students 1 and 3 seem rather lost and quite uncertain about how to frame this 
feedback. There is a silence and a feeling of tragedy in the group. Suddenly, 
Student 1 takes command.

Student 1: This is what we must do. You and you (Student 1 points at the two stu-
dents with their own notebook) present the Graphmatica result with the 
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projector and make sure that the c2 value is hidden on the monitor by 
changing colors or something! Alright? [25]

Student 1: continues: You and you (Student 1 points at the two other students) must 
hold up the Earth globe and the large wall map now and then. I will talk 
about the difference in terms of longitude, difference in sun hours 
between Gothenburg, Paris and Addis Abbaba. And no one answer any 
questions about c2 or regression coefficients. Got it? [26]

By this shifting from an uncertain mathematical framing into a more secure social 
framing, Student 1 gets the group back into the play and they actually deliver a very 
good presentation in which they succeed to talk not about the mathematical model-
ling experience but a lot about the number of sun hours in Addis Abbaba. And also 
the teacher did not ask the students if they solved their problem with the c2 value.

3.3  Analyzing the Work in the German Classroom

The following transcript has been taken from the video of the preparation part 
for the presentation in the German classroom. The above-mentioned points for 
videotaping, the transcription and the translation into English apply here, too.

The students had already worked some time on the task, when one group has a 
question and called the teacher for help. The group consists of three students, but 
only two are talking with the teacher.

Student 1: We have the problem that we do not know what these variables mean 
(points to the following function: yn ·sin (x · day + z)). [1]

Teacher: Hmm. [2]
Student 1: This is an assumption, but we do not know, if that is right. We use yn for 

Height over equator and longitude is z. And we do not know what “x” 
means. We thought it might be the latitude, because we have here the 
longitude. So what we would like to know first is the meaning of the 
variables and the numbers here. [3]

Teacher: Yes. [4]

Student 1 is, in Goffman’s words, framing the problem the group has with the 
task in a mathematical framing. Student 2 is completing this framing.

Student 2: We have these single sine functions… And those have different vari-
ables (points on the monitor). [5]

Teacher: Yes [6]
Student 2: But a reason for that cannot be found on the Internet. [7]

Now their problem is completed. They had found an equation on the Internet, 
and realized that it is composed of two sin functions and try now to understand what 
the variables in these functions mean.

In the next part of the conversation, the teacher is framing the problem and clarifying 
that the equation has something to do with time.
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In the following discussion, the students figured out, with the help of the teacher, 
that the variables are correcting factors and that x is “the” variable for the function. 
After that Student 1 is once again framing the problem:

Student 1: But what are the factors correcting? [14]

After a short discussion Student 2 shifted the discussion to the content of the 
lesson before the holidays:

Student 2: You (the teacher) draw something on a sheet before the holidays. (He 
points on that drawing). [15].

Teacher: Yes, that is the idea behind that. [16]

Student 2 is then shifting to something he learned in physics:

Student 2: Probably yn is the highest amplitude. [17]
Teacher: Yes [18]

The teacher explains why his assumption is correct in the following. Afterwards 
Student 2 is again framing the problem.

Student 2: That is the graph of two sinus curves (points at the monitor). It shows 
the deviation in minutes. [19]

Teacher: Of what? [20]
Student 2: Of some kind of time [21]
Teacher: So that is  what you have to figure out next. You can ask Student 4 (at 

another table) for help. He knows what the deviation is and you know 
much about the sine curves. So you can try to bring that together. [22]

So at the end, the students and the teacher are framing a new problem which the 
students work on. In their presentation, they only showed what they found out about 
superimposing sine curves, because the other student already talked about the 
deviation. But the problem, what the single factors in the equations actually mean, 
has been left aside.

4  Conclusions

To reproduce the meaning of a classroom discussion is naturally a delicate mission. 
Even with videotaped classroom experiences, we are responsible for the interpreta-
tion we have done. Our interpretation was done in the spirit of Goffman’s theory of 
framing. We considered this framework as a suitable framework for analyzing class 
room discussions like the ones we have done. Nevertheless, it is important to 
remember that our interpretations are all there are.

In Sweden, the students obtained their main model by the computer which 
shows them an equation which they cannot handle. So the computer was not only 
a tool to work with, but also something which responded to the students’ actions 
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and thereby gave the students a problem to solve. Their way of solving was first 
thinking about it, and then asking the teacher who told them to ask Google. With 
the explanation from the Internet, they realized that the result of their calculation 
was wrong; but they did not try to find the mistake in their calculation, instead they 
decided not to talk about that in their presentation. No one, not even the teacher, 
missed this point in their presentation. So what they did in Goffman’s words was 
that they framed a problem and solved the problem in the, for them, easiest way: in 
the social framing. They left the mathematical framing aside. They shifted the 
frame from mathematics to social life.

In the German class, the information from the Internet gave the students the 
problem. They searched for answers, but only found more questions. Together with 
their teacher they framed the problem by talking about it, making it more concrete 
and also managed to clear frames in between. It is the same situation as in the 
Swedish classroom: the tool influences and shapes the thinking of the user, in this 
example, framing a problem. However, in their presentation, they did not talk about 
that problem. Another student explained the idea behind that, but the question about 
what the variables stand for, was not answered. So a part of the mathematical framing 
was also left aside here. Due to the fact that the teacher framed the problem together 
with the students, he did not ask for the meaning of the variables.

We can summarize according to this case study of two classrooms that it is 
essential for the observed students and teachers to be aware of how they actually 
frame problems when working with a complex modelling task. People in general, 
and maybe perhaps specifically students, are always rational and try to find a way 
out from a problematic situation, or from a problematic framing. The teachers need 
to make sure that they clear the framing the way the teacher intended to. Further on 
the computer as a silent partner in the group work is not always the one solving 
problems, but also raising problems. So the shaping of mental schemes by a computer 
does not always produce solutions, but also problems that sometimes cannot be 
solved by the user.
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Abstract This chapter presents types of mathematical knowledge application 
during a design-based interdisciplinary project as displayed through the work of 
student-group cases from grades 7 and 8 (aged 13–14) in two educational streams 
across three Singapore government secondary schools. It was found that the stu-
dents did not apply all the expected mathematical knowledge and skills afforded 
by the project. They also lacked awareness of the purpose of scale and displayed 
limited activation of real-world knowledge for mathematical decision making. 
Findings presented have implications on the facilitation of quality mathematical 
application in contextualised tasks.

1  Background of Research

Interdisciplinary project work (PW) was introduced as an educational initiative in 
Singapore primary, secondary, and pre-university institutions in 2000. In PW, 
explicit links between different subject knowledge are made so that students can 
learn to “appreciate the inter-connectedness of disciplines and see the relevance of 
classroom learning to their current or future interests” (Chan 2001, p. 1). This 
aspect of PW is also a key focus of the most recent Singapore mathematics syllabus 
(Curriculum Planning and Development Division [CPDD] 2006), which highlights 
“connections” (i.e. within-subject, between-subjects, and real-world links) (p. 5) as 
an important process during mathematical learning.

A major focus of PW in Singapore is knowledge application. Anchoring subjects 
for any PW are explicitly stated such that students “extend their knowledge from 
their immediate environment to perform, apply, and transfer new tasks to a variety 
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of circumstances” (Quek et al. 2006, p. 14). It is assumed that most of the required 
content knowledge and skills are taught in traditional subject-specific lessons and 
that students apply relevant learnt knowledge and skills to further their understanding 
during PW. Hence, PW is essentially an interdisciplinary applications task situated 
in a real-world context.

Although PW is generally assessed informally in most primary and secondary 
schools, it became an entry requirement into university in 2005 (Ministry of 
Education 2001). PW lessons in secondary schools are conducted within cur-
riculum time and run concurrently with traditional subject-based lessons in at 
least one of the semesters for selected year levels (i.e. students aged 13–15) not 
involved in national examinations. Students, in groups of 3–4, usually engage  
in a PW task for 3–4 months, holding weekly meetings in class with teacher 
facilitation.

2  Rationale for Research

Contextualised mathematical tasks allow students to experience problem solving 
within real-world constraints in meaningful ways (Stillman 2000). However, it is 
challenging to ensure quality mathematical outcomes during contextualised tasks. 
Firstly, students can choose not to engage with the mathematical aspects of the task 
as intended (Gravemeijer 1994). Secondly, students may not find their subject-
specific knowledge useful and therefore use them sparingly in the task, against 
expectations (Venville et al. 2004). Thirdly, students may ignore the contexts 
provided (Verschaffel et al. 2000) and choose not to activate their “real-world 
knowledge and realistic considerations” (van den Heuvel-Panhuizen 1999, p. 137) 
for decision making, verification, and sense making during mathematical knowledge 
application. Lastly, not all students (i.e. low and high mathematical achievers) 
engage with the context presented by the task in the same way and the forms of task 
engagements impact on the types of mathematical outcomes (Kramarski et al. 
2001). The challenges outlined can be further complicated by the presence of 
unpredictable group dynamics during PW. An individual’s mathematical engagement, 
reasoning, task interpretation (especially perceptions of inter-subject connections 
and real-world links with the task), and knowledge application approaches may 
well be influenced by group members.

Research studies on PW involving the nature of mathematics application are 
limited to date. Only two were found. Tan’s (2002) study did not provide detailed 
analysis on the nature and process of mathematical knowledge application. On the 
other hand, Chan (2008) found that mathematical modelling tasks appeared to 
promote mathematical processes and transfer of domain-specific mathematical 
knowledge in grade 6 students (aged 12). Hence, one of the aims of a larger study 
undertaken was to answer the following research question: What are the types of 
mathematical knowledge application and student difficulties faced during partici-
pation in a design-based interdisciplinary project?
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3  Research Design

3.1  Research Task

A design-based PW involving mathematics, science, and geography was implemented 
in 16 classes of students (N = 617) from grades 7 and 8 (aged 13–14) in two educa-
tional streams (high and average) across three Singapore government secondary 
schools. It followed the theme of environmental conservation and was completed 
through 15 weekly meeting sessions. The goal of this PW was for students to work 
in groups of four to design an environmentally friendly (EF) building at a location 
of their choice within Singapore (see Ng 2006). Student groups were given mini 
tasks (e.g. library research) during the meeting sessions to help them work towards 
the goal using supporting materials developed by the researcher in accordance with 
the guidelines set by the Singapore Ministry of Education. Among the mini tasks 
were three mathematical tasks with written components, which are the focuses of 
this chapter: (a) decision making about the various aspects of the building (i.e. size, 
dimensions, location, purpose, EF features, design), (b) cost of furnishing and fitting 
out a selected area in the building (i.e. budgeting including flooring, painting, choice 
of electrical appliances, and furniture), and (c) hand-drawn scale drawings of the 
actual building with the number and types of drawings decided by students. Each 
student group was also expected to construct a physical scale model of their building 
from recycled materials based on their drawings. With reference to the mathematics 
syllabus and the schools’ teaching plans, it was assumed that the students involved 
in the research had prior knowledge and skills on area and perimeter measurements, 
basic arithmetic calculations for budgeting, and making scale drawings on isometric 
or graph paper. In addition, the students also attended design and technology classes 
where they experienced making wood work pieces from 2D plans.

3.2  Setting and Sample

As in many other Singapore secondary schools, student participation during the 
research project was facilitated using the project-based approach (see Quek et al. 
2006). No special instructions for teaching intervention were given. The participating 
classes had at least one teacher with mathematics, science, geography, and design and 
technology specialisation facilitating each session at one time. The teachers contin-
ued with their usual facilitation methods as in other interdisciplinary tasks. Except for 
the stated tasks (a)–(c) above, the teachers could also reorganise the sequence of the 
proposed materials prepared by the researcher and re-craft the resources provided.

Out of 16 participating classes in the three schools, the researcher tracked the prog-
ress of 10 case-study groups (n = 38, two students excluded due to technical difficulties) 
throughout the project in their weekly discussion sessions during curriculum time. 
There were five groups in each stream with only one group from a particular class. 
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Students formed their own groups with some help from their teachers within their 
classes. Each group consisted of students with mixed ability in mathematics.

3.3  Data Collection Methods

A multi-site multi-case-based approach (Yin 2003) was adopted in data collection 
and analysis. Data consisted of documentary (i.e. copies of students’ work, field 
notes, memos, and email correspondence with participating teachers), audio-visual 
(i.e. video-generated data), and verbal evidence (i.e. interview-generated data).

Each group was videotaped during their in-class discussions on (a)–(c) above. 
Individual group members then participated in video-stimulated recall interviews 
within 1 week of their discussions. Work from the groups (i.e. notes, research 
materials, resources, drafts, drawings, and task sheets), their group project files, and 
final products of the project were collected for analysis along with their teachers’ 
comments and grades. The researcher recorded lesson observation notes including 
the instructions and the nature of teacher scaffolding. All project queries from 
students made to the researcher were redirected to the facilitating teachers.

3.4  Analysis Procedures

Both documentary and audio-visual evidence were taken to be the main source of 
data for analysis. Open and axial coding based on Strauss and Corbin’s (1998) 
reformulated grounded theory was used. Students’ written work in (a)–(c) were 
first classified according to the types of mathematical knowledge and skills applied 
(e.g. area measurement, use of addition algorithm, proportional reasoning). These 
were triangulated with video excerpts and transcripts of students’ actual use of 
mathematics during the tasks. In addition, various types of students’ affective 
reactions to the tasks (e.g. mathematical decision making assigned to perceive 
more competent group members, negative attitudes towards the mathematical 
demands of the task) were also elicited from video documentations as these not 
only influenced the types of mathematics used, but also they gave an indication of 
the nature of mathematical difficulties the student groups faced.

4  Findings

4.1  Coverage of Mathematical Knowledge and Skills

Five out of ten groups used mathematics during the decision making task. Table 12.1 
shows the types of mathematical concepts and skills afforded by the task, the 
purposes for applying them, and those actually applied by the five groups. Each of 
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Table 12.1 Coverage of expected types of mathematics during decision making task

Mathematics  
afforded by task Purposes

Group

1 4 7 5a 9a

Estimation Dimensions of actual building • • • •
Dimensions of model • •
Budget for making scale modelb •

Proportional 
reasoning

Determining scale for actual building • • • •

aGroups from high educational stream
bBudget for making scale model was not an expected outcome of the task

the five groups did not apply all the expected mathematical concepts and skills for the 
task. For example, Groups 5 and 9 decided on the dimensions and scales for their 
buildings during the scale drawing task instead. Of note was that the two high-
stream groups (Groups 5 and 9) only achieved minimal coverage of the expected 
mathematical concepts and skills in the task, despite having comparatively longer 
periods of discussion times than others. Moreover, fostered by the teacher (Ms Amy), 
the task was misinterpreted by Group 1 who wrongly assumed that they were to 
budget for the cost of making a model of their building:

Chi: What is “budget”?
Ms Amy: The budget is determined by the students, they should choose to build 

the model out of recycled materials to save money.

During the cost of furnishing task, six of the groups made the expected arithmetic 
calculations (e.g. addition, multiplication, and area) of total furnishing costs invol-
ving mainly floor tiling, furniture items, and appliances. The other three groups 
simply listed the cost of furnishing items without further computation. In addition, 
each group was also encouraged to make drawings (with dimensions included) of 
the selected area for furnishing in the task (e.g. Fig. 12.1). Nonetheless, whether the 
diagrams were completed or not did not impede progress in deciding furnishing 
items and calculating the budget for some groups. The need for a diagram of how 
the selected area should be furnished depended on two factors: whether group 
members shared real-life expe riences involving furnishing and the decision making 
patterns of the groups. Members from Group 1, for example, had shared under-
standings or “common mental pictures” of how their selected area (i.e. school hall) 
should be furnished based on their own life experiences, removing the need for a 
drawing. In contrast, only one member each from Groups 4, 5, and 7 worked on the 
calculations as part of their assigned duties. These members either made quick, 
non-evaluative decisions about the types of furnishings and estimated costs based 
on their own life experiences or were members of the group (self-assigned or oth-
erwise) who monopolised decision making for the task.

Four of the groups (three from high-stream classes) produced scale drawings 
(Fig. 12.2) whereas four other groups (all from average-stream classes) did mea-
sured drawings (i.e. some apparent use of measurement but lack of scale interpretation) 
for the scale drawing task. This suggests that the average-stream groups might have 
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interpreted scale drawings to mean measured drawings, apparently due to a lack of 
reference to prior knowledge. Additional investigations revealed that through the vari-
ous drawings produced (i.e. sketches, measured, and scale drawings), the student 
groups here used three out of four types of projections of their buildings as found by 
Athanasopoulos et al. (1993) in another similar design activity. Firstly, evidence of 
orthogonal projection (mainly top and front views of buildings as well as floor plans 
of building interiors) was found. Secondly, some forms of rotational projections of 
the buildings were attempted (Fig. 12.3). Lastly, representations of the façade of the 
buildings without any appearance of depth were produced.

4.2  Mathematical Difficulties

Three mathematical difficulties faced by students during the project are highlighted 
here. Firstly, some students displayed a lack of awareness of the purpose of scale. 
However, only four groups (three of which were from high-stream classes) com-
pleted proper scale drawings for the project. Others made sketches or measured 
drawings, showing no indications of their awareness of the purpose of using scales. 
Student-interview data revealed that some students were not aware that two scales 
had to be selected to represent the dimensions of the physical scale model and the 
real-life building in the drawings. For instance, a length of 100 m can be repre-
sented by 1 cm and 10 cm on the drawing and model, respectively. This means two 
scales (i.e. 1:10 000 from drawing to building and 1:1000 from model to building) 
could be used in the same drawing. Only two groups (Groups 2 and 7) managed 
this. Unfortunately, their scales for the model did not realistically represent the 

Fig. 12.1 Sketch by Group 8
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Fig. 12.2 Projection of building from the top illustrated by Group 7
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dimensions of their buildings. Group 2 used the scales 1:400 and 1:200 to represent 
the real-life building and the model, respectively, in their drawings. This worked 
out to be 1 cm on the model representing 2 cm on the building. This was neither 
realistic nor reasonable in a real-world context. Hence, it was questionable whether 
students from the sample were aware of the relationship between the two scales.

Secondly, some students used different scales for the same building. For 
example, Group 3 found themselves having to adjust their drawings at a later stage 
to accommodate real-life measurements and proportional reasoning of the different 
parts of the building in order to form a coherent image.

Thirdly, there was limited activation of real-world knowledge by the groups. 
Despite the presentation of the project within a real-world scenario, only Groups 2, 
3, and 9 from the high-stream applied real-world knowledge during the three tasks 
of the project. For this study, activation of real-world knowledge refers to the incor-
poration of EF features in building design and furnishings as well as displays of 
real-world considerations in mathematical decision making. An example of activa-
tion came from Group 2, who debated intensively about the possible dimensions of 
the actual building citing examples from real-life experiences bearing in mind 
space constraints in their chosen location for the building.

5  Discussion and Conclusion

As found in other studies (e.g. Kramarski et al. 2001), not all students engage with 
the context of the research project in the same way. Examining the extent of coverage 
of expected mathematics during engagement with the tasks and student difficulties 

Fig. 12.3 A 3D sketch by Group 1
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with the tasks not only revealed whether the tasks were interpreted as predicted but 
also raised possible misinterpretations of the project requirements. Such information 
is crucial for subsequent design and facilitation of open-ended interdisciplinary 
contextualised tasks with purposive weak scaffolding structures.

The findings presented above have significant implications for future work with 
applications tasks such as interdisciplinary project work in the Singapore context. For 
one, students did not apply all the expected mathematical knowledge and skills 
afforded by the tasks even upon the assumption that they had the relevant prereq-
uisites. Gravemeijer (1994) and Venville et al. (2004) also reported that student 
samples grappled with whether and how to engage mathematically with such tasks. 
Interestingly, some students from this study went beyond expectations, albeit due 
to task misinterpretations. To a large extent, coverage of mathematics by each group 
during the tasks depends on task sensitivity, task engagement, task scaffolding, and a 
shared repertoire of mathematical concepts and skills, among other factors. It was 
assumed that students working in groups would complement each other on these 
aspects and promote higher quality mathematical outcomes. However, this did not 
and would not happen automatically without frequent and appropriate facilitation 
by their teachers. Yet, too regimented scaffolding might not do justice to the purpo-
sive open-ended nature of such tasks for creative problem solving and inter- 
connected meaningful learning. The question is thus how do teachers achieve a 
“balance” in scaffolding during such tasks in order to retain the mathematical 
rigour of the tasks in the eyes of the teachers?

Secondly, several groups clearly had difficulties with scale drawings, particu-
larly with the purpose and flexibility of scale usage in order to represent real-life 
objects. This brings to mind that some students may also have difficulties with other 
related concepts such as estimation, proportional reasoning, and spatial visualisation, 
as also reported in Kordaki and Potari (1998). Further investigations are needed to 
verify this.

Thirdly, limited activation of real-world knowledge in mathematical application 
and decision making by the majority of the groups in this study echoed the findings 
of Verschaffel et al. (2000) and van den Heuvel-Panhuizen (1999). This suggests 
that students may learn mathematics in isolation of its use in the real world and 
hence form certain beliefs about the nature of mathematics. Although contextual-
ised tasks were postulated to provide a more meaningful learning experience for 
students, it seems the challenge still exists for teachers and curriculum planners to 
bridge the gap between school mathematics and the mathematics used in real life.

Lastly, group dynamics came into play in determining the nature of mathematical 
application during the project. Indeed, effective groups spent time fruitfully on 
attaining project requirements and advanced steadily towards project goals. These 
groups were also observed to be collaborative learners, where members added value 
to discussions, worked together for more accurate and appropriate mathematical 
knowledge application, and hence engaged more mathematically with the tasks. 
Nonetheless, it was discovered that even effective groups had difficulty sustaining 
their interest in the project and maintaining quality mathematical outcomes towards 
the end of the project. Two reasons could account for this. The long implementation 
period of the project could have delayed gratification and a sense of achievement 
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from the project. In addition, some students were asked to complete smaller tasks 
along the way in a piecemeal manner in order to progress to the next stage as part 
of teacher facilitation. At times, such measures may hinder progress and prevent 
students from perceiving the project in a holistic way.
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Abstract In mathematics education in Japan, learning by practical problem solving 
is not emphasized because high school students and teachers focus more on the uni-
versity entrance exam, leading to a lack of understanding of the essential meaning 
of mathematics and of relations between mathematics and daily life.

These problems affect the teaching of various mathematical concepts. For 
instance, it cannot be said that the current mathematical education content in Japan 
sufficiently teaches functions. We propose teaching materials on functions that 
relate to and explain familiar events and function phenomena and in doing so 
deepen the students’ understanding of functions.

1  The Background of the Research

Japanese secondary mathematics education for the Junior High School (ages 12–15 
years) and for the High School (ages 15–18 years) includes two targets:  
(1) Mathematics as science is studied. (2) The use of mathematics (use in science 
and use in daily life) is learnt. However, high school students and teachers tend to 
focus on university entrance examinations and the skills necessary for their entrance 
exam problems rather than address these targets. In practice, the main study method 
in mathematics is to solve a given problems repeatedly. High school students can 
solve the problems, but they do not understand the meaning of many theorems, formu-
lae, and concepts of functions because of this method. As a result, many university 
students have difficulty with understanding mathematics at this level or they simply 
lose interest in mathematics. These concerns are not being addressed although they 
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are frequently pointed out. However, these concerns can be tackled directly at the 
high school level and in the early years of university.

An example of university students not understanding mathematics at this level 
because of their previous education and study methods is when they are taught 
functions. When learning about functions, students learn about single-variable 
functions in junior high school and high school and they meet multi-variable func-
tions in university. An awareness survey of the concept of functions was given to 
more than 30 second year students in a science course. Looking at the results, there 
were no students who were able to answer the question “What is a function?” They 
only recognized functions that had been shown through expressions.

We believed this was a result of the students studying with a bias toward examina-
tion mathematics in high school. We paid attention to the concept of functions to 
address this problem. Educational content that allowed students to understand the 
meaning and use of functions was researched and practised. This content was chiefly 
intended for seniors of high school and first and second year university students.

We wanted to make students understand that the concept of a function is not 
limited to expressions, already learned theorems can be thought of as multi-variable 
functions, and that when functions appear in various familiar situations and are ana-
lyzed, it is useful. We thought that mathematical modelling was best for these goals. 
Two-variable functions were primarily adopted as teaching material, because we 
believed multi-variable functions, not single-variable functions, were best. The rea-
son for believing this is in the following two points. (1) Phenomena in our lives with 
two factors or more are more common than ones with one factor. (2) We can con-
sider two-variable functions as single-variable functions when we think of one vari-
able as constant, and then we can use previously learned knowledge of functions.

Research on function education examining both single-variable functions and 
multi-variable functions was carried out by Yokochi (1983). This research, at the 
junior high school level, did not sufficiently address the larger problems surrounding 
function education and mathematical education generally in Japan. There is little 
research on function education at the high school level; therefore, teaching material 
that can solve the above problems of mathematics education and the problem of 
function education in the high school must be sought.

Multi-variable functions are not in the high school curriculum. We want to introduce 
mathematical modelling containing multi-variable functions at the high school level to 
solve the problem of university students not understanding the concept of functions due 
to their previous mathematical education and teaching and learning methods. We tested 
the proposed course content on university students learning multi-variable functions for 
the first time to see if the content can develop understanding of functions.

2  The Educational Course Content

The multi-variable function course content tested on university students is reported 
in this chapter. These were students of Kyoto Sangyo University who aim to become 
mathematics teachers in junior high schools or high schools. This course was taught 
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in four classes between April and May 2009. There were about 30 students who took 
these classes. The content is appropriate for teaching high school students.

The educational course comprised:

 1. Two-variable functions – Analytic geometry approach
 2. Mathematical modelling – The Vehicle Stopping Distance Example
 3. Mathematical modelling – The Sound Propagation Example

The content was intended to make the students understand that functions are not 
limited to expressions, that previously learned theorems can be considered multi-
variable functions, and that functions appearing in daily phenomena are useful.

2.1  Two-Variable Functions – Analytic Geometry Approach

We wanted the students to notice that many previously studied formulae are multi-
variable functions, so the example of a rectangle was introduced.

A rectangle’s area is obtained from the product of its vertical length and horizontal 
length.

Example: Find the maximum value of the function z xy=  when + 1x y =
The given problem of calculating the maximum of a quadratic function is studied 

in high schools. The example is usually solved by calculating the maximum of a 
single-variable function. However, this example is raised as a two-variable function.

In order to analyze the character of the two-variable function z xy= , a table 
relating the group (x,y) to z was created (Fig. 13.1).
The following main characteristics were discovered.

 1. The graph is a continuous curved surface.
 2. The intersection of z xy=  and the plane 2y =  is the straight line 2z x= . It helps 

to consider one variable as a constant when considering two-variable functions.
 3. The intersection of z xy=  and the plane y x=  is a parabola. The example used 

shows that the intersection of z xy=  and the plane 1x y+ =  is the parabola 
2z x x= − + .

2.2  Mathematical Modelling

Many phenomena from our daily lives can be considered as examples of multi-variable 
functions. To help students to understand this, models of the stopping distance of a 
car and the propagation of sound were introduced.

2.2.1  The Vehicle Stopping Distance Example

We considered modelling the stopping distance of a car. The effects of air resis-
tance and ABS (Antilock Brake System) were not taken into consideration.
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The stopping distance is the sum of the driver’s thinking distance and the car’s 
breaking distance.

Set v m s−1 as the car’s velocity; m, the coefficient of friction between the tyre and 
the road surface; and g, the acceleration due to gravity taken as 9.8 m s−2 and estimate 
the average thinking time at 0.7–1.0 s. When the thinking time is 1 s, the thinking 
distance is v m. The braking distance, d, can be found straightforwardly assuming the 

final speed is zero (of course!) so that 
2

2
d

v

gm
=  and the total stopping distance, z, 

is given by 
2

2

v
z v

gm
= + .

This formula gives the following characteristics for the stopping distance of a car. 
(1) The mass of the car is not related to the braking distance. (2) If a car has a low 
speed, the stopping distance is short. (3) If a car has a high coefficient of friction 
between its tyres and the road surface, the stopping distance is short.

Using the usual coordinate system, the stopping distance may be expressed as 
2

2

X
z x

gy
= + . z is a two-variable function with respect to x and y, where 0, 0x y≥ ≥ . 

The following characteristics of the function were found: (1) Function z is a quadratic 
function with respect to x and it is a fractional function with respect to y. (2) Braking 
distance is proportional to the square of the car’s velocity. (3) Braking distance is 
inversely proportional to the coefficient of friction between the tyres and the road 
surface.

Fig. 13.1 A table relating the group (x, y) to z
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After analyzing the function, the stopping distance of a car, when the coefficient 
of friction between its tyres and the road surface changes, was found using Excel. 
Students set a realistic situation for the car by having it run at 40 km h−1 on a tarmac 
road on a bright day when they found the stopping distance. Through this experi-
ment using Excel, students realized that it was a realistic problem and that such func-
tions appear in everyday phenomena. Furthermore, to visually confirm the relation 
between x and z and the relation between y and z, a 3-D graph was drawn with the 
aid of a computer and presented to the students (Fig. 13.2).

Finally, a curved surface model was presented to students, because it visually 
confirmed that a two-variable function can be considered a single-variable function 
when one variable is assumed to be a constant, building on previously learned 
knowledge of functions (Fig. 13.3).

Fig. 13.2 Graph of stopping distance

Fig. 13.3 The physical model of the curved surface
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2.2.2  The Sound Propagation Example

Next, the students were taught about mathematical modelling of sound propagation. 
The minimum unit which constitutes a tone is called a pure sound. In this example, 
pure sound was considered.

First, the students were shown that a single vibration can be expressed with 
trigonometric functions of the form = θsiny . Then, the example in which sound is 
transmitted from a speaker was shown, and it was explained that sound is a vibration 
of air. q = 2pft was used with f being the number of times a wave vibrates in 1 s 
(frequency, measured in Hertz (Hz)) and t being the time to vibrate. Sound can then 
be expressed as y = A sin2pft where A is an amplitude.

In order to clarify the relation between sound and function, an experiment was 
conducted which made a real sound using a personal computer. The following 
characteristics of sound were found from this experiment. (1) If the frequency of 
a sound is large, it will produce a high sound. Conversely, it will produce a low 
sound if its frequency is small. (2) If the amplitude of a sound is large, it will 
produce a loud sound. If the amplitude of a sound is small, it will produce a quiet 
sound.

Sound can be expressed as the function z = x sin aty, where a = 2p, x is amplitude, 
and y is frequency. The following characteristics of the function were found. (1) Sound 
is a 3-variable function dependent on time, t; frequency, y; and amplitude. (2) Sound is 
a trigonometric function with respect to time t; a primary function with respect to 
amplitude, x; and a trigonometric function with respect to frequency, y. (3) When 
one of the time, the frequency, and the amplitude is considered as a constant, it is a 
two-variable function.

Sound can actually be built up by combining various pure sound waves. Students 
made an expression that added two or more pure tones, and experimented on the 
resulting sound using a personal computer. Moreover, they experimented on the sound 
of resonance by overlapping two sound waves of slightly different frequency with 
a personal computer.

In order to deepen their understanding of the function of sound, students created 
a formula for sound using a multi-variable function. Finally, students made a curved 
surface model of function z = x sin y and x = sin xy. The surface was constructed by 
combining pieces of paper one by one to get a curved surface section. Through this 
construction activity, students better understood the characteristics of the function 
by creating them in this way.

3  Results from an Evaluation Questionnaire

An evaluation was carried out using a questionnaire which was completed by students 
after the course to assess their understanding of the course material.
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3.1  Content of Investigation

The questionnaire explored the following themes:

Two-variable functions: Did students become better able to consider the behavior •	
of the function and in particular the degree of the function?
The example of the multi-variable function: Can students consider the theorems •	
and the formulae that have been studied up to now as multi-variable functions?
The Vehicle Stopping Distance Example: Can students model the stopping distance •	
of the car through an expression and can they analyze that expression?
The Sound Propagation Example: Can students model the phenomenon of sound •	
through an expression and can they analyze that expression? Moreover, when 
students compare the results of their analysis with the phenomena, can they 
verify those results?
The Sound Propagation Example: Can students build an expression for the •	
propagation of the sound based on the results of their analysis?
Constructing a curved surface model: After this activity, do students understand •	
two-variable functions better?

The questionnaire contained the following questions (in addition to others not 
listed):

[A] Answer the next question about the function 2 .z x yp=  Which is the variable 
that affects the value of z greatest, x or y?

[B] Write an example of a multi-variable function from the theorems and the formulae 
that have been studied up to now.

[C] (1)  Do you understand that stopping distance is a three-variable function 
depending on the car’s speed, the coefficient of friction between the tyres 
and the road surface, and thinking time?

(2) What relations do the braking distance of a car and the following have?
(a)  Speed 
(b) The coefficient of friction between the tyres and the road surface.

[D] (1)  Have you understood that the propagation of sound is caused by vibrations 
in air?

(2) Have you understood that sound (pure sound) can be expressed with trigo-
nometric functions?

(3) Sound (pure sound) can be expressed with the function y = A sin 2pft.
 (a)  When the value of the frequency f is changed, how does the sound 

change?
 (b)  If the value of the amplitude A is changed, how does the sound change?
(4) When time is made into a constant, what are the remaining variables in the 

function describing sound?
[E] Please construct an expression that shows the sound from the function.
[F] Please make a curved surface model of a two-variable function.
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Table 13.1 The results of Q. [C] (%)

Level of understanding (1) [C] (2)(a) (2)(b)

Understood very well 46.4 Correct answer 92.9 89.3
Understood 42.9 Mistake 7.1 10.7
Not understood well 10.7
Not understood at all 0.0

Table 13.2 The results of Q. [D] (%)

Level of understanding (1) (2) [D] (3)(a) (3)(b) (4)

Understood very well 60.7 64.3 Correct answer 92.9 92.9 96.2
Understood 32.1 35.7 Mistake 7.1 7.1 3.8
Not understood well 7.1 0.0
Not understood at all 0.0 0.0

3.2  Results from the Evaluation Questionnaire and Discussion

[A] The correct answer rate was 90% or more. Students considered the problem 
using the knowledge of single-variable functions that had already been learned 
by thinking of one of the two variables as a constant.

[B] In an investigation before the class, few students could answer a question similar 
to this. Multi-variable functions given by students as answers included: Conic 
volume, Sine Theorem, Combined gas law, etc.

Students were now able to give various theorems and formulae as examples 
of multi-variable functions. It assumed that each student’s idea of what func-
tions are changed.

[C] As for the result of (1), the influence of each student’s physics ability was 
large. As for the result of (2), when the function expression was completed, 
even students not good at physics understood the character of the function 
expression (Table 13.1).

[D] The ratio of students who understood (1) and (2) (Table 13.2) was better than 
the ratio in the previous question, [C]. The propagation of sound seemed to 
have been familiar and it was a more comprehensible example for the students 
than the stopping distance of the car. With regards to (3) (a) and (b), and (4) of 
this question, the students’ rate of correct answers was 90% or more.

It can be inferred that most students understood the relation between the 
behavior of the function and the phenomena.

[E] The following examples are functions which the university students created as 
multi-variable functions.

 = π + = π = π
1

23
1 1

sin2 ( 4000 ), sin 2 4000 , log sin 2 2000n ty n t t y y e t t
t t

 

The sounds of the functions that the students constructed were emitted 
using a PC. In one example, the sound from one of the functions that the 
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students constructed could not be heard. In that case, the students mutually 
discussed and improved the function expression. Such a class is extremely rare 
in Japan. We recognized the importance of a class in which students can 
engage in discussion in this way.

The importance of the process of analyzing the character of the function 
expression that models the phenomenon, and applying the expression to the 
phenomenon again is demonstrated by the following students’ impressions: 
“By making sound with a PC, we felt the expression of propagation of sound 
more realistic.” “We made some numerical expressions of sound, and by those 
sounds made with a personal computer, we could understand the amplitude and 
the frequency very well.”

[F] When we presented a 3D graph on a PC, many students said, “The graph was 
able to be understood” and similar expressions. Students, however, understood 
the concepts more by constructing a curved surface model than by just looking 
at presentations of 3D graphs on a PC. A curved surface model was created by 
combining pieces of paper one by one to get a curved surface section. In this 
way, they could understand the structure and they understood the importance 
of actually making a curved surface model (Fig. 13.4). This is clear from the 
students’ remarks. “I have understood more by building a model of a curved 
surface than having seen a graph with a PC. A 3-D figure is easily made by 
putting the sections of the graph in order.” “I forgot the time, concentrated, and 
worked on making my model. By making the model, I understood the graph of 
my 2-variable function correctly.” Moreover, when students learn various other 
mathematical concepts, such as partial differentiation and double integration, 
the construction process of a curved surface model is useful.

The results of the evaluation questionnaire indicate that there was a change in 
the students’ ideas about functions. The change appears in the students’ impressions 
of the class as follows: “When I was a high school student, I merely remembered 
the calculation of the function. In this class I acquired various concepts and how to 
use functions. ” “It has been understood that there are functions in our surroundings 

Fig. 13.4 Models of the curved surfaces which students constructed
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and not only in mathematics.” More than half of the students who undertook 
this class made remarks such as this. They were able to clearly consider and use func-
tions outside of expressions. They were able to actually understand the functions 
and not merely find answers. Also, their view of the usefulness of functions 
increased because they came to understand that functions are a significant part of 
everyday life. Mathematical modelling is an important method because it builds 
and uses concepts linked to functions.

4  Conclusion

From the results of the questionnaire, students came to consider theorems and 
formulae which they had already learned as multi-variable functions. As a result, 
they understood functions are not only shown by expressions and the phenomena 
of our surroundings exist in theorems and formulae. Especially, students under-
stood through mathematical modelling that the events in their surroundings are not 
decided from one factor but from two or more factors, and, therefore, can be shown 
through multi-variable functions. As a result, a change was seen in the students’ 
attitude to functions.

By changing the current education content and study methods, students were 
able to develop their understanding of functions and a solution to a problem in 
Japanese mathematical education was investigated. We believe these changes 
should be utilized at the high school and early university level to maximize their 
effectiveness. We confirmed the effectiveness of mathematical modelling.

We are convinced that we encouraged and prepared students to voluntarily think 
about and solve various mathematical problems by themselves by teaching unusual 
and innovative classes with a functions theme and exploring ideas and problems 
related to functions.

Reference
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Abstract We are interested in how students solve problems related to their 
physical and social world. The participants are five first year high-school students 
(11–13 years old) from an urban area in Venezuela. The study considers the pro-
cesses and the representations used in the problem solving. This case study research 
uses a qualitative approach, results from which reveal that the problem solving 
schemes demonstrated in this study by students new to modelling are mostly linked 
to the accepted descriptions of mathematical modelling, particularly in the case of 
identifying the problem situation and interpreting the solution in the real world 
context. However, the students do progress, relying on the structuring of numerical 
answers with measure units and verbal representations. There is absence of graphical 
representations.

1  Introduction

Mathematical modelling offers an organized and dynamic alternative method by 
which the gap between mathematics and the real world may be reduced. With this 
in mind and to explore the extent to which this is so, this chapter has been focused 
on the analysis of the mathematical modelling and the representations utilized by 
first year high-school students in solving problems of the physical, natural, and 
social world. It is assumed that the process of mathematical modelling is more 
effective within the context of the students’ own environment (Biembengut 2007); 
in that way, school practice is enriched and students learning of mathematical 
knowledge is greater (Bonotto 2007). At the same time, the appropriate use of 
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different representational systems helps good modelers in their understanding of 
the problem situation and the realization of different stages in the modelling pro-
cess (Garcia and Ortiz 2007).

We consider that the school curriculum should encourage students’ understan-
ding and comprehension of the world. Therefore, the inclusion of mathematical 
modelling in high-school education furthers this aim: enabling students to set out 
and solve real problems with objective criteria and consonant with their social and 
cultural environment and current scientific advances. From this perspective, the 
didactic utility of strategies which include the context of the student in teaching and 
learning is recognized (Kaiser and Schwarz 2006; Ortiz et al. 2007).

However, in spite of the fact that modelling clearly enhances teaching and learning 
leading to higher levels of attainment, in the Venezuelan curriculum, the utilization 
of mathematical modelling is not included, even though it recommends that pupils 
and teachers should work with problems of everyday life (Ortiz and Sánchez 2002). 
On the other hand, we know that mathematics teachers in service do not have a 
developed knowledge and experience of modelling and this, in itself, affects the 
utilization of modelling as a learning strategy in the classroom. It is therefore 
important to answer the question: What is the current reality in the mathematics 
classroom? Consequently, a group of students was identified to be given tasks of 
solving of certain problem situations; their answers were to be analyzed and possible 
links with mathematical modelling established. In light of the above discussion, we 
ask the following questions: How do students represent mathematical problems 
related to their physical and social environment? What modelling schemes are used 
by students when solving real life problems? What answers are given by the students 
to problems posed within a context of mathematical modelling?

2  Methodology

This investigation was carried out as a case study following Yin (2003). In this 
study, carried out in the 2005–2006 academic school year, the voluntary partici-
pants were five students, from Francisco Miguel Seijas Bolivarian High-School, 
Tinaquillo, State of Cojedes. Five problems were given to the students. No induc-
tion or previous workshop was implemented to help the students in the resolution 
of the problem situations. The only requirement that the students should have was 
to be attending the first year of high school (11–13 years of age). The research 
instruments comprised a problems questionnaire and an interview for which a 
standard script was used. The data analysis was concerned with the cognitive 
answers and contributions that the students made when faced with the problem 
situation. The analysis took account of the representations assigned to them and the 
possible modelling schemes used. To assist in the analysis, the modelling cycle 
used by Blum and Leiss (2007) was adopted. This cycle which structures modelling 
through seven stages: (1) building, (2) simplifying/structuring, (3) mathematising, 
(4) working mathematically, (5) interpreting, (6) validating, and (7) exposing. 
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These steps are given following the trajectory: real situation and problem → model 
of the situation → real model and problem → mathematical model and problem →  
mathematical results → real results → situation model.

For the selection and formulation of the problems, included in the question-
naire, the following were considered: (1) opening approach, (2) mathematical 
content for students of first year (whole numbers, divisibility criteria, minimum 
common multiple, maximum common divisor, percentage, capacity, and volume), 
(3) contextualization with the reality of the participating students in the study, 
and (4) applicability of the mathematical modelling and the representation  
systems. The selected problems were exposed, discussed, and validated in expert 
group meetings.

The analysis was focused on the answers, solutions and representations,  
opinions and affirmations of the students. In this way, it was possible to prove what 
mathematical modelling schemes were used, if the model followed was known or 
conceived by some authors in particular, or if on the contrary, the model being 
presented is the product of their proper thoughts and deliberations, structured and 
conceived through their own life experiences.

Each student was free to develop his own work style at the moment of dealing 
with the problem. None of the students who participated in the study was a student 
of the researchers; that is, they did not have the impression of being evaluated by 
their teachers at the moment of solving the problems. At the beginning of the 
activity, they were informed that they did not have limited time to solve the five 
problems proposed, and that they had the authorization of the institution to develop 
that activity.

The problems set out to the students were the following:

P1. In the Nuestra Señora del Socorro Church, there are three bells. One bell 
sounds with a 10-s interval between two ringings, another one with a 20, and 
another one with a 24-s interval. Now, if they give the first ring simultaneously, 
after 120 s, how many ringings has each bell rung?

P2. A house drinking water tank in the Tamanaco neighborhood, Tinaquillo, has a 
capacity of 2,000 l of water necessary to supply the Sanchez family. The approach 
is the following: (a) One of the inlet regulator valves which supplies 10 l of water 
a minute has been opened for 1 h. (b) Another inlet regulator valve which supplies 
20 l of water a minute has been opened for 5 min. How many litres of water are still 
needed to fill the tank?

P3. In the La Plaza bookstore, Tinaquillo a decision was made so that on the last 
day of each month, a discount was offered when buying any educational text, where 
for each Bs.100 spent by the buyer, he or she will save Bs.20. On the day appointed 
for this offer, Miguel Reyes went to the bookstore and at the end of his purchase, 
he noticed that by buying the book, he had saved Bs.1,800. What was the price of 
the book? While in La Esperanza bookstore for each Bs.100 that the buyer spent, 
he or she would save Bs.30. How much would Miguel Reyes save if his book would 
have been bought in La Esperanza bookstore? (Bs. means Bolivars).
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P4. An Oriental wholesaler, in his supplies store, offers the Tinaquillo merchants, 
a curious coffee mixture made up in the following way. He mixed 100 kg of coffee 
at the price of Bs.8,000 per kg with 60 kg of coffee at the price of Bs.4,400 per kg, 
with 40 kg of coffee at the price of Bs.10,800 per kg. How much will 20 kg of this 
mixture of coffee cost?

P5. Twelve dentists were selected at random from the Tinaquillo area. Each dentist 
treats at least two students from a class of 29 students at Monseñor Francisco 
Miguel Seijas Bolivarian High-School. How many students can each dentist treat?

For the interviews, two students were selected from the five participants.  
The criteria used for their selection was the type of answers given to the formulated 
problems. Through the interview it was possible to explore deeper the way that 
students faced the problems; that is, to investigate procedures followed by the 
students in their search for solutions to the given questions in situation. Students 
were told that the interview was to take place in the library of the educational center 
and that it would be recorded. Interviews were carried out individually for each 
student selected (S1 and S2).

3  Results and Discussion

In solving the problems, some students were cautious, while others acted in a fast 
and determined manner at the moment of answering. It was observed that students 
(S1, S2, S3, S4, S5) solved the problems (P1, P2, P3, P4, P5) in different ways; that is, 
in some cases (S1, S2), they set out arguments and procedures to explain their answers. 
While, in other cases (S3, S4, S5), no well-sustained answers were observed, nor 
were the students sufficiently explicit in their justification of the results.

In the first problem (P1), the students presented numerical answers with verbal 
explanations. For example, S1 divided the problem situation into three “phases”:  
(a) He considers that “the first bell rings with ten (10) seconds between two 
ringings, now it will ring 24 ringings in 120 seconds”. In order to solve P1, he puts 
into columns (numerical representation) his interpretation of the phenomenon, 
starting from number 10 to 120 (Table 14.1). It is observed that S1 does not count 
the bell ringings adequately; as at 20 s he considers that 4 ringings have taken place; 
at 30, 6 ringings have occurred; and so successively until reaching 120 s with 24 
ringings, which does not correspond with the assumed conditions. This erroneous 
reasoning could have been picked up by the student S1 if he had resorted to 

10:2 50:10  90:18
20:4 60:12 100:20
30:6 70:14 110:22
40:8 80:16 120:24

Table 14.1 First phase of S1 
for solving P1
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other representations or if he had had the opportunity to discuss the results with 
other students and to compare them with the real situation of P1.

In phases (b) and (c), he makes the same reasoning error as in phase (a). In (b), 
S1 states that the “second bell rings with an interval of 20 seconds between two 
ringings, now it will ring twenty-two ringings in 120 seconds”. Likewise, he writes 
in column style, starting the counting from number 20, adding 10 each time through 
to 120. In (c), S1 states that “the third bell rings with a 24 (twenty-four) second 
interval between two ringings, now it will ring 50 times in 120 seconds”. On the 
other hand, S2 and S3 set out and solve utilizing the division of 120 by 10, 20 and 
24. They come to the conclusion that the 3 bells give 12, 6 and 5 ringings respec-
tively. In other words, these students show competence to utilize their mathematical 
knowledge in order to solve the problem (Maaß 2006). With regards to students 
S4 and S5, it seems that they did not understand the situation and, consequently, 
gave erroneous answers, not consistent with the conditions of the problem and 
without specifying the steps taken.

In the approach to the P2 situation, the students assumed that the tank was 
initially empty when the inlet regulator valves were opened, corresponding with the 
comprehension of the phenomenon and the simplification of the situation in order 
to structure the real model (Blum and Leiss 2007). Then, S1, S2, and S3 solved and 
found that the inlet regulator valves provide 200 l of water, and so in this manner, 
1,300 l of water is needed to fill the tank.

In situation P3, student S1 arrives at a numerical representation (percentages 
table) in order to understand what was happening with the discounts given for each 
bookstore. Finally, he finds that Manuel Reyes could have saved Bs.2,700 if he 
had bought the book in La Esperanza bookstore. Student S2 uses arithmetical 
knowledge and also solved the problems. Students S3 and S4 had the intention of 
dealing with P3, but they did not finalize the results. Student S5 did not appear to 
be able to solve the situation. The work, without the results of students S3, S4, 
and S5, could have been caused by conceptual deficiencies in knowledge of 
percentages. In the same way, this could be a consequence of lack of knowledge 
and expertise in solving of modelling problems during the process of teaching and 
learning mathematics.

In problem P4, it seems that students tackled it with low comprehension of the 
given situation. For example, S1 considers the cost of 20 kg of each type of coffee 
with the mistaken intention of obtaining the cost of the 20 kg of the mixture. On 
the other hand, a low command of the arithmetical operations was observed, spe-
cifically with regards to the multiplication by the units followed by zeros, as there 
were errors in the calculations carried out. This problem, P4, became the most 
 difficult one for the five students, as it had different amounts of coffee as well as 
different prices per kg. This perception was confirmed in the interviews.

With regards to P5, students S1, S2, and S3 assumed that all students were 
treated at the same time, as they only asserted that “seven dentists treated two stu-
dents each, and five dentists treated three students each.” Besides, in their results, 
they did not show other working arrangements for the dentists. Student S4 assumed 
that not necessarily all the students are treated at once; in that regard, he simply 
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answered that “each dentist treats two students.” In the case of student S5, there 
was no evidence that the problem was understood. He stated that “each dentist 
could treat 14 students” which is not consistent with the given conditions in the 
problem. In general, in the solution of P5, the students did not show that they under-
stood and could work with the real situation described (Kaiser 2007); despite this, 
there were systematic intuitive attempts to solve P5.

The answers given by the students revealed a lack of experience in problem 
solving, confirmed in their interviews when they stated that: “In the school we 
seldom solve problems like these (S1, S2)”.

Table 14.2 displays a synthesis of the answers given by the students for each of 
the problem situations which was given to them. It can be seen that the students, 
even though they do not have the benefit of experience or know the structures of 
mathematical modelling, do have an intuitive idea that helps them to solve the 
proposed situations. They do in fact have a tendency, even partial or ingenious, 
toward descriptions of modelling behaviour equivalent to the classic ones, such 
as those described by Blum and Leiss (2007). Note that S1 and S2 are the students 
who understand, simplify, mathematise, carry out mathematical procedures, inter-
pret solutions, but do not validate nor explain the results obtained (Table 14.2). 
Student S3 only shows signs of comprehension and simplification. Students S4 
and S5 set out to understand the situations, but do not make progress in the model-
ling process. In regard to the representations used, they only made use of the 
numerical tables. This reveals that the students require a style of teaching which 
will give priority to the multiple representation systems in the solving of problems. 
In general, the answers given by the students to each one of the problems of the 
questionnaire reinforce the researchers’ view that the incorporation of the model-
ling in the training of teachers, and, even more, in the everyday school practice in 
the mathematics classroom is a priority (Lingefjärd 2006; Maaß 2006).

4  Conclusions and Recommendations

In relation to the representations, it was found that the students used numerical 
representations, with or without measure units. Likewise, they stated their answers 
in a verbal manner without using graphic representations. This could be an indica-
tion that, in the classroom, the teachers do not resort to the several representation 
systems to which the student could appeal at the moment of solving the problem.

On the other hand, the schemes of mathematical modelling, which emerged 
from the responses of the students, can be partially framed in the proposal of Blum 
and Leiss (2007); that is, the students looked for the comprehension, simplification, 
mathematization, mathematical solutions and interpretation, even though they did 
not validate nor put into effect the results obtained in each problem. For the case of 
understanding the problem, the students showed competence to discern between 
relevant and non-relevant data (Maaß 2006). Likewise, they showed evidence of 
coming to numerical representations and to the use of mathematical knowledge to 
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solve problems, even though in this last point, lack of skill was observed to realize 
arithmetical calculation. However, it must not be overlooked that in their academic 
learning, the students have not been taught how to deal with this type of problem. 
This might mean that the participants possess an intuitive sense of modelling, 
which could be improved by a teacher who has an adequate preparation and who 
utilizes modelling strategies in the mathematics classroom. Another important 
aspect to be considered is that the participants always assumed that there would be 
one answer only, and no more than one. This can be a consequence of “old schemes” 
utilized in classrooms, where many teachers assert as an “error” the fact that a 
problem provides more than one answer.

In regard to the limitations of the students when faced with problems embedded in 
a particular context, they could be linked to traditional teaching methods and schemes 
still prevail in the high-school mathematics classroom. In this regard, Ikeda (2007) 
shows that the training of the teachers is one of the recognized aspects to be attended 
to in the future so that the adequate utilization of mathematical modelling occurs in 
the mathematics classrooms. This could help students to become competent in deal-
ing with and solving problem situations. So, in the Venezuelan case, a process of 
dissemination mathematics modelling among the teachers and in parallel their incor-
poration in the training programs of the mathematics teachers is desirable.

Finally, the adequate incorporation of mathematical modelling in the classroom 
will motivate and open further possibilities for the learning and teaching of math-
ematics at high-school levels. The curriculum needs to be organized so that physi-
cal, natural, and social contexts are considered in proposing real and meaningful 
situations to the students. This could contribute to students critically understanding 
and appreciating their environment with the aim of finding possible improvements 
to, and preservation of, the environment, as well as understanding the importance 
of mathematics in this regard.
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Abstract In the Netherlands, modelling is a compulsory topic for all pre-university 
science-stream students. Nevertheless, these students have difficulties in building a 
mathematical model. Our research aims at identifying the occurrence and removal 
of blockages when students create mathematical models. By means of a pilot study, 
we looked for an appropriate framework to identify students’ obstacles and oppor-
tunities during this process. The results show that the initially chosen framework, 
which describes modelling as a cyclic process, needs addition from frameworks 
referring to problem solving, metacognition and beliefs.

1  Introduction

Modelling was made a compulsory topic in the mathematics curriculum of the 
pre-university science-stream in the Netherlands, because many students, in 
particular science-stream students, will encounter mathematical models in further 
studies and professions. However, building mathematical models is a difficult cur-
riculum topic for students: Mathematical models (formulas) are often given ready-
made in written tests (Vos 2007), and strategies for building mathematical models 
are not taught in mathematics classes. As a consequence, students do not learn to 
create their own models.
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To gain insight into the strategies students use in building models, we want to 
identify the opportunities and blockages pre-university science-stream students 
encounter. In this chapter, we report a pilot study that aimed at finding an appropriate 
framework to identify these opportunities and blockages.

2  Theoretical Framework

This section will present the framework that was initially selected to identify 
opportunities and blockages when students create mathematical models. We 
conceive the activity ‘creating a mathematical model’ as a sub-activity of the 
activity ‘modelling’. The presentation of the initial framework is therefore  preceded 
by explaining what we mean by these activities.

2.1  Modelling

Blum and Leiß (2005) describe modelling as a chain of activities, starting from 
a ‘real situation’. When the problem in this situation is understood (understanding), 
the ‘situation model’ is structured and simplified (structuring and simplifying) 
into a ‘real model’ and thereupon converted into a ‘mathematical model’ (math-
ematising). ‘Mathematical results’ are then generated and embedded in the 
context of the initial problem. If these ‘real results’ do not answer the initial 
problem, the modelling cycle is ‘run through’ another time. Besides Blum and 
Leiß, other researchers have described the modelling process with a cyclic 
model (Blomhøj and Jensen 2007; Galbraith and Stillman 2006; Maaß 2006; Vos 
and Roorda 2007), and termed this as a modelling cycle. All these researchers 
include in their modelling cycles the activity of translating reality to mathemat-
ics. In our research we, too, conceive modelling as a complex process, in which 
the translation process of reality to mathematics plays an important role. 
Building a mathematical model therefore is a complex set of activities within the 
entire modelling process.

Kaiser and Sriraman (2006) have overviewed international perspectives on 
model ling in mathematics education. In their terminology, our research links to 
directions in which mathematical knowledge is used for modelling. Our research 
does not link to directions in which modelling is a vehicle to learn mathematical 
concepts. Bliss (1994) used the terms explorative modelling and expressive model-
ling. With the first type, students discover and test given mathematical models, and 
with the second type, students build a mathematical model themselves by pragmati-
cally using mathematics to solve a problem. Our research focuses on expressive 
modelling.
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2.2  Mathematising

Our research focuses on the activities that are needed to build a mathematical model, 
starting from a situation. We will denote these activities by the term mathematis-
ing, following the definition of Vos and Roorda (2007). We choose to mark the term 
mathematisation with a clear starting point (a situation) and a clear endpoint (the 
mathematical model), so that these activities are recognisable and operational for 
research purposes. We have a broader definition than that of Blum and Leiß. Our 
reasons for this choice are: (1) The terms ‘situation model’ and ‘real model’ are not 
always recognisable stages in the modelling process and may be  problem-dependent. 
(2) We take activities such as understanding, structuring, simplifying and formalis-
ing as interrelated. (3) Students do not sequentially follow the steps in the  modelling 
cycle, but have their own ‘modelling routes’ (Borromeo Ferri 2007).

In literature, we found that mathematising can consist of the following activi-
ties: analysing the situation, understanding, interpreting the context, defining the 
problem, structuring, simplifying, assuming and formalising. These activities are 
not necessarily performed in this very order by the student.

2.3  Opportunities and Blockages

First, this sub-section will discuss a framework on opportunities and blockages that 
consider modelling as a cyclic process and that focus on activities that are part of 
this cycle. Second, it will discuss frameworks that focus on modelling competen-
cies or skills which lead to successful modelling. Third, it will make a choice of 
initial framework for our pilot study.

Galbraith and Stillman (2006) and Stillman et al. (2010) developed a framework 
to identify the occurrence or removal of blockages during the modelling process. 
They depart from a modelling cycle, and build their framework by investigating 
for several modelling tasks what obstacles students experience during the model-
ling process, and how students remove these obstacles. They focus on blockages 
during transitions between stages in the cycle, and connect metacognitive activities 
with reflection on these transitions (reflective metacognitive activities). They 
mention reflection as a potential way to overcome blockages of low intensity. The 
framework does not focus on those opportunities that stimulate the modelling 
process without necessarily removing blockages.

Maaß (2006) also starts from the modelling cycle, but focuses on competencies 
as opportunities in the modelling process, instead of focussing on blockages. 
Besides competencies needed to execute activities from the modelling cycle, she 
describes other necessary modelling competencies: the competency to use know-
ledge about the modelling process; competencies to ‘keep an overview over their 
proceedings and aim at a goal’ (p. 137); competencies to work with a sense of 
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direction to a solution; competencies to see that mathematics offers opportunities 
to solve real world problems.

To adequately describe modelling competencies and in order to let students 
develop modelling competencies, Blomhøj and Jensen (2007) distinguish three 
dimensions to analyse modelling competencies: (1) the elements of the modelling 
process used and the extent of reflection by students, (2) the technical level of 
activities, and (3) the types of situations that activate modelling competencies.

Galbraith and Stillman (2006) and Stillman et al. (2010) use their modelling 
cycle as a starting point to identify and document the occurrence or removal of 
blockages, whereas the research by Blomhøj and Jensen (2007) and Maaß (2006) 
primarily focuses on competencies. Galbraith and Stillman (2006) notified that 
their framework still needed further validation. Because our research also focuses 
on the occurrence and removal of obstacles, we will consider this as an invitation 
to use, specify and to expand their approach, but restricted to the subset of activities 
that are needed for the mathematisation process (understanding, interpreting the 
context, structuring, simplifying, formalising, etc.). In comparison to their work, 
our research will also include the search for opportunities without blockages.

3  Method

To explore the framework suggested in the previous section, we organised a pilot 
study. Six pre-university science-stream students in grade 11 of the Marecollege in 
Leiden (the Netherlands) participated in the study. The data were gathered through 
task-based interviews of 60–90 min. In order to stimulate the students to enter in a 
dialogue, the students were interviewed in pairs. The three pairs were Jonathan and 
Tim, Darlene and Dianne, and Michelle and Irene (not their real names).

We used five tasks, which were divided among the pairs, such that each pair 
worked on four of them, and such that each task was attempted at least once. 
We selected tasks on their mathematisation demand (either implicitly or explicitly 
asked for) and on time demand (to be completed within a short time span). The tasks 
were selected from different sources: the ‘Swimming Pool Task’ from a course on 
problem solving, the ‘Horizon Task’ from a modelling course for teacher training 
and the remaining tasks were taken from a national examination, a textbook and a 
journal for mathematics teachers. Due to the page limitations, we will primarily 
focus on the ‘Swimming pool task’ and the ‘Horizon task’ (see Fig. 15.1); the 
results on the other tasks will be summarised without further discussion.

The video recordings were transcribed verbatim. Transcript-fragments were then 
characterised in terms of student activities. If an activity was identified as an oppor-
tunity or a blockage, then we determined if the activity could be located in Blum 
and Leiß’s modelling cycle. We also used students’ notes and field notes of the 
interviewer to support our findings. The analysis of the three interviews thus aims 
to verify to what extent the activities from the modelling cycle are apt to identify 
the occurrence and removal of blockages during the mathematisation process.
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4  Results

This section reports on observed opportunities and blockages when students 
worked on the two tasks mentioned above. Two pairs worked on the Swimming 
Pool Task, and all three pairs worked on the Horizon Task.

4.1  The Swimming Pool Task

Dianne and Darlene used the symbol x to describe the height of the layer of soil 
spread over the garden. They subsequently derived a correct equation to calculate 
the volume of soil A that has to be excavated ( 6·3·(2 /132)A A- = ). They were not 
hindered by any blockages and attained a mathematical model. This differed from 
the process of the second pair, who started to calculate from a concrete example:

Tim: So then… let’s first calculate how d… deep the pile of soil becomes 
that gets on top, when you dig one metre …

Tim: So that will then be six times three equals… eighteen. So then you 
have…

Both: Eighteen cubic metres of soil.
Jonathan: And you spread it out.
Tim: You spread it out.
Jonathan: But we first have to calculate the surface of this bit.
Tim: So it is 150 minus eighteen metres.
Jonathan: Is 132.
Jonathan: So when you dig one metre, then you dig eighteen cubic metres of soil. 

We are going to spread this out over 132… ehrm is one metre deep… 
so when you dig one metre… and then you remove the soil and then 
you spread it out so then it isn’t really one metre deep… so it becomes 
ehrm more.

Swimming Pool
In a garden of 10 m x 15 m we dig a 
swimming pool (length 6 m and width
3 m). The pile of soil hereby created is 
spread evenly over the garden. This has as 
effect that when you dig 1 m and spread
the soil, the swimming pool will be deeper 
than 1 m.
How deep do we have to dig to obtain a
swimming pool with depth 2 m?

Horizon
You are standing on the beach and are 
looking at the horizon. Visibility is 
excellent. 
How far away is the horizon? Take 6370
km as radius of the earth.

Fig. 15.1 The ‘Swimming pool task’ and the ‘Horizon task’
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Tim: So let me see. So you have 132 m squared times x equals eighteen 
cubic metre.

Jonathan: So x equals eighteen divided by 132.
Jonathan: Then it becomes one metre and fourteen centimetres.

In this example, they moved through the modelling cycle using a concrete 
example (calculating the depth of a pool for 1 m digging), knowing that they will 
not immediately attain the required answer. We termed this as scouting the problem 
by working with concrete examples and identified it as an opportunity. Subsequently, 
they also calculated the resulting depth of the swimming pool after digging 2 m 
deep:

Jonathan: … and then times two (here, Jonathan multiplies the number that 
belongs to one metre digging by two). Yes that is indeed linear.

From the calculations with two concrete examples, Tim and Jonathan conjectured 
that the excavation depth is directly proportional to the depth of the pool. We have 
identified this opportunity as searching for a model using an inductive method.

Thereafter, Jonathan and Tim used variables and Tim instructed Jonathan to 
write down his intermediate results (‘also put that under it’). Jonathan followed 
Tim’s directions and thereafter saw in his writing (see Fig. 15.2) a way to determine 
the desired depth:

Jonathan: But look… here it says y plus x and ehrm x is… yes but look here you 
have it. y plus x equals two. x equals zero point fourteen y. So y plus zero 
point fourteen y equals two. And then we have one point one fourteen 
y equals two. And y then is two divided by one point fourteen.

Tim: Jonathan, you are a genius. (laughs)

Writing down systematically intermediate results enabled Jonathan to wind up 
the formalising process.

Fig. 15.2 Excerpt from Tim and Jonathan’s computation for the swimming pool task
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4.2  The Horizon Task

The following discussion took place after Tim and Jonathan made a sketch of the 
situation:

Tim: But I think, Jonathan, that we have to make a tangent with the circle, 
such…

Jonathan: Yes.
Tim: that we… and then at this point this is where you see the horizon.

Next, Jonathan drew the situation again – this time neatly with set square and 
compass – and took his time. In this way, Jonathan found that the angle between 
the radius of the earth and the line of sight was 90°. After this, they successfully 
solved the task. We regard drawing the problem situation as an opportunity because 
a sketch gives students the possibility to visualise the situation.

The second pair, Darlene and Dianne, discussed the term horizon. Dianne 
described it as ‘the spot where it disappears like this’, while gesturing with her 
hands. We consider this as an opportunity for exploring the problem. Subsequently, 
Darlene made an erroneous assumption that the horizon is one-eighth of the perim-
eter of the earth, which hindered their progress. Dianne noticed that ‘when you are 
taller the horizon will be further away’, but they were not able to translate this idea 
into a mathematical expression. We identified not recognising a relevant variable, 
and not being able to convert the specifications of a relevant variable into a relation 
as blockages. Later on, they talked about the formulation of the problem situation, 
where they were looking at the text for something to hold on to:

Darlene: What shall we do with the radius of the earth? Or is that useless 
information?

Dianne: Well I actually don’t think so because it is also the only information so
Darlene: Yes (laughs)
Dianne: (laughs) So when it is useless then we have nothing left.

This was identified as a blockage in picking up the problem situation.
Irene, member of the third pair, concluded that they did not need to consider the 

spherical shape of the earth. She said: ‘What is not mentioned in the problem text 
does not have to be used in calculations’. This assumption hindered her in solving 
the problem, because she could not find relevant directions in the problem text. 
Irene was looking for cues in the problem text to help her proceed through the task; 
this behaviour is termed as cue-based (Boaler 2002).

4.3  Additional Results

Analysing the five tasks, we additionally identified the following blockages: lacking 
algebraic skills, overlooking essential elements in the problem text, impeding 
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formulation of the problem text, blockage in communication. Furthermore, we 
observed the following opportunities: re-reading the problem text, subconsciously 
simplifying the situation, slowing down the process by taking one’s time, verifying 
the model by estimation and assuming that a solution is valid.

Michelle was very skeptical about one of the tasks. She explained ‘I cannot stand 
this and because of this I would like to finish it as soon as possible’ and during the 
solving process, she uttered ‘I am always performing very poor on this and I always 
find it irritating’ after which she pushed all papers over to Irene. We classified her 
attitude as a hindrance due to a lack of self-confidence, or due to considering the 
task as mathematically too demanding; but we also think that a non-appealing task 
can be hindering the mathematisation process.

5  Conclusion and Discussion

In our pilot study, we investigated which components a framework should contain 
for identifying opportunities and blockages of students who try to formulate a 
mathematical model. Galbraith and Stillman (2006) used a modelling cycle as  
a framework for their analysis on the occurrence and removal of student blockages 
during transitions in the modelling process. We decided to also start from a model-
ling cycle, that is to say, Blum and Leiß’s modelling cycle.

We were able to identify several blockages in terms of the modelling cycle.  
In the phase of understanding, for example, we identified a blockage in picking up 
the problem statement, caused by an impeding formulation of the problem text, 
overlooking essential parts in the problem text, or expecting hints, guidelines and 
necessary data in the problem text. In the phase of structuring, we observed making 
erroneous assumptions and not recognising a relevant variable. In the phase of 
formalising, we perceived not being able to convert specifications into a relation 
between variables and lacking algebraic skills as blockages.

Besides blockages, we were also able to identify opportunities in terms of the 
cycle. In the phase of understanding: picking up the problem text by describing 
the problem situation, and exploring the problem. In the phase of structuring and 
simplifying: drawing the problem situation, and subconsciously simplifying the 
situation. In the phase of formalising: scouting the problem using concrete examples, 
searching for a model by using an inductive method, and verifying the model by 
estimation.

The Blum and Leiß modelling cycle describes activities that contribute to suc-
cessful modelling. Successfully performing an activity is therefore an opportunity 
and unsuccessfully performing an activity is therefore a blockage; however, 
besides successfully performing an activity, students can also seek for strategies to 
overcome blockages (e.g. scouting the problem using concrete examples, and  
verifying the model by estimation). These opportunities are described in the litera-
ture as heuristics or problem solving strategies (Polya 1988; Schoenfeld 1992). 



14515 Students Overcoming Blockages While Building a Mathematical Model

Given that modelling cycles focus on activities, types of models, transitions or 
stages, but not on general problem solving strategies, we conclude that we can 
identify a number of opportunities with a framework of problem solving strategies 
(heuristics).

Note that unsuccessful activities are an opportunity to develop more deeply 
metaknowledge about modelling and mathematisation in particular. Thus, unsuc-
cessful activity has a double nature – a blockage and an opportunity.

The identified blockage due to cue-based behaviour can be located in the model-
ling cycle. However, this blockage does not relate to activities during the modelling 
process but relates to knowledge that students have about task expectations and 
how to handle tasks (the tasks in the pilot differed from standard tasks in Dutch 
textbooks). According to Maaß (1996), having knowledge about activities is a 
metacognitive modelling competency. Slowing down the process by taking your 
time, re-reading the problem text and writing down systematically intermediate 
results are examples of opportunities that cannot be identified by the modelling 
cycle. These opportunities overarch the cycle, because they focus on process 
regulation, and they differ from reflective metacognitive activities that focus locally 
on transitions in the cycle. In the literature, these opportunities are described with 
the term metacognitive competencies (Maaß 2006; Meijer et al. 2006; Schoenfeld 
1992). Therefore, it is meaningful to extend our framework also with metacognitive 
competencies that overarch the modelling cycle.

One student was also hindered by her earlier experience with and her attitude 
towards mathematics. This blockage occurred during the entire modelling process, 
and therefore is not identifiable by means of the modelling cycle. We further 
noticed that a task can be hindering, when a student finds a task non-appealing. 
This blockage is linked to what in the literature is known as beliefs (Schoenfeld 
1992). Because of this observation, we think it is meaningful to extend our frame-
work with beliefs.

In conclusion, we state that the description of activities in the modelling cycle 
has proven to be useful: When activities from the cycle are completed, they are an 
opportunity, and when these activities were not performed successfully, they formed 
a hindrance to the process. However, we also identified occurrence and removal of 
blockages outside this framework; here we identified these in terms of problem 
solving strategies, metacognitive competencies and beliefs. In order to optimally 
identify the occurrence and the removal of blockages during the mathematisa-
tion process, we therefore need to extend the initial framework. We will use this 
extended framework in a follow-up study to describe the occurrence and removal 
of blockages during the mathematisation process, and regard problem solving 
strategies, metacognitive competencies and beliefs as important aspects for 
analysing students’ behaviour.

We would like to stress that the newly proposed framework might still be incom-
plete, because we have interviewed only a few students, using only five tasks. It can 
also be argued that the selected tasks and method (task-based interview) are not 
appropriate to identify certain types of obstacles and opportunities.
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Abstract This chapter reports perceptions and obstacles of 16 secondary 
 mathematics teachers after experiencing three model-eliciting activies (MEAs) 
and designing one MEA in a 9-week course linked to a master’s degree program 
in education for in-service teachers. Data collections included the learning sheets 
that showed teachers’ strategies of the three MEAs and the results of the MEA 
they designed, observation journals, reflection journals, questionnaires, interview 
reports, and video tapes of the classes. The results showed that teachers regarded 
modelling as a problem-solving process, and agreed with the advantages of imple-
menting the MEAs in mathematics classrooms; they also mentioned obstacles of 
implementing MEA and designing MEA.

1  Background

Researchers have emphasized more and more on the issues of enhancing students’ 
mathematical competency recently in mathematics education (Lesh and Zawojewski 
2007; Niss 2003). Developing students’ modelling ability is one effective teaching 
strategy (Lesh and Doerr 2003; Niss 2003).

Recently, the issues of the model and modelling perspective gradually receive 
more and more attention in Taiwan. Some empirical research has focused on the 
investigations of modelling contests. Some talked about modelling teaching that 
related to specific mathematical contents such as linear function, parabolic equa-
tions. Their results showed students’ positive learning motivations or learning 
effects increased after modelling teaching. Other empirical research of teachers’ 
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education has focused on the problem-solving strategies of pre-service teachers and 
the results show the modelling activities and teaching need to correspond to stu-
dents’ experience. Also, technology is worth considering. Other research has inves-
tigated the latent mechanism underlying the case teacher’s reflection in the 
modelling context whilst collaborating with the researcher and the results showed 
the effects of teachers’ professional development in practice. These empirical stud-
ies reveal the approval of modelling teaching in Taiwan.

On the other hand, most mathematics teachers have taught in lecture style and 
transference of mathematical knowledge to students in the school context. Students 
just need to listen to what teachers say and there is a lack of thinking by themselves. 
Over a long period of time, students have become used to memorising the formula and 
solving routine mathematical problems. Under these circumstances, students hardly 
develop multiple mathe matical competencies in their school mathematics classes.

Recently, we tried to phase in the MEAs to our mathematics classrooms in order 
to amend the situation and promote students’ thinking, explaining and interpreting 
opportunities. The crucial reason we used modelling activities was that in such 
activities, students have to describe, manipulate, predict, and verify (Lesh and 
Doerr 2003). We hoped that students could enhance the descriptions and interpreta-
tions of what they saw and observed and the ability of problem solving through 
MEAs. Although empirical studies related to modelling teaching showed positive 
results of enhancing students’ mathematical learning, this still was an uncommon 
teaching strategy in the Taiwanese context. So, the first problem we needed to 
face and overcome was to let these teachers learn how to implement MEAs in their 
mathematics classes. We designed a course to foster these teachers to become 
involved in MEAs and modelling teaching. The purpose of the study was to know 
what the Taiwan mathematics teachers thought of MEAs and modelling teaching.

2  Theoretical Frame

To answer the question, the theoretical approach focused on the discussion of MEA 
and the six principles of designing MEAs. Lesh and Doerr (2003) refer to “Case 
Studies for Kids” as many cases of MEAs. Each case consists of four main parts: 
newspaper articles, readiness questions, problem statements, and the process of 
sharing solutions. The purpose of the newspaper articles and readiness questions 
was to introduce the students to the context of the problem. Students can become 
more familiar with the situations of the case via reading the article and readiness 
questions just like a warm-up period. The problem statements should be the central 
part of the teaching and teachers present these to the students according to the grade 
level and previous experiences they have. Whether the students could identify the 
client they were working for and the product they should create must be verified. 
Then comes the process of sharing solutions and it is the stage of presentations of 
solutions when the teacher tries to encourage students to not only listen to the other 
groups’ presentations but also to try to understand the other groups’ solutions and 
consider how well these solutions meet the needs of the client.
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On the other hand, Lesh and Doerr (2003) mention six principles to evaluate the 
quality of a modelling activity and these were also crucial points that we consi-
dered. The construction principle ensured that the solutions to the activity required the 
construction of an explicit description, explanation, procedures, or justified prediction 
for a given mathematically significant situation. The reality principle, also called the 
meaningfulness principle, required the activity to be designed so that students can 
interpret it meaningfully from their different levels of mathematical ability and general 
knowledge, and also pose a problem that could happen in real life. The self-assessment 
principle ensures that the activity contains criteria that students can identify and use to 
test and revise their solutions and also include information that students can assess the 
usefulness of their alternative solutions. The documentation principle ensures the 
activity requires students to create some form of documentation that can reveal explic-
itly how they are thinking about the situation. Share-ability and re-usability principles 
require students to produce more generalized solutions that others can also use or solu-
tions that can be reused in other similar situations. Effective prototype principle 
ensures the solution of the activity is as simple as possible yet mathematical and sig-
nificant and provides useful prototypes for interpreting other similar situations.

3  Methodological Approach

Methodologically, the research is qualitatively oriented and the applied empirical 
methods concerning choice of samples, data collection, data analysis, and data 
interpretation are based on the theoretical attempts of Grounded Theory (Strauss 
and Corbin 1998).

3.1  Samples

A total of 16 secondary mathematics teachers participated in the study. The infor-
mation on these teachers’ background is given in Table 16.1.

3.2  Research Process

The process of this study is linked to a master’s degree program in education for 
in-service teachers with 2 h per week for 9 weeks and includes two stages. First, 

Table 16.1 Background information of samples

Categories Background information (N: category)

Sex 8: male 8: female
School 8: junior high school 5: senior high school 3: vocational school
Teaching years 6: <5 years 5: 6–10 years 5: >11 years
Age 6: 26–30 years old 7: 31–35 years old 5: 36–40 years old
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these teachers were divided into four groups with three to five teachers in a group 
as the role of students engaged in three MEAs, such as “Who saved the oriental 
cherry trees?”, “Parking Lot” and “Volleyball problems.” They cooperatively dis-
cussed solving one MEA every 2 weeks (see Fig. 16.1). They also wrote reflection 
journals to compare these MEAs and show their understanding of modelling peda-
gogy. Secondly, each group was asked to design one MEA and used the Six 
Principles of designing a MEA (Lesh and Doerr 2003) to evaluate these MEAs by 
themselves. The evaluative process also showed their perception of mathematics 
and understanding of MEAs.

3.3  Data Collection

The sources of data collections included the learning sheets that showed teachers’ 
strategies for the three MEAs and the result of the MEA they designed, researchers’ 
observation journals, reflection journals, open-ended questionnaires, interview 
reports, and video tapes and audio tapes of the classes.

Learning sheets. These teachers solved three MEAs in groups and wrote down 
their solving strategies, and letters to the client of these MEAs. These sheets 
showed teachers’ thinking during modelling activities.

MEA. Every group of teachers designed one MEA, according to their experience 
of solving MEA and their understanding of MEA. They also introduced their 
designed MEA to other teachers and evaluated these MEAs with the six principles. 
These MEAs showed these teachers’ perceptions of MEA.

Observation journals. Researchers kept observation journals every week. We 
wrote our reflections about every class in our program and kept notes about these 
teachers’ questions and changes.

Fig. 16.1 Teachers engaged in the “Parking Lot” problem
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Reflection journals. Teachers’ reflection journals were collected every week. The 
participants were encouraged to reflect on these MEAs and the experiences of 
solving MEAs. They were also asked to compare the similarities and differences 
between these three MEAs.

Open-ended questionnaire. The open-ended questionnaire was administrated on 
the first day and the last day of the program, in order to give an opportunity for 
teachers to reflect on their beliefs about mathematics, teaching, and learning.

Interview reports. Four teachers, especially those who were interested in model-
ling teaching and activities, joined the interview and shared their ideas about 
 modelling teaching and MEAs with us. Much interesting data were provided for the 
research through these informal talks.

Video tapes and audio tapes. Every class for 9 weeks was videotaped. When these 
teachers discussed in groups, we also audiotaped the process of their discussion to 
keep the details of their group discussion.

3.4  Data Analysis

These qualitative data such as teachers’ reflection journals, interview reports, and 
video tapes of the classes were read, coded, and categorised repeatedly by the two 
authors. In doing analysis data, we started to make sense of the data by “making 
interpretations.” This process continued using “open coding” to discover categories. 
In this process, we used the “make comparisons” procedure to conceptualize our 
data by taking apart each observation, every oral or written comment, and we gave 
each emerging category a “name”.

The teachers’ thinking about modelling teaching and MEAs were the main focus 
of the study. The richest part of the data came from the reflection journals of these 
teachers which were written during the program. First, we quoted the teachers’ 
writings that mentioned MEAs and modelling teaching and checked the frequen-
cies of different quotations. Then, we categorized these quotations into the same 
categories. These categories conceptualized these teachers’ thoughts about MEAs 
and modelling teaching. Second, we also compared the results of the MEA they 
designed with Six Principles of designing a MEA (Lesh and Doerr 2003) and 
attempted to reveal these teachers’ thinking about MEAs and modelling teaching. 
The following was the result of the analysis of data regarding the focal point. 
The quotations and paraphrases included in the following paragraphs are represen-
tatives of the range of the teachers’ thinking.

In the process of analysis, many themes emerged from the data. The following 
themes represent the nature of the findings of the research. Finally, we analyzed and 
interpreted these data into three themes: positive thinking about MEAs and model-
ling teaching, negative thinking about modelling teaching, and weaknesses of 
designing MEAs.
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3.4.1  Positive Thinking about MEAs and Modelling Teaching

According to these teachers’ reflection journals, interview reports, and video tapes 
of the classes, we grouped the advantages into four aspects, which are shown as 
follows:

 Close-in Real Life Situation

A total of 8 of 14 teachers expressed this point of view. They regarded MEAs and 
modelling teaching relates to a real life situation intently. For example, T22 said 
“when she experienced MEA, she felt that mathematics can be constructed from the 
learning activity of real life experience”. T3 mentioned that “It was full of math in 
the modelling process and we used mathematical language to deal with the problem 
which was in connection with real life.” T7 and T24 both voiced the idea that MEAs 
are closer to real life situations than the textbooks.

 Enhancement of Mathematical Competencies

As, MEAs are all open-ended problems and are accompanied by a lot of informa-
tion, so teachers approved for enhancing students’ competencies relating to learning 
mathematics. T10 said that “developing the modelling ability can promote students’ 
problem solving ability.” T7 referred to “creative thinking ability, conjectural ability, 
induction and categorization, built the model.” T21 thought that “we ask students 
to think an integral problem with the concepts which they learned before, and they 
needed to use mathematical competencies of logical thinking, data gathering and 
data analyzing…. MEAs are divergent problems and the abilities that students 
developed were comprehensive. It made students to learn, search for information 
and analyzed data actively.” T30 pointed out that “the focus of mathematical 
 modelling was different than traditional problem solving and changed into, trans-
formed, and explained the situation, recognized potential problems, built the model, 
re-interpreted the premise, hypothesis and biases of mathematical solution.”

 Advantages of Modelling Teaching

On the other hand, they also spoke of the advantages of implementing MEAs in 
school mathematics classes. T12 noted that “In the process, students needed to talk 
to each other and utilised peers’ thought to inspire themselves to think the problem.” 
T3 emphasized that “students can learn how to communicate with others, establish 
good relationship with peers and understand the importance of respect.” T28 pointed 
out that “the mathematical content was not too difficult for students and it didn’t 
make students feel scary.” T30 liked the way of group discussion and he thought it 
was helpful to students to think through problems and also convey their opinions.
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 MEAs as Supplementary Materials

As for the possibilities for implementing MEAs in school mathematics classes, 
teachers in the interview thought that MEAs could work well as supplementary 
 materials, and modelling activities and teaching could be regarded as the corpora-
tion or training for supplementary curriculum. We found that the teachers who 
taught the mathematical corporation accepted MEAs and they agreed with MEAs 
as supplementary materials more easily.

3.4.2  Negative Thinking about Modelling Teaching

These teachers mentioned many obstacles to implementing MEAs in school mathe-
matics classes. This included the weak connection to the current school curriculum, 
the influence of the entrance examinations, and mathematical content being too easy.

 Out of School Curriculum

In Taiwan, the main curriculum standards come from the government. Although there 
are different versions of textbooks, most content in textbooks is in traditional mode, 
such as examples for teachers and exercises for students. Also, teachers in Taiwan are 
used to teaching with textbooks and relying on the content of textbooks. The most com-
mon obstacle these teachers mentioned was the weak connection to the current school 
curriculum. T5 mentioned that “so far, I doubted that whether MEAs can [be] put into 
the current mathematics classes and maybe this will be one of my goals in the future.” 
T21 said that “MEAs [had] almost no direct connections with current mathematical 
textbooks of junior high school.” T24 pointed out that “It seemed not helpful for stu-
dents to learn school mathematics.” T3 wondered “how to transform the materials in 
school math into appropriate MEAs?” T10 thought that “not all units in school math 
were suitable for transforming into MEAs and it was not necessary to use modelling 
teaching.” So, these teachers were really concerned with the connection between MEAs 
and the current school mathematics curriculum, and they would accept modelling 
teaching into their classes only when they were sure that the connection was close.

 Out of Entrance Examinations

In Taiwan, students need to pass the entrance examinations to enter senior high 
schools and universities. These teachers always emphasise students’ grades in these 
examinations as the purpose of their teaching. So, the entrance examinations of 
senior high schools and colleges are also the main factor why teachers resist model-
ling teaching coming into their classes. T22 said “my school is a typical private 
senior high school that emphasized the rate of entering colleges, so students’ grades 
were the most important thing.” T23 mentioned that “how to connect [the prevailing] 
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education system (exam system) will be the first barrier in reality!” T30 referred to 
“the first consideration of students and teachers was to get higher scores in the 
entrance exams to colleges.”

 Other Obstacles of Modelling Teaching

Other obstacles such as “I cannot convey the mathematical concepts which students 
wanted most. (T3)” “We spent too much time letting students solve and discuss the 
MEA, so that we cannot achieve the rate of progress of school math. (T24)” “Students 
and I were not familiar with modelling teaching and MEAs, so we may have the 
attitude of rejecting this teaching mode…. The group discussion makes chaos in the 
classroom, and students can’t keep their concentration. (T30)” “I thought that was a 
challenge for me to end the open MEA. I don’t know what to do and it seemed not 
very interesting. (T23)”. Therefore, it will be a tough challenge to tune these teachers’ 
minds to accept modelling teaching in this kind of background and trend. After 
arranging these data and themes, we found that teachers in senior high schools or 
vocational schools displayed more obstacles to modelling teaching than did teachers 
in junior high school according to the teachers’ reflection journals.

3.4.3  Weaknesses of Designing MEAs

In the second part of this course, these teachers designed one MEA in every group. 
Four groups produced four MEAs, and it deserved to mention that we just intro-
duced to these teachers the six principles of designing MEAs. Also, they did not 
read the literature about the model and modelling perspective. The understanding 
of MEAs they showed was simply according to the experience which they engaged 
in during the three MEAs.

Here, we describe four MEAs that they designed; they are shown in Table 16.2.
In general, these teachers feel that MEAs need to be realistic situations and rela ting 

to students’ life experiences. Also, they keep the problem as open as possible in order 
to get a model of the solution. Furthermore, the authors tried to use the six principles 
(Lesh and Doerr 2003) of designing MEAs to check the MEAs produced by these 
teachers. Table 16.3 showed the authors’ interpretation based on the corresponding six 
principles. They also revealed obstacles to designing MEAs. The principles which 
were achieved easily are the Reality Principle and the Model. Construction Principle, 
but the other four were hardly present. It meant that the ways of promoting teachers’ 
 ability for designing MEAs will still be an issue to be addressed in the future.

4  Conclusions and Implications

After the 9-week course, these teachers revealed many thoughts about MEAs and 
modelling teaching. We summarized the teachers’ thinking into three aspects 
shown in Table 16.4. We found that these teachers agreed that MEAs were useful 
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Table 16.3 MEAs and the corresponding six principles

Group 1 2 3 4

Title
The trip of 
Taichung

The reconstruction 
of the campus wall

The procedure 
design of sports 
meeting Sampling

Construction “The design of the 
route of the 
trip” was open 
but not precise 
enough to ask 
for a general 
model.

There were 
too many 
limitations 
of students’ 
solution.

“The design of 
procedure of the 
sports meeting” 
and “the rules of 
scoring” were 
too fuzzy.

The problem 
“How to 
sample” was 
too fuzzy.

Reality Corresponds with 
students’ life 
experience.

Corresponds with 
students’ life 
experience.

Corresponds with 
students’ life 
experience, but 
the description 
was too 
simplified.

Not close to 
students’ life 
experience.

Table 16.2 MEAs designed by each group

Group Title MEA

1 The trip to Taichung Four junior students (A, B, C, D) plan to travel from 
Changhua to Taichung together. They bring 4000 NT 
with them and need to buy specific gifts, such as famous 
cookies, and they also have time limitation to finish their 
task. The problem is to arrange a timetable of their trip 
and have to consider the money at the same time.

2 The reconstruction of 
the campus wall

Ask for students’ help to use tiles to reconstruct the wall of 
the campus. The length of the wall is 12 m and the width 
is 3 m. The shapes of the tiles are rectangles and squares. 
The colors of the tiles are white and black, and the areas 
of the black tiles need to be 1/3 to 1/4 of the whole wall. 
The arrangements of the tiles are all designed by students 
themselves.

3 The procedure design 
of sports meeting

Ask students to design the procedures of the whole day 
sports meeting. The areas include a playground with 
200-m athletic track, four basketball courts. There are 
39 classes of the senior high school and 1 teacher group 
joining in the sport meetings. They have to consider 
the time and sequences of three games, seven races, the 
opening and closing ceremonies. Students need to plan 
well in order to get the results of all contests on that day.

4 Sampling Let students decide the number of students and the distribution 
of schools for sampling to understand the percentage 
of students who got involved in drugs. They also want 
students to consider the budgets of their sampling.

to enhance students’ problem-solving ability and they had positive attitudes toward 
MEAs and modelling teaching. But they thought that there were still many obsta-
cles to implementing MEAs in their mathematics classes. On the basis of the MEAs 
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that they designed in the end, it was shown that they were still lacking the ability 
to design MEAs to fit with the six principles.

In terms of this study, we noticed that a literature review of MEAs and modelling 
may be important for these teachers to understand how to implement MEAs in their 
classrooms and to design MEAs. Because of the lack of theoretical background, 
they just pay attention to the surface characteristic of MEAs. Besides, we found that 
strengthening the connections between MEAs and the school mathematics curricu-
lum and improving the modelling teaching so as to relate to teaching practice 
closely are two important factors which influence these teachers’ ideas regarding 
MEAs and modelling.
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As pointed out by Galbraith and Stillman (2001), the issue of the role played by 
extra-mathematical knowledge in modelling and applications activities is part of an 
agenda shared by researchers and educators who are interested in the specific 
nature and characteristics of modelling activities within educational settings. An 
important aspect of such mathematical activities is the actual structure and elements 
of the context situation that are embedded (either explicitly or implicitly) in the task 
formulation, thus opening significant room for assumptions, interpretations and 
considerations concerning the so-called extra-mathematical world. Nurturing a 
long-standing debate on the nature of mathematical models and on the types of 
knowledge and experiences activated by mathematical modelling, the six articles 
composing this chapter highlight in very different and yet strikingly coherent ways 
the paramount role of knowledge, besides mathematics, in illuminating students’ 
processes, decisions and understandings while working on modelling tasks.

Brown and Edwards show how secondary school students develop mathemat-
ical modelling with rich tasks, where genuine links to a real-world context are 
expected and encouraged. In addition, mathematical modelling and mathematical 
understanding are conceived as running side-by-side. This entails a view of the 
modelling tasks and processes which are at odds with the often endorsed concep-
tion that sees mathematics as a system into which reality must be translated and 
symbolised. By underlining the importance and intervention of students’ prior 
knowledge about the anchoring context of the task, their work offers a much 
broader image of the modelling process. Engagement with the task context, as long 
as students perceive it as realistic and significant to formulate a model and to derive 
one or more possible solutions, proves to be an essential condition for meaningful 
interpretative mathematical modelling. Drawing on Stillman’s (2000) categorisation 
of different types of prior knowledge – academic, encyclopaedic and episodic – 
Brown and Edwards’ results show how students’ prior knowledge (especially 
academic and encyclopaedic) was activated and operated to enhance understanding, 
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to facilitate checking, to inform decisions and to validate results. Therefore, 
mathematics and the prior knowledge of the context were integrated, enabling 
deeper understanding. In a way, it seems possible to compare the previous paper 
with the one proposed by Carreira, Amado and Lecoq, where they investigate how 
knowledge is elicited through mathematical modelling of daily life situations within 
adult education mathematics classes. In stressing the socio-cultural nature of the 
learning that takes place in adult education, adults’ life experiences are viewed as 
major resources in their formative learning process. Adults mathematics education 
is expected to promote individuals’ professional, social and daily life experiences. 
The production of bridges thus becomes an essential part of the mathematical activ-
ity in modelling real situations. From this standpoint, looking at the relationship 
between schooling and other practices entails focusing on the production of 
meaning as part of the process of boundary-crossing between a lived-in world and 
a figured world (the conversion of a particular real context into a school situation) 
(Boaler 2000). A group of adult students solving a task on making Margaritas 
according to four different recipes, where the ratios of the ingredients varied, 
revealed how a student’s prior experience of having tasted Margaritas previously 
became a source of reliability for the others in the group. In general, to the adult 
students, the mathematical language and the technical numeracy constituted a thick 
and impermeable boundary between the mathematical world and the lived-in world. 
Matters other than a mathematical analysis of the problem came into play and both 
the domain of inquiry and the mathematisation involved in the modelling cycle 
were clearly influenced by specific context-knowledge and particular forms of 
agency within the perceived reality.

Mousoulides and English stress the importance of implementing interdisciplinary 
problem-solving activities in mathematics and science school curricula as a way to 
empower students to tackle real-world problems emerging in our present society 
and in the foreseeable future. Their work reports on a study with 12-year-old stu-
dents working on Engineering Model Eliciting Activities characterised as authen-
tic, meaningful, realistic and client-driven problems. In their paper, particular 
attention is devoted to the analysis of four models produced by different groups of 
students working on a task about the exhaustion of natural gas reserves. As the 
authors concluded, students had to elicit their own mathematical and engineering 
ideas to work on the problem; but more importantly, the students’ models may be 
seen as actual embodiments of all the factors, ideas, relationships and interpretations 
that they considered important in the creation of their models. Again, we should 
recognise that looking at mathematical models includes gaining a perception of the 
human factor in the modelling process (Araújo 2008; Skovsmose 1994).

In a similar vein, Carreira and Baioa describe the modelling routes of 9th grade 
students in tasks that comprise manipulating and experimenting with real objects. 
They suggest such tasks generate particular kinds of modelling approaches, namely 
in accounting for the role of experimentation in formulating and testing hypotheses 
for a solution to the problem. The results obtained from a group of students dealing 
with the problem of folding cardboard cake boxes showed that while experimenta-
tion may appear to keep students at a level of horizontal mathematisation, the final 
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stages of the modelling process actually indicate the potential of doing experiments 
to promote a deeper conceptual understanding of the problem and of the mathemat-
ical model. Their conclusions indicate that hands-on activities contributed to making 
students familiar with the conditions, relationships and factors involved in the real 
situation and helped them correct and tune the intermediate mathematical models 
underlying their successive attempts to create a model of the folded cake boxes.

Also focusing on students’ modelling routes within realistic mathematics projects, 
Sol, Giménez and Rosich analyse the written reports produced by classes of 
students ranging from 12 to 26 years old. The study highlights the theoretical 
phases and actions of the modelling cycle, as attributed to the expert modeller, and 
compares it with the actions performed by students when working on open-ended real 
problems. The results pointed to the importance of a particular form of mathematical 
knowledge, namely functional reasoning, responsible for advancing the initial steps 
of modelling. Moreover, one fundamental idea regarding students’ knowledge and 
experience concerns the absence of an awareness of the overall modelling process 
that was consistent through age groups. The lack of experience in realistic projects 
and open-ended problems in school mathematics seems to be accountable for the 
students’ limited view of the modelling process and for their transformation in 
a chain of smaller problems. 

Finally Stillman, in linking metacognition with the transitions between the 
modelling stages, offers a detailed investigation on what the modeller does. Drawing 
on the results of a study with secondary school students, she uses the modelling 
cycle as the underpinning frame of analysis and fills it with the cognitive and meta-
cognitive activity that is going on mentally as the modellers work. Stillman points 
out that not all metacognitive acts are productive in the sense of giving a better 
orientation to the modelling process. However, productive metacognitive acts were 
identified at three levels: (1) recognition that particular strategies are relevant, 
(2) choice of the strategy and (3) successful implementation. Not surprisingly, the 
first level is heavily connected with the individual’s assessment of personal resources 
and notably it relates to the personal knowledge and competence with respect to the 
real situation. This raises the issue of scaffolding both for the teacher’s role and for 
the modelling task design regarding the desired balance between students’ imme-
diate possible ideas and their freedom to make decisions about the pathways to 
choose in the modelling process. As Stillman concludes from the data on a group 
of two students creating a model of the best goal opening in a soccer field, it is 
possible to help students to make an optimal use of their metacognitive knowledge 
and strategies within the modelling context. In particular, attention has to be paid 
to the difference between lack of reflection or incorrect and incomplete know ledge. 
As in the revealing transcription of the dialogue between the students and the 
teacher, one central question to be asked in face of a mathematically extracted result 
or conclusion should be the following: “Does that really make sense?”.

In reacting to Stillman’s paper, Borromeo Ferri takes in several developments on 
metacognition to substantiate the importance of carefully examining the notion of 
‘your knowledge’ when referring to young children who do not normally engage 
in a description of their thinking processes. Hence, starting with modelling tasks in 
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primary school should be taken as an important goal both as a way to introduce 
young pupils to the process of solving realistic problems and as a form of initiating 
them into the kind of thinking that is essential to modelling. Indeed the key issue 
seems to be not only in ‘your knowledge’ but beyond that in ‘how you use your 
knowledge’. On the other hand, the ‘metacognitive modelling cycle’, in Borromeo 
Ferri’s terms, seems to be as a vital and strategic instrument to describe modelling 
from the meta-level point of view. However, the profusion of variations on the 
modelling cycle offered in the literature points to the flexible and somewhat adap-
tive nature of the cycle itself. In fact, in one way or another, the various papers in 
this set embrace the modelling cycle as a theoretical and analytical instrument. 
Extending the ideas proposed by Stillman, the presented reaction suggests linking 
knowledge, control and beliefs in the modelling process, emphasising the role of 
the teacher and adopting the modelling cycle to work on describing thinking and 
sharing it with others.

To summarise the overall tone of this collection of papers, a special focus is 
placed on knowledge, meta-knowledge and experience in the process of devising 
mathematical models from rich, inspiring and authentic tasks in mathematics 
classes. From an epistemological point of view, the chapters highlight the human 
nature of modelling and the conceptual and interpretative nature of mathematical 
models. Many other researchers have stressed this essential aspect of modelling 
and have drawn consequences to the educational setting. Let me start by annota-
ting Freudenthal’s (1991) notion of an intermediate model between reality and 
mathematics ensuing from the idealisation and interpretation of reality. Additionally, 
I would refer to the perspective of metaphorical thinking as a lens to understand 
how concepts from mathematics are interconnected with concepts from other 
conceptual systems (Carreira 2001). All the above converge to the view that prior 
knowledge, experience and sense making of the task context are cornerstones in the 
modelling process and give mathematical modelling its subject-centred quality. 
Thus, the interplay between the real world and mathematics in school authentic 
tasks is obviously a decisive matter to be discussed and researched. But certainly 
this has to be done against the background of the culture of mathematics classrooms. 
As Schwarzkopf (2007) argues, students often follow the logic of the classroom 
culture instead of the logic of the problem solving; actually, the opposite is also true 
when blockages are severe enough to hinder the fluid ‘translations’ from one language  
to another language or otherwise from one system of meanings to another one.
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Abstract The importance of reflective metacognitive activity during mathematical 
modelling activity has been recognised by scholars and researchers over the years. 
The metacognitive activity (or lack of it) of secondary students associated with 
transitions between stages in the modelling process – especially in relation to the 
identification and release of blockages to progress – is considered. Productive 
metacognitive acts are identified as occurring at three levels. Routine metacognition 
together with metacognitive responses to Goos’ red flag situations are elaborated 
together with the notion of meta-metacognition being engaged in by teachers trying 
to foster students’ development of independent modelling competencies especially 
their metacognitive competencies.

1  Introduction

Studies in metacognition in Australia on applications and mathematical modelling 
tasks mainly resulted from research on problem solving in the late 1980s and 
early 1990s following on from Schoenfeld’s work on mathematical problem 
solving, in particular, decision making during task solution and links to metacogni-
tion (1985, 1987, 1992). Another influence was the work of Garofalo and Lester 
(1985) and the development of their cognitive/metacognitive framework and its 
use in mathematical problem solving research. Definitions of metacognition and 
operational constructs followed those of Flavell, in particular his characterisation 
of metacognition as:

one’s knowledge concerning one’s own cognitive processes and products or anything related 
to them . . . metacognition refers, among other things, to the active monitoring and consequent 
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regulation and orchestration of these processes in relation to the cognitive objects on which 
they bear, usually in the service of some concrete goal or objective. (Flavell 1976, p. 232)

Flavell’s (1979) model of metacognition and cognitive monitoring has underpinned 
much research on metacognition since he first articulated it. According to his model, 
a person’s ability to control ‘a wide variety of cognitive enterprises occurs through 
the actions and interactions among four classes of phenomena: (a) metacognitive 
knowledge, (b) metacognitive experiences, (c) goals (or tasks), and (d) actions 
(or strategies)’ (p. 906).

Metacognitive knowledge incorporates three interacting categories of knowledge, 
namely, person, task and strategy knowledge. Examples include personal knowl-
edge about oneself as a modeller (e.g. awareness of difficulty in easily formulating 
reasonable estimates), knowledge about task variables (i.e. awareness of task 
characteristics affecting the task solution) and pertinent knowledge about cognitive 
or metacognitive strategies such as awareness of their effectiveness when used in 
the past (see Stillman 2004; Stillman and Galbraith 1998, for further examples in 
the context of mathematical applications).

Metacognitive experiences are any conscious cognitive or affective experiences 
which control or regulate cognitive activity. Efklides (2002) characterises 
metacogni tive experiences as involving feelings and judgements or estimates, such 
as a feeling of difficulty, as a person responds to processing a task prospectively, 
throughout the task, and retrospectively (Efklides et al. 2006). Metacognitive 
experiences ‘inform the person of task processing demands…based on task per-
ception’ and previous experience with similar tasks as well as informing ‘future 
decisions regarding involvement with similar tasks’ (Efklides et al. 2006, p. 16). 
However, metacognitive experiences might not be reliable as ‘it is…the student’s 
perceived difficulty level that guides actions, whether it is correct or not’ (Stillman 
2002, p. 291).

Metacognitive goals are the objectives of any metacognitive activity. An example 
comes from the situation where a student is engaged in mathematical modelling 
and has begun to explore the real world situation and is wondering (metacognitive 
experience) if he or she has adequate domain knowledge of the situation. The student 
then has the metacognitive goal of assessing his/her current knowledge of the 
problem domain. To reach this goal, a metacognitive strategy such as self-questioning 
might be employed. Metacognitive strategies are strategies used to regulate and 
monitor cognitive processes and thus achieve metacognitive goals.

When it comes to solving mathematical applications and engaging in mathematical 
modelling, effective use of metacognition attains crucial importance (Maaß 2007; 
Stillman 2004) as coordination and integration of information and representations 
and allocation of attention resources are vital to efficient functioning of working 
memory during solutions (Carlson et al. 1989, 1990). Executive control decisions 
directed at controlling or monitoring cognitive activities during the application of 
mathematical knowledge or the modelling process may initiate metacognitive 
strategies and monitoring of cognitive progress (Kluwe 1987) informed by meta-
cognitive knowledge.
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2  Modelling and Metacognition

2.1  The Modelling Process and Reflection

The following theoretical framework for studying modelling used in the author’s 
more recent work is oriented towards the modelling individual to give not only a 
better understanding of what the modeller does when attempting modelling 
problems, but also a better basis for teachers’ decision making and interventions. 
Figure 18.1, an adaptation of the cycle used in Stillman et al. (2007), encompasses 
both the task orientation of many diagrammatic representations of the modelling 
cycle and the need to capture what is going on mentally as modellers work on 
modelling tasks. The respective entries A-G represent stages in the modelling 
process, where the thicker arrows signify transitions between the stages, and the 
total solution process is described by following these arrows clockwise around the 
diagram from the top left. It culminates either in the report of a successful modelling 
outcome, or a further cycle of modelling if evaluation indicates that the solution is 
unsatisfactory in some way. The kinds of mental activity that individuals engage in 
as modellers attempt to make the transition from one modelling stage to the next 
are given by the broad descriptors of cognitive activity 1–7 in Fig. 18.1. The double 
headed light arrows emphasise that the modelling process is far from linear, or 
unidirectional as has been confirmed empirically recently by Borromeo Ferri 
(2007) in her reconstructions of students’ modelling routes during task solution in a 
variety of modelling tasks and earlier by Oke and Bajpai (1986) using relationship 
level graphs. The light arrows also indicate the presence of reflective metacognitive 
activity as proposed by several researchers (e.g. Maaß 2007; Stillman and Galbraith 
1998). Such reflective activity can look both forwards and backwards with respect to 
stages in the modelling process, hence the double directional arrows. However, the 

A. Messy  real  
world 
situation

B. Real 
world 
problem
statement

C. Mathematical model D. Mathematic al 
Solution  

E. Real world meaning 
of solution 

F. Revise model or  
Accept solutio n

G. Report 

1 2 3

4

56

7

1. Understanding, structuring, simplifying, interpreting context 
2. Assuming, formulating, mathematising 
3. Working mathematically 
4. Interpreting mathematical output 
5. Comparing, critiquing, validating 
6. Communicating, justifying (if model is deemed satisfactory) 
7. Revisiting the modelling process (if model is deemed unsatisfactory). 

Fig. 18.1 Modelling cycle adapted from (Stillman et al. 2007)
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cycle in the diagram is a simplification as modellers can deviate from the cycle as 
well as backtrack and to capture this diagrammatically leads to a far more complex 
diagram (see Stillman 1998, for such examples).

In modelling, reflection can make sense only when related to mathematical con-
tent and the processing decisions by means of which the content is evoked and 
implemented. Both monitoring and planning are seen as both subject to, and 
 products of, reflection. When considering reflection during the actual activity of 
modelling, it is not viewed as dealing with hindsight because in mathematical 
modelling, the present constantly changes with the phase of the modelling cycle, 
so terms such as past and present and future are temporary and very fluid.

Interest in reflection relates exclusively to its role in facilitating metacognitive 
activity within the modelling process. In the modelling as content approach 
(Stillman and Galbraith, this volume) advocated here, the immediate goal is to 
obtain a solution to a real world problem, but simultaneously and cumulatively, 
there is a desire to develop consistent and robust meta-knowledge about model-
ling and applying mathematics (Blum and Kaiser 1984; Maaß 2007). The educa-
tional goal is for students to become better modellers not just solvers of separate 
problems.

As an illustration, when a Year 9 student who had participated in several 
extended modelling tasks well spaced over a 10-month period (see Galbraith et al. 
2007, for details) was asked what was the teacher’s purpose in using such tasks, his 
response showed that he had developed meta-knowledge about the modelling 
process by engaging in it several times.

Cai:  Probably to give us an understanding of how applied mathematics works. You 
find data, you investigate the data and you investigate any trends in the data 
and if there are any trends; and try and formulate an equation or statement 
about the data which can be used to predict, data that will come, or data that 
can be used, to predict other data outside the given data you found. Applied 
mathematics is needed, is necessary to complete many tasks in the world. And 
sometimes you don’t see that some, even little, even a task such as soccer 
would involve mathematics but in fact it does.

Clearly, this student had developed a well-grounded meta-knowledge about the 
modelling processes he had been involved in. He was a student who did particularly 
well in mathematics and was more used to doing repeated exercises before he 
became involved in the programme, and he was able to appreciate both abstract and 
real world tasks.

Cai:  Real world tasks provide me with an understanding of mathematics in the world 
and how they use mathematics. Abstract tasks are totally abstract and sort of 
stretch your mind a bit further and just sort of have some fun on the paper.

It is expected that the quality of such meta-knowledge developed through 
modelling programmes is related to students’ competencies in modelling with good 
modellers like Cai displaying high meta-knowledge about the modelling process as 
was found by Maaß (2007).
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In the programme adopted in my research, metacognition is located heavily in 
the transitions as metacognitive activity is anticipated as being necessary to monitor 
and contribute to the cognitive activities shown in Fig. 18.1. How teaching 
addresses the fostering of associated metacognitive competencies is crucial to 
achieving the goal of fostering students who can consistently model.

2.2  Meta-Metacognition and Modelling

During mathematical modelling activities in class, the teacher must monitor the 
progress of individuals or groups to intervene strategically only when necessary if 
the ultimate goal is to facilitate independent modelling. Thus, the teacher has to 
appraise the enactment of metacognitive activities by students, for example, 
whether students are undertaking sufficiently perceptive and rigorous reflection in 
consi de ring the approach to, or the quality of, a solution. The teacher reflects on the 
students’  metacognitive activity both within the specific situation and with respect 
to its role in the modelling process. The teacher is thus engaging in a meta-meta-
cognitive process. At the macro-level, how a teacher generally undertakes this 
meta-metacognition with respect to student activities and reacts are crucial to 
whether modelling is nurtured or stifled in the classroom overall whatever the 
teacher’s intentions with respect to mathematical modelling. At the micro-level, 
the capacity of students to develop skills in making transitions between phases 
in the modelling cycle and to release blockages in the solution process depends on 
how they are facilitated in learning and applying the modelling process and meta-
cognitive strategies central to it. This is dependent on the perceptiveness and skill 
with which teachers assess, mediate and provide for the metacognitive activity of 
students during mathematical modelling activities.

2.3  Productive Metacognitive Acts and Modelling

Not all metacognitive acts are productive. Productive metacognitive acts occur at 
three levels during (1) recognition that particular strategies are relevant, (2) choice of 
strategy for implementation and (3) successful implementation. The first level involves 
assessment of personal resources (e.g. knowledge and competence in relation to the 
task). The second involves assessment of viability of alternatives. The third is impacted 
by various sub-competencies of the modeller related to identifying and correcting 
intermediate errors, and procedural efficiency in obtaining a successful solution.

2.3.1  Routine Metacognitive Activity

Depending on the metacognitive stores of students and their perceptiveness in 
using these (i.e. knowing what, how, when and to use these metacognitive knowledge 
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Fig. 18.2 The Shot on Goal Task [SOG] (Image source: http://images.sportsnetwork.com/soccer/ 
wc/2006/stadium/gelsenkirchen.jpg)

1 This task was based on a task originally designed by Ian Edwards, Luther College.

and strategies), this can be manifested as routine metacognitive activity  during 
problem solving.

To illustrate this, the transcript of a videotape of two students (Jim and Ahmed) in a 
Year 9 class is examined. The boys were working as a pair at their desks beside a second 
group of three boys (the first of whom is Ozzie) in the same row of desks on the model-
ling task in Fig. 18.2. They had worked out that in order to find the shot angle, BSC in 
Fig. 18.3, they should use trigonometry. However, Jim, despite being able to recall the 
correct technique of inverse tan, was unable to use this new information as his self-
assessment of his current knowledge revealed he had forgotten how to use it.

Ozzie:  No the angle formula. It’s like reverse, you do that minus one sign. You 
know how to figure out the angle?

Jim: Sine over?
Ozzie: No the angle not the [stops]. It’s like reverse.
Ahmed: Sin?
Jim:  I remember it’s reverse. You do that. Yeah, you do the one on top [point-

ing to tan-1 on his graphing calculator]. [New information]
Jim:  I have forgotten how to do it. Trigonometry is the easiest one. [Assessment 

of resources (knowledge)]

Once they overcame this temporary blockage by consulting their notes from the 
previous semester’s work, Jim’s partner, Ahmed, suggested that an alternative 
strategy might be to use Pythagoras’ Theorem when Jim raised doubts about 
the validity of an interim result. Thus, as they had a second possible strategy to use, 
the boys had to make an assessment of the viability of these alternatives.
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Fig. 18.3 Jim’s representation of the situation being modelled

Jim:  20.75, I don’t think that’s right. (Assessment of Interim Result)
Ahmed:  [laughs] Maybe it’s not Tan [pause].
Jim:  That’s right, that’s a 90 degree angle there. We have to figure out the 

length of there using SOCATOA first. So the hypotenuse is [pause as he 
thinks this through]. Tan… (Assessment of appropriateness of strategy)

Ahmed:  Can’t we use Pythagoras to figure out the hypotenuse?
Jim:  Do we need the hypotenuse? Because if you’ve got the length of that 

right? It has to be the right length or it’s not going to work. (Dismisses 
alternative strategy)

Ahmed: Oh yeah.

Successful implementation was impacted by the boys’ competencies in identify-
ing and correcting intermediate errors. Their procedural efficiency was assisted by 
the use of the calculator.
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Ahmed: So this always has to say 10 [distance from near post to run line.]
Jim: So that should be 10?
Ahmed: Yeah. That’s what I did.
Jim: Did you? I thought I did…
Ahmed: You did yours as 10 as well.
Jim: Did I?
Ahmed: Yeah. You just wrote 15 there.
Jim:  We have to…[looking and pointing at where he has done a by-hand 

calculation.]
Ahmed: Jim, did you have breakfast?
Jim:  Yes, I did, Ahmed. [Jim works on his graphing calculator checking his 

calculation.] Maybe I did do 10. I just wrote 15. [Confirms error.]
Ahmed: Yes. I did every calculation after you, Jim, so I know.

2.3.2  Responses to Red Flag Situations

Goos (1998) associated metacognitive success with productive responses to ‘red 
flag situations’. Red flags are metacognitive triggers ‘when students become aware 
of specific difficulties’ (p. 226). Red flag situations occur when there is lack of 
progress, errors occur and are detected, and anomalous results arise as shown in 
these three examples respectively where they are accompanied routinely by meta-
cognitive monitoring.

Jim: I think no one has got past this question. [Assessment of progress]
Jim:  [to Ahmed] That was the old stuff, that’s wrong. [Red flag – detection of 

error]
Ozzie: You do tan that.
Jim:  You can’t because that’s my answer. It doesn’t make sense. I tried it. It ends 

up being negative 40. [Red flag —anomalous result]

In modelling, situations such as these that should result in a red flag being raised 
could result in blockages, so the nature of the modeller’s response to the situation 
is crucial. Responses by modellers to such situations where there is the potential 
for a red flag situation to arise could be: (1) routine metacognition, (2) meta-
cognitive blind ness, (3) metacognitive vandalism, (4) metacognitive mirages or  
(5) metacognitive misdirection. Instances of routine metacognition were illustrated 
in Sect. 2.3.1.

Metacognitive blindness occurs when a red flag situation is not recognised, so 
no appropriate action is taken. The modellers fail to notice something is wrong, 
persisting with a wrong strategy and/or overlooking calculation errors. For exam-
ple, at one point in their modelling, Ahmed and Jim were trying to find the marked 
angle in Fig. 18.4 using inverse tan.

Ahmed: The opposite?
Jim:  That angle [referring to the marked angle] so it is 20 over 10. [Error – 

mixing opposite and adjacent sides of triangle.]
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Ahmed: Yeah.
Jim: [works out tan−1(20/10)] So it is 63. [long pause]
Ahmed:  To find this angle would you still use 20 over, that would still be right, 

wouldn’t it? [Checking procedure]
Jim: No that’s to figure out that…
Ahmed: That’s to figure out that ‘cause that’s 20 [pause] Like that one’s 20?
Jim: Yeah the other one would be wrong.
Ahmed:  The top one’s wrong, yeah [meaning the side length marked 10 on their 

diagram]. [pause as he works tan−1(20/10) on graphing calculator] So it’s 
63.43.

The boys engaged in routine monitoring by checking the procedure but failed to 
recognise that an error was made to the input.

Metacognitive vandalism occurs when the response to a perceived red flag 
involves taking drastic and often destructive actions that may not only fail to 
address the issue, but also alter the task itself.

Metacognitive mirage describes a situation when unnecessary actions are taken 
that derail a solution, because the modellers perceive a difficulty that does not exist. 
Summer and Sui, for example, were working on the same task together but had 
been given distances by their teacher from the near goal post to the run line of 11 
and 12 m, respectively. They had calculated shot angles for spots 20, 15, 10 and 5 m 
from the goal line when Summer asked if she could compare her answers to Sui’s. 
Summer’s angles were 13.68°, 14.44°, 39.76° and 9.17° whereas Sui’s were 13.05°, 
13.51°, 12.44° and 8.11°.

Summer:  Can I check my answers? Awh, yours is different. They are nearly the 
same [meaning their angle values for 20 m, 15 m and 5 m].

Sui: Is there a problem?
Summer:  These are kind of similar. Yours should be more than mine shouldn’t 

it? I definitely got that one wrong [the angle for 10 m]. [Pause] No they 
are both less [referring to the component angles used in the calculation]. 
This one is wrong [indicating her angle of 86.88° from the runline to the 
far goal post as it is much larger than Sui’s 62.63°]. [Metacognitive red 
flag recognised.]

Fig. 18.4 Jim’s diagram with 
angle marked
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Sui:  No, I think some of mine are wrong because the first one with 20 was 
less than that [for 15 m]. [metacognitive mirage]

Summer:  Yeah, see I got this one was more than that [indicating her shot angle for 
15 m was also larger than for 20 m]. [metacognitive mirage dismissed]

Metacognitive blindness, vandalism and mirage were all described by Goos 
(1998). To cover all responses observed in classrooms, however, there needs to be 
another category of responses, metacognitive misdirection. Metacognitive misdi-
rection describes the common situation of a potentially relevant but inappropriate 
response to a perceived red flag that represents inadequacy, rather than vandalism.

From a teaching perspective, if teachers are going to be able to engage in meta-
metacognition effectively, it is important that they be aware of the nature of both 
routine and non-productive metacognitive acts such as those described that have 
been observed to occur during modelling especially when trying to encourage 
development of students’ reflective metacognitive activity.

3  Development of Modellers’ Reflective Metacognitive  
Activity Through Meta-Metacognition

At this point, attention to reflection relates exclusively to its role in facilitating meta-
cognitive activity within the modelling process. Teachers use a variety of strategies 
to attempt to initiate reflective activities in students. The process foreshadowed 
earlier of the teacher engaging in reflecting on the students’ metacognitive activity 
with respect to the current task and their development of metacognitive competencies 
with respect to the modelling process comes to the fore. This meta-metacognition 
can be related to (a) task design and (b) teacher decisions about scaffolding of 
implementation, pre-planned intervention activities and actions on the fly. How 
desirable or appropriate these are from the perspective of developing modelling 
competencies and meta-knowledge of students (as in Sect. 2.1) depends on the 
teacher’s pedagogical content knowledge/mathematical content knowledge about 
modelling at this level of schooling and their ability to respond quickly to sudden 
realisations of possibilities and opportunities.

In task booklets, for example, when beginning a programme of modelling, 
reflective questions can be inserted at strategic points to provoke students to pause 
and reflect on their immediate progress in relation to the total modelling purpose as 
shown in Fig. 18.5. Some young students, such as 13 year-old Cai, do realise the 
task writer’s intention for such activities and appreciate their self-regulatory activity 
being scaffolded, but they also want the freedom that comes as the scaffolding is 
faded across a series of tasks so that they can make their own decisions about 
their modelling pathways. When Cai was asked if he liked doing such reflective 
questions he replied:

Cai:  To an extent, yes, but if there are too many questions you are sort of led along 
a certain path and you cannot, say, try and formulate your own theories, put 
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it forward and see if they are correct or not but interpretive questions to a 
good extent are very useful I think.... and this task [SOG] had less pointers, 
had less pointers to what you should do next. It sort of gave you more think-
ing space.

Others, however, were oblivious to these purposes; so, this becomes another 
consideration for the teacher – how to convey the pedagogical intentions to young 
students of modelling and its relation to the other mathematical activities in which 
they engage in the classroom.

If teachers are teaching reflective learning, when they decide to intervene with 
students who are experiencing a persistent blockage to their progress, they try to 
alter first the student’s current mental model through reflection and then the actions 
of the student. Meta-metacognition plays a significant role in this process as is 
shown in the following example.

Three students, Stella, Mia and Gabi, who were working as a group on the Shot 
on Goal task encountered a persistent blockage although for most of the time they 
were in a state of metacognitive blindness with respect to this. They used an incor-
rect specification for their model (see Fig. 18.6) but metacognitive red flags when 
they were presented with conflicting results only served to increase their belief in 
the validity of their model. They were so convinced that their particular model was 
correct they did everything possible other than review their model.

This trio made genuine attempts at all reflection questions; however, the end 
result was that they forced their data into fitting with their formulation, rather than 
revising their model. In response to the question: Initially, what was your belief 
about angle size for the Shot On Goal as you moved closer to the goal line along 
the run line? Stella wrote, ‘Initially, I believed the angle would get smaller because 
it was a tighter angle to score a goal so I thought the angle would be smaller.’  
In response to: Have the calculation results confirmed or refuted your initial 
beliefs? Stella wrote, ‘No!’ Meaning they were not confirmed as indicated by video 
evidence. However, she explained this contradiction away by writing ‘As you run 

Fig. 18.5 Reflective activity
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a b c

Fig. 18.7 Representing the shot angle

Fig. 18.6 Mia’s diagram for finding the shot angle

along the run line towards the goal the angle got bigger because you’d have to 
turn more in order to face the goal.’ The angle she was talking about was angle 
ASG on Mia’s diagram when in fact she was supposed to be finding angle BSC.

It was not until after they had been working on the task in mathematics lessons 
for 2 days that any chink in the defence of their model began to appear as they were 
puzzled by an apparent need in the task sheet for a multi-step process to find the 
shot angle whereas they had found their angle in one step. They called the teacher 
over, and in the discussion that ensued, it became apparent that they had not done 
things in the way the teacher had. Both the group and the teacher saw the angle 
marked in Fig. 18.7a as representing the angle they were finding, but the teacher’s 
interpretation was that the angle was to the goal posts covering the entire face of 
the goal as in Fig. 18.7b whereas the girls saw it as covering only half of the goal 
face as in Fig. 18.7c. As Mia pointed out: ‘But we didn’t do it like that, we didn’t 
do it for the whole goal.’ The girls saw this as an alternative representation of the 
problem – not an incorrect specification of the angle. The bell rang to end the lesson 
at this point; so, the teacher had overnight to consider what he might do. This 
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clearly gave him time to reflect on the nature of their mental representation and to 
weigh up how best to facilitate their reflection on their own model to realise its 
shortcomings for themselves.

Throughout the modelling sessions there had been a dynamic geometry display 
(Fig. 18.8a) projected onto the whiteboard at the front of the room which the 
teacher had used at the beginning of the mathematics sessions each day to bring 
the class together and look at possibilities together in relation to their representa-
tion of the situation. The girls were observed making use of this display on several 
occa sions in their discussions of the task as they were seated at the front of the 
room. The teacher came prepared with a dynamic geometry diagram (Fig. 18.8b) 
to represent their model which had the subtle, but insightful, change of a midpoint, 
M, marked between the points representing the bases of the goal posts. The girls 
had also had time to reflect and were unconvinced that they needed to change their 
model at all with Gabi, in particular, suggesting that it would not have to be 
changed. Mia also declared that she did not see there was anything wrong with 
their model.

The teacher used the software dynamically to show them how unsatisfactory 
their model was by allowing them to realise that the maximum for their angle would 
occur on the goal line. As the girls clung to their mental model until the final 
moment when they finally had to admit it did not make sense, the teacher had to 
allow them to make this connection as they reflected on what they were seeing on 
the display, how this connected to their model and how this connected to the real 
situation of shooting a goal on a soccer field as a player moved towards the goal 
line on such a run line.

Teacher:  So you are calculating that angle to the mid-point, aren’t you? Is that 
what you’re doing? Let’s move along a bit. [On the computer the teacher 
moves the point, A, representing where the shot will be taken closer to 
the goal line along the run line SA.]

Stella: Isn’t that what we are meant to do?

Fig. 18.8 Dynamic geometry representations of the situation being modelled
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Teacher: Is it getting bigger?
Stella: Yeah.
Teacher: Okay. So when is your angle going to be at it’s maximum?
Stella: When it is like right up close. When it is like right up close to A.
Teacher: Yeah, so when you measure it. [Starts measuring the angle using GSP.]
Stella: What are we doing?
Teacher: So at the moment it is 41 degrees.
Stella & Mia: Yeah.
Teacher: So, let’s move a little bit closer.
Stella:  [excitedly] Oh my god, I was right! [Believing their model was 

correct.]
Teacher:  Now it is up to 69, it’s quite a big one isn’t it? All right. So move a bit 

closer. It is up to 85.
Mia: It is still harder.
Teacher: Where’s the best place to take the shot?
Stella: Not there. [Realising there is an inconsistency with the real situation.]
Teacher: A, isn’t it? What would the angle be when you’re at A?
Mia: 180 degrees [sic].
Teacher: Well, what’s it getting close to at the moment?
Gabi: 90.
Teacher: How about a little bit further?
Gabi: All right. [Conceding their model must be wrong.]
Stella: I knew that.
Teacher:  [Runs S through the goal line off the field.] Too far, all right, back in. But 

yes, so according to your model, the best place to take the shot would be 
from A wouldn’t it? Does that really make sense?

Stella: No.
Mia: No it doesn’t. [Agreeing their model leads to an incongruity.]

As has been pointed out previously in (Stillman et al. 2010, p. 395), this is 

an example of resistance of schemas to the need for accommodation in Piagetian terms. 
These students persisted in attempting to assimilate, rather than accommodate, (Piaget 
1950) new contradictory information into their chosen [model], and resisted the necessity 
to consider the [model] itself as deficient – the students engaged in cognitive dissonance 
(Atherton 2003; Festinger 1957) which prevented them from activating procedures to 
unblock their progress.

From a teaching perspective, the teacher had to distinguish between blockages 
induced by lack of reflection, or incorrect or incomplete knowledge, and those 
involving the need to revise schemas. It is contended that he was able to do this by 
engaging in the process of meta-metacognition where he considered both the 
students’ mental models and their metacognitive activity as observed by himself 
during their modelling activity to this point. Meta-metacognition allowed him to 
recognise the type of intervention needed to overcome this blockage that resulted 
from a resistance to accommodate new contradictory information, not a lack of 
reflection on the part of the students. Understanding and identifying blockages as 
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well as the metacognitive activity in which their students engage are crucially 
important for teachers as they facilitate students’ development as independent 
mathematical modellers.

4  Conclusions

The focus of this chapter has not been on the nature of specific metacognitive strate-
gies and metacognitive knowledge displayed or used by secondary students when 
engaging with mathematical applications or during mathematical modelling activi-
ties. Rather, interest has been in illustrating the meta-knowledge about modelling and 
application of mathematics to real world tasks and the types of productive and non-
productive metacognitive responses that students might exhibit in such situations for 
the purpose of informing teaching decision making through reflective activity in the 
form of meta-metacognition. What is desired is orchestration by teachers of the opti-
mal use by their student modellers of metacognitive knowledge and strategies so as 
to develop students’ competencies in their productive use of these within the model-
ling context to obtain not only a satisfactory outcome to the current modelling activity 
but also to further their long-term reflective activity for modelling purposes.
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1  Meta-Cognition – A Fuzzy Word?

In this chapter, I comment on the paper by Stillman on “Applying metacognitive 
knowledge and strategies in applications and modelling tasks in secondary 
school.” In her paper, Stillman highlighted very important aspects concerning 
learning, teaching, and understanding modelling in the classroom. It is again 
impressive to see which important role meta-cognitive-activity plays while model-
ling and also to note that not all meta-cognitive acts are productive for getting a 
solution. It is quite common that the field of research in meta-cognition is very 
wide. A lot of research can be found concerning meta-cognition and problem 
solving. There also exists research on mathematical modelling and meta-cognition, 
as it was pointed out in the paper and the described project is a wonderful example 
for this. In my opinion, it is important that we have to learn a lot more on how 
several aspects of meta-cognition interplay with the learning and understanding 
of mathematical modelling. So, in my view, one central result of the study of 
Stillman et al. is that (productive) meta-cognitive activities can be seen as key for 
effective modelling behavior without “blockages,” respectively for providing 
“blockages.” Because I see this also as one important goal for teaching and learning 
mathematical modelling, it will be the starting point of my commentary as well.  
In the following lines, I discuss the paper by Stillman on the basis of well-known 
research areas of meta-cognition.

In the eighties of the last century, Schoenfeld discussed in his well-known article 
“What’s all the fuss about metacognition” the contributions by Henry Pollak and 
others after the Second Conference on Problem Solving, challenging the fuzzy 
word “meta-cognition”. Schoenfeld rephrased this critique as follows:

Meta-cognition is a buzzword for your researchers…The word has been used in almost 
every talk…But the plain fact is that it’s jargon doesn’t communicate anything to us  
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non-researchers…If meta-cognition is so important you have a responsibility to explain to 
us …all in clear language that we can understand. (Schoenfeld 1987, p. 189)

Schoenfeld defined meta-cognition and explained why it is important and he 
also made clear that research on meta-cognition focuses on three related but distinct 
categories of intellectual behavior, namely:

Your knowledge about your own thought processes. How accurate are you in describing 
your own thinking?

Control, or self regulation. How well do you keep track of what you‘re doing when 
(for example) your‘re solving problems, and how well (if at all) do you use the input from 
those observations to guide your problem solving actions?

Beliefs and intuition. What ideas do you bring to your work in mathematics, and how 
does that shape the way that you do mathematics? (Schoenfeld 1987, p. 190)

In the current discussion on meta-cognition in mathematical education (Veenmann 
(2006) or Mevarech et al. (2006)), meta-cognition can be differentiated into two 
central components: meta-cognitive knowledge and meta-cognitive processes or 
skills. But you can integrate these components also in the three research areas 
Schoenfeld differentiated. I will use these three components for my line of argu-
mentation – to be more concrete: I like to sum up some theoretical and empirical 
ideas on how these components and their connections can promote effective model-
ling without “blockages.”

2  Effective Modelling Without Blockages: But How?

I like to start with the first component: “Your Knowledge.” There is a large body of 
research on this aspect. But to sum it up with Schoenfelds words:

The research indicates that children are not very good at describing their own mental abili-
ties, but that they get better (though nowhere near perfect) as they get older. (Schoenfeld 
1987, p. 190)

In the paper of Stillman, it became obvious that the presence of meta-cognitive 
activity has been confirmed by young modelers, young means modelers of grade 
7–9. Stillman made clear that teachers use a variety of strategies to attempt to initi-
ate such reflective activities in students. My question is: Why don’t we request 
primary teachers to use these strategies as soon as possible? Starting with model-
ling in early age groups could help the youngest to learn and to describe their own 
thinking processes with the help of the teacher so that they can recognize that these 
reflections can be helpful for solving modelling tasks. This could be a wonderful 
beginning for early age groups.

Modelling activity in primary school is an exception in Germany for example, 
but as we know from research of Lesh (Lesh and Doerr 2003), English (2006) 
and others, it is important to start with modelling in primary school. These young 
pupils do not only learn to solve such realistic tasks; but also they get an idea, or is 
it better to say a feeling, of the way of thinking which is essential for modelling. 
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That is a good basis for learning to describe our own thinking processes on the one 
hand but on the other hand for the teacher of course hard work, because he or she 
has to explain how to describe own thinking processes in general and concerning 
the modelling process. So my opinion is that the teacher is engaged in a meta-meta-
cognitive process as well because the pupils and teachers have to talk about meta-
cognition itself and how it can be adopted specially on the modelling process.

I turn to the aspect o control, or self-regulation. The former aspect “Your knowl-
edge” can be seen as an important basis, but “It is not only what you know, but how 
you use is that matters” in Schoenfeld’s (1987, p. 190) words so to speak. So, pupils 
have to think about management issues, for example, the time management while 
working on complex modelling tasks and so on. In most cases, modelling tasks are 
solved in groups of pupils, which makes sense, because even in reality, complex 
problems are not solved alone. I think the way groups of pupils work together on 
modelling tasks is important, for this can promote or hinder applying meta- 
cognitive activities like the meta-cognitive skills, which are task analysis, planning, 
monitoring, checking, and reflections (see e.g., Veenman 2006).

Stillman pointed out which meta-cognitive acts could be productive, so the 
recognition and the choice of a strategy are relevant. That is what Schoenfeld 
means with “how you use is that matters.” But there is another important aspect 
Stillman mentioned for discussion: “A focus on the modelling cycle that explicitly 
includes recognition of a modeller’s non-linear process, the presence of metacogni-
tive activity at each part of the process has identified a potential means to overcome 
blockages of low intensity – genuine reflection.”

My question here is: How does this, I call it “meta-cognitive cycle,” look like for 
practical issues?

The first thing which comes to my mind is taking a modelling cycle as a strategic 
instrument and a necessary “material for modelling,” because solving processes for 
modelling tasks are described on a meta-level simultaneously. But which kind of 
modelling cycle can be appropriate especially for including meta-cognitive activity 
at each part of the process? You can find a lot of different cycles in the discussion 
on modelling for every purpose (Borromeo Ferri 2006). Kaiser (2005) and also 
Maaß (2007) pointed out that a cycle with four phases can be seen as a good 
instrument for building meta-cognitive modelling competency. Blum (2007) cre-
ated within the DISUM-project, a so-called solution plan for modelling tasks in 
which the general skills fit in perfectly. Of course, this is a helpful instrument, but 
it does not guarantee that meta-cognitive acts will be productive or that relevant 
strategies will be recognized and implemented successfully at the end. I think the 
connection between the knowledge about the cycle from a normative and descrip-
tive perspective and the related “sub-competencies” which I would call the heart or 
content of the cycle is crucial. Furthermore, if “sub-competencies” are considered 
as strategies besides “meta-cognitive strategies,” this should be a good basis for 
providing blockages of high intensity. There is so much more to say about that 
aspect, but I will change to the last one: beliefs and intuition. In my opinion, this 
aspect will enrich some thoughts Stillman pointed out, in particular the following 
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one, because beliefs and intuitions have also central impacts on the development of 
blockages and concerning the level:

“Analysis has led us to infer the cause of the more robust blockages that are 
different in type and cognitive demand and what type of intervention is needed to 
overcome them.”

Maaß (2007) and other researchers showed on an empirical basis that imple-
menting mathematical modelling tasks in mathematics lessons can change mathe-
matical beliefs of pupils over time. In general discussions there are different views, 
if the person variables, except for the universals of cognition, are better seen as 
motivational constructs rather than as meta-cognitive ones. Other researchers have 
integrated the motivational variables in their meta-cognitive models.

The basic argument is that strategy-based actions directly influence self-concept,  
attitudes about learning and attributional beliefs about personal control. (Borkowski et al. 
1990, p. 54)

In turn, these personal motivational states determine the course of new strategy 
acquisition and, more importantly, the likelihood of strategy transfer and the quality 
of self-understanding about the nature and the function of mental processes. 
Implications, especially practical ones, are not really easy to characterize, because 
the belief system of an individual is very complex as it is known. The part of the 
teacher is a crucial one, as Stillman made clear. Nevertheless, a practical idea 
for effective modelling is exploring with the pupils questions like “What does 
mathematics mean to me?” or supporting reflections like “What is the relationship 
between myself and mathematics”? or “How do I like to learn and understand 
mathematics in the best way?” This is again a discussion on the meta-level. I think 
that this debate could be very helpful to get a clearer view for pupils: why there 
could be blockages while solving modelling tasks. That is a good point for connect-
ing all the three aspects.

3  Connecting and Acting

Beliefs and intuitions can be very powerful for effective modelling as I mentioned 
earlier, because belief systems are one’s mathematical worldview and the perspec-
tive with which one approaches mathematics and mathematical tasks.

Beliefs establish the context within which resources, heuristics, and control operate. 
(Schoenfeld 1985, p. 45)

Knowledge about meta-cognitive skills and relevant strategies or sub-competencies 
is on the one hand important, but on the other hand one’s own beliefs about math-
ematics can determine how one chooses to approach problems, which of these 
techniques will be used or avoided, and how long and how hard one will work on 
it. The connection between “Your Knowledge” and “Control” was already mentioned 
at the beginning, so the knowledge about my own thoughts is a basis for meta- 
cognition, but the decision, and that is what I want to stress, is important as well.
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Let me briefly sum up my theoretical and practical ideas for supporting an 
effective modelling behavior of our students, so that “blockages” can be avoided: 
All three aspects, “Your Knowledge,” “Control,” and “Beliefs” must be connected 
and supported through the help of the teacher. If you want your students to do a 
cooperative learning task, for example, you have to learn with them the method of 
doing that. That is the same with meta-cognition: Pupils have to learn how to 
describe their thinking processes and how to share them with others in the group. 
Especially in mathematical modelling, the modelling cycle is a wonderful instru-
ment for that. Pupils do not think about their relationship between themselves and 
mathematics normally. So, teachers have to give them suggestions to think about 
that.

Applying meta-cognitive activities while modelling must be a central part of 
learning and teaching modelling starting in early ages.
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Abstract It is claimed, students’ communication of their solutions to modelling 
tasks gives insight into the depth of their mathematical understandings and how 
they use prior knowledge of the context of a task in their solution. In the example 
given, both students, Tabitha and Tanya, take an integrating approach to dealing 
with mathematics and reality in such tasks and their manner of dealing with the 
context of real world tasks remained stable from Year 9 to Year 11. In addition, 
communicative artefacts required by the tasks help reveal the students’ deepening 
understanding of mathematics.

School modelling tasks by their nature involve “some genuine link(s)” with a real 
world context (Galbraith 2007, p. 55), this in turn requires some level of complexity 
of mathematical thinking – higher order thinking – when attempting to solve such 
tasks. This then suggests students’ communication of their solutions to modelling 
tasks may allow insight into their mathematical understanding and that nontrivial 
solution attempts to such tasks should be indicative of deep understanding which 
might have developed during engagement with the task, or the complexity of the 
task, by its very nature, allows this deep understanding to be demonstrated. Of 
importance are the relationships existing between mathematical modelling [MM] 
and mathematical understanding. The study reported here explores this relationship 
in addressing: What aspects of MM support demonstration or deepening of under-
standing of mathematics?

Three approaches to analysing such tasks will be employed in investigating 
this assertion. The first is the use of prior knowledge of task context based on the 
work of Stillman (2000). The second is the application of Busse’s (2005) typology 
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of ideal types when dealing with such contexts. Both of these will be linked to 
notions of higher order thinking. Finally, a framework for higher order thinking 
developed by the first author for analysing student understanding of functions in a 
technology-rich teaching and learning environment (TRTLE) (Brown 2007) is used 
as an integrating lens.

1  Prior Knowledge of Task Context

In school modelling and applications tasks, the explicit sources of information are 
the problem statement and any included visual representations (graphs, tables, dia-
grams, etc.). These sources provide data to the task solver, which may be relevant, 
however, “not all data in the problem presentation will have the same strength in 
cueing facts, concepts, processes, prior experiences, semantic knowledge (Tulving 
1985) or metacognitive knowledge, and strategies (Stillman and Galbraith 1998) 
from long-term memory” (Stillman 2000, p. 335).

The source of prior knowledge of task context was used by Stillman (2000,  
p. 333) to classify such knowledge as (a) academic, that is, “vicarious experiences 
in other academic subject areas,” (b) encyclopaedic – “general encyclopaedic 
knowledge of the world,” or (c) episodic – “truly experiential knowledge developed 
from personal experiences outside school or in practical school subjects”. Stillman 
(2000) details a range of purposes reported by students for using prior knowledge. 
These include: enhancing understanding, by confirming other forms of prior 
knowledge, developing a mental picture, and visualizing; enabling the student to 
relate to the context (making the student comfortable with the task, confirming fea-
sibility of the task); enhancing decision making during execution, selecting a math-
ematical model including choo sing between two mathematical options; and 
facilitating the checking of progress, by keeping the student on track or judging the 
reasonableness of interim or final results.

In a study investigating senior secondary mathematics students’ approaches 
to, and performance on, applications tasks, Stillman (1998) did not find a clear 
link between high engagement with the task context and the level of success on a 
task. However, “moderate to high engagement with the task was not often associ-
ated with poor performance” (p. 51). In addition, “poor performance was more 
likely to be associated with no to low engagement” (p. 51). In most cases prior 
knowledge enhanced students’ understanding of, and engagement with, the task.  
In some cases “prior knowledge was used to check progress or the reasonableness 
of interim or final results”. There were “few cases where prior knowledge was 
actually used to enhance decision making, facilitating students’ selection of an 
appropriate mathematical model or choice between two mathematical options” 
(Stillman 2000, p. 335).

Stillman (1998) reports two conditions upper secondary students in her study 
believed helped them engage with the context of a task. These were having an 
objective to work towards, and a sense of realism in the task. An example of the 
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first occurred where students engaged in a Road Accident Problem “were required 
to check if a driver was telling the truth about the speed of a car involved in an 
accident” (p. 63). By a sense of realism, Stillman was referring to students reporting 
they believed the task was realistic.

2  Ways of Dealing with the Context

A second relevant study was undertaken by Busse (2005) with eight upper  
secondary students in Germany. Busse reported that “students deal very individually 
with the context” (p. 354) of a task. His study of 16–17-year-old students (2 female 
and 2 male pairs from 4 schools) addressed the question of “how an individual 
deals with the context and how the context in a given task-text is internalised”  
(p. 354). He identified four ideal types, allowing him to contrast the actual behaviour 
of individuals at a given point in time against the ideal type. Busse derived his ideal 
types by considering how the task solver dealt with “reality on the one hand and 
mathematics on the other hand” (p. 355) and the way they were related to each 
other. Busse’s four ideal types are: reality bound, mathematics bound, integrating, 
and ambivalent.

A reality-bound approach would not entail the application of mathematical 
methods, rather extramathematical concepts and methods would be used. 
A mathematics-bound approach takes the context of a realistic task as decoration; 
therefore, the task must be solved by mathematics exclusively. An integrating 
approach is indicated by the use of both mathematical methods and personal know-
ledge of the task context beyond that stated in the mathematical solution of the task. 
An ambivalent approach means neither the mathematical nor extramathematical 
methods are given precedence in the solution and both mathematics and reality 
aspects of the task are perceived but not synthesised.

For brevity, only one type, integrating, will be discussed in depth as it was found 
to be sufficient for our analytical purpose. However, from a modelling perspective, 
this describes a critically important way of thinking as both mathematics and reality 
are considered in task solving. It is in the integrating ideal type that the task solver 
uses “contextual ideas in productive combination with mathematical methods” 
(Busse 2005, p. 356). Here Busse draws on the work of Stillman (1998, 2000) and 
the use of prior knowledge of the task context to support problem solution. Task 
solvers draw on the context of the task both in mathematising the problem situation 
and in validating the solution. Busse points out it is not clear whether displaying a 
typical way of dealing with task context is a constant characteristic of a modeller 
or if it is more related to the context in which the modelling or application task 
is set, suggesting that “the types are not necessarily invariably linked to persons” 
(p. 358). Hence, his categories describe way(s) of dealing with the context, rather 
than task solvers. However, Busse (2005) notes gender differences in his study, two 
of four females, but none of the four males were assigned to the ambivalent cate-
gory. In contrast, three of the four males (and none of the females) were assigned 
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to the integrating type based on their approaches to a Home for aged people task. 
This is in agreement with the findings of Kaiser-Messmer (1993) that gender 
differences exist in student preferences for particular contexts.

3  Higher Order Thinking

Higher order thinking in its simplest terms can be used to describe thinking beyond 
the retrieval of information, that is, any transformation of information (Baker 1990, 
p. 7). However, Resnick (1987) would strongly caution against a misinterpretation 
of the notion of higher order thinking as suggesting that there is some lower 
order thinking that must precede this. She argues that higher order thinking should 
be occurring at all levels of development. The term has also been used to describe 
communication skills, reasoning skills (Romberg et al. 1990), and metacognitive 
skills (Baker). Clearly, deep understanding involves thinking processes related 
to subject knowledge and this knowledge includes interactions of strategic, proce-
dural, and content (or declarative) knowledge (Baker). Romberg et al. in elaborating 
on higher order thinking in mathematics proposed it involves some, but not neces-
sarily all (at a particular point in time), of the following: a solution path that is not 
initially obvious, its complex nature, a tendency for multiple rather than unique 
solutions, judgment and interpretation, application of multiple and possibly con-
flicting criteria, uncertainty (not everything required is given), the imposition of 
meaning, effort, and finally, an essential element is the self-regulation of thinking 
(pp. 22–23). Self-regulation is part of the metacognitive competencies necessary 
for successful modelling (Maab 2006).

In considering higher order thinking when students are engaged in tasks invol-
ving functions in a technology-rich teaching and learning environment (TRTLE), 
the first author as part of a larger study1 (e.g., Brown 2007) developed the follow-
ing framework – to be used in searching for evidence of higher order thinking.  
In light of the above, this is taken to mean instances where there is evidence that 
a student appropriately makes choices about the solution path (e.g., decisions 
about processes, representations, technology use and type); makes links across 
representations; expects to verify a conjectured solution; appreciates the value of, 
or need for, verification; is aware of the value of verification occurring in a yet 
unused representation or in multiple representations; and/or differentiates 
between global verification and local checking. Clearly, these are crucial for  
student success in modelling and applications tasks in secondary school 
mathematics.

1 Jill Brown was a doctoral student of University of Melbourne on Australian Research Council 
funded Linkage Project – LP0453701 when these data were collected.
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4  Methods

The main study, from which the data are drawn, follows a qualitative inquiry where 
a case-based approach (Stake 2005) was adopted, with the units of analysis being 
individual students. This is an intrinsic case study where “case study serves to help 
us understand the phenomena or relationships within it”. The case or cases studied 
play “a supportive role [as they are] facilitat[ing] our understanding of something 
else” (p. 445), here, the depth of understanding shown by students as they engage 
with the context of modelling tasks and the higher order thinking involved as their 
solution progresses.

Two students, Tabitha and Tanya, were selected from the larger study. They were 
selected for pragmatic reasons – both were in the same Year 9 class, taught by the 
second author, both high performing in mathematics, both female, and both were in 
the larger research study which occurred when they were in Year 11.

The students’ responses to two tasks are the basis for the data collection. The 
first task is an open modelling task designed by the classroom teacher. However, as 
noted by the teacher, constraints of external assessment by examination loom large 
in upper secondary; hence the second task designed by the first author, although 
attempted 2 years after the first task, involved more structured modelling. Data 
for this analysis includes student scripts, and for the second task also includes 
recordings of graphing calculator screens used by students during modelling, 
post-task interviews, and for Tabitha audio and video recording during solution of 
the modelling task.

4.1  The Tasks

The first task, Tommy Tinn’s Trout Farm [TT], sees environmental issues and  
concerns impinging on economic models, whereas in the second task, Save the 
Platypus [PP], environmental issues and concerns impact on population models. Both 
tasks are set in the local geographical environment of the school which is near the base 
of the Dandenong Ranges close to the imaginary setting of the trout farm, although 
there are trout farms in the area, and close to the Yarra River, the home of platypus.

Whereas in the Road Accident Problem, used by Stillman (1998), the situation 
saw students being given a benchmark against which to test results, both tasks in 
this study provided an objective, albeit of a different nature. In TT, students had to 
write a letter to the fishery manager recommending one of four proposed farming 
strategies, whereas in PP, they were required to examine the results of a mathemati-
cal analysis of the data and make recommendations about the continuation of an 
intervention project, in the form of a powerpoint presentation. Additional details 
are shown in Fig. 20.1.

The teacher’s rationale for developing and implementing the TT task was: “if 
mathematics teachers fill the allotted time with drilling their students in routine 
operations, they kill their interest, hamper their intellectual development, and 
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misuse their great opportunity.” However, if they challenge the curiosity of their 
students by setting them problems proportionate to their knowledge, and help them 
to solve their problems with stimulating questions, they may give them a taste for, 
and some means of independent thinking. To facilitate this, the task required stu-
dents to suggest appropriate management procedures for a potential new fishery. 
The teacher believes “mathematics does not readily produce artefacts which can 
display the originality and versatility of students’ creative energies. For this reason, 
the opportunities for students to see the results of others should be seized.” The TT 
report is proposed as an exemplar of this approach. He argues, “prior to focusing 
on this approach, the final report (received from his students) would be minimal. 
Little evaluation of results was attempted. Subsequently, the complexity of the 
mathematics and incorporation of the mathematics to validate opinion have 
increased. The need to have a single correct answer is gone.”

5  Findings

5.1  Evidence of Prior Knowledge of Task Context

In identifying the use of prior knowledge by the students in the Year 9 task, it was 
found that whilst both students activated prior knowledge differences in the source 

2: Fishing permitted. Total catch allowed for all fishing licenses is 1800 fish per year.
3: One approved contractor licensed to remove up to 2500 fish each season.
4: Permit  the  fish  population to reach 25000 fish, then issue and monitor amateur
fishing licenses that would maintain fish stock at this level.

Platypus in Danger (Year 11 task)
The platypus is an endangered species that may become extinct unless action is taken to
save it. An annual survey held in a nearby national park showed an alarming decrease
in the number of platypus over the years 1993-1998. Two sets of data representing a
platypus population before and after an intervention project, were presented.  Find a
model  to  represent platypus numbers over time for both data  sets.  Questions then
considered included: Did the intervention improve the situation, what was the predicted
population a decade later, and When would the population return to the initial value?  

Tommy Tinn’s Trout Farm (Year 9 task) 
A lake in a Lilydale National Park was stocked with approximately 10000 trout. In
similar lakes, when left to natural factors trout numbers increase on average by 20% per
year.  For the fishery to remain viable there  needs to be  at  least 750 fish in the lake.
Overpopulation can cause a dramatic fish kill, where up to 95% of the fish stock may
die.  The  carrying  capacity  of the lake is assumed to be approximately  5  times the
current capacity of 10000 fish. Consider the 4 strategies and make a recommendation.
1: Do nothing  to  disrupt  with the normal population control of the fish in the lake.
Fishing in the lake shall be on a catch and release basis.  

Fig. 20.1 Further details of the Tommy Tinn Trout Farm and the Save the Platypus Task



19320 Modelling Tasks: Insight into Mathematical Understanding

were identified (see Table 20.1). Both used encyclopedic prior knowledge, but for 
different purposes. Both used it to enhance decision making during execution, for 
example, when Tanya made reasonable estimates and Tabitha introduced alternative 
ideas as she argued it is more humane to control the fish population by fishing than 
to allow overcrowding and subsequent mass fish deaths. In addition, Tanya used 
this type of prior knowledge to enable her to relate to the task context. For Tabitha, 
encyclopedic prior knowledge was also used to enhance her understanding and 
decision making. Only Tabitha showed academic prior knowledge, activating it to 
enhance understanding and to allow her to relate to the task context. No episodic 
prior knowledge was evident for either student.

In identifying the use of prior knowledge by the students in the Year 11 task, 
again differences in the source were noticed (see Table 20.1). Both used encyclo-
pedic knowledge, again only Tabitha used academic prior knowledge and neither 
used episodic knowledge. Both used encyclopedic knowledge for facilitating 
checking of their progress. In addition, Tanya used it to relate to the task context, 
and Tabitha to facilitate checking of her progress and to enhance her understanding. 
In addition, Tanya used academic prior knowledge, for selecting her mathematical 
model (in conjunction with mathematical knowledge), and to enhance decision 
making during execution.

5.2  Busse’s Ideal Types

Following Busse’s schema, both students’ actions were classified as dealing  
with both tasks in an integrating way. In each task, both students applied math-
ematical methods to solve the task in conjunction with perceiving the task to be 
realistic. Both brought prior knowledge of the task context to support their task 
solution. In TT, Tanya considered the use of the Trout Farm as a nature park to 
increase income particularly in the years when the proposed strategies resulted in 
little income. She proposed charging for fish by weight, then rejected this strategy, 
“even though some trout will be heavier and worth more than $8, on the average, 
this is the right price, and will cause fewer hassles with price.” In PP, she was so 

Table 20.1 Identification of student use of prior knowledge in the tasks

Student

Type and use of prior knowledge in TT and PP task

Academic Encyclopaedic

Tanya – Enhancing decision making [TT]
Enables student to relate to context [both]
Facilitates the checking of progress [PP]

Tabitha Enhances understanding [TT] Enhancing decision making [both]
Enables student to relate to context [TT] Facilitates the checking of progress [PP]
Selects mathematical model [PP] Enhances understanding [PP]
Enhancing decision making [PP]
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concerned with saving the platypus from extinction that she deliberately constructed 
a mathematical model that predicted their survival. Tabitha, on the other hand, dis-
cussed the need to consider the costs involved in maintaining the lake and feeding 
the trout in TT. She proposed a bag limit for fishers, and considered a strategy 
resulting in mass fish deaths as inhumane. In PP, she realised a population is 
 technically extinct before it reaches zero, and used this in her mathematical 
analysis. Both used a range of mathematical methods to their solutions, thus 
“using contextual ideas in productive combination with mathematical methods” 
(Busse 2005, p. 356).

Certainly their way of dealing with tasks was influenced by teachers and 
teaching, however, when offered the opportunity an integrated approach was taken 
and enjoyed – much to Tanya’s surprise – as in (her Year 11 mathematics) class, she 
tended to focus on actions resulting in positive teacher feedback rather than her 
engagement with a task per se. When asked in the post-task interview what she 
thought of the second task, her response indicated that not only did she appreciate 
undertaking the task, she spontaneously made connections with the mathematics 
she engaged in happily in Year 9. I thought it was all right, … No, it was good.  
It was like what I did when I was doing Year 9. When Tabitha was asked what she 
thought of tasks like Platypus compared to other mathematics tasks she had done 
in mathematics, she replied:

I actually found it enjoyable to do this kind of thing. It is challenging and it puts to work 
the ability to decide where [pause] like you have got so many mathematical tools at your 
disposal and to be able to find out how you can apply them and how to know when to use 
them and that kind of thing.

She also elaborated on her thinking:

As I was going through all of this [indicating her solution], … I started to think, ‘Surely 
something positive should be occurring here’ and then I started to doubt my exponential 
function, yeah. So then I went through the whole presentation with the exponential models 
because that was what I had gotten but then on reflection I decided that perhaps that 
wasn’t the best models to be using.

5.3  Modelling and Higher Order Thinking

The focus of the analysis presented next is on the use of context and the demonstra-
tion of higher order thinking by the students during modelling tasks. The intention 
of the teacher, in his Year 9 task selection, was for students to have a series of rich 
enjoyable tasks where they were working mathematically from their knowledge 
base to a new level of expertise (Edwards 2005). He aimed to set tasks that 
addressed multiple concepts that provided opportunities for concepts to be strongly 
connected to students’ understandings to form deeper understanding of the con-
nections within mathematics and with the real world. He always asked himself: 
Are there sufficient opportunities where students can propose alternate pathways 
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for the investigation? This suggests that one teacher aim was to have his students 
engage in tasks that allowed opportunities for higher order thinking. However, as 
the data for the first task was limited to the student script, it was not possible to 
analyse the students’ approaches to this task using the Higher Order Thinking 
Framework. This was however possible for the second task as shown in Table 20.2, 
where clear differences between the students are evident.

Tabitha displayed all categories in the Higher Order Thinking Framework. 
However, for Tanya, evidence was found for only two of the six categories, 
namely, making choices about her solution path, and that she expected to verify 
a conjectured solution. Figure 20.2 shows an example, based on the interview 
and task script, where Tabitha demonstrates awareness of the value of verifica-
tion occurring in multiple representations as she checks her intermediate solu-
tion, a model for the data, both graphically and numerically. In the interview she 
explained:

I did a STATPLOT of the data and checked the function [graph] against it .… Yes, this is 
by eye and then calculating values and finding out [pause] what kind of agreement 
between the values there was. … I had the actual values of data and then I used the CALC 
function.… For that point on the graph.… I could work out percentage differences. Yeah,  
I checked that it fitted the points and it did fit the points very well.

Table 20.2 Evidence of higher order thinking

Higher order thinking Tanya Tabitha

(a) Makes choices about her/his solution path (processes, representations, 
technology use and type);

Yes Yes

(b) Makes links across representations; No Yes
(c) Expects to verify a conjectured solution; Yes Yes
(d) Appreciates the value of or need for verification; No Yes
(e) Is aware of the value of verification occurring in a yet unused 

representation or in multiple representations;
No Yes

(f) Differentiates between global verification and local checking No Yes

Fig. 20.2 Evidence of higher order thinking
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6  Discussion and Conclusion

Both tasks in this study had an objective to work towards, built into the task design, 
and both were found by students to be realistic – mirroring the conditions identified 
by Stillman (1998) to help students engage with task context. Both students drew on 
their prior knowledge for a range of purposes. Similarly to Stillman (2000),  
prior knowledge of task context was used to enhance understanding of, and 
 engagement with, the task. Tanya drew only on encyclopaedic knowledge whereas 
Tabitha also drew on academic prior knowledge. There was evidence that both 
students used prior knowledge to enhance decision making and to relate to the 
context in both tasks, and to facilitate the checking of progress in the PP task. 
Tabitha also activated prior knowledge to enhance understanding in both tasks and 
to facilitate selection of her model [PP task]. Thus, both drew on prior knowledge 
for a range of purposes that facilitated their modelling.

Building on this engagement with the task context saw both students responding 
to both task contexts in an integrating fashion. Given the gender of these students, 
this is in contrast to Busse’s findings. In Busse’s study (2005), no female students 
were identified as dealing with the task context in an integrating way but both were 
in this study. Furthermore, this appears to be a stable approach for these two stu-
dents from Year 9 to Year 11, although it is acknowledged only two tasks have been 
considered. Clearly modelling tasks such as these allow students to deepen their 
understanding of mathematics. Both students in this study integrated mathematics 
and the real world in their approach to the task. That both took an integrating 
approach is further evidence of a deeper understanding of modelling. Communication 
artefacts allowed the demonstration of this deepening understanding – the letter 
allowed the teacher and researcher greater insight, whereas the powerpoint presen-
tation was more time efficient. Thus, both were useful aspects of the modelling task 
making deepening understanding transparent.

One might suspect that the Tommy Tinn Trout Farm Task where students are 
presented with the basis of a model and assume the role of having to report the most 
appropriate strategy to the manager almost imposes engagement with task context 
through task design. However, Gruenwald et al. (2007) have demonstrated with 
engineering students that such design features, of themselves, do not ensure 
engagement.

The differences in type and use of prior knowledge and the integrating approach 
to the task context were echoed and expanded in the analysis based on the higher 
order thinking framework. For Tabitha, evidence of each thinking category was 
evident. In contrast, Tanya made choices about her solution path, but there was no 
evidence indicating she made connections across representations, even for verifica-
tion purposes, nor did she appear to differentiate between global verification and 
local checking.

Modelling tasks, particularly those with the required communication artefacts 
described in this chapter, provide opportunities for the development of mathematical 
understanding – as mathematical and additional prior knowledge of the context are 
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integrated. In addition, they provide opportunities for revealing this deep under-
standing. The setting of modelling tasks in a technology-rich teaching and learning 
environment facilitated these opportunities – for further examination of this point, 
see Brown (2007). However, not all modellers take up these opportunities to the 
same extent.

References

Baker, E. (1990). Developing comprehensive assessments of higher order thinking. In G. Kulm 
(Ed.), Assessing higher order thinking in mathematics (pp. 7–20). Washington: American 
Association for the Advancement of Science.

Brown, J. (2007). Early notions of functions in a technology-rich teaching and learning  
environment (TRTLE). In J. Watson & K. Beswick (Eds.), Proceedings of MERGA30 (Vol. 1, 
pp. 153–162). Adelaide: MERGA.

Busse, A. (2005). Individual ways of dealing with the context of realistic tasks – First steps 
towards a typology. Zentralblatt für Didaktik der Mathematik, 37(5), 354–360.

Edwards, I. (2005). New wine in old skins. In W. Moroney & C. Stocks (Eds.), Quality mathe-
matics in the middle years (pp. 73–81). Adelaide: AAMT.

Galbraith, P. (2007). Dreaming a ‘possible dream’: More windmills to conquer. In C. Haines,  
P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering 
and economics (pp. 44–62). Chichester: Horwood.

Gruenwald, N., Sauerbier, G., Zverkova, T., & Klymchuk, S. (2007). Models of ecology in  
teaching engineering mathematics. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), 
Mathematical modelling: Education, engineering and economics (pp. 314–322). Chichester: 
Horwood.

Kaiser-Messmer, G. (1993). Results of an empirical study into gender differences in attitudes 
towards mathematics. Educational Studies in Mathematics, 25, 209–233.

Maab, K. (2006). What are modelling competencies? Zentralblatt für Didaktik der Mathematik, 
38(2), 113–142.

Resnick, L. B. (1987). Education and learning to think. Washington: National Academy Press.
Romberg, T., Zarinna, A., & Collis, K. (1990). A new world view of mathematics. In G. Kulm 

(Ed.), Assessing higher order thinking in mathematics (pp. 21–38). Washington: American 
Association for the Advancement of Science.

Stake, R. (2005). Qualitative case studies. In N. Denzin & Y. Lincoln (Eds.), The Sage handbook 
of qualitative research (3rd ed., pp. 443–466). Thousand Oaks: Sage.

Stillman, G. (1998). Engagement with task context of application tasks: Student performance and 
teacher beliefs. Nordic Studies in Mathematics Education, 6(3–4), 51–70.

Stillman, G. (2000). Impact of prior knowledge of task context on approaches to applications 
tasks. Journal of Mathematical Behavior, 19(1), 333–361.



199G. Kaiser et al. (eds.), Trends in Teaching and Learning of Mathematical Modelling, 
International Perspectives on the Teaching and Learning of Mathematical Modelling,  
DOI 10.1007/978-94-007-0910-2_21, © Springer Science+Business Media B.V. 2011

Abstract In our research, we aim to look at the notion of knowledge as it is elicited 
through mathematical modelling of daily life situations, within the context of adult 
education. In the school scenario of adult education, notions from situated cogni-
tion will be brought into play to examine the meaning of mathematisation and of 
mathematical modelling competence. The empirical data refer to a 2-month period 
of work on the theme of cookery, one that was chosen by the students. Data were 
collected in a school environment within the subject “Mathematics for Life”,  
a course in Adult Education, for certification of compulsory general education  
(i.e., 9th grade in regular school).

1  Introduction

The concept of mathematical literacy has been evolving over time. The PISA 2003 
(OECD 2004) defines mathematical literacy as

an individual’s capacity to identify and understand the role that mathematics plays in the 
world, to make wellfounded judgements and to use and engage with mathematics in ways 
that meet the needs of that individual’s life as a constructive, concerned and reflective 
citizen. (p. 37)

Matos (2002) stresses that literacy “focuses on knowledge used by adults in daily 
life matters, while basic school knowledge is essentially about newly acquired ideas, 
inserted in a school context, despite being expected to become applied in students’ 
future life” (p. 3). Zevenbergen (2002) talks about three levels of numeracy: technical 
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numeracy, where basis skills can be seen as central (mastery of calculation processes, 
measuring); practical knowing (being able to apply the technical knowledge in a 
context); and critical knowledge (using numeracy in the development of social and 
ideological critique). Accordingly, there are many forms of numeracy needed today, 
requiring significant shifts from traditional numeracy mainly aimed at basic skills.

The Portuguese Agency for Adult Education and Qualification states that nowadays 
to be mathematically competent means to know how to solve problems and to deal 
with real situations. One of the tenets of Adult Education courses is to value adults’ 
life experiences, viewed as major resources for their formative learning process. 
So, curricular guidelines recommend considering such contributions in organizing 
learning through genuine problem solving. While acknowledging the importance 
of adults’ knowledge and experience, we intend to address specific questions con-
cerning the nature of knowledge. This is a matter whose complexity has been 
rightly postulated: “I regard ‘adults and mathematics’ as a complex subject for 
mathematics education, whether the focus be in teaching, learning, or knowledge 
(Wedege 1999, p. 206)”.

In our work, we have selected an overarching problem: “What elements of the 
modelling process are mostly affected by the scope of adults’ mathematical literacy 
and reversely by their social, professional or personal ways of dealing with reality?”

2  Theoretical Framework

2.1  A Discussion on the Real World

Developing mathematics education for adults, namely with a target on mathematical 
literacy, and endorsing the perspective of modelling daily life situations to generate 
mathematical competencies, involves dealing with the issues of context and practice.

Mathematics classrooms in adult education are expected to promote adults’ 
professional, social and daily life experiences. The aim is to call upon the stu-
dents’ lived-in world, because it means a useful path for students’ mathematical 
practice. However, another version of the real world, not less important than the 
former and certainly valuable too, appears in our classrooms, when frequently, we 
figure it, that is, we try to convert the lived-in world into a particular schooled 
environment – the figured world of the classroom, as described by Boaler (2000). 
This idea echoes an important clarification offered by Wedege (1999) that distin-
guishes the different pedagogical meanings assigned to context: the task-context 
and the situation-context. The task-context for a particular problem may be the 
same, yet the problem can be tackled differently depending on the situations where 
the individuals are participating in.

Our theoretical framework intends to connect a socio-cultural view on knowledge 
(based on situated cognition) and a modelling perspective where the modelling cycle 
is central and includes a fundamental element broadly named “reality”. One of our 
purposes is to call upon the theory on modelling and applications, since there is not 
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“a total paradigm or a ‘grand narrative’ concerning adults and mathematics” 
(Wedege 1999, p. 208). With real life eliciting problems, the production of bridges 
between different ways of perceiving the world and acting in it becomes essential. 
The classroom’s figured worlds are key elements in the process of knowing and 
thus have to be minded. Recognising barriers and specificities of practices across 
contexts and social organizations becomes a precondition. Yet the possibility of 
integrating different forms of knowledge and experiences has also to be seen as 
feasible.

Those who support abstract procedure repetition as the most efficient way to learn mathe-
matics (Becker and Jacob 2000) overlook the fact that students are not only learning an 
efficient set of procedures, but an esoteric set of practices that are not well represented 
outside of mathematics classrooms. (Boaler 2000, p. 4)

Whilst the neo-Vygotskian work recognizes context specificity, it, perhaps allows insuffi-
cient room for leakage between contexts. (Dowling 1991, p. 116)

The above contrasting claims place a strong challenge in looking for a way out of 
the tension between specificity and permeability of contexts and practices. Therefore, 
examining how knowledge may be conceptualised is one of our concerns.

2.2  Knowledge, Practice and Context

Situated perspectives recognize learning as a social phenomenon constituted in the 
experienced, lived-in world, through legitimate peripheral participation in ongoing 
social practices. Lave (1988) highlights the existing discontinuities between mathe-
matical practices in and out of school. Such discontinuities are a clear sign that 
mathematics learning belongs to different social practices when in school or out of 
school. Whilst we may find similarities in the problems of both practices, we also 
notice that school methods often become inaccessible. In fact, Lave mentions the 
fact that adults, in their daily lives, usually do not resort to algorithms learned at 
school to solve problems. In contrast with schooling, other practices are experi-
enced in a concrete way, where adults can control their activities, interact with the 
environment, and enjoy the freedom of choosing the solving processes. Lave and 
Wenger (1991) also explain the relation between participation and learning: 
Learning takes place in communities of practice which are the most adequate places 
to obtain knowledge; and practice is the specific knowledge that is developed and 
shared in the community. As pointed out by Wedege (1999), from this standpoint, 
meaning is not created by the individual but has a relational character that refers to 
the concrete connectedness of the activity.

As the well-known study Adult Math Project (Lave 1988) revealed, by observ-
ing adults who failed in formal school settings while acting in a competent way in 
everyday life settings, the meaning varies as the situation-context varies. This 
immediately raises the question of transfer; that is, the application of knowledge 
from school contexts to work or everyday life and vice versa (Evans 2000).
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Concerning the question of knowledge transfer, three different positions can be 
outlined (Carreira et al. 2002; Evans 2000; Muller and Taylor 1995):

 1. Boundaries between practices are impermeable; transfer is something at odds 
with situated learning; knowledge is located in the social practice, not in the 
individual.

 2. Despite the frontiers between practices, knowledge is always the same and 
naturally flows from each practice to the other; knowledge is located in the 
individual who simply has acquired it or not (if someone holds a particular 
knowledge, then she will apply it in any context).

 3. The transfer of knowledge is possible but problematic; boundaries exist yet they 
can be crossed; transfer depends on the individual but not exclusively (boundary 
crossing is a process of establishing chains of signification).

Following Evans (2000), chains of signification derive from people’s interpre-
tations and the ways they make sense of the problem situation. Eventually, 
depending on the task-contexts, chains are interrupted and part of the teacher’s 
role includes to restore and remake them (e.g., in promoting dialogue within the 
class and among students). A related account on repairing the breakdowns between 
discourses is offered by Williams and Wake (2004), who speak about bridging the 
gaps between mathematical practices and discourses through the introduction of 
signs (like metaphors) to “afford ‘new’ links between signs which result in new 
chains and interpretants, and hence meaning and understanding” (p. 414). Such 
diverse discourses are difficult to isolate in ordinary life activities where clear-cut 
problems are not present.

2.3  A Connection with Modelling and Competence

Mathematical competence can be defined as “someone’s insightful readiness to act 
in response to a certain kind of mathematical challenge of a given situation” 
(Blomhøj and Jensen 2007, p. 47). In particular, mathematical modelling competence 
would consist of one particular mathematical competence and could be described 
as “someone’s insightful readiness to carry through all parts of a mathematical 
modelling process in a certain context” (Blomhøj and Jensen 2007, p. 48).

Drawing on Blomhøj and Jensen (2007), we devised a picture of the modelling 
cycle (Fig. 21.1) that we find suitable for our analysis. Some mathematical mod-
elling features like mathematization (transforming something that is not mathe-
matical into another which is), critical interpretation (decoding given information), 
manipulation (ability and skill to handle mathematical and non-mathematical 
entities), and communication (continuous interplay between participants) will be 
examined for the intervention of knowledge.

In parallel, we will assume the constructed nature of competence as explored by 
Gresalfi et al. (2009). They problematise the general view on competence that attri-
butes a number of skills, abilities or dispositions to individuals apart from the specific 
contexts in which they participate. The redefined concept of competence consists of 
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something that gets constructed in particular classrooms. It is locally and individually 
defined through participation with the teacher and the other students. Therefore, “the 
teacher is not the only participant who is able to shape the construction of competence 
in a classroom; students also play a role in the negotiation” (Gresalfi et al. 2009,  
p. 51). In their view, the idea of distribution of agency is vital:

An individual’s agency refers to the way in which he or she acts, or refrains from acting, 
and the way in which her or his action contributes to the joint action of the group in which 
he or she is participating. (p. 53)

Therefore, when returning to the modelling cycle, as presented in Fig. 21.1, a 
number of questions emerge. How is the competence to decode the task defined? 
Who is accountable for making the transition from the figured world to the lived-in 
world? How is the distribution of agency in giving meaning to mathematical and 
non-mathematical entities? What is the knowledge that is introduced in the mathe-
matical analysis of the problem? How does individuals’ knowledge play a role in 
validation? What kinds of agency can students exercise: offer an idea, critique an 
idea, engage in argumentation, contribute to sense making, find solutions, and settle 
for the results?

3  Methodology and Data Analysis

As in the work of Gresalfi et al. (2009), we offer a micro-analysis of adult students 
engaged in a modelling task and look at how the modelling competence depends on 
the task, and on the agency and accountability with which students are positioned.

Three classes of Adult Education courses (only one third of the adults, which 
represents about 17 students with a regular assiduity), organized in five groups of 
3–4 students were involved in this case study. Students’ ages as well as social and 

Fig. 21.1 Modelling cycle
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professional backgrounds were wide-ranging. The empirical data were collected in 
a 2-month period of the school-year (when working on the theme of “Cookery”). 
During this period, several tasks were proposed: each of them taking in average two 
90 minutes lessons to be solved. Our present analysis focuses in just one of the 
tasks – “Making Margaritas” (Fig. 21.2) – carried out by group 2.

This research adopts a qualitative approach, in the form of case study. Data 
were gathered through participant observation and individual questionnaires to all 
participants (before and following the task developed). With these questionnaires, 
we acquired information on professional and life experiences, and previous knowl-
edge relevant to the proposed problems. Audio records of groups and whole class 
dialogues, photographs, documents from the sessions, and field notes were also 
collected.

The purpose is to look at the notion of knowledge as it is elicited through mathe-
matical modelling of daily life situations in adult education. The empirical data 
are analysed and discussed in light of the concepts described in the theoretical 
framework. Students’ activity is segmented into several pieces that are thoroughly 
examined in search of the presence of different types of knowledge and of the 
constructed competence.

4  Results

4.1  Students’ First Chains of Meanings

Students’ initial idea was seeing all recipes as identical, since they all had the same 
three ingredients. Understanding the different proportions in each recipe was a critical 

Fig. 21.2 Margarita task
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obstacle. The representation of the given ratios was not familiar to the students.  
So, they started to give meaning to the numbers by making a simple association. 
Then, the values given could mean quantities, but the absence of volume units was 
problematic.

4.2  Responses to Question 1 – Number Magnitude

The answer to question 1 was based on the magnitude of the number rather than on 
proportion. Student A6, for example, looked at the number 7 in the ratio 7:4:3 and 
realised it was the larger number that was assigned to tequila in all the recipes 
(see Fig. 21.3). No concept of ratio or part/whole relation is used. However, she 
knows that tequila is the major drink in a Margarita. This was the only student who 
had tried it before.

4.3  A “Different” Answer in the Group

Another adult student (A4) justified her answer with her knowledge of “concentra-
tion”. She took the notion of mixture and she started to compare 1 portion of orange 
liquor to 3 of tequila (recipe C) with 4 portions of orange liquor to 7 of tequila – recipe 
IBA (see Fig. 21.4). She tried to find out which one was the most concentrated and 
thought about it for a while but soon she abandoned her thinking in face of the more 
knowledgeable mate – the one who had already tasted Margaritas.

Fig. 21.3 Answer to question 1 – A6

Fig. 21.4 Answer to question 1 – A4
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4.4  Responses to Question 2 – The Best Flavour

Sometime in her life, this adult (A6) had actually tried Margaritas; therefore, she 
justified her judgement about the lighter tequila flavour based on her life-experience. 
She also realised that the reciped (1:1:1) was the only one where tequila was not 
predominant, and therefore, she spoke of a balance (Fig. 21.5).

4.5  Explaining to the Group – The Medium Flavour

She continued to analyse the recipes in terms of her life-experience focusing on 
issues that she knew of, like acidity, to decide about the less intense flavour of 
tequila (Fig. 21.6).

4.6  Responses to Question 3 – The Size of the Glass

The concrete materials available (Fig. 21.7) turned out to be helpful to overcome 
difficulties (millilitre, centilitre, c.c. were considered). The group decided that one 
portion would be 5 ml. They did not care about the size of the Margarita glass. In 
fact, this unity was suggested by a mother in the group based on the amount of 
medicine that she used to give to her children.

Fig. 21.5 Answer to question 2 – A6

Fig. 21.6 Additional justification – A6
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Later on, students felt the need to know the size of a real glass of Margarita; each 
group had a different sized and shaped glass.

A4: These glasses should take about half a litre…
A4: Are these cocktails served in big or small doses?
A4: Millilitres are too short for this glass, aren’t they?

After some discussion, they decided to change the amount of one portion from 
5 to 50 ml (total volume of the measuring glass). With some luck, they succeeded 
in their trial, filling up the glass without any waste (Fig. 21.8).

4.7  Responses to Question 4 – Part/Whole Relation Versus  
a Total of 120

Question 4 motivated a long discussion in the class, as the dialogue shows:

 T: Tell me about the relation between the orange liquor and the lemon juice, 
in the recipe A.

 A4: There is no difference. They are equal.
 A6: It’s the same.

Fig. 21.8 Answer to question 3

Fig. 21.7 Groups with materials
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 T: Ah… it’s the same. If I tell you that this recipe A takes 5 glasses of 
lemon juice, then how many glasses of orange liquor will it take?

 A6: Five.
 T: And how many glasses of tequila?
A4 & A6: Ten.
 T: It is the double. So, I have 5 glasses of lemon juice, another 5 of orange 

liquor and 10 of tequila. I shake it all together and I get a mixture that 
would give us… How many glasses of Margarita?

 A5: 120 glasses.
 T: No, I mean in this particular example.
 A6: 20 glasses.
 T: But is that what I want? 20 glasses of Margarita?
 A4: No. You want 120 glasses.
 A6: In that case, it’s 6 times more, isn’t it? 20 times 6 are 120.

After the discussion, students could only solve the question for recipes A 
(60:30:30) and D (40:40:40). They knew that the total number of glasses had to be 
120. In recipe B, students associated 1 part of lemon juice with 30 glasses, 2 parts 
of orange liquor with 60 glasses, and finally, just by adding, they assigned the 
additional 30 glasses to tequila in order to get a total of 120. Additive reasoning 
overrode proportion, thus exhibiting a difficulty that is well documented in numerous 
studies on proportional reasoning.

5  Discussion and Final Comments

We argue that mathematical tasks, even those that make some kind of reference to 
real situations – like the recipes for Margaritas – are part of a figured world. The 
questions posed have an underlying mathematical model, which we will call a ratio 
model. Regardless of the fact that students have several liquids, glasses and measur-
ing glasses to perform experiments, ratio and proportionality are a central element 
of the task. Behind the production of Margaritas and the inquiry about the stronger 
or the lighter flavour of tequila, there is a mathematical discourse involved. The 
proportion model says very little and rather symbolically about making Margaritas. 
Therefore, the language of proportions means a high and thick boundary between 
the figured world and the lived-in world of making Margaritas.

Students’ first encounter with the task seems to show how boundaries can be prob-
lematic. The situation presented mentions a Margarita, a drink made of several ingre-
dients according to different mathematically coded recipes. When the mathematical 
point of view is too inaccessible, experience from the lived-in world comes into play. 
Being one in the group who has tried a Margarita allocates agency and involves 
revealing knowledge: the balanced mixture, the acidity of the lemon, the best flavour. 
Someone who had used measuring cups for taking a medicine represents another 
agency: it offers a possible idea for a volume unit. Knowledge crosses into the figured 
world, even if colliding with the intended mathematics in the domain of inquiry.
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“Making Margaritas” was devised to promote students’ experience with ideas, 
objects and tools where mathematics was blended. However, a removal from the lived-
in world was always induced. The final question in the task can actually be seen as a 
typical school mathematics problem. Hence, the use and relevance of life-knowledge 
depends on what people see as reality and has clear implications in the modelling com-
petence shown. Transfer of knowledge also relates to the meaning given to the “model”. 
In that sense, an analysis of the model may become other than mathematical.
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Abstract The present study is a classroom-based research where students develop 
mathematical modelling tasks that involve manipulating and experimenting with 
real objects. The research was developed in two 9th grade classes of students 
aged 14/15 years old. These students never had this kind of modelling activities in 
their mathematics classes before. Our purpose is to discuss the modelling routes 
produced by middle school students in an experimental mathematics environment 
– both from the point of view of realistic mathematics education and of the model-
eliciting perspective.

1  Introduction

The modelling cycle, as described in mainstream approaches of Applications and 
Modelling, consists of a sequence of stages: identification of the real problem, 
formulation of the mathematical model, production of the mathematical solution or 
solutions from the mathematical model, interpretation of the solutions, evaluation 
of the solutions in terms of the real setting, and, if necessary, the revision of the 
model and a new cycle performed. Finally, a report with the results and analysis of 
the problem is produced (Blum and Niss 1991; Niss et al. 2007). In this chapter, 
we intend to see how hands-on experience in situations that involve using and 
manipulating objects to solve real problems has a role in students’ modelling 
thinking and in their modelling routes. In particular, the real object and  furthermore 
manipulation and experimentation are seen as a powerful tool to “find” an answer 
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to the problem. In a sense, we are exploring the possibility of seeing experimental 
mathematics as a particular kind of modelling of real situations in school mathe-
matics. This perspective is being explored by other researchers on mathematical 
modelling and applications to support mathematics education (see Alsina 2002, 
2007; Bonotto and Basso 2001; Halverscheid 2008). Yet, as remarked by Alsina 
(2002), hands-on materials have been generally neglected on the basis of their 
irrelevance to levels of teaching other than the very elementary ones. Refusing this 
argument, the author claims:

If we want to show applications and modelling procedures, we can find in our home-made 
materials great opportunities to bring ‘real’ objects into the class and to provoke an 
experimental research approach by modelling by means of specific materials. (p. 246)

2  Connecting Modelling to Experimentation  
in Mathematics Classroom

2.1  From the Point of View of Mathematics Education

The introduction of mathematical modelling in mathematics teaching and learning 
has been advocated on the basis of different arguments. In particular, from the five 
arguments to include mathematical modelling in curricula presented by Blum and 
Niss (1991), we find the following three especially important in our work:

•	 The formative argument (emphasised in the Portuguese curricula) – modelling is a 
means to develop students’ general skills and attitudes, namely, problem-solving 
ability, inquiring attitudes, creativity, mathematical reasoning and communication.

•	 The picture of mathematics argument – modelling helps to provide students with 
a richer and wider picture of mathematics, in all its facets, as a science and as a 
field of activity in society.

•	 The learning of mathematics argument – modelling assists students’ learning of 
mathematical concepts and procedures; in particular, it strengthens mathematics 
understanding when it is applied to new problem situations.

The use of real objects and the process of experimentation in mathematics learning 
meet the above arguments, namely, the development of inquiring attitudes, the image 
of mathematics as useful and relevant to interpret daily instruments as well as the 
concreteness of mathematical ideas in real world environments. Additionally, we see 
modelling activities as considerably “rich” mathematical contexts in the sense that they 
typically include three important components from a mathematical thinking point of 
view: problem solving, investigating/exploring, validating and extending solutions.

Modelling activities involve a goal (finding an answer), focusing on some part 
of the world, finding patterns, devising an adjusted and good model, testing and 
validating the solutions and also analysing extensions of the model. Having this 
in mind, we claim that the manipulation of real objects is a way to engage in a 
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mathematical activity closer to the experimental sciences methods, with the model-
ling purpose being to produce and/or explain particular features of real and common 
objects, by means of hands-on and conceptual work.

2.2  From the Point of View of Learning by Doing

Real objects, real places and real challenges may play an important role in mathe-
matical modelling when moving towards manipulation and experience and reducing 
the “talk & chalk” (Alsina 2007, p. 35). Interesting modelling activities can focus 
on objects, instruments, and everyday situations. But objects motivate a concrete 
visual approach to mathematics giving students the opportunity to explore the 
potentials and limitations of tangible things when trying out their properties and 
characteristics (Alsina 2007).

In this respect, Bonotto (2007) argues that mathematical facts embedded in 
cultural artefacts and in everyday life are relevant to students as they offer refe-
rences to concrete situations. The dual nature of artefacts – belonging to the world 
of everyday life and to the world of symbols – gives children the opportunity to 
recognize situations as mathematical or more precisely as mathematizable situa-
tions. In a similar tone, Vos and Kuiper (2002) note that manipulatives are useful to 
organise hands-on activities that link mathematics to other areas because mental 
acts (manipulation of objects in the mind) develop from material acts (manipulation 
of tangible objects). An experimental investigative approach to real situations by 
modelling, as proposed by Alsina (2002), is coherent with the perspective on 
experimental modelling environments described by Halverscheid (2008). The latter 
realises the need to build a local conceptual framework for the construction of 
mathematical knowledge in learning environments with experiments, in a study of 
pre-service teachers’ activity with the motion of a ball on a circular billiard table. 
The meaning and role of experiments is clearly identified:

Experiments, which the students themselves carry out, are considered when the task is  
to explain the experiments by setting up a suitable mathematical model. (Halverscheid 
2008, p. 225).

Experiments related to mathematics find their natural place in the framework of modelling 
because they represent ‘the rest of the world’ for which mathematical models are built. 
(Halverscheid 2008, p. 226).

Learning by doing (Dewey 1938/1997) emerges as a natural learning perspective 
when we look at modelling as a kind of work closer to the methods of experimental 
sciences.

Although experiments as such may be considered typical for science rather than mathematics, 
many mathematical activities representations and models are strongly connected with 
experiments. (Halverscheid 2008, p. 225).

According to Dewey, experience as a basis for education must be one that posi-
tively influences future experiences in productive and creative ways. And experiences 
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in education take up something from past learning and change subsequent learning in 
some way. So, the educator needs to see in what direction an experience is heading 
(Dewey 1938/1997). Experience is the result of a transaction between us and 
what constitutes our environment at the time. Environment is therefore part of the 
situation.

In summary, the possibility of seeing experiments with real objects as a parti-
cular kind of modelling stems from the following facts: (1) Students have the 
opportunity of learning by doing (while performing actual manipulation and experi-
mentation and engaging in conjecturing and validation). (2) Working on physical 
concrete materials is a way of inquiry into the mathematical properties of objects. 
(3) To investigate through experimentation reflects on mental actions and on past 
and subsequent learning of mathematical ideas and becomes a way to develop 
understanding of mathematical models.

In our theoretical approach, we then embrace the possibility of connecting 
modelling to experimentation and consider the implications of such an approach in 
different theoretical perspectives on applications and modelling in mathematics 
teaching, namely, realistic mathematics education and model-eliciting perspective.

3  Theoretical Perspectives on Applications and Modelling

Realistic Mathematics Education (RME) is a teaching and learning theory in math-
ematics rooted in Freudenthal’s interpretation of mathematics as a human activity 
through mathematizing. The process of mathematization includes both horizontal 
and vertical developments. Freudenthal (1991) states that horizontal mathematization 
involves the passage from the world of life into the world of symbols and vertical 
mathematization means moving within the world of symbols.

In school mathematics, one fundamental approach of RME is to look for real 
contexts that students can use as starting points for progressive mathematization, 
in going from informal mathematical knowledge by using a model of to formal 
mathematical knowledge by using a model for (Gravemeijer 1994) (Fig. 22.1).

Models and modelling (M&M) perspectives emphasize the fact that “thinking 
mathematically” is about interpreting situations mathematically. In modelling 
activities, students use their initial ideas to make sense of the situation; they model 
the situation and develop the underlying mathematical concepts, promoting a con-
ceptual change in their understanding of mathematical ideas and of the specific 
situations (Lesh and Doerr 2003).

A model-eliciting activity leads students to express their thinking and refining of it 
several times. Their mathematical models are the result of a recursive process where 
students articulate ideas, test, revise and extend their interpretations. The model 
development happens along with conceptual development (Fig. 22.2).

The two perspectives take into account different stages of models, either under 
the name of model of and model for or under the designation of models and 
constructs. In both cases, we acknowledge the fact that models evolve in their 
degree of gene rality as they move from contextual problems towards more formal 
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mathematical knowledge impelled by the need to solve particular problems or 
questions and to reflect on the solutions back in to the contextual situation. One of 
our concerns is to see how real objects and experimentation fit into both theories 
and how these relate to the nature of the models that students produce.

4  The Research Empirical Work

Our classroom-based research is a teaching experiment in a regular curriculum envi-
ronment with two 9th grade classes (14–15 years old). The students involved in the 
research had never worked on modelling tasks before. Lessons of 90 min on modelling 
activities were conducted from January to June 2009, once a week in each class.

The main question of our work is: How does hands-on experience in situations 
that involve using and manipulating objects play a role in shaping students’ model-
ling routes?

Fig. 22.2 Modelling from M&M perspective

Fig. 22.1 Modelling from RME perspective (Adapted from Gravemeijer 1994)
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In refining the focus of our leading question, we have formulated two other 
sub-questions: (1) What can we say about experience with concrete objects from 
the RME perspective? (2) What can we say about experience with concrete objects 
from the M&M perspective?

Procedures for collecting qualitative data were participant observation, video 
and audio recording of students’ work, and written reports of each activity. The 
teacher was also the researcher who undertook participant observation in the class 
and compiled field notes.

The data presented refer to the second modelling task in a total of five and the 
task was presented in late January. “The cake box” task includes three parts (see 
below). In the first part, the real situation is presented. The second part consists of 
experimental work with physical objects and the third one is the setting where a 
mathematical model “comes out”.

5  Description and Data Analysis

Students went through several modelling cycles in an attempt to find a solution to the 
problem by performing successive experiments. The following description concerns 
one group of four students (I, F, M, R) who exhibited both a strong concentration on 
experimenting and a demand to go beyond concreteness to formal mathematics.

The group started to measure the sheet, made drawings and wrote down the 
dimensions of the sheets in their notebooks; they folded and made three boxes from 
three different sized sheets. Next they tried to pack some real cookies (circular 
shaped and assembled in sets by a plastic wrap) in the boxes. They realized that one 
of the boxes would be perfect to pack two sets of cookies and another one would 
be appropriate for only half a set of cookies.

Their first hypothesis was: One of the boxes works well for two sets of cookies, 
so half the sheet would solve the packing of one set of cookies. They drew a scheme 
of their hypothesis for creating another box (Fig. 22.3), made it and tested it. It did 
not fit their aim.

Their second hypothesis was: Two small boxes united would do, so doubling the 
sheet could be the solution. They put together two small sheets and taped them in 
one single sheet. They made the new box and tested it (Fig. 22.4). Again, the cook-
ies did not fit. All the work developed to this point was mainly experimental and 
consisted in constructing boxes with different sized sheets, according to hypothesis 
where relations for the volume were immediately translated into similar relations 
for the area of the sheet (doubling or halving).

Eventually students decided to record the dimensions of the boxes, unfolded the 
boxes and tried to relate the dimensions of the box with the dimensions of the sheet 
and the resulting creases. The boxes were measured again more than once. An 
algebraic relation started to be considered by one of the students (I) and she tried 
to approach the problem with the formal relation found. The final answer only 
appeared later on, as students continued to work on the task at home. The written 
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“The Cake Box”

In bakeries today there are standard cake boxes. In the past, the bakers made 
these boxes themselves knowing the size of the cardboard sheet to make a box 
for a certain number of cakes. Let’s try making some cake boxes.

From experience…

1.  Measure the dimensions of the given sheets of paper (length and width).  
(Don’t forget to register in your notebook).

2. Make the cake box following the instructions below.
3.  Measure the three dimensions of the boxes you made (length, width and 

height).

Fold and crease  
in three equal parts.

Fold the right 
side and crease 
in the middle.

Do the same 
with the left 
side.

The sheet now  
has two wings 
(left and right).

Fold the edges 
of the right wing 
in triangles.

Re-fold wing so the 
creases are inside.

Do the same to 
the other wing 
and crease.

Notice the two 
wings and the 
corners folded.

Fold and crease 
the tops.

Open gently and 
crease very well 
each height.

… to the model.

4.  Find the relations between the dimensions of the initial sheets and the 
dimensions of the resultant boxes, looking at the creases.

5.  Find a relation between the dimensions of sheet and box (look for a math-
ematical expression).

6.  Now you want to tightly pack in a box the cookies you have on your table. 
What must be the dimensions of this cookie box and what should be the 
dimensions of the sheet?

7.  Suppose you also want to pack a birthday cake in a box. This cake has 26 
cm diameter and 10 cm height. What must the dimensions of the sheet be?

8.  Elaborate a report focusing on the next topics: (1) An explanation of the 
experimental situation; (2) Hypotheses formulated; (3) The exploratory work 
done; (4) The results; (5) Task evaluation; (6) Difficulties encountered.
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report shows how they found a model of the correspondence between the dimen-
sions of the box and the dimensions of the sheet, as follows:

−
2

 
6

1 1
 =   =  

3 6

 = sheetwidth sheetlength     

sheetlength      sheetlength

boxlength

boxwidth boxheight

In the following lesson, students addressed question 7, related to packing a 
 birthday cake, and they decided to use an A4 sheet to start with. The box was made 
and measured, and the dimensions recorded. The lengths of the sheet were again 
related with the dimensions of the box. The creases were analyzed and one of the 
students suggested using mathematical relations as she finished checking sums on 
her calculator. Another student however continued with successive experiments 
with the real object, folding and unfolding the box, each time increasing the size of 
the sheet by taping more strips of paper. After some discussion, they decided to 
stick together four A4 sheets, having realized that two would not be large enough, 
according to the diameter of the cake and the relations already found.

A big box was made and measured, but the result failed to match the dimensions 
required for the birthday cake. Student I then started to work individually, using the 
formal model, while the other students (F, M, R) added another piece of paper to 
the big sheet. A bigger box was made by students F, M, and R. Before they finished, 
student I came up with a numerical solution and the others finally stopped the 
experiments. They all turned to their notebooks and continued with the algebraic 
exploration of the problem. Drawings and mathematical expressions were pre-
sented in the group’s report (Fig. 22.5a–d).

The empirical data show intense experimental work with the real object from 
most students in the group. A lengthy time was spent analysing and understanding 
the real situation. The identification of variables and the relations between them 
came about quite slowly. Much time was devoted to trial and error with the physical 
manipulation, and folding and unfolding of boxes. Several tangible models of cake 

Fig. 22.3 Plan of the first hypothesis

Fig. 22.4 Plan of the second hypothesis
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boxes were produced but often missed the desired target. During such experimental 
processes, a “model of” was being repeatedly tested. This horizontal mathematiza-
tion was carried out iteratively until a “model for” started to be investigated. Then 
mathematical relations emerged rapidly and a mathematical model was set up to 
obtain the size of the sheet for any possible cake box.

6  Synthesis of Findings

Both the theory undertaken and our preliminary results indicate that hands-on activ-
ity gives students a chance to develop a more solid understanding and familiarity 
with the situation (including with the mathematics involved). Experimentation with 
concrete objects supports students’ search for a solution to the problem, as far as 
consecutive trials and testing are possible before stronger mathematization. 
Although experimentation may seem to keep some students at the level of horizon-
tal mathematization, the final stages of the modelling process reveal that it is actu-
ally promoting a deeper conceptual development.

Looking at the data from the two perspectives, realistic mathematics education 
and the models and modelling perspective, we find them to be compatible although 

Fig. 22.5 (a) Initial sheets with dimensions recorded, (b) sheets and boxes with dimensions and 
relations between variables in words, (c) relations in mathematical language and (d) the solution 
for the big cake
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highlighting different features of the modelling activity. From RME, we looked at 
the movement from horizontal to vertical mathematization, concluding that manip-
ulation can result in a longer process of horizontal mathematization. From the 
standpoint of Models and Modelling, we observed a series of micro-cycles depicted 
in the successive experiments performed, which represented important conceptual 
fine-tuning to arrive at a formal mathematical model.
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Abstract This chapter argues for a future-oriented, inclusion of Engineering Model 
Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs, 
students work with meaningful engineering problems that capitalise on and extend 
their existing mathematics and science learning, to develop, revise and document 
powerful models, while working in groups. The models developed by six groups of 
12-year students in solving the Natural Gas activity are presented. Results showed 
that student models adequately solved the problem, although student models did 
not take into account all the data provided. Student solutions varied to the extent 
students employed the engineering context in their models and to their understanding 
of the mathematical concepts involved in the problem. Finally, recommendations 
for implementing EngMEAs and for further research are discussed.

1  Introduction

The world’s demand for skills in science, technology, engineering, and  mathematics 
is increasing rapidly, yet supply is declining across several nations in EU and USA 
(National Academy of Sciences 2007; OECD 2006). Further, recent research find-
ings in a number of countries revealed that school students’ mathematical and 
problem-solving skills are rather poor and stressed the importance of implementing 
interdisciplinary problem-solving activities in mathematics and science school cur-
ricula (Kaiser and Sriraman 2006; Mousoulides and English 2008; Zawojewski 
et al. 2008). We need young scholars to be involved in the next generation of 
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innovative ideas that support our society’s needs. Interdisciplinary problem solving 
that involves core ideas from engineering, mathematics, and science can empower stu-
dents to tackle the many real-world problems society faces now and in the future.

Following recommendations for ensuring school students’ early exposure to 
interdisciplinary problem solving and a sense of the role of mathematics in solving 
real-world problems (OECD 2006), we have introduced a sequence of Engineering 
Model Eliciting Activities (EngMEAs) for elementary school students in a 3-year 
longitudinal study. In the activity presented in this chapter, students worked on an 
engineering modelling activity related to natural gas consumption and reserves. 
Student models and solutions building on their mathematical and engineering 
ideas and processes in solving the Natural Gas Modelling Activity are presented in 
this study.

2  Theoretical Framework

Despite more than five decades of research, it seems that students’  problem-solving 
abilities still require substantial improvement (Lesh and Zawojewski 2007). Much-
needed, recent calls for new perspectives regarding the nature of problem solving 
and its role in the mathematics curriculum have appeared (e.g., Lesh and 
Zawojewski 2007; Mousoulides et al. 2008). One such perspective involves inter-
disciplinary problem solving. It is being increasingly recognized that future-ori-
ented problem-solving experiences in mathematics and science require 
interdisciplinary contexts (Zawojewski et al. 2008). These findings present interest-
ing challenges for mathematics (and science) educators. Among the core questions 
that arise, questions like how we might assist students in better understanding how 
their mathematics and science learning in school relates to the solving of real prob-
lems outside the classroom and how we might broaden students’ problem-solving 
experiences to promote creative and flexible use of mathematical ideas in interdis-
ciplinary contexts can be addressed through the discipline of engineering.

More than ever before, we need to increase the profile and relevance of mathe-
matics and science education in solving problems of the real world, and we need to 
begin this in the primary and middle schools (National Academy of Engineering, 
and Institute of Medicine 2007). Engineering provides an exceptional context in 
which to showcase the relevance of students’ learning in mathematics and science 
to dealing with authentic problems meaningful to them in their everyday lives 
(Petroski 2003). By incorporating engineering-based problems within both the 
primary and middle school mathematics curriculum, we can: (a) engage students in 
creative and innovative real-world problem solving involving engineering princi-
ples, design processes, and mathematical modelling that build on the students’ 
existing mathematics and science learning; (b) show students’ how their learning 
in mathematics and science applies to the solution of real-world problems; and  
(c) promote group work where students learn to communicate and work collabora-
tively in solving complex problems (English and Mousoulides 2009).
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One manner of addressing engineering-based problems is through the use of 
Engineering Model Eliciting Activities (EngMEAs) – realistic, client-driven prob-
lems based on the theoretical framework of models and modelling (Lesh and 
Doerr 2003). An EngMEA is a complex problem set in a realistic context with a 
client, characteristics that place EngMEAs in the authentic assessment category. 
Solutions to EngMEAs are generalizable models which reveal the thought pro-
cesses of the students. The models created include procedures for doing things 
and, more importantly, metaphors for seeing or interpreting things. The activities 
are such that student teams of three to four express their mathematical model, test 
it using sample data under the possible engineering constraints, and revise their 
procedure to meet the needs of their client (Lesh and Doerr 2003; Mousoulides 
et al. 2008). In sum, from the EngMEAs perspective, engineering-based problems 
are realistically complex situations where the problem solver engages in mathe-
matical and engineering thinking beyond the usual mathematical classes experi-
ence and where the products to be generated often include complex artifacts or 
conceptual tools. The problems present a future-oriented approach to learning, 
where students are given opportunities to elicit their own mathematical and scien-
tific ideas as they interpret the problem and work towards its solution (Lesh and 
Zawojewski 2007; Zawojewski et al. 2008).

3  The Present Study

3.1  Participants and Procedures

The participants were a class of twenty 12-year-old high achiever elementary 
school students, who participated in a 3-year longitudinal study of children’s math-
ematical modelling and engineering thinking. The students were from a public K-6 
elementary school in the urban area of the capital city of Nicosia.

The data reported here are from the second year of the respective study and are 
drawn from one of the problem activities the students completed during the second 
semester of the second year. The engineering modelling problem, namely the 
Natural Gas activity, focuses on the natural gas resources and consumption. The 
activity presented data related to the worldwide reserves of natural gas in 1993, and 
the annual average consumption for the next 15 years. Specifically, the activity 
provided students with the following information:

In 1993 the worldwide reserves of natural gas were estimated to be 141.8 billion cubic 
metres. Since then 2.5 billion cubic metres have been used every year on average. The 
Ministry of Communications and Works is thinking on placing a large investment on build-
ing natural gas and oil refinery stations. Calculate when the reserves of natural gas will be 
exhausted, so as to advise them whether they should proceed with the investment or not.

The engineering problem presented in the activity required students to use dif-
ferent assumptions and develop model(s) for calculating when the reserves of 
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natural gas will be exhausted. In implementing the activity, we were primarily 
interested in: (a) how the students interpreted the problem, (b) the ways in which 
the students worked with the provided data and the extra data they retrieved from 
the Web, and (c) the nature of the models the students generated in solving the 
problem.

The problem entails: (a) a warm-up task comprising a mathematically rich 
newspaper article designed to familiarize the children with the context of the mod-
elling activity. This article was published in a local newspaper few months previ-
ously, presenting some facts and figures about the explorations in the sea between 
Cyprus and Egypt for natural gas and oil. (b) “Readiness” questions to be answered 
about the article, and (c) the problem to be solved, including the figures and text 
mentioned above.

Since this problem was part of a sequence of engineering modelling activities, 
students were familiar with working in groups, developing models for solving 
quite complex problems, and presenting and documenting their results. The prob-
lem was implemented by the first author and one postgraduate student. Working 
in groups of three to four, the students spent four 40-min sessions on the activity. 
During the first session, the children worked on the newspaper article and the 
readiness questions. In the next three sessions, the children developed their mod-
els, wrote their letters that explained their models, and presented their work to the 
class for questioning and constructive feedback. During their explorations, stu-
dents could freely search the Web for finding useful data in further unfolding the 
complex engineering problem. Finally, a class discussion followed that focused 
on the key engineering and mathematical ideas and relationships the children had 
generated.

3.2  Data Sources and Analysis

The data sources for this study were collected through (a) videotapes of students’ 
responses during whole class discussions, (b) audiotapes of students’ work in their 
groups, (c) students’ final models, students’ worksheets and final reports detailing 
the processes used in developing models, and (d) researchers’ field notes. The 
analysis of the data, using interpretative techniques (Miles and Huberman 1994), 
was completed in the following steps. First, the transcripts were reviewed by both 
researchers several times to identify and trace developments in the model creations 
of the students with respect to: (a) the ways in which the students interpreted and 
understood the problem, (b) their initial approaches to dealing with the data sets, 
and (c) the ways in which they selected data sets, and applied mathematical opera-
tions. Second, the transcripts were reviewed to identify how students interacted in 
their groups, and how discussions within the groups resulted in their final models. 
In the next section, we summarize the model creations of the student groups in 
solving the Natural Gas activity.
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4  Results

Students found the problem interesting and challenging and developed a number 
of different models for solving the problem. Quite surprisingly, a number of 
students experienced difficulties in fully understanding and using the “concept 
of average” in developing their models. Four out of the six groups developed 
models appropriate for solving to some extent the provided problem. Further, 
many students easily calculated the remaining reserves of natural gas in 2008, 
by multiplying 2.5 billion cubic meters by 15 years (1993–2008). Some stu-
dents, however, failed to understand that consumption in recent years was not 
2.5. A number of students successfully used the data provided in the activity and 
other resources from the Web to make assumptions about the future reserves and 
consumption of natural gas, and how the use of renewable energy sources might 
have an impact on natural gas  consumption. Two groups of students developed 
more coherent models, taking into consideration current reserves, how the con-
sumption of natural gas will be increased (using data from the Web) and how the 
use of renewable energy sources will affect the consumption of natural gas. The 
four appropriate models presented by the four groups of students are summa-
rized below.

4.1  Model A

The first group commenced the problem in a rather simplified way. They discussed 
the provided data, but partially failed to fully understand the concept of average. As 
a consequence, although they correctly calculated the remaining reserves, they did 
not discuss how annual consumption changed during the last 15 years. In discussing 
the problem, they reported in their worksheets that natural gas consumption will be 
increased. They further supported that hypothesis by documenting that due to a 
number of environmental and economical issues oil consumption is decreased and 
as a consequence, natural gas consumption and renewable energy sources use be 
increased. However, students failed to clearly document how these hypotheses 
affected the average consumption of natural gas. Their approach can be partially 
explained by the intense discussion on TV and newspapers in Cyprus on the natural 
gas reserves Cyprus might have in its coastal zone.

Students reported in their worksheets that the new annual average consumption 
for the following years will be 3.0 billion cubic meters. Similar to other groups, 
students in this group did not provide any support for this conclusion. Even when 
prompted by the researchers, students in this group failed to explain or try to predict 
how consumption will change, for instance, in 5, 10 or 12 years. Further, when 
asked by the researchers, students reported that the new average was reasonable, 
and the increase was not that big. In terms of the mathematical developments, 
groups calculated the remaining reserves in 2009 and then divided the remaining 
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reserves by the new average consumption, by providing simple linear functions. 
Their final model was: (141.8 − (2.5 * 15)/3).

Students’ work in this group resulted in finding when the natural gas reserves 
will be exhausted. As a consequence, students reported in their final letter that it 
might not be a good investment to finance a natural gas plant, since the reserves will 
be exhausted in less than 35 years. They concluded by underlining that it would be 
better to invest in renewable energy use, because “solar power is free and will never 
be exhausted”.

4.2  Model B

Similar to Model A, this group developed a quite similar model. However, a 
 number of differences can be tracked between this model and Model A. Since 
 students did not attempted to retrieve any data from the Web, they ended by 
 proposing two different and even contradictory hypotheses, in an attempt to solve 
the engineering problem. Specifically, based on their first hypothesis, they docu-
mented that natural gas consumption will be increased. They reported that natural 
gas consumption might increase, since there is a global shift from oil to natural gas 
use. Thinking more locally, they also reported that the new reserves of natural gas 
that have been found in the coastal zone of Cyprus would also have an impact on 
natural gas use. They further exemplified their thought by stressing the importance 
of getting cheap energy; new natural gas reserves will have an impact on oil use and 
will provide Cyprus with cheap natural gas.

Since students in this group did not succeed in retrieving more data from the 
Web, they set a second hypothesis, namely, that natural gas consumption will be 
decreased. When prompted by the researchers, students reported that there is a 
global shift to renewable energy resources, like solar and wind power. They also 
underlined the importance of taking measures for saving the environment and that 
people are getting more and more aware of environmental issues. They concluded 
that the above situation will have a direct impact on decreasing nonrenewable 
energy consumption.

Based on the two hypotheses, mentioned above, students developed three differ-
ent solutions. Their first model was similar to the one presented earlier (Model A). 
However, students in this group used 2.8 billion cubic metres as the new annual aver-
age. This model resulted in finding that the natural gas reserves will be exhausted 
in 38 years. Based on their second hypothesis, students again resulted in estimating 
that the new annual average would be 2.2 billion cubic metres and consequently 
that natural gas reserves would be exhausted in 47.5 years. In referring to both solu-
tions, students reported in their worksheets that 47.5 or even 38 years were good 
enough for placing the investment. The latter was another difference between this 
group’s work and the first group’s work, who decided that it would be better not to 
invest in such a project. Finally, following a student’s suggestion from this group, 
students ended with a third approach and a model. They reported that: “since there 



22723 Engineering Model Eliciting Activities for Elementary School Students 

are factors that might increase and other factors that might decrease natural gas 
consumption, we could assume that annual average will remain 2.5 billion cubic 
metres”. Consequently, they calculated that reserves will be exhausted in 57 years.

Quite confusing, 2 out of the 4 students in this group reported in their work-
sheets that “since 2.5 annual average was the same for the last 15 years, then it is 
reasonable that average will be the same for the following years”. The latter was 
disappointing, considering that all students appeared quite confident and success-
fully used the average in making calculations. However, it appeared that these stu-
dents did not have a conceptual understanding of the concept of average and how 
this concept could be appropriately used in the context of a real-world problem. 
Further, although students in this group explicitly discussed the existence of new 
reserves, they did not adopt and use this discussion in their models. Finally, similar 
to Model A group’s work, students in this group did not manage to retrieve or use 
data from the Web.

4.3  Model C

The group who developed this model commenced the problem by listing all possible 
factors that might have had an impact on natural gas consumption. Students in this 
group reported the following possible factors: use of renewable energy sources, 
natural gas price, natural gas reserves and availability, and people’s awareness of 
environmental issues. It should be noticed here that some of these factors were 
retrieved from the Web. Similar to the previous group, students in this group also 
concluded with two different hypotheses: the first hypothesis was based on the 
assumption that natural gas consumption will be increased and the second hypoth-
esis on the assumption that consumption will be decreased. An important difference 
that can be tracked from the previous group’s work was students’ documentation 
that reserves will be increased (new reserves appear every year), no matter how the 
consumption of natural gas will change.

They decided, after a long debate within the group, that natural gas consumption 
will be increased. They reported in their worksheets that on one hand there is a shift 
to renewable energy sources, but this shift is still not so important; they concluded 
so the shift from oil to natural gas will increase gas consumption much more. In 
developing their final model, they calculated the remaining reserves in 2009 (with-
out incorporating in their model any new reserves found between 1993 and 2009) 
by performing the following calculations: 141.8 − (2.5 * 15). Their next step was to 
divide the remaining reserves plus new reserves by 3.2. Their final model was: 
(R

2009
 + New R)/3.2 = They explained that the new increased annual consumption 

will be 3.2 billion cubic metres, since the 2008 annual consumption was 2.8 billion 
cubic metres.

In documenting their results and preparing their final report, students underlined 
that they could not be sure when (and if) natural gas reserves will be exhausted, 
since this is directly related to the existence of new reserves and the new annual 
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average consumption. Quite surprisingly, students did not incorporate in their 
model the shift to renewable energy sources, although they explicitly discussed it. 
The latter was among the additional information included in Model D, which is 
presented below.

4.4  Model D

Model D students started the problem by listing all possible factors that might have 
an impact on natural gas consumption. In preparing their list, they also (similar to 
Model C) used Web resources. Using the data provided and also data they retrieved 
from the Web, they concluded that the natural gas consumption will be increased. 
Differently from Model C group’s work and using data they retrieved from the Web, 
students in this group found the natural gas reserves during the last 30 years and docu-
mented that during the last 20 years, the natural gas reserves remained the same.

The above findings and students’ explicit discussion on the shift from oil to 
natural gas and renewable energy resulted in documenting that new reserves will 
cover new increased needs. As a consequence, students developed a more qualita-
tive model, reporting that natural gas reserves will never be exhausted and there-
fore, government should invest in building a natural gas plant in Cyprus.

5  Conclusions

In this chapter, we have argued that the inclusion of engineering model eliciting 
activities in elementary school mathematics curricula can engage students in cre-
ative and innovative real-world problem solving and can increase their awareness 
of the different aspects of mathematical problem solving in engineering. The prob-
lem we have implemented has been developed from a models and modelling per-
spective, which takes students beyond their usual mathematical problem-solving 
experiences to encounter situations that require substantial interpretation of the 
problem goal and associated more complex data. Students have to elicit their own 
mathematical and engineering ideas and mathematical operations as they work the 
problem; this usually involves a cyclic process of interpreting the problem informa-
tion, selecting relevant quantities, identifying operations that may lead to new 
quantities, and creating meaningful representations (Zawojewski et al. 2008). 
Because students’ final products embody the factors, relationships, and operations 
that they considered important in creating their model, powerful insights can be 
gained into the growth of their mathematical and engineering thinking.

The students who participated in the present study developed a number of dif-
ferent models that adequately solved the problem, although not all models took into 
account all possible data and relations between mathematics and the engineering 
world. Further, it was explicit that a number of students failed to fully understand 
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the concept of average and effectively use it into their models. Besides the two 
groups that failed to understand the problem situation and to use the concept of 
average, at least five more students showed that they did not have a conceptual 
understanding of average. Although students were only 12 years old, we give con-
sideration here to the various inconsistencies in students’ work and we underline 
the importance of teaching mathematical concepts and processes like average 
through complex problem solving (Mousoulides and English 2008).

Engineering-based modelling problems can present students with situations that 
reflect real-life scenarios that build on students’ existing knowledge and experi-
ences from mathematics and engineering. Furthermore, such problems should 
address topics that require students to develop a model that integrates the underly-
ing structural characteristics of the engineering problem being addressed. It is 
important that students’ model constructions be documented so that their thinking 
and reasoning can be externalised in a variety of ways including tables, lists, 
graphs, and diagrams. Furthermore, the models students construct need to involve 
more than a brief answer: descriptions and explanations of the steps taken in 
 constructing their models should be included. Finally, it is imperative that the 
 models students create should be applicable to other related engineering problems. 
Although the problem presented here did not afford the students the opportunity to 
generalise their models to a related problem situation, it nevertheless enabled them 
to revise their initial models to accommodate new information they could retrieve 
from the Web.

Substantially more research is clearly needed in the design and implementation 
of engineering model eliciting activities for elementary school students and the 
learning generated. We need to know, for example, (a) the developments in elemen-
tary school students’ learning in solving a range of engineering-based problems; (b) 
the ways in which the nature of engineering and engineering practice can best be 
made visible to these students; and (c) the types of engineering contexts that are 
meaningful, engaging, and inspiring for these learners.
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Abstract The modelling behaviour of 12–16-year-old pupils was studied on the 
basis of written reports about realistic mathematics projects. These were analysed 
by using a hypothetical project modelling route involving 16 actions. Application 
of this tool was useful in understanding the difficulties pupils have in carrying out 
the initial steps and the validation process.

1  Context and Aims

For over 15 years, we have been interested in studying how pupils develop model-
ling competencies through working on realistic mathematics projects (Vilatzara 
Grup 2001), and have sought to do so by analysing their productions. As teachers 
and researchers, our aim is to understand the emergence of early modelling behav-
iour and its application in heterogeneous and multicultural classrooms of the state 
education system. The research presented here was conducted within the frame-
work of a curricular reform in Catalonia (Spain), one which explicitly set out the 
need for mathematics education at the secondary level (12–16 years) to help pupils 
to model real-life situations that were linked to other knowledge areas. This type of 
activity was not traditionally carried out in Spanish schools at this level, since 
teachers considered that mathematical modelling was a task for older pupils.
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We regard a realistic mathematics project as a lengthy activity that is rich in 
mathematisation and which, starting from a real perspective, fosters the processes 
of modelling and autonomy in pupils (Sol and Giménez 2004). The fundamental 
aim of this type of activity is that students develop the mathematical modelling 
competencies (Blomhøj and Jensen 2003) required to tackle realistic problems 
(whether personal, school-related, local, regional or of general interest). This devel-
opment takes place through guided reconstruction (Treffers 1987) lasting 1 month, 
throughout which time pupils are free to make their own decisions. It is important 
to note the key role played by this autonomy with respect to the initial decisions 
about the questions/problems to be tackled, which are never formulated in advance 
by the teacher. In this way, it is possible to simulate the expert modelling process 
and observe a range of behaviours in pupils (Giménez and Sol 2005; Sol et al. 
2007) by analysing the texts they produce.

Many studies have focused on a priori ideas of experts doing modelling. 
Therefore, it is not known whether the regular cycles of modelling are really used 
by junior secondary pupils when they start doing activities such as realistic math-
ematical projects, or what may specifically appear when we observe their written 
reports. In a previous study, we analysed these activities in a group of pupils who 
were weak at mathematics and found that one of the main difficulties appears at the 
start of the modelling process (Sol et al. 2009). This finding is consistent with sev-
eral previous reports (Haines and Crouch 2010; Haines and Houston 2003; Maaß 
2007). It is also known that not all pupils show the same behaviour when doing 
project work (e.g. Borromeo Ferri 2007; Galbraith and Stillman 2001). Given that 
the type of activity proposed here is different to that used by these authors, it 
seemed important to conduct a more detailed empirical analysis with a larger group 
of pupils. Therefore, the present study sought to answer the following question: 
What kinds of modelling behaviours are revealed by 12–16-year-old pupils in their 
written reports about realistic mathematical projects?

Although this analysis has similarities with the cognitive perspective on model-
ling routes described by Borromeo Ferri (2006), the interpretations made here 
regarding pupils’ understanding of the modelling process are based solely on their 
written material.

2  Theoretical Background

In discussing mathematical modelling and associated activities, authors and 
researchers often represent the modelling process as a cycle of activity so as to 
understand pupils’ behaviours (Haines and Crouch 2010). We started our research 
using the Mason cycle (Mason and Johnston-Wilder 2004, p. 190). In line with the 
proposal of Haines and Crouch (2010), each of the phases or stages in this cycle is 
associated with a set of actions. Some of these actions are defined according to 
what is proposed in other known modelling cycles (Blum and Leib 2007; Borromeo 
Ferri 2007; Voskoglou 2007).
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The first set of actions (see Fig. 24.1) corresponds to the two phases of the 
cycle proposed by Blum and Leib, in that pupils must show they are capable of 
formulating a statement/question associated with a real situation, having already 
understood the complexity of that situation. Actions 3–7 set out different aspects 
of the mathematisation process, which appear in almost all modelling cycles. 
These actions had been observed empirically when we compared the behaviour 
of 12–13-year-old pupils who found mathematics difficult with that of pupils 
without such difficulties (Sol 2009). Actions 8, 9 and 10 are directly associated 
with the notion of working mathematically in the cycle of Blum and Leib (2007). 
Actions 11 and 12 correspond to phase 3 of Mason’s cycle. Actions 13, 14 and 
15 refer to the validation process and were also observed empirically in the 
abovementioned study (Sol 2009). Finally, action 16 clearly indicates what is 
proposed by all modelling cycles.

In order to analyse pupils’ behaviour, Borromeo Ferri (2006, p. 91) developed 
the construct of individual modelling route, which refers to pupils’ passage through 
the different phases of the modelling cycle, which is revealed in both their verbal 
expressions and other external representations. In our study, the term project model-
ling route refers to a representation (corresponding to a discursive development) 
that expresses a set of actions performed by a group of pupils when producing the 
written report about a realistic mathematical project. This route can be represented 
either symbolically or graphically. The notion is therefore a technical construct, 
rather than a strictly cognitive one, and it enables pupils’ written discourse to be 
analysed in order to understand their modelling behaviour.

Blum &
Lei�

phases 

Voskoglou 
cycle 

Mason
cycle

Observable hypothetical actions  

1, 2 Analyse Specify 
1. Understand and recognise a mathematically manageable problem.  
2. Simplify and structure. Recognise restrictions and specifications. 

Make decisions about a statement.   

3 

Mathematise

Build a model

3. Identify objects and relevant relationships.  
4. Choose relevant variables, distinguishing from others.  
5. State assumptions. Recognise the mathematical background that is 

needed.
6. Explain relationships between real objects and mathematical

knowledge. 
7. Check the coherence in the set of assumptions and mathematical  

relationships according to the real situation.  

4 
Formulate 
mathema 
tically 

8. State the relationship among variables using mathematical language. 
9.  Formulate hypotheses mathematically.
10. Formulate problems and/or sub-problems in a mathematical way. 

Solve  & 
Interpret 

Find 
mathematic
al solutions 

11. Problem-solving processes involved in finding the solution. 

 12.Find and interpret solutions mathematically in the model used.Interpret 5

6 

7

Validate 

---

Compare with  
the original

Write a report

  13. Recognise the meaning and extent of the solutions and conclusions 
in the real situation. Pupils can also state the model.  

14. Validate the model itself. Change the model if necessary. 
15. Promote reflection about results.  
16. Communicate the process and results when the model is valid. 

Fig. 24.1 Hypothetical modelling actions related to several modelling cycles
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3  Study Methodology

The modelling behaviour of 12–16-year-old pupils engaged in project work was 
analysed by observing their written material (as proposed by Haines and Houston 
2001). The methodological approach taken is that of a qualitative, ethnographic 
case study, which provides an overall understanding of pupils’ behaviour (Marshall 
and Rossman 1998). Indeed, we believe that the texts analysed enable a holistic 
view to be taken of the modelling process, in accordance with the nomenclature of 
Blomhøj and Jensen (2003). The research, conducted in a state school in a town 
near Barcelona, focused on almost all the project work carried out by 12–16-year-
old pupils with the same teacher during the period 2005–2008. Pupils who had 
previously carried out activities of this kind were excluded from the study. The final 
research population is described in Table 24.1.

Each project required pupils to work in groups of two to four (which they formed 
voluntarily) over a period of around 4 weeks. The following description of a project car-
ried out by 14–15-year-old pupils illustrates how mathematical projects are developed.

(a) Pupils choose a context that interests them and are then asked to set some 
objectives/challenges for their work. The group begins outside the classroom, 
but this is then followed by a brainstorming session involving all the class 
pupils, the result of which is the selection of a series of questions by each group, 
this being the first decisions they make. These questions do not necessarily have 
to be mathematical. In fact, in this example, they were: What is a watchtower? 
Who or what is being watched? What is gained by having a vantage point on 
the hilltop rather than on the coastline?

 Once pupils have found the information they need they can then begin to dis-
cuss the relevance and scope of these questions in the problem context. In this 
example, the pupils learned/recognised that they lived in a coastal town of 
around 20,000 inhabitants (25 km to the north of Barcelona) which, during the 
sixteenth century, was vulnerable to attack by pirates who came to plunder and 
kidnap. In order to defend themselves, the townspeople built a number of watch-
towers, one of which (the Nadal tower) remains standing to this day. Around 
4 km inland, there is a hilltop castle (Burriac castle, also dating back to the 
sixteenth century) and another watchtower that was also built for the same pur-
pose. It is in this context that the questions posed by pupils take on meaning and 
interest. Initially, we allow non-mathematical questions to be posed and limit 
ourselves to helping them to see the possibilities of the topic at hand.

Table 24.1 Research population

Secondary school

1st sec school 2nd year 3rd year 4th year

Total(12–13) (13–14) (14–15) (15–16)

Núm Projectes  7 12  9  4 32
Núm Alumnes 15 26 20 11 72
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(b) In the next stage, we begin to guide a process of construction/deconstruction 
(Gellert and Jablonka 2006) of the real model. To this end, pupils need to under-
stand the possibility of describing the situation in mathematical terms and 
simplifying it. They must select those objects which are relevant to the pro-
posed objective and discover the relationships between them. In the example, 
the relevant variables were the distance to the horizon and the elevation from 
which the observation was made.

(c) The next step is for pupils to express a question or problem in mathematical 
terms. They must decide what data they need and think about how to obtain 
them; for example, Will they have to be measured directly, obtained from an 
information source or calculated? They have to recognise the real objects that 
are involved, choose the variables, describe the relationship between real objects 
and mathematical objects, explain the dependency relationship between vari-
ables, and explain their assumptions. In the example, the pupils had to consult 
maps to know the elevation of Burriac castle, and they represented the mathe-
matical situation as shown in Fig. 24.2.

(d) Next, pupils are helped to make explicit the process of mathematisation and to 
show how they interpret the mathematical models used. In the example, the 
pupils went to the Nadal tower in order to calculate its height by applying 
Thales’ theorem. In Fig. 24.2, they applied Pythagoras’ theorem to calculate the 
distance to the horizon, BT. Using this scheme, they made the calculation from 
three different positions: at sea level, from the top of the Nadal tower and from 
the top of the Burriac castle. The results were presented in a table and com-
pared. Having calculated the height of the Nadal tower as 12.5 m and the dis-
tance to the horizon as 12.6 km, they then had to work out the tower height 
required for each kilometre that one moves away from the coastline. This was 
done by considering a relationship of similarity and, by using various data, they 
came up with the equation x = h*y/12,600, where y is the distance from the foot 
of the Nadal tower to the point on the horizon that is seen from the top of the 
tower, h is the height of the Nadal tower, x is the height to be calculated and 
12,600 is the distance to the horizon from the Nadal tower.

(e) In the next stage, they are asked to explain how they approached and arrived at 
their answer to the question posed at the start. In the example, they explained 

A: nivell del mar
B: punt de d

,
observació

T: punt de l
,
horitzó

C: centre de la terra
CT: radi de la terra
CA: radi de la terra
BT: distància de visió
AB: altura de visió

C A
B

T

Fig. 24.2 Nadal tower, Burriac castle and the scheme proposed by the pupils
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that they needed to know the speed at which the pirate ships could travel. After 
consulting a number of books, and deciding to ignore the wind variable, they 
decided that the ships travelled at a speed of 18 knots. They then converted this 
into km/h and, applying a rule of three, calculated how long the town’s inhabit-
ants would have to react once a ship was spotted on the horizon.

(f) In a meeting with the group prior to the presentation of their project report, they 
are told that it is good to justify the mathematical solutions they have found in 
the real context from which they started. In the example, they explained why it 
made sense to build the watchtowers on the hilltop, but they did not see the need 
to make clear that they realised this when they discovered the relationship 
between elevation and range.

(g) Finally, the pupils communicate their results. Each group submits a written 
report and makes an oral presentation to the whole class.

4  From Analysis to Results

The modelling routes were identified on the basis of the pupils’ written work. 
Specifically, the statements and actions contained in this mathematical text and which 
formed part of the modelling process were identified and coded, the final decision 
being reached by consensus in the research team (Blommaert and Bulcaen 2000).

Thus, for example, in a project about the school common room, one pupil asked: 
How does the number of people who fit [a] round a table of the same size vary 
according to whether the table is round or rectangular? Our interpretation here is 
that the pupil is posing a mathematical question, corresponding to action 10 in 
Table 24.1. At another point, a pupil wrote: We decided to use round tables because 
that way we would make use of the space that is lost at the corners of a rectangular 
table. Here we consider that the pupil is illustrating the purpose of a problem state-
ment, corresponding to action 2. The text analysis continues in this way.

Pupils do not always present the calculations and relationships between vari-
ables in a general way, as one would expect from an understanding of the model as 
such. We also note that the same written report may include both symbolic and 
graphical elements as evidence of various actions. For example, in the example of 
the school common room, our interpretation is that they are stating a relationship 
between the variables involved, making use of mathematical language and, there-
fore, performing action 8 of Table 24.1. In addition, the graphical information they 
provide explains relationships between real objects (the table and the space required 
around it for people to be seated) and mathematical objects such as radius and 
diameter (of the table and the seating space), and we interpret this as evidence of 
action 6. Finally, in the last lines of the report, they show their interpretation of the 
solution, stating that their chosen design allows four rows of tables, before going 
on to say that only an extra 15 cm would be required to include a fifth row. They 
then state that “taking a further 1.5 cm from each side of the table would not have 
a noticeable effect and this would allow a fifth row of tables to be included,” thus 
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improving upon their initial solution. An explanation such as this suggests that the 
pupils have recognised the meaning and extent of the solutions in the real situation. 
In our view, this is consistent with the presence of action 13 in Table 24.1, which 
one would not usually expect to observe in 12–13-year-old pupils.

Continuing with this process, we now represent the sequence of actions observed 
in each written report by means of a matrix or graph, which enables the modelling 
routes to be compared visually. In the above example of the school common room, 
we represented the modelling route followed by pupils in terms of vectors, writing 
the number that corresponds to each action observed: 10, 1, 2, 3, 12, 9, 3, 4, 12, 4, 
4, 8, 6, 11, 4, 8, 6, 11 and 13. By repeating this process with all the analysed proj-
ects, it is possible to construct tables such as Table 24.2. Thus, one can see the 
actions that are followed or neglected by pupils.

The analysis shows that the model does not have linear continuity. Greater 
importance is placed on description, and it can be seen that pupils do not know how 
to represent the overall problem; furthermore, they find it difficult to simplify the 
text mathematically, as an expert would. Therefore, we believe that they interpret 
the project as a set of problems that they wish to explain one after another. Many 
pupils also find it difficult to pass through certain actions. As mentioned above, 
these can also be represented with a vector, as shown in Table 24.2.

5  Results

Having analysed all 32 projects, the data in Table 24.3 show the percentage of 
reports whose content provides evidence that the pupils have carried out each action 
in the hypothetical modelling route.

Most routes start at action 1 or 2 and continue at 10 or 11, which seems to reflect 
the classical structure of the problem-solving process. In contrast, actions 5, 7, 9, 
14 and 15 hardly appear in the project modelling routes. We interpret this to mean 
that the pupils see the project as a chain of small problems rather than as one big 
problem. As such, they are not aware of the modelling process as a global mathe-
matical process but a large set of problem-solving actions. The set of actions 10, 11 
and 13, which recalls the classical interpretation of a problem-solving classroom 
activity, is frequently repeated. Action 6 poses some difficulties: The relationship 

Table 24.2 Vector representation of some modelling routes

Title Year Project modelling route Neglected actions
Smoking 1st 1,2,2,10,11,11,11,13,12,1,13,1,10,11,13 3,4,5,6,7,8,9,14,15,16
School canteen 2nd 10,1,2,3,12,9,3,4,12,4,4,8,6,11,4,8,6,11 5,7,14,15
Nadal tower 3rd 2,5,10,5,11,12,10,11,8,12,13,2,3,10,11, 8,1

2,13,2,9,11,12,13,1,10,4,6,11,12,13
1,3,7,14,15

Tins and cans 4th 1,2,4,6,11,12,11,13,8,13,3,4,11,12,11, 
10,13,8,13,13

3,5,7,9,14,15
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between real objects and mathematical knowledge is easy to observe in the case of 
a real object, for instance, when we think about a cake we can speak about shape 
and weight; however, distance is not a tangible object and it is therefore more dif-
ficult for pupils to relate it to a mathematical object.

The 12–14-year-old pupils go through fewer actions than do the 14–16-year-
olds, and they also find it more difficult to recognise variables and their relation-
ships (actions 3 and 4). In addition, they need help to carry out actions 1 and 2. The 
15–16-year-old pupils go through actions 4, 6 and 8, whereas 12–13-year-olds do 
not use these actions. The use of action 4 appears explicitly in the projects carried 
out by 15–16-year-old pupils. As can be seen in Table 24.3, some actions were not 
passed through by the pupils. It seems that abstraction is a barrier to the recognition 
of certain hypothetical actions.

6  Conclusions

We believe that the results provide a complement to previous findings, not least in 
that they are derived from realistic mathematics projects. The following conclu-
sions can be drawn.

Firstly, we found that the hypothetical project modelling route involving 16 actions 
enabled us, when used as a methodological tool, to identify the modelling process that 
pupils follow. It can also help to find ways of improving the interaction between 
pupils and teacher, and may provide clues to new forms of classroom assessment. 
Although the teacher guided the process in the initial stages, pupils found it difficult 
to perform certain actions that one would ideally observe in the modelling cycle. For 
example, 12–16-year-old pupils do not have an overall view of the problem situation 
and the use of variables (Blum and Leib 2007). It seems that this is partly due to the 
fact that the primary curriculum lacks a functional view involving pupil initiative, the 
usual focus being on solving problems set by the teacher.

The 12–16-year-old pupils found several actions difficult to perform: communi-
cating the social role of their mathematical problem; controlling mathematical 

Table 24.3 Percentage of reports that pass through each action of the modelling route

Actions 1 2 3 4 5 6 7 8

12–13 Years 71.43 42.86 71.43 14.29 0 0 0 0
13–14 66.67 91.67 75 91.67 0 25 8.33 41.67
14–15 55.56 100 44.44 66.67 8.33 22.22 0 22.22
15–16 100 75 75 100 0 50 0 100

Actions 9 10 11 12 13 14 15 16

12–13 0 85.71 100 28.57 100 0 0 0
13–14 8.33 75 100 100 100 0 8.33 0
14–15 11.11 66.67 100 100 100 0 0 0
15–16 25 100 100 100 100 0 0 0
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relationships (they are unable to state a real formulation of the problem [as 
proposed by Maaß 2007]); and validating a model, possibly due to a lack of aware-
ness of having done it (Maaß 2007). These results suggest that it is important to 
work with functional reasoning in order to improve the initial modelling steps. 
Mathematical knowledge, which is a necessary feature of a realistic mathematics 
project such as that described here, should be analysed carefully and adjusted 
according to the competency level of pupils.

Differences were observed between 12–14- and 14–16-year-old pupils. However, no 
general patterns were found regarding which modelling characteristics relate more to 
younger pupils overall. A similar result was reported by Haines and Crouch (2010).

Pupils showed no awareness of the overall modelling process. They interpret 
projects as a set of small problems, perhaps because primary school does not pre-
pare them to work on open-ended problems. Moreover, they particularly failed to 
recognise the validation process. In contrast, they did evaluate the results of partial 
problems which they had worked on previously in the classroom.

The present research suggests the need for further studies in order to clarify 
the role of teachers as regards improving the mathematical communication of 
pupils, helping them to become more aware of the processes involved in the mod-
elling cycle.
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1  Introduction

Within ICTMA and beyond, it is essential that authors clearly present their under-
standing of the term mathematical modelling. There are multiple interpretations 
and associated understandings, which contribute to fruitful discourse, but at times, 
it is left to the reader to identify the views of the author. The same is true of the 
term teacher education, but here the differences relate to practices rather than inter-
pretation. Firstly, the meaning of mathematical modelling is examined. With 
respect to purposes for teaching, Julie and Mudaly (2007, p. 504) identified model-
ling as vehicle and modelling as content. For the former, real world problems are 
used for both motivation and the development of specific mathematical content. 
For the latter, the focus shifts to ‘developing the capacity of students to address 
problems located in the external world, and to evaluate the quality of their solu-
tions’ (Galbraith 2007, p. 181). These approaches are not dichotomous, whilst the 
emphasis may be different the goals may intersect as, in order to solve a genuine 
problem, the need for new mathematical content may emerge (Stillman et al. 2008, 
p. 145). In addition, what distinguishes a modelling task from an application task? 
Stillman positions applications tasks ‘between structured word problems and open 
modelling problems’ (2000, p. 334) such that the problem must be embedded in a 
real world context. Moreover, ‘in an applications task, the primary sources of 
information that are external to the task solver are the problem statement and any 
accompanying visual representations’ (p. 335).

Finally, the term ‘teacher education’ needs to be considered. There is no generic 
teacher education program. Authors need to report sufficient details for the reader to 
understand the mechanisms of their systems. In some countries, pre-service teach-
ers undertake teaching experiences in schools as part of their teaching pre paration, 
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concurrent with their studies of education and mathematics (if any). We would 
expect a greater understanding of classroom practices from these students when 
compared to others who had no experience in schools in their undergraduate 
teacher education as is the case in other settings. In-service teacher education takes 
on many forms as well. It is important to be aware of the level of schooling for 
which they are preparing or currently teaching.

2  Research Using Different Perspectives of Modelling

Kaiser and Sriraman (2006) note that within modelling in mathematics education 
‘the apparent uniform terminology and its usage masks a great variety of 
approaches’ (p. 302) and so propose a classification to distinguish the ‘various 
perspectives according to their central aims’ (p. 303). The perspectives include

Realistic or applied modelling (pragmatic-utilitarian goals, i.e. solving real world problems, 
understanding of the real world, promotion of modelling competencies);

Educational modelling: differentiated in (a) didactical modelling and (b) conceptual 
modelling (Pedagogical and subject-related goals:( a) Structuring of learning processes and 
its promotion (b) Concept introduction and development) (p. 304).

Model-eliciting approach (Psychological goals, i.e. apply model elicited through solving 
the original problem to a new problem) is added in a revised classification (Kaiser et al. 
2007, p. 8).

These perspectives are used to consider the chapters presented in this section.
Kuntze investigated 79 in-service and 230 pre-service German teachers’ views 

about mathematical modelling tasks in the mathematics classroom. This study 
involved tasks of two types, described as those with substantial/higher modelling 
requirements (which require at least one translation step between the situational 
context and a mathematical model, and different solutions are possible) and those 
with low modelling requirements (where the mathematical model is provided to the 
solver, translation processes are less important, and only one solution is possible). 
The sample tasks presented appear to be applications rather than modelling tasks in 
Stillman’s (2000) classification. The low level sample task presents an octagon for 
which the area needs to be calculated and compared. The importance of authors 
presenting their definition of modelling is not unproblematic. The focus of this 
study relates to modelling competencies and the importance of task selection is 
related to this. Thus, this study is classified as a realistic or applied modelling per-
spective. Kuntze found the majority of pre-service teachers expressed a preference 
for low level tasks and classified tasks with higher modelling requirements as hav-
ing lower learning potential than tasks with lower modelling requirements. Kuntze 
found the lack of compatibility between mathematical modelling and the stated 
need in mathematics for an exact answer to be the cause rather than the level of 
complexity involved in higher level tasks. In contrast, in-service teachers rated 
higher level tasks more positively. He suggests in-service teachers may be more 
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aware of the learning opportunities inherent in the higher level tasks; however,  
he notes with concern the uncertainty of these teachers ‘concerning the modelling 
cycle’. Modelling appears to be a vehicle for teaching mathematics in this study – 
all tasks used are in a single content area, namely, measuring areas.

The study of Biembengut, in Brazil, had a dual focus. As the participants (pre-
service and in-service teachers) engaged in tasks involving classical mathematical 
models (the restricted growth of an organism and cooling of a liquid), the aim was 
realistic or applied modelling. However, when the teachers later engaged in model-
ling tasks (creating a parking lot and packaging for kitchen oil) and then in pairs, 
chose a situation of interest, posed a question that was amenable to solution using 
mathematics, and engaged in the modelling cycle to investigate their problem, the 
aim was clearly educational modelling. To engage one’s students in modelling, a 
teacher must themselves be able to model. Clearly, the intent here is modelling as 
content and the latter tasks are modelling tasks. Biembengut found that the role of 
the teacher, as perceived by the teachers themselves, is to be one who tells their 
students what and how to do mathematics. Moreover, this mathematics has been 
prepared by someone else (perhaps presented in a textbook or similar) as the role 
of the teacher does not generally include the notion of designing instructional mate-
rials. Poor salaries and resulting high workloads, in the South American context, 
further exacerbated this even in an environment where students are performing at 
an increasingly worse level. Modelling is seen only as a vehicle for teaching math-
ematics by these teachers.

Stillman and Brown also focus on teacher beliefs; however, in this case, all 
teachers in the study were pre-service secondary teachers in Australia. The 
approach here is educational modelling as the researchers seek to identify the affin-
ity of pre-service teachers to using modelling tasks and if the length of the teacher 
preparation (a 1-year program undertaken after an undergraduate degree, or a 
4-year program where teaching preparation was undertaken concurrently with 
the study of mathematics) was a factor. Nearly all pre-service teachers believed 
modelling tasks are a part of mathematics. There were, however, interesting differ-
ences associated with program length and the authors speculate on possible reasons 
for these.

The perspective of Doerr and Lesh would be classified by Kaiser et al. (2007) 
under the model-eliciting approach. Doerr and Lesh are quick to point out that there 
is more to modelling, however, than just model-eliciting activities. They describe 
modelling as also including ‘model exploration activities and model adaptation 
activities’. They argue that model-eliciting activities were developed so that those 
engaged ‘are likely to make significant adaptations to their initial interpretations or 
conceptualisations of the situations’ in a short period of time. Moreover, as thought 
revealing instruments, these allow insight into students’ thinking and increase 
opportunities for teacher effectiveness. The approach taken by Doerr and Lesh 
seems to have elements of both the modelling as vehicle and modelling as content 
perspectives. On the applications – modelling task continuum (Stillman 2000) – 
Doerr and Lesh describe their Ferris Wheel Task as a ‘model application task’. 
Stillman no doubt would agree. Doerr and Lesh’s descriptions of the teacher 



246 J.P. Brown

actions in the pre-calculus classroom included: reluctance to intervene when progress 
was occurring; interactions that did occur focused on the meaning of quantities 
calculated; and differing assumptions were seen as opportunities for future class 
discussion. Furthermore, the task provided opportunities for productive work, mul-
tiple representations were involved, and students were able to self-check solutions 
for reasonableness.

3  Reflections

Although somewhat disappointing to see so few studies focussed on teacher educa-
tion, the studies themselves are not a disappointment. Although, naturally sharing 
some common themes, they are as diverse as they are interesting. The theoretical 
classifications used in this chapter have proved fruitful in allowing a comparison of 
key similarities and differences. All classifications are tentative and were under-
taken on the basis of information presented in the chapters. However, not unexpect-
edly, mathematical modelling in education and in teacher education is complex, and 
the studies were not all able to be neatly classified. It is this complexity that makes 
mathematical modelling, its enactment in educational settings, and research related 
to these forever interesting.
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Abstract Research based on models and modelling perspectives (MMP) has shown 
that, in order for mathematical concepts and abilities to be useful beyond school, 
new levels and types of understandings are needed beyond those that have been 
emphasized in even the most innovative and future-oriented statements of curricu-
lum standards. Similarly, teacher-level knowledge and abilities consists of a great 
deal more than the kind of beliefs, dispositions, and pedagogical content knowledge 
that have been emphasized in most past research on teacher development.

1  Introduction

When investigating the development of both students’ and teachers’ thinking, one 
of the most important distinguishing characteristics of research based on models 
and modelling perspectives (MMP) is its emphasis on the fact that in virtually every 
field where learning science researchers have investigated what it means to develop 
competence, it has become clear that highly competent individuals not only do 
things differently but they also see (or interpret, or conceptualise) things differ-
ently. In particular, in mathematics education, we assume that this claim also 
applies to many levels and types of subjects who range from individual students, to 
groups of students, to teachers as well as from educational researchers, to curricu-
lum developers, to policy makers. For example, some of the most important inter-
pretation systems that mathematics teachers need to develop involve making sense 
of students’ ways of thinking about mathematical learning and problem-solving 
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activities. Therefore, because of the interacting nature of the conceptual systems 
that are developed by students, teachers, and other educational decision-makers, 
MMP research often involves multi-tier studies in which: (a) Students go through 
sequences of cycles in which they iteratively express, test, and revise their interpre-
tations or conceptualisations of mathematical learning or problem-solving situa-
tions. That is, students are engaged in model development activities. (b) Teachers 
go through sequences of cycles in which they iteratively express, test, and revise 
their interpretations or conceptualisations of students’ model development activi-
ties. (c) Researchers go through sequences of cycles in which they iteratively 
express, test, and revise their interpretations or conceptualizations of students’ and 
teachers’ model development activities. MMP research is mainly about developing 
models of teachers’ and students’ models and modelling abilities. We expect simi-
lar principles to apply at all three levels. Since we have found that many traditional 
research methodologies are based on assumptions which are not appropriate for the 
dynamically adapting and interdependent “subjects” that we investigate, this chap-
ter also describes some of the ways that MMP research designs provide alternatives 
to a variety of traditional research methodologies (Kelly and Lesh 2000; Kelly et al. 
2008; Lesh 2002).

2  MMP Research Investigates What It Means  
to “Understand” Important Concepts and Abilities

How can teachers be expected to teach important concepts or abilities effectively if 
it is not clear what it means for students to “understand”? Yet, documents that 
define curriculum standards routinely encourage teachers to teach vague constructs 
such as problem solving, connections, dispositions, and metacognitive ideas and 
procedures – even though there is little clarity about what it means for a given student 
to “understand” such constructs, and even less clarity about how the development of 
such constructs can be documented or assessed. For example, in a recent analysis and 
critique of the past 50 years of research on problem solving in mathematics education, 
Lesh and Zawojewski (2007) noted that virtually every past comprehensive review 
of the literature has concluded that attempts simply have not worked which have 
tried to improve students’ problem-solving abilities by teaching some manageably 
short list of heuristics, strategies, beliefs, metacognitive processes, dispositions, or 
habits of mind. Short lists of rules tend to lack prescriptive power, even though they 
often seem to have face validity for giving after-the-fact descriptions of past 
 problem-solving behaviours. Longer lists of more detailed prescriptive processes tend 
to be unproductive because learning them clearly involves not only knowing how to 
do them in important settings, but also knowing when, where, why, with whom, and 
for what purpose to use them. Learning such constructs tends to be highly context 
specific; transfer of learning has been unimpressive; and, long-term changes in 
behaviour have not been documented. Even in cases where some evidence exists to 
suggest that students might have improved their problem-solving abilities within 
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some small domain of problem-solving tasks, such achievements seldom occur 
unless world class teachers teach semester-sized treatments, where the complexity 
of the experiences ensures that the causes for improvements will be impossible to 
isolate. Perhaps students’ problem-solving abilities improved because they learned 
some mathematics rather than because they learned some problem-solving processes. 
Yet, traditional research on problem solving usually begins with the assumption 
that the researchers already possessed clear and complete understandings about 
what it means for students to “understand” the most important concepts and abilities 
that they believe to be important. Showing that “it” can be taught (where “it” is the 
researchers’ preconceived notions about what it means to understand “problem 
solving”) seems to be the issue that needs to be resolved. When treatments fail, the 
assumption generally is made that something was wrong with the treatment itself, 
rather than with flaws or fuzziness in preconceived notions about the nature of the 
concepts or abilities students were expected to learn.

MMP research emphasizes that, before educators rush ahead to teach things, 
more clarity is needed about: (a) what it means to “understand” the things we want 
students to learn and (b) how the development of such understandings can be 
measured and assessed. For example, in mathematics education, most traditional 
research has defined problem solving to be about situations that involve getting 
from givens to goals when the path is not obvious. In MMP research about what it 
means to “understand” various aspects of problem solving, results suggest that a 
more appropriate conception of problem solving should be about goal-directed 
activities in which significant adaptation needs to be made to the problem  
solvers’ initial interpretation of the situation. The distinction may sound subtle, but 
it is large.

According to MMP perspectives, interpretations of givens and goals are expected 
to change during solution processes. Progress is not expected to occur along a 
single path. Most relevant concepts are expected to be as intermediate stages of 
development – not fully developed, and not totally undeveloped. Problem solvers 
are expected to be interpretation developers (i.e., model developers) at least as much 
as they are information processors. Strategies and heuristics that are most productive 
are expected to be those that help problem solvers advance beyond early interpreta-
tions of problem situations, not those that provide clues about next steps when paths 
are blocked, or when productive concepts or processes are not readily apparent.

Is the essence of problem solving about learning concepts and processes sepa-
rately and then putting them together to solve problems? Is there any reason to 
expect that the heuristics, strategies, and processes that are useful for describing 
experts’ past problem-solving experiences should also be useful for prescribing 
“next steps” for novices? Are useful heuristics, strategies, processes, beliefs, or 
dispositions reducible to lists of condition-action rules or declarative statements 
(i.e., facts, rules, habits)? Do useful heuristics, strategies, processes, beliefs, and 
dispositions function explicitly and analytically, or do they often function tacitly 
and non-analytically? In MMP research, when students engage in meaningful 
problem-solving activities, results have shown that most relevant concepts and 
processes are at intermediate stages of development. When problem solvers develop 
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a language for describing their own problem-solving activities, what they do when 
they are most successful is similar to what athletes, performing artists, and others 
do when they engage in complex activities and then watch videotapes and reflect 
about past activities. Their goal is not to reduce future activities to strings of 
rule-governed behaviors. Instead, their goal is mainly to improve what they “see” 
when they are actively engaged in problem-solving and decision-making activities.

In more mature domains of research, scientists often devote large portions of 
their time and energies toward developing tools for their own use. Many of their 
efforts aim at developing tools for measuring important constructs. Similarly, in 
MMP research, model-eliciting activities (MEAs) were developed so that: (a) relevant 
subjects (students, teachers, researchers) are likely to make significant adaptations 
to their initial interpretations or conceptualizations of the situations and (b) these 
adaptations are likely to occur during 60–90 min time periods which are sufficiently 
brief so that the processes that lead to change can be observed directly (rather than 
observing only a few intermediate states of development and trying to infer from 
these what processes might have led from one state to another). In MMP research, 
MEAs are thought-revealing activities that function similarly to Petri dishes in 
biochemistry laboratories.

3  Do Model-Eliciting Activities (MEAs) Work?

Even though research on MEAs is an important part of MMP research, and even 
though detailed design principles have been clearly specified for developing MEAs 
(Lesh and Doerr 2003), many of the most common misconceptions about the 
underlying theory (MMP) have resulted from the following two false assumptions 
about the nature of MEAs:

MEAs often are mistakenly thought of as functioning in isolation rather than •	
being small parts within more comprehensive model development sequences that 
include a variety of other types of activities such as model exploration activities 
(MXAs) and model adaptation activities (MAAs) as has been described in detail 
in a number of past publications (e.g., Doerr and English 2003; Lesh and Doerr 
2003). All emphasize that concept development does not end when acceptable 
solutions have been produced for MEAs. For example, when students finish 
MEAs: (a) The models produced usually integrate ideas and procedures from a 
variety of textbook topic areas and/or disciplines. To further advance understand-
ings, these interpretation systems usually need to be unpacked. (b) The models 
that are developed usually have meanings that are highly situated. That is, they 
are shaped by constraints and affordances in the given contexts, and they draw 
heavily on students’ personal experiences related to the contexts. To further 
advance understandings, there usually are important ways that these interpreta-
tion systems need to be decontextualized. (c) The models usually are expressed 
using a variety of representational media each of which focus on somewhat 
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different aspects of the situation. To further empower thinking, more elegant and 
efficient representations usually need to be introduced which students should not 
be expected to invent for themselves. (d) Problem solvers often think with inter-
pretation systems that they have not yet explicitly thought about as objects of 
thought. Further development often needs to involve more formal and abstract 
explorations in which interactions with teachers tend to be important.
MEAs often are mistakenly thought of as instructional treatments whose worth •	
depends mainly on evidence showing that “they work” to produce significant 
learning gains. However, MEAs were developed first and foremost to be used 
as research tools to investigate the nature of students’ and teachers’ thinking. 
Asking MMP researchers whether MEAs “work” when they are used as teaching 
and learning activities is like asking Piaget whether his famous conservation 
tasks and clinical interviews work if they are used as the basis for teaching 
and learning activities. If either Piaget’s tasks or MEAs are used in teaching and 
learning situations, their ability to “work” depends greatly on the fact that 
teachers tend to be more effective when: (a) they develop sound conceptions of 
what it means to “understand” the concepts they are trying to help students 
learn and (b) they know as much as possible about the strengths and weaknesses 
of their students’ thinking. However, because MEAs are designed to be both 
model-eliciting and thought-revealing, they promote learning in direct ways. 
This is, MEAs were designed so that: (a) significant conceptual adaptations 
(i.e., conceptual change) are likely to occur during brief periods of time and 
(b) important aspects of the thinking are directly observable. Consequently, 
many research studies involving MEAs have shown that students’ thinking 
often progresses through several Piaget-like stages during single 60–90-min 
problem-solving activities (e.g., Lesh and Zawojewski 2007). This is why MEAs 
sometimes have been referred to as local conceptual development activities 
(Lesh and Harel 2003). Because of their thought-revealing nature, they often 
make it possible to document and assess levels and types of understanding that 
have seldom been assessed in other ways (Lesh and Doerr 2003, Lesh and 
Lamon 1992). MMP studies have shown that, without guidance or scaffolding 
from teachers, average ability children often are able to develop (or make 
significant adaptations to) powerful elementary-but-deep concepts and abilities 
which have been thought to be beyond their grasp. Furthermore, because MEAs 
emphasize a broader range of deeper understandings than those assessed on 
most tests, a broader range of students often emerge as having extraordinary 
abilities. MEAs provide powerful tools to promote diversity and democratic 
access to powerful ideas (Lesh and Lamon 1992).

As an example of a study showing that MEAs work, one recent study involved 
graduate students in an intense 5-week summer school course designed to cover 
the equivalent of one full 15-week semester on statistics for research in education 
(Lesh et al. 2010). Forty-eight students were randomly selected into a 24-student 
control group and a comparable 24-student treatment group. The treatment group 
devoted more than half of its class time to MEAs. Results demonstrated that the 
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treatment group outperformed the comparable-but-traditionally-taught class by 
fully six standard deviations – a level of significance that is far beyond the 0.0001 
level! Furthermore, a second phase of this study was conducted 1 year after the end 
of the course when, eight students were found in each of the two sections of the 
course who had taken no more statistics courses. When these 16 students were 
interviewed concerning what they remembered from their courses, the results 
showed that: (a) nearly all of the students in the MEA group were able to give 
impressively detailed descriptions of what they had learned from MEAs, whereas 
(b) among the students in the control group, recollections about the topics they had 
studied were exceedingly unimpressive.

Larger scale success stories have been reported in current and past ICTMA 
meetings and have been conducted in places ranging from Texas, to Cyprus, to Israel, 
to Australia, to Mexico (Lesh et al. 2010), and to a number of the USA’s leading 
graduate schools of engineering (Zawojewski et al. 2009). Even though such dem-
onstrations are gratifying, they are of little practical use unless we understand when, 
where, why, with whom, and for what purposes MEAs work. The probability of 
successful learning experiences is strongly influenced by all of these factors. For 
example, a recent study compared the results produced in two comparable statistics 
classes for graduate students in education. One class, the MEA-to-MXA group, 
emphasized “mathematizing reality” by using learning activities in which a MEA 
was followed by teacher-directed model exploration activities (MXAs). The other 
class, the MXA-to-MEA group, emphasized “realizing mathematics” by using 
learning activities in which a MXA was followed by a MEA. The exact same cur-
riculum pieces were used in both classes. But, in the MEA-to-MXA class, MEAs 
were used before MXAs to challenge students to go through a series of iterative 
cycles in which they expressed, tested, and revised their current ways of thinking 
in order to develop interpretation systems that were powerful for the situation at 
hand, re-useable in other situations, and sharable with other people. In contrast, in 
the MXA-to-MEA class, the MEAs were used after MXAs and served as applica-
tions of concepts that were taught by the teacher during the MXAs. Results of 
the study showed that students in the MEA-to-MXA class not only significantly 
outperformed their counterparts in the MXA-to-MEA class, but also they demon-
strated a mastery of many higher-order understandings about issues which seldom 
arose in the MXA-to-MEA group (Lesh et al. 2007). Thus, the impact of MEAs on 
learning depends not only on whether they are used, but also on when and why. 
The study also reaffirmed that, at the end of MEAs, a great deal more development 
still needs to occur. Nonetheless, because MEAs are designed to focus on the big 
ideas in any given course in which they are used and because MEAs are designed 
to be simulations of real life situations beyond school, the concepts which are 
embodied in the models that students produce often exhibit usual levels of durability 
and transferability.

Other studies have shown that many of the most important impacts of MEAs on 
learning result from second-order effects. For example, because MEAs are designed 
to be thought-revealing activities, and because insightfulness about students’ think-
ing is one of the primary characteristics of effective teachers, MEAs contribute to 
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teacher development which, in turn, encourages student development. When MEAs 
are used at the beginning of curriculum units, the kind of information that teachers 
see is similar to what they might have seen if they had been able to conduct clinical 
interviews with each of their students before starting the unit.

Beyond the preceding evidence documenting the successful use of MEAs when 
they are used for teaching and learning (rather than for research), another answer can 
be given for those who want to know do MEAs “work”? MEAs clearly satisfy even 
the most strongly specified definitions of problem-based learning (PBL). It is widely 
believed that a great deal of evidence has accumulated to show that PBL “works.” 
To the extent that readers believe this literature, it surely is a straightforward 
 inference that MEAs work. Unfortunately, we ourselves are highly skeptical of this 
literature, mainly because such studies vary widely concerning what is considered to 
be a “problem,” how the “problem” is used to promote learning, and what kind of 
measures are used to assess success. Some PBL “problems” are more like “applica-
tions” which occur after traditional teaching activities. Others problems are more 
like highly guided project-sized collections of teacher-directed activities (similar to 
the manuals that accompany modern software packages such as Photoshop or 
Dreamweaver). In fact, in a recent review of the literature on PBL (Lesh and Caylor 
2007), relatively few problems were found which engaged students in MEA-like 
experiences where they expressed, tested, and revised their own ways of thinking, 
rather than being guided along narrow paths toward idealized versions of teachers’ 
and textbooks’ ways of thinking. While some PBL lessons clearly were intended to 
use problem solving as a way for students to develop important mathematical con-
structs, many other PBL lessons simply used stories about real life decision-making 
situations as contexts in which quite traditional teacher-centered teaching was used. 
Still other PBL lessons were aimed at teaching problem solving itself, in ways that 
appeared to be no different than those that have failed in the previously described 
mathematics education research literature on problem solving. Nonetheless, even 
with all of the preceding ambiguity about what PBL really means and when, where, 
why, for whom, and in what ways it is intended to work, claims that it “works” seem 
to be generally accepted.

4  In What Ways Do MEAs (and MMP in General)  
Provide Alternatives to Traditional Research?

In a number of past publications, MMP researchers have described how MEAs can 
be used to provide alternatives or supplements to Piaget-style clinical interviews, 
teaching experiments, and video analyses. One significant difference between 
Piaget’s research and MMP research is that Piaget deemphasized the importance of 
variations in students’ thinking when they move from one task to another character-
ized by the same underlying structure. MMP research recognizes that (a) small 
changes in tasks often significantly change their level of difficulty, (b) students’ 
thinking often varies significantly across tasks that Piagetians would think of as 
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having the same structure, and (c) within MEAs, students’ thinking often advances 
through several Piagetian stages during a single 60–90-min problem-solving 
episode. While Piaget referred to such variations as relatively uninteresting 
decalages, other researchers such as Vygotsky refer to them as zones of proximal 
development. In MMP research, we use MEAs to investigate students’ thinking as 
it develops along a variety of dimensions such as concrete-abstract, preoperational-
operational, intuition-formalization, situated-decontextualized, global-analytic, or 
specific-general.

4.1  MEAs Provide Alternatives to Naturalistic Observations

In MMP research, researchers are considered to be model developers who have 
characteristics similar to those that we attribute to students and teachers. If we 
recognize that students’ initial interpretations of situations tend to be remarkably 
barren and distorted compared with later interpretations, then similar characteristics 
should be expected for researchers as well. For example, in early MMP research 
investigating the nature of mathematical thinking in real life situations beyond 
school, we became dissatisfied with our own naturalistic observations because 
the results seemed to be far too dependent on our own preconceived notions 
about what kinds of situations to observe (e.g., grocery shoppers, street vendors, 
and other ordinary folks, or business managers, aeronautical engineers, or medical 
decision-makers), when to observe (e.g., while the preceding people are planning, 
or monitoring, or explaining their work), or what to observe (e.g., calculations, 
deductions, or explanations). Hence, we developed a research methodology which 
recognized that decisions about who, when, where, and what to observe signifi-
cantly influence results. We shifted toward MEAs which were designed to be 
simulations of “real life” situations where mathematical thinking is useful beyond 
schools (Lesh and Landau 1983). To design these activities, we enlisted help from 
people who were knowledgeable about new ways that mathematical thinking is 
needed beyond school in fields such as medicine, business management, or engi-
neering. But, we did not simply accept without question the opinions that these 
experts expressed. Instead, we enlisted them to participate with us as “evolving 
experts” whose opinions were expected to change as they were expressed in forms 
that went through several iterative cycles of testing and revision.

We engaged a team of “evolving experts” to develop MEAs which they believed 
involved the kind of mathematical thinking to be increasingly important in the 
twenty-first century. As these teams worked together over a semester to develop a 
series of MEAs for middle school students, the thinking of the experts tended to 
evolve significantly. While their first-draft activities often focused on traditional 
basic skills and word problems, later drafts emphasized that, in the twenty-first 
century, people increasingly live in worlds where the conceptual systems that are 
developed to make sense of experiences also mold and shape those experiences 
through the development of tools and artifacts. Regardless of whether we investigate 
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ordinary citizens or specialists in future-oriented sciences with hyphenated names 
that integrate a variety of traditional sciences, the abilities that are emerging as 
important include: (a) designing and describing complex systems, (b) working in 
teams of diverse specialists, (c) adapting to rapidly evolving tools for conceptuali-
zation and communication, and (d) functioning effectively within multi-stage projects 
where planning, monitoring, and assessing are nontrivial tasks. Furthermore, many 
such systems cannot be modeled using single one-way input–output functions that 
are differentiable and solvable. Instead, they often involve multiple interacting 
agents, feedback loops, second-order effects, and other characteristics associated 
with dynamic and continually adapting complex systems – where the kinds of issues 
that arise involve modularization, systematization, maximization, minimization, 
stabilization, and other issues which once required calculus to deal with effectively but 
which are now handled computationally and graphically (Lesh et al. 2007a).

4.2  MEAs Provide Alternatives to Expert-Novice Studies

In MMP research, we often investigate problem solvers who are in fact three-person 
teams of individuals. We often use results from this research to inform research on 
problem solvers who are individuals. We sometimes compare problem solvers who 
have access to powerful tools and resources with problem solvers who do not have 
access to such capability amplifiers. One reason why such comparisons have been 
productive is because, when we look beyond school in the twenty-first century, it is 
obvious that learning organizations and other learners-who-are-groups are impor-
tant. But, a second reason is because many abilities that characterize productive 
problem-solving teams also characterize productive problem-solving individuals. 
Note that we are not assuming that there are not significant differences between 
individuals and groups or between problem solvers with tools and resources and 
problem solvers without tools and resources.

In MMP research on problem solving, when the subject is a team of problem 
solvers, it is generally obvious that, as a team, the problem solvers’ early inter-
pre tations of problems typically consist of a hodge-podge of relatively fuzzy, 
undifferentiated, and unintegrated ways of thinking. Progress for problem-solvers-
who-are-groups typically involves gradually clarifying, sorting out, and establishing 
connections among a variety of ways of thinking. Furthermore, the same tends to 
be true for problem-solvers-who-are-isolated-individuals. This is one reason why 
engineers and other design scientists often emphasize that realistic solutions to 
complex problems usually require the problem solver to integrate ideas and proce-
dures drawn from more than a single textbook topic area or theory. Furthermore, 
real life problems tend to involve constraints. In fact, in design sciences such as 
engineering, experts often joke that theirs is a science of situations where you never 
have enough money, enough time, or enough of other resources and where multiple 
stakeholders emphasize partly conflicting criteria for success (e.g., low costs but 
high quality, or low risks but high gains). In problem solving which sorts out and 
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integrates ideas and procedures from multiple disciplines, a “ballistic model” of 
learning and problem solving (where a single point moves along a single path) 
generally fails to capture the facts that (a) concepts tend to evolve along a variety 
of dimensions and (b) at every stage in the solution process, interpretations asso-
ciated with a variety of textbook topic areas tend to be engaged. This means that, 
for most purposes, the kind of single-track cyclic diagram of modelling (where 
modelling cycles involve description, manipulation, prediction, and verification) 
represents a misleading conception of the way models develop, especially during 
early stages of development.

MEA-based evolving expert studies also suggest that the use of metacognitive 
processes and understandings depend on how situations are interpreted or concep-
tualized. In other words, they are associated with models; and, when students 
engage a given model (or interpretation) of a problem-solving situation, they do not 
just engage a logical/mathematical system, they also engage a variety of feelings, 
values, heuristics, strategies, and metacognitive processes and understandings. 
Instead of imagining that these metacognitive processes and understandings are 
learned in the abstract and then connected to specific concepts and contexts, MMP 
suggests that: (a) feelings, values, and metacognitive processes are learned as parts 
of the models that students develop, (b) the meanings of statements of beliefs  
(or values, or feelings) depend on systems of beliefs, and (c) the language that pro-
blem solvers develop to describe past problem-solving behaviors functions mainly 
to help elaborate and refine their interpretations and conceptualizations, rather 
than providing explicit rules specifying what to do next. In much the same way that 
athletes, performing artists, teachers, and others who are engaged in complex 
decision-making situations find it useful to watch videotapes of past performances, 
and to develop a metacognitive language to describe what they have done, this does 
not imply that they expect this language to function as a list of explicit rules which 
should be executed in upcoming performances. In fact, successful athletes and 
performing artists usually understand quite well that, during ongoing performances, 
it tends to be disruptive to pay attention to such explicit rules. In fact, during ongo-
ing complex decision-making situations, both interpretation systems and the rules 
associated with them often function implicitly rather than explicitly; and, follow-up 
reflection activities function to develop implicitly and intuitively functioning 
interpretation systems, rather than functioning as devices to trigger explicitly func-
tioning rules of behavior.

5  Teaching from a Models and Modelling Perspective

Our starting point for conceptualizing the knowledge that is needed to teach 
mathematics from a modelling perspective is that the distinguishing characteristics 
of excellent teaching are reflected in the richness of ways in which a teacher inter-
prets her practice not only in the actions that she takes. This practice includes 
choosing appropriate modelling tasks for students; selecting activities and curricular 
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materials that will foster the development of students’ models over the course of 
several lessons; and devising strategies for engaging students in assessing and 
revising their models. Teachers have models for teaching! These models are what 
teachers use to see students’ ways of thinking, to respond to students’ ideas, to 
differentiate among the nuances of contexts in their practice, and to see generalized 
strategies that cut across contexts. These models are what a teacher uses to make 
sense of her practice and, as we shall describe below, includes both the ways in 
which the teacher sees her practice and what she does in practice. We wish to argue 
that a modelling perspective on teachers’ knowledge suggests some ways in 
which the knowledge needed for teaching modelling goes beyond traditional and 
reform-based methods for teaching mathematics and provides some new ways for 
thinking about how teachers develop that knowledge. We will suggest some prin-
ciples for the design of professional experiences that will elicit and foster the devel-
opment of teachers’ models.

5.1  The Nature of Teachers’ Knowledge

What do teachers need to know in order to teach from a modelling perspective? 
Much current research in the USA, driven in large part by the NCTM’s call for 
Standards-based teaching, is placing heavy emphasis on the kinds of mathematics 
that teachers need to know, especially at the elementary level and often referred to 
as the mathematical knowledge for teaching (Davis and Simmt 2006; Hill et al. 
2008). From a modelling perspective, we would emphasize three interrelated char-
acteristics of teachers’ knowledge: (a) an understanding of mathematical content; 
(b) an understanding of the multiplicity of ways that students’ thinking might 
develop; and (c) a knowledge of pedagogical strategies that can be drawn on in 
varying contexts to support the development of students’ mathematical thinking. 
But these characteristics in and of themselves do not fully capture a more funda-
mental distinction in the nature of teachers’ knowledge between the actions that 
teachers take in their practices and the ways in which they see and interpret their 
practices. We wish to argue that a distinguishing characteristic of excellent teaching 
is reflected in the richness of ways in which the teacher interprets her practice, not 
only in the actions that she takes. In 1976, Skemp made a key distinction about 
students’ mathematical understanding, namely, that it is not only instrumental (the 
how) but also relational (the when and why). Other researchers (Baroody et al. 2007; 
Hiebert and Lefevre 1986; Star 2005) have described how both procedural knowl-
edge and conceptual knowledge are of critical importance in students’ learning of 
mathematics. There is much empirical evidence that students’ procedural and con-
ceptual knowledge are interdependent and develop iteratively, with an interplay from 
one to the other. Here, we wish to apply this same distinction to teachers’ knowledge. 
That is to say, teachers’ knowledge is both procedural and conceptual.

Much of the knowledge needed for teaching can be captured by the skills, 
processes, and guidelines that are used in action in the classroom. Teachers acquire 
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and develop specific pedagogical procedures (or strategies) to deal with the very 
specific issues that arise for them in practice. Such procedures are specific responses 
to problem situations involving particular students, materials, and mathematical 
goals. But at the same time, some of these procedures (or strategies) can become 
more conceptually grounded as rationales for the strategies become articulated, as 
teachers modify and adapt particular strategies across a range of contexts and prob-
lem situations, and as strategies become shared among colleagues. Pedagogical 
strategies, refined through experimentation in practice and by interactions among 
teachers as the strategies are shared across contexts and problem situations, shift 
from being merely local procedures to becoming conceptually ground principles 
for seeing and responding to the tasks of teaching.

To illustrate the interplay between the procedural and conceptual aspects of 
teachers’ knowledge, consider the following example from a modelling task in 
secondary mathematics. We will use this task to also illustrate two critically impor-
tant aspects of teachers’ knowledge from a modelling perspective: (1) Teachers need 
to know how to engage students with tasks that will evoke the development of sig-
nificant mathematical models. (2) Teachers need to recognize and respond to the 
development of students’ models (i.e., student learning) as it occurs.

5.1.1  Engaging Students with Modelling Tasks

Consider the following example from a pre-calculus classroom where students 
were investigating periodic motion, including the relationship between periodic 
position graphs and periodic velocity graphs. This particular task occurred about 
two-thirds of the way through a sequence of model development activities designed 
to support students’ understanding of periodic motion. This particular task focused 
on the decomposition of the circular motion of a Ferris Wheel into its vertical and 
horizontal components. To engage students with this question, the teacher began 
the lesson with a physical model of a Ferris Wheel that she used to project the 
vertical motion onto to wall with a flashlight. The speed of the wheel and the radius 
of the wheel could be varied. While demonstrating the projected motion, the 
teacher asked for students’ observations about the motion and, in particular, their 
sense of how the speed of the projected vertical motion changed as the wheel 
rotated. Following the demonstration, the teacher provided physical “toy” models 
that the students had at their desks. These toy models were a reference point for 
many (but not all) of the groups in their work in analyzing the vertical component 
of the circular motion of the wheel. As the students worked, they referred back and 
forth (in a nonlinear way) among the (a) physical model, which they had marked 
with a starting point, (b) their own sketches and diagrams of the wheel, and (c) their 
algebraic equations and calculations.

As a particular pedagogical strategy (or procedure), the teacher’s use of a 
physical model to demonstrate the relationship between circular motion and the 
vertical component of that motion would seem like merely a rule for engaging 
the students with the task at hand. The teacher’s rationale for this decision becomes 
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more evident as we observed how she engaged the students with the physical device. 
The importance of physical models is as a support for students’ sense-making 
activities of situations that are realistic for them (though not necessarily physically 
present). The teacher asked for students’ observations about the motion as she varied 
both the speed of the device and the radius. She focused their attention on the 
crucial aspect of the phenomena, namely, how the speed of the projected vertical 
motion changed as the wheel rotated. This would build on their previous modelling 
tasks and apply their developing ideas in a next context. Finally, the “toy” Ferris 
Wheels, along with the demonstration wheel, provided representations that the 
students would translate into their own diagrams and sketches and could reason 
about in ways that made sense to them.

5.1.2  Recognizing and Responding to Students’ Thinking

Teachers’ knowledge also includes an understanding of the multiplicity of ways 
students’ models might develop and the ability to respond to students’ thinking as 
it occurs. That is, teachers need to be able to recognize and respond to model 
develop ment (i.e., student learning) as it occurs. Following the demonstration of 
the Ferris Wheel and the students’ observations about its motion, the students 
were given a “model application” task (see Fig. 26.1). This task followed a model-
eliciting activity and model exploration tasks that had occurred earlier. The stu-
dents’ overall model development continues to occur in cycles that are more or less 
visible to the teacher.

One group of three students created a sketch (Fig. 26.2) and went through 
several cycles of modelling as they reasoned about the problem:

•	 Cycle One: The students assume that the starting position was at 3 o’clock. 

Thus, when t = 3 s, the seat is at an angle of 45° above the hub, since 3

24 360
= θ .

This is correct proportional reasoning.
•	 Cycle Two: The students decide that the seat has to be 10 ft above the hub 

because the diameter is 80 ft and 45

360 80
= x . This is incorrect proportional 

reasoning, and perhaps an overgeneralization of the previous correct reasoning.

Suppose a Ferris Wheel with an 80 foot diameter makes one revolution every 24 
seconds in a counterclockwise direction.  The Ferris Wheel is built so that the
lowest seat on the wheel is 10 feet off the ground.  This particular Ferris Wheel
has a boarding platform which is located at a height that is exactly level with the
center (or hub) of the Ferris Wheel.  You take your seat level with the hub as the
ride begins.  What is your height above the hub after 3 seconds?

Fig. 26.1 Model application task
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•	 Cycle Three: The students decide that the seat has to be 20 ft above the hub 
because the entire 80 ft of diameter is traversed as the wheel turns through half 
the circle or 180°. A turn of 360° would mean a vertical motion that was both 

up and down. Hence, the height should be 45

180 80
= x  which means x = 20 ft. 

The students confirm that this seems reasonable on their physical model.
•	 Cycle Four: The teacher talks with the students about the units associated with 

the quantities that they are considering: feet, degrees, and seconds. Shortly after 

that conversation, the students shift to a new view, namely, sin(45)
40

= x
 which 

means 20 2 or 28.28 ft=x .

We do not want to focus on the students’ reasoning, but rather we want to use 
the distinction between procedural knowledge and conceptual knowledge to exam-
ine the teacher’s knowledge. Several observations are to be made, based on the 
teacher’s actions during the episode and on her comments on the lesson following 
the episode.

 1. The teacher (as is her practice) seldom intervenes as long as “students are 
making progress.” Through the first three cycles, the students worked quite 
independently, sorting out their own ideas and interpretations of the problem 
situation.

 2. When the teacher did interact with the students, her interactions were focused on 
the meaning of the quantities that they had calculated. After the lesson, the 
teacher observed that she thought that “it was the focus on units” that helped the 
students to move to thinking about using a trigonometric ratio.

 3. Another group of students had assumed that the starting position was at 9 o’clock 
and had calculated a position of 20 2 or 28.28 fty = − − . The teacher did not 
encourage the students to shift their reasoning to the 3 o’clock position. After the 
lesson, she explained that “this will make for good discussion” when the students 
later share their solutions.

3 seconds

Fig. 26.2 Student sketch  
of the Ferris Wheel
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These observations provide some insight into both the procedural and conceptual 
knowledge of the teacher. The notion that one should “let” students engage in work-
ing through their own ideas – expressing them and revising them – is a common 
one among the teachers we have worked with. Teachers often articulate this as “just 
let them work,” “let them struggle,” or “do not capitulate and give them the 
answers.” Such a guideline can be a useful heuristic for making decisions as stu-
dents are working on modelling tasks. But underlying this pedagogical strategy is 
a conceptually based rationale for when and why this “procedure” is useful. For 
example, in this case, the teacher chose a problem that the students were able to pro-
ductively work on. As described earlier, this problem was introduced via a physical 
model that students were able to make sense of (the Reality Principle from MEAs). 
The representational space for working on this task was relatively rich: an actual 
physical model, diagrams and sketches made by students, and algebraic equations 
and computations (the Documentation Principle from MEAs). This provided 
several mediums for the students to express their ideas. Finally, the task was one 
where students were able to self-evaluate whether their answers were reasonable 
or made sense (the Self-Evaluation Principle from MEAs). This (along with the 
various representations) enabled the students themselves to revise and refine their 
ideas. The teacher’s understanding of these characteristics of a good task, along 
with her own understanding of how students might engage with the task, is an 
aspect of the teacher’s conceptual understanding that is a part of the interpretive 
scheme that enables the teacher to use this heuristic in ways that support student 
engagement with the task and their learning.

Similarly, we consider the reasoning that underlies the guideline for “intervening” 
by asking students about the meaning of their work. This question will often 
prompt student’s to give explanations that will move their thinking forward – by 
clarifying their representations, by identifying a mismatch between representations, 
by pointing to an erroneous assumption about the problem, or by suggesting an 
alternative perspective. From the teacher’s point of view, this question requires 
much more than a procedural response. The teacher needs the ability to follow 
students’ reasoning when often that reasoning is only partially developed. Listening 
to students’ emerging thinking is not an easy task for the teacher (Davis 1997; 
Doerr 2006; Wallach and Even 2005). As students develop their ideas, the paths 
that students take are less like particular learning trajectories and more like “mean-
dering” or “roving” over the problem space of a system (Davis and Simmt 2003). 
The practice of asking the students about the meaning of their work signals an 
important departure from a pedagogy of problem solving oriented along known 
solution paths. Instead of evaluating students’ work and guiding their movement 
along known paths, the teacher’s role is recast as of one of engaging students in the 
self-evaluation of their work and encouraging them to revise their thinking in ways 
that make sense to them (Doerr 2006).

When students work through the kinds of model development sequences des-
cribed earlier, most often the process produces a diversity of ideas. From the 
teachers’ perspective, encouraging a diversity of ideas will “make for good dis-
cussion.” Discussing students’ solutions to modelling tasks is a useful heuristic 
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(or procedure). The underlying rationales for such discussion become visible as 
teachers use these discussions as opportunities for students to sort, select, and com-
pare ideas. For example, in the case of the Ferris Wheel modelling task, the varia-
tion in assumptions about the starting position affords an opportunity to discuss 
horizontal shifts and position as a signed quantity. At other times, the discussion 
can lead students to have to reconcile apparently different symbolic forms describ-
ing the same phenomena. Students’ partial solutions can lead to fruitful discussion 
about “dead ends” or possible next steps. Teachers need the ability to recognize 
productive paths versus less useful paths, to engage the students in sorting out 
more useful ideas from those that are less useful, and to support students in making 
connections between ideas. If we understand learning as a complex interactive 
system, then the presence of a diversity of approaches is necessary, since one 
cannot generally specify in advance what sorts of variation will be necessary for 
appropriate action. The conceptual knowledge of the teacher, in this case, is about 
how she sees and interprets the variation of student ideas and then uses this varia-
tion to drive learning. Because the variation cannot be fully anticipated in advance, 
the conceptual demands on the teacher are substantial.

Teachers’ models are significantly more complex and broader in scope than 
students’ models. As we have illustrated above, teachers’ models certainly include 
rules or heuristics that provide guidance for acting in the classroom. But teachers’ 
models are also conceptual principles grounded in rationales and interpretations 
of classroom events. Teachers’ models include descriptions of students’ ideas, ways 
of engaging students in describing their own ideas, abilities to plan and sequence 
tasks, knowing useful symbolizations in various contexts, highlighting underlying 
mathematical structure, supporting students in making connections to other 
ideas, fostering productive use of diverse ideas, and ways of engaging students in 
self-assessment.

5.2  The Development of Teachers’ Knowledge

How do teachers acquire the expertise that is needed for teaching? In other words, 
how do teachers’ models develop? This question focuses our attention not on the 
static picture of what teachers know, but on the dynamics of how teachers’ models 
or systems of interpretation develop over time. Here we find it useful to think of 
teachers as “evolving experts” who work within a complex system. Is teaching a 
complex system or is it merely complicated? The following characteristics of teach-
ing and of classrooms give credence to an argument for considering teaching as a 
complex system: (a) There are multiple interacting agents. (b) Cause and effect are 
often distant from each other in time and often inadequate for explaining learning 
phenomena. (c) Teaching is goal directed, but often goals are changing or teachers 
must address conflicting goals. (d) Teachers must make decisions based on partial 
and incomplete information. (e) Teachers must make decisions in constrained 
environments and consequences may be unclear. Expertise in a complex domain 
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requires the flexible use of cognitive structures to accommodate partial information, 
changing or unclear goals, multiple perspectives, and uncertain consequences 
(Feltovich et al. 1997). This perspective on teachers’ knowledge suggests that 
expertise in teaching does not conform to a single, uniform image of a “good” 
teacher. Rather, expertise in teaching is highly variable, both across and within 
individuals and across multiple settings. Hence, teaching needs to be viewed as 
evolving expertise that grows and develops along multiple dimensions in varying 
contexts for particular purposes. The central problem, then, is to understand the 
kinds of experiences that are likely to promote this growth and development in ways 
that are continually better.

As teachers draw on their knowledge in the acts of teaching, this is a potential 
site for teachers’ continued learning (or model development). Eraut (1994) argues 
that the predominant context for teacher learning is the classroom and that class-
room instruction is characterized by “hot action” – it is “a place where teachers must 
decide courses of action quickly with minimal time to reflect on past knowledge or 
memory and in a profession/craft filled with ambiguity and uncertainty.

Teachers operating in hot action contexts rely proportionately more on personal 
knowledge – that is, knowledge gained through experience, often in isolation, and 
routinized into tacit behaviors” (p. 242). Needing to act in contexts that are ambigu-
ous and uncertain (that is, in a complex system) leads to the development of routin-
ized, tacit behaviors (what we have been calling procedures). One way to promote 
the development of teachers’ models is to make these routinized behaviors “vis-
ible” to both teachers and researchers and subject to the kind of scrutiny that will 
lead to adaptation and transferability. In other words, as strategies become shared, 
revised, and reused, pedagogical “procedures” move from being merely strate-
gies that can be used in a particular setting to pedagogical “concepts” that provide 
teachers with increasingly sophisticated ways of interpreting and responding to 
classroom events. We will illustrate this with a brief example involving the collab-
orative design of sequences of modelling tasks and then suggest some principles for 
the design of experiences for teachers that promote the development of their models 
for teaching mathematics.

5.2.1  The Collaborative Design of Sequences of Modelling Tasks

The collaborative design and revision of lessons has long been the foundation of 
Japanese lesson study and is currently being adapted and studied in American class-
rooms (Lewis et al. 2006) as a means of improving instructional practice. Certainly, 
the design of the lesson is central to a teacher’s practice and, as such, is a potential 
site for teachers’ learning. Key to lesson study is the implicit assumption that 
engaging teachers in the collaborative design of a lesson with a clear goal or “end 
in view” and in cycles of teaching and revising the lesson will help teachers to grow 
professionally (Zawojewski et al. 2008). Such cycles are likely to lead to changes 
both in the goals of the lesson and in the teachers’ ways of thinking about the 
lesson. In other words, this approach to teacher development mirrors a complex 



264 H.M. Doerr and R. Lesh

system that changes over time as artifacts (in this case a lesson) are being created. 
We illustrate this dynamic with a brief example from two pre-service teachers who 
were engaged in collaboratively designing a sequence of four modelling tasks for 
secondary school students.

The pre-service teachers went through multiple cycles of design in developing 
their sequences of modelling tasks. They began by identifying the goals of each 
sequence. Each of the pre-service teachers then worked on two of the sequences, 
with multiple iterations as they shared these sequences with each other and offered 
critique and suggestions. They created brief “teacher notes” for each sequence and 
provided a written summary that described their reasoning for the decisions they 
made in designing the tasks. Following this, there was a brief discussion about 
the process of developing the sequence of tasks. The “teacher notes” captured the 
pedagogical strategies (or procedures) that the pre-service teachers envisioned for 
the tasks; the cycles of revision and their written rationales captured much of the 
underlying principles (or conceptual basis) of their developing thinking about tasks 
for learners.

This collaborative process illuminates three points about the development of the 
pre-service teachers’ thinking:

(a) The design of the tasks made visible the pre-service teachers’ thinking about 
the goals for students’ learning. One pre-service teacher described the difficul-
ties in seeing the tasks from a teaching and a learning perspective: “It’s hard 
trying to think from multiple perspectives. Because you’re thinking about what 
you want as a teacher, but then you’re [thinking] about…what the main goal is 
and how you’re going to get there. And then you’re thinking about it from the 
student’s perspective. Is this going to make sense? Are they going to get it? Is it 
going to be worthwhile? Is it worthwhile for them to get there?” The pre-service 
teachers also struggled with identifying the knowledge that students would 
bring to the tasks: “We didn’t exactly know where the students would be at each 
level. So in some ways, we just made assumptions about where we thought 
they should be.” To address this difficulty, the pre-service teachers designed 
“pre-labs” that were intended to motivate the tasks, but also to “bring out some 
different ideas” and to “have an actual discussion.”

(b) The revisions of the tasks led to new goals for the pre-service teachers that 
would help them to continue their professional learning (or model develop-
ment). After several cycles of revision, the pre-service teachers realized that 
they would need to teach the tasks before they could become any better. This 
became a new goal and a new insight for the pre-service teachers: They now 
saw that the tasks themselves were structured so that they could learn from 
the teaching of the tasks. As one pre-service teacher observed “I think it’s 
an on-going process to revise these.” The other observed that by examining 
students’ written work, she will be able to “see they didn’t get much out of this 
question. Or they didn’t get anything. Or wow look at these answers! They’re 
really rich. So these [questions] are really good. I want to keep these. Maybe 
I should reword these and completely toss these.” The learning from the tasks 
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now included both the students’ learning and the pre-service teachers’ learning. 
One of the pre-service teachers described this dual aspect of the learning: “I can 
get even more out of this [set of tasks] when I get to [teach] them. Will they 
work the way that I want them to work? Or the way that I’m thinking that 
they’re going to work? And are the students really going to get something out 
of writing? So I think that there’s more that is still going to come from what am 
I going to get out of these. Or what am I going to learn from them. I think that 
these are a really good [way] to learn from the students. So a lot [more] can 
come out of it.” The pre-service teachers now see that the tasks have been 
designed in a way that will enable them to continue to revise the tasks and 
enable them to learn from teaching the tasks.

(c) The pre-service teachers’ interactions with each other revealed their thinking in 
ways that led to the revision and redesign of the modelling tasks for students. 
When describing their interactions, these pre-service teachers highlighted how 
they asked critical questions of each other, rather than “just scanning the thing.” 
As one of the pre-service teachers commented, they pressed each other to think 
through how students might respond and the intentionality behind their ques-
tions: “How to really work through what’s going to work and what’s not going 
to work. [We asked each other] how do you think students would respond? …
What are you trying to get at here?…Is that what we’re really trying to get at 
here? Just going through everything with a critical eye.” Along with this critical 
eye, the pre-service teachers pointed to the value of designing for genera-
lizations. By designing for generalizations, the pre-service teachers felt that 
they were better able to understand the connections between ideas. One of the 
pre-service teachers said that this process “helps you connect different units. 
This is a big idea here, but how does it link to the previous big idea? How does 
it link to the next big idea? And the big ideas of the course?” In this way, the 
pre-service teachers were attending to the development of students’ thinking 
across tasks and instructional units. These pre-service teachers are beginning to 
see teaching as emphasizing students’ abilities to make adaptations to existing 
concepts in ways that will support the development of those concepts across 
instructional tasks.

5.3  Principles for the Design of Model Development  
Experiences for Teachers

A key assumption from a modelling perspective on the development of teachers’ 
knowledge is that teachers must be provided with opportunities to develop their own 
models (or systems of interpretation). These opportunities need to be organized 
around experiences that engage teachers in expressing their current ways of thinking, 
such as making explicit the implicit routines of practice or providing rationales 
for particular instructional strategies. Once current ways of thinking are revealed, 
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teachers need to engage in multiple cycles of testing and revising those ways of 
thinking in particular contexts for specific goals and sharing their ideas with 
colleagues for replication and reuse in multiple contexts. By designing model deve l-
op ment experiences for teachers that are embedded in the complex settings of 
schools, researchers can engage with the complexity and the dynamics of the system 
in which teachers (and students) learn. The following three principles are intended 
as guidelines for the design of model development experiences for teachers.

 1. Diversity is a source of possible interpretations and alternative responses to 
classroom events. A modelling perspective forefronts the variability in the 
abilities, the pedagogical strategies, and interpretations that teachers bring to 
their practices. Not all teachers begin at the same “starting point” nor do they all 
follow pre-determined paths for learning to interpret and analyze the complex 
and ill-structured domain of practice. Teachers vary in their skills, knowledge, 
and growth in ways that are contextualized and highly variable. By bringing 
together multiple perspectives on particular teaching situations, teachers can 
notice more about the details of the situation, can use considerably different 
schemes to think about the important patterns and regularities, and can act differ-
ently in the situation. Encountering variation can shift the teachers’ focus from 
the details to the big picture, from isolated elements in a situation to interacting 
relationships, or from particular events to more generalized relationships. Model 
development experiences for teachers should provide opportunities for teachers 
to express alternative perspectives on particular teaching situations. This juxta-
position of multiple perspectives is a source of new ideas and can lead to the 
revision of teachers’ systems of interpretation.

 2. Redundancy is the complement of diversity with its emphasis on differences. 
Among any group of learners, there must also be some similarities or com-
monalities in background, vocabulary, experiences, and purpose. These com-
monalities support the communication of ideas. Strategies and concepts about 
teaching and learning need to be shared among multiple teachers and reused 
in other contexts that require reinterpretation and further analysis. Particularly 
powerful strategies and concepts for teachers are those that come from other 
teachers and can be used in one’s own practice. Model development experi-
ences for teachers must provide opportunities for teachers to share and reuse 
ideas in multiple contexts. This leads to more flexible ways of reasoning 
about practice and to potentially more generalized ways of interpreting their 
practices.

 3. In any complex system, agents or neighbours interact with one another. Here, we 
draw on Davis and Simmt who point out that in the context of teaching and 
learning mathematics, “these neighbors that must ‘bump’ against one another are 
ideas, hunches, queries, and other manners of representations.” (2003, p. 156). 
Model development experiences for teaching must make ideas visible so that 
they can bump against one another. This interaction of ideas can lead to testing 
and revising teachers’ systems of interpretation.
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6  Concluding Remarks

We began by arguing that a critical feature of teachers’ knowledge is how they see 
and interpret the teaching and learning of students. Teachers’ models are character-
ized by a complexity that exceeds that which we usually associate with students’ 
models. Teachers’ models include both pedagogical strategies that teachers use to 
respond to students’ thinking and conceptual systems that teachers use to design 
instructional sequences, to interpret students’ solutions, to draw on useful symbol-
izations in various contexts, to highlight mathematical structure, and to engage 
students in representing and evaluating their own ideas. When students are engaged 
in modelling activities, teachers are likely to encounter substantial diversity in 
student thinking. This places new demands on teachers for listening to students, 
responding with useful representations, hearing unexpected approaches, and 
making connections to other mathematical ideas. At the same time, such classroom 
settings potentially provide an opportunity for teachers’ models to develop. We 
have suggested several principles for the design of experiences for teachers that can 
foster this development by focusing attention on teachers’ systems for interpreting 
their practices. Much practical work remains to be done that meets the substantial 
challenges of revealing teachers’ thinking so that it can be tested, revised, and 
shared in ways that will contribute to a growing body of knowledge about teaching 
and learning in the twenty-first century.
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Abstract In this chapter, we present the principal results of a research project in 
which empirical data was obtained from a distance course of mathematical model-
ling (MM) to teachers and students of mathematics teacher-training. The objective 
was to understand the limitations and possibilities that a distance course of MM 
offers. Based on this understanding, the goal was to reorientate the project’s pro-
posals and actions with the expectations to make MM effective for Mathematics 
Education at any scholarly level. In preparation, we needed instructional materials 
and all the educational elements available on the Web site in order to use it to teach. 
We obtained data from interviews, observations, and participants’ questions and 
difficulties. Indicators of the participants’ difficulties were categorized as concern-
ing teacher’s education or the necessity of teacher’s education.

1  Introduction

The Brazilian government has set up National Curricular Lines for courses to 
prepare elementary education teachers so that courses that give students better 
knowledge about the socio-cultural context have an appropriate orientation within 
the curriculum. The National Curricular Lines seek to promote the development and 
understanding of mathematics and the integration of mathematics into other areas 
of knowledge, such as mathematical modelling.

According to the government data, there are 413 preparatory courses for training 
mathematics teachers in Brazil; of these, the authors have identified (to March 
2010) about 30% that include modelling in the curriculum. In courses in which 
Mathematical Modelling (MM) is included, the teacher responsible for instruction 
in this area should know how to model mathematically in topics from a wide area 

M.S. Biembengut (*) and T.M.B. Faria 
Department of Mathematics, Universidade Regional de Blumenau, Blumenau, Brazil 
e-mail: salett@furb.br; thaismarianeb@gmail.com

Chapter 27
Mathematical Modelling in a Distance  
Course for Teachers

Maria Salett Biembengut and Thaís Mariane Biembengut Faria 



270 M.S. Biembengut and T.M.B. Faria 

of knowledge, and also he or she should know how to adapt such mathematical 
models to other school phases. Furthermore, these courses prepare mathematics 
teachers from the same region to serve a significant number of children and young 
people from different socio-cultural backgrounds who need to receive sufficient 
general instruction relevant to their own situations.

Thus, there is a real need for teachers to learn modelling. With the possibilities 
offered by technologies that facilitate distance courses, it is now possible to address 
this demand. For Mathematics teachers to be able to use MM in their practice in the 
classroom, with the purpose that their students learn the art of modelling situations 
from some area of knowledge, similarly, a distance course needs to have processes 
and methods to achieve this purpose. That is, it has to have a distance system of 
teaching modelling that allows the reorientation of the education and the under-
standing of the participants using the actual structural conditions available (physi-
cal space, human, and technological resources) (Biembengut 2007).

It is not sufficient to promote courses of continuing professional education with-
out knowing the potential for the teachers to improve or change their pedagogical 
practice. This research aims at understanding the limitations and possibilities 
offered by a continuous professional education distance course in Mathematical 
Modelling for teachers. Based on this understanding, the goal is to reorient the 
proposals and actions with the expectation of making MM effective for mathematics 
education at all educational levels.

The methodology of this research took into account the literature on teacher 
education and the empirical understanding of a group of 29 mathematics teachers. 
We sought to identify, describe, and analyze the difficulties and advances during the 
MM course. These goals were accomplished in two phases: (a) organization of the 
course and (b) analytical procedures.

(a) Organization of the course: This phase involved: production of the didactic 
material, elaboration of tools to collect data, classification of data, organization 
of the virtual structure, and planning. It was necessary to form a pedagogical 
and a technical team. The aims of this course were to teach the participants how 
to use Modelling both in research and in mathematics education to achieve such 
a goal, we explained and discussed material of didactic support that is organised 
in four phases: (1) to formulate and solve two situational-problems for which 
data had to be collected, (2) to verify, experimentally, two classical models of 
differential equations (restricted growing and liquid cooling), (3) to model a 
topic of interest to the teachers, and (4) to adapt the modelling performed, for 
the teaching of mathematics appropriate to a particular school year. The 40-hour 
course was divided into eight simultaneous meetings over 60 days (September–
November, 2008).

(b) Analytical procedures: The research data were collected from the observation 
and description of actions and events during the course, from the work done by 
the participants and from the interviews given by them about the validity of the 
course and about the possibilities and difficulties experienced in making mod-
elling a pedagogical practice. The events during the course raised two issues: 
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interest in the proposal and the need to learn modelling to use in their practice. 
To better understand these events, we have searched the literature on interest 
and need for conceptions and definitions. From these theoretical concepts, it 
was possible to understand the underlying structures that are expressed, often 
hidden from the educational realities of the participants, who voluntarily par-
ticipated in this research.

2  MM Course: Main and Common Events

The course was developed in four phases, in increasing order of difficulty, with the 
intention of guiding the participants how to carry out research and, once that was 
accomplished, the aim was to make them know how to implement this process in 
classroom practice. As the issues, doubts, and advances from the participants were 
similar, we opted to describe these in conjunction with the main and most common 
events, making general comparisons, but not ignoring the qualitative aspects of real-
ity and the differences in learning and in motivation of each participant. What fol-
lows is a summary of the main participant events during the course, the two main 
difficulties, and the possibilities.

Introductory class: Through videoconferencing, everybody was present and in doing 
so their motivation and interest was confirmed. Only 5 of the 29 participants had prior 
knowledge about the material and the many and various instructions regarding the 
topic and had downloaded or printed the material in preparation for the course. 
According to Dewey (1922), interest is dynamic, compelling the participant to action, 
and has the goal itself in some object or finality and, still, it provides the means to 
internal achievement or gives an important feeling. Herbart (1806) said that interest 
permeates the being as a spectator of the facts and interacting with them; it is attached 
to the image, to the relationships. We can say that interest for most of the participants 
was attached to “being a spectator” of the facts and of the proposals to be presented.

First Phase: Mathematics and language: In this phase, the two activities aimed at 
inspiring the participants regarding the researcher spirit: the will to collect data, to 
decide on the mathematical language to be used in the formulation and solution, and 
to analyze the validity of the solution found. None of the tasks demanded mathematics 
aside from that taught in the Elementary School. From the first moment, many of the 
participants did not understand the task; they expected data, despite the given set of 
suggestions and orientations about how to deal with the data. Their lack of understand-
ing indicated how deeply these participants were rooted in the way of teaching they 
had lived through in their school lives, accomplishing the task according to “what 
the teachers ask for” and not because it is desired or necessary to know.

In this phase, the participants were faced with two open tasks, requiring them to 
search for data and then formulate, solve, and decide the best way of creating a 
parking lot and packaging for kitchen oil. They stated that they had difficulties not 
only reading and attending to the prescribed task descriptions but also in remembering 
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from their previous education the mathematical knowledge demanded for the solution, 
despite the fact that the data to be collected were basic content, an integral part of 
everyday teaching. This difficulty, faced by most of the participants, influenced 
their motivation and their interest in the course: 12 of the 29 participants gave up, 
citing lack of time to accomplish the tasks as an excuse. Learning depends on a set 
of reasons for each individual person, such as perception and interpretation accord-
ing to the context, to the interest, and especially to the need. The interest can be 
created through the process of teaching, but, it is the need of having specific knowl-
edge that truly engages the person in learning.

Second Phase: Classical mathematical models: In this phase, a brief explanation 
was made about two classical models of differential equations: one, about the res-
tricted growing of a live organism; and another, about the cooling of a liquid or 
Newton’s Law of Cooling. These models are included in the Integral Differential 
Calculus (IDC) course for mathematics teachers. In general, in this subject, the 
teacher first presents the classical models and then suggests the students solve 
problems applying the data to the models (mathematics formula). The application 
is done, many times, in a mechanical way, and the students do not evaluate the 
validity of the result. The experiences should allow them to establish the constants 
of the respective classical models and check the validity of the experiments made. 
As in the two activities of the first phase, the participants were given a set of task 
descriptions indicating how to proceed. The experimental data was obtained with-
out difficulty by all the participants of both groups. The difficulty occurred in the 
formulation: knowing how to obtain the constants from the data.

Even though the participants were teachers with a good understanding of Calculus 
(IDC), among other content, they did not know how to use this “knowledge” and 
did not have the skill needed to make use of the learned mathematics in their own 
school situation. This demonstrates that many education courses for teachers still do 
not provide consistent and broad preparation for future teachers that allows them to 
use effectively at least part of the content developed in such courses. Of our group 
of participant teachers, three more gave up, citing lack of time to accomplish the 
tasks, which left the course with only half of the participants originally enrolled.

Third Phase: Mathematical modelling: In this phase, we asked the participants to 
work in pairs and choose a theme of their own interest and empathy and construct 
a mathematical model. This request generated many questions, among them: What 
would be a good choice as a theme of interest? This question showed that they were 
neither acquainted with, nor did they understand the preliminary text about model-
ling that was in the instructional material. This condition – that they must be able 
to do modelling in order to teach mathematics through modelling – contributed to 
five more participants giving up without trying to accomplish the task. According 
to Claparède (1958), to make a person act, it is necessary that he or she is in proper 
condition for the rising of a need, and that it raises his or her interest in satisfying 
that need. Thus, it is assumed that the need to “learn to teach” was remote according 
to the value that was attributed by these five participants and that the “need” was not 
recognized by them.
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Fourth Phase: Mathematics integrating modelling: In this phase, the participants 
were asked to adapt their work in MM for teaching; that is, they had to prepare 
instructional materials using the MM process for teaching. For these participants to 
have their own instructional material, more or less according to the reality of their 
students or future students, we asked them to adapt their modelling work to some 
appropriate group and school year and to some programmed mathematical content. 
Most students/participants did not see the need to know how to create their own 
instructional material, saying that these materials already existed in schools: The 
topic is in the instructional book from the beginning to the end, and it is just nec-
essary to present it. We realized again that school experience had overwhelmed 
them, making it difficult to change the teachers’ ways. After having prepared the 
materials, many teachers still looked for a good instructional textbook; in general, 
they searched out the same type of textbook that was used in their own education, 
reproducing in their own teaching the same procedures and content that they expe-
rienced as students (Bonotto 2007). Despite this tendency toward teaching as they 
had been taught, the nine participants finished the task.

At the end of the course, we sent a questionnaire to all participants originally 
enrolled. They were asked about the course organization, their performance, and 
the validity of the course. Most of those who dropped out answered, and we 
received responses from 26 of the 29 enrolled. In relation to the answers about their 
performance and the validity of the course in continuing professional education, 
two distinct aspects were evident: one concerned the teacher’s education and, the 
other concerned the necessity for teacher education.

2.1  Modelling in the Classroom: Possibilities and Challenges

The student’s comments on the incidents during the course and their inability to 
complete the MM course, the tasks accomplished by them, and their statements 
about the validity and viability of the course all indicate a potential for mathemati-
cal learning through modelling, but, there are challenges to using MM in pedagogi-
cal practice. We found ourselves in agreement with their statements: The process 
of modelling contributed to the stimulation of the perception and understanding of 
the concepts. These participants tried to design the task so that they understood 
what was possible and imagined an environment around them. The skills demanded 
from the participants were in effect tools in this process.

Although MM is an important method of teaching, some aspects should be 
catiously emphasized, bearing in mind the limitations of the educational struc-
tures within which the teacher works and the students learn. We are currently 
having an educational structure with curricula across many disciplines; each 
discipline is under the responsibility of a teacher who is also under the restric-
tions of schedules and periods to accomplish each phase, all of which contribute 
to the main difficulty of turning MM into a method of teaching and learning in 
the classroom.
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The events that were indicators of the participants’ difficulties (teachers and 
future teachers), were put into two categories: participants’ education and necessity 
for education. The necessity can be intrinsically related to a personal interest, or 
extrinsically related to surviving in one’s difficult environment. In either case, time, 
availability, and planning are involved.

Participants’ education: One of the main problems of the Brazilian school sys-
tem structure, from the Elementary to the Superior, is that few students learn how 
to carry out research and they are not held to be responsible for their own learn-
ing, except in isolated cases. The structure makes the teacher alone responsible 
for the student’s learning. In this scenario, many students assume their physical 
space, transfer the content somewhere, and answer the questions or exercises that 
the teacher presents only if they are asked to take a test for a specific evaluation 
and are given a grade. When a student has a question or a doubt, he or she 
expresses it  during a class and, in general, it is answered at the same moment. 
Rarely, is he or she encouraged to search for an answer independently, in a kind 
of “doing to know” and “knowing how to do it”, as suggested by Maturana and 
Varela (2001).

Most of the participants in this course, even being teachers, assumed the same 
position as the students: waiting for the teacher in this case to tell them what, how, 
and which results he or she “would like” to receive. As this was their first experi-
ence in a distance course, related to the time experienced in the actual structure, 
most expected to be given the teacher’s direction in each phase, even for something 
simple. In the process involved in the distance course, auto-didacticism is funda-
mental. The times and spaces are diverse. If, from one point of view, it is easier for 
the person who is taking the course in this mode to do the activities according to 
his or her availability, from another point of view, his or her questions or doubts are 
answered according to the availability of the instructional team.

All the participants reported: They worked for at least two periods of time, and 
had little time to study and to do the activities involved in the course. The restricted 
time to accomplish the tasks and the explanations, plus the questions and doubts 
raised, contributed to raising their interest in many cases in continuing with the 
course. In this sense, interest is a kind of feeling that prevents the action. It comes 
from the different circumstances that one person faces and that incites him or her 
to give an answer; interest develops through observation and is associated with 
conceptualization: with its contrasts and interconnections. “The interest only tran-
scends the simple perception, by the fact that in it the thing observed conquers 
preferably the spirit and it imposes certain causality among other representations” 
(Herbart 1806, p. 73). Thus, the participants of this course, when seeing themselves 
hindered by the time and by their own school experience, were motivated to revise 
their needs for learning, based on the same interest that took them to participate in 
this experience in the first place.

Necessity for education: The act of learning depends on the interest and the neces-
sity of the person involved. Most of all, it demands from the person: diligence, 
discipline, and perseverance. According to Habermas (1987), knowledge is found 
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at the peak of development through the life of a person and is part of his or her 
process of being human. The activities undertaken come from his or her interests 
and needs, “The interest implies a need, or then the interest generates a need” 
(Habermas 1987, p. 220). According to Claparède (1958), every human being tends 
to keep stable until something disturbs his or her interior balance and promotes 
necessary acts leading to his or her own reconstruction. It is about “a continuous 
readjustment of a balance perpetually broken”; a search to reach “an objective and 
not to vanish the needs that show up” (Claparède 1958, p. 40). In the functional 
perspective of larger relevance, defended by Claparède, it is the need that makes 
human beings move; it is this that is the interior stimulus for doing the activities.

There are two kinds of needs: primary – vital and secondary – motivational, 
happening according to the primary needs derived from them. That is, intrinsic 
need is instigated by physical survival, and extrinsic need comes from some 
requirement and demands that it is accomplished because of survival (physical, 
professional, familial, social). If the interest is involved with a feeling, or a wish, it 
comes from one need, and when the interest is free from feelings, it provokes a need 
(Habermas 1987). The need depends on the action or the experience that is pro-
duced on the outside in a kind of reflection. In general, it depends on the goals, the 
interests, and the experiences of each person. The interaction of each person with 
the environment in which each is surrounded promotes the need that provokes the 
action with the intention of completing it or gaining balance; from this action 
comes learning and, as a consequence, it helps the formation.

The personal life, particularly in this type of virtual time, is found to be multi-
faceted in occupations of multiple interests and needs. The participants, when faced 
with the proposal of the modelling course and the demands required in order to 
accomplish it, such as having enough experience or understanding to be able to 
describe and refine this description, were induced to think again about other needs 
of the multiple tasks they were involved with: to produce a kind of reflection. On 
the one hand, their difficulties in being auto-didactic, for instance, in reading and 
interpreting different contexts from the questions of the textbooks, defy their avail-
able time for the accomplishment of the tasks and the course. On the other hand, 
the diverse requirements or factors coming from the actual education system 
(Biembengut 2009) might have influenced them.

This reflection was fundamental for almost 70% of the enrolled students who 
gave up. The justifications for giving up were lack of time to attend to multiple tasks 
and educational politics that presented certain contradictions between the proposals 
and the actions. From one side, the official Brazilian documents emphasized the 
importance of turning mathematics into something meaningful for the students, in 
promoting learning, skills, and critical senses; they prescribe a pedagogical orientation 
that respects the socio-cultural differences among the students; on the other side, 
there remains inconsistency on what this is about: educational structure and profes-
sional standing.

Educational structure: The educational structure at all levels (from Basic 
Education to Superior) operates with curriculum prescribed in many subjects; there 
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is insufficient time to work deeply with the subjects and having each one of these 
subjects under the responsibility of one teacher makes it difficult for meaningful 
changes to happen in the students’ teaching and learning styles. It is unsurprising, 
therefore, that students without interest and without realizing any need in getting 
this academic knowledge achieve increasingly poor results in the examinations 
and do not fare well in the job market. The teacher in this context keeps using his 
or her techniques and strategies. It is fact that a majority of teachers search for 
efficient ways for their students to learn. The didactic resources vary according 
to the topic with which they are intended to work, applying a method that is con-
sidered adequate to promote learning. In the meantime, they face a lack of moti-
vation and intellectual curiosity from many students in knowing and understanding 
the curricular themes.

Professional standing: The interaction of each person with the environment in 
which he or she is surrounded promotes needs that impel him or her to act in the 
sense of accomplishing these needs or regaining a balance; from this action comes 
learning and, as a consequence, it helps in his or her formation. The need depends 
on the objects, interests, and experiences of each person. But the external variables 
exercise meaningful influence on people’s actions. These variables have incited 
Brazilian teachers to an awareness of two kinds of needs: a need for continuing 
their own education for better work conditions and a need for keeping themselves 
in the school institution.

In the last decades, public education teachers’ salaries in many Brazilian 
states reducing. To attain a reasonable standard of living, teachers take on the 
biggest number of classes and/or hours that are possible in public and private 
schools. As a consequence, teachers do not have time to study, nor even to pre-
pare the classes; this causes them to reproduce the same teaching that they expe-
rienced in their own education, transmitting directly what is in the textbooks, 
without promoting any interest from the students or addressing their learning 
needs. Facing that, as it was said by Granger (1969, p. 38), “the taste of knowl-
edge and the desire to reason are turned off, then face to the wish of an effective 
freedom, after this time of strong pressure, and proclaims the absurd or vain of 
the human world.”

Given these conditions, the educational proposals with results that tend to 
improve mathematics education are tenuous, in particular. If guided by these stag-
nating signs, it is possible to move on to other educational areas: from the needs to 
the interests of survival and from the interests to the needs of survival, in a continu-
ous circle, without bringing improvements in the academic formation of the people. 
In the attempt to give words to the problems coming from these contradictions in 
the public educational politics, it is prudent to have an analysis of the objective 
manifestations from the students’ and teachers’ reality. It is not less meaningful that 
“to take the consciousness of your reach, of the doctrinal autonomy, and the exten-
sion of your success to a popular auditorium, it is precisely situated” nowadays 
(Granger 1969, p. 38).
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3  Conclusion

Research indicates how fertile the use of mathematical modelling in teaching is for 
students’ education. Once this method is allowed to raise their interests in learning, 
improving their understanding about the world around them and inspiring con-
sciousness about the environment, they then have the possibility of contributing to 
a better way of life. The research continues to show how the school community 
works as an educational institution, the role that it plays in a person’s education, 
the group’s, and the society’s. It calls to attention some facets in educational politics 
that promulgate actions expressed in research for the improvement in the education, 
but that are not complete due to power of educational sanctions. This research 
also highlights facets that could be identified during the period of the distance 
modelling course.

A majority of the teachers did not have an adequate background that allows 
alternative practices in the classroom. When they started noticing the unsatisfactory 
results of teaching, they become stuck in the actual system even though they are 
aware of relevant pedagogical proposals, citing the time experienced over teaching 
across several disciplines causing a poor understanding of the relationships among 
the mathematical topics and other areas of knowledge together with the influence 
of multi-occupations (professional, familial, and personal). Thus, there remain 
few professional teachers who dare stop acting the same way as their predeces-
sors did, assuring the continuing historical reproduction of the same teaching 
procedures.

Factors that contribute to a mathematics teacher’s inability to alter his or her practice 
despite the difficulties presented by many of the students are: the multi-occupations 
that most of these teachers are involved in due to interests and diverse needs; the 
disinterest of many students at all levels to learn; and, the command structure 
in educational politics. A change of any magnitude would demand a commitment 
from the authorities to restructure the schools at all levels, giving teachers the need 
to alter their practices and prompting the students to have a renewed interest in 
learning.

If the researcher looks back at a period long ago, he or she will be able to trace 
the changes that took place but exacted almost no meaningful improvement in the 
process of teaching and learning within the educational system in Brazil. In today’s 
case, what is expected to contribute to the educational process is that each teacher or 
researcher would be able to correct, continuously, the education process, and without 
amendment, to transform the scientific knowledge to attend to the new requirements 
that come out and are unexpected at each moment and still, teachers must also have 
options to extend their studies to other fields of interests or the like.

The accumulated ideas in this research allowed us to improve the comprehen-
sion of each variable analyzed, permitting the results of our experiences to create 
a new sense of awareness of the importance of changing our educational system in 
Brazil; the research establishes another reference-point for these needed changes 
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to be realized in a new way. In the momentary difficulty of changing the actual 
educational structure, we call for researcher teachers of mathematics education to 
continue searching for new ways, processes, and necessary methods to acquire 
necessary knowledge for the maintenance of life and, moreover, to instigate the 
interest and the need of teachers and students in this cause.
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Abstract Views of mathematics teachers about tasks with modelling relevance 
are likely to influence the ways teachers create learning opportunities in the class-
room. As quantitative empirical evidence about such task-related views is scarce, 
this chapter reports on corresponding findings. In particular, views of prospective 
and in-service teachers are compared and possibilities of improving professional 
knowledge are identified.

1  Introduction

Professional knowledge and beliefs of mathematics teachers concerning the role of 
modelling for the mathematics classroom may have impacts on the way teachers con-
ceive learning opportunities for their students. In particular, views about tasks requir-
ing modelling steps might be relevant for instruction-related decisions of teachers.

However, there is still a need for quantitative empirical research about such 
views and corresponding professional knowledge. Consequently, this study concen-
trates on this area. A total of 230 prospective and 79 in-service secondary teachers 
were asked about their instruction-related views, including views about modelling 
and about their views on characteristics of different tasks with higher or lower 
modelling requirements.

The results indicate that the prospective teachers preferred tasks with rather low 
modelling relevance to those requiring more intensive modelling activities. These 
views might be linked to the fear of the prospective teachers that the goal of mathe-
matical exactness may be in conflict with modelling tasks. However, the in-service 
teachers’ views differed significantly: The tasks requiring more intensive modelling 
activities were rated more positively. These results indicate that the in-service 
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teachers might be more aware of the learning opportunities linked to modelling 
tasks on the basis of their more extensive classroom experience. Yet, on the level of 
more global views on modelling, the in-service teachers felt, for example, on aver-
age rather unsure about their knowledge concerning the modelling cycle. These 
findings can help to identify possibilities of fostering the teachers’ professional 
knowledge linked to modelling in the mathematics classroom.

In the following, the chapter will give an overview on its theoretical background, 
present research questions, information about design of the study, and results, which 
will be discussed in a concluding section.

2  Theoretical Background

Fostering modelling competency is an important goal for mathematics instruction 
(e.g., Blum et al. 2007; KMK 2004; OECD 2003), and modelling competencies 
are even seen as essential for mathematical literacy (e.g., OECD 2003). When 
fostering modelling competencies in the classroom, tasks play a crucial role. 
Indeed, learning opportunities linked to modelling largely depend on tasks and 
ways of dealing with them in the classroom (Blum et al. 2007; Maaß 2006; Reiss 
et al. 2008). From the perspective of research on instruction, tasks can be seen as 
an indicator for aspects of instructional quality (Bromme 1992). Corresponding 
studies (e.g., Neubrand 2002) have identified a potential of improving instruction 
with respect to modelling. For example, Neubrand (2002) found that in German 
classrooms, tasks that require multi-step solutions, as is frequently the case for 
modelling tasks, are rare. Accordingly, research about reasons for the teachers’ 
preference for tasks with lower modelling relevance could not only improve our 
understanding of these observations, but also help to define goals of teacher training. 
For this reason, views of mathematics teachers about modelling and modelling 
tasks are in the focus of this study.

However, the definitions of “modelling task” are partly divergent (e.g., Blomhøj 
and Jensen 2003; v. Hofe 2008; Maaß 2006). Consequently, a pragmatic distinction 
is used:

•	 Tasks with substantial/higher modelling requirements: tasks that require at least 
one translation step between a given situational context and a mathematical 
model, and that allow different solutions.
In •	 tasks with low modelling requirements, the mathematical model is already 
given and translation processes are less important. For these tasks, only one cor-
rect solution is possible.

This study concentrates on views of mathematics teachers about such tasks with 
higher or lower modelling requirements. These views are considered as being part 
of the professional knowledge of mathematics teachers. For components of profes-
sional knowledge, we refer to a three-dimensional model (Kuntze and Zöttl 2008). 
This model includes the distinction of areas of professional knowledge accord-
ing to Shulman (1986; for the possibility of further refinement into domains see 
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Ball et al. 2008), the spectrum between declarative/procedural knowledge and 
prescriptive convictions/beliefs, as well as a distinction of levels of globality or 
content-relatedness of components of professional knowledge (cf. Kuntze and 
Reiss 2005).

Task-related views can be classified as rather content-specific components of 
pedagogical content beliefs, whereas meta-knowledge about modelling is on a 
much more global level. Figure 28.1 gives an overview on important components 
of professional knowledge relevant for creating learning opportunities in the class-
room related to modelling (cf. also results of the study of Schwarz et al. 2008). 
Compared to the model referred to above (Kuntze and Zöttl 2008), Fig. 28.1 gives 
a detailed perspective which selects crucial aspects from the more complex inter-
play of  components of professional knowledge. As instructional practice may have 
an influence on professional knowledge related to tasks, both views of in-service 
and pre-service teachers are interesting. The views of in-service teachers are likely 
to be based on more experience.

3  Research Questions

Against the background of the considerations made above, the study focuses on the 
following research questions:

Which views about tasks with lower or higher modelling requirements do pro-•	
spective and in-service mathematics teachers hold? How are these views struc-
tured and are there differences between in-service and prospective teachers?
What meta-knowledge on modelling do in-service teachers report to have?•	

4  Design and Sample

The study is based on two samples. The first sample consists of 230 prospective 
teachers with context data given in Table 28.1.

Pedagogical content knowledge (PCK) and convictions
about modelling …   

Creating learning 
opportunities in the 

classroom
related to modelling 
(instruction-related 

decisions) 

…

Knowledge prerequisites
for modelling competency
of teachers, including:

Awareness of learning 
potential of tasks 

Meta-knowledge about 
modelling (e.g. about the
modelling process,
the role of mathematical
models, etc.)

Prescriptive views about tasks

Knowledge/convictions about 
goals that can be associated 
with a task (cf. Biza, Nardi, & 
Zachariades, 2007) 

Views about the level of 
complexity of a task  
(e.g. Hosenfeld, 2008) 

Beliefs, e.g. valuing
application aspect of 
mathematics

… and related to tasks

Fig. 28.1 Components of PCK as influencing factors on creating learning opportunities
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The second sample encompassed 79 German in-service secondary mathematics 
teachers working at academic-track schools (35 female, 43 male, one without data; 
25 teachers aged up to 35 years, 21 teachers aged 36–45 years, 23 teachers aged 
46–55 years, nine teachers aged more than 55 years, one teacher without data). The 
recruitment of the in-service teachers was done via the school administration in the 
framework of an empirical study about student achievement. For comparisons with 
the academic-track in-service teachers, we will refer only to the 55 academic-track 
prospective teachers.

These prospective and in-service teachers were asked to fill in a questionnaire 
(multiple-choice, four-point Likert scale) containing scales referring to task-related 
and more global views. The sub-questionnaire about tasks with lower or higher 
modelling requirements referred to six tasks in the content area of measuring areas: 
Four of these tasks were marked by higher modelling requirements, whereas two 
tasks were characterized by lower modelling requirements. For these tasks, identi-
cal scales of four items per task focused on the positive judgment on the learning 
potential of the task, respectively. Sample items for these scales are “I see the role 
that mathematics plays for the solution of this task as meaningful for building up 
mathematical competency” and “students can learn a lot when working on this 
task.” Beyond these scales, one-item-indicators concentrated on the perceived level 
of complexity of the task and on the compatibility of the task with the goal of exact-
ness in mathematics instruction, respectively (as additional aspects in Fig. 28.1).

Figure 28.2 shows two of the tasks the teachers were asked to comment on, 
representing one each of the considered types of task, respectively. Task 1 in 
Fig. 28.2 was designed to have a rather “application” character with relatively lower 
modelling requirements, as the mathematical model is mainly given, whereas Task 
2 has relatively higher modelling requirements (Kuntze and Zöttl 2008).

5  Results

The results presented in this section focus firstly on the prospective teachers’ task-
related views and their structure and secondly on the findings regarding the in-
service teachers. The task-related scales were reliable, as shown in Table 28.2. 

Table 28.1 Data on the sample of prospective teachers

Prospective teacher 
career

Academic 
track

Technical 
track

General 
school

School for 
students with 
special needs

No data 
about 
school type

Number of prospective 
teachers

55 61 62 43 9

  Female 32 48 46 31 5
  Male 23 13 16 12 4
Mean number of 
semesters (SD)

4.98 1.62 2.51 1.95 2.89
(2.01) (1.11) (1.98) (1.72) (3.33)

Mean age (SD) 22.1 22.5 22.9 21.6 27.3
(3.3) (4.7) (3.5) (1.9) (7.8)
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Table 28.2 Scales and reliability values

Scale:

Number 
of items

Prospective 
teachers In-service teachersPositive judgment on the learning 

potential of… a (Cronbach) a (Cronbach)

…Task 1
  Tasks with lower 
modelling requirements

4 0.69 0.55
…Task 5 4 0.82 0.84

…Task 2

  Tasks with higher 
modelling requirements

4 0.86 0.82
…Task 3 4 0.88 0.77
…Task 4 4 0.87 0.73
…Task 6 4 0.88 0.81

Task 1, with relatively lower …   … and task 2, with relatively higher modelling requirements 

Explain how you solve the problem. 
(You can sketch in the figure, in order 
to support your explanation.) 

Find out with the help of the figure how 
many square metres the sleeping 
room of Mr. Jenkins has 
approximately!  

Mr. Jenkins likes to inlay a parquet floor in his sleeping 
room. In the home improvement store he remarks that 
he has forgotten the measures of the room.  

Consequently, he imagines the 
sleeping room: 

Ben gets a new room (see figure).  
His old room measures 17 m².
Is the new room bigger?  
Give reasons and  
note all solution  
steps.

Fig. 28.2 Tasks with lower and higher modelling requirements (Kuntze and Zöttl 2008)

Only the reliability value of the scale of task 1 in the case of the in-service teachers 
was rather low, but still tolerable, given the low number of items.

In order to find out about the structure of the task-related views, correlations 
between the scales in Table 28.2 were calculated (prospective teachers). The scales of 
the tasks 1 and 5 correlated with r = 0.54 (tasks with lower modelling require-
ments). Similarly, the scales for the tasks 2, 3, 4, and 6 (higher modelling require-
ments) were interdependent (correlation coefficients between 0.41 and 0.60). 
Correlations between scales of different task type were lower (correlation coeffi-
cients between n. s. and 0.33). As evaluations of tasks had higher correlations 
within task types than across task types, the design is supported empirically.

For providing an insight into different views within the sample of prospective 
teachers, Fig. 28.3 presents results of a cluster analysis based on the scales presented 
in Table 28.2. Especially the prospective teachers in cluster 2 rated tasks with lower 
modelling relevance much more positively. In this cluster, negative judgments of the 
learning potential of tasks with higher modelling requirements were frequent (s. also 
Kuntze and Zöttl 2008). In order to identify possible reasons for the discrepancy 
between the types of tasks, the prospective teachers’ answers for the indicators of the 
level of complexity of the tasks were considered. However, no consistent pattern 
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could be observed: In particular, cluster 2 did not rate the tasks with higher model-
ling requirements to be generally of a higher level of complexity.

Yet, the data in Fig. 28.4 shows that the prospective teachers of cluster 2 were more 
in fear of an incompatibility of the tasks with higher modelling requirement with the 
goal of exactness in mathematics education than their counterparts in cluster 1.

These structures in the task-related views can also be seen for the sample of the 
in-service teachers (cf. Figs. 28.5 and 28.6). However, the in-service teachers rated 

Strongly disagree 

task 1

1 1,5 2,5 3,52 3 4

task 5

task 2

task 3

task 4

task 6

Cluster 1 (N=47)

Cluster 2 (N=183)

(Means and
standard errors)

Strongly agree

Fig. 28.4 Incompatibility with goal of exactness for clusters of prospective teachers

high
learning

task 1 task 5 task 2 task 3 task 4 task 6

lower modelling requirements higher modelling requirements

1

1,5

2

2,5

3

3,5

4

Cluster 1 (N=38) (Mean)

Cluster 2 (N=41) (Mean)

potential

low
learning
potential

Fig. 28.5 Learning potential of tasks for clusters (Ward method) of in-service teachers

task 1 task 5 task 2 task 3 task 4 task 6

low
learning
potential

1

1,5

2

2,5

3

3,5

4high
learning
potential

lower modelling requirements higher modelling requirements

Cluster 1 (N=47) (Mean)

Cluster 2 (N=183) (Mean)

Fig. 28.3 Learning potential of tasks for clusters (Ward method) of prospective teachers
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Strongly disagree

task 1

task 5

task 2

task 3

task 4

task 6

Cluster 2 (N=41)

Cluster 1 (N=38)

(Means and
standard errors)

Strongly agree
1 1,5 2 2,5 3 3,5 4

Fig. 28.6 Incompatibility with goal of exactness for clusters of in-service teachers

task 1

task 5

task 2

task 3

task 4

task 6

in-service teachers

T=6.65; df=132;  
p<0.001; d=1.15 

T=5.72; df=133;  
p<0.001; d=0.99 

T=2.72; df=133;  
p<0.01; d=0.47 

T=5.06; df=133;  
p<0.001; d=0.88 

n.s.  
d=0.15

n.s.
d=0.30

strongly disagree 

(Means and standard errors) 

strongly agree

1 1,5 2 2,5 3 3,5 4

prospective teachers (for
academic track school)

Fig. 28.7 Learning potential of tasks: Comparisons of prospective and in-service teachers

the tasks with higher modelling requirements more positively (see also Fig. 28.7, 
mostly strong effects) and they showed less fear of incompatibility of these tasks 
with the goal of exactness (Fig. 28.6). Again, there was no consistent pattern for the 
perception of the level of complexity of the tasks.

The second research question focuses on the more global scales, which included 
the scale about reported meta-knowledge about modelling. The scales were reliable 
(cf. Table 28.3). The mean values of these scales are displayed in Fig. 28.8: The 
in-service teachers do not report a good meta-knowledge about mathematical mod-
elling. The reported influence of standards (in Germany, the national standards 
include modelling as one of six competency areas) was rather low, too. In compari-
son, the importance attributed to algorithmic goals was significantly higher.

6  Discussion and Conclusions

From the methodological point of view, a first important result was that the scales 
included in the questionnaire instrument were reliable for task-specific and more global 
views related to modelling. Hence, the instrument can be used in further studies.
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The results show possibilities of professional development necessary for enhanc-
ing learning opportunities related to modelling in the classroom. As the majority of 
the prospective teachers asserted tasks with higher modelling requirements consis-
tently to have a lower learning potential than tasks with lower modelling relevance, 
the need to include work on tasks in mathematics teacher training is highlighted. 
The results might reflect a low awareness of possibilities of fostering modelling 
competencies in the content area of the tasks. The fear of incompatibility of model-
ling tasks with the goal of mathematical exactness might be an obstacle for seeing 
productive learning opportunities in the tasks with higher modelling relevance. 
This fear played a more important role than the fear of a high level of complexity 
of modelling tasks. For prospective teachers in cluster 2 (see Fig. 28.3), this obser-
vation could be explained by a lack of professional knowledge about the role of 
mathematics in the modelling process, as modelling, as required in the tasks, can 
even offer learning opportunities for building up knowledge about the exact nature 
of mathematics.

Strongly agree 

Strongly disagree 1

1,5

2

2,5

3

3,5

4

importance of
learning by

rote

importance of
algorithmic goals

reported meta-
knowledge

about modelling

reported
influence of
standards  

Fig. 28.8 More global scales included in the study (in-service teachers, M and standard errors)

Table 28.3 Scales on more global views, including reported meta-knowledge about modelling

Scale Sample item
Number 
of items a (Cronbach)

Reported meta-
knowledge about 
modelling

I could explain what is happening in 
the different phases of mathematical 
modelling

5 0.91

Reported influence of 
standards

When choosing or designing tasks for 
my classroom, I bear in mind fostering 
the competencies described in the KMK 
standards

6 0.88

Importance of 
algorithmic goals

Above all, a solid mathematics 
knowledge means that the students 
are able to process certain solution 
procedures

4 0.82

Importance of learning 
by rote

In mathematics, it is necessary for the 
students to learn some content by rote

4 0.85
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The in-service teachers showed a tendency of similar structures of task-specific 
views, but they saw a higher learning potential for tasks with higher modelling 
requirements. The T-test data in Fig. 28.7 shows effect sizes indicating strong 
effects. Consistently, the in-service teachers showed less fear of incompatibility 
with the goal of mathematical exactness. An explanation for this might be an 
increased tolerance with respect to alternative tasks in general, or more real-life 
application-friendly task-related convictions in the content domain of measuring 
areas. Perhaps the instructional experience of the in-service teachers with teaching 
this content facilitated these views, whereas the prospective teachers referred to 
their experience at school from a student’s perspective.

An alternative explanation could be that the in-service teachers had different 
expectations about the intentions behind the items of the questionnaire, so that they 
showed more openness toward tasks with higher modelling relevance. Yet, this 
second interpretation also implies that the in-service teachers saw the characteris-
tics of the tasks with higher modelling requirements differently, which reflects 
corresponding professional knowledge.

However, the in-service teachers did not report good meta-knowledge coverage 
of mathematical modelling. In line with this, the reported influence of national 
standards on instructional practice was not high. Hence, even the in-service teach-
ers are not prepared in an optimal way for creating rich learning opportunities 
linked to modelling in their classrooms. The results suggest that some teachers will 
hardly be able to provide their students with meta-knowledge support when dealing 
with modelling tasks in the classroom.

Moreover, the study raises points of interest for further research. For example, 
the question, which other task-specific views of teachers can be implemented in 
studies and which interdependencies are there between different aspects, could 
deepen our understanding of task-related professional knowledge. Questions linked 
to this are: How much task-specific views of mathematics teachers depend on par-
ticular tasks, which characteristics of a task have an influence on judgments of 
tasks, and how task-specific views develop. In addition, impacts of task-specific 
views of mathematics teachers on instructional practice and on competency growth 
of students related to modelling should be investigated in studies that include obser-
vations of classrooms and achievement data of the students. Finally, the question of 
how culture-dependent task-specific convictions of mathematics teachers related to 
modelling are merits attention in corresponding comparative research.
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Abstract First results with respect to teaching modelling are presented from 
Australian data collected as part of an international study of pre-service mathemat-
ics teachers, Competencies of Future Mathematics Teachers. Data were collected 
from 73 volunteer pre-service secondary mathematics teachers from six cohorts at 
five university sites in three Australian states. Questionnaire responses targeting 
affinity of pre-service teachers by using modelling tasks in Years 8–10 are analysed 
from the perspective of possible differences associated with the length of teacher 
preparation program being undertaken.

1  Introduction

In recent years, the preparation of mathematics teachers for secondary school has come 
under scrutiny and comparative international studies of professional competence of pre-
service teachers have been conducted in several countries (e.g., Mathematics Teaching 
for the 21st century [MT21], see Schmidt et al. 2007, and the IEA Teacher Education 
and Development Study: Learning to Teach Mathematics [TEDS-M]). Blömeke et al. 
(2008) view professional competence of pre-service teachers as “a complex hypotheti-
cal construct that underlies teacher performance” (p. 723) consisting of several knowl-
edge and belief components as well as personal characteristics. Personal characteristics 
are not likely to be changed in short teacher preparation courses (e.g., those lasting 
12–18 months) but act as mediators of what pre-service teachers attend to, take on 
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board, and ultimately take up in their practice. Professional knowledge and beliefs are 
far more likely to undergo change during pre-service teacher education and thus are the 
focus of our research, in this instance, relating to the teaching of mathematical model-
ling in Years 8–10, lower secondary schooling in Australia.

2  Background

In the research study, Competencies of Future Mathematics Teachers [CFMT], the 
connection between the various components of professional knowledge of pre-service 
mathematics teachers with respect to mathematical modelling and real-world 
contexts at the lower secondary level has been investigated at sites in Germany, 
Australia, Hong Kong, the Chinese mainland and Taiwan. The overall aim of this 
study is to evaluate the professional competencies of pre-service secondary mathe-
matics teachers at universities in several countries by taking a qualitatively oriented 
approach and developing detailed in-depth studies of the professional knowledge of 
pre-service teachers. With respect to competencies to teach mathematical modelling, 
Kaiser et al. (2007, 2010) report preliminary results from German pre-service teachers. 
This chapter reports the first findings from the Australian university sites.

3  Theoretical Framework

CFMT has been developed within the framework of MT21 and TEDS-M. Following 
Blömeke et al. (2008), professional competence is seen as involving beliefs about 
teaching and the nature of mathematics as a discipline and mathematics in schooling, 
professional knowledge and personality characteristics. Based on the work of 
Shulman (1986, 1987) and others, professional knowledge consists of mathematical 
content knowledge (MCK), pedagogical content knowledge (PCK) and general 
pedagogical knowledge (PK). This categorisation of teachers’ professional knowledge 
is, however, a convenience for discussing various aspects of teacher professional 
competencies rather than easily distinguishable components of knowledge as in 
practice these are often combined and difficult to separate. These terms have several 
interpretations in the literature. Bullough (2001) and Krauss et al. (2008) overview 
the on-going debate. The interpretations used here follow those of Schmidt et al. 
(2007) in MT21. MCK for pre-service teachers refers to knowledge of mathematical 
facts, concepts, and processes for the various topics at the level of schooling being 
targeted. PCK in mathematics includes knowledge of appropriate content and form 
of mathematics for the particular schooling level, how this might be presented and 
represented, how to analyse student responses, student difficulties, and the place of 
current content and skill development in the overall development of mathematics 
through schooling. PK refers to generic knowledge in teaching and learning such 
as knowledge of classroom organisation, assessment, and dealing with diversity of 
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learners. The main categories of professional competence for teaching mathematical 
modelling to be reported in this chapter are: (a) beliefs about the nature of mathematics 
and affinity with modelling in teaching (Beliefs) and (b) didactical reflections about 
modelling (i.e., an amalgam of PCK and MCK).

4  The Study

The major research questions for the larger study that are of interest here are:

 1. What are the professional competencies of future teachers with respect to the 
teaching of modelling and real-world applications for the lower secondary level 
(Years 8–10)?

 2. How distinctive are the different routes of mathematics teacher education?

Investigation of the first question will focus on affinity with using modelling 
tasks and the latter question will be explored only from the perspective of length of 
teacher preparation program. The aim is to profile the pre-service teachers with 
respect to the variables of interest as one pooled group and then to investigate any 
associations between program length and particular differences in profiles when the 
group is divided along these lines.

Data were collected from 73 volunteer pre-service teachers at five university 
sites in three east coast Australian states: three in Victoria, and one each in New 
South Wales and Queensland. The universities chosen were a mixture of older well-
established and more recently established institutions in inner city and metropolitan 
areas. The pre-service teachers were enrolled in a variety of teacher preparation 
programs of different lengths which could be broadly described as being:

(a) One-year programs (n = 46) of general teacher education and mathematics 
education subjects (e.g., Postgraduate Diplomas of Education or Postgraduate 
Diplomas of Teaching) following a qualifying degree with a mathematics 
component (e.g., Bachelor of Science or Bachelor of Engineering).

(b) Four-year programs (n = 27) with students doing double degrees in which 
mathematics is learnt concurrently with general teacher education and mathe-
matics education (e.g., Bachelor of Arts/Bachelor of Teaching or Bachelor of 
Science/Bachelor of Education).

Regardless of whether the students were enrolled in either program type, the 
mathematics was taught within university mathematics departments or faculties and 
the mathematics education within university education faculties. All pre-service 
teachers concurrently were involved in a teacher practice program in secondary 
schools (Years 7/8–12) where they observed classes and planned and taught lessons. 
On successful graduation, they would be qualified to teach mathematics at secondary 
school in their state and possibly other states.

Towards the end of their programs, the pre-service teachers completed a written 
questionnaire, consisting of open items bridging professional knowledge domains 
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and beliefs, which was designed by Kaiser and Schwarz (Schwarz et al. 2008). 
In particular, one item consisting of several sub-items was based on a modelling 
example about the takings of an ice cream shop and the suggested task solution of 
a Year 8 student, Leo. This was the item that is the basis for the responses analysed 
in this chapter.

There are four ice-cream shops in Leo’s city, Springfield. Leo is standing in front of his 
favourite ice-cream shop “Sorrento” as he does often in summertime. One scoop of ice-cream 
costs 60c. He asks himself how much money the owner of the ice-cream shop gets by selling 
ice-cream on one hot summer Sunday.

To solve the problem Leo does the following: On the next day he asks his best three 
friends how many scoops of ice-cream they bought last Sunday and gets the following 
answers: Marcus: 3 scoops, Peter: 5 scoops, Tom: 4 scoops.

Leo calculates on average (3 + 4+5) ÷ 3 = 4 scoops per day. He multiplies the result by 
the number of citizens in Springfield (30,000) and divides the result by 4 because there are 
four ice-cream shops in Springfield. So 30,000 scoops of ice-cream are sold in the ice-cream 
shop Sorrento per day. Income: 30,000*$0.60 = $18,000. What do you think about this?

5  Findings

5.1  Diagnostic Competencies with Respect to Modelling

In order to diagnose student difficulties and choose necessary interventions, teach-
ers need to be able to analyse students’ attempts at modelling appropriately. To test 
this competency, after attempting the Ice Cream Task themselves, pre-service 
teachers were asked to analyse, from a teaching perspective, dialogue from parts of 
interviews with four Year 8 students who had been asked how they would respond 
to the Ice cream Task, to see whether the suggested modelling approaches were 
appropriate. The pre-service teacher’s response to each student was classified as 
appropriate [+] or not [0]. To be classified as appropriate, the pre-service teacher’s 
response was expected to involve correct analysis of the modelling approach used 
and comments on the adequacy of the response naming one strong or one weak 
point. Pre-service teacher AU3_08S1,1 for example, noted that one student broa-
dened the assumptions of the real model through the representativeness of the 
sample used. Further, a weakness of this student’s response was noted in that other 
unrealistic assumptions in the approach given in the task statement were not cri-
tiqued. Naming either of these points was all that was necessary for the + coding to 
be given. In responding to another students’ response, AU4_08S2’s analysis cor-
rectly identified that the student named two aspects to improve the real model, 
namely, competition between shops related to location and expected consumption 
of ice cream. The aspect of asking the shop owners, which is not part of a modelling 
approach, was named also, but this did not prevent the positive coding being given. 
Both these pre-service teachers were from 4-year programs.

1 Each response has an identifier for a university site, year of data collection, and student.
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Inappropriate responses (a) failed to identify a strong or a weak point for a 
particular student’s response (e.g., AU5_08S24), (b) gave an incorrect analysis 
(e.g., AU6_08S9), or (c) simply described the student’s solution (e.g., AU5_08S7) 
as shown here:

The task will be complicated, will not be able to come to any conclusion. [0, AU5_08S4, 
1 year program]

Interview 1 The student is unaware of sample sizes, how to choose one and has agreed 
with Leo’s approach of sampling only 3 of his friends. He has approximated that half of 
the population would not eat ice-cream at all. This approach has limitations and is not 
right, and I would encourage him to think over it. [0, AU6_08S9, 1 year program]

Asking the right questions & the variations that apply to each scenario. Looking at 
recording the correct information + the solving. [0, AU5_08S7, 1 year program]

In addition, there were inappropriate responses, such as the following by 
AU5_08S1, where only general comments were made and no specific student’s 
response was identified. In this case, the pre-service teacher’s response would be 
coded as 0 for all four analyses.

Some student[s] talk about the fact that not all the population would buy ice cream. I would 
praise them and then encourage them to think deeper, about the initial cost of the ice cream 
the ice cream man pays, i.e. his income would be the profit. [0 for all analyses, AU5_08S1, 
4 year program]

The pre-service teacher’s overall response was then classified as displaying very 
low, low, medium, high, and very high competencies with respect to the analysis of 
the four student solutions from a modelling perspective. Where no appropriate 
response to any of the four student dialogues presented was identified, the over-
all response was coded as showing very low diagnostic competencies. One appropriate 
response was coded as low, two as medium, three as high and four as very high.

As shown in Fig. 29.1a, almost two thirds [62%] of the pre-service teachers from 
the pooled sites demonstrated medium or above levels of knowledge from their 
adequate reflection on the students’ solutions, with approximately half [51%] 
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demonstrating this at a high or very high level. Almost one-third of the students 
demonstrated very high competencies through their adequate evaluation of all the 
students’ solutions. When the responses were grouped according to teacher prepa-
ration program length (Fig. 29.1b), however, the distributions of responses differed 
in that almost half [43%] of the pre-service students in the 4-year programs were 
unable to provide adequate evaluation for any of the students’ solutions compared 
to just less than 24% in the 1-year programs. For both program types, approximately 
30% of all students were able to adequately evaluate all four student responses.

5.2  Competencies in Didactical Reflections About  
Modelling – Appropriateness of Task

Pre-service teachers’ responses to the questions: Is such a task appropriate for 
secondary school at this level? If yes, why? If no, why not? were classified as 
displaying low, medium and high competencies in didactical reflections about 
modelling. The responses of those categorised as displaying low competencies 
showed no appreciation of modelling at this level of schooling stating that such a 
task was not appropriate (e.g., AU5_08S4, 1-year program). Those classified as 
indicative of medium competencies indicated that such a modelling task was 
appropriate at this level of schooling but either did not include a reason or, if one 
was included, it was not a didactical aim of modelling (e.g., AU3_08S12, 4-year pro-
gram). The responses of those classified as displaying high competencies showed 
an appreciation of modelling and named at least one didactical aim of modelling as 
a reason for this (e.g., preparing students for life, AU3_08S10, 4-year program).

As shown in Fig. 29.2a, the majority (85%) of the pre-service teachers agreed 
that such tasks were suitable for Year 8 students with just less than half (40%) also 
demonstrating that they had competency in didactical reflections about aims of 
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modelling. When the responses were grouped according to teacher preparation 
program length, it is seen that a slightly greater proportion of responses of pre-service 
teachers from 4-year programs did not agree that the task was appropriate for this 
level of schooling (Fig. 29.2b).

5.3  Affinity with Modelling in Teaching in Years 8–10

When asked if they would use this kind of task in their mathematics lessons at this 
level explaining their position and specifying reasons for their responses, only 11 
out of 71 (15.5%) who gave useable responses to the question indicated they would 
not. These responses (e.g., AU5_08S9, 4-year program) were classified as showing 
low affinity with modelling in teaching in Years 8–10. The vast majority of student 
teachers, 60 (84.5%), at these sites agreed they would use this kind of task in their 
mathematics classes at this level. Those responses that showed agreement but did 
not include a reason or the reason given was not a reflection about any educational 
aim of mathematical modelling (e.g., only a reference to the motivational content 
of the task, AU5_08S19, 1-year program, or mathematical competencies, AU3_08S2, 
4-year program) were categorised as showing medium affinity. In addition, responses 
which placed conditions on using modelling tasks but still showed these were 
appreciated, but no educational aim of mathematical modelling was named (e.g., 
AU5_08S17, 4-year program), were also classified as showing medium affinity 
with modelling in teaching at this level of schooling. Furthermore, 28 pre-service 
teachers (39.4% of 71) were able to adequately explain their position and specify 
at least one reason for their answer which was a meaningful didactical reflection 
about an educational aim for mathematical modelling (e.g., communication about 
mathematics, AU1_08S7, 1-year program, or promotion of understanding of mathe-
matical content, AU3_08S15, 4-year program). These responses were classified as 
showing high affinity with mathematical modelling in teaching in Years 8–10.

The distribution of these responses from the pooled sites is shown in Fig. 29.3a. 
When this variable was examined by program length (Fig. 29.3b), there was very 
little difference across the distributions.

5.4  Affinity with Modelling Related to Beliefs  
About the Nature of Mathematics

Pre-service teachers were asked whether modelling tasks were part of mathematics 
because they represent experimental, applied mathematics or should mathematics 
be a deductive, abstract science. They were then asked to explain their position. 
Three positions were possible: (a) agreement with modelling being part of mathe-
matics on this basis [A codes], (b) modelling tasks were seen as part of mathematics 
because mathematics has both an experimental, applied nature and an abstract, 
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deductive nature [B codes]. (c) modelling tasks have no place in mathematics as it 
is a pure abstract science [C codes]. Responses were coded to reflect these three 
positions and also with respect to the reasons given (e.g., A1 mathematically ori-
ented agreement, A2 didactically oriented agreement from a student perspective, 
A3 didactically oriented agreement from a teacher perspective) or lack of such 
reasons [Y codes, e.g., Y1 position (a)]. A cross section of examples follows.

Clearly this is a part of mathematics. Mathematics is simply the analysis of observable 
elements of life that can be solved, aided or simplified through numerical-or-otherwise 
problem solving approaches. [A1, AU3_08S16, 1 year program]

Yes, and it also shows a students’ understanding and interpretation of the results. [A3, 
AU3_08S8, 1 year program]

Modelling tasks are definitely part of mathematics, and particularly at the high school 
level [maths] should rarely be deductive, abstract science. [Y1, AU3_08S6, 4 year program]

Modelling tasks should be a part of mathematics in the classroom but not the only thing. 
It should be a part…because they will develop skills that can be used in the workforce. Also, 
we need to show students that Maths is beautiful to simply think about and it should therefore 
be taught as an abstract ART (not science) as well. [B2, AU1_08S7, 1 year program]

I feel ‘mathematics’ is deductive and abstract and that modelling really describes arith-
metic and focuses on calculations. ‘Mathematics’ for me, is more closely linked with phi-
losophy. [C1, AU1_08S4, 1 year program]

Figure 29.4a shows 68% of the pre-service teachers believed modelling tasks 
are part of mathematics because it is experimental and applied. A further 29% 
believed this to be the case but also indicated mathematics has a deductive 
abstract aspect as well. Only 3% of the pre-service teachers suggested modelling 
tasks were not part of mathematics instead viewing mathematics as being only a 
deductive abstract science. When responses were examined according to pro-
gram length, there were some differences. The few students who did not consider 
modelling tasks to be part of mathematics all came from the 1-year programs. 
The proportion of students seeing modelling tasks as belonging to mathematics 
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because of the dual aspects of position (b) was higher in 1-year programs. There 
were also differences with respect to how students explained their position. 
Didactical reasons were most common in both groups (61.5% 4 years; 56% 
1 year). Mathematically oriented reasons were a higher proportion in the 1-year 
group (19% 4 years; 35% 1 year) but giving no reason was higher in the 4-year 
group (23% 4 years; 11.5% 1 year).

6  Discussion and Conclusion

The general belief is that longer pre-service preparation programs such as a 4-year 
double degree are of more benefit and that pre-service teachers exiting from short 
programs such as 1-year postgraduate diplomas are underprepared for teaching. 
In some areas such as discerning whether the modelling task was appropriate for 
the target level of schooling and whether they were prepared to use such a task in 
classrooms at this level, there was little difference in the responses of these groups 
with a high level of agreement reflecting the emphasis on these types of tasks in 
Australian curricula at this level of schooling. Pre-service teachers who were educated 
in Australia would perhaps have experienced such tasks when they were in schooling 
as well as in their school experience.

With respect to diagnostic competencies and the ability to analyse student 
responses for appropriateness of modelling approach, the much higher proportion 
of 4-year program students who could not do this was surprising as they have more 
experience in schools over an extended period and thus would be expected to 
acquire more PCK in this regard than their 1-year counterparts. However, all students 
in 4-year programs prepare for two teaching areas, one of which is mathematics and 
they can do this with a minor focus in mathematics. Some thus might place less 
emphasis on their preparation to teach mathematics as their other teaching area is of 
more personal interest. The 1-year programs in contrast included some students 
who were preparing as only mathematics teachers. In general, but not always, these 
students had a strong mathematics background and would be expected to place a 
strong emphasis on being as prepared as possible to teach mathematics.

Fig. 29.4 Affinity with mathematical modelling related to beliefs across sites (a) and by program 
length (b)
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The differences with respect to beliefs about the nature of mathematics were also 
surprising especially the higher proportion of pre-service teachers in 1-year programs 
acknowledging the dual nature of mathematics. Perhaps this is related to the higher 
proportion of pre-service teachers in the 1-year groups basing this view on mathe-
matically oriented arguments being commensurate with a deeper orientation toward 
mathematics teaching. The number of 4-year program students who gave no reasons 
for their position is disappointing as pre-service programs emphasize the importance 
of reflection on practice. These are, however, first results and further analysis needs 
to be completed to answer the questions these preliminary results raise.

Acknowledgement This research was funded by a University of Melbourne Joint Research Grant 
(International). The coding assistance of Björn Schwarz, Nils Buchholtz, Björn Wissmach, Ling 
Schuller, and Tak Wai Ip is acknowledged. Thanks also to those who collected data at various sites.

References

Blömeke, S., Felbrich, A., Müller, C., Kaiser, G., & Lehmann, R. (2008). Effectiveness of teacher 
education: State of research, measurement issues and consequences for future studies. ZDM 
– The International Journal of Mathematics Education, 40(5), 719–734.

Bullough, R. V. (2001). Pedagogical content knowledge circa 1907 and 1987: A study in the history 
of an idea. Teaching and Teacher Education, 17(6), 655–666.

Kaiser, G., Schwarz, B., & Krackowitz, S. (2007). The role of beliefs on future teacher’s profes-
sional knowledge. In B. Sriraman (Ed.), Beliefs and mathematics: The Montanna mathematics 
enthusiast monograph 3 (pp. 99–116). Charlotte: IAP.

Kaiser, G., Schwarz, B., & Tiedemann, S. (2010). Future teachers’ professional knowledge on 
modelling. In R. Lesh, P. Galbraith, C. Haines, & A. Hurford (Eds.), Modelling students’ 
mathematical modelling competencies (pp. 433–444). New York: Springer.

Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ pedagogical content 
knowledge and content: Validation of the COACTIV constructs. ZDM – The International 
Journal of Mathematics Education, 40(5), 873–892.

Schmidt, W. H., et al. (2007). The preparation gap: Teacher education for middle school mathe-
matics in six countries (MT21 report). East Lansing: Centre for Research in Mathematics and 
Science Education, Michigan State University.

Schwarz, B., Kaiser, G., & Buchholtz, N. (2008). Vertiefende qualitative Analysen zur profes-
sionellen Kompetenz angehender Mathematiklehrkräfte am Beispiel von Modellierung und 
Realitätsbezügen. In S. Blömeke, G. Kaiser, & R. Lehmann (Eds.), Professionelle Kompetenz 
angehender Lehrerinnen und Lehrer (pp. 391–424). Münster: Waxmann Verlag.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4–14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard 
Educational Review, 57, 1–22.



Part IV
Using Technologies: New Possibilities of 

Teaching and Learning Modelling



301

1  Modelling Using Digital Tools

The solution of modelling problems using digital tools requires that two important 
translation processes take place. Firstly, the real situation of the problem has to be 
understood and translated into mathematical language. This translation concerns, 
depending on the modelling cycle used, different steps, for example, understanding 
the task, simplifying and mathematising.

The digital tool, for example, a computer algebra system calculator, though, 
cannot be used before the mathematical expressions have been translated into the 
language used by the computer. So a special computer model has to be built. The 
computer results then have to be translated into mathematical expressions again. 
Finally, the problem can be solved by relating the mathematical results to the given 
real situation. Using digital tools broadens the possibilities to solve certain mathe-
matical models, which would not be used and solved if digital tools were not avail-
able. But the use of digital tools like in Fig. 30.1 gives a restricted view of using 
digital tools in applications and modelling. It is also possible to use the digital tools 
in many phases of the modelling process.

One type of these applications of digital tools in the modelling cycle is experi-
menting. For example, one can transform with the help of dynamic geometry 
software or a spreadsheet a real situation into a geometrical or numerical model. 
A very similar activity to experimenting is simulating real situations with digital 
tools. Experiments with a mathematical model are conducted, if the real situation 
is too complex. A common use of digital tools, particularly computer algebra 
systems, is the computation of numeric or algebraic results, which can not be 
reached by students without these tools or not in appropriate time.

G. Greefrath (*) 
University of Münster, Münster, Germany 
e-mail: greefrath@uni-muenster.de

Chapter 30
Using Technologies: New Possibilities  
of Teaching and Learning Modelling –  
Overview

Gilbert Greefrath 

G. Kaiser et al. (eds.), Trends in Teaching and Learning of Mathematical Modelling, 
International Perspectives on the Teaching and Learning of Mathematical Modelling,  
DOI 10.1007/978-94-007-0910-2_30, © Springer Science+Business Media B.V. 2011



302 G. Greefrath

To the sector of computations with digital tools belongs also finding algebraic 
representations from given data. This so-called “algebracising” (Brown 2007) is 
characterised by the fact that real data are entered into the computer and the computer 
supplies an algebraic representation. In addition, digital tools can achieve the task of 
visualising. For example, given data can be represented with the help of a computer 
algebra system or a statistic tool in a coordinate system. This is then, for example, 
the starting point for the development of mathematical models.

In addition, the results of the computations can be visualised likewise. Digital 
tools can support control processes, for example, when operating with discrete 
functional models. The mathematical model can thus be numerically controlled. It 
is however just a graphic control with the help of the graph and the real data or – in 
other cases – also an algebraic control is conceivable. If one does not use handheld 
devices, but instead computers with Internet connection in mathematics education, 
then these can be used also for investigating information, for example, in connec-
tion with a real problem. In this way, real problems can be first understood and 
simplified. The different functions of the digital tools in mathematics lessons are 
important for modelling problems in different phases in the modelling cycle. So, 
control processes are usually settled in the last steps of the modelling cycle. Some 
possibilities for the employment of digital tools during a modelling process are 
represented in the following modelling cycle by Blum and Leiß (2006) (see Fig. 30.2). 
Therefore, the use of digital tools does not only create an important appendix to 
the modelling cycle (see Fig. 30.1), but also influences each part of the cycle (see 
Fig. 30.2). So the technology is relating to the real world and mathematical world 
of the modelling cycle.

Fig. 30.1 Modelling cycle (Blum and Leiß 2006) with added computer model
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2  Empirical Studies and Experiences on Modelling  
Using Digital Tools

One important idea of using digital tools in mathematics and especially in modelling 
lessons is the fact that the integrated numeric, graphic and symbolic tools of modern 
calculators and computers provide new ways of learning and understanding 
mathematics. Students following a programme, which emphasises multiple represen-
tations of algebraic ideas, are in fact better able to deal with mathematical tasks 
requiring representational fluency (Huntley et al. 2000).

But the digital tools are not only tools to support modelling activities of students. 
In many projects, teachers try to implement digital tools like notebooks with com-
puter algebra software to bring more applications and modelling into the every day 
teaching experience (Henn 1998).

Geiger in this volume deals with experiences of secondary teachers with different 
adoption of computer algebra systems for supporting mathematical modelling. His 
study was completed over a 12-month period and involved six teachers, all from 
different schools in Australia. In this country, both CAS technology and mathematical 
modelling are strongly encouraged in recently developed mathematics syllabus 
documents. In the focus of the chapter are two teachers with differences in experi-
ence and expertise. The first teacher had taught mathematics for approximately 
15 years although he had limited experience, prior to the project, of teaching 
mathematical applications and modelling or the use of technology when teaching 
mathematics. The other teacher is a very experienced user of CAS technology but 
had also embraced the teaching of mathematical modelling and applications to this 
extent. Geiger points out the different beliefs of these teachers and the influence on 

Fig. 30.2 Modelling cycle (Blum and Leiß 2006) with added influence of digital tools
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CAS-enhanced modelling introduced in their classrooms. Geiger describes a very 
interesting adapted model of digital tools–enhanced mathematical modelling. He 
also sees the role of technology in every step of the modelling cycle (s. Fig. 30.2).

Neves, Silva and Teodoro in this volume present a new way to develop compu-
tational modelling learning activities in the context of physics. It is shown how 
Modellus can be used to develop modelling activities and the activities are reflected 
in student answers of a questionnaire. They describe examples in introductory 
mechanics which were implemented in the general physics course taken by first-year 
biomedical engineering students in Portugal. It is shown that they have a real-time 
visible correspondence between the animations with interactive objects and the 
object’s mathematical properties defined in the model, and also the possibility of 
manipulating simultaneously several different representations like graphs and 
tables. The successful class implementation of the computational modelling activities 
was reflected in the student answers to the Likert scale questionnaire.

Greefrath, Siller and Weitendorf in this volume discuss the role of digital tools 
in the modelling cycle and present some interesting examples for modelling with 
digital tools. It is shown that digital tools can be helpful at any step of the modelling 
cycle. An example shows that CAS could be necessary to interpret and validate the 
solution. They also consider the special problem of good examination tasks with 
modelling problems and use of digital tools. Some criteria for good examination 
tasks with modelling problems and the use of technology have been found.

Some studies suggest that calculator use during instruction should be long 
term (i.e. 9 or more weeks) and calculators should be available during evaluations 
of middle and high school students’ problem-solving skills (Ellington 2003). So we 
need more long-term studies concerning modelling with digital tools to get a 
better understanding of the interrelation of these two important aspects of learning 
mathematics.
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Abstract This chapter contrasts the experiences of two secondary teachers from 
different education jurisdictions in relation to the adoption of computer algebra 
systems (CAS) as a supporting technology for teaching mathematical modelling. 
The study reveals that the differing dispositions and beliefs of these teachers were 
highly influential in the degree to which CAS-enhanced mathematical modelling 
was introduced into their classrooms. Thus, the role of technology, specifically 
CAS, within theoretical models of the process of mathematical modelling, can be 
viewed as variable and situational rather than fixed.

1  Introduction

Mathematical modelling and/or applications of mathematics appear in the curriculum 
documents of most Australian states. While there is significant research related to 
solving contextualized problems through the use of the multiple representational 
facilities offered by digital technologies, and substantive argument to support the 
use of CAS to enhance the process of mathematical modelling, literature that deals 
with teachers’ adoption of technology to enhance mathematical modelling is only 
just emerging. This chapter investigates the affordances and constraints that influence 
the adoption of computer algebra systems (CAS) as a means of enhancing students’ 
learning experiences with mathematical modelling by two teachers from different 
Australian educational jurisdictions.
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2  The Use of CAS in Mathematical Modelling

Over the past two decades, researchers have argued that digital technologies have 
the potential to enhance the teaching and learning of mathematics (e.g., Zbiek et al. 
2007). Although research into the transformative power of digital technologies in 
relation to mathematical instruction has proliferated (Hoyles and Noss 2003), studies 
into how the availability of technology impacts on the teaching and learning of 
mathematical modelling are less prevalent. For example, the Study Volume pro-
duced from the 14th Study of the International Commission for Mathematical 
Instruction entitled Modelling and Applications in Mathematics Education (Blum 
et al. 2007) contains only one chapter out of 58 that focuses on technology use in 
mathematical modelling.

While abstraction is one of the cornerstones of the discipline of mathematics, the 
capacity to make use of mathematics in real world contexts is recognized interna-
tionally as an equally valuable capability (e.g., National Council of Teachers of 
Mathematics 2000). At the same time, the incorporation of mathematical modelling 
and applications of mathematics into mathematics curricula varies internationally 
and this is generally restricted to upper secondary school when implemented 
(Stillman 2007).

Encouragingly, a number of researchers have found that the multiple represen-
tational facilities offered by digital technology can enhance the capacity of students 
to solve contextualized mathematics problems (see for example, Huntley et al. 
2000), although Kiernan and Yerushalmy (2004) caution that such benefits may not 
be realized without supportive changes to curriculum and to modes of instruction. 
Thus, research into the potential benefits offered by technologies which are 
relatively new to school contexts, such as CAS-enabled technologies, must also 
consider the affordances and constraints encountered within authentic classroom 
settings when such technologies are introduced. While it has been argued that CAS 
has the potential to provide access to more sophisticated life-related problems 
(Thomas 2001) through the highly integrated nature of representational facilities 
and the enhanced computational power offered by these devices, the potentials of 
modelling and CAS have generally been considered separately in mathematics 
education research (Thomas et al. 2004). The increasing introduction of CAS-
enabled technologies into mainstream mathematics classrooms means there is a 
need to understand the implications of this technology for all aspects of classroom 
practice including that of mathematical applications and modelling.

While CAS appears to offer potential advantages to the teaching and learning of 
mathematical modelling, how this is realized in the classroom is dependent on the 
disposition of teachers toward both technology and mathematical modelling. While 
the influence of teachers’ dispositions and beliefs toward the uptake of technology 
into school mathematics classrooms is well documented, teachers’ attitudes to the 
incorporation of mathematical modelling into instruction is also a factor that affects 
the degree of implementation of modelling activity into school classrooms (Stillman 
and Galbraith 2009).



30731 Factors Affecting Teachers’ Adoption of Innovative Practices

3  Models of the Use of Technology in Mathematical Modelling

Mathematical modelling is often presented as a cyclic process that starts with a 
problem set in a life-related context which is abstracted into a mathematical represen-
tation of the contextualized situation and solved through the application of mathe-
matical routines and processes. The solution is then brought into relief against the 
original problem to consider its fit with the original context. If the fit is not consi-
dered sufficient, adjustments are made to the model and the process repeated until 
a satisfactory fit is achieved. The role of technology in this process has been 
described by Galbraith et al. (2003). Here, we argued that mathematical routines 
and processes, students, and technology are engaged in partnership during the Solve 
phase of a problem, which follows from the abstraction of a problem from its con-
textualized state into a mathematical model. This view identifies the conceptualiza-
tion of a mathematical model as an exclusively human activity while the act of 
finding a solution to the abstracted model can be enhanced via the incorporation of 
technology. Thus, technology is seen as a tool used to interact with mathematical 
ideas only after a mathematical model is developed, rather than as a tool for the 
exploration and development of a model or its validation as a reliable representation 
of a life-related situation.

Our recent research, and that of others, indicates that this is a limited view of the 
role of technology in mathematical modelling. Confrey and Maloney (2007), for 
example, argue that the process of modelling is founded on two activities: inquiry 
and reasoning. Confrey and Maloney (2007) claim that it is through the coordi-
nation of these artifacts and the processes of inquiry, reasoning, and experiment that 
an indeterminate situation is transformed into a determinate situation. While 
technology in this model can incorporate and generate representations which assist 
in the transformation of an indeterminate to a determinate situation, it also plays a 
central role in coordinating the inquiry, reasoning, and systematizing that lead to 
a determinate situation.

In a recent study into the role of technology in mathematical modelling, Geiger 
et al. (2008) found that CAS technology could be used by teachers as a provocative 
agent for stimulating secondary school students’ exploration of mathematical concepts 
within life-related problems. While not a primary focus of this study, it was noted 
that CAS was used by students in a broader range of modes than simply as a tool 
to effect a solution to an already mathematized problem situation.

4  Context of the Study

The study was completed over a 12-month period and involved six teachers, all 
from different schools, comprising three teachers from Brisbane in Queensland, 
and three from Canberra in the Australian Capital Territory (ACT). In Australia, 
education is administered by jurisdictions based on state boundaries. States are 
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responsible for the independent development of curriculum documents and resources 
as well as statewide assessment regimes. As a result, curriculum and assessment 
varies between states. The curriculum contexts of both Queensland and ACT are 
outlined below.

4.1  Curriculum Contexts

In the Australian Capital Territory, the study of mathematics through applications 
and modelling and the use of technology are strongly encouraged in recently developed 
mathematics syllabus documents. There is no limit on the type of technology that 
can be used. Consequently, teachers in Canberra have the freedom to teach mathe-
matical modelling and make use of any available technology within mathematics, 
but the depth to which these aspects of mathematics teaching are implemented is 
the prerogative of individual schools.

In Brisbane, Queensland, the teaching and assessment of mathematical modelling 
and applications is a mandatory objective of all state mathematics syllabuses. The 
use of technology is required to a minimum level: specified as a graphing calcula-
tor. No upper limit, in relation to the type of technology that can be used, is identi-
fied. Thus, for teachers in Brisbane, it is mandatory to teach mathematical 
modelling and to make use of technology in mathematics classes. While the 
degree to which technology is used is the prerogative of an individual school, 
teachers are free to choose any available technology to study mathematics.

In summary, both CAS technology and mathematical modelling were important 
elements within the syllabuses of both educational jurisdictions.

4.2  Teachers’ Backgrounds

Teachers were invited into the program on the basis of recommendations from 
school systems or professional teachers’ associations or through other professional 
networks of the researchers. Participation in the project was entirely voluntary. 
There were differences in the experience and expertise of the two teachers who are 
the focus of this paper.

Teacher 1 is from Canberra and had taught mathematics for approximately 
15 years although he had limited experience, prior to the project, of teaching math-
ematical applications and modelling or the use of technology when teaching 
mathematics. This was because he had only recently taught the subject in which 
these aspects of mathematics instruction had been introduced into ACT’s mathe-
matics syllabuses. His students had some experience with using spreadsheets and 
with the use of graphing calculators for graphing functions but had only encountered 
CAS-enabled technologies through the project.

Teacher 2 is from Brisbane and is a very experienced user of CAS technology 
(specifically TI-Nspire). He had also embraced the teaching of mathematical 
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modelling and applications to the extent that he had developed a statewide reputation 
for expertise in this area. In his school, students are required to use graphing calcu-
lator technology from early secondary school (Year 9). While the students in this 
teacher’s class had made use of graphing calculators for 2 years prior to the study, 
they had only been introduced to CAS-enabled technology from the beginning of 
the year of the study.

5  Method and Approach to Data Collection

A case study approach (Stake 2005) was used to document the actions and interactions 
of the two teachers who are the focus of this report. Sampling was purposive as 
cases were chosen for the capacity to illuminate and enhance understanding rather 
than for representativeness (Stake 2005). In particular, the cases reported in this 
chapter were selected because of the differences between the views and actions of 
the teachers in relation to the implementation of CAS technology in their classrooms 
as a means of enhancing the study of mathematical modelling.

The project commenced with each participant teacher attending an event, one in 
Brisbane and one in Canberra, where they were provided with instruction on the use 
of a hand-held CAS-enabled technology, TI-Nspire, and also examined pre-prepared 
resources designed for the use of CAS within mathematical modelling tasks. 
Teachers were provided with class sets of TI-Nspire and asked to look for opportu-
nities to make use of CAS when teaching modelling and applications.

It was anticipated that each teacher’s classroom would be observed and video-
taped three times across the duration of the project and audiotaped semistructured 
interviews, with the teacher and also with three to four students nominated by the 
teacher, conducted after each video session. In addition, a teleconference was 
planned at the end of the project where all teacher participants would meet to discuss 
personal observations drawn from their participation in the study. While all Brisbane 
teachers participated in the project fully, the teachers in Canberra appeared to 
struggle to prepare lessons that they felt comfortable being observed in their class-
rooms. The Canberra-based researcher was only able to arrange one audio interview 
with one of the teacher participants from Canberra within the initial phase of the 
project. Even after the project team provided additional assistance to the teachers in 
Canberra, they found it difficult to design lessons they believed were worth observ-
ing. As a result, the only data collected in Canberra was an initial audio interview 
and one final interview between one of the teachers and a researcher.

Data reported upon here are selected from teachers’ semi-structured interviews and 
the final videoconference. The video session and audio interviews were transcribed 
and examined for evidence of different teachers’ views on the following three issues: 
the value of using technology to enhance mathematics learning; the importance, or 
otherwise, of mathematical modelling within a students’ mathe matics education; 
and the potential of CAS technology to enhance mathematical modelling. Individual 
teachers’ responses were studied across data collection instances for consistency 
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of a teacher’s position on these three issues. The excerpts presented below are 
representative of opinions consistently expressed in the two selected cases.

6  A Tale of Two Cities and Two Teachers

The following excerpts are taken from the second (and final) interview of Teacher 
1 in Canberra and from comments made by Teacher 2 during the teleconference 
session at the conclusion of the Brisbane phase of the project. These comments 
reveal both teachers’ dispositions toward teaching mathematical modelling and the 
use of CAS.

6.1  Teacher 1

Teacher 1: I think they’re a tool that’s great but I’m just thinking – targeting at my 
group they’re not up to using CAS at the moment and yet there are other 
groups that possibly are in the same class that I’d like to see gain a bit 
more of the basics before they start using the black box. Just thinking of 
their background – and this goes back to what maths teaching is going 
on anyway – they’re just missing some basics and fundamentals to worry 
about this end of things. It’s probably not necessary at the moment for 
some groups. It’s great in some instances but this is me not having taught 
much Methods before either but in the main I couldn’t really see myself 
using it a great deal. I’ll push myself to use it in certain applications then 
I’m sure I’d be able to answer that question a lot better.

Researcher: And those lesson ideas that were provided; were any of those of any 
potential relevance? Would you use them for assignments or class 
lessons or things like that?

Teacher 1: Yeah, I would, I would. I’ve read through them but I can’t think of 
them per se. I’ve seen a couple of them before and yeah I would like 
to give that a go but…. The right group? The topics in the class at the 
moment haven’t really lent themselves to that…

In this excerpt, the teacher reveals he has concerns about introducing CAS and 
mathematical modelling because he believes that students should learn the basics 
of mathematics before they engage in the use of technology or explore mathematical 
modelling activities. He perceives there is a danger that CAS might be used as a 
Blackbox where students perform mathematical procedures they do not fully under-
stand. Teacher 1 also expresses concern that his own inexperience in the subject 
matter has limited his capacity to think of ways of using technology and finding 
appropriate applications of mathematics. He also indicates that “the right group” is 
required to work with technology and mathematical modelling which implies he 
does not believe these aspects of learning mathematics are appropriate to all students. 
Finally, Teacher 1 believes that only certain topics in mathematics lend themselves 
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to the use of technology and mathematical modelling activity. It seems that these 
beliefs restricted this teacher’s capacity to implement a teaching program which 
incorporates the use of CAS and mathematical modelling and applications.

6.2  Teacher 2

Researcher: So what difference does it make?
Teacher 2: It gives the kids the access to the problems. If we didn’t have the CAS 

calculators we couldn’t do half the stuff that we do.
Researcher: Because it allows them to work with algebra? Or because…?
Teacher 2: It is the integration of the whole box and dice. From my perspective 

it is the integration of the whole lot together. We have a set of data and 
we try and build a model from that. And we do a scatter plot of that 
and we just make some sorts of decisions about the model. We go 
away and we build a model and we want to do and we make some 
sorts of predictions about that.

Researcher: So you can differentiate and integrate functions that the kids wouldn’t 
be able to attempt without it?

Teacher 2: Yeah that is right. It allows access for the lower achieving kids too. 
Your lower achievers may be struggling with differentiation or integra-
tion at that particular point in time…but they can still have access to 
the problem. I would expect my high achieving kids to do it both ways. 
They can do it pen on paper and they can do it using the CAS calcula-
tors. But then my lower achieving kids can still engage in the problem 
and still make some meaningful contributions. If they don’t get caught 
up in all that manipulation they can still be thoughtful about it.

This teacher indicates he believes CAS should be available to all students at all 
levels because it is an enabling technology at a number of levels. In the excerpt 
above, he indicates that CAS can provide a scaffold over gaps in basic mathemati-
cal knowledge and understanding that allows a greater number of students access 
to interesting and authentic problems that require complex mathematics. Further, 
CAS allows students to make connections between different aspects of mathemat-
ics which can then be brought to bear simultaneously on life-related problems.  
In Teacher 2’s classroom, CAS is used in nearly all phases of the modelling cycle 
to: explore a life-related context by representing data in a graphical format; develop 
initial models based on the data; refine the model; and use the model to make pre-
dictions. These views are highly supportive of the use of CAS in mathematical 
modelling activities as CAS is seen to offer potential benefits to all students when 
attempting to explore life-related contexts through mathematical modelling. 
Observation of Teacher 2’s classroom demonstrated his commitment to the use of 
CAS in mathematical modelling activities as he made use of a range of authentic 
life-related problems, including some very sophisticated examples, in his teaching 
on a regular basis.
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7  Discussion and Conclusions

Despite working in educational jurisdictions that supported the teaching of mathe-
matical modelling and placed no limit on the type of technology that could be 
employed in teaching and learning, the views of these two teachers and the degree 
to which they engaged in the project were very different.

Teacher 1’s views appear to have prevented him from engaging in the project in 
any genuine sense. His views on what it means to learn mathematics seem to make 
him suspicious of the use of technology to support student learning as he indicates 
students should learn the “basics” first. He appears suspicious that CAS is likely to 
support a Blackbox approach to solving problems in mathematics and there is no 
indication that he would encourage students to use CAS to explore the possibilities 
for finding a solution within a contextualized mathematical situation. This position 
seems to be consistent with a view that the use of technology is appropriate after 
the “mathematics” of developing a model has first taken place which is similar to 
the model of technological use in mathematical modelling that is portrayed in 
Fig. 31.1. In addition, Teacher 1 believes that the use of technology and the study 
of mathematical modelling are only appropriate to groups of students who have 
mastered the “basics.” This implies that some students should never have exposure 
to either aspect of the syllabus that is current in the Australian Capital Territory.

By contrast, Teacher 2 believes that technology, specifically CAS, can provide 
students with the opportunity to investigate authentic and complex applications of 
mathematics. He also sees CAS as a tool that enables students to continue to engage 
in sophisticated contextualised problems even though they may have gaps in their 
existing mathematical knowledge. This teacher indicates that CAS can be used to 
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assist students to explore data associated with contextualized situations in order to 
formulate and then validate a model. He also appears to have an expectation that 
technology has a role if it is necessary to reformulate a model because the valida-
tion phase indicates a model is in need of improvement. In this view, technology 
has a role to play in mediating mathematical processes at nearly all points within 
the modelling cycle as illustrated in Fig. 31.2 which sits in contrast to the original 
model proposed by Galbraith et al. (2003). This representation of the role of tech-
nology in the modelling cycle is consistent with that of Confrey and Maloney 
(2007) who view technology as vehicle for the coordination of the inquiry and 
reasoning necessary to engage with a problem set in a real-life context.

The different perspectives, described above, indicate that the role of technology, 
and specifically CAS, within the modelling cycle is situational, that is, dependent 
on teachers’ personal views on the use of technology and of mathematical model-
ling and their perception of the circumstances in which they work. The implementa-
tion of CAS-active mathematical activities and of the teaching of mathematical 
modelling seems less influenced by curriculum documents which offer strong 
encouragement for the use of both aspects of mathematical teaching and learning.

While there is no attempt to generalize findings from the views of the two teachers 
described in this chapter, their positions on the use of CAS and mathematical 
modelling provide insight into the affordances and constraints that may be encoun-
tered while attempting to implement initiatives that aim to enhance the teaching of 
mathematical modelling through the use of CAS-enabled technologies. In doing so, 
this chapter highlights the essential role teachers play in relation to pedagogical 
change and, it would seem, especially in relation to technological development and 
when traditional views of what it means to learn mathematics are challenged.
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Fig. 31.2 Adapted model of technology-enhanced mathematical modelling
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Abstract In this chapter, we discuss the specifics about modelling with technology. 
First, some general points are mentioned for a better understanding of the role of 
technology in the modelling cycle. In the second part, we describe a detailed example 
for using technology for a modelling problem. Then, we exemplarily show some 
technical possibilities of software tools for teaching mathematical modelling to 
reflect the role of technology in the modelling cycle. In the fourth part, we consider 
the special problem of good examination tasks with modelling problems and use of 
technology. In all those examples, which are described and discussed in detail, the 
connection of modelling in terms of using technology becomes obvious.

1  Introduction

The development of mathematics has been influenced by the development of 
technology from the beginning. In the age of information technology and ‘New 
Media’, electronic additives are broadening the horizon in both the education and 
teaching of mathematics.

Electronic devices are supporting cognition; they are part of the cognition and 
changing cognition in mathematics education. The support is given by the possibility 
of transferring complex operations to technology and the use of different computer 
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models. The efficient use of methods involving intensive computation and/or models 
is guaranteed.

By using technology in mathematics education, an enormous shift from the 
accomplishment to the planning of problem-solving can be done. Therefore, a useful 
shift of emphasis from mathematical operations to the use of mathematical knowledge 
and reflections can be realised. If you use technology, for example, CAS (Computer-
Algebra-Systems), Graphical Calculators, Spreadsheets, DGS (Dynamical Geometry 
Software), or Modelling Software, some inner-mathematical reflections have to be 
done, because the solution created by technology has to be kept in mind.

Looking back in history, the use of technology in mathematics education started 
in the 1970s (Siller 2008). At that time, numerical calculators were state of the art. 
Today the development in technology has been very successful, and from a large 
range of software, the adequate technology for the respective problem must be 
selected. Numerical calculators still exist in many classrooms, but other electronic 
devices such as CAS-calculators (e.g., CASIO ClassPad) are more powerful instru-
ments for education. Such additives should not only be used as ‘number crunchers’, 
they can be used, for example to experiment, to check solutions and as a method 
for communication in mathematics education. In addition, abstract mathematical 
objects can be visualised very easily using these instruments by using numerical, 
graphical or symbolic manipulation.

As the role of technology can strongly influence mathematics education, in 
particular mathematical modelling, it is necessary to include the role of technology-
additives in the modelling cycle. An approach has been conceptualised by Siller and 
Greefrath (2010). In this first approach, we focus on the translations from mathe-
matics to technology and back, which forms an obstacle for students in the modelling 
process (Fig. 32.1).

Based on this graphical illustration, we have to discuss the use of technology in 
terms of modelling in a more detailed way. By the help of some examples, which 
can be found in tests, textbooks or in education suggestions, problems, possibilities 
and ideas shall be shown.

Fig. 32.1 Modelling cycle concerning technology
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2  Alcohol in Blood – A Prospective Example for Modelling 
with Technology

The starting point of a lot of modelling examples is a real-life situation, at best 
procedures, scenes or incidents in real life, shown in Siller and Maaß (2009) or the 
ISTRON-series (http://istron.ph-freiburg.de – last access: 24.06.2010). But it is 
possible to find ‘simple’ examples in school-books, too. The only condition a 
teacher has to provide is that students are allowed to discuss such examples in an 
extraordinary way so that they are thinking about several opportunities that could 
happen. By looking through Austrian school-books for Mathematics, an interesting 
example on the topic of alcohol can be found. Students are confronted with it, 
nearly their whole life long because in the press, it is possible to find different 
announcements on this topic very often. Links to teaching mathematics can easily 
be found, and a starting point for cross-curricular teaching could be met. In Malle 
et al. (2006, p. 113), such an example is stated (Fig. 32.2):

In the adjoining graph you can see the chronological sequence of the concentration of 
alcohol in blood (in ‰) after the consumption of a particular abundance of beer with 5% 
or alternatively 3%. Describe the progress in your own words. Can you find similarities; 
in what way are they different?

Concentration
(in ‰)

Hours
(in h)

5%-beer

3%-beer

0,10

0,5

0,1

0 1 2 3 4 5

Fig. 32.2 Graph in the example
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2.1  Modelling a Theoretical Concentration

By discussing this example with students, several different questions may arise. 
They could be taken as a starting point for modelling activities in class. Some questions 
which could be interesting for students are:

We have learned that the reduction of alcohol in blood takes place at a constant •	
rate: In every hour, the same amount of alcohol is reduced! Is that right?
In the case of the same amount of alcohol in blood, the reduction of the 5%-beer •	
is faster than with the 3%-beer. Why?
In the graph it is shown: if you consume alcohol once, it will never disappear •	
from the blood. Is that right?

This leads to the question: How does the degradation and absorption of alcohol 
take place in real life? By searching for an answer, a lot of different and inconsistent 
results can be found – especially by using the world-wide-web. A definite answer 
cannot be given. Some more questions, which are of mathematical relevance, may 
help to find a possible answer and are the starting point for this modelling approach:

Somebody is drinking ½ l of beer. How much alcohol in blood remains in this •	
person after 2 h?
Somebody has caused an accident. Two hours later the driver has to deliver a •	
blood-sample. The alcohol test produced a blood alcohol level of 0.7. What was 
the alcohol-concentration in the blood when the accident happened?

A first and very rough calculation can be done by the Widmark-formula 
(Widmark 1932) (Fig. 32.3). The concentration of alcohol only depends on the 

Fig. 32.3 Scheme of the Widmark formula



31932 Modelling Considering the Influence of Technology 

person (drinking it) and the alcoholic drink itself. The parameters which are 
included are the amount of alcoholic drinks consumed and the alcoholic strength, 
as well as the mass of the person drinking alcohol and the sex. The age or the height 
is not considered, as in the Watson-formula (Watson et al. 1980). By following the 
scheme first considerations are possible. Think about a man (g = 0.7) with a mass 
of 63 kg drinking half a litre of beer (  p = 4.5%). Taking this formula, you will find 
that this person has a theoretical amount of a = 0.4 alcohol level in blood. Now it is 
possible to think about the reduction of alcohol. Some assumptions that are made are

The constant reduction of alcohol per hour (is an empirical value of 0.1 alcohol •	
level/h £ d £ 0.2 alcohol level/h depending on sex, constitution etc.)

•	 b(t) as a linear model for the concentration of alcohol after t hours (b(t) 
= − ⇒ = −· ( ) 0.4 0.12 )a d t b t t .

However, by using these assumptions, it can be seen that these ideas may be 
simple but are not very realistic. In reality, the process is more complex because 
consumed alcohol will not fade into the blood suddenly; it is mostly absorbed by 
the gastrointestinal tract and the absorption and reduction of alcohol are two over-
lapping procedures. So we have to think about using another approach.

2.2  Absorption and Reduction Shown as a Mathematical Process

Considering how to show these two procedures leads to two different models. The 
first one describes the situation as a possible starting point to the problem; the second 
one leads to some interesting solutions.

2.2.1  First Model – Linear Approach

The time until the whole alcohol is faded into the blood is a well-known empirical 
value – it lasts about 60 min. Knowing this value, it is possible to make an assumption, 
which should help to find an appropriate linear model. It should be that in the same 
unit of time, the same amount of alcohol is absorbed. Therefore, the following linear 
model is constructed:

For the reduction of alcohol, the well-known linear function = −( ) 0.4 0.12 ·b t t 
can be found. The absorption of alcohol can be shown through =*( ) 0.4 ·a t t. But 
alcohol is already reduced after 1 h, so we get the following (linear) function for the 
real absorption =( ) 0.28 ·a t t. By looking at the graphs of these functions (Fig. 32.4), 
it is possible to see that although the progress is similar to the one shown in the school-
book example, the curve does not fit at all. So another model has to be found.

The technology in this part of the example is only used for validating the results. 
The mathematical objects, that is the linear functions, are displayed and by comparing 
these graphs with the graph of the example, everybody is able to recognise that this 
interpretation is not possible. The technological help allows students to recognise 
efficiently that the chosen model is not appropriate at all.
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2.2.2  Second Model – Semi-linear Approach

The absorption of alcohol in blood is realised by a process of diffusion. That means 
that a fixed portion r, which can be found in the gastrointestinal tract, is absorbed 
by the body. Not the whole amount of alcohol is absorbed in 1 h, but nearly all of 
it, let us say about 95% (because 0.95 » 1–0.9560, that is about 5%/min). Therefore, 
the factor r is equal to 0.05. Now a discrete model with the parameters x

n
 (amount 

of alcohol in the gastrointestinal tract after n minutes), y
n
 (amount of alcohol in 

blood after n minutes) and z
n
 (reduced alcohol after n minutes) with the initial 

values x
0
 = a and y

0
 = z

0
 = 0 can be constructed. By thinking about the process, the 

absorption and reduction could be shown as in Fig. 32.5. The following equations 
show the results:

+ = − =1 0.05 0.95n n n nx x x x

+ = + −1 0.05 0.002n n ny y x

Fig. 32.5 Absorption and reduction

Fig. 32.4 Linear processes
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Fig. 32.6 Spreadsheet solution

+ = +1 0.002n nz z

It is valid that 1 1 1n n n n n nx y z x y z a n N+ + ++ + = + + = = ∀ ∈ . By recognising 
x

n
 as a geometrical sequence and z

n
 as an arithmetical sequence, the possible solu-

tion ( )= − −· 1 0.95 0.002n
ny a n can be found. By using technology, this model 

can be simulated in many different ways. One is shown in Fig. 32.6 with a graphical 
representation in Fig. 32.7.

By thinking about such natural processes, a lot of other models (e.g. continuous 
model or a model by differential equations) can be found, too. Of course, validation 
is necessary. It can be done easily with Wilkinson et al. (1977, Fig. 3, p. 221).

The role of technology in this part is multilayered. It is used for validating, 
interpreting as well as experimenting. The constructed model is implemented as it is 
demanded by the tool used. The example shows that different computer applica-
tions are helpful to construct and work with varying mathematical models. Someone 
will be aware that the use of spreadsheets, CAS or other tools supports different 
mathematical models. So the use of technology in modelling needs not only a flex-
ible use of models but also flexibility in using computer applications.
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2.3  The Role of Technology in the Modelling Cycle

Technological tools are often helpful or sometimes even necessary in the modelling 
process. Some problems are solved faster (as it can be seen in the example before) or 
even trivialised; others can only be solved by using technology. In connection with 
this, it is important to discuss the influence of technology on the modelling cycle. One 
aspect, the role of technology in the step from the mathematical model to the math-
ematical result, was discussed in Sect. 1. The question is whether technology only 
helps to deal with complex formulas or whether technology can even be helpful in the 
process of understanding a problem. Therefore, the relationship between reality and 
the model of reality and the step to the mathematical model can be influenced by the 
type of technology that is used. For a scientific approach, you have to choose between 
CAS, DGS, spreadsheets and other software, for example for dynamic systems.

We would like to show examples of different kinds of technology which can be 
used and show that technology can be helpful for each part of the modelling cycle. 
Especially when using the Casio ClassPad 330, you have the opportunity to use dif-
ferent kinds of technology which are interconnected. For example, it is possible to use 
the spreadsheet with the power of CAS. The next two examples show that technology 
is helpful in developing an idea of how to start and how to validate results.

2.4  An Example Where Technology Is Helpful to Get an Idea

Fig. 32.7 Graphical output of the solution

Build a new waste pipe to connect the two villages A and B with the sewer 
shown in Fig. 32.8, where it is only possible to connect them at one point of 
the sewer and it is not possible to connect three pipes at one point.
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A B
10 km

 6 km6 km

sewer

Fig. 32.8 Waste pipe problem

CE: 5.8877

DE: 5.8634
EF: 2.9143

sum=14.6653

D C

BF

E

A

Fig. 32.9 Construction with ClassPad

In Fig. 32.8, there is no question given. So we first have to find one: At which 
point should the two waste pipes which come from points A and B be connected so 
that the length of all three pipes is as short as possible?

You have to create a real and a mathematical model in connection with the 
modelling cycle. The use of DGS is helpful when you do this (see Fig. 32.9).

When you work with a ClassPad, it is necessary to find out that point F (see Fig. 32.9) 
is the midpoint of AB. If you put the origin of a coordinate system as A, the 
coordinates of E are (5/y). Now the problem has become a problem in one dimension 
and it can be solved easily by CAS.

The function d(x,y) is a two-dimensional function for the length of the pipe.  
It can be shown that the partial derivative of x is zero for x = 5. If you replace x with 
5, you have the function d(5,y), a one-dimensional function which is much easier 
to handle. If you differentiate the function d(5,y) by y and if you solve the equation 
∂

=
∂
(5, )

0
d y

y

 you get the solution for the optimal point E(5, 3.113248654) The 

equation is solved numerically, so the solution is not exact. It is clear by the problem 
itself that there has to be a minimum. Therefore, we do not have to prove this 
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mathe matically. If you use a good quality CAS such as Maple, Mathematica or 
MuPad, you can solve the problem directly.

A system like this has the power to solve a non-linear system of equations 
numerically. So this example shows that one kind of technology is suited to devel-
oping an idea of how to solve the problem and the other to solving it easily.

Technology offers the opportunity to write programmes. Therefore, you can 
write programmes for simulations which are helpful for developing possible solu-
tions dependant on different initial conditions. The problem ‘Finding the best hus-
band’ or rather ‘Finding the best secretary’ is an example of a problem for which a 
simulation is helpful.

2.5  The Fuel Tank – An Example for Using Technology  
to Validate

Fig. 32.10 Cubic regression

What kind of shape fits the following data?

Level of the dipstick in cm 20 40 60 80 100 120 140 159
Volume of the tank in Litres 355 983 1,747 2,574 3,398 4,158 4,776 5,105

There are two suitable ways to deal with this problem. You can think about 
suitable shapes of existing tanks in reality or you can solve the problem by using 
the fundamental theorem of calculus. First, it is helpful to have a look at the graph 
of the given table. When you discuss the data, a cubic regression seems to be suit-
able (Fig. 32.10).

When you look at the graph, the shape of the tank should be symmetric. Shapes like 
a sphere (A), a lying cylinder (B), a cylinder with parts of a sphere at top and base 
(lying) (C) and a cylinder with two hemispheres (lying) (D) are possible. When you 
compare the functions V(h) of the different shapes with the given data, you see that the 
model C is the best one (see Greefrath  2007a). For this task, the use of a spreadsheet 
with the power of a CAS is very helpful. If you know the function, which describes the 

edge of a rotation of a symmetric shape, you get the volume by = ∫ 2

0
( ) · ( )

h
V h f x dxp . 

This formula can be used in reverse too, which means you use the fundamental 
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theorem in reverse, that means: 
′=
( )

( )
V h

f h
p

. As we have seen before, you can 

do a cubic regression to get the function V(h).
The graph (Fig. 32.11) shows that the solution does not match reality. It should 

be zero for x = 0 and x = 159. So we have to make a fresh attempt at the problem. 
We have to insist that the function V(h) has to fit the given data and V(0) = V´(0) = 0. 
It will be shown by the solution that you do not have to ask for V(159) = V´(159) = 0. 
This is met by the symmetry of the data.

We set ( )= + + + + + + +2 7 6 5 4 3 2( )V x x ax bx cx dx ex fx gx h  and the rest of the 
work can be done by the ClassPad. Having a look at the graphs (Fig. 32.12), you 
can see that it matches to reality.

3  Examination Tasks – With Modelling Problems  
and Use of Technology?

Modelling problems can be well-established in many classrooms, when we have 
adequate examination tasks to test not only the modelling competencies but also the 
use of technology. When creating examination questions, many aspects should 

Fig. 32.11 Graph of the edge

Fig. 32.12 Graph of the edge
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be considered. In particular, examination questions containing modelling problems 
require special attention. As a basic principle, applications in education should only 
be used in authentic real situations or if they bring advantages in understanding the 
problem. Examination tasks containing a whole modelling process are in most 
cases not possible due to the complexity factor. We want to consider the challenges 
of using technology in such examinations. Looking at the German situation, we 
illustrate two aspects of creating examination tasks concerning modelling problems 
and the use of technology. The first aspect concerns problems resulting from the real 
situation described in the task; the second aspect concerns the use of digital media, 
that is the computer model (see Fig. 32.1).

In Germany, there are specific practical regulations for using computers in upper 
secondary school examinations. Two calculator-specific versions of the mathematics 
examination have been in existence since 2007, for example, in the federal state of 
North Rhine-Westphalia (NRW). One group is for standard or graphing calculators 
and another group for CAS-calculators. The mathematical content is (nearly) the 
same for both groups, but some interesting aspects are different. Figure 32.13 
shows a typical example for a task with and without CAS (Greefrath 2007b).

There are certainly not too many differences between these tasks, but a trend in 
a positive direction can be seen. Tasks with CAS are more open-structured. In the 
example, there is no given equation of the function and no coordinate system. 

Without CAS With CAS

A canoe club would like to acquire a
property for a new club house with a
landing place to the Wupper river. The past
owner […] offers that property… at a price
of 12 

A canoe club would like to acquire a
property for a new club house with a
landing place to the Wupper river. The past
owner […] offers that property… at a price
of 12

a) Explain, that the function
f (x ) = ax2(x − 460)  describes the
waterside in the given coordinate
system. Calculate the variable  a.

(result:  a
243340

1
−= )

b) Calculate the price for the parcel of
land.

a) Determine a function, which
describes the waterside in
appropriate coordinate system and
calculate the price.

per m². [...] per m². [...]

100

100 200

+

460m

50m

460m

50m

Wupper

Wupper300 400 500

Fig. 32.13 Test exercise with and without CAS
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Fig. 32.14 Numerical solution

Hence, the task is more open and the students have to take more steps in the model-
ling cycle.

Another aspect in using technology in examinations is the difference in the 
computer models used. In the given task, we can determine the function with a 
linear equation system or a statistic regression. The solution could be calculated by 
an integral numerically (Fig. 32.14) or algebraically (Fig. 32.15). This is a good 
starting point for an interesting discussion in a mathematics lesson, but the evaluation 
in central examinations is not that easy.

An analysis of current examinations in the NRW part of Germany shows that 
there are typical varieties of tasks depending on the mathematical domain. In 
Stochastics, the tasks for examinations are application-oriented. The stochastic 
models used, for example, the binomial distribution, are well known. So the appli-
cations are not really modelling problems, but standard tasks. The students in both 
groups have nearly the same or exactly the same tasks, so the use of CAS does not 
change tests in Stochastics.

Exercises in Analytic Geometry are usually unrealistic. A typical question, for 
example, is in the context of an excessively simplified tower, if the temperature 
sensor at a special point T (4 | 10 | 2,6) is in the shadow of the tower. No one will 
think that this is a meaningful use of mathematics. There is no improvement possible 
by the use of CAS. Examination tasks should show authentic use of mathematics. 
So, in this area, the improvement can be an inner-mathematical task with or without 
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CAS. As a consequence, we have no modelling problems in this part of an examination, 
just an authentic use of mathematics.

The most common area for modelling problems in examinations is Analysis. 
There, tasks should include real-world problems. The use of CAS shows the right 
trend, but actual tasks contain too many standard parts. For example, in 2008, there 
was a problem about a model for concentration of a medicine in blood. The main 
part of the task was to calculate interesting points of the graph (e.g. maximum and 
inflection point). Considering all Analysis exams for CAS in NRW, the proportion 
of parts that really need a CAS and not only a graphing calculator is less than 5%. 
High potential for improvements here can be found easily. A realistic and interesting 
modelling example with technology is shown in Sect. 2.

Some criteria for good examination tasks with modelling problems and the use 
of technology have been found. The first is the authentic use of mathematics. If 
necessary – like in Analytic Geometry – it is better to have authentic use of math-
ematics rather than simple word problems with unrealistic contexts. The second is 
a good choice of interesting and relevant real-world problems to have an essential 
part of the modelling cycle in examinations. The third is a real use of CAS with 
different computer models (see the modelling cycle concerning technology above). 
But not all parts of examinations need to be solved with a computer. For the 
examination of mathematical competencies, which were acquired in education 
with digital tools, it does not necessarily require the digital tools in the test situation 
(Greefrath et al. 2008).

Fig. 32.15 Algebraical solution
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4  Conclusion

The discussed examples show that technology can be helpful at any step of the 
modelling cycle. Thinking of the pipe and the shapes of the tank, we see that tech-
nology helps to reduce reality to a model of itself. The example of the pipe shows 
that DGS helps to translate the model of reality to the mathematical model. 
Although in our opinion, you cannot separate these two from each other. CAS and 
DGS are designed to solve mathematical problems. Therefore, the assistance of 
CAS and DGS for the step towards a solution does not have to be discussed. The 
last example shows that CAS could be necessary to interpret and validate the 
solution. Therefore, the use of technology not only creates an important appendix 
to the modelling cycle (see Fig. 32.1), but also influences each part of the cycle. So 
the technology world is relating to the real world and mathematical world as shown 
in the alcohol example. This multiple influence of technology in solving modelling 
problems can also be found and integrated in examination tasks. Hence, the impor-
tant role of technology can be seen by all the examples exemplarily. The role of 
technology for modelling activities is as important in tests as in process-related 
educational situations.
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Abstract Scientific research involves mathematical modelling in the context of an 
interactive balance between theory, experiment and computation. However, com-
putational methods and tools are still far from being appropriately integrated in the 
high school and university curricula in science and mathematics. In this chapter, we 
present a new way to develop computational modelling learning activities in sci-
ence and mathematics which may be fruitfully adopted by high school and university 
curricula. These activities may also be a valuable instrument for the professional 
development of teachers. Focusing on mathematical modelling in the context of 
physics, we describe a selection of exploratory and interactive computational 
modelling activities in introductory mechanics and discuss their impact on student 
learning of key physical and mathematical concepts in mechanics.

1  Introduction

Science is an evolving structure of knowledge based on hypotheses and models 
which lead to theories whose explanations and predictions about the universe must 
be consistent with the results of systematic and reliable experiments (see, e.g. 
Chalmers 1999; Feynman 1967). The process of creating scientific knowledge is an 
interactive blend of individual and group reflections which involve modelling 
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processes that balance theory, experiment and computation (Blum et al. 2007; 
Schwartz 2007; Slooten et al. 2006). This cognitive frame of action has a strong 
mathematical character, since scientific reasoning embeds mathematical reasoning as 
scientific concepts and laws are represented by mathematical entities and relations. 
In this process, computational modelling plays a key role in the expansion of the 
science and mathematics cognitive horizon through enhanced calculation, exploration 
and visualisation capabilities.

Although clearly linked to real world phenomena, science and mathematics are 
thus based on abstract and subtle conceptual and methodological frameworks 
which change along far from straightforward evolution timelines. These cognitive 
features make science and mathematics difficult subjects to learn, to develop and to 
teach. In an approach to science and mathematics education meant to be effective and 
in phase with the rapid scientific and technological development, an early integration 
of computational modelling in learning environments which reflect the explor-
atory and interactive nature of modern scientific research is of crucial importance 
(Ogborn 1994). However, computational knowledge and technologies, as well as 
exploratory and interactive learning environments, are still far from being appropri-
ately integrated into high school and university curricula in science and mathe-
matics. As a consequence, these curricula are generally outdated and most tend to 
transmit to students a sense of detachment from the real world. These are contribut-
ing factors to the development of negative views about science and mathematics 
education, leading to an increase in student failure.

Physics is a good illustrative example. Consider the general physics courses 
taken by first year university students. These are courses which usually cover a 
large number of difficult physics topics following a traditional lecture plus labora-
tory instruction approach. Due to a lack of understanding of fundamental concepts 
in physics and mathematics, the number of students that fail in examination tests 
is usually very high. Moreover, many students that eventually succeed also reveal 
several weaknesses in their understanding of elementary physics and mathematics 
(Halloun and Hestenes 1985; Hestenes 1987; Hestenes et al. 1992; McDermott 
1991; McDermott and Redish 1999).

Although it is clear that there are many reasons behind this problem, it is also 
clear the solution has to involve changes in the physics education model. Indeed, 
many research studies have shown that the process of learning can be effectively 
enhanced when students are involved in the learning activities as scientists are 
involved in research (Beichner et al. 1999; Handelsman et al. 2005; Keiner and 
Burns 2010; Mazur 1997; McDermott 1997; McDermott and Redish 1999; Redish 
2004). In addition, several attempts have been made to introduce computational 
modelling in research-inspired learning environments. The starting emphasis was 
on professional programming languages such as Fortran (Bork 1967) and Pascal 
(Redish and Wilson 1993). Although more recently this approach has evolved to 
Python (Chabay and Sherwood 2008), it still requires students to develop a working 
knowledge of programming, a generally time-consuming and dispersive task which 
can hinder the process of learning physics. The same happens when using scientific 
computation software such as Mathematica and Matlab. To avoid overloading 
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students with programming notions or syntax, and focus the learning process on 
the relevant physics and mathematics, several computer modelling systems were 
created, for example, Dynamical Modelling System (Ogborn 1985), Stella (High 
Performance Systems 1997), Easy Java Simulations (Christian and Esquembre 
2007) and Modellus (Teodoro 2002).

In this chapter, we discuss how Modellus (see http://modellus.fct.unl.pt) can 
be used to develop exploratory and interactive computational modelling activities 
which can be adopted by high school and university curricula in science and 
mathematics as well as be a valuable instrument for the professional development 
of teachers. Focusing on mathematical modelling in the context of physics, we 
describe activities in introductory mechanics which were implemented in a new 
course component of the general physics course taken by first year biomedical 
engineering students at the Faculty of Sciences and Technology of the New Lisbon 
University (FCT/UNL). For mathematics education, these activities are relevant as 
concrete applications of mathematical modelling (Carson 1999; Garcia et al. 2006; 
National Research Council 1989).

2  Course Organisation, Methodology and Student  
Evaluation Procedures

Let us start by describing the implementation context for the computational 
modelling activities. The organisation, methodology and evaluation strategies used 
in general physics can serve as a model to be adapted to other areas of science and 
to mathematics.

The 2009 general physics course for biomedical engineering involved 115  
students, 59 of them taking the course for the first time. The structure and pro-
gramme themes were those of the 2008 edition (Neves et al. 2009). In the 
computational modelling classes, students were organised in groups of two or 
three, one group for each available computer. In each class, the groups worked on 
a set of five computational modelling activities conceived to be interactive and 
exploratory learning experiences about challenging but easily observed physical 
phenomena. An example is the motion of a swimmer in a river with a current 
(Neves et al. 2009). The teams were motivated to solve the problems on their own 
using the physical, mathematical and computational modelling guidelines provided 
by the class documentation. To ensure adequate working rhythm with appropriate 
conceptual, analytical and computational understanding, the students were con-
tinuously helped during the exploration of the activities.

All activities were created as computational modelling experiments with Modellus. 
Each class activity was presented in a PDF document, with text and embedded video 
support to help students both in class or at home in a collaborative online context 
based on the Moodle online learning platform. To design the activities, emphasis was 
placed on cognitive conflicts in the understanding of physical concepts, the manipula-
tion of multiple representations of mathematical models and the interplay between the 
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analytical and numerical approaches applied to solve problems in physics and 
mathematics. In this course, the majority of the supporting text and videos presented 
complete step-by-step instructions to build the Modellus mathematical models, 
animations, graphs and tables. After constructing the models, students explored the 
multiple representations available to answer several questions about the proposed 
general physics problems. Some activities involved modelling problems where 
students saw only videos of the Modellus animations or graphs. After this they con-
structed the mathematical models to reproduce the animations or graphs, and answer 
proposed questions. Modellus was particularly effective in these classes because of 
the following main advantages: (1) an easy and intuitive creation of mathematical 
models using standard mathematical notation, (2) the possibility to create anima-
tions with interactive objects that have mathematical properties expressed in the 
model and (3) the simultaneous exploration of images, tables, graphs and object 
animations.

The student evaluation procedures in the computational modelling classes involved 
group evaluation and individual evaluation. For each class, all groups had to build 
five Modellus models and complete a Moodle online test answering the questions 
of the corresponding activity PDF document. The individual evaluation consisted of 
the solution of two homework activities and a final test, both with new problems 
based on those covered in class but with only partial text and video instructions on 
how to build the models and solve the problems. Students also took pre-instruction 
and post-instruction Force Concept Inventory (FCI) tests (Hestenes et al. 1992) 
which did not count for their final classification. At the end of the semester, students 
answered a Likert scale questionnaire to access their degree of receptivity to this 
new computational modelling component of the general physics course.

3  Computational Modelling Activities with Modellus

Let us now discuss, as illustrative examples, two of the computational modelling 
activities about circular motion and oscillations, the theme opening the second part 
of the course. Again, these are thought not only from the point of physics but also 
from the point of view of mathematics in order to help students make connections 
between different subjects.

A particle in circular motion (representing, for instance, a runner going around 
a circular track) describes a circle of radius R, a mathematical curve defined by 
x2 + y2 = R2 in a Cartesian reference frame O xy whose origin is at the centre of the 
circle. In this frame, x and y are the Cartesian coordinates of the position vector r

 . 
This vector has magnitude R and specifies where the particle is on the curve. As the 
particle moves around the circle, the magnitude R is kept constant but the direction 
of r
  changes with time. This direction is given by the angle q that r

  makes with 
the O x axis. The variables R and q define the polar coordinates of r

 . The coordi-
nates x and y are also time dependent and are related to R and q by trigonometric 
functions: cos( ) and sin( )x R yθ θ= = .
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To explore circular motion, students started with uniform circular motion. When 
the circular motion is uniform, the particle traces one circle in every constant 
time interval T. This time interval is the period of the motion and its inverse f = 1/T 
is the frequency of the motion. The angle q is then a linear parametric function of 
the time t, q = w t + q

0
 where w = 2p/T is the motion angular frequency, measured in 

radians per second, and q
0
 is the initial direction of r

 . The velocity v
  is tangent 

to the circular trajectory, always orthogonal to r
 , and has constant magnitude 

v = w R. The acceleration 

α  has magnitude a = w  2 R and a centripetal direction, 

that is, opposite to r
 . The uniform circular motion is the composition of two 

simple harmonic oscillations: one along the Ox axis and the other along the Oy axis. 
These oscillations are characterised by the same amplitude A = R and the same 
frequency f = 1/T. The initial phase of the Ox oscillation is q

0
, and between them, 

there is a time-independent p/2 phase difference.
To model this type of motion, students had to recall what they learnt in the first 

part of the course during the computational modelling activities about vectors, 
parametric equations of motion, velocity and acceleration (Neves et al. 2009). 
Building on this prior knowledge, students were able to construct a model asso-
ciating the Cartesian coordinates of r


 to the corresponding polar trigonometric 

functions with the angle q given by the linear parametric equation q = w t + q
0
. They 

were also able to define the coordinates of v
  and 


α  (see Fig. 33.1). This mathe-

matical model was complemented with graphs and tables of the different coordinate 
variables as functions of time, and by an animation allowing direct manipulation of 
the independent parameters of the model, R, T, q

0
, as well as real time visual display 

of the trajectory of the moving particle, r
 , v
 , and 


α . The harmonic oscillatory 

motions along the coordinate axis were also represented (see Fig. 33.1). With 
this model, students were able to explore, visualise and reify the initially abstract 
physical and mathematical concepts associated with uniform circular motion. For 
example, by combining the information from the several different simultaneous 
representations, they analysed the motion of a particle tracing a circle of radius 
R = 150 m every 2.5 min, and were able to compare v

  and 

α  as functions of time 

and to calculate these vectors at time t = 7 min.
During these activities, students showed difficulties in distinguishing between a 

vector, like v
  or 


α , and its magnitude. They were also puzzled when asked to solve 

the same problem considering the angles measured in degrees instead of radians. 
Indeed, at first, students were frequently unable to create v

  and 

α  with the correct 

magnitude and direction. Similarly, they did not place the angle conversion factor 
in the correct place everywhere in the mathematical model. For example, in their cor-
rrect attempt, they incorrectly multiplied the speed by 180/p. To be able to correct 
the models and at the same time visualise the effect of the change in the animation 
and other model representations was for the students an essential advantage of the 
modelling process with Modellus in helping them to solve these learning difficulties.

Using and extending this trigonometric model, students were then able to con-
struct a model in Modellus to estimate the solution to the following astronomical 
problem: What is the time interval between two successive oppositions of the Earth 
and Mars? To help students, we suggested the assumption of considering the motions 
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of the Earth and Mars around the Sun to be uniform circular motions. We also 
taught them to use the average Earth–Sun distance (known as the astronomical unit 
and denoted by AU) as the distance scale for the problem. In this scale, the average 
Earth–Sun distance is simply 1 AU and the average Mars–Sun distance is 1.53 AU. 
Taking into account that the approximate motion periods of the Earth and Mars are, 
respectively, 1 year and 1.89 years and using the year as the unit of time, students 
were able to develop a mathematical model and an animation representing the 
motions of the Earth and Mars around the Sun. In the process, they were able to 
determine the angular velocities of both planets and the time interval between two 
successive oppositions. Using the conversion factors 1 AU = 1.50 × 108 km and 

T 5 Tm 3 60

x 5 R 3 COS(theta)

vx 5 −w 3R 3 sin(theta)

y 5 R 3 sin(theta )
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Fig. 33.1 Uniform circular motion: equations as seen in the Modellus Mathematical Model win-
dow, examples of coordinate-time graphs and the Modellus animation
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1 year = 3.15 × 107 s, they were also able to find in km/s the orbital velocities of 
the Earth and Mars at the time of the model first occurring opposition. To achieve 
the precision required by the Moodle online test, students used a position vector or 
velocity coincidence method. The adjustment of the numerical step was an important 
numerical technique students learned to apply to obtain animations with realistic 
trajectories and correct answers to the questions of this astronomical challenge.

4  Conclusions

In this chapter, we have shown how Modellus can be used to develop exploratory 
and interactive computational modelling activities for science and mathematics 
education. We have described examples in introductory mechanics which were 
implemented in the general physics course taken by first year biomedical engineer-
ing students at FCT/UNL. We have shown that during class, the computational 
modelling activities with Modellus were successful in identifying and resolving 
several student difficulties in key physical and mathematical concepts of the course. 
Of crucial importance in this process, was the possibility to have a real time visible 
correspondence between the animations with interactive objects and the object’s 
mathematical properties defined in the model, and also the possibility of manipulat-
ing simultaneously several different representations such as graphs and tables. Thus 
with Modellus, students can be exploring authors of models and animations, and 
not just simple browsers of computer simulations.

The successful class implementation of the computational modelling activities 
was reflected in the student answers to a Likert scale questionnaire (see Fig. 33.2), 
with results improving slightly on those of the 2008 edition (Neves et al. 2008). 
Globally, students reacted positively to the activities, considering them to be helpful 
in the learning process of mathematical and physical models. For them, Modellus 
was easy enough to learn and user-friendly. In this course, students showed a clear 
preference to work in teams in an interactive and exploratory learning environment. 
The computational modelling activities with Modellus presented in PDF documents 
with embedded video guidance were also considered to be interesting and well 
designed. A natural sense of caution in relation to novelty and to evaluation procedures 
was nevertheless detected. Students also felt that the content load was heavy and that 
the available time spent on the computational modelling activities was insufficient.

In spite of global success during the class implementation phase, the FCI test 
results led to an average FCI gain of 22%, an indication that the general physics 
course with the computational modelling component is just performing as a tradi-
tional instruction course (Hake 1998). Although this performance score refers to 
the general physics course as a whole, the results of the questionnaire and students’ 
opinions about the computational modelling component also indicate that some 
aspects of the implementation approach should be changed. In this context, possible 
ways forward are: (1) Increase the relative importance and value of the computa-
tional modelling component. (2) Reduce the heavy content load (as perceived by 
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students). (3) Increase time spent on the modelling tasks. (4) Choose problems more 
closely related with the specific subject of the student’s course major. (5) Introduce 
less guided, more discovery-oriented instruction guidelines as well as computational 
modelling problem finding.
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This chapter frames eight papers which are all addressing questions and issues 
related to the teaching, learning and assessing of mathematical modelling compe-
tency. As a main commonality in the papers, the authors take point of departure in 
the existence of (such a thing as) mathematical modelling competency (as a con-
cept). A competency in general is understood as a person’s mental capacity to cope 
with a certain type of challenge in a knowledgeable and reflective way. According 
to this, a person possesses mathematical modelling competency if he or she is 
capable of carrying through a mathematical modelling process in order to solve a 
problem or to understand a situation within a certain domain. Thus, modelling 
competency is attached to a modelling process, and therefore, it is also no surprise 
that all the papers refer – some more explicitly than others – to a modelling cycle 
– and in many cases, the modelling cycle from Blum and Leiß (2007) is used as a 
reference. However, as argued by Haines in his plenary address, this modelling 
cycle does not necessarily provide a good representation of real modelling pro-
cesses carried through by students in learning situations nor should it be perceived 
as ideal for mathematical modelling processes. The different variations of the model-
ling cycle are analytical tools for analysing the sub-processes and the related sub-
competencies which – in principle – are involved in mathematical modelling 
competency. It may also serve as a tool for analysing and describing differences 
among the modelling processes performed by individual students or groups of stu-
dents as done by Borromeo Ferri (2006). However, it is quite clear from the papers 
in this chapter and from research on the teaching and learning of mathematical 
modelling in general that there is a need for further development of the conceptu-
alisation of mathematical modelling competency so as to understand and assess 
progression in the learning of modelling competency. In such endeavour, one will 
unavoidably be confronted with the dilemma between maintaining the holistic 
understanding of mathematical modelling competency, which is in the cor e of 
the concept, and the quest for reducing modelling competency to a number of 
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 sub-competencies which can be detected and assessed independently. A few of the 
papers recognise this challenge and refer to the idea of Niss and Jensen (2006) to 
develop the holistic approach to modelling competence by suggesting a 3-dimen-
sional model which captures the progression in the development of the concept. 
The three dimensions are: degree of coverage with respect to the elements in the 
mathematical modelling process, radius of action in terms of domains and situa-
tions in which modelling competency is activated, and technical level in relation to 
the mathematical concept and methods involved in the modelling process. 
However, further research is needed in order to reveal if, and how, this model can 
be used to characterise and assess progress in the development of students’ model-
ling competency in the practices of mathematics teaching.

1  Presentation of the Papers

The plenary address attached to this chapter was given by one of the grand old men 
in the educational field of mathematical modelling, namely, Christopher Haines 
from London, UK. It is reported in the paper ‘Drivers for Mathematical Modelling: 
Pragmatism in Practice’ with a commentary by Katja Maaß who acted as discussant 
at the plenary session. In the paper, Haines argues through a row of interesting 
examples for the importance of a close connection to modelling and applications of 
models in real life for all educational aspects. With respect to researching, teaching 
and learning mathematical modelling, the most important factor to take into 
account, according to Haines, is the connection to authentic problems and to real 
life practices of modelling. As presented in the paper, the idea is that teachers 
should take a pragmatic position towards the integration of mathematical modelling 
in daily teaching, which is often framed by a tight curriculum, and look for good 
examples of real life problems or situations for modelling. (And) educational 
research should provide teachers with good and well-analysed examples of real life 
applications of mathematical modelling. Students’ motivation for working with 
genuine and challenging real life problems should be used as a drive for mathemati-
cal modelling in teaching. In my reading of the paper, Haines is arguing strongly 
but implicitly for seeing the development of good modellers as an educational end 
in its own right for mathematics teaching. However, as pointed to by Maaß in her 
commentary, if mathematical modelling is the educational end we need to be able 
to support mathematics teachers through their teacher education and subsequent 
professional development programmes in order to achieve this end. How can teach-
ers really support their students in developing modelling competency, how can 
we assess the students’ progression in modelling competency, and what should be 
accepted as a standard for the common level of modelling competency at the different 
levels in the educational system? In order to answer these questions, we need 
research close to the day-to-day teaching practices, including context and framework 
of school life. In this way, the approach of pragmatism to mathematical modelling 
can/could be extended to the practice of teaching mathematical modelling.
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In the paper ‘Documenting the development of modelling competencies of grade 
7 mathematics students’ by Biccard and Wessels, you find a report of a detailed 
empirical study on 12 students working in groups of four with three consecutive 
modelling eliciting tasks over a period of 12 weeks with a weekly 1-h meeting with 
the researcher. Two of the three groups are characterised as weak in mathematics, 
while the third group is characterised as strong. Based on research literature, the 
authors refine the list of the sub-competencies involved in mathematical modelling 
by including: understanding, simplifying, mathematising, working mathematically, 
interpreting, validating, presenting, arguing, sensing of direction, using informal 
knowledge, planning and monitoring and students’ beliefs. The developments of 
these sub-competencies in the three groups are detected. In general, the analysis 
shows a progression of competencies over the test period. In particular, there was a 
clear development in the students’ beliefs about mathematics and its relevance for 
describing and handling daily life situations. The validation and interpretation 
competencies were weak throughout the period in all three groups. The findings are 
related to specific features of the tasks and the setting. It is argued that in order to 
develop all the many aspects of modelling competency, the students should be 
exposed to a broad variation of modelling tasks and experience working with peers 
in different settings.

The paper ‘Students’ reflections in mathematical modelling projects’ by Blomhøj 
and Kjeldsen is a theoretical paper introducing internal and external reflections 
as two different types of reflections that need to be challenged and developed in 
different ways in relation to students’ modelling work. The two types of reflections 
are defined by their relation to the modelling process. Internal reflections have the 
modelling process with its sub-processes as its object, while external reflections 
have the process of application of a model as its object. The two types of reflec-
tions are illustrated and discussed through the analysis of two students’ modelling 
projects from the introduction study programme in natural science at Roskilde 
University. In general, external reflections are related to (a) the reformulation of the 
problem caused by the application of a model, (b) changes in the discourse about 
the problem towards a model discourse about possible adjustments of the model, 
(c) the limitation of the possible actions taken into consideration to those that 
can be evaluated in the model and (d) the delimitation of the group of people 
that can take part in the discussion. The students’ reflections in two projects illus-
trated all these four types of reflections.

The paper ‘From data to functions: Connecting modelling competencies and 
statistical literacy’ by Engel and Kuntze begins with the claim that gathering, 
handling and interpretation of data are given too little attention in modelling activi-
ties in teaching. In fact, it is a missing element in many descriptions of the modelling 
process. It is argued that data can be – and in real life often are – a starting point for 
modelling and that serious validation of model results in most cases has to involve 
comparison with data. From analysing descriptions of modelling competency and 
proficiency and the notion of statistical literacy, the authors argue that statistical 
literacy should be seen as and treated didactically as closely intertwined with 
mathematical modelling. Behind this argument lies the strong ontological position 
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concerning the nature of numerical data. Data are always a sum of signal and noise 
or of structure and random variation or model fit and residual. Hence, handling 
data always involves modelling. On the ground of such theoretical reflections, the 
authors investigate, through an empirical study, whether data-based modelling 
activities support the development of students’ statistical literacy. The results 
from a pre- and post-test setup involving 179 second year student teachers are 
reported and indicate that data-based modelling activities have a positive effect on 
the students’ statistical literacy.

The paper ‘First results from a study investigating Swedish upper secondary 
students’ mathematical modelling competencies’ by Frejd and Bergman Ärlebäck 
reports on an empirical investigation of modelling competencies among nearly 
400 students. The authors use a test instrument which is a slight modification of 
the one constructed by Haines et al. (2001). The instrument consists of 22 items 
covering the eight aspects of the mathematical modelling process identified by 
Blum and Leiß (2007). In addition to each item, the students are asked to give their 
opinion on: the relevance of the problem for a mathematics class; whether it is of 
interest for them; and if it is connected to reality. Several non-parametric statistical 
tests have been applied and the analyses have yielded some significant results. The 
sub-competencies related to the initial parts of the modelling process – understanding 
and simplifying the problem – and sub-competence related to the choice of a 
mathematical model are the ones where the students exhibit the highest degree of 
difficulties, while sub-competencies related to the formulation of a mathematical 
problem and to the identification of key variables and parameters in a model are the 
sub-competencies where the students display the highest level of proficiency. Even 
though models and modelling are included in Swedish upper secondary curriculum, 
only 22.5% of the students stated that they had heard about these issues in their 
previous mathematics teaching, and those who had previous experiences with 
modelling did not perform any better than those who had never worked with model-
ling before. Moreover, the students in general did not find the modelling tasks 
relevant for their mathematics classes nor did they find them of personal interest. 
A possible explanation for these findings is that the students’ modelling compe-
tency is really not of any significance for the students’ success in the system.

In the paper ‘Why cats happen to fall from the sky or on good and bad models’ 
Hans-Wolfgang Henn discusses how central examinations, the use of computers, and 
the motivation of the teachers can either support the development of the students’ 
modelling competency or form obstacles for such development. The discussion is 
illustrated with concrete examples of modelling tasks from central examinations, 
mathematics textbooks and modelling projects for teachers’ professional develop-
ment. It is argued that many examination tasks involving modelling activities or 
applications of models are meaningless in the sense that mathematical modelling in 
these tasks does not really help solve or understand a real life problem. The situa-
tion contexts in which the problems are given are not being treated seriously – in fact, 
the students’ are better off disregarding the situation context. Computer-supported 
modelling activities often lead to senseless curve fitting without any discussion of 
the explanatory or pragmatic value of the mathematical model in the given context. 
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Professional development activities for teachers often involve authentic cases of 
mathematical modelling from the public media or from industries. However, as 
shown in the paper with an example of a mathematical model regulating the mini-
mal free space for calves held in herds, in such cases it is also relevant to discuss 
with the students if a model is good or bad and if the use of a mathematical model 
is relevant at all. Therefore, such critical reflections need to be included in the pro-
fessional development activities for teachers. In general, the paper argues that 
teaching models and modelling at schools should always include a serious and 
broad discussion with the students about the quality and relevance of models. Is it 
a good or a bad model? This is always a relevant question in teaching when the 
development of mathematical modelling competency is in focus.

The paper ‘Assessing modelling competencies using a multidimensional IRT-
approach’ by Zöttl, Ufer and Reiss addresses the question of how to assess the 
students’ modelling competency. The overall interest is to investigate the relationship 
between the students’ performance on test items which challenge the students to work 
with an entire modelling process and their performance on items which challenge 
particular sub-competencies related to specific sub-processes in the modelling cycle. 
For this purpose, the authors apply the methodology of an item–response–theory 
approach and, in particular, the Rasch model approach. The authors have developed 
a test instrument focusing on circumference and area of simple geometrical figures 
consisting of a total of 36 test items and administered to 1,657 lower secondary 
students in pre-, post and follow-up tests. The items cover four types of challenge 
of which the first three are connected to sub-processes in the modelling cycle, while 
the fourth type challenges the students to perform an entire modelling process. 
Following the Rasch model approach, each individual student’s modelling com-
petency is measured on a unidimensional scale and on a sub-dimensional scale 
taking the sub-competencies into account. Comparing these two measurements, it 
is concluded that the test with sub-dimensional scaling seems to be a promising 
approach to testing students modelling competency.
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Abstract In mathematical modelling, the way that certain topics are introduced 
depends upon many complex interacting factors, but for the teacher, learner or 
researcher being in touch with the real world is a key factor. Behaviours of stu-
dents when faced with real-world problems are commonly represented in terms of 
activity within a modelling cycle but not all behaviours fit such a model; students 
exhibit non-linear behaviours and even within such cycles they can, and do, follow 
individual modelling routes. In this context, with competing and varied drivers for 
mathematical modelling and recognising issues of assessment, this chapter addresses 
the following questions: How well do students link mathematical knowledge to the 
task? How far away is the real world? Is mathematical modelling itself a driver for 
mathematical modelling?

1  Being in Touch with the Real World

Even with decades of experience in teaching mathematics and mathematical 
modelling, the complexities of mathematical modelling itself still led Werner Blum 
(Ch. 3), an acknowledged expert in education, to ask: Can modelling be taught and 
learnt? His questioning of how modelling skills of pupils in schools might be better 
developed touched upon the need for the teacher to adopt a role as an exemplar 
modeller. Within higher education, Houston and Neill (2003) had previously found 
a disappointingly low increase in expertise amongst undergraduate students follow-
ing mathematical modelling courses over 2 or 3 years. In post-education in busi-
ness, industry and in government, mathematical modelling features large; specific 
mathematics and mathematical methods and strategies are used to solve real 
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 problems such as the distribution of synthetic fibres on a conveyor, tackling big 
problems in applied mathematics (Hunt 2007) or dealing with forecasts in banking 
(Barker 2007). This illustrates the diversity of applications and levels at which 
mathematical modelling is encountered, and so even after being involved in the 
teaching of engineers and mathematicians for more than 40 years in schools, in 
colleges and in universities, it is still difficult to say what is ‘the best way’ to intro-
duce certain topics and the more so where mathematical modelling is concerned. 
‘The best way’ must depend upon a multitude of complex interacting factors, but 
one thing is certain, that as a teacher, learner or researcher being in touch with the 
real world is tremendously important.

Much has been written about what mathematical modelling is, and how it should 
or could be embedded within the curriculum, whether in primary schools, secondary 
education or in colleges and universities. The reality is that many teachers and 
lecturers have to deliver a particular curriculum and they are bound by constraints 
placed upon them, but this should not stop them doing what they can, adopting 
pragmatic views and, as Lamon et al. (2003) put it: regarding mathematical 
modelling as a way of life. It is important to consider what are regarded as drivers 
for mathematical modelling and how teachers and lecturers in different contexts 
may or may not be pragmatic in the practice of mathematical modelling. Where 
promoting active learning through modelling is concerned, it is easy to see that 
whatever model of modelling is adopted, being in touch with the real world is cru-
cial. The following well-known examples are being used by practitioners to good 
effect and have strong links with reality. This does not mean that the pupil or 
student sees that link or that the teacher understands how it is viewed by the pupil 
or student (Haines and Crouch 2005).

The London Ring Main (Fig. 35.1) is an accessible resource for modelling, 
which is easy to embed in curriculum work on volumes and capacity. The Sugar 
Loaf Cableway in Rio de Janeiro, reported through a newspaper article, has excited 
pupils engaged in modelling tasks developed by teachers in schools (Blum and Leib 
2007). The Red Sand lighthouse, off the coast at Bremen, Germany, provides 
interesting exercises possibly involving the curvature of the earth and accessible to 
lower secondary school pupils (Borromeo Ferri 2007). Now that the era of cheap 
air travel has arrived, Kaiser (2007) has adapted modelling tasks that investigate 
how such flights are priced on the web.

In these examples, being in touch with the real world relies on the teacher and 
pupils or students being motivated and engaged in tasks which materialise through 
a large-scale engineering project, a newspaper article about a cableway engineer, 
the utility of a purpose built tower and market-driven aspects of using the web 
respectively. When attempting tasks in modelling and applications, pupils and 
students do not always see things as the teacher does or as the medium describing 
the background to the task intended. The real world for some pupils can remain 
firmly entrenched in the classroom and simplifications introduced in a modelling 
task sometimes elicit unexpected and/or inappropriate responses not dissimilar to 
so-called howlers seen in student responses in examinations. The examiner asking 
the examinee to ‘explain the shape of the curve’ in a graph question can hardly be 
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surprised when the response begins: Its curvy with a higher bit at the end and a 
rather aesthetically pleasing slope downwards towards a pretty flat strai(gh)t bit…. 
Then in a mechanics question what exactly did the examiner expect on asking: 
‘Does the object continue to move after it comes to rest?’ Would a simple No! 
response suffice? These are simple illustrations that serve to highlight that greater 
difficulties occur in mathematical modelling tasks where complexity and open-
endedness of the task description often leads to a rich diversity of responses. 
That richness should not be confused with an absence of good working knowledge 
of the subject matter and background application material which sometimes itself 
leads to lateral thinking. For example, consider a sub-task where a student is given 
two or three Smarties and then asked to estimate how many Smarties there are in a 
tube of Smarties. The student, unable to establish a simple mathematical model 
relating to the task, might reach a solution merely by telephoning the manufactur-
ing company. Lateral thinking might or might not be a good thing in mathematical 
modelling!

Pollak (1983) commented that: Society provides the time to teach mathematics 
in our schools every year. Why? Not because mathematics is beautiful – which it 
is – or because it provides great training for the mind, but because it is so useful. 
This observation is as relevant now, a quarter of a century later, as it was then and 
so we find applications and modelling in the mathematics curriculum at all levels. 
This is reflected in the above examples, the way that they are used and, new 
skills and understandings brought by undergraduates to their engineering and 

Fig. 35.1 The London Ring Main (Thames Water 2009)
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mathematics courses. Understanding the processes used by students when faced 
with real-world problems for which practical outcomes might be achieved by 
constructing a mathematical model has been the subject of a great deal of research. 
It is common to represent such behaviours in terms of activity within a modelling 
cycle but not all fit such a model; students exhibit non-linear behaviours and even 
within such representational cycles they can, and do, follow individual modelling 
routes (Borromeo Ferri 2007; Doerr 2007; Galbraith and Stillman 2001). Against 
this background, with competing and varied drivers for mathematical modelling 
locally and recognising issues of assessment, what happens in practice? In order 
to answer this, consider the following questions: How well do students link 
mathematical knowledge to the task at hand? How far away is the real world? 
Is mathematical modelling a driver for mathematical modelling?

2  How Well Do Students Link Mathematical  
Knowledge to the Task at Hand?

Teachers and lecturers can think of modelling tasks in their own situations, in 
primary, secondary or in tertiary education, of the mathematics that could be neces-
sary for the task and the pupils’ or students’ capability in that regard. Some time 
ago, Burley and Trowbridge (1984) put forward a thesis that modelling in the stu-
dents’ current year should be done with the previous year’s mathematics. In 
expressing this view, they recognised that modelling itself in their university con-
text needs both maturity and technical skill. One is driven to ask: How might this 
apply to modelling tasks in the secondary school? Does it have relevance in pri-
mary education? How is maturity in approaching a particular problem defined? 
What technical skills are required? Some recent research on modelling drug 
administration regimes with students in Romania (András and Szilágyi 2010) tends 
to support this view: Maturity in modelling a solid prior grounding in mathematical 
skills is required. In András and Szilágyi (2010), students were required to learn 
about solving systems of coupled differential equations on the same time scale as 
modelling the regimes, there were very mixed results in terms of understanding and 
application of mathematics.

Even final year undergraduate students struggle to link key mathematical results, 
learned earlier in their mathematics education, to building and refining a mathe-
matical model. For example, in the context of a mathematical models and model-
ling course, students consider, develop and extend models concerned with kidney 
dialysis (a two-compartment model), rocket satellite systems (conservation of 
momentum model) and the aggregation of slime mould (input-output model). Each 
of these requires a firm understanding of the limit definition of a derivative, usually 
learned in the upper secondary school and reinforced in the first year at university. 
Similar difficulties are faced with the limit definition of the exponential function, 
the mean value theorem for integrals, linear dependence and notions of eigenvalues 
and eigenvectors, Laplace transforms—all introduced early in university courses. 
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Even more surprising is the lack of confidence shown by some students in analysing 
quadratic equations arising in particular models where real roots are required. 
Students have difficulty recalling such definitions and using them; the mathemati-
cal modelling seems to obscure the link to previously learned mathematics. The 
above observations are consistent with the research of Anderson et al. (1998) who 
tested 155 final year undergraduates in 15 higher education institutions. It is evident 
that foundations of mathematics in school, in the first year at university and subse-
quently are often very flimsy and that the retention of foundation material in math-
ematics is weak—all of which inhibits the practice and development of mathematical 
modelling.

Several important questions arise (Haines and Crouch 2009), even with flexible 
and pragmatic approaches to mathematical modelling locally. In giving a particular 
modelling task to students, teachers and lecturers need to understand the attain-
ment levels of the students and to have an idea of the mathematics necessary for 
different outcomes from the task. They need to ask the question: To what extent is 
a particular level of mathematics competence assumed? Faced with having to deal 
with specific mathematics within the modelling task, the student’s behaviour will 
be affected by his or her level of competence and so the teacher or lecturer needs 
to consider: How does the latent mathematical content of a modelling situation 
alter learning precedences for the pupil? If, when faced with a model for which 
the pupil’s mathematics is inadequate, does learning the mathematics take prece-
dence? It is clear that more research needs to be done on mathematics as a precursor 
to mathe matical modelling, but, what happens now in practice? Given the Burley 
and Trowbridge (1984) premise and the recent inconclusive experiences of András 
and Szilágyi (2010), for example, Can students learn new mathematics simultane-
ously with modelling experiences? Is learning content a driver for mathematical 
modelling?

3  How Far Away Is the Real World?

It is unsurprising that current mathematics teaching emphasises applications of 
mathematics and the ability of pupils and students to address real-world problems. 
Mathematical modelling, encompassing projects, investigations, open-ended prob-
lem solving and other tasks, engages pupils and students directly with the links 
between the real world and mathematics itself, and the transitions between them, 
making the usefulness of mathematics obvious to them. That is the theory, but now 
try to look at the reality, try to look at the real world as far as the pupils and 
students are concerned. Teachers and lecturers try to create a real world for the stu-
dents by pro viding a proxy for it through a range of mechanisms some of which 
are illustrated in the examples of kidney dialysis, rocket satellite systems, aggre-
gation of slime mould amoebae and road traffic flows which follow. The first 
example is discussed in more detail; other examples concentrate on the proxy for 
the real world.
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3.1  Kidney Dialysis

Using the modelling cycle described by Blum and Leib (2007), it is easy to identify 
stages involved in the modelling process. Patients hooked up to a kidney machine 
(Fig. 35.2) provide a startling indication of the real situation, and this can be sup-
plemented by text and other material on kidney dialysis.

A schematic representation of this process is shown in Fig. 35.3, the real situation 
model of Blum and Leib (2007). Figures 35.2 and 35.3 help to create a ‘student’ 
real world, for the majority of them would have little or no knowledge of kidney 
dialysis and neither are they likely to have experienced it. Moving from the real 
world into a mathematical world, Fig. 35.4 is integral to the mathematisation and 
construction of the mathematical model.

A further stage in the modelling process is taking a section of the machine of 
length dx, and completing the mathematisation through a simple input-output 
mathematical model (Fig. 35.5). Figures 35.2–35.5 show clearly that it is not a 
simple matter for the student to move from the real world to the mathematical 
world, and neither is it easy for students to relate behaviours of their mathematical 
model to the real world. This is consistent with Crouch and Haines (2004), who 
demonstrated that transitions between the real world and the mathematical world, 
in either direction, cause great difficulty for students.

In this modelling situation, the proxy for reality described above does not work 
for all students, because in discussing the model, dealing with the mathematics and 
obtaining results from it, errors and misunderstandings occur. The mathematical 
boundary conditions chosen by the student, such as: u(0) = u

0
 and u(L) = 0, ignoring 

the steady state nature of the model and the role of the dialysate, or u(0) = 0, 
v(L) = u

0
, assuming that the blood has no waste products in it on entry to the 

machine, show that the student does not relate the mathematical model to the real 
situation. Further misunderstandings occur over the modelling of the passage of 
waste material from the blood to the dialysate across the membrane (Fig. 35.4) 
represented by the line DC (Fig. 35.5).

Fig. 35.2 Patients undergoing dialysis through a kidney machine (BBC News 2000)
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Fig. 35.3 A schematic representation of kidney dialysis (Ivy Rose Holistic 2009)
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Fig. 35.5 A section, length dx, through a kidney machine
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3.2  Rocket Satellite Systems

Another example concerns rocket satellite systems, in which an initial model, 
grounded in circular motion, discusses the speeds of satellites in various orbits of 
the earth, the moon or other planets. A second model discusses size and structure, 
in terms of stages, of rockets necessary to place such satellites in orbit using 
straightforward ideas of conservation of momentum. The reality here is provided 
by news journalism in various media; the constantly changing stories in the news 
are usually inherently interesting.

During a modelling course in 2009, The Times (2009a) reported on the failed 
deployment of the Orbiting Carbon Observatory. The story itself and the graphics 
(Fig. 35.6) provided by the newspaper helped the students to understand the initial 
model for speeds of satellites in orbits, the implications for the required speed of the 
delivery rocket and how the different stages of the rocket are deployed. The currency 
of the event and the media reports influenced reality of the situation for the students.

Prior to that on 13 February 2009, The Times (Fig. 35.7) reported that: ‘…a US 
Iridium 33 satellite collided with a Russian Kosmos satellite over Siberia. The 

Fig. 35.6 The failed deployment of the orbiting carbon observatory (The Times 2009a)
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Iridium satellite was in a near polar orbit 775 km above the Earth each orbit taking 
about 100 minutes. The two satellites were travelling towards each other at about 
14 km/sec’. In this situation, the proxy for reality again does not work for all stu-
dents. Comprehending the report and dealing with the mathematics resulted in 
simple errors and misunderstandings.

One student suggested that: ‘The report should say that the satellite was 
travelling at about 7.5 km/sec and not 14 km/sec’ failing to understand the concept 
of collision speed. A second student also made this error: ‘The speed of the satellite 
is 7.479 km/sec so the time to orbit 100 minutes is ok. The collision speed is not 
very accurate’. In the context of the satellite collision, the students did not interpret 
collision speed correctly. Would they have made this mistake had the collision been 
between two cars racing towards each other?

Satellites and rocket systems remain a rich source of material for modelling, cer-
tainly at upper secondary and tertiary level. Even now, there has been a resurgence of 
interest in the moon landing programmes of the 1960s and early 1970s. It would be 
interesting to hear of space applications at primary and lower secondary levels.

3.3  Aggregation of Slime Mould Amoebae

Although rockets and satellites provide a large-scale modelling experience for 
which media reports may be a proxy for reality, and for which the modelling may 

Fig. 35.7 Satellite collision (The Times 2009b)
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be readily understood, it is not so easy with applications in microbiology, such as 
the aggregation of slime mould amoebae. Here the real world is interpreted through 
reports of laboratory experiments and the background is hard to understand for 
students without grounding in biology.

The aggregation process for the amoebae, moving from a free-living state to 
aggregation, is the small section (labelled b) of the complete life cycle illustrated in 
Fig. 35.8, whilst a laboratory image of the aggregation is shown in Fig. 35.9. 
Individual amoebae aggregate like this to form a ‘motile’ slug (National Science 
Foundation 2003).The modelling route is usually through a much simplified 
one-dimensional model in which the aggregation itself is modelled sinusoidally 
and is viewed as an instability emerging from a steady state. At first sight, the real 
world is some distance away from the student, but in practice, students readily 
identify with the proxy provided. Here student problems usually relate to basic 
theorems of analysis and the behaviour of mathematical functions described in 
Sect. 2, rather than indentifying with the real world provided by the microbiology 
background.
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Fig. 35.8 Life cycle of slime mould amoebae (National Science Foundation 2003)
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3.4  Road Traffic Flows

Road traffic flows and pedestrians crossing roads are everyday experiences that will 
be familiar to students. Here, the real world is close to personal experience and 
there is no need to have a proxy for reality. These may be probability models for 
crossing a road along which traffic flows. In some of these models, the pedestrian 
looks for a gap in the flow of traffic that is large enough for the crossing to be made 
without delay (Fig. 35.10).

Ideas in these simple models can be used as a basis for vehicles crossing a prior-
ity intersection or GIVEWAY junction such as is shown in Fig. 35.11. In these 
cases, in addition to finding the probability of crossing the intersection without 
delay, the modeller can find the mean delay experienced by a vehicle waiting to 
cross to the other side. Notwithstanding the engagement of students with everyday 
experience and its motivation for the modelling taking place, students find it 

Fig. 35.9 Amoebae  
aggregating (National 
Science Foundation 2003)

Fig. 35.10 Crossing a road without delay
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difficult to distinguish between the probability of pedestrians crossing a road, or 
a vehicle crossing a GIVEWAY junction, without delay and the mean delay for a 
vehicle waiting to cross a GIVEWAY junction.

3.5  Local Models

The road traffic example of Sect. 3.4 is a good one in that it brings students’ everyday 
experience into the modelling. Sunshine and shadows provide a rich field for inves-
tigation by students with problems that can be embedded in the immediate environ-
ment of the school or university and which benefit from the personal experiences 
of the student. Galbraith et al. (1998) reported on a workshop in which the move-
ment of the sun was modelled in a task that looked at whether canopies provided 
better protection from the rain or from the sun. Haines (2009) has generalised the 
workshop so that teachers can focus on the passage of the sun in their own locality 
and the shadows cast by the sun in this situation. Data is easily downloaded 
from the GAISMA web site from which the sunpath for Hamburg on 16 June 2009 
illustrated in Fig. 35.12 has been obtained. Fortunately, the download from the web 
is in colour and is rather easier to read. Suffice to say that Hamburg is at the centre 
of the diagram and the transept of the sun follows the line from about N45E round 
to N45W. Other downloads give, for example, sunrise and sunset times.

Models that are situated in the local environment and with everyday experience 
will often prove successful. In Hamburg, The Old Elbe Tunnel (Fig. 35.13) has the 
potential for another local source of inspiration for teachers bringing modelling 
tasks to their pupils. Whether they concentrate on basic engineering applications, 
traffic flow through the tunnel or logistics of the Hamburg Tunnel Marathon (2009), 

Fig. 35.11 A GIVEWAY junction



Fig. 35.12 Sun path diagram for Hamburg, Germany on 16 June 2009 (GAISMA 2009)

Fig. 35.13 The Old Elbe 
Tunnel, Hamburg
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here it is certain that motivation and engagement of student will be strong. There is 
no need for a proxy real-world situation.

In all these examples, it is easy to see that the real world has different meanings 
and different manifestations for different problems. Students in tertiary education 
might at one time be further away from the practical reality (c.f. rocket satellite systems) 
and at the same time closer to it through experimental projects in the laboratory on 
sub-models of that practical reality. At one extreme, the real world is everyday 
personal experience of a structure or an event; the closeness of the real world is 
self-evident. However, major questions remain: What constitutes the real world for 
students? How close is the real world for students and can we define and measure 
descriptors of that closeness? Do attitude, motivation and engagement occur in 
such descriptors? Is there confusion between a proxy for a real-world situation and 
the real world itself? Are we confusing the real world and the classroom context? 
Are the problems that we ask students to consider really real-world problems?

4  Is Mathematical Modelling a Driver  
for Mathematical Modelling?

Recall some assessment objectives in mathematics (Table 35.1) developed by lectur-
ers in a consortium of 15 UK universities engaged in an HEFCE project (Haines and 
Dunthorne 1996). Most of these objectives can be achieved within a mathematical 
modelling framework, but a question that does arise is whether mathematical model-
ling itself is necessary for the achievement of such objectives. Of course, it is neces-
sary in some way because it forms the basis for at least two of the objectives, but 
does mathematical modelling form an essential part of the curriculum in all cases?

If a purpose of mathematical modelling is mathematical modelling itself, that 
is, pupils and students are being encouraged to become good mathematical modellers, 

Table 35.1 Assessment objectives in mathematics (Haines and Dunthorne 1996, p. 5.3)

•	 Recall	select	and	use	mathematical	facts,	concepts,	techniques
•	 Construct	mathematical	arguments
•	 Formulate	mathematical	models
•	 Evaluate	mathematical	models
•	 Develop	skills	of	criticism
•	 Organise	mathematical	information
•	 Interpret	mathematical	information
•	 Communicate	mathematical	ideas
•	 Develop	oral	and	written	communication	skills
•	 Read	and	comprehend	mathematics
•	 Develop	logical	thinking
•	 Provide	students	with	vocational	education
•	 Encourage	independence	of	thought	and	initiative
•	 Develop	group-working	skills
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then care must be taken about the assessment of mathematical modelling. The 
process itself must be assessable rather than simply concentrating on the out-
comes of one or two individual or group projects (say). This is not easy since in 
most situations and certainly, within mathematics courses at university, students’ 
experiences of mathematical modelling may be restricted to one, two or three cases, 
case studies or projects.

What should be involved in the assessment of modelling? Niss and Jensen (2006) 
take a holistic approach to modelling competence, suggesting a 3-dimensional 
model for which the dimensions are: degree of coverage, radius of action and tech-
nical level. Degree of coverage relates to understanding stages of modelling and 
how they are linked. Haines and Crouch (2001, 2005) have demonstrated that 
assessment of this dimension could be done using multiple-choice questions that 
focus on each stage of a modelling cycle. It is possible that a rating scale of this 
dimension applicable to postgraduate, undergraduate, pre-university and school 
levels could be constructed (Haines and Crouch 2007). Radius of action refers to 
the experience that the learner has in the variety and complexity of models. Such 
experience in schools will necessarily be more limited and narrower than that of 
students in undergraduate courses. But whilst that experience is necessarily 
restricted in comparison to an expert, it might be extensive in respect of other chil-
dren of the same age. Whilst there is a difficulty with the ‘Radius of action’ dimen-
sion, Haines and Crouch (2007) recognise that in a structure of a mathematical 
modelling expertise continuum, behaviours in school, for example, might be 
qualitatively the same as in pre-university, undergraduate or postgraduate sectors, 
but differ substantially in terms of acquired expertise. This area is extremely 
important because we know that a weak knowledge base in students and a lack of 
experience in abstraction cause difficulties in the transition from the real world to 
the mathematical world (Crouch and Haines 2004). The knowledge base and 
experience can be improved by repeated graded exposure to models and model-
ling. We are not convinced that current curriculum practice does give graded 
continuous exposure in this way. The dimension ‘Technical level of mathematics’ 
is usually regarded as adequately assessed outside modelling activities. However, 
the technical level of mathematics influences the modelling that is accessible to 
the learner.

If it is accepted that becoming a good mathematical modeller is a driving force 
for mathematical modelling itself then it follows that, under the Niss Jensen 
model, each of these dimensions must be assessed combining them in some way 
to give an overall assessment of mathematical modelling competence. It is argu-
able that this approach is in fact a practical one within the classroom, but Zöttl, 
Ufer and Reiss (Ch. 42) have demonstrated a research tool that seeks to assess 
mathematical modelling as a whole. They use multidimensional Rasch modelling 
with dicho tomous responses that does not include partial credit and have achieved 
some interesting results in a restricted field. An alternate view is that mathematical 
modelling is a driver for the acquisition and deployment of mathematical know-
ledge in which case the assessment of mathematical modelling as whole could be 
a secondary issue.
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In the following, I will comment on the chapter by Haines on “Drivers for 
Mathematical Modelling: Pragmatism in Practice” in this volume. The examples 
described by Haines exemplify in an expressive way that modelling can be quite 
challenging and many reality-related problems can be only dealt with at tertiary 
level. Subsequently, it may be questioned if modelling is possible in lower sec-
ondary school and even in primary school. When it comes to lower secondary 
level, this has been widely accepted (see e.g. Blum and Leiß 2007). Additionally, 
modelling is also possible at primary level, when appropriate tasks for children are 
chosen (see, e.g. Biembengut 2007).

In his paper, Haines is guided by the questions, to what extent modelling can 
serve as a motivation for learning mathematics and what has to be taken into 
account when modelling is to serve as a motivation for learning mathematics.  
He reflects on these aspects by raising three key-questions: (1) How well do 
students link mathematical knowledge to the task at hand? (2) How far away is the 
real world? (3) Is mathematical modelling a driver for mathematical modelling? 
In the following, I will look at the questions from the perspective of lower secondary 
and primary education followed by reflections on the title.

1  How Well Do Students Link Mathematical  
Knowledge to the Task at Hand?

Haines points out that students often cannot use the mathematics they learnt directly 
before dealing with the modelling task, but that the mathematical knowledge needs 
to be solid. When students cannot apply the mathematical content they need, it has 
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to be relearned and in this case, the priority of the students’ actions shifts away 
from the modelling task and to the mathematics. He also raises the question to what 
extent a particular level of mathematics is required to solve a certain task.

Let us now look at students at primary and lower secondary level. Two examples 
will illustrate some issues that might occur. The first example is from primary 
school and here students aged six (first class) attempt a modelling task. They have 
no experience in modelling (Maaß 2009).

Teacher: Alina wants to invite  
12 children to her birthday 
party. Do you think they 
can all sit at this table?

Jona: Yes, they can.
Sabine: No!
Teacher: What shall we do now?
Sabine: No!
Teacher: Why?
Patricia: 6 per bench (measuring 

with her fingers)
Patricia: 30 all together, because  

of the 5 benches

At first, these children just guess and do not use any mathematics. After a while, 
however, one girl sees a relation between this task and mathematics and uses the 
mathematics she knows to solve the task.

The second example comes from lower secondary school. Here the students 
dealt with the question “How big is the surface of a Porsche 911?” One girl intended 
to use a cube as a model – which is correct – but then uses a wrong formula to 
calculate the surface of a cube (O = a + 2b + 2c) (Fig. 36.1).

The two examples show that at primary or lower secondary level, students may, 
in some cases, not use mathematics at all or use mathematics incorrectly. When we 
look at the question to what extent a particular level of mathematics is required to 

Fig. 36.1 One girl  
intended to use a cube  
as a model – which  
is correct – but then uses  
a wrong formula to calculate 
the surface of a cube  
(O = a + 2b + 2c)
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solve a certain task, we need to say that for the school levels discussed here, this is 
a relevant question directed at the teacher.

On a more general level, the question of how well students link knowledge to the 
task at hand depends on several factors, for example students’ mathematical com-
petencies (Blomhøj and Jensen 2007), the cognitive demand of the task (Jordan 
et al. 2008), students’ basic mental ideas – so-called Grundvorstellungen – which 
means that mental objects are necessary for transitions between reality and math-
ematics because they mediate between the two worlds (Kleine et al. 2005), stu-
dents’ beliefs about mathematics (Maaß 2004), the didactical contract (Verschaffel 
et al. 2000) and students’ experience in modelling (Maaß 2004).

2  How Far Away Is the Real World?

Haines raised in his paper the questions to what respect, the real world actually is 
a real world to the students, how can we measure whether a context is reality or not 
for students and which constitutes the real world for the students. Again, we will 
look at these questions from the primary and lower secondary level. A well-known 
task for primary school is the so-called captain’s task: There are 26 sheep and 10 
goats on a ship. How old is the captain? The large majority of primary school 
pupils, who were given the task, gave a numerical answer by adding the two numbers 
given. This however is not due to an inability of the students but the didactical 
contract in the classes, as this procedure normally works for traditional word 
problems (Verschaffel et al. 2000). Also at lower secondary level, some students 
distinguish clearly between mathematics and their general knowledge about the 
context. The students were given the following task: In 1993, the worldwide 
reserves of natural gas were estimated to be 141.8 billion cubic metres. Since then 
2.5 billion cubic metres have been used every year on average. Calculate when the 
reserves of natural gas will be exhausted. Use different assumptions and models. 
Explain all your steps. A student, Albert, provided only one and the most obvious 
model: He divided the 141.8 billion by 2.5 billion and got a result. Then he drew a 
line and talked about his experiences with renewable energies. His text showed 
that he knew a lot about this topic, but he was not able to link his knowledge to a 
mathe matical task. Altogether, these two examples show that the context does 
not form a real world for the students because it is given to students within the 
context of mathematics education. So, when reflecting on what constitutes the real 
world for students, we also have to take into account the context of mathematics 
education.

On a more general level, the question of how well students link knowledge to the 
task at hand depends on several factors, for example the students’ experience in 
modelling and their beliefs (Maaß 2004), the complexity of the situation (Jordan 
et al. 2008), students’ thinking styles (Borromeo Ferri 2007), the didactical contract 
and the context in which the students learn (Lave and Wenger 1991).
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3  Is Mathematical Modelling a Driver for Mathematical 
Modelling?

Haines raised this question without answering it, but emphasised that if this is the 
case, there are implications for practice. We need structured approaches on how to 
test modelling (Haines and Crouch 2005) and we need models for modelling com-
petencies (Blomhøj and Jensen 2007). These requirements are also requirements 
for primary and secondary level.

To sum up: Given these issues, raised when reflecting on the questions of 
Haines, Is modelling a driver for learning mathematics at primary and secondary 
level? the difficulties named above are mainly difficulties when students start to 
model. Links to the real world can make mathematics more concrete for many 
students, especially for low achieving students. They learn mathematics more 
meaningfully (Maaß 2004). Subsequently, modelling can be a driver for learning 
mathematics, but students need time to adapt to modelling tasks. In order to deal 
with students’ different ways of working, a variety of contexts and different types 
of tasks should be used (Blomhøj and Jensen 2003; Kaiser 1995). Once students are 
adapted to modelling, it can also be a driver for itself.

4  What the Title Made Me Think of…

At the end of this chapter, I would like to reflect on the title of Haines’ paper which 
I found very inspiring “Drivers for mathematical modelling: Pragmatism in 
practice”. So far, we have discussed modelling as a driver for mathematics and 
modelling as a driver for modelling itself. Thinking of drivers, the link to the aims of 
the integration of modelling is close (Kaiser 1995). As aims we find among others the 
application of mathematics in life, understanding the world around us, developing 
problem-solving competencies, getting insight into the usefulness of mathematics 
(learning mathematics meaningfully), understanding and memorising mathematics 
and developing positive attitudes toward mathematics. The important question is: 
Are these aims also drivers for the implementation into day-to-day practice? What 
are drivers for modelling?

When looking at this question from primary and lower secondary school, we have 
to differentiate between two levels: drivers for students and drivers for teachers to 
implement modelling. For students, drivers for modelling may be learning mathe-
matics meaningfully as well as external drivers such as parents, teachers or grades. 
However, what really happens in class is determined by the teacher. So what works 
as drivers for teachers?

Apparently, the aims are not drivers in a way we would wish them to be, as 
modelling is not widely implemented in daily teaching practice (Blum, this vol-
ume). Actually, there is a theory-practice-gap (Bruder 2009) as ideas which are 
developed within research are not implemented in practice in a way that they 
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should be. The reasons for this seem to belong to a complex system of compo-
nents, among which we find, for example, centralised assessment, the curriculum 
and teachers’ beliefs about mathematics (Kaiser 2006). Altogether, change is hard 
to be achieved (Tirosh and Graeber 2003; Wilson and Cooney 2002) and facilita-
tors or drivers to do this may be helpful.

Drivers for teachers, which may help to implement modelling and which can be 
provided by research, can be materials (tasks and guidelines for implementation, 
based in theory and addressing teachers’ needs) and courses of professional devel-
opment. Factors which we should analyse more carefully are the contexts and 
frameworks (see below).

In relation to materials, we need modelling tasks for all school levels (including 
primary school) which cover the main areas of mathematical school content. We 
also need different types of modelling tasks including an overview about different 
features of tasks (Blomhøj and Jensen 2003; Kaiser 1995) as students have different 
styles of learning (Prenzel et al. 2004).

There is not much empirical evidence on how to really teach modelling (Leiß 
2007). Here we need more research. However, a variety of studies show that 
working in small groups, discussion in groups and students working independently 
can support the development of modelling competencies (see e.g. Ikeda and 
Stephens 2001). Based on these results, teaching concepts for all levels of educa-
tion need to be designed and published in a way and in media that teachers read. 
Teachers also need to get materials and information on how modelling can actually 
be assessed, how a written class test can be designed, what other forms of assessment 
exist and how to assess students’ solutions.

In relation to professional development, we also need materials for this based in 
theory and taking into account teachers’ competences, beliefs and needs (Tirosh 
and Graeber 2003, Wilson and Cooney 2002) for example as have been developed 
within the European project LEMA (Maaß and Gurlitt, this volume). Last but not 
least, we need effective methods for large-scale training (Adler and Jaworksi 2009), 
which also considers context factors such as curriculum, external assessment, poli-
tics, parents, school principals, etc.

To sum up, in order to set up or identify drivers for modelling, we need more 
designed materials based in theory and tested on a large scale, we need design 
research (Burkhardt 2006). Further, we need more research close to day-to-day 
teaching practice (Bruder 2009), including context and framework of school life. 
When carrying out such research, we need to be pragmatic, because when working 
with real classes instead of laboratories, it may turn out to be complicated to have 
a perfect research design.
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Abstract Modelling is a mathematical competence and a means of learning 
significant mathematics. Preliminary findings on the nature of competence and 
modelling competencies, as well as the development of mathematical modelling 
competencies of Grade 7 students are presented in this chapter. Twelve students 
solved three model-eliciting tasks in groups over a period of 12 weeks. The devel-
opment of competencies is considered across the group as a whole. Analysis of the 
data shows that modelling competencies are activated and do develop when students 
take part in well-orchestrated modelling activities.

1  Introduction

Mathematical modelling entails the resolution of a specific type of task, based on a 
certain context in reality, set in an environment which makes students’ conceptual 
and procedural knowledge visible. These real, complex tasks have come to be 
known as model-eliciting tasks (English and Lesh 2003; Lesh et al. 2000, p. 608, 
p. 298). The process of resolving these tasks is formulated as a cycle. This cycle 
has been formulated in many ways. The cycle of Blum and Leiss (Borromeo Ferri 
2006, p. 87) is considered for this study and each node of the cycle was used as a 
starting point for competency identification in depicting modelling competencies.

This cycle (as many of the others) assists in recognising the students’ path 
through a modelling problem. Borromeo Ferri (2006, p. 91) reminds us that these 
phases are normative and seen as an ideal way of modelling; modelling does not 
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develop in the perfect circular order presented. Very often students move back and 
forward in their need to understand, structure and to mathematise the problem. 
The ease with which students are able to move through the cycle is dependent on a 
number of factors such as their level of experience in modelling problems, context 
of the problem and group dynamics.

2  A Perspective for Modelling

Kaiser and Sriraman (2006, p. 302) reveal that there is no common understanding 
of modelling within an international discussion on modelling, but that certain 
perspectives can be found. It is important to embed this study within or amid 
theoretical and conceptual frameworks that currently exist and to formulate a 
justification around these. The theoretical and conceptual framework adopted 
essentially reveals what it means to the authors to ‘learn mathematics by doing 
mathematics’. Since this study displays (in Kaiser and Sriraman’s terms) pedagogi-
cal aims, psychological aims and subject-related aims, it can be considered as an 
example of an ‘integrative perspective’ (Kaiser and Sriraman 2006, p. 302). This 
study integrates and advances ‘contextual’, ‘educational’ and ‘cognitive’ perspectives 
(Kaiser and Sriraman 2006, p. 304) to mathematical modelling. A contextual per-
spective emphasises model-eliciting problems starting from meaningful situations 
while an educational perspective focuses on the integration of mathematical mod-
elling in mathematics teaching (Blomhøj nd.). We merge cognitive and educa-
tional perspectives in our conceptualisation of modelling competencies. A cognitive 
perspective forms the main focus of the empirical component of the study. This 
study focuses on group routes and competencies by using visible external represen-
tations (Borromeo Ferri 2006, p. 92) of group modelling sessions while we also 
focus on the meaningful integration of modelling in mathematics education as a 
significant means of learning mathematics.

3  What Is Competence and What Are Modelling 
Competencies?

Establishing just what modelling competencies are at micro-level forms part of 
the essence of this study. The latter question stated in Galbraith (2007, p. 84) that 
modelling ability is better estimated as a pattern of performance across several 
problems than on a single common problem is accepted. This view is also held by 
Goldin (1987, p. 138) in his work on problem-solving competence based on cogni-
tive representation. He describes competence as the capability to perform success-
fully over a class of tasks. This definition is directly relevant to this study, where 
competence is taken to develop over a series of tasks. Goldin further adds that 
competence does not necessarily imply that the student can perform successfully 
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every time a task is encountered. Competence is better seen as the conceptual net 
that encompasses the problem situation and not as isolated areas of ability. Henning 
and Keune (2007, p. 225) use Weinert’s definition of competence as being the sum 
of available abilities and skills – the willingness of a student to solve problems 
and act responsibly concerning the solution. Maaß (2006, p. 139) laid out separate 
areas of modelling competencies which we used as a broad framework of model-
ling competence. These broad areas provided structure to our characterisation of 
modelling competencies. It was decided to delineate three distinct areas of compe-
tence: cognitive competencies, affective competencies and meta-cognitive compe-
tencies. Cognitive competencies encompass the entire modelling cycle. They 
pertain to the conscious activities students are involved in while modelling. 
Affective competencies relate to student beliefs about mathematics, the nature of 
problems and the value of mathematics in solving real problems while meta-cognitive 
competencies relate to those factors that support cognition.

The seven phases of the modelling cycle (see Fig. 37.1) led to the clarification 
of what comprised cognitive competencies (understanding, simplifying, mathema-
tising, working mathematically, interpreting, validating and presenting). Arguing 
was identified by Maaß (2006) as another area of competence necessary for model-
ling and was therefore included as a cognitive competency. The pilot study led to 
the distinction of important meta-cognitive competencies for modelling being: a 
‘sense of direction’ (Treilibs et al. 1980); using informal knowledge (Mousoulides 
et al. 2007) and planning and monitoring as an indication of general task organi-
sational abilities. We selected ‘beliefs’ as an important affective competency 
based on a central question in Maaß’s (2006) study. A brief generic elaboration on 
each of the identified competencies follows; for each modelling problem, these 
competencies have to be specified and elaborated.

Understanding: Means to know the nature of something. It will involve assuming 
information that is implied. Understanding can only be determined in conjunction 
with context and experience.

Simplifying: Means seeing the essential features of the problem. This would also 
mean using a significant sample of the data and the reasons for this selection.

Fig. 37.1 The modelling cycle (Blum and Leiss in Borromeo Ferri 2006, p. 87)
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Mathematising: Is translating from the real world to the mathematical world. 
Detecting features in the real world that corresponds to mathematical concepts.

Working mathematically: Involves the ease with which the chosen mathematics is 
applied and used. One must also pay attention to the ‘type’ of mathematics 
selected to solve the problem.

Interpreting: Borromeo Ferri (2006) sees interpreting as mathematical results that 
must be reinterpreted in the real situation. The mathematical results that the groups 
have worked with now have to be re-evaluated in terms of the real problem.

Validating: Validating refers to students securing that their model is consistent and 
that it satisfies the conditions of the real situation context.

Presenting: Involves communication – where students must clearly describe 
their thinking (Mousoulides et al. 2007). Students will need to refer to the ‘trail 
of documentation’ (Lesh and Doerr 2003, p. 31) they created and include their fellow 
students and the teacher into the dynamic domain of their group interaction.

Arguing: Arguing as a process and not a finished product is the focus of this 
competence. It is reasoning that is communicated to convince or explain.

Sense of direction: This was described by Treilibs et al. (1980) as the ability of a 
group to anticipate the underlying structure of their solution. This would include 
clarity by the group of what to do next and how this is related to what they 
wanted to achieve at the end of the task.

Using informal knowledge: Mousoulides et al. (2007) found a significant factor in 
students modelling to be the use of their informal knowledge. This is student 
knowledge used that is not specifically from a mathematical realm.

Planning and monitoring: Planning and monitoring refers to groups organising and 
overseeing their solution route. These competencies were viewed as one in terms 
of how the group managed the problem.

Beliefs: Blomhøj and Jensen (2007) describe a key to modelling as learning to 
cope with feelings of ‘perplexity due to too many roads to take and no compass 
given’. This relates to student affective competencies: their beliefs about math-
ematics, the nature of problems, how problems are solved and the value of math-
ematics in solving real problems.

4  Methodology

Twelve students were selected for the study based on their previous year’s  
mathematics results and met with the researcher weekly for sessions of 1 h over 
4 months. The groups consisted of two groups of students who achieved lower 
results in traditional instruction and one group of students who achieved higher 
results in traditional instruction. The weak students comprise what Kuhn and Udell 
termed a ‘difficult to work with population’ (Kuhn and Udell 2003, p. 1246). We 
accept their reasoning in that the competencies that did develop were not the ones 
emphasised in their schoolwork or were developing anyway as may be the case 
with academically stronger students. Each group comprised two girls and two boys. 
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Data were coded using the above competency identification. A table was drawn up 
that incorporated the competencies and levels. A score for each group was deter-
mined after the transcriptions of the audio recording were made. Competencies were 
identified from student text and coded in the written transcriptions. A competency 
index was allocated per weekly session according to how much progress the group 
had made during that session. The indexing was done before the next week’s ses-
sion to ensure a valid assessment. Although a competency was observed a number 
of times throughout any session (e.g. understanding), the overall effect of the 
group’s understanding was indexed and not individual utterances. A zero (0) was 
indexed if the competency was present (or observed) but in a very fragile or barren 
state. So a group’s attempts to understand but not making real progress in under-
standing was allocated a zero. A one (1) was indexed if the competency was 
observed and was contributing to group progress in some way. So if a group did 
understand the problem and were able to move to a new or different level of under-
standing they were allocated a one. A two (2) was indexed if the competency 
observed was contributing to the group’s progress in a significant way. So a group 
being able to simplify or mathematise or bring another competency into play from 
their understanding meant a two was allocated. A three (3) was indexed if the com-
petency observed was enabling the group to make considerable progress in devel-
oping a generalisable model. So students had to bring other situations into their 
discussions for a three to be allocated. Once a score was determined, the resulting 
graphs were drawn up. The score should be seen not as an absolute measurement 
but rather as an index of their competency. The word index is used as a manifestation 
or indicator and not as a fixed measurement. This enabled a visual clue to the devel-
opment of group modelling competencies (Biccard and Wessels 2009). In this chapter, 
we report on only a few of the competencies.

5  Results

Students initially displayed weak competencies in all areas of modelling. However, 
these developed slowly and gradually. Competencies do not display themselves in 
a linear way, nor do they develop in a linear way. Competencies are interrelated and 
interdependent. Just as groups displayed individual modelling routes (Borromeo 
Ferri 2006, p. 91), so competency development for each group follows an individual 
path. It can however be said that the groups’ competencies do develop over a period 
of time. It would also seem as if cognitive competencies develop sooner than 
meta-cognitive competencies while a marked shift in student beliefs was evident. 
Table 37.1 illustrates the development of student beliefs over the period that they 
were exposed to modelling tasks.

For some competencies, an improvement is noted after the first task and plateaux 
thereafter. It would be of value to determine group competencies over a longer 
period of time to ascertain when the next improvement occurs. The following table 
(Table 37.2 ) shows the indexed competencies for the first four competencies in the 
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normative modelling cycle. Students revisited and revised these aspects continually 
during the solution process.

Task 1 ran from week 1 to week 3 while week 4 was the presentation session. 
Task 2 ran from week 5 to week 7 while week 8 was the presentation session. Task 
3 ran from week 9 to week 11 while week 12 was the presentation session.

Competencies in mathematising were largely dependent on task understanding 
and simplifying the problem and simplification was interdependent with mathe
matising. Students simplified problems based on the mathematics they wanted to 
use on the problem. Group improvement in working mathematically involved 
flexibility with decimal numbers, more judicious use of estimating, more negotia-
tion of meaning and measuring more accurately and with better understanding. 
The mathematical ‘toolbox’ (Jensen 2007, p. 144) students bring with them and the 
tools which they use from this toolbox become especially visible during modelling 
tasks. Students solved all tasks using relatively (surprisingly) simple mathematics 
even though they have been equipped with more sophisticated mathematics in 
their classroom experiences. Group competencies in interpreting and validating 
were weak throughout the tasks and may be explained by the traditional instruction 
these students experienced. Their abilities to interpret and validate require teacher 
support and good task instruction.

Task instruction impacts on modelling competencies. Instructions that require a 
‘product’ such as a letter or report allow students more readily to create a gener-
alisable model and this process relies substantially on interpreting and validating 
mathematical results. These products also allow the instructor to focus students 
when they need assistance. Task context must also be considered when discussing 
competencies and competency development. Some contexts provide supporting 
platforms for competencies that others do not. Since these tasks required a vast 
amount of reading, it became evident that student abilities in reading and reading 
comprehension played a fundamental role in their task understanding and task 
comprehension Students in the mathematically ‘weak’ groups also displayed 

Table 37.1 Changing beliefs

How is mathematics used in our daily lives? 
2009-02-03

How is mathematics used in our daily lives?  
What did you learn about mathematics during 
the programme? 2009-06-02

•	 Measuring,	counting	and	costing
•	 Distances	travelled	in	a	day	and	 

paying bills
•	 It	is	most	important	for	multiplying,	

adding, subtracting and dividing
•	 Accounting,	buying,	selling	 

and many more
•	 I	use	it	when	baking,	cooking,	buying	

things
•	 We	use	it	when	we	go	shopping

•	 Counting	money,	working	out	problems.	
I learned that mathematics is not only 
individual numbers but also it is a 
sociable subject

•	 Money,	bills,	taxes,	profits	and	income
•	 I	learnt	that	we	could	find	the	real	answers	 

in real life by adding, subtracting, scaling  
down/up, etc.

•	 I	learnt	that	there	are	many	different	ways	 
to use mathematics

•	 I	learnt	that	maths	can	even	be	used	when	
sewing a quilt together
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Table 37.2 Indexed competencies
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barriers to reading and comprehension. As a starting point in modelling, this 
competency (understanding) was compromised and required extensive assistance 
from the researcher. The role of language seems to be a dominant factor in compe-
tency development.

It would therefore be beneficial to expose students to modelling tasks in a range 
of mathematical and real life contexts to assist with a wider range of competency 
development. Students should also be exposed to a broader range of peers in their 
groups. This will allow for a wider scaffold for interaction, communication and 
reflection between the group members. This interaction and reflection will support 
the development of many cognitive and meta-cognitive processes and competencies 
as well as creating students that are more capable of dealing with future study and 
career environments.
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Abstract Students’ reflections play an important role in mathematical modelling 
competency. In this chapter, we argue that there are two kinds of reflections which 
have to be challenged and supported in different ways. They can be characterised 
as respectively internal and external with respect to the modelling process. Internal 
reflections add meaning and quality to the sub-processes involved in a mathematical 
modelling process, while the external reflections address the role and function of 
the model in actual or potential applications. If mathematical modelling competency 
is an educational goal, the teaching needs to provide students with experiences with 
modelling and applications of models in a variety of authentic contexts in ways that 
support the students’ development of both internal and external reflections. Through 
analyses of two student projects, we illustrate the two kinds of reflections and dis-
cuss how they can be developed in students.

1  Introduction

This chapter is a theoretical one introducing internal and external reflections as two 
different kinds of reflections related to mathematical modelling. Analyses of two 
modelling projects from the science bachelor programme at Roskilde University 
serve to illustrate the two kinds of reflection and as a basis for discussing how to 
promote such reflection in students. We perceive our work as one important aspect 
of the more fundamental didactical challenge of developing students’ modelling 
competency in tertiary science education. However, the distinction between internal 
and external reflections is of relevance for the teaching of mathematical modelling 
also at other educational levels. Our analyses, argumentations and conclusions are 
based on the assumption that students develop mathematical modelling competency 
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through their engagement in modelling activities. Furthermore, if students are to 
experience that the function and status of modelling and models are context 
dependent, then they need to be exposed to didactical situations that challenge them 
to reflect upon and critique the modelling process and the function of models in 
different contexts.

We begin with some conceptual clarifications of how we view the modelling 
process and how we define internal and external reflections. Then we present 
and analyse the project reports from two selected projects. The two projects are 
different in terms of the subject matter content, of how the students worked with 
the modelling process and the application of the models. In the first project, an 
authentic model for city traffic planning and its application in a concrete political 
decision process is analysed, while in the second project, the role of modelling 
the hypothalamic-pituitary-adrenal (HPA) axis in physiology to understand the 
human hormone control system for cortisol, is investigated. Both projects are analy-
sed with the aim of pinpointing the students’ internal and external reflections. The 
chapter ends with a discussion of how to balance these two kinds of reflections with 
other important elements in modelling competency.

2  Internal and External Reflections in Mathematical 
Modelling Competency

Our starting point for defining mathematical modelling competency is the general 
framework of mathematical competency developed in the Danish “KOMpetence 
project” (Niss and Jensen 2005). Within this framework, modelling competency 
can be defined as:

A person’s insightful readiness to autonomously carry through all aspects of a mathematical 
modelling process in a certain context and to reflect on the modelling process and the use 
of the model (Blomhøj and Jensen 2003, p. 127).

In this definition, mathematical modelling competency refers to a mathematical 
modelling process and therefore, in order to unfold the elements involved in mod-
elling competency, it is relevant to analyse the general structure of a modelling 
process. The definition also includes “to reflect” on modelling processes and on 
actual or possible applications of models. In this chapter, we further define two 
different kinds of reflections: internal reflections related to the modelling process 
and external reflections related to the applications or functions of a model. By 
reflection we understand a deliberate act of thinking about some actual or potential 
action aiming at understanding or improving the action. Reflections take place in 
the minds of individuals but are strongly influenced by social interactions, and 
they can only be detected and analysed through communicative acts. The labels 
internal and external mirror the reflections’ relation to the modelling process and 
should not be misinterpreted as internal and external with respect to the reflecting 
subject.
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Our understanding of reflection is close to definitions that can be found in the 
fast growing literature on the role of reflection in the teaching and learning of math-
ematics in general (Chamoso and Cáceres 2009, p. 199). However, in educational 
research on mathematical modelling, the concept of reflection has not jet attracted 
much attention. We find ideas similar to our work in Greer and Verschaffel (2007) 
and especially in Henning and Keune (2007) who introduce the notion of ‘meta-
reflection on modelling’ to capture both critical reflections on the modelling pro-
cess and reflections on the purposes and applications of modelling. However, we 
have not found research that differentiates between students’ reflections related to 
the modelling process and reflections related to the context of application.

Although, a mathematical modelling process can be conceptualised in different 
ways for different purposes (Niss et al. 2007, p. 18), it is quite uncontroversial to 
consider a modelling process as composed of six sub-processes, see Fig. 38.1. In 
order to create a mathematical model, it is, in principle, necessary to carry through 
a modelling process. Analytically, we describe a mathematical modelling process 
as consisting of the six sub-processes (a)–(f) as depicted in Fig. 38.1 (Blomhøj and 
Jensen 2003).

The modelling process should neither be understood as a linear process nor 
as an entirely rational process. A modelling process does not always start with 
the aim of describing or understanding a well-defined object, and very often model-
ling processes take the form of a cycling process where reflections on the model ling 
process and the intended applications of the model lead to redefinitions of the 
object to be modelled. In fact, each of the six sub-processes can lead to changes in 
the other sub-processes. To indicate these dynamical aspects, the modelling process 
is depicted in a circular diagram. The diagram may also have a connotation in 
favour of a sequential understanding of the modelling process, and it may not give 

Object

Domain of inquiry

Mathematical 
system

Model results

Action/insight 

(a) Problem formulation

(b) Systematization

(c) Mathematization (d) Mathematical analysis

(e) Interpretation/evaluation  

(f) Validation

Data 

Experience

System Theory

Fig. 38.1 A model of a mathematical modelling process
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full justice to the complexity of the possible connections between the sub-processes 
nor to the foundations of these sub-processes. However, the important roles of 
theoretical, empirical and common sense foundations of the modelling processes 
are indicated by the three ellipses in the middle of the diagram (see Fig. 38.1).

‘Theory’ here means knowledge about the domain of inquiry used in the model-
ling process. This knowledge base may have very different epistemological status 
even within the same modelling process, varying from well-founded theories with 
built-in mathematisations (often the case in physics) to shared/personal experiences 
and purely adhoc assumptions. The character of the knowledge base has vital impor-
tance for how the model and its possible applications can be validated. Sometimes 
‘data’ exists prior to the modelling process and may then be used to support the 
processes of systematisation and mathematisation and eventually also as a basis for 
validating the model. More frequently, however, relevant data have to be collected 
as part of the modelling process. Here the production of data often presupposes 
a model. Such data can be used to estimate the model parameters but not as a 
basis for validating the model. Developing the sensitivity among students for 
such reflections is an important part of the long-term aim for the teaching of 
mathematical modelling. Even though this type of high-level reflections concerning 
the overall epistemological status of a modelling process is an important type of 
internal reflections, in this chapter, we limit ourselves to analysing reflections  
connected to particular sub-processes.

In relation to the modelling process, we define internal reflections as reflections 
connected to the sub-processes and their foundations in the modelling process. 
Students may reflect on the sub-processes in a mathematical modelling process in 
cases where they are the modellers as well as in cases where they analyse modelling 
processes behind existing models. The important characteristic is that internal 
reflections can take place synchronically with the modelling process, and that 
the object of internal reflections is actions taken within the modelling process. 
The reflections can be directed towards the foundations of these actions, their 
consequences for the following steps in the modelling process, for the results of the 
model, for the possible applications of the model, the model validity or towards 
bringing possible alternative actions into light. In all cases, the reflections highlight 
that actions in a modelling process are taken by the modeller(s) for some reasons 
and with some intentions and consequences. Hence, they are a resource for improv-
ing the modelling process.

In opposition to internal reflections, external reflections are concerned with 
actual or possible use of a mathematical model, model results and their role and 
function in given societal, technical or scientific contexts. This kind of reflection 
has as its object the role and functions of a model in a particular (type of) applica-
tion, and therefore necessarily involves the context in which the model is being 
used or could be used. By nature, external reflections take place diachronically to 
the modelling process. As a consequence, such reflections cannot be integrated in, 
or structured by means of, the modelling process.

It is important to stress that this distinction between internal and external reflec-
tions is an analytical distinction. In practice, they are intertwined in a dialectic 
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relationship. In general, when a mathematical model is being applied whether in a 
societal, technological or scientific context, there are always some interests related 
to power, political, economical or ethical issues or underlying theories of science 
involved. Such interests and theories are often (consciously or unconsciously) 
built into the model through the modelling process, thereby influencing the actual 
application of the model and its consequences either intended or unintended. 
The modelling process creates a complex structural relationship between two enti-
ties of different epistemological nature, namely, the object that is to be modelled 
and the mathematical system. Theory, broadly understood as what is known or 
taken for granted also in the form of available data, is influencing the modelling 
process in an intricate interplay with the interests behind the model and its intended 
applications.

The structural relationship between the object and the mathematical system in a 
process of application is depicted in Fig. 38.2. In the application process, the model 
is often disconnected from the modelling process. Except for modelling within the 
framework of a mathematised theory, it is not possible to secure a model’s validity 
theoretically. As a consequence, the validity of a concrete application of a mathe-
matical model has to be judged on the basis of the modelling process behind the 
model and/or empirical testing.

Application of a mathematical model to a real life problem should be considered 
as a process of its own, which is separated from and more or less independent of 
the modelling process. The application process tends to cause changes in the 
context of the real life problem as well as in the model when it is adjusted to 
the problem. When a mathematical model is developed, it is influenced by certain 
interests of the acting subjects. The modelling process that lies behind the model 
can be theoretically and/or empirically more or less well founded. However, when 
the model is applied in a political, technological and/or scientific investigation, 
the model is often separated from the modelling process and the possible critical 
reflections connected with the process. The model may be used for particular pur-
poses that might be different from what the model was constructed for. Moreover, 

Object

“Theory”

Interests
(1)

Model
Applica

-tion

Interests
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Fig. 38.2 The structural relationship between object and mathematical system in the application 
process
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the application process can be influenced by yet other interests that were not present 
in the modelling process. Therefore, the process of applying a mathematical model 
in general tends to cause (a) a reformulation of the problem at hand in order to be 
adequate for investigation by means of a model, (b) changes in the discourse 
about the problem towards pro and contra the model and possible adjustments  
of the model, (c) a limitation of the possible actions taken into consideration to 
those that can be evaluated in the model, and (d) a delimitation of the group of 
people that can take part in the discussion and act as a basis of critique (Skovsmose 
1990, pp. 129–130). Awareness of, and experiences with, such general phenomena 
can provide a strong basis for students’ external reflections.

Some mathematics teachers may find such reflections to be of no relevance for 
the teaching of mathematical modelling. However, as will be illustrated in the 
following examples, how model results are used in a concrete political decision or 
in a technical or scientific investigation can often only be understood and critiqued 
on the basis of a mathematical analysis of the modelling process. Therefore, devel-
oping mathematical modelling competency includes the obligation to foster among 
students an ability to reflect critically upon actual and possible applications of 
mathematical models.

3  Students’ Reflections in Modelling Projects

Development of students’ mathematical modelling competency is part of the general 
science education of the bachelor science programme at Roskilde University. This 
is addressed directly in the students’ projects, which is a rather unique way of 
organising university studies. Therefore, before analysing the two projects, we shall 
briefly describe the institutional context in which we are working.

3.1  The Institutional Context of the Project Work  
at Roskilde University

Science students enter the university through a 2-year introductory study prog-
ramme, which leads to a bachelor degree after two additional semesters of subject 
specialised studies, and to a master’s degree after another six semesters of study.  
In all programmes, half of the study time in each semester is devoted to group-
organised and problem-oriented projects. The other half of the study time is used 
on subject organised courses.

The students’ project work is guided by a problem that needs to be solved or investi-
gated, and not by a curriculum. The students choose the problems they want to work with 
under some thematic constraints and organise their work with support from a supervisor. 
In the first three semesters, the problems should be exemplary with respect to (1) the use 
of science in society, (2) the function of and relationships between models, experiments 
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and theories in the production of scientific know ledge and (3) science as a cultural 
phenomenon. In the fourth semester, the problem merely has to be exemplary of some 
aspects of (1)–(3). The project work is organised in houses of 60–80 students and con-
ducted in groups of 4–7 students resulting in 10–12 project groups each semester. A team 
of 10–12 supervisors representing the various science disciplines (physics, biology, 
mathematics, environmental science, molecular biology, geography, etc.) are allocated to 
the house, and each group will be supervised by the same professor during the entire 
project. See Blomhøj and Kjeldsen (2009) for a more detailed description of the project 
organised science studies at Roskilde University.

The first project analysed below was made by a group of two fourth semester 
students and it complies with the first semester requirement, while the second is 
made by a group of six students in the second semester. Based on the project reports 
and the groups’ final oral presentations, the projects are analysed with the aim of 
illustrating internal and external reflections and to uncover the students’ actual 
reflections connected to each project.

3.2  The Use of a Traffic Model in the City  
of Roskilde – The Case of ‘Ny Østergade’

The problem that guided the students’ work in this project took its point of departure 
in a contemporary political conflict between the local administration in the city of 
Roskilde and a group of citizens living very close to a planned new road connection 
(Jarbøl and Kofoed 1996). The decision to construct this new road was influenced 
by the use of a mathematical model for the inner city traffic. The model was devel-
oped and applied by a consulting firm.

In the modelling process behind this model, the city is divided into 57 zones. 
Based on interviews and traffic counting, a 57 × 57 matrix was set up to describe the 
total traffic flow within and in/out of the city per day. The matrix contains the esti-
mated number of trips between each pair of zones where some of the zones represent 
‘ports’ leading in and out of the city. In the model, these trips are distributed on a road 
net representing the main roads in the city according to three principles: (a) For all 
roads, the traffic allocated should be less than the capacity of the road in question. 
(b) All tours should be placed on the net so that the calculated time of transportation 
for each tour is minimised. (c) For each road element of every tour, the time of trans 

portation is calculated in minutes according to the formula: = +60 · i
i i i

i

L
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v
, 

where L
i
 is the length of the ith element of the considered road measured in kilo-

metres, v
i
 is the average speed on the ith element in kilometres per hour and c

i
 

signifies that some extra time is used depending on the type of road. The value of 
c

i
 in the particular case of the planned new road connection was 0.3 min/km.

In their report, the students analyse the model’s behaviour, the empirical basis for the 
tour matrix and the estimation of the model parameters. Their analysis was structured 
by a model of a modelling process similar to Fig. 38.1, and in relation to each 
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sub-process the possible reasons for, and effects of, the different assumptions made 
in the modelling process were discussed. This analysis involves many internal 
reflections according to our definition, because the students address possible ratio-
nales for, assumptions behind, and critique of particular steps in the modelling pro-
cess. In their work, the students actually reconstructed the entire modelling process 
based on the official documentation of the model, which in fact was ambiguous and 
incomplete in many respects. The main focus in the students’ project was to analyse 
the role played by the model and its results in an authentic political decision process 
and the related public debate. Here the students were challenged to make external 
reflections. They discovered that the model was used on two different occasions to 
predict the traffic on the new road to be, in the one case, clearly above 10,000 cars 
per day and, in the other case, clearly below 10,000 cars per day. The high estimate 
was used to argue that the new road would reduce the traffic in the centre of the city 
significantly, and this was an important argument for securing governmental finan-
cial support for the construction work. Whereas, the low estimate was used to pre-
vent that the road project should undergo an EU-procedure for evaluation of the 
effects on the environment. This EU-procedure, which the group of citizens had 
pleaded for, only applies for roads with a predicted traffic flow above 10,000 cars 
per day. Based on their analysis of the modelling process, the students realised that 
the two (contradicting) results were obtained simply by using two different values 
for the parameter v

i
 for the new road connection – a change for which there was no 

valid foundation, since the parameter v
i
 for a non-existing road cannot be made sub-

ject to empirical control. The foundation for the two different model results was not 
part of the public debate. Based on their own interviews with one of the modellers 
from the consulting bureau, local politicians and the spokesperson for the group of 
citizens, the students analysed the discourse concerning the new road connection. 
They concluded that the model results played a central role in the decision about the 
new road, and that the results from the model were used beyond its scope of validity 
in order to serve two different political purposes. The validity of this particular appli-
cation was not discussed in the public debate. These are clear examples of the impor-
tance of external reflections in relation to applications of mathematical models.

3.3  Modelling in Scientific Investigations:  
The Project of the HPA-Axis

In this project, the students decided to investigate a mathematical model pre-
sented by Jelic et al. (2005) of the dynamics of the HPA-axis, which is short for 
the hypothalamic-pituitary-adrenal axis. The HPA-axis is interesting because it is 
essential in homeostasis in stress-related situations. It controls the secretion of the 
stress hormone cortisol. Medical companies are interested in gaining a better under-
standing of the function and dynamics of the HPA-axis, because it is connected 
to illnesses such as depression. A recent strategy is to use mathematical modelling to 
achieve this understanding in order to pinpoint biomarkers.



39338 Students’ Reflections in Mathematical Modelling Projects

The dynamics of the HPA-axis is not fully understood, but the following 
description is often given: The corticotropin-releasing hormone, CRH, is released 
from the hypothalamus in response to stress, and in response to CRH, the adre-
nocorticotropic hormone, ACTH, is secreted from the pituitary. ACTH triggers 
the secretion of cortisol from the adrenal cortex from where also the hormone 
aldosterone is secreted. The students represented the structure of the theoretical 
model of Jelic et al. (2005) by a compartment diagram as shown in Fig. 38.3.

Based on this representation, the students discussed in detail the biological 
processes of the HPA-axis and how these processes correspond to the individual 
parts of the model. They realised that the model is based on the assumption that 
the hormone system can be described by nine biochemical reactions. In their 
analysis of the modelling process, the students critiqued and evaluated each 
hypothesis, assumption, and implementation in the model. They became aware 
that the stimulation of hormone release is implemented in the model as if the hor-
mones are transformed into one another, which is not in accordance with what 
really happens.

The students also discovered that the feedback mechanism of cortisol is not 
linked to CRH. In the evaluation of the model, they realised that in the model, the 
concentrations of ACTH and cortisol are of the same order of magnitude, which 
contradicts experimental results where they differ by a factor of 10,000–50,000. 
The model could not be validated by experimental results. These are examples of 
internal reflections.

Due to the students’ external reflections with respect to the function and the 
status of the model in the application of the model in a scientific investigation, 
the purpose of which was to gain understanding and knowledge of the dynamics 
of the HPA-axis, they became aware that the object changed from understanding 
the dynamics of the HPA-axis to the problem of modelling the dynamics of the 
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concentration of cortisol and ACTH. Through their analysis of the modelling 
process underneath the model, they experienced a change in discourse from discus-
sions about the dynamics of the HPA-axis to a (model) discussion about whether 
the model is good or bad, and that this change in discourse was guided by the internal 
reflections and critique of the modelling process. The students tried to find alterna-
tive ideas about the HPA-axis, and they realised that such ideas were reduced to 
those that can be implemented in the model. The students then revised the model 
with respect to their internal reflections and critique. As a result of their internal 
and external reflections, the students experienced a delimitation of the group of 
people engaged in the discussion which was limited to researchers with sufficient 
mathematical knowledge to understand the model.

4  Concluding Remarks

In the first project, the students experienced the function of a model in a societal 
decision-making process while those in the other project learned about the role 
mathematical modelling can play in scientific investigations and in the production 
of knowledge. In both cases, internal and external reflections and the interplay 
between them played an important role. The ability to reflect upon and criticise the 
modelling process and the function of the model in different contexts as well as 
awareness of the structural relationship in an application process are essential aspects 
of modelling competency. The analytical distinction between internal and external 
reflections is a means to better understand the challenges involved in developing 
mathematical modelling competency. The analyses of the two student projects show 
that within a project organised and problem-oriented science programme, it is 
possible to engage students in both internal and external reflections related to 
mathematical modelling. Promoting students’ internal and external reflections in 
relation to mathematical modelling is definitely also a relevant didactical challenge 
in secondary mathematics teaching and this is the area in which we will be focusing 
our future developmental research.
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Abstract Over the last two decades, research on learning and teaching mathematical 
applications greatly advanced our understanding of the processes involved in math-
ematical modelling. However, the vast majority of examples and concepts devel-
oped so far barely include a key source of information: data. Numerical information 
generated from measurements of the quantities involved is used neither at the vali-
dation nor at the modelling step. We adopt a data-oriented approach. In the context 
of modelling functional relationships, we look at the relationship between modelling 
competencies and statistical literacy and provide empirical evidence that proficiency 
in these areas can be jointly improved.

1  Introduction

While the dialectic relationship between context and mathematical model is at the 
core of any mathematical application, there are also various approaches on how to 
relate mathematics to extramathematical problems. Some areas of mathematical 
application are dominated by a structure-oriented approach, in which principal 
considerations and a structural analysis of the context lead to a mathematical model. 
For example, in the Luxembourg gas station problem,1 a straight analysis connects 
the situation with linear functions, whereas the fire brigade problem2 is associated 
with the Pythagorean theorem (for an introduction and discussion of both problems, 
see Werner Blum’s chapter in this volume). On a mathematically more advanced 
level, many mathematical models are expressed by differential equations, derived 
on the basis of some structural assumptions modelling local change. Data as a 
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check of the obtained mathematical result with reality may then enter at the  
vali dation step.

A different modelling approach includes data from the very beginning of the 
modelling cycle. This idea follows closely the genetic principle (e.g., Safuanov 
2004) by studying the phenomena of interest first, beginning with posing good 
questions, collecting observations, taking measurements, and gradually developing 
mathematical descriptions of the phenomena. In this approach, components of 
statistical literacy are inseparably intertwined with modelling competencies.

We take a data-oriented approach and look at how modelling competencies are 
related to competencies in handling data in the context of modelling functional 
relationships from a theoretical and an empirical perspective. In Sect. 2 we argue 
for the merits of taking data into account when modelling and compare the 
structure-oriented approach with the data-oriented approach from an epistemolo-
gical perspective. In Sect. 3 we report on empirical evidence that links modelling 
competencies with statistical literacy.

2  Modelling Competencies and Statistical Literacy

Why use data? Genuine data—as opposed to fabricated or fake data—are a substantial 
source of information and provide evidence of real problems. They counteract anec-
dotal evidence, traditional beliefs, prejudice, wishful thinking, or ideology. Data are a 
most reliable representation of authentic information and the raw material of new 
knowledge. With looking at data we introduce, in some way or other, statistics and 
probability into the modelling process. At the core of statistics as the science of model-
ling, summarizing, and analyzing data is an endeavor to make sense of the data. This 
goal has led to recent developments in statistics education, which aim at supporting 
learners’ competencies in this area. The past two decades have seen the development 
of a reform movement in statistics education, emphasizing features such as statistical 
thinking, active learning, conceptual understanding, genuine data, use of technology, 
collaborative learning, and communication skills (see, e.g., Moore 1997).

A great deal of research has been initiated (see, e.g., the website of the 
International Association of Statistical Education3) and a wide variety of materials 
have been developed worldwide to support such instruction. These include:

Textbooks with emphasis on statistical thinking, conceptual understanding, and  –
the use of genuine data.
Activity books and lab manuals fostering students’ active learning. –
Depositories of genuine datasets, selected and prepared under educational  –
perspectives.
Java applets and new dynamically linked software, allowing interactive visual  –
explorations of statistical concepts.

3 www.stat.auckland.ac.nz/~iase.
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Assessment tools, such as projects, focusing on students’ conceptual under- –
standing and ability to think statistically.

These changes have been institutionalized in curricular documents of many 
countries (e.g., German Bildungsstandards 2004; NCTM Standards of 1989 and 
2000), giving statistics as data science the status of a component of mathematical 
literacy and linking it to other components of mathematical competency such as 
modelling.

In particular, when modelling functional relationships, a data-oriented approach 
means connecting various domains of mathematics such as elementary functions, 
algebra, and analysis with probability and statistics, and with ideas of modelling.  
In the following, we provide more detail about the central notions of the theoretical 
background on which the further analysis will be based. The notion of modelling 
proficiency is based on theoretical considerations by Blum and Kaiser (cited in 
Maaß 2006), who specify modelling competencies by a detailed list of abilities that 
are related to the understanding of the modelling process. These abilities include in 
particular:

To understand the real problem and set up a model based on reality, –
To set up a mathematical model from the real model, –
To solve mathematical questions within the mathematical model, –
To interpret mathematical results in a real situation, and –
To validate the obtained solution and see the limitations of the model. –

Maaß (2006) supplements this list by describing various aspects of these 
abilities in detail.

A core issue in modelling is that the model is not identical to the situational 
context. Models, by their nature, are not the real thing, but an oversimplification of 
the complexity and disorder that reality throws at us. To simplify reality, models 
sacrifice details. Hence, discrepancies between the model and reality are not neces-
sarily an indication of the model being “wrong,” as novices usually suspect when 
inquiring about the “correct” model. Models let us compare reality to our own ideas 
about how things work, and allow us to see past that confusing variation and learn 
to recognize the patterns. They smooth over the natural variation that occurs for 
all kinds of reasons in order to reveal the underlying pattern. Therefore, they allow 
us to generalize and to apply our model not only to the reality just observed, but 
also to similarly structured realities. This serves a number of important purposes: 
A model describes to us the essential things about a process. It helps us gain insight 
into the dynamics, to see what is going on. With good models we may be able to 
forecast the outcome of future events. Finally, models may help us intervene in 
processes and change things the way we want them to be.

When using the notion of “statistical literacy” we follow a comprehensive 
approach. Despite the intense discussion on the nature of statistical thinking and 
how it differs from statistical reasoning and statistical literacy (see, e.g., Ben-Zvi 
and Garfield 2004), for the purpose of our chapter, we rely on the definition by 
Wild and Pfannkuch (1999, p. 227): “Statistical thinking is concerned with learning 
and decision making under uncertainty. Much of that uncertainty stems from 
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omnipresent variation. Statistical thinking emphasizes the importance of variation 
for the purpose of explanation, prediction and control.”

Variation is the reason why complex statistical methods were devised in order to 
filter out signals from noisy data. A core concept in statistical modelling is the 
signal–noise metaphor. Konold and Pollatsek (2002) characterize data analysis as 
the search for signals in noisy processes. In their generic form, data are thought of 
as an additive compound of a structural component plus residuals. This split is our 
human response to deal with an overwhelming magnitude of relevant and irrelevant 
information contained in the observed data. Probability hereby plays the role of a 
heuristic tool to analyze reality. Figure 39.1 shows different versions of expressing 
the signal–noise idea from various perspectives.

Wild and Pfannkuch (1999) state that the tendency to search for specific causes is 
very deep-seated and leads people to search for causes even if an individual’s data 
are quite within the bounds of the expected when acknowledging random variation.

In the context of modelling bivariate quantitative data 1 1( , ), ,( , )n nx y x y… , the 
signal–noise idea translates to the formula ( ) , 1, ,i i iy f x e i n= + = … , where 
the function f is the structure to be recovered while the e

i
’s represent the residuals. 

The y
i
’s are perceived as a signal f evaluated at x

i
, perturbed by a noise e

i
. When 

analyzing bivariate numerical data, the signal–noise metaphor is a very useful 
concept to bridge the gap between a deterministic view of a function and a statis-
tical perspective that appreciates variation: The signal or structure f captures the 
explained part of the variation, while the noise comprises the unexplained part of 
the variation. In the scatter plot of the data it is the unexplained variation that is the 
reason for several values of y associated with a single x.

We conclude that dealing with statistical data requires modelling competencies, 
especially when having to describe functional dependencies. Conversely, modelling 
functional dependency based on bivariate data requires statistical literacy when 
judging on the discrepancies between model and data. In the following, we will 
provide empirical evidence supporting these theoretical thoughts.

3  Empirical Evidence on Modelling Competencies  
and Statistical Thinking

The proximity of statistics and modelling is not surprising. As probability is about 
modelling random processes, statistics is the science of modelling data. Whereas in 
approximation theory the focus is on modelling structure, in statistics we model 
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Fig. 39.1 Different versions of the signal–noise representation of data
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structure and residuals, the latter as a random process. The perspective of statistics 
being a particular type of modelling, that is, data modelling, suggests that instruction 
emphasizing data-based modelling also improves statistical thinking. Accordingly, in 
a first empirical study, we investigated the following research question:

Does statistical thinking improve through a data-based applied mathematics •	
course?

In a second, current study, we investigate the partly complementary question of 
the role of conceptual knowledge in the areas of probability and functions for the 
competency of modelling and using representations in statistical contexts (Kuntze 
et al. 2010). In the following we summarize methods and results of the first study 
referring for details to Engel et al. (2008), as it pertains to modelling competencies, 
before giving a short outlook on the second study.

To evaluate the validity of the claim that a data-based course on functional mod-
elling has a positive impact also on more general statistical thinking skills, we 
conducted a pretest–posttest study with treatment and control groups. Participants 
were 179 second-year students preparing to be teachers for elementary and second-
ary schools. During the study they attended one of two different courses in applied 
mathematics. While the control group of 101 students attended a class with a 
more traditional syllabus (e.g., elementary functions, linear optimization, in par-
ticular no analysis of real data, no residual analysis, and no considerations of 
variation in data), the class for the treatment group (78 students) followed strictly a 
data-oriented course of technology-supported modelling functional relationships. 
Students were instructed about standard functions (e.g., polynomial, exponential, 
trigonometric, logistic) and learned through projects how to fit them to real data 
sets, at first by adjusting parameters manually with sliders and then automated by 
minimizing a least-squares criterion in the case of a linear structure. As this was not 
an applied stochastics course, the residuals were not modeled as a random process, 
nor were any concepts used from probability. Throughout the course, however, 
students were challenged to discuss and interpret deviations of the data from the 
model and to analyze residual plots, paying increasing attention to the concept 
“Data = Signal + Noise.” Many details of the course material with plenty of exam-
ples including student project assignments can be found in Chapters 2 and 4 of 
Engel (2009).

For measuring statistical thinking skills, a short questionnaire (as an example, 
see Fig. 39.2.) was given to the 179 participants (78 in treatment group, 101 in 
control group) at two points in time: the pretest in the first meeting of the class in 
October 2007 and the posttest during the last course in February 2008 after fourteen 
90-minute class meetings. Item 1 was close to the content of the class for the treat-
ment group and requires sketching a free-hand curve onto a scatter plot of data 
whose context is briefly described. Item 2 is a problem of change point detection 
based on informal statistical inference. It requires a judgment about a change over 
time in a system, taking into account some context knowledge and variation in the 
data. Both items were administered in four different versions and were completely 
counterbalanced across pretest and posttest, to control for item difficulty. All Item 
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2 questions were constructed that at first sight there seemed to be a jump or change 
point in the data. This impression was aggravated by starting the vertical scale high 
above the origin. However, when taking into account the variation of measurements 
over the last several years, which was provided in tabular format, evidence for a 
change point became very weak.

4  Results

To evaluate the responses we proceeded as follows: Item 1 asked for modelling with 
functions. Two independently working coders classified each response into one of 
the following three categories: I for a curve that interpolates, that is, connects all 
observations in the scatter plot; P for fitting a curve from a chosen parametric class 
of functions such as a decreasing exponential; and S for data smoothing. While both 
P and S may be considered as an indication of awareness that a deviation between 
data and model may be appropriate for the sake of a plausible model, we interpreted 
interpolation as reflecting a rather deterministic mindset ignoring random variation 

Fig. 39.2 One version of the questionnaire
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Item 1: 
Different amounts of water were 
heated in the microwave for 30 
seconds and the temperatures (before 
and after) measured and their differ-
ence computed. Based on the scatter 
plot to the left, sketch a free-hand 
curve describing the relationship 
between volume and temperature 
difference.

Item 2:
A member of an anti-nuclear action 
group presents the following graphics 
displaying an increase of leukemia 
within a 50 Km radius of a nuclear 
power plant. In his plea he argues 
that the massive increase has to be 
due to a concealed accident in the 
power plant in 2005 or 2006. 

Inquiring about the incidence of 
leukemia within the last seven years 
resulted in the table.

Do you agree with the activist’s 
conclusion? Why or why not?
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in real data, that is, attributing every variation in the data to a specific and relevant 
cause. Results for this coding are presented in Fig. 39.3.

While we observed in the control group only a very modest shift of 8% from the 
group classified as interpolators (I) to parametric curve fitting (P) and an almost 
unchanged small percentage of data smoothing, in the treatment group, parametric 
curve fitting increased between pre- and posttest by more than 27% and the data 
smoothing gained 5%, and less interpolations. These results were consistent with 
the expectations, as these types of problems were very close to the course content.

As far as developments of statistical thinking according to the research question 
are concerned, the analysis focused on a comparison of the Item 2 type problems. 
Statistical inference had not been taught to either group of students. Scoring of the 
Item 2 type problems was done according to a scheme that honored recognition of 
random variation in the past data, enhanced by contextual considerations, whereas 
attempts to search for or to attribute variations to specific causes led to lower 
scores. For the Item 2 type problems, Table 39.1 displays the relative scores for 

Fig. 39.3 Percentages of students classified as interpolator (I ), parametric curve fitter (P), or 
smoother (S) in pre- and posttest

Table 39.1 Scores on item 2

Control group (%) Treatment group (%)

Pretest Mean 29.6 28.9
Standard error  2.8  3.3

Posttest Mean
Standard error

29.9
 2.9

43.8
 3.6
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pre- and posttests. While in the pretest the two groups barely differed at all, the 
difference between treatment and control groups in the posttest was highly signifi-
cant (p < 0.01; cf. Engel et al. 2008).

4.1  Discussion and Outlook on Further Results

The results of the first study reported earlier indicate a sizeable and highly  
significant improvement of the treatment group on Item 2 problems and no 
noticeable changes in the performance of the control group. We interpret this 
result as an indicator that students were capable of transferring the signal–noise 
concept from the context of modelling functional relationships to the broader 
area of dealing with statistical variation. It shows that the data-oriented model-
ling approach in the applied mathematics course improved statistical thinking 
skills, even though the course did not explicitly focus on statistics. The results 
suggest that data-oriented modelling interventions of functional dependence can 
strengthen learners’ knowledge about variation in data and their abilities to deal 
with variation.

Extensions of this result to a broader scope of domains are the focus of the second 
study, which is conducted in the framework of the ongoing research project 
RIKO-STAT (Kuntze et al. 2010). The work of this research project is based on 
prior work on a competency model for modelling and using representations in sta-
tistical contexts (Kuntze et al. 2008). This competency model uses the overarching 
idea of “data-related reading,” which includes modelling activities, when, for 
example, interpreting information given in a diagram or a table. This competency 
is a subcomponent of statistical literacy, and a test instrument designed according 
to the hierarchical competency model has been shown to conform to a one-dimen-
sional Rasch model (Kuntze et al. 2008). These findings suggest that proficiency in 
the area of statistical literacy is intertwined with abilities of modelling as the com-
petency consisting of both aspects has proved to be one dimensional. However, as 
various components of conceptual knowledge may substantially contribute to the 
competency of modelling and using representations in statistical contexts, the 
project RIKO-STAT investigates several influencing factors such as conceptual 
knowledge about probability, functional reasoning, and dispositional variables. The 
complete model of influencing factors is given in Kuntze, Engel, Martignon, and 
Gundlach (2010). First results of RIKO-STAT indicate that there is a moderate 
interrelatedness of the competency of modelling and using representations in 
statistical contexts and the conceptual knowledge in the areas of probability and 
functional reasoning. For example, for a subsample of 360 university students the 
competency score correlates with conceptual knowledge in the domains of func-
tional reasoning with r = 0.30 (Pearson) and probability with r = 0.36 (correlations 
significant with p < 0.001). As the study encompasses further subsamples of more 
than 450 primary (grade 4) and 600 secondary (grade 9) students, forthcoming 
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analyses in RIKO-STAT will provide us with insights into interdependencies of the 
competency of modelling and using representations with components of conceptual 
knowledge across different age groups of learners.

5  Conclusions

Over the last 20 years we have seen great advances in understanding the learning 
and teaching of mathematical modelling. Yet most of the concepts presented and 
the examples suggested in the literature may be seen as “data blind” modelling. 
There have also been great advances in understanding the learning and teaching of 
probability and statistics, which call for an integration with findings in the area of 
modelling. It has been a main interest of this chapter to bring forward the mutual 
exchange between these two mathematics education communities by joining their 
experience and stimulating synergies. Further detail-oriented empirical research 
about interdependencies between statistical literacy and modelling competencies 
and about effective ways of fostering these competencies is needed to advance our 
understanding, as data-driven modelling is an important area relevant for social 
participation of responsible citizens.
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Abstract This chapter reports on the first results from a study investigating 
Swedish upper-secondary students’ mathematical modelling competency. Using 
non-parametric statistical methods the data from 381 12th grade students are analy-
sed, and the students’ modelling competency is described in terms of seven sub-
competencies. Possible factors affecting the students’ mathematical competency 
such as attitudes towards modelling, previous experiences, last-taken mathematics 
course, grade, class and gender are also investigated.

1  Introduction and Purpose

What do Swedish upper secondary students know about mathematical modelling, 
and how capable are they of solving modelling problems? These questions we ask 
ourselves from the background of the internationally growing interest in the field 
of educational research in mathematics focused on applications and modelling. 
This chapter discusses the first results of part of an empirical study conducted to 
enlighten the present situation at the upper secondary level in Sweden with respect 
to these issues.

Since 1965 there has been an increasing explicit emphasis on mathematical 
modelling in the written curricular document governing the Swedish upper  
secondary mathematics education (Ärlebäck 2009). In the present mathematics  
curriculum it is stressed that “[a]n important part of solving problems is designing 
and using mathematical models” and that one of the goals to aim for is to “develop 
their [the students’] ability to design, fine-tune and use mathematical models, as 
well as critically assess the conditions, opportunities and limitations of different 
models” (Skolverket 2000). Indeed, using and working with mathe matical models 
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and modelling, problem solving, communication and the history of mathe matical 
ideas are emphasized as four important aspects of the subject that should permeate 
all mathematics teaching (Skolverket 2000). However, a more explicit definition is 
not given, and thus this description of mathematical modelling opens up 
interpretations.

The aim of this chapter is to get an initial indication of the level of the mathe-
matical modelling competency of Swedish upper secondary students. In addition, 
it investigates if factors such as grade, gender, last-taken mathematics course 
and different attitudes might affect the level of success of students solving  
modelling problems.

The research questions we addressed in this research in general terms were:

 1.  What modelling competency do Swedish upper secondary students in 12th grade 
display?

 2.  Are there any connections between the students’ modelling competency in rela-
tion to their mathematical achievement in general (grade), gender, the students’ 
interest, last-taken mathematical course or their previous experiences?

2  Methodology, Theoretical Considerations and Method

Rather than devising a research instrument of our own we decided to use an 
already existing and tried tool, and after having scanned the research literature we 
decided to use the research instrument developed and constructed by Haines et al. 
(2000). The instrument, also reported on in Haines et al. (2001), originally con-
sisted of 12 multiple-choice questions (five alternative choices), together with a 
partial credit assessment model assigning a score of 2 to one preferred of the five 
alternatives in each question; 1 to one or more other choices since “an alternative 
response could indicate knowledge and understanding in mathematical modelling” 
(Haines et al. 2000, p. 5); and 0 to the remaining alternatives. Using the wording of 
Houston and Neill (2003a, pp. 156–159) the 12 questions, grouped in six pairs used 
in a pre–post test setting, focused on the following aspects of the modelling process 
(see also Sect. 2.1): making simplifying assumptions; clarifying the goal; formulating 
the problem; assigning variables, parameters, and constants; formulating mathe-
matical statements; and selecting a model. The instrument is suitable and relevant 
to use in this study since it was “devised both to address the need for a base level 
assessment of modelling skills and for application during or on completion of an 
experience in mathematical modelling” (Haines et al. 2000, p. 2), and the authors 
argue that using the instrument, “it is possible to obtain a snapshot of students’ 
[modelling] skills at key developmental stages without the student carrying out a 
complete modelling exercise” (p. 10). The number of test items was extended to 18 
by Houston and Neill (2003b), adding one new question to each of the six aspects 
above. In addition, Haines et al. (2003) extended the numbers of items adding two 
questions involving graphical representations and two questions exploring real and 
mathematical world connections, making a total set of 22 test items covering eight 
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aspects of the modelling process. Besides being used in the research referred to 
earlier, the research instrument has also been drawn on and used in different set-
tings with a variety of objectives, in Haines and Crouch (2001), Izard et al. (2003), 
Ikeda et al. (2007), Lingefjärd and Holmquist (2005), and Kaiser (2007), to among 
other things, investigate the levels of students’ modelling competencies.

2.1  Mathematical Modelling and Modelling Competencies

The view of mathematical modelling underlying the construction of the research 
instrument mentioned in the previous section is represented by the left diagram in 
Fig. 40.1. Note that the ‘content’ of the boxes in this diagram are of different types 
and on different levels; real world problem represents the real world situation or 
phenomena under consideration; formulating model, solving mathematics, inter-
preting outcomes, evaluating solution and reporting are all processes, or to use the 
terminology of Haines et al. (2000) – skills, involved in mathematical modelling. 
Refining model is also a process but on another level in the sense that it is often 
compounded by the other processes just mentioned, meaning that the modeller(s) 
goes back to the real world problem and possibly re-formulates, re-solves, re-
reinterprets and re-evaluates her/his(their) work. However, the diagram on the right 
in Fig. 40.1 makes a more clear distinction between the corresponding processes 
and refining model; in this representation of mathematical modelling it means 
engaging in another cycle. It also situates the processes in relation to the intra- and 
extramathematical worlds. In spite of the differences between the two diagrams in 
Fig. 40.1 we believe that the respective authors as a matter of fact share more or less 
the same overall view on mathematical modelling, but it must be stressed that both 
these views of mathematical modelling are highly idealized and schematic represen-
tations of the complex processes involved. A similar view is presented by Palm et al. 
(2004) in their interpretation of the written curriculum documents governing the 
Swedish upper secondary mathematics education, and this suggests that the research 
instrument described earlier could adequately be applied to the Swedish context as 
well.
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Fig. 40.1 To the left are the “[s]tages in the mathematical modelling process” as presented by 
Haines et al. (2000, p. 3), and to the right is the “modelling cycle” of Blum and Leib (2007) as 
presented by Borromeo Ferri (2006, p. 92)
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Mathematical modelling as presented in Fig. 40.1 is often described using the 
notion of modelling competencies. However, the meaning and content of this 
concept varies among its users; the Blomhøj and Jensen (2003) definition is “[b]y 
mathematical modelling competence we mean being able to autonomously and 
insightfully carry through all aspects of a mathematical modelling process in a 
certain context” (p. 126), whereas the Maaß (2006) definition is “[m]odelling com-
petencies include skills and abilities to perform modelling processes appropriately 
and goal-oriented as well as the willingness to put these into action”(p. 117). We 
find the latter definition ambiguous and problematic for two reasons: first it is not 
clear what skills or abilities are, and neither is the relation between these two con-
cepts discussed; and second, the emphasis on willingness seems to lack reasonable 
motivation and has weak grounding, and in addition makes modelling competen-
cies a concept hard to operationalize. We believe that the definition suggested by 
Maab is incompatible with the research instrument initiated by Haines et al. (2000) 
and that the sole use of this definition cannot productively be used to analyse stu-
dents’ mathematical modelling competencies as suggested by Kaiser (2007). 
Hence, in this chapter we chose to define modelling competence in line with 
Blomhøj and Jensen (2003) quoted earlier and refer to the processes involved in 
mathematical modelling, previously described in terms of the eight aspects of the 
modelling process, as modelling sub-competencies.

2.2  Developing an Instrument

All the 22 test items were translated into Swedish, and effort was made to make the 
translations as true to the original formulations as possible by adjusting only some 
of the details to the Swedish context where this was appropriate. The translations 
were checked by a third independent researcher before the items were piloted in a 
group of 16 students; each individually assigned eight items distributed so that we 
roughly got the same number of responses on all 22 items. In addition, for each item 
the students were asked to answer the three questions – (1) Do you think that the 
problem you just solved is relevant for a mathematics class? (2) Do you think the 
problem is interesting? (3) Do you think the problem is connected to reality? – by 
choosing ‘yes’, ‘I don’t know’ or ‘no’ and to give a short motivation for their 
choices. The pilot study served to check how the translated items worked in practice 
and how much time the students needed to complete the eight items and to give us 
a first impression of the students’ feelings for, and attitudes towards, working on the 
items. During the time the students worked on the pilot test, which varied between 
20 and 30 minutes, the first author surveyed the class and recorded comments.

Taking some of the recorded students’ comments from the piloting into account, 
together with the wish to push the test time down to approximately 20 min, we 
decided to cut out one of the items. In doing this, we also decided to incorporate 
the aspects of modelling listed as graphical representations with selecting a model 
since both of them focus on selecting a mathematical model, in terms of a graph in the 
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first case and a formula in the second. Hence there are totally four items focusing on 
the aspect of selecting a model. Therefore the view taken on modelling com petency 
in this chapter is that it at least constitutes the following sub-competencies: (sC1) 
to make simplifying assumptions concerning the real world problem; (sC2) to 
clarify the goal of the real model; (sC3) to formulate a precise problem; (sC4) 
to assign variables, parameters, and constants in a model on the basis of sound 
understanding of model and situation; (sC5) to formulate relevant  mathematical 
statements describing the problem addressed; (sC6) to select a model; and (sC7) to 
interpret and relate the mathematical solution to the real world context (cf. Kaiser 
2007, pp. 115–116). In addition, the three follow-up questions subsequent to each 
item were also replaced with the following 7 four-alternative-Likert attitude ques-
tions ending the test: I consider the problems on the test to be (Q1) fun, (Q2) easy, 
(Q3) interesting; (Q4) I think the problems on the test invite you to use mathematics 
to answer the questions; (Q5) I think that problems of this type are well suited for 
the upper secondary mathematics courses; (Q6) In the upper secondary mathemat-
ics courses we often work(ed) on similar problems; and (Q7) I would like (would 
have liked) to work more often on similar problems in the upper secondary math-
ematics courses.

The pilot study was also used to make a selection of 14 of the original 22 test 
items, two representing each of the seven sub-competencies. The selection was based 
on the students’ results on the test items, and those items that displayed non-extreme 
answer distribution, which was not considered to be due to interpretational issues of 
item formulations, were selected out. This means that the items in which all students 
got full score was discharged in favour of the items in which they achieved more 
moderately. After a discussion, the 14 selected items were grouped into two groups, 
our first-hand choice (FHC) and second-hand choice (SHC), from which four tests 
consisting of seven items each were constructed; tests T1 and T2 containing solely 
items from the two respective groups, and tests T3 and T4 containing a mixture of 
items from the two. The total score a student achieves on either of these four tests is 
what we take as a measure of the students’ modelling competency.

For the final version of our research instrument we decided the first instant to 
have two quotes from the curriculum guidelines for the Swedish upper secondary 
mathematics courses (the ones we used in the Introduction and Purpose section) 
followed up by two questions: Have you ever encountered the word ‘mathematical 
modelling’ during your upper secondary education? requiring just a ‘yes’ or a ‘no’ 
answer; and the open question Describe in your own words the meaning you 
ascribe to the concepts ‘mathematical model’ and ‘modelling’. Next, the seven 
items followed and then the attitude questions Q1–Q7. In addition, the students 
were asked to state their gender, last-taken or ongoing upper secondary mathe-
matics course (in Sweden there are in principle five such courses, one per term, 
Mathematics A–Mathematics E) and their latest received grade in mathematics 
(every course is graded as either IG = Fail, G = Pass, VG = Pass with distinction, 
MVG = Pass with special distinction).

In a national science and mathematics teachers’ developmental program with 
participants from all over Sweden, 41 sets of tests were distributed in the spring of 
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2009, and asked to be brought back to their respective school and given to mathe-
matics teachers teaching 12th graders in the science program (normally, the students 
are 18 years old and at this time of year the students have completed the Mathematics 
D course). Each set of tests contained 30 of the tests numbered from 1 to 30, with 
every fourth test a T1, T2, T3 and T4 test, respectively, starting randomly in that 
sequence. A letter was also attached to the mathematics teacher informing of the 
aim of the research and ethical considerations taken as well as practical requests for 
how to distribute the tests in their classes: to use approximately 20–25 minutes; not 
to allow the students to use calculators; and to let the students solve the problems 
individually. In addition, the teachers were asked to fill in a teacher questionnaire, 
but this will not be reported on in this chapter.

In all, 21 sets of tests (51%) were returned resulting in test scores from a total 
of 400 students. However, for the statistical analysis, which was made using SPSS, 
we analysed only the 381 students who answered at least four of the seven items on 
the tests, since we consider the instrument not to give a reliable measure of the 
students’ modelling competency otherwise. In this chapter we will report only on 
the quantitative data; the results of the analysis of the students’ answers on the open 
questions in the test will be reported on elsewhere.

2.3  Statistical Analysis

A first statistical analysis using a Kolmogorov–Smirnov test with Lilliefors signifi-
cance correction showed that the data were not distributed normally, which led us 
to use non-parametric tests for the continued analysis. The particular tests used 
were the Mann–Whitney test, the Kruskal–Wallis test and the Kendall’s tau. The 
Mann–Whitney test is the non-parametric equivalent test to the parametric indepen-
dent t-test, which uses a ranking procedure to compare two independent groups; the 
Kruskal–Wallis test also uses ranking techniques to compare more than two inde-
pendent groups; and the Kendell’s tau is the non-parametric equivalent to the 
Pearson’s correlation coefficient.

3  Results

With a maximum score of 14 the students scored in average 7.78 (SD 2.26). On the 
14 different test items, corresponding to the seven sub-competencies, the students 
scored on average between 0.33 and 1.67 as illustrated in Fig. 40.2.

Comparing pairs of items in respective sub-competencies (at a level of p < .05) 
indicate a comparability of the pairs only in sC2 (H(3) = 5.868, p = .118) and sC6 
(H(3) = 6.397, p = .094). The pair of items in sC5 is a borderline case (H(3) = 7.809, 
p = .050).

The mean and standard deviation of the students’ total score with respect to 
gender, classes, grades, last-taken course and tests are summarized in Table 40.1.
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When analysing the grades and the students’ modelling competency the four 
students with grade IG were excluded, because they scored on average 7.5, which 
were not considered representative of the IG grade. The grades G, VG and MVG 
showed a significant effect (p < .05) on the students’ total scores (H(2) = 27.853, 
p = .000). However, just considering the grade VG appeared not to have an effect on 
the students’ total scores compared with grade MVG (U = 6720, p = .132).

The students’ last-taken mathematics course also had a significant effect (  p < .05) 
on the students’ modelling competency (H(2) = 10.772, p = .005). A further investi-
gation showed that mathematics course D compared with course E had an effect on 
the students’ total scores (U = 9439, p = .005), but no effect was found between the 
courses C and D (U = 342.5, p = .568).

Other factors significantly affecting (p < .05) the students’ total scores were 
which test they took (H(3) = 27.996, p = .000) and which class the student belonged 
to (H(20) = 0.437, p = .004). However, no effect was found with respect to gender 
(U = 13503.5, p = .363).

Table 40.2 summarizes the students’ responses to the questions (Q1)–(Q7) and 
the only attitudes having a significant affect (p < 0.5) on the students’ modelling 
competency were if the student considered the problems in the test to be (Q2) easy 
(H(3) = 10.912, p = .012) or to be (Q3) interesting (H(3) = 18.292, p = .000).

Fig. 40.2 Students’ sub-competencies with items relating to FHC and SHC. The sub-competenices 
are: (sC1) to make simplifying assumptions concerning the real world problem; (sC2) to clarify the 
goal of the real model; (sC3) to formulate a precise problem; (sC4) to assign variables, parameters 
and constants in a model on the basis of sound understanding of model and situation; (sC5) to 
formulate relevant mathematical statements describing the problem addressed; (sC6) to select a 
model; and (sC7) to interpret and relate the mathematical solution to the real world context

Table 40.1 Mean value with respect to gender, classes, grades, courses and tests

Results

Gender Classes Grade Course Test

Female Male IG G VG MVG C D E T1 T2 T3 T4

Mean 7.95 7.76 6.38–9.27 7.50 7.07 7.96 8.43 6.67 7.17 7.99 6.82 8.37 7.63 8.26

Standard 
Deviation

2.22 2.29 1.57–2.84 2.38 2.16 2.34 2.05 1.73 2.12 2.28 1.93 2.24 2.04 2.48

Number 121 237 8–29 4 130 118 128 9 84 281 95 94 93 99
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Investigating pairwise correlations among the affecting factors on the students’ 
modelling competency, significant correlations (p < .05) were found between grades 
and respective courses (t = -.342, p = .000), easy (t = -.164 p = .000) and interest 
(t = -.116, p = .010). In addition, interest correlated with course (t = -.109, p = .021) 
and easy (t = .217, p = .000).

It is notable that only 22.5% of the students have heard/used mathematical 
 models or modelling in school. For these students, it did not show any effect on 
their total score (H(1) = .041, p = .839).

4  Discussion

Comparing the sub-competencies of the Swedish upper secondary students’ modelling 
competency, Fig. 40.2 shows that they were most proficient in questions relating to 
sC3 and sC4, but exhibited more difficulties in questions relating to sC1, sC2 and sC6. 
The sub-competence sC2 has also been proved to be difficult for the students in previ-
ous research (e.g. Houston and Neill 2003a; Kaiser 2007). The notable difference 
between the two items in sC1 might be an effect due to translation or interpretational 
problems. Not surprisingly, students’ grade and students’ last-taken mathematical 
course have a positive effect on the students’ modelling competency. However, due to 
the found correlation between these two, further analysis is needed.

Looking at the results of the attitude questions Q1–Q7 there are is an overall 
negative tendency towards working with mathematical modelling as represented in 
the test items in all answers. In general, the students found the problems very hard 
(Q2) and did not express any excitement or joy in tackling them (Q1). Neither did 
the students express that they found the problems especially interesting (Q3), nor 
that they wanted to (have) work(ed) more on similar problems in their mathematics 
classes (Q7). However, the students to some extent seemed to recognize the value 
to use mathematics to solve the problems on the tests (Q4), and in addition they 
regarded the types of questions asked to be relevant and good to use in mathematics 
classrooms (Q5). One explanation of these results might be the students expressed 
that they in principle never worked on similar problems before (Q6). Indeed, such 
student attitudes may present an obstacle for implementing mathematical model-
ling at this school level.

Table 40.2 Mean values of the questions about attitudes and previous experiences (1 = strongly 
agree; 2 = agree; 3 = disagree; 4 = strongly disagree; mean 2.5)

Results

Attitudes and previous experiences

(Q1)

Fun
(Q2) 
Easy

(Q3)

Interest

(Q4)

Invite math

(Q5)

Good mom.

(Q6)

Done 
similar

(Q7)

Work 
more

Mean 2.89 3.25 2.63 2.33 2.41 3.37 2.61
Std.Dev. 0.90 0.70 0.94 0.81 0.93 0.86 0.99
Number 376 374 377 372 374 375 375
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In line with Haines et al. (2000) we agree that all the individual stages of math-
ematical modelling represented in the sub-competencies are part of the modelling 
process. However, the instrument lacks other aspects of the modelling process such 
as the use of ICT, the fact that not a ‘whole modelling problem’ is solved, and 
collaborative work, which means that the research instrument does not provide a 
complete picture. Nevertheless, in fulfilling the aims of the study, the test items are 
adequate in that they allow many students to be tested in a short time and give a 
first preliminary overview of the present state of the Swedish upper secondary 
mathematics regarding the students’ mathematical modelling competency.

In evaluating their research instrument Haines and Crouch (2001) concluded that 
“the analogue pairs of items are predicted to perform in a comparable manner” 
(p. 133), except for the two items used in sC3. Due to our big sample we expected 
to conclude approximately the same comparability. However, in our study the only 
comparable pairs of items in respective sub-competencies are sC2 and sC6 (and 
possibly sC5). Note that the analysis in Haines and Crouch (2001) only investigates 
‘the original six stages’ in the modelling process and that only the first five are 
comparable to our sC1–sC5, respectively.

The results on the relations between and among the students’ modelling compe-
tency and their expressed attitudes (Q2) and (Q3), together with the many correla-
tions found between the attitudes, indicate that a more advanced analysis might be 
fruitful using a more sophisticated statistical model and method. This we plan to do 
in a forthcoming work.

5  Conclusions

The investigation of the modelling competency of Swedish upper secondary 12th 
grade students revealed that the students were most proficient in the sub-competencies 
to formulate a precise problem and to assign variables, parameters, and constants in 
a model on the basis of sound understanding of model and situation, and least profi-
cient in the sub-competencies to clarify the goal of the real model and to select a model 
(if to make simplifying assumptions concerning the real world problem is disregarded). 
The study also shows that the students’ grade, last-taken mathematics course, and if 
they thought the problems in the tests were easy or interesting were factors positively 
affecting the students’ modelling competency. In addition, only 22.5% of the students 
stated that they had heard about or used mathematical models or modelling in their 
education before, and the expressed overall attitudes towards working with mathemati-
cal modelling as represented in the test items were negative.
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Abstract Teaching students to use mathematical modelling sensibly in realistic 
context is one general goal of mathematics education in order to educate students 
to become responsible citizens and future decision makers. Here, I want to discuss 
three important issues which can – depending on how teaching takes place – either 
promote or obstruct the development of students’ modelling competence. They are:

Central examinations, –
Use of computers, –
Professional development and motivation of teachers. –

Remarks on these issues will be illustrated by examples.

1  The Operation ‘Cat Airdrop’

Some years ago the Royal Air Force, on behalf of the World Health Organisation, 
dropped cats on remote villages in Borneo (Calvin 1986) (Fig. 41.1), where all 
cats had died and the rat population – potential carriers of dangerous diseases 
– had increased explosively. What was the reason? Poisonous DDT had been 
sprayed to kill the malaria-causing flies. The fight against flies and malaria was 
successful.

However, the poison was also eaten by cockroaches, but in such small doses that 
it was insufficient to kill them. The cockroaches, with the accumulated DDT, were 
then eaten by geckos, which accumulated the DDT, again not enough to kill them. 
The cats of the villages not only fed on rats but also on geckos. Thus, hundreds of cats 
accumulated the DDT that had been eaten by millions of cockroaches and it was 
enough to kill the cats. The rats benefited from this! The operation ‘cat drop’ restored 
the cat population to its original size and averted the threatening rat plague.
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The cats example is very convenient to introduce the modelling circuit in school 
and to discuss what a ‘good’ and ‘bad’ model is. In the well-known picture shown 
in Fig. 41.2 (Blum et al. 2007), we start with a problem of reality. The real problem 
is idealised to become the real model (RM) and is transferred to the mathematical 
model (MM). With the help of mathematics we find a mathematical solution, which 
solves the original problem. Insofar we have developed at the first look a ‘good’ 
model. But the model describing reality considers only one aspect of the complex 
and interconnected situation and does not give credit to the ecological relations. 
The explosive increase of the rat population, not considered in the model, shows 
that our first model is not satisfying. By hindsight the model proves ‘bad’. As often, 
we have to again run through the modelling circuit and consider more aspects of 

Fig. 41.1 Cat airdrop
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Fig. 41.2 Modelling circuit
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reality – in the example, the cats have to be included. Students can understand, 
discussing this example, that models are simplifying presentations, which consider 
only certain, somehow objectifiable parts of reality. The purpose of a model is to 
draw conclusions for reality. Often, it is necessary to go several times through the 
modelling circuit or to develop a new model. One should never talk about a ‘right’ 
model or a ‘wrong’ model. A model describes the reality better or worse, more or 
less suitable, regards more or less aspects of reality, and provides more or less suf-
ficient solutions for the problem in question – shortly, one should rather talk about 
‘good’ or ‘bad’ models. In any case, models will always be of subjective character, 
owing to the normatively chosen assumptions of the  modeller. This aspect also 
includes the danger of misuse and misinterpretation. It is an important task for 
school to impart knowledge about these facts.

2  Modelling in School: Chances and Obstacles

Peter Galbraith (2007) formulates a convincing framework about models and mod-
elling. Following his ideas, I will discuss them from a German perspective. 
Unfortunately, as a rule, reality-oriented teaching on applications outside mathe-
matics is covered only to a limited extent in everyday teaching in Germany although 
there is a long-standing agreement on the importance of creating relations between 
realistic situations and mathematics teaching. Heinrich Winter, the well-known 
German mathematics educator, demands in one of his three ‘basic experiences’ 
(Winter 2004) that students should become acquainted with the fundamental con-
tributions of mathematics in acquiring important knowledge about our world. 
Mathematics proves to be an inexhaustible pool of mathematical models, which 
allow us to understand better the world around us. Students have to experience true 
modelling activities in school, have to be involved in the transition from reality to 
mathematics, mathematical analysis, and the transfer back of the results into the 
real situation (or a multiple run through of the modelling circuit like the cats 
example is necessary).

Teaching affects the image that students will take with them into their future life 
as responsible citizens and future decision makers. I will identify three important 
factors (of course there are more, see Galbraith (2007)) that can promote the devel-
opment of modelling competence of students, but can also obstruct them drasti-
cally. Unfortunately, the examples in the following three parts are typical for the 
German school reality. The three factors are:

The problem area ‘central examinations’ –
 Germany consists of 16 federal states which are responsible for their individual 
educational policy and planning. That means that we have 16 more or less differ-
ent school systems, teaching curricula and regulations for the final examinations. 
Only three of them had central examination at the end of secondary school. 
Following the TIMSS and PISA shock – Germany reached only a middle ranking 
– nearly all states changed to written final examinations. Central examinations 
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have a crucial influence on the content of teaching. The big problem is that real 
modelling problems and central examinations are difficult to combine. Worse, 
most of the reality oriented tasks for the written final examinations are counter-
productive and create a strange idea of applications and modelling. One possibil-
ity we discuss could be a division into two parts: One centrally posed part without 
formulae, pocket calculators and computers, and one locally posed part. But the 
administrations oppose it on legal grounds. So up to now modelling tasks posed 
in examinations are of the very problematic type described in part 3.

The use of computers –
 Today’s available computer technology can contribute in a special way to aid in 
the learning process. The computer is a powerful tool to aid in modelling and 
simulation and can positively influence the generation of adequate basic con-
cepts (‘Grundvorstellungen’) of mathematical ideas – especially through 
dynamical visualisations. The computer also furthers heuristic-experimental 
work in problem solving. I have experiences for more than 20 years with many 
projects using dynamic geometry software (DGS) and computer algebra systems 
(CAS) in school. One example is the CAS-Project Mobile Classroom (Henn 
2001). We experienced how the computer can help to understand mathematical 
concepts and to apply them in modelling situations. With the help of the new 
computer tools, open-ended problems lead to individual new solution strategies 
and motivate creativity. But the problem is that the computer does what you 
want – sensible or foolish. The example in part 4 is an example for the latter: 
“Using mathematical modelling as a synonym for curve fitting creates a danger-
ous aberration of the modelling concept” (Galbraith 2007, p. 49).
The professional development and motivation of teachers –
 The not very flattering results of Germany in TIMSS turned out to have the effect 
of a catalyst inducing a nationwide debate about educational goals and the con-
tent of mathematics teaching. The central question is not ‘what is to be learned”, 
but ‘how should learning take place’, ‘how can mathematical literacy be pro-
moted’, and also ‘how can learning processes be measured’. Important is a 
willingness to question and to rethink current teaching, to change one’s own 
reception and to realise opportunities brought about by new practice and teach-
ing techniques. We had many projects in Germany to change the behaviour of 
teachers and of students in the wanted direction (Henn 2003). Today, the uni-
versity education of teachers and the ‘classroom culture’ has changed. But as 
shown in part 5, there is a danger to overact.

3  The Problem Field ‘Central Examinations

The following example is taken from the central final examination (Year 13) of the 
German state of Baden-Wuerttemberg, posed in 1998 in the topic Analytic 
Geometry. It is a typical ‘application problem’ from a central exam and is only a 
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mathematical problem ‘in disguise’ and not a genuine real life problem. For the 
students ‘uncovering’ these problems ‘in disguise’ is reduced to finding out the 
algorithms that have been hidden by the teacher, and immediately ‘real’ mathemat-
ics takes over. The problem in question is set in the context of a playground with a 
wooden pyramid that stands perpendicularly on a square base and is accessible 
inside. The following text shows part c of the problem (my translation):

Inside the pyramid a board is fixed parallel to the floor with a circular opening with dia-
meter d = 2.4 in its middle. For tidying up, a big foam ball with radius r = 1.5 needs to be 
pushed through the opening towards the upper part of the pyramid. At which height needs 
the board to be fixed if it is supposed to be as high up as possible with the ball lying loosely 
in the opening?

The missing measurement units show immediately that the problem poser does 
not take reality too seriously. Now, let us discuss the task: We assume that the mea-
sures are given in metre and make a drawing of the situation (Fig. 41.3, left). The 
board is fixed at a height of 5.6 m, and the ball possesses a volume of 9.4 m3. The 
Internet states the specific weight of foam: the ball weighs approximately 380 kg.

How should this ball ever be pushed upwards? How should it ever be pulled out 
again? Maybe the problem poser was thinking about a giant screw pull (Fig. 41.3, 
right) to add the corresponding geometric helix curve to the problem? Anyway, the 
problem is a typical ‘age-of-the-captain’ problem (Baruk 1985) and such problems 
influence teachers in their belief that modelling and applications are meaningless 
for mathematics teaching.

4  The Use of Computers

Martinez-Cruz and Ratcliff (1998) investigate the men’s world record times in 
100 m freestyle swimming. Without any mathematics, just using common sense, 
one would expect qualitatively something like the curve in Fig. 41.4.

This qualitative curve has nothing to do with the modelling assumptions of 
logistic growth. For the intermediate time there are no reasonable model assumptions 
pointing at a special curve. The authors use the world record times in Table 41.1 

Fig. 41.3 The pyramid
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and fit various curves through the given record data by applying the regression 
commands available on their calculator. In detail, they fit a linear function, an expo-
nential function, a power function, and a logistic function. Figure 41.5 shows that 
the choice of the curve is irrelevant for the interval in question. However, extrapola-
tion on both sides shows that all models do not represent the real situation or, in 
other words, are ‘bad’ models. The authors favour the logistic model, because its 
predictions are less meaningless for the future compared to the other predictions! 
This is nonsense! None of the four models provides a deeper insight or explains the 
data. This discussion is what Galbraith calls a ‘problem of whimsy’.

By the way, the authors do not consider one of the most interesting points of 
Table 41.1: It is the increase in measurement accuracy from 1968 to 1972. In 1972, 
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Fig. 41.4 Qualitative model

Table 41.1 World Record Times

Year Time (s) Year Time (s)

1912 61.6 1972 51.22
1924 57.4 1976 49.99
1957 54.6 1988 48.42
1968 52.2 1994 48.21
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the Olympic Games took place in Munich. At first, times were taken with three 
digits after the decimal point, an accuracy of 1/1,000 s. This can be reconstructed 
from the results of the 400 m medley swimming contest: At first, times were 
recorded as 4 min 31.981 s for the swimmer Larsson and 4 min 31.983 s for the 
swimmer McKee and therefore Larsson was awarded the gold medal. Then, 
obviously, somebody started thinking: It takes about 50 s to swim 100 m, that 
means a distance of about 2 mm in 1/1,000 s. Nobody would believe that a 50 m 
long swimming pool could be constructed so accurately that each swimming lane 
had an accuracy of less than 2 mm. A little bit more mortar already leads to a larger 
 difference. Therefore, the measurement accuracy was reduced to two digits after the 
decimal point. But, incomprehensibly no two gold medals were awarded! The same 
problem but with a different modelling aspect gives new insight in reality and leads 
to a ‘good’ model.

5  The Professional Development and Motivation of Teachers

It is an important task to educate teachers to include applications and modelling in 
their teaching practice. This implies to ‘see the world with mathematical eyes’, and 
to find occasions, again and again, to introduce some situations from reality in the 
mathematics classroom. Lyn English (2003) advocates for these ‘rich learning 
experiences’, that is authentic situations, chances for own exploration, multiple 
possibilities for interpretations, and social competence to take up the responsibility 
for one’s own model up to communicating it to other students. A simple way to do 
this is to use newspaper clippings. However, caution must be applied not to over-
shoot the mark. The following text (my translation) shows a newspaper clipping 
denouncing the often meaningless regulations which are issued in Germany (and 
elsewhere, too) (from Herget and Scholz 1998).

Perfect Official Language

The perfection of German rule makers has been supported by the Minister of 
the Interior, Georg Tandler, when he read out a draft for a statutory order con-
cerning calf breeding in the Munich state parliament. There it read, whatever 
that may mean: “If calves are held in herds each calf has – depending on its 
height in centimetres – to have a freely usable space in square metres accord-
ing to the following formula: Minimal space (square cm) equals 0.4 times to 
the power 2 plus 70 times plus 2,720.”

The way how the author describes the functional term shows that he does not 
understand the meaning of the text. He reads the mathematical symbol x, the variable 
for the height of the calf, as the symbol for multiplication and gives a totally meaning-
less text. But even from the correct text it is not easy to develop the correct formula. 
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I gave the task to grade 9 students who developed about six or seven formulas and 
wrote them down on the blackboard. Finally, we agreed on the following formula:

2( ) 0.40 · 70· 2,720f x x x= + +

After the graph has been drawn (Fig. 41.6) one can reflect on sense and nonsense 
of this regulation. One of my students immediately argued: It is much simpler to 
use a straight line!

The thick line would give the same result but would lead to a simpler regulation. 
So far, so good! But, even this nice problem can be put into bad teaching practice 
and ‘bad’ modelling out of sheer enthusiasm about applications and modelling. 
This is illustrated by the following two examples.

The first example is the schoolbook problem in Fig. 41.7 on the calf regulation 
(Sigma 1984, my translation). The topic is ‘values of polynomial functions’. Without 
reflection, the regulation is cited, the term ‘Widerristhöhe’ (it’s an unusual word in 
German), which means the height of the calves, is explained using a drawing with the 
variable x, instead of having students search for explanations for themselves – for 
example by searching in the Internet. Then, without any comment, the formula is 
given. The task is now to substitute five values in the formula and to add. This is not 
the way to develop modelling competence, but a typical age-of-the-captain problem.

Fig. 41.6 The calves problem

Fig. 41.7 Values of polynomial functions
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The second example is the following part of the mathematical diary of a girl.  
A young teacher, more correctly, a teacher trainee, had covered the calves problem 
adequately in the classroom and now the girl reports on this (my translation).

I owe the second page to Mrs. Koch, a teacher trainee. The problem was 
set in the context of calculating the necessary space in a stable for a calf 
of size x. Maybe this was meant to broaden the students’ horizon for the 
unlimited possibilities to use functions. In this case, the function 
increased exponentially, which would mean that the farmer needed to 
apply a straightedge regularly to find out about the growth of each of 
the calves and then to assign them a new, bigger place in the stable. I 
would argue in favour of a minimal value that would make any calculation 
superfluous. However, according to Mrs. Koch, a linear function would 
turn out to be an indispensable help for the 
farmer, because he could read off the nec-
essary space comfortably from a graph. I 
do not agree to this. How would his life be 
made easier, if his stable needed to look 
like this?

We see, out of pure enthusiasm, the teacher gave the impression that a regulation 
with a linear formula would be the only reasonable solution. The girl proved to have 
more common sense than the teacher. And we have an additional example how a 
‘good’ model (the straight line instead of the parabola) can turn into a ‘bad’ one.

6  Conclusion

The image of mathematics students’ experience at school should contain both the 
beauty and the functionality of mathematics. To make orientation in our complex 
world possible, mathematics lessons must include applications and modelling. It is 
always pleasant to see how students, who are normally rather uninterested in math-
ematics, participate critically and actively in the lessons. Of course, it is necessary 
that the teacher takes seriously both the application treated and the mathematics 
associated with it. The discussion that takes place must be about the semantic con-
tents and not on the syntactic, formal and algebraic side. Then, students experience 
applications of mathematics with all their consequences and abundant associations 
and gain experiences with ‘good’ and ‘bad’ models.
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Abstract We assessed students’ modelling competency using a test consisting of 
different classes of items. Within the first class there are items which cover the 
whole modelling process, whereas items of the second class focus only on certain 
parts of this process. To cope with the requirements of the two different classes of 
items we used a multidimensional Rasch model including subdimensions. In this 
chapter we describe the structure of the test instrument and compare the subdimen-
sional scaling of the test results with a unidimensional one. The analyses show the 
superiority of the subdimensional scaling.

1  Introduction

An important field of research within mathematics education is dedicated to the 
promotion of students’ modelling competency. To obtain reliable information, for 
example, about the effectiveness of new teaching or learning approaches in this 
field we need appropriate instruments and methods for the assessment of modelling 
competency. These approaches should take into account the complex structure of 
modelling competency as this could provide more information about students’ 
problems with modelling tasks and thus propose ways to cope with those difficul-
ties. Furthermore, the scaling of the data obtained from conducting the tests is 
another challenging task. In this chapter we will use a probabilistic approach, that 
is item response theory (IRT) and more precisely Rasch modelling (Rasch 1960), 
instead of classical statistical methods. The advantage of Rasch modelling is, in 
particular, the fact that despite different test items with different data collection 
periods, students’ progress is estimated and reported on a common scale regardless 
of fluctuation in test difficulty (Izard 2007). Hence this chapter focuses on an issue 
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which in this field of research is considered as an important question posed by 
Blum (2002, p. 276): “What alternative assessment modes are available to teachers, 
institutions and educational systems that can capture the essential components of 
modelling competency, and what are obstacles to their implementation?”

2  Modelling Competency

The definition of modelling competency we refer to is the following: “Modelling 
 competencies include skills and abilities to perform modelling processes appropriately 
and goal-oriented as well as the willingness to put these into action” (Maaß 2006, 
p. 117). A modelling process is described as a sequence of seven phases which can be 
summarised in an idealised modelling cycle (see, Blum and Leiss 2006) (Fig. 42.1).

Since this is a rather general definition which does not provide concrete information 
of how modelling tasks might look like, a further specification is necessary. Therefore 
we refer to the modelling perspective developed by Blum (1996) as a theoretical basis 
for our work (see also Zöttl et al. 2010). In this point of view, the most important cri-
terion for a modelling task is not a level of authenticity and complexity that is as high 
as possible, but its relevance for the students. Thus, modelling tasks assessing model-
ling competency refer to problems that might be reduced with respect to their com-
plexity and authenticity compared to real problems. Nevertheless adequate modelling 
tasks should always require the performance of a complete modelling process.

Based on the description of the modelling process subcompetencies can be 
deduced from the different phases of the modelling process. According to Blum and 
Kaiser (1997) these subcompetencies encompass understanding of the real prob-
lem, setting up a model based on reality, excerpting a mathematical model from the 
real model, answering mathematical questions within this mathematical model, 
interpreting mathematical results in a real situation and validating the solution. 
However, these subcompetencies are necessary but not sufficient to characterise 

Fig. 42.1 Modelling cycle from Blum and Leiss 2006
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modelling competency (Treilibs et al. 1980). Further aspects as for example the 
coordination of these subcompetencies are relevant as well.

A theoretical framework describing relevant aspects of modelling competency 
which takes into account the different components as well as their appropriate coor-
dination was developed by Niss and Jensen (Jensen 2007, pp. 143–145). According 
to their model, the level of someone’s modelling competency is determined by three 
aspects: (1) degree of coverage, (2) radius of action, and (3) technical level.

The degree of coverage describes the extent to which a person is able to activate 
the subcompetencies of modelling competency and to autonomously coordinate 
them. Accordingly, a person who is able to show all subcompetencies, but only on 
request, is more competent than someone failing at certain process steps. However, 
he or she is still less competent than someone performing all process steps without 
being prompted to do so.

The radius of action, in contrast, describes the range of situations in which a 
person is able to activate his or her modelling competency. Those situations may 
include different extra-mathematical contexts as well as different mathematical 
content fields. Thus, a person being able to activate his or her modelling compe-
tency within a very wide range of contexts concerning a lot of different mathemati-
cal content fields is certainly categorised as more competent compared to someone 
whose competency is related to only one specific mathematical content field and 
only certain contexts.

The technical level, finally, describes “how conceptually and technically 
advanced the mathematics is that someone can integrate relevantly in activating the 
competency” (Jensen 2007, p. 144). Accordingly, a person using only very simple 
or basic mathematical tools to solve a problem is, hence, less competent than some-
one using very advanced mathematics. This applies to modelling tasks whose real 
situation asks for using a more complicated mathematical model.

This theoretical framework which we chose as a theoretical basis for the develop-
ment of our test instrument induces several consequences with respect to the assess-
ment of modelling competency. These will be described within the next section.

3  Test Instrument

To assess students’ modelling competency in a systematic way, that is considering 
all aspects described in the framework of Niss and Jensen (see above), it is impor-
tant to provide a wide range of different test items. With respect to the aspect tech-
nical level, an appropriate test instrument should include tasks allowing to 
distinguish between different competency levels and thus, asking for the use of 
mathematical tools at different levels. The aspect radius of action however, asks for 
a variation with respect to the extra-mathematical context of the test items. In a 
broader sense, this aspect would necessitate also including modelling tasks of 
 various mathematical topics. Nonetheless, a test instrument narrowed to only one 
specific mathematical topic, as for example circumference and area of certain 
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 geometrical figures (circle, triangle, rectangle, and square), can be of specific inter-
est. For example, with the assessment of progress induced by an intervention 
concerning a specific mathematical content, a modelling test narrowed to that topic 
might be appropriate, since very far transfer of learning across different mathemati-
cal topics is not expected. Another more pragmatic advantage of a narrowed test 
instrument results from the fact that including very different mathematical topics or 
content fields in one test might cause difficulties with the scaling of the collected 
data, since the PISA results showed that the mathematical competency of a person 
can differ considerably between different content fields. However, one has to be 
aware that the conclusions drawn from a test narrowed to a specific mathematical 
topic refer only to modelling competency in this specific topic and thus, consider 
only a specific level of radius of action.

The third and most important aspect for our work that must be taken into account 
is the degree of coverage. It implies that a test instrument within the field of modelling 
should comprise different classes of items, that is items which cover the whole model-
ling process as well as items focusing on only parts of this process. By use of the latter 
class of items one can check if the relevant subcompetencies are available – at least on 
request, whereas the first class of items will assess if the tested person has got an higher 
degree of coverage and thus is able to perform the whole modelling process on his or 
her own without being prompted to consider all relevant phases.

Although it has been done for example by Haines and Crouch (2001), neverthe-
less it refers to the construction of test items which separately assess the subcom-
petencies deduced from every single process step of the modelling cycle. So, we 
defined three subprocesses to be assessed (see Fig. 42.2). To get more reliable 
information about the students’ competencies required for the subprocesses, several 
different tasks had to serve as a scale of items considering different extra-mathe-
matical contexts and requiring different mathematical tools. On the one hand, this 
guarantees to measure modelling competency also of low-achieving students who 
are not able to autonomously perform a complete modelling task. On the other 
hand, these test results might also provide detailed information about students’ 
specific strengths and weaknesses concerning the subprocesses.

Fig. 42.2 Item types concerning different subprocesses of modelling activity
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We elaborated three different types of items (see Figs. 42.3 to 42.5) which focus on 
different subprocesses of modelling activity and thus belong to the second mentioned 
class of items. Items of the first type (type 1) require solely subcompetencies needed 
to build up a mathematical model (see Fig. 42.3 for an exemplary item). For items of 
the second type (type 2) intra-mathematical competencies are needed (see Fig. 42.4 for 
an exemplary item). Items of the third type (type 3) ask for the interpretation of a 
mathematical result and the validation of a presented problem solution with respect to 

Fig. 42.3 Item “Italian Lake” (type 1)

Fig. 42.4 Item “Variation of a square” (type 2)
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the underlying model (see Fig. 42.5 for an exemplary item). Besides those three 
different item types, we integrated also items which belong to the first class, that is 
short, but complete modelling tasks, as described above. Thus, we constructed a fourth 
item type (see Fig. 42.6 for an exemplary item).

Accordingly, a competency model results which focuses on the different compo-
nents of modelling competency instead of different competency levels. Based on 
this competency model we developed a modelling test concerning the field of area 

Fig. 42.5 Item “General Sherman Tree” (type 3)

Portugal has a total area of 92 117.5 sq. m.

Estimate the total area of Spain by using the map.
Show all your work! (you can draw onto the map if it
helps you.)

Portugal

Spain

Fig. 42.6 Item “Spain” (type 4)
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and circumference of rectangles, triangles and circles, which contains items of all 
four item types and thus of both classes. The test consists of 36 items evenly dis-
tributed over all item types. Thus every subscale consists of nine items. However, 
we want to stress the fact that those 36 items were used within a multi-matrix 
design with different testing booklets each consisting of 12 items and thus contain-
ing only three items of every item type.

4  Data Scaling

To assess students’ modelling competencies on the basis of this test instrument and 
thus, coping with its subdimensional structure and its different testing booklets we 
draw on item response theory. As working with partial credits is a potential com-
plicating factor (Izard 2007, p. 160), we scored the students’ problem solutions 
dichotomously. A further reason for doing so relates to the fact that with the subdi-
mensional model, described below, a partial credit model has not been tested so far. 
On this account it was inevitable to accept this major simplification.

To scale the data it might be convenient to take the following assumption as a 
basis: All items, notwithstanding the different classes, assess one underlying 
 competency, which is modelling competency (see Fig. 42.7). This would suggest 
scaling the data by use of a unidimensional Rasch model (Rost 2004, pp. 155 ff). 
However, this scaling does not consider the different types of items constructed 
to assess students’ competencies within the three different subprocesses (types 
1, 2, and 3) and their overall modelling competency concerning the different 
 subcompetencies as well as their coordinate (type 4).

Accordingly, it might be more convenient to use a Rasch model respecting the 
theoretically evolved subdimensional competency structure the test instrument 
refers to. This kind of Rasch model would assume that all items measure modelling 
competency, which consists of the competencies required for the different subpro-
cesses. These subcompetencies, thereby, are assessed by means of the first three 

Fig. 42.7 Unidimensional scaling of the test results
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item types (see Fig. 42.8). To cope with the requirements resulting from the differ-
ent classes of items (i.e. items covering the whole modelling process and items 
focusing on only parts of this process), we used a multidimensional Rasch model 
including subdimensions (Brandt 2008). This model estimates not on only indi-
vidual person parameters νθ , indicating the overall modelling ability of a person, 
but also corrective parameters dνγ  that represent an individual’s strengths and 
weaknesses in the implemented subdimensions, that is subprocesses. Summing up 
the global  person parameter and the corrective parameter one gets a person param-
eter dνθ , indicating the individual competency for the according subprocess. For 
more information we refer to the paper of Brandt (2008).

According to the different modes of scaling the data, an interesting matter for 
the evaluation of the test instrument is the following research question: Can the 
subdimensional structure of modelling competency the test refers to be approved on 
an empirical base? That means: Is there any evidence on a psychometric level that 
scaling the data by use of a subdimensional Rasch model is more appropriate than 
scaling the data by use of a unidimensional Rasch model?

5  Results of the Evaluation

The test instrument was evaluated within the research project KOMMA, which is 
supported by a grant from the German Federal Ministry of Education and Research 
(PLI3032). This project mainly aimed at the development and evaluation of a learn-
ing environment fostering students’ modelling competency (Reiss et al. 2007). In 
this paper, however, we focus only on the data obtained from conducting the test 
instrument with 1,657 persons at three data collection periods (pre-, post-, and 
follow-up test). The testing booklets at each testing period which were linked cross-
wise via a multi-matrix design consisted of 12 items each. Thus, they comprised 
three items of every item type. The duration of testing was limited to 30 min per 
test session.

Fig. 42.8 Subdimensional scaling of the test results
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To answer the research question we scaled the obtained data using the software 
ConQuest (Wu et al. 1997) running a unidimensional model as well as the subdi-
mensional model described above. To assess the appropriateness of those two scal-
ings we compared their information indices Akaike Information Criterion (AIC), 
Bayes Information Criterion (BIC), and Consistent AIC (CAIC). Generally, models 
with lower values are more likely to be a better means of data description than 
models with higher such indices, since the former models fit the data better than the 
latter ones (Bühner 2006, S. 352). These information indices take the number of 
estimated parameters and thus, the according degrees of freedom of the different 
models into account. This allows the comparison of the two models with their 
different numbers of dimensions.

As shown in Table 42.1, the subdimensional model is superior to the unidimen-
sional model with respect to all three information indices. Also with respect to the 
reliability reported for the main dimension, that is the dimension measuring the 
overall modelling competency, the subdimensional model with a value of rel = 0.65 
is better than the unidimensional model (rel = 0.57).1 We analysed also the fit statis-
tic of every single item. Only one of the 36 items did not fit the subdimensional 
model with respect to a reasonable fit value (meansquare MNSQ £ 1.3, Wright and 
Linacre 1994), whereas with the unidimensional model seven items did not fit the 
model. After eliminating the non-fitting item the fit values of the subdimensional 
model even changed for the better. That means, the information indices are smaller, 
whereas the reliability increases slightly, additionally there remain no items with 
problematic fit values (see Table 42.1).

6  Discussion

The reliability and the fit values reported with the subdimensional model indicate 
that the test instrument measures modelling competency the way it is supposed to. 
Furthermore, the analyses show high evidence that the subdimensional structure of 

Table 42.1 Comparison of the uni- and subdimensional data scaling

Unidim Subdim Subdim without item 2

AIC 71,192 66,613 64,687
BIC 71,402 66,910 64,978
CAIC 71,297 66,761 64,833
Reliability 0.57 0.65 0.66
Non-fitting items 7 1 0

1 According to Rost (2004, S. 381) the reliability is estimated as follows: 
2

 =
^

^
rel

var

qs

q
, with 

2^
qs  as 

variance of the latent distribution and ^
varq  as variance of the estimated person parameters.
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modelling competency is reflected also in the data. Thus, the conception of the 
modelling test and the scaling of the data considering its subdimensional structure 
show great promise for a reliable assessment of modelling competency. Nevertheless, 
this approach doesn’t cope with all relevant problems either.

For example, although the subdimensional model is detected as more suitable 
compared to the unidimensional model, there is no global fit index providing 
information about the general suitability of those models. The reported indices 
(BIC, AIC, and CAIC) simply detect which of two models is more suitable, and 
they do not give any evidence whether, for example, neither of the models does 
fit the data well at all. However, the reliability as well as the item fit values 
reported with the subdimensional scaling indicate that this model fits well 
enough. Thus, the subdimensional model seems to be an appropriate method to 
cope with the requirements of a test instrument considering the specific structure 
of modelling competency.

A second problematic aspect which is not a specific problem of the subdimen-
sional model either but a general problem concerns the compensatoric assumption 
underlying the estimation of the persons’ modelling competency. A compensatoric 
approach is based on the assumption that very low competency within one subdimen-
sion can be countervailed by high competency in another subdimension. Obviously, 
this does not correspond to reality because being very competent, e.g. in calculation 
will not countervail a lack of competency in the third subprocess (interpretation and 
validation). As mentioned before, this inappropriate assumption is not a specific 
problem of the subdimensional scaling but it occurs always when a person’s model-
ling competency is estimated by additively reckoning up subcompetencies. In any 
case it would be more appropriate to use a non-compensatoric, that is a multiplicative 
approach. However, until now statistical methods to scale the data based on a non-
compensatoric approach are not implemented yet in the common software systems. 
Although the subdimensional model seems to be a very promising way to cope with 
the subdimensional structure of modelling competency, more research has to be done 
to optimize this new approach also with respect to statistical methods.
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Modelling in tertiary education has had a strong tradition within ICTMA conferences 
and their Proceedings from the beginning. Many ideas developed there have been 
adapted for teaching at both undergraduate and school levels or have otherwise 
influenced ways in which the teaching and learning of modelling has been carried 
out. Examples include group project work (Slater 1986), innovative modelling 
courses (e.g., Jing et al. 2003), modelling competitions (e.g., Shouting et al. 2003), 
and the effect of application-based mathematical instruction on achievement and 
understanding (e.g., Aroshas et al. 2007). Discussions on modelling competencies 
and their measurement (e.g., Izard et al. 2003) have influenced associated scientific 
research significantly. The six chapters in this section, representing contributions 
from seven national contexts continue this tradition, some building upon previous 
work, while others introduce new emphases. The major common theme among the 
chapters is a direct focus on modelling issues in undergraduate education, although 
some make reference to other levels as well.

Alpert reports on a project at a German university that sets out to capture the 
expertise that a mechanical engineer needs in his or her daily activity. The context 
is that of two students in the final semester of their course, working collaboratively 
on an authentic engineering problem in a workplace setting. In addition to the 
observation of their modelling and related mathematical activity, audio-taped inter-
views sought information on how the students went about using the resources 
(mental and physical) available to them for the purposes of addressing the problem 
and associated decision making. The experiment was carefully planned, thought-
fully conducted, and thoroughly reported. The author provides careful unpacking 
of essential technical aspects for the interested reader who is not a specialist in the 
area. The approach is described carefully, with key operational questions, and their 
implications for practical activity are identified and discussed. The chapter then 
provides reflective comment on the process and outcomes from a training and 
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educational perspective. In summary, this chapter provides an excellent example of 
the integration of demanding mathematical requirements with modelling expertise 
in an authentic setting, together with thoughtful reflective comment on the educa-
tional implications for engineering disciplines as well as more generally.

Deprez outlines a teaching sequence in which a model for the evolution of popu-
lation in Belgium serves as a natural introduction to the concepts of eigenvalue and 
eigenvector through the use of Leslie matrices. A need for raising the level of 
authenticity of problems is given as a motivating force for such an approach, with 
the need traced back to an excessively ‘pure’ version of the New Mathematics ini-
tiative introduced in Belgium. This promoted a reaction in which so-called applica-
tions of mathematics were introduced, which were unrealistic and little more than 
dressed-up mathematical problems. Some modifications were made to the actual 
data from official sources, which nevertheless remained realistic and grounded in 
the Belgian context. Given that the purpose was to enable the concepts of eigen-
value and eigenvector to emerge, some might label the resulting problem as a type 
of model eliciting activity (see Chap. 26). Interesting philosophical questions 
emerge in a general sense.

For example: To what extent should we sacrifice (amend) reality to achieve a 
prior mathematical purpose? How different would the outcome otherwise be? What 
decision criteria are most important?

In fact the author uses simplifications (such as omitting migration) to focus 
precisely on the role and significance of omitted variables.

In addition to mathematics, some observation of students took place, and some 
useful student reactions were gathered by means of questionnaires. A negative 
relationship between attitude and difficulty level resonates with similar findings 
elsewhere. This suggests that caution is warranted when a small amount of unfa-
miliar modelling is introduced into an otherwise conventionally taught program.

Gruenwald, Narayanan, Klymchuk, and Zverkova, collaborating across three 
national contexts, describe a modelling initiative focused around the spread of 
severe acute respiratory syndrome (SARS) in Hong Kong in 2003. Predictions from 
three different models based on the data from the World Health Organisation 
(WHO) were discussed with undergraduates studying engineering or applied math-
ematics and a group of university staff who teach in the fields of mathematics or 
mathematical modelling. Basic data and assumptions were discussed, together with 
the respective model equations, and their predictions compared with the real SARS 
outcome after a period of 30 days. Questions were asked concerning reasons for 
differences between predictions and outcomes, what thinking led to the particular 
reasons given, how the predictions might have been improved, and whether the 
respondent was interested in learning more about epidemic modelling. Student 
responses were often speculative, with inferences that could not be inferred from 
the models – attempts to mix and match between mathematics and common sense 
could be identified, not all of which were self-consistent. Responses of the lecturers 
clearly reflected their greater experience and modelling expertise, in all of the ques-
tion domains. That said, there was a closer match than might have been expected in 
the first and third questions, with both groups providing a strong majority of 
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 appropriate responses. Overall the students were more ambivalent about modelling 
than the lecturers who were the keener group – this should not occasion surprise.

Heiliø, from the perspective of industrial mathematics in Finland, presents argu-
ments for educational priorities necessary to support future needs and develop-
ments in this area. While the main focus is on undergraduate teaching needs, he 
also offers comment with respect to school level and teacher preparation. He raises 
the difficult matter of achieving balance between motivational illustrations using 
real contexts and serious mathematical modelling. Consistent with the thoughts of 
others in the field, he argues for modelling skills to be developed over time through 
engaging with a succession of problems, and argues against attempts to teach them 
using traditional didactical approaches. Then, he lists seven domains of application, 
with suggestions for examples within each. The examples are confined to topic 
titles, and no specifics are attempted. As such we recognize material of a type that 
has found its way into many papers since the early years of ICTMA. What this 
indicates is that this message still needs emphasizing; for whatever progress has 
been made, clear areas of need remain. A second aspect that strikes the reader is 
that many of the suggested problem contexts would never have been suggested for 
this purpose, even a few years ago – new mathematical and technological develop-
ments mean new modelling opportunities. The chapter concludes with a suggestion 
for a course subject in modelling (containing examples) and raises questions about 
how much, and when, modelling might be included in school courses with associ-
ated questions for teacher education. The author’s position is that modelling is 
unlikely to be effective without a sound base of mathematical knowledge, so such 
inclusions need to be planned carefully.

Matsuzaki, working in a Japanese context, uses response mapping to display the 
aspects of progress on a modelling task and illustrates his approach by recording 
the maps for a graduate school student and an electronics expert. The problem 
addressed the question ‘How much brightness is needed to read a book?’ and the 
data included written material, transcripts of subsequent interviews, and think-
aloud protocols. A significant purpose of response maps is to capture and display 
events that occur ‘on the run’, as participants progress through a problem. This is a 
technical paper, in which real world experience and mathematical knowledge and 
background are connected together, to show their interaction and contribution to the 
final result. The diagrams are supported by selected excerpts from the commentary 
of both subjects, with respect to their approach to the aspects of the task. The 
author’s focus was on distinguishing between and describing the contributions of 
prior knowledge associated with real life experiences and prior knowledge based on 
previous mathematical experiences.

Dan and Xie report on a study in a Chinese university, designed to investigate 
the relationships between students’ mathematical modelling skills, their creative 
thinking skills, and their basic knowledge of mathematics. The scene was set, by 
describing Chinese initiatives during the past decade and identifying areas of edu-
cation that need addressing to enhance certain abilities of future graduates. The 
investigation of modelling skills followed the already-mentioned scheme devised 
by Izard et al. (2003) and used results from an earlier study at the University of 
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Ulster as a basis for comparison. A high correlation was found between modelling 
skills and a measure of creative thinking skills obtained using a standard instru-
ment. The tenuous link between basic mathematical knowledge and modelling 
skills confirms findings from other studies. While this may indicate that different 
abilities are required for mathematical modelling than suffice for success in basic 
mathematics, the authors question whether the mathematics tested is too simple to 
provide a fair test of the importance of mathematical background. The study sug-
gests further questions that invite investigation in pursuing the important goals set 
out in the introduction.

Collectively the chapters provide an interesting cross section of perceived needs 
and types of activity that are currently active at the university level in a range of 
national contexts. Because of this diversity it is inappropriate to look for close link-
ages or common themes among the chapters, and readers are urged to refer to the 
respective introductory sections, which establish the purpose and intention of the 
separate contributions.
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Abstract This chapter reports about a project that tries to capture the mathematical 
expertise a mechanical engineer needs in his or her daily work. We study how 
mechanical engineering students work on typical tasks in their final semester. The 
task considered in this article is concerned with measuring strain and stress in a 
critical component of a steering mechanism and processing the measurement data. 
One major qualification we identified was diligent work in a small algebraic model 
which has to be interpreted in application terms. Moreover, relating mathematical 
properties of the measurement curves to behaviour of the steering mechanism is 
important for making plausibility checks and for drawing conclusions.

1  Introduction

German Universities of Applied Science offer as a distinctive feature a very 
practice-oriented education. Correspondingly, the mathematical education of engi-
neers should enable students to use mathematical methods for solving practical 
problems. In order to provide such an education, it is necessary to capture the 
mathematical expertise a mechanical engineer needs in his or her daily practice. 
Although mathematics at the workplace has been a topic of research for some time 
(cf. Bessot and Ridgway 2000), there are just a few studies dealing with presum-
ably ‘heavy’ users of mathematics such as engineers where it is much harder for a 
non-professional to understand the work and role of mathematical thinking. Kent 
and Noss (2002) and Gainsburg (2006) investigated civil engineers and Cardella 
and Atman (2005) and Cardella (2010) observed mainly industrial engineering 
students doing their capstone projects. Using an ethnographic qualitative method of 
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research (for engineers and students, respectively), they discovered several aspects 
and patterns of mathematical thinking. The work described in this chapter is con-
cerned with the mathematical expertise of mechanical engineers, and we study the 
mathematical skills final year students show when working on ‘typical tasks’ for a 
junior engineer. Because it is an in-depth case study performed with two students, 
we did not systematically investigate real workplaces.

In earlier works (Alpers 2006, 2008, 2010), we investigated tasks which dealt 
with the construction of a bearing for an ABS box in a car, with the design of a 
mechanism for a cutting device and with the dimensioning of machine elements in 
a simple gearing mechanism. This contribution describes the findings concerning a 
typical measurement task.

The next section describes the method used for the investigation and mechanical 
engineering task in more detail. Section 3, outlines the approach followed by the 
students working on the task. Section 4 contains our findings regarding the neces-
sary mathematical qualifications and relates these to the results of the research 
work mentioned earlier. The final section draws some conclusions with respect to 
the mathematical education of mechanical engineers.

2  Method of Investigation and Task

Since it is extremely difficult for a mathematician to understand the work of an 
engineer by simply watching it over a short period of time, we identified a practi-
cal measurement task, described below in cooperation with a colleague who 
worked for several years as an engineer in the car industry. We then hired two 
students in their final semester to work on the task cooperatively for 100 h. So this 
was not an educational classroom experiment, but we wanted to study where in the 
work of the two students mathematics played an essential role. The students were 
asked to document their working and thinking processes; questions were to be 
clarified with the colleague who played the role of a group leader. Based on a first 
understanding obtained by reading their documents and additional background 
material, the two students were interviewed for further clarification. In these inter-
views the author particularly asked where the models they used came from (own 
modelling or choosing existing models known from lectures or literature) and 
whether decisions such as where to take measurements were based on quantitative 
or qualitative models. The interviews with the students were audio-taped for later 
examination, and the screen recording software we used enabled us to let the stu-
dents point to their documentation during the interview. We then analysed the 
material for mathematical concepts, models, procedures and how it was used. 
From this, we identified necessary mathematical qualifications and also examined 
whether a more mathematical approach might have made work more efficient. The 
colleague involved and a laboratory engineer who assisted the students were also 
interviewed in order to check whether or not the students’ work resembled real 
engineering work in industry.
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In our labs we have a test bench for a steering gear (Fig. 44.1) where a steering 
wheel can be rotated and via the servo mechanism of the gear the wheels are 
moved. The students should investigate the most vulnerable components, measure 
the occurring strain in these components using available measurement technology 
and a data processing program, and interpret the results.

The test bench already contains a facility for measuring the steering angle and 
steering moment. An amplifier and a laptop with measurement configuration and 
processing software were also installed. A student whose diploma thesis was 
concerned with setting up the test bench and a lab engineer who has a lot of 
expertise and experience in taking and processing measurements were also avail-
able for help.

3  Approach of Students

The major steps for tackling the task were quite clear to the students from their 
lecture on measurement theory and were performed by them subsequently:

Analysis of the steering system and identification of critical components•	
Identification of load cases for critical components•	
Definition of a measurement configuration•	
Implementation of measurement configuration and taking measurements•	
Processing and interpretation of measurements•	

Fig. 44.1 Test bench for steering system
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Using the available test bench one can only consider load cases that resemble the 
parking situation in which friction forces (between the road and the tyre) during 
the steering process cause strain within the components. The students identified the 
steering track rod, which is shown in Fig. 44.2, as the most critical component 
because of its small cross section, which is a rather coarse qualitative argument. 
According to the colleague involved, in reality information on critical components 
comes from analysing the flow of forces in the system, simulation software, or 
damage reports.

The students were insecure concerning the load case to be considered. There 
are three major load cases that can occur in combinations: tension/compression, 
bending, and torsion. Since the rod is connected to other components via ball 
joints, the only possible load case is tension/compression in the direction of the 
rod (only if there was considerable friction within the joint could there be bend-
ing and/or  torsion, but this should not be the case). Nevertheless, the students 
spent some time thinking about the axis for bending since this would have been 
important for placing the measurement equipment correctly. According to the 
laboratory engineer, the biggest mistakes are often made by misjudging the load 
situation.

Once the load case had been clarified with the colleague involved, the students 
had to design a proper measurement configuration. An adequate and readily avail-
able means to measure strain are strain gauges (for short: DMS), which have to be 
applied to the track rod. A DMS changes its electrical resistance under strain, and 
with small elastic strains (i.e., when the load is gone the DMS will again have its 
original length) there is an approximate linear relation:

 ·
R

k
R

∆
= ε  (44.1)

Fig. 44.2 Steering track rod with DMS applied
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So the relative change of resistance is proportional to the strain e with propor-
tionality factor k (the value is approximately 2 but it depends on the material). 
The changes are normally very small. In order to get a good signal and eliminate 
other sources of strain than normal forces (e.g. change in temperature), very often 
a so-called full bridge configuration is used (Wheatstone bridge). There two DMSs 
are attached in longitudinal direction (marked with ‘+’ in Fig. 44.3) and the other 
ones in cross direction (marked with ‘−’ in Fig. 44.3). These DMSs are connected 
as shown in Fig. 44.3, which was drawn by one of the students, and an input voltage 
U

E
 is applied. The output voltage U

A
 is measured between the points shown in 

the figure (the direction is wrong). If all original resistances are equal (say R
0
), 

then Kirchhoff’s laws and a linearization (products of two small changes can be 
neglected) lead to:

 3E 1 2 4
A

0 0 0 0

·
4

RU R R R
U

R R R R

 ∆∆ ∆ ∆
≈ − + −  

 (44.2)

Using formula (44.1) one gets a relationship between the ratio of voltages and 
the strains in the four DMSs applied:

 ( )A
1 2 3 4

E

·
4

U k

U
≈ − + −ε ε ε ε  (44.3)

The strains occurring in the four DMSs might be caused by normal forces 
(tension/compression: e

N
), by bending (e

b,x
), or by temperature (e

S
). The sign of 

such a partial strain depends on the direction in which the DMS is attached. A strain 
caused by normal forces is positive when the DMS is attached in longitudinal direc-
tion. If it is attached in cross direction, then the DMS is shortened because of lateral 
contraction, and the magnitude of the strain is to be multiplied by the so-called 
Poisson ratio m, so we get −me

N
. Figure 44.4 shows the corresponding algebraic 

model setup by the students.

Fig. 44.3 Full bridge 
configuration
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Inserting the right-hand side of the equations in Fig. 44.4 into formula (44.3) 
yields

 
A

E

· 2 · (1 )
4 N

U k

U
≈ +ε µ  (44.4)

which makes it possible to retrieve the strain caused by normal forces from the ratio 
between output and input voltages. The small algebraic model in Eq. 44.3 and 
Fig. 44.4 directly reflects the positioning and the interconnection of the DMS.  
If there is a mismatch between the model and the real ordering, it leads to totally 
wrong results. The model is quite standard and is also discussed in the regular lec-
ture on measurement theory, so the students had to recall it and look it up rather 
than to set it up from scratch. Moreover, they had to transform it correctly into a 
measurement configuration. According to the experienced laboratory engineer, 
there are such models for standard situations, but for slightly different situations 
one has to know how the set up is done using positive and negative signs, in order 
to isolate the kind of strain one wants to measure.

The ordering is also important when the bridge is connected to the amplifier, 
which provides the input voltage and amplifies the output voltage. Moreover, the 
amplifier can be configured such that it directly yields the strain. The necessary 
data have to be input, and this includes the factor k, the Poisson ratio m, the resis-
tance of the DMS, and the kind of bridge used (here: full bridge). Although the 
user in the end gets the strain without any further computation or data processing 
done by himself or herself, the students had to know the underlying model in 
order to understand the data needed for amplifier configuration. Therefore, the 
configuration work of the students was also model-based (the model ‘shines 
through’).

The students used the software DIAdem® for configuring the amplifier and sam-
pling the data. As a result they obtained a data table containing the time, the steer-
ing angle, and the strain. They copied the table to Excel®, computed stress and force 
from the strain by simply using proportionality factors, and produced diagrams for 
visualization of the data. One of the diagrams is shown in Fig. 44.5. It depicts the 
resulting strain in the rod when the steering wheel is moved to the left for about 
550° and then to the right and back to 0° (the sign of the angle is opposite to what 
is usual in mathematics, i.e., counter-clockwise is negative here).

Fig. 44.4 Sign model for 
strain components
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The students made several experiments with different additional weights (0, 200, 
400 kg) and different steering supports (simulating a velocity of 0, 10, 100, and 
200 km/h). Having the data, they finally considered two questions:

Is there a critical load on the track rod?•	
How does the load develop with additional weights?•	

As could be expected, the load is far below the critical load. More interestingly, the 
students set up the hypothesis that the load develops linearly with the additional weight 
put on the test bench, which will be discussed in more detail in the next section.

4  Findings and Discussion

4.1  Benefits and Problems of the Method

As in the previous phases of the project, the investigation method applied allowed 
again a detailed probe into the use of mathematical concepts and procedures during 
the work on a practical task, because the two students involved were available for 
in-depth questioning. Since the understanding of the task by the author developed 
gradually over time, it was important that the students and the colleague were avail-
able for clarifications for a longer period of time. Both students were familiar with 
the basic measurement concepts needed for the task, so regarding their qualifica-
tions they were roughly comparable to junior engineers.

There were some problems due to the availability of the laboratory engineer and 
too little contact between the students and the colleague. So the students were for 
some time occupied with the question of finding the bending axis of the track rod, 
and only after a while they contacted the colleague who told them that there should 
be no bending load case. There were also problems with fixing the DMS, and all 
these problems delayed the work such that just one component could be investi-
gated. A second critical one, the mounting links of the gear, would have required a 
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slightly more complicated model involving a two-dimensional load case (cf. Issler 
et al. 1997). In real life, work would have been more goal-oriented, and the data 
interpretation at the end would have been more intensive. These are typical restric-
tions of not having a real workplace environment.

4.2  Modelling Qualifications

The work of the students showed that comprehending the load situation is essential 
for choosing the right measurement configuration. The laboratory engineer empha-
sized that here the most and worst mistakes are made, which can make a measure-
ment totally useless. For example, when you have a bending load case, the material 
is prolonged on one ‘side’ and shortened on the other ‘side’, and there is no strain 
‘in the middle’ (on the so-called neutral axis), so when you fix the DMSs on the 
neutral axis you will measure nearly zero strain. In our case, we had just a tension/
compression load case. To see this, one needs a rough qualitative mechanical model 
of forces and interconnections between components: Because the track rod is fixed 
via ball joints, bending could only occur when there is (unwanted) friction. If the 
situation is more complicated, one could use simulation results for getting an idea 
on the most critical place or make measurements at a larger number of places.

A second essential qualification for working on the task consisted of a thorough 
understanding of the algebraic model underlying the measurement configuration, 
which is captured in formulae (44.1–44.4) and in Fig. 44.4. The formulae are 
results of a linearization process. Although knowledge about this is not necessary 
for successful work with the model, it should at least be clear that in consequence 
the model is applicable only to small strains. For correctly setting up the equations 
in Fig. 44.4, the students needed to know the relationship between signs in the 
model and strain situations for the corresponding DMS. The physical interconnec-
tions had to be done exactly according to Fig. 44.3. One of the students made a 
quick check with the dismantled track rod recognizing that there was nearly no 
reaction on tension but a ‘huge’ reaction on bending, although this should be the 
other way round. Since he knew that for measuring the bending load case the inter-
connections are made differently (such that e

N
 is finally eliminated and e

b,x
 remains), 

he immediately realized that there must have been an interconnection error. This 
shows that for finding the causes of erroneous configurations the underlying 
algebraic model is quite important. In the project situation, the check was easy to 
perform. When the component cannot be dismantled and checked that easily, the 
work must be done very diligently.

The algebraic model is also important for setting up new configurations 
when standard configurations do not suffice. Moreover, when setting up the ampli-
fier configuration one has to provide some parameters (e.g., k). It is quite easy to 
enter wrong input, which can be detected more quickly and hence more efficiently 
when one understands the meaning of a parameter and its algebraic role in the 
formulae.
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According to the colleague involved, measurement tasks often come from 
engineers belonging to computational departments who want their simulation 
results to be checked. In this case measurement and computational engineers need 
a common model to communicate. The measurement engineers need not know 
about special numerical procedures, and the computational engineers need not 
know about peculiarities of attaching DMSs to components, but they both use 
load cases und models of one-, two-, or three-dimensional strain and stress to 
feed simulation software or to describe and interpret simulation and measurement 
data. In our project, we just had to consider the one-dimensional model saying 
stress = strain*constant, whereas in the two- and three-dimensional situations the 
model is still linear (for small strains) but more complicated (cf. Issler et al. 1997), 
involving a so-called stiffness matrix. Both kinds of engineers have to know the 
model for meaningful communication.

4.3  Data Interpretation and Model Validation Qualifications

When the measurement data have been produced, they must be visualized for 
interpretation. In our case, we were interested in the development of the strain on 
the track rod when rotating the steering wheel. The available data table had columns 
on time, angle, and strain. From this, only angle and strain were interesting, and a 
curve was produced using Excel® simply by interconnecting the points given in the 
table. To check for plausibility (model validation) and to get information from 
the curve, the curve had to be ‘read’ and curve properties had to be interpreted  
in application terms. At first one rotates the steering wheel counterclockwise. 
Correspondingly, one starts at the origin and then traverses the curve clockwise 
until one reaches the peak in the lower left region. Then the wheel is rotated 
clockwise until one reaches the upper right peak. Finally, the wheel is rotated 
counter-clockwise again until one reaches the origin. One student knew this curve 
form from a lecture on steering systems since she was specialized in automotive 
engineering. Since the curve looked familiar, the students stopped the validation 
process here. A closer look at the curve reveals some peculiarities, though. When 
the steering wheel is rotated fully to the left, which corresponds to the lower left 
peak of the curve, and is then rotated clockwise again, the wheel is pulled. But still, 
for more than 50 further degrees, we have a negative strain. The same phenomenon 
can be observed on the right side of the curve. So there is no abrupt change from 
negative to positive strain when changing the direction of rotation. The students did 
not recognize this behaviour because they were content with the rough plausibility 
and similarity with known curves. A trial at the test bench together with the colleague 
involved showed that – in addition to the effects of mechanical clearance – the 
wheel is inclined and lifts the whole test bench slightly. When the direction of rota-
tion is changed, the weight of the test bench still leads to a compression of the track 
rod for some time (i.e., for some degrees of rotation). So an important qualification 
here is to detect curve properties and to connect them to application behaviour.
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After having taken measurements for different additional weights, the students 
wanted to check their hypothesis that the strain depends linearly on the weight. 
They had curves for 0, 200 and 400 kg and different steering gear support scenarios. 
The first question that comes up is what to compare when you have curves like the 
one given in Fig. 44.5 for three additional weights. The students chose as criterion 
the maximum strain occurring along the curve. Since this is important for whether 
or not the component fails, the criterion seems to be reasonable. One could also 
compare the relatively stable values in the interval from −200° to +200° (normal 
load). So the first interesting point here is that it is not obvious how curves for dif-
ferent situations should be compared. Once a decision has been made, the question 
arises as to how the relationship between weight and strain should be modelled 
according to the available data. The students called the relationship linear, but what 
they really meant was monotonous because on questioning in the interview their 
explanation was that with growing weight the maximum strain also increases. In 
general, an important qualification here is the knowledge of different mathematical 
fitting models and the ability to choose an adequate one based on the properties of 
the models and the data set under consideration.

4.4  Comparison with Other Research

The findings stated earlier are in compliance with the results of practitioners and 
educational researchers dealing with other engineering professions. Bissell and 
Dillon (2000) emphasize that control engineers often work within existing models. 
Besides the mathematical manipulation of these models, they consider the inter-
pretation in application terms and the use of models for prediction and design as 
the most important activity. They also stress the interpretation of solutions in the 
language of the field of application. Gainsburg (2006) found all activities related to 
models (creation, selection, adaptation, application) in her studies. In our project the 
main activity consisted rather of re-calling and re-understanding the model from 
the lecture and then using it. Gainsburg also states the importance of ‘understan-
ding the phenomenon’ and the role ‘engineering judgment’ plays in this process. 
In our situation the understanding of the load situation was most crucial at the 
beginning, and here, judgment grounded in experience is certainly vital. Otherwise, 
the procedure was pretty clear to the students. Like Bissel and Dillon, Gainsburg 
points out that an interpretation in application terms is decisive for the acceptance 
of results. Cardella (2010) looked for mathematical behaviour in categories set up 
by Schoenfeld. One category deals with mathematical practices including know-
ledge about when and where to use mathematical models. In our situation, the 
students knew from their measurement lectures that they needed to use a load 
model and a further model for the full bridge. Concerning the load model, they 
experienced the situation of ‘uncertainty’, which Cardella has often observed. Here, 
the uncertainty was due to the fact that the students did not see that there was a 
simple tension/compression load case, but in other measurement situations this 
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might not be so obvious and then an engineer has to deal with such an uncertain 
situation. Finally, Kent and Noss (2002) emphasize the role of breakdown situations 
where mathematization is necessary to proceed. We observed a similar situation 
when the students tested their DMS configuration and realized that it showed bend-
ing but not tension/compression. Because of their model knowledge, they were able 
to localize the error quickly.

5  Conclusions for Education

The work within a small algebraic model of the measuring device was at the heart of 
the task, and an understanding of the model was essential to arrange the device in a 
proper way. As a consequence, work within small models (mostly existing, at least 
as to the way to model) should also be integrated into the mathematical  education. 
Moreover, students should interconnect model properties and  application properties 
and use models to design a configuration with certain properties. The author tries to 
realize this by setting up first-year mini-projects. In one of these projects, students 
have to design a truss given a certain load, compute the forces in the bars, build it, 
and measure the forces. They also design statically over- or under-determined struc-
tures resulting in linear systems of equations with no or infinitely many solutions. 
The projects interconnect mathematical topics and topics from mechanics and 
stress theory. Our investigation also showed that the detection and interpretation of 
curve properties in application terms are essential qualifications. These might be 
obtained in larger mathematical application projects where such curves appear 
quite naturally.
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Abstract In the last decade, extensive experimental studies were carried out to 
assess university students’ modelling skills in various countries. However, such 
studies have not been done in China. This chapter tries to fill the gap by introducing 
the findings from a simple experimental study in a Chinese university. We evaluated 
33 engineering students in a class and obtained the distributions of the students’ 
mathematical modelling skills and their creative thinking levels. The data from 
the experiments show that there is a strong positive correlation between these two 
kinds of competencies. We also examined the relationship between the students’ 
mathematical modelling skills and the scores they achieved in basic mathematical 
courses, and found that the correlation between them is insignificant, although 
some patterns of relationships do exit.

1  Introduction

In the last 30 years China’s national economy has achieved much through its 
Reform-and-Open Policy. However, the reform in China’s education system has not 
progressed rapidly. As a result, the education system is often, especially in recent 
years, attacked and criticized in China by pointing out that the students graduating 
from colleges and universities lack creative abilities and are not open to innovative 
practices and procedures.

For example, in 1999, the Ministry of Education of China and the China Youth 
League co-sponsored a survey of Chinese students’ creative thinking abilities 
among 19,000 students in 31 provinces (Ban 2001). The survey revealed that only 
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4.7% of students considered themselves to have curiosity, confidence, perseverance, 
and imagination. Only 14.9% of students hoped to cultivate their exploring spirits 
for new things and to enhance their abilities of information collection and imagina-
tion. Only 33% of students participated in practical activities during their study life 
in schools. The proportions of the students with the initial creativity personality and 
creativity characteristics are as low as being 4.7% and 14.9%, respectively. In addi-
tion to this, if a student raised an objection to his/her teacher in the class, 48.1% of 
students thought that most students would keep silent, and 16.5% of students even 
thought that most students would criticize the objector.

The above figures from the survey clearly show that most students in China are not 
open to innovation. The reasons for that are surely complicated. As to our understanding, 
one of the most important reasons might be that the schools and teachers in China put 
their attention on teaching the students only about the knowledge and skills, but 
neglect cultivating the creative thinking ability of students. As a result of this kind of 
teaching style, the knowledge and skills of the subject concerned are the only focus for 
the students. The second reason lies in that the evaluation criteria in Chinese schools 
neglect the student’s individuality and personality development. For a long time, we 
think a good student is the only one who gets very high grades in his class courses, 
and the students with lower grades but more creative ideas are not valued at all.

In more recent years, it has been widely recognized in China that in order for the 
country to develop in a sustainable manner, it is crucial to embrace innovation. 
Since the education system shoulders the special mission of cultivating a national 
spirit of innovation and fostering creative talents, reforming the teaching styles and 
the evaluation criteria for students has attracted increasing attention in China. The 
primary objective of the reform is to regard the cultivation of the innovation spirit 
and practical ability as the key of the education system.

As one component of the reform in China tertiary education, mathematical model-
ling courses and related activities are highlighted as the breakthrough of reforming 
mathematical education in Chinese universities (Jiang et al. 2007a, b; Xiao 2000). 
The reason behind this is that more and more mathematical teachers in China have 
recognized the importance and value of the mathematical modelling teaching process 
and related activities. The Chinese teachers now think that the key to the mathe-
matical modelling teaching process is to create an environment that arouses students’ 
desire to learn and develop their ability of self-study and to enhance their application 
and innovation ability. In order to improve the students’ quality in mathematics, the 
emphasis is put on the students’ ability of acquiring new knowledge and the processes 
of problem solving, rather than only on knowledge and skills in pure mathematics. 
Therefore, mathematical modelling is gradually becoming the best bonding point to 
enhance students’ mathematical knowledge and application ability.

In this chapter, we are concerned with a primary question as follows: What is the 
current status of mathematical modelling skills of the students in Chinese universities? 
As we know, in the last decade, extensive experimental studies have been carried 
out to assess students’ modelling skills in various countries (e.g., Houston and Neill 
2003a, b; Izard et al. 2003; Lingefjärd 2004). Recently, Xu and Ludwig (2007, 2008) 
and Dan et al. (2007) also carried out experimental analyses on the  mathematical 
modelling ability levels for high school students in China. However, from the 



45945 Mathematical Modelling Skills and Creative Thinking Levels: An Experimental Study

authors’ knowledge, this kind of experimental studies has never been done in 
Chinese universities. This chapter tries to fill the gap by introducing the results of 
a simple experimental study in a Chinese university.

Furthermore, we are more concerned with two relevant questions as follows: 
What is the relationship between the students’ mathematical modelling skills and 
their creative thinking levels? What is the relationship between their mathematical 
modelling skills and their basic knowledge of mathematics? The answers to these 
questions will enhance our understanding about the relationships among the students’ 
mathematical modelling skills, their creative thinking levels, and their achievements 
in basic mathematical courses, and thus provide evidence why now in China people 
think mathematical modelling is a vehicle to improve the students’ innovation 
ability. This chapter presents some key findings concerning these questions from 
our experimental study.

2  Mathematical Modelling Skills

2.1  Test Questions

Multiple-choice questions have been widely used to test students’ mathematical 
 modelling skills in the last decade in various countries (Haines and Crouch 2001, 2005; 
Haines et al. 2001; Houston and Neill 2003a, b; Izard et al. 2003; Lingefjärd 2004; 
Lingefjärd and Holmquist 2005). It is also reported that the validity, reliability, and 
stability of the test are very good, thus the approach is adopted as the test instrument in 
our experiment. Specifically, we used all the 22 multiple-choice questions in our test 
(the details of the 22 questions may be found in Lingefjärd 2004 and accessed directly 
on the web from the given reference). The correct answer for each question gains two 
marks, and a partially correct answer gains one mark. Thus the maximum possible 
score is 44. Students scoring 29 or more are regarded to have ‘strong’ mathematical 
modelling ability; those scoring 21 or less are regarded to have ‘poor’ mathema tical 
modelling ability; others are considered as ‘medium’ (Lingefjärd 2004).

2.2  Implementation

We chose to perform the test at Logistics Engineering College (LEC), one of the 
engineering universities in China with average-level students. All 33 students from 
Class 2005171, who entered into LEC in September 2005 with a major in engineer-
ing (automation), were tested with the previously mentioned questions (in a 
Chinese version we translated from the original English version) on March 15, 
2007. At that time, the students had just completed their courses in higher mathe-
matics (calculus), linear algebra, probability and statistics, and mathematical 
 modelling. The test lasted 40 min, and during the test, the students answered the 
questions independently without any interruptions from the teacher.
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Table 45.1 Basic test results for mathematical modelling skills

Poor (21– marks) Medium (21–29 marks) Strong (29+ marks)

Number of students 4 14 15
Percentage 12.12 42.42 45.45

Table 45.2 The test results by question groups

Modelling skills Questions

% Agreeing with experts’ 
solutions % Partially correct

LEC Ulster LEC Ulster

Type 1 (simplifying  
assumptions)

1,2,3 53 47 22 25

Type 2 (clarifying the goal) 4,5,6 37 25 20 35
Type 3 (formulating  

the problem)
7,8,9 46 64 26 14

Type 4 (assigning variables,  
parameters, and constants)

10,11,12 52 78 24 12

Type 5 (formulating  
mathematical statements)

13,14,15 87 77  4 13

Type 6 (selecting a model) 16,17,18 47 28 14 28
Type 7 (graphical  

representations)
19,20 37 46 56 29

Type 8 (relating back to the  
real world)

21,22 63 42 22 28

2.3  Results

The basic results are summarized in Table 45.1. The students achieved an average 
score of 28, with a standard deviation of 6.03 and a range from 17 to 37. The 
median of the scores is 27, and lower- and upper-quartiles are 23 and 33, respec-
tively. These figures are similar to the test results previously obtained at the 
University of Ulster, UK (Houston and Neill 2003b, p.160), showing that these 
students’ mathe matical modelling skills were satisfactory.

Table 45.2 compares our test results from LEC with those from Ulster by question 
groups (Houston and Neill 2003b). The students from LEC performed better than 
the students from Ulster in clarifying the goal, formulating mathematical statements, 
and relating back to the real world, while they performed worse in formulating the 
problem; assigning variables, parameters, and constants; and graphical representations.

3  Creative Thinking Levels

Creativity is the sum of a person’s mental ability and personality quality in creative 
activities, and it is the displayed special ability in his or her creative activities (Li 
and Zhang 1999). When solving problems, a person with a strong creative ability 
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always tends to use a unique way of connecting different concepts and knowledge 
and makes creative solutions. Students and teachers usually think that mathematical 
modelling is difficult and it is a creative activity. This section motivates to investi-
gate how the students’ creative thinking levels are affected by their mathematical 
modelling skills.

3.1  Test Questions

Torrance Tests of Creative Thinking (TTCT) is a widely used test instrument for 
testing one’s creative thinking, focusing on one’s abilities such as fluency, flexibility, 
originality, and elaboration (Curtis and Rick 2006; Li and Zhang 1999). Therefore, 
we adopted TTCT as the test instrument in this study. Specifically, the test questions 
were from a Chinese book written by Li and Zhang (1999). The test included 20 
multiple-choice questions, and each one has a unique correct answer that contributes 
one mark (the other answers contribute nothing). The test time is 30 min. If one can 
finish the test in 5 min, he/she can obtain an additional five marks; for 10 min, three 
marks will be added; and for 20 min, two points will be added. Therefore, the 
maximum score was 25. Students scoring 14 or more are regarded to be ‘strong’ in 
creativity, and those scoring ten or less are regarded as ‘poor’. Others are considered 
as ‘medium’ (Li and Zhang 1999).

3.2  Implementation

The students tested were from Class 2005171 at LEC, the same as those mentioned 
previously. The test was carried out for the 33 students on March 20, 2007, just five 
days later than the test given for their mathematical modelling skills.

3.3  Results

The results are summarized in Table 45.3. The average score of the students’ creative 
thinking levels was 12.3, with a standard deviation of 2.1 and a range from 8 to 16. 
Overall, the students’ creative thinking levels were ‘medium’. The students with 
‘poor’ creative thinking levels accounted for 12.12%, which is the same figure we 
have just observed for the students with ‘poor’ mathematical modelling skills in 
Sect. 2. However, the students with ‘strong’ creative thinking levels accounted for 

Table 45.3 Test results for creative thinking levels

Poor (10− marks) Medium (10–14 marks) Strong (14+ marks)

Number of students  4 22  7
Percentage 12.12 66.67 21.21
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only 21.21%, which is much less than what we have just observed for the students 
with ‘strong’ mathematical modelling skills in Sect. 2.

3.4  Relationship with Mathematical Modelling Skills

The detailed data from these two tests (i.e., test for mathematical modelling skills 
(TMMS) in Sect. 2 and TTCT in this section) are plotted in Fig. 45.1, for all the 
33 students tested. The four students who scored less than 9 in TTCT were the same 
four students who scored less than 21 in TMMS. The seven students who scored 
over 14 in TTCT were among the fifteen students who scored over 29 in TMMS. 
This observation clearly indicates that students with ‘strong’ creative thinking levels 
were also ‘strong’ in mathematical modelling skills, and those with ‘poor’ creative 
thinking levels were also ‘poor’ in mathematical modelling skills. The correlation 
coefficient of mathe matical modelling skills and creative thinking levels was 0.815, 
which indicated that there was a strong positive correlation between these two types 
of competencies. This observation validated the belief that ‘mathematical model-
ling is necessary for creativity’ (D’Ambrosio 1989).

In fact, a careful examination of the TTCT test questions suggests to us that 
some of the questions were designed to test similar ability as the TMMS questions 
did. Two example questions of TTCT are given as follows.

Question 12:  In Fig. 45.2a, which image is another one’s reflection seen in a 
mirror?

Question 14:  For the table in Fig. 45.2b, can you fill a number in the place of “?” 
by using an arithmetic operation horizontally or vertically?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 333231
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Fig. 45.1 TMMS vs. TTCT
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Clearly, Question 12 tests the students’ ability in understanding graphics and 
their symmetry, which has some links with the ability of graphical representation 
(Type 7 modelling skills in Table 45.2). Question 14 tests the students’ ability in 
constructing a mathematical relationship between two variables, which has strong 
links with Type 5 modelling skills in Table 45.2 (formulating mathematical state-
ments). Therefore, it is not surprising that a strong positive correlation exists 
between these two types of competencies.

4  Knowledge in Basic Mathematics

4.1  Score in Basic Mathematical Courses

The motivation of this section is to investigate how the students’ knowledge in basic 
mathematics is affected by their mathematical modelling skills. The 33 students 
from Class 2005171 at LEC already had a basic mathematics course test (BMCT) 
at the end of their first year as freshman (i.e., in July 2006), just after their basic 
mathematics courses had been completed. The test questions came from a test data-
base developed by Xi’an Jiaotong University (a famous engineering university in 
China) and published by the Higher Education Press of China. Specifically, the test 
includes 22 problems in the formats of ‘fill-in-the-blank’, ‘multiple-choice’, and 
‘calculation’. The mathematical content of the test included calculus and linear 
algebra, and the perfect score was 100. Students with more than 90 marks were 
regarded as ‘excellent’. Those with less than 60 marks were regarded as having 
‘failed’ and ‘poor’. The results are summarized in Table 45.4. The average score of the 
test was 80, with a standard deviation of 16.7 and a range from 25 to 99. Overall, 
the students performed very well in BMCT.

Fig. 45.2 Two example questions of TTCT

Table 45.4 Test results for basic mathematics courses

Fail (60− marks) Pass (60–90 marks) Excellent (90+ marks)

Number of students 2 21 10
Percentage 6.1 63.6 30.3
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4.2  Relationship with Mathematical Modelling Skills

The detailed data from the two tests (i.e., TMMS and BMCT) are plotted in 
Fig. 45.3, for all the 33 students tested. The correlation coefficient between the 
scores of TMMS and BMCT was 0.381, which was very small and thus indicated 
that the correlation between them was insignificant.

However, some patterns of relationships do exist between these two types of 
competencies. In more details, their relationship could be summarized as follows:

 1. Students with very low scores in BMCT did not have ‘strong’ mathematical 
modelling skills (e.g., the students failed in BMCT scored less than 21 in TMMS). 
In other words, students with ‘strong’ mathematical modelling skills did not 
score very low in BMCT.

 2. Students with very high scores in BMCT might not have ‘strong’ mathematical 
modelling skills. Among the ten excellent students in BMCT, only seven of them 
scored more than 29 marks in TMMS, and the other three scored only 21, 23, and 
24, respectively, in TMMS.

 3. Students with strong mathematical modelling skills might not score very high in 
BMCT. For example, three students who scored over 30 in TMMS scored only 
68, 74, and 77, respectively, in BMCT.

For a long time, the teachers and students in China usually think that only 
those with very high scores in basic mathematics courses can learn and do mathe-
matical modelling well. However, the earlier findings conflict with the traditional 
thoughts that exist among many teachers and students in China, but they are very 
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consistent with their teaching experience. For example, in mathematical model-
ling activities such as China’s undergraduates mathematical contests in modelling 
(Jiang et al. 2007b), the students who outperformed the others and were awarded 
the best achievements were usually not those with very high scores in their basic 
mathematics courses.

One of the reasons for these observations might be the nature of the TMMS test 
questions. The mathematical knowledge and skills needed for the test are basically 
very simple, and advanced mathematical knowledge and skills are not needed for 
the test. Therefore, mathematical knowledge and skills did not become an obstacle 
for most of the students when they completed the test. Thus the advantages of these 
students in mathematical knowledge cannot be reflected in the test.

Another possible reason for these observations might be that if a student gains a 
very high BMCT score it does not mean that the student really grasps the basic mathe-
matics very well. In other words, the assumptions we make about students regarding 
their knowledge base and successful completion of earlier modules and/or examina-
tions cannot be relied upon (Anderson et al. 1998; Haines and Crouch 2001).

5  Summary

In this chapter, we introduced some findings from an experimental study concerning 
mathematical modelling for some engineering students in an average-level university 
in China. The findings provide strong evidence to support the mathematical edu-
cation reform in China with regards to mathematical modelling courses and related 
activities as a vehicle to improve the students’ innovation ability. We have a plan to 
do more experimental studies in China to figure out whether the findings could be 
extended to other Chinese students as well, since the current study is based only on 
33 students. We are also going to investigate how mathematical modelling courses 
should be taught and how mathematical-modelling-related activities influence the 
students’ creative thinking modes.
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Abstract We outline a teaching sequence in which a model for the evolution of a 
population serves as a natural introduction to the mathematical concepts of eigen-
value and eigenvector. Long-term projections using a matrix model are analyzed 
in terms of a ‘long-term growth factor’ and a ‘long-term age structure’. From a 
mathematical point of view, these observations can be described by the concepts 
of eigenvalue and eigenvector. Experiences with students in tertiary education 
(applied economics, mathematics teacher education) are discussed.

1  Introduction

Matrices are studied in upper secondary and higher education and eigenvalues and 
eigenvectors in higher education. These topics are interesting from a purely mathe-
matical perspective, but they have numerous interesting and important applications 
as well. In this chapter we describe a teaching sequence discussing one of these 
applications: modelling the evolution of a population using a Leslie matrix and 
using its eigenvalues and eigenvectors to study the long-term evolution of this 
population. In fact, the teaching sequence uses the application to introduce the 
mathematical concepts of eigenvalue and eigenvector. Furthermore, in this chapter 
we discuss experiences with the teaching sequence in three different contexts.

A few decades ago, mathematics education in Flanders (Belgium) was extremely 
influenced by New Math. Changes in the official curriculum since then have stressed 
the importance of applications more and more and some applications of mathematics 
are found in school books and in most classrooms nowadays. However, many of 
them are just ‘dressed up’ mathematical problems and not ‘really real’ situations. 
One of the reasons to construct the teaching sequence presented in this chapter is to 
raise the level of authenticity of problems used in the classroom.
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There are a number of other studies in which population dynamics serves as a 
 context in mathematics education. Niss (2000) discusses in detail the model used by 
the Danish Bureau of Statistics for the evolution of the Danish population. His model 
is based on recursive relations between different elements in the system. It aims at 
good quality projections and, hence, assumes non-constant fertility and death rates. 
A more simplified model is used by Bradley and Meeks (1986) to let students evaluate 
implications of the Chinese one-child policy. They assume constant birth and death 
rates and discard immigration, admitting them to describe the evolution of the Chinese 
population by a Leslie matrix model. Leslie models were originally introduced for the 
study of biological populations by P.H. Leslie (1945). Our model for the evolution of 
the Belgian population is of the same type as the Bradley and Meeks model. However, 
our teaching sequence differs from theirs in two aspects. Firstly, we start from realistic 
data of the Belgian Bureau of Statistics and make the simplifications explicit when 
setting up the matrix model. Secondly, an important part of the teaching sequence is 
devoted to an analysis of the long-term evolution of the population, which can nicely 
be described by the dominant eigenvalue and one of its eigenvectors. Our model differs 
from that of Niss in the sense that, although realistic data are used, the aim is not to 
give realistic predictions of the population. In fact, we use a simpler and more 
 mathematically structured model in order to be able to provide a motivating context, 
naturally leading to the mathematical concepts of eigenvalue and eigenvector. Too 
often, these concepts are introduced rather artificially in tertiary education.

In the terminology of Blum et al. (2002), the teaching sequence focuses more on 
applications than on modelling, for example, because an existing mathematical 
model is used. However, certain aspects of the modelling process are present as 
well, for example when we show to the students the simplifications while setting 
up the matrix model.

The teaching sequence was used in three different contexts. We briefly report on 
the first two contexts, from which we do not have data, except for our own observa-
tions. In the third context, the main concerns were whether the teaching sequence was 
not too difficult and/or confusing for the students, whether it made students appreciate 
the usefulness of mathematical concepts and whether it motivated students. We report 
on the results of a questionnaire that was administered to 20 randomly chosen 
students.

2  The Teaching Sequence

2.1  Calculations with Authentic Data

To make students aware of the simplifications that are made when constructing the 
matrix model in Sect. 2.2, we inserted a phase during which students work with 
detailed realistic data to answer a number of questions. The data were obtained 
from the Belgian National Statistical Institute (http://www.statbel.fgov.be). They 
include population by age and sex on 1 January 2003, life tables for men and 
women of 2000, 2001, and 2002, and fertility rates for women by age of 1997 
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Fig. 46.1 Population by age and sex

Fig. 46.2 Life table

Fig. 46.3 Fertility rates

(the most recent version available!). Figures 46.1–46.3 give an impression of these 
sets of data (in Dutch).

We chose not to incorporate migration because it makes the matrix model 
consi derably more complicated. Although (or, may be, because) migration is not 
taken into account, the model will shed light on the role of migration in the 
evolution of the Belgian population. Using these data, students have to answer 
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questions like: How many men of age 35 were there on 1 January 2003? How many 
women of age 35 would you predict for 1 January 2010? How many births were there 
in 2003? How many of those were boys and how many were girls? How many boys 
of age 3 would you predict for 1 January 2010? While answering these questions, we 
want students to realize that they have to make assumptions (for example: survival 
rates and fertility rates are constant) that are subject to criticism. Moreover, calcula-
tions tend to become messy and complicated. Students are in the right mood then 
to be introduced (by the teacher) to a matrix model based on simplified data.

2.2  The Matrix Model

To keep the dimensions of the matrix model within the reach of a graphical calculator, 
the data are simplified first (by the teacher): the width of the age groups is set to 
20 years, the distinction between sexes is neglected, and fertility rates and survival 
rates for these new age groups are calculated (which is not entirely evident) and 
rounded to two decimals. Two of these rates have been slightly altered in order to 
obtain a ‘nice’ eigenvalue in Sect. 2.3. Table 46.1 shows the simplified data.

Students have to answer a number of questions concerning these data. For 
example, they have to explain the high fertility rate of the first age group (which is 
due to the fact that fertility rates and survival rates now refer to periods of 20 years: 
girls in the first age class have 20 years’ time to have their child). Based on these 
simplified data and assumptions similar to those in the previous section (constant 
fertility and survival rates, no migration) students make projections for the popula-
tion in the future, in steps of 20 years, first without mathematical tools. Then the 
teacher introduces a Leslie matrix model. Let

2 407 368
2 842 947

(0) 2 853 329
1 840 102
410 944

X

 
 
 =  
 
      

and
  

 

from
I II III IV V

0.43 0.34 0.01 0 0 I
0.98 0 0 0 0 II

0 0.96 0 0 0 III to
0 0 0.83 0 0 IV
0 0 0 0.30 0 V

L

 
 
 =  
 
  

Table 46.1 Simplified data

Age Label 1 January 2003 Fertility rate Survival rate

0–19 I 2,407,368 0.43 0.98
20–39 II 2,842,947 0.34 0.96
40–59 III 2,853,329 0.01 0.83
60–79 IV 1,840,102 0 0.30
80–99 V 410,944 0 0
Total 10,354,690
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be, respectively, the initial population and the transition matrix containing the 
fertility rates (in the first row) and survival rates (below the main diagonal). 
Using these matrices, a projection for the population in the year 2003 · 20n+  can 
recursively be calculated using the relation ( ) · ( 1)X n L X n= − . An explicit formula 
is ( ) · (0)nX n L X= .

Here, it is discussed with the students that the resulting projections do not give real-
istic predictions, the most important reason being that we discarded migration. However, 
the projections do make sense. Seemingly contradictory, showing what would happen 
without migration (and if moreover fertility and survival rates would remain constant), 
they actually draw attention to the role of migration. Stated in other words, the model 
allows us to simulate a ‘reality’ that will never exist, but which helps us to understand the 
‘real’ reality. The projections act like a looking glass zooming in on the characteristics of 
today’s population. Doing the same exercise for the Belgian population in, say, the 1950s 
or for a country in a different part of the world would yield a totally different picture.

2.3  Two Observations Concerning the Long Term Evolution  
of the Population

Figure 46.4, which is given to the students, shows projections for the five age 
groups over a period of 240 years.

Firstly, students explore the graph while finding out where they themselves are 
represented in it (from period to period, they jump from one line to another!). 
Then the graph is analysed more globally. It shows different behaviours for the 
(relatively) short term, say the first two or three steps: the numbers in some age 
groups increase whereas the numbers in other ones decrease. The passage of the 
baby boom generation and the ageing of the population can be seen very clearly. 
For the long-term behaviour, however, all the graphs show a common pattern: 
numbers decrease slower and slower.

Fig. 46.4 Projections per age group over 12 periods of 20 years
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Table 46.2 Growth rates per age group over six periods of 20 years

Number of periods

Growth rates

I II III IV V

1 −15.7% −17.0% −4.3% +28.7% +34.3%
2 −16.1% −15.7% −17.0% −4.3% +28.7%
3 −15.9% −16.1% −15.7% −17.0% −4.3%
4 −16.0% −15.9% −16.1% −15.7% −17.0%
5 −16.0% −16.0% −15.9% −16.1% −15.7%
6 −16.0% −16.0% −16.0% −15.9% −16.1%

Table 46.3 Relative importance of each age group over six periods of 20 years

Number of periods I II III IV V

0 23.25% 27.46% 27.56% 17.77% 3.97%
1 20.22% 23.50% 27.19% 23.59% 5.50%
2 19.06% 22.27% 25.35% 25.36% 7.95%
3 18.91% 22.04% 25.24% 24.84% 8.98%
4 18.91% 22.07% 25.20% 24.95% 8.87%
5 18.91% 22.06% 25.22% 24.90% 8.91%
6 18.91% 22.06% 25.21% 24.92% 8.89%

Table 46.2, which is also given to the students, confirms the observations from 
Fig. 46.4. The numbers in the table are growth rates: they express by how much the 
number in the age group has increased or decreased over a period of 20 years as a 
percentage of the number in that age group at the beginning of that period. Now, 
the pattern in the long-term behaviour can be stated more precisely: in the long run, 
the number of individuals in each age group decreases by (approximately) 16% per 
period of 20 years. Students know that this means that the number of individuals in 
each age group declines exponentially with a growth factor of 0.84 (= 100%–16%). 
This is the first important observation concerning the long-term evolution of the 
Belgian population (according to our model). We will call the number 0.84 the 
long-term growth factor of the population.

Table 46.3 leads to a second important observation. Now, the percentages reflect 
the relative importance of each age group in the total population at a certain time. 
Students, for example, have to explain how they see the ageing of the population in 
the table. Moreover, they have to formulate what it means that the percentages no 
longer change in the long run and they have to explain this phenomenon using the 
first observation above. We will call the constant distribution of the individuals over 
the age groups the long-term age distribution.

2.4  Mathematical Treatment of the Observations

In the previous section calculations led to two observations that were formulated in 
terms of the long-term growth factor and the long term age distribution. In this section, 
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the central question is: how can the long-term growth factor and the long-term age 
distribution be calculated in a more ‘mathematical’ way? In mathematical terms, the 
two observations can be formulated as follows:

We have •	 ( 1) · ( ) 0.84 · ( )X n L X n X n+ = ≈  for sufficiently large n. Moreover, if n 
increases indefinitely, the approximation improves indefinitely.
The age distribution •	 ( ) / ( )X n t n  (where ( )t n  is the total population at time n) 
converges to a certain column matrix X.

Combination of these observations leads to the equality · 0.84 ·L X X= , giving 
the basis of a more mathematical method to find the long term age distribution if 
the long term growth factor is known:

=The long-term age distribution is a solution of the system · 0.84 · .X L X X

It is important to notice that this (homogeneous) system has an infinite number 
of solutions, that is, it has non-trivial solutions. As the solution set is one-dimensional, 
the long-term age distribution is the unique solution satisfying the following 
supplementary condition:

The sum of the components of the long term age distribution is equal to 1.X

This shows how to calculate the long-term age distribution mathematically. 
For a mathematical calculation of the long-term growth factor, the starting point is 
the fact that the system · 0.84 ·L X X=  has non-trivial solutions. This character-
izes the number 0.84, that is, if 0.84 is replaced by another strictly positive number, then 
the resulting system no longer has non-trivial solutions. Hence, the long-term 
growth factor can be determined as follows:

The long-term growth factor is the strictly positive number l for which the 
system L · X = l · X has non-trivial solutions, that is, det ( L – l · I

n
 ) = 0.

2.5  Eigenvalues and Eigenvectors

Finally, the concepts and methods developed in the context of the long-term evolution 
of the Belgian population are decontextualized, leading to the traditional definitions of 
eigenvalues and eigenvectors of a matrix in general and to the traditional methods to 
find eigenvalues and eigenvectors. For Leslie matrices L having two consecutive 
non-zero fertility rates, the following properties guarantee the existence of a long 
term growth factor and long term age distribution:

 1. L has exactly one strictly positive, real eigenvalue l
1
.

 2. One of the eigenvectors of L corresponding to the eigenvalue is a column matrix 
X consisting of strictly positive numbers adding up to 1.

 3. For every X(0) having all elements positive, the sequence ( ) / ( )X n t n  (where ( )t n  
is the sum of the components of ( )X n ) converges to X.
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3  Experiences

3.1  During the ‘Science Week’

The teaching sequence was used during the so-called Science Week in Flanders 
in 2004 and 2006, during which secondary school pupils visited universities and 
attended workshops concerning a scientific subject. Students worked in small 
groups on worksheets based on parts 1, 2, and 3 of the teaching sequence 
(Sects. 2.1, 2.2 and 2.3). Answers were discussed with the whole class. In addi-
tion to the subject matter discussed here, the concept of dependency ratio and its 
evolution over time were included. This concept is related to financial implica-
tions of the ageing of the population and turns up in, for example, newspaper 
articles. We approximated it by the number of individuals in age groups I, IV, and 
V, divided by the number of individuals in age groups II and III. The workshop 
ended with a whole class activity using a spreadsheet centered around the ques-
tion of how to reach a stable population and/or a socially acceptable dependency 
ratio by manipulating fertility and survival rates, changing age of retirement, 
taking migration into account, and so on. Parts 4 and 5 (Sects. 2.4 and 2.5) were not 
discussed. We have no data from this context, except for our own observations. 
Experiences are mixed. Although it was announced that a certain level of mathe-
matical ability was expected, in practice, students’ mathematical ability and 
motivation varied considerably. In general, experiences with mathematically 
sufficiently able students were positive: they managed to understand the model 
and were interested in the results.

3.2  In Mathematics Teacher Education

Students in mathematics teacher education in Flanders (Belgium) have a masters 
degree in mathematics or (more and more often) a more or less related subject 
(like engineering, physics, biology, applied economics, etc.). The whole teaching 
sequence was used with these students in several years: parts 1, 2, and 3 in the 
form of a workshop (as described in Sect. 3.1), and parts 4 and 5 as homework 
(using a text with exercises). We have no data from this context, except for our own 
observations in class. Experiences were clearly positive. Several students reported 
that the teaching sequence showed them that eigenvalues and eigenvectors are use-
ful. They added that this was not clear to them before from their courses on linear 
algebra. Moreover, reactions of students in class showed that the teaching sequence 
stimulated them to reflect on the subtle relation between mathematics and reality. 
Finally, the work on the model naturally led some of the students to questions 
about reality. For example, one of the female students asked: “Does this mean that 
right-wing parties who promote having more children are right?”
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3.3  In an Introductory Mathematics Course for Bachelor 
Students in Applied Economics

Students in applied economics in Flanders (Belgium) have an introductory mathe-
matics course in their first and second years, covering calculus and some linear 
algebra. Their mathematical ability and background from secondary education is 
relatively modest. In this context, parts 2–5 of the teaching sequence were covered, 
in combination with an application having a simpler long-term behaviour (con-
sumers switching between different brands of a product). The theory of matrices, 
linear systems, and determinants had been studied in the previous lessons, whereas 
eigenvalues and eigenvectors had not been dealt with before. Hence, the teaching 
sequence constituted an application of matrices, on the one hand, and served as an 
introductory example for the theory of eigenvalues and eigenvectors, on the other 
hand. The course was teacher-centred with relatively large groups of students 
(40–60 students) per class. Hence, the teaching methods differed from the previous 
two contexts. There were strict time constraints as eigenvalues and eigenvectors 
were the last topic covered in the academic year and not very much time was left. 
There was no opportunity to work in groups with work sheets. The material was 
explained by the teacher and student activity in class was limited to answering 
some questions and doing exercises from time to time. At home, students studied 
the material and solved problems. The (oral and written) examination was about 
mathematics and its applications, not about modelling. Lack of time made it 
impossible to do part 1 of the teaching sequence. So, the modelling started 
immediately from the simplified data in part 2. However, there were opportunities 
to draw the attention of the students to the limitations of the model (constant fertil-
ity and death rates, no migration).

After the teaching sequence, a questionnaire was filled in by 20 randomly chosen 
students. The questions intended to find out whether the teaching sequence

Was not too difficult and/or confusing for the students•	
Made students appreciate the usefulness of mathematical concepts•	
Actually motivated students•	
Made students aware of the simplifications made when describing reality with a •	
mathematical model

Three questions dealt with the level of difficulty of the example. In general students 
did not find the teaching sequence too difficult. Although they reported that it was 
more difficult than other parts of the course, they responded neutrally to the statement 
that the example was difficult to follow during the lesson and positively to the state-
ment that it could be well understood after personal study at home.

Four questions examined whether the students became more aware that mathe-
matics is a useful tool to describe reality. In general, the answers show that the 
teaching sequence helped students to appreciate the usefulness of mathematics. 
They responded in the great majority positively to the statement that the example 
taught them that mathematics can be used to describe phenomena in reality and 
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more, in particular, they agreed that it showed what matrices are used for. 
Concerning the usefulness of eigenvalues and eigenvectors there were two ques-
tions. Students responded neutrally to the statement that the example showed them 
the usefulness of eigenvalues and eigenvectors. On the other hand, they reacted in 
the great majority positively to the statement that the example was a good introduc-
tory example for the concepts of eigenvalue and eigenvector.

Three questions investigated the motivation of the students. On the one hand, 
there was a clear general appreciation of the example: students responded in the 
great majority positively to the statement that more examples of this type should be 
treated in the course. This appreciation correlated negatively to the experienced rate 
of difficulty. On the other hand, it is not clear which aspects added to this general 
appreciation as students reported that they did not find the example of the evolution 
of the Belgian population more interesting, nor more instructive than other (less 
authentic) examples in the course.

Finally, the results concerning one question showed that students found the 
teaching sequence taught them that mathematical models are always a simplification 
of reality.

There has been no systematic research concerning the results on the examina-
tion. The impression was that students performed at the same level as with tradi-
tional teaching, which is in agreement with the answers of students to the questions 
in the questionnaire relating to the experienced level of difficulty of the teaching 
sequence. Some typical errors, however, appear to be related to the use of the context 
of growing populations, for example, some students only accept positive numbers as 
eigenvalues of matrices and sometimes students think that eigenvectors should have 
components adding up to 1.

4  Conclusion

The outline of a teaching sequence in Sect. 2 shows that it is possible to use the 
context of age-structured population growth as a natural introduction to the concepts 
of eigenvalue and eigenvector, which in university teaching are often introduced 
rather artificially. We discussed experiences with the teaching sequence in three 
contexts. The most extensive treatment is with students in a tertiary mathematics 
course in an applied economics degree program. Reactions of students to a ques-
tionnaire showed that they experienced the teaching sequence as more difficult than 
the rest of the course, but not too difficult. They reported that the teaching sequence 
made them more aware of the usefulness of mathematics. Finally, they found that 
more examples of this type should be treated in the course. This appreciation cor-
related negatively with the experienced level of difficulty.
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Abstract Modelling is vital for innovation in knowledge-based industries and 
development of society. Emergence of mathematical technology means a chal-
lenge for education. We give an overview and discuss how this should be reflected 
in educational programs and has implications on the way how modelling should 
be inserted to the curricula at various levels. The focus of this article is on under-
graduate teaching at tertiary level. However, some comments are made concerning 
teacher training and schools preparing students for universities. Future teachers 
should be given understanding of the vibrant mathematics-based technology. 
However, at school level, I suggest certain care regarding how much and when to 
introduce concepts of modelling into the educational repertoire.

1  Computational Technology

The development of technology has modified in many ways the expectations facing 
the mathematics education and practices of applied research. Computational tools 
and modelling competence is needed in many fields and professions. The scope 
extends to several ordinary professions and science-related fields in engineering, 
economics and finance, biomedical jobs, not forgetting agriculture and the food 
chain, health professions and pharmacy, and entertainment and media. Mathematics 
is a vital resource to promote technical development, innovation, entrepreneurship, 
structural renovation and public governance. Terms like mathematical technology, 
industrial mathematics, computational modelling or mathematical simulation are 
used to describe this active contact zone between technology, computing and math-
ematics. See a recent Organisation of Economic Cooperation and Development 
(OECD) report  (2008) on Mathematics in Industry. Models can be used to perform 
the following actions:
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Gain understanding of intricate mechanisms by testing assumptions about the  –
systems
Carry out structural analysis tasks and evaluate the systems performance capabilities –
Replace or enhance experiments or laboratory trials –
Forecast system behaviour and analyse what-if situations –
Perform sensitivity analyses and study the behaviour at exceptional  –
circumstances
Analyse risk factors and failure mechanisms –
Create virtual and/or visualised images of objects and systems in design  –
processes
Optimise certain design parameters or the whole shape of a component –
Carry out intelligent analyses on the measurement data through monitoring and  –
experiments
Manage and control large information systems, networks, data bases. –

2  Educational Challenge

There is an obvious need to revise university pedagogy of applied mathematics. 
Implications for the preparatory levels of high school will be elaborated as well. 
Regarding the undergraduate programs at universities, the means include: revision of 
syllabi and curricula, use of computing experiments, data tools and novel teaching 
methods. We should bring the flavour of a fascinating art to the classroom, to convey 
the vision about mathematics at work, the diversity of application areas and practical 
benefits. The challenge is to find ways to make the theoretical content transparent and 
 communicate to the students the end-user perspective of mathe matical knowledge.

To become a good applied mathematician, one should be curious about other 
areas as well, to learn basic facts from a few neighbouring areas outside mathemat-
ics. Acquaintance of some application fields, knowledge of physics, engineering or 
other ‘client discipline’ of mathematics is important.

Problem-based learning and topical fresh exercises are called for. Mathematics 
teachers should have interest for different areas of modern professional life. 
Modelling cases can emerge from grocery packing, ID-card code system, sports bet-
ting, laundry machines, brick manufacturing, tram timetables, fermentation pro-
cesses of food or bioprocesses in gardening. Modelling is a crucial educational 
challenge; maturing into an expert can only be achieved by ‘treating real patients’.

The challenge of exposing students to real world applications is common to 
school mathematics and undergraduate programs. However, in spite of the impor-
tance of modelling in today’s world there is a danger of modelling overdrive at 
school level. Case examples are an excellent means to give meaning and context to 
mathematical concepts like relation, ratio, equation, pair of equations, solution, 
multiple solutions, rate of change, derivative, integral, optimum, approximate solu-
tion, probability, random variable, etc. The best time to introduce modelling as a 
serious activity of simulating real world processes and solving problems perhaps 
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comes later. The children however should gain an understanding, interest and curi-
osity of these technologies already at school.

Mathematics educators have introduced methodical approaches like model-
eliciting activities or thought-revealing activities (Chamberlin and Moon 2005; 
Lesh 2002). Research has also been done to understand the cognitive and metacog-
nitive processes involved in learning of modelling (Stillman and Mevarech 2010). 
A lot of discussion has appeared around the concept of modelling competencies 
(Blomhøj and Højgaard Jensen 2007). From the perspective of using mathematical 
skills in professions, industrial research and development and applied sciences, I 
present some claims to contribute to the contemporary discussion.

The realm of mathematical models has rich variety in forms, structure and 
complexity, which is comparable to the diversity of life itself. Any systematisation 
or classification of the world of models is doomed to be deficient. It may be also 
impossible to describe the art of modelling as a repertoire of skills and knowledge 
that can be transferred or ‘taught’ in the traditional sense. It may be learned over a 
long process when suitable knowledge base, thought eliciting situations and illumi-
nating examples and problems are presented to a student who has a curious attitude 
and ability to learn and transfer ideas from one context to another.

A well-known observation is that it is easier to grasp abstract generalisations 
after one has seen many simple concrete cases. A student should be building math-
ematics skills, analysing individual functions, curves, equations, data sets, etc., 
before he is asked to adopt the abstract conceptual scheme of ‘mathematical model’ 
much less ‘modelling process’. The student should work on rules of manipulation 
of expressions and learning to understand the basic vocabulary of quantitative 
thinking (function, equation, constant/variable, solution, rate of change, probability, 
random variable) for quite awhile. The learning process should couple these con-
cepts into the real world, so case examples (models indeed) are indispensable. 
However, this activity and individual problem-solving tasks should not be prema-
turely put into the mathematical modelling paradigm.

My conjecture is that the correct time to introduce the ideas of mathematical 
model and modelling process and mathematical technology is at the secondary 
school, in the last two years before entering the university. Excellent ways to organ-
ise such modelling activity is the concept of modelling week, workshop or competi-
tion (Bracke 2007; Kaiser and Schwarz 2006, 2010; Mathematical Contest in 
Modelling). These ideas were nicely presented also at ICIAM14.

3  Sphere of Applications

Giving a list of examples, I describe next the increasing sphere of areas where 
modelling, simulation and intelligent systems are a crucial vehicle of development. 
The examples illuminate the educational challenge. Students, who are trained 
to be teachers, should be given the opportunity of obtaining an overall understan-
ding of mathematical technology and industrial mathematics to give them a flavour 
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of the role of mathematics in this modern world. References (Bonilla et al. 
2008; Di Bucchianico et al. 2006; European Consortium for Mathematics in 
Industry) provide more detailed descriptions of mathematical technology and com-
putational engineering. In many cases, mathematics itself is known, but the novelty 
is implementation of mathematical models and modern computation in ways that 
were not possible 20 years ago.

Economics and management. The daily functioning of our modern society is based on 
numerous large-scale systems. Examples are transportation, communication, energy 
distribution and community service systems. The planning, monitoring and manage-
ment of these systems offers a lot of opportunities for mathematical approaches.

Corporate management uses methods in which mathematical knowledge is embed-
ded at different levels. Econometric models are used especially in the banking sector 
to describe the macro level changes and mechanisms in the national economy. Risk 
analysis, game theory, decision analysis, etc., are used to back up strategic decisions, 
design a balanced financial strategy or optimise a stock portfolio. The images below 
represent time series of electricity price variation and the level of water storage in 
a certain geographic area of an integrated energy market. Modelling attempts are 
needed to understand the mechanisms leading to these fascinating and intricate 
stochastic phenomena in energy markets (Fig. 47.1).

Performance analysis: manufacturing systems. The added value in using mathemati-
cal methods comes from the possibility of simulating devices, mechanisms, and sys-
tems prior to their physical existence. A whole new system – like an elevator system 
in a high-rise building, a microelectronic circuit containing millions of elements or a 
high-tech manufacturing system – can be designed and tested for its performance and 
reliability. Simulation of multibody systems and integrated design of complex mecha-
nisms are examples where computational modelling means real competitive 
advantage.

Chemical reactions and processes. Chemical processes are being modelled on 
various scales. In the study of molecular level phenomena, mathematical models 
are used to describe the spatial structures and dynamical properties of individual 
molecules to understand the chemical bonding mechanisms etc. Chemical factories 
use large models to monitor the full-scale production process. Increasingly impor-
tant are environmental monitoring benefits from models of biochemical processes. 
The control of microbial processes is quite crucial and adds to the complexity. 
Food chain security issues and ecological sustainability are becoming major 

Fig. 47.1 Electricity price variation and the level of water storage
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global problems and there is a demand for sophisticated models. Genomic research 
and pharmaceutical product development are based on modelling of dynamics of 
macromolecules, analysis of chemical reaction kinetics and ingenious analysis of 
astronomic volumes of experimental data.

Flow phenomena. The ability to model sophisticated phenomena, including 
non-linear effects, the possibility to solve the equations with advanced numerical 
methods, combined with the latest visualisation tools have created a luxurious envi-
ronment for mathematical engineering. The computational simulation can be used to 
support the design of systems from tooth paste tubes, regional heating  networks and 
aircraft fuselage design to ink-bubble printers. Examples are river flow models that 
are used for flood control and forecasting, planning of hydropower systems and 
waterways. An estuary model may be needed to understand how the saline water 
from the sea is penetrating a river estuary. The model should predict the salt concen-
tration and depth of the penetration upstream (Figs. 47.2 and 47.3).

Systems design and control. The design engineers and systems engineers have 
always been active users of mathematics in their profession. The possibility to set 
up realistic large-scale system models and the development of modern control 

Fig. 47.2 River flow
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theory has made the computational platform a powerful tool with new dimensions. 
Remote control of traffic systems, monitoring and maintenance of power trans-
mission networks, control of windmill farms would be such examples. In traffic 
systems, the analysis of traffic flow, scheduling, congestion effects, planning of 
timetables, derivation of operational characteristics, air traffic guidance systems 
and flight control need sophisticated models. The illustration in Fig. 47.4 describes 
measurement data from a paper mill where the thickness of a 1,500 m long a paper 
web has been measured with high precision. The image is actually the product of a 
simulation model that mimics the actual performance of the paper machine.

The media and entertainment industry is a heavy user of mathematical models. 
Visualisation techniques, special effects and simulated motion of virtual reality are based 
on a multidisciplinary approach using mathematics, mechanics and computing power. 
An example could be the sympathetic character of Gollum from The Lord of the Rings 
movie. The odd and alien skin of the character was created by a technique of simulated 
subsurface scattering, a combination of modelling, physics of light reflection and com-
puting skills. The image is found at www.ew.com/ew/article/0,,702019,00.html.

Measurement technology, signals and image analysis. The computer and the 
advanced technologies for measurement, monitoring devices, camera, microphones, 
etc., produce a flood of digital information. The processing, transfer and analysis 
of multivariate digital process data have created a need for mathematical theory 
and new techniques. Examples of advanced measurement technologies are mathe-
matical imaging applications. Applications range from security and surveillance 
to medical diagnostics, recognition of harmful mould spores in air quality samples 
or bacteria from virological cell cultures. Modern theory of inverse problems is 
applied in improving the imaging in dental tomography. So called Bayesian 
stochastic models are a key to these improvements (Fig. 47.5).

4  Modelling as a Course Subject

Many departments have introduced modelling courses in the curriculum in recent 
years. A course in modelling may contain study of case examples, reading texts and 
solving exercises. The actual challenge and fascination is the students’ exposure to 
open problems, addressing questions arising from real contexts. The real world 
questions may be found from the student’s own fields of activity, hobbies, summer 

Fig. 47.4 Paper web quality simulation
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jobs, from the profession of their parents etc. Reading newspapers and professional 
magazines with a mathematically curious eye may find an idea for a modelling 
exercise. A good modelling course should:

(a) Contain an interesting collection of case examples that stir students’ curiosity.
(b) Give an indication of the diversity of model types and purposes.
(c) Show the development from simple models to more sophisticated ones.
(d) Stress the interdisciplinary nature, teamwork aspect, communication skills.
(e) Tell about the open nature of the problems and non-existence of ‘right’ solutions.
(f) Help to understand the practical benefits of the model.
(g) Tie together mathematical ideas from different earlier courses.

One of the innovative educational practices introduced in the recent decades is 
the  ‘modelling week’, an intensive problem-solving workshop that simulates real 
life research and development procedures. The cases originate from industry, dif-
ferent organisations or branches of society. The teams are guided by a group of 
academic staff members who play the role of the problem owners. The students 
must formulate a model and recognise the typically non-unique mathematical prob-
lem. The analysis follows leading to analytical studies and efforts on numerical 
solutions. Typically the group arrives at an approximate solution. At the end of the 
week, the student groups present their findings in public. Further, they are assumed 
to produce a written report to be published in a proceedings booklet.

5  Modelling Problems to Challenge Undergraduates

Figure 47.6 describes a city network of water pipes, water storages and wells. 
Assume that some harmful contamination enters the network at some point. 
Describe by a model the spread of the pollution concentration in the network. The 
next question could be to evaluate certain attempts to clean the system.

Non-trivial modelling examples can be created by unusual pendulum variations 
like the one illustrated in Fig. 47.7. Describe the system behaviour. Study the 
system equations limit as the radius of the obstacle goes to zero.

Fig. 47.5 Dental tomography
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A metal chain or rope is laid on a floor. One end is slowly lifted off the ground. 
Find the shape of the chain. Try to model the movement of the point where the 
chain is detached from the floor. This is a so called moving boundary problem, and 
far from trivial (Fig. 47.8).

Fig. 47.6 City water  
network

Fig. 47.7 Pendulum with 
an obstacle

Fig. 47.8 Chain lifting, 
moving boundary
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The following example is a true problem in the timber industry. Logs are cut into 
different wood products of standards sizes. Given the measurements of the various 
standard products and the diameter of the log, the challenge is the optimal strategy 
to cut the log (Fig. 47.9).

6  Modelling Education: How Much and When?

Today’s technology agenda and the challenge of knowledge-based society indicate 
the importance of teaching mathematical modelling at various levels of education. 
Does this support the idea that modelling education should be promoted for all 
children at all school levels? How much, in what way and when?

The skills of mathematical modelling mean an essential competence which is 
needed in many science-related fields, technology, engineering, economics, bio-
medical professions etc. Modelling means a set of specialised science-based skills 
that can be compared with the expert skills of, let us say, airline pilot and brain 
surgeon. Our society really needs these skills but we do not arrange minicourses for 
airline pilots and surgery at primary school levels. This somewhat provocative 
statement is meant to emphasize the important question of how mathematical mod-
elling should be inserted into the educational system.

The overall understanding of mathematics in today’s world should be explained 
in the mathematics classroom. Examples from applications should be used as fer-
mentation of the learning process. The joy of problem solving and the use of math-
ematics for real life situations is an ideal way to build interest and enthusiasm. The 
right timing and pedagogical guidelines are important. The phrase of Prof. Helmut 
Neunzert at ICTMA14 “…modelling can be learnt but not taught in a usual way” 
contains an important message. Educational fashions or New Math reforms some-
times tend to drift to overdrive or hype.

Fig. 47.9 Log cutting 
optimization
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Teacher training is a key question. The new generation of mathematics teachers 
should have a sound overall understanding of the important role of mathematics in 
today’s world so that he or she can bring to the classroom a flavour of the fascinat-
ing special skills of mathematics, modelling, simulation and computing. The chil-
dren hopefully will become aware of several new professional career opportunities 
in the field of science-based professions where mathematical models are the mod-
ern space-age toolkit.
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Abstract The chapter compares a variety of models from biomathematics and 
bioinformatics of the spread of severe acute respiratory syndrome (SARS) that hit 
dozens of countries worldwide in 2003. It also investigates students’ and lectur-
ers’ opinions regarding differences in predictions from three different models. All 
models were based on the real data for Hong Kong published by the World Health 
Organization (WHO). Although the models were based on the same data, they gave 
very different predictions of the spread of the disease. The models were discussed 
with two groups of people: undergraduate students majoring either in engineer-
ing or applied mathematics and university lecturers who teach mathematics or 
mathematical modelling courses. In this chapter we present, analyze, and compare 
responses to the same questionnaire given to the two groups.

1  Introduction and Framework

Mathematical modelling is a complex process consisting of a number of interrelated 
steps. Many researchers and practitioners consider skills in mathematical modelling to 
be different from skills in mathematics. George (1988) states that “model building is 
an activity which students often find difficult and sometimes rather puzzling. The 
process of model building requires skills other than simply knowing the appropriate 
mathematics” (George 1988). Modelling “can be learnt but not taught in a usual way” 
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(Neunzert and Siddiqi 2000). Relationships between mathematical competencies of 
students and their skills in modelling were investigated in Galbraith and Haines (1998). 
Caron and Belair in their exploratory study (2007) examined the phases of the mathe-
matical modelling process that received greater attention from undergraduate students 
and the competences that were displayed in each phase. They suggested that “some 
modelling heuristics should be explicitly taught.” They also suggested that “more time 
should be spent discussing the purpose of a model: this would help students clarify the 
expected outcome and benefits of each stage” (Caron and Belair 2007).

In many cases a major purpose for doing mathematical modelling of a pheno menon 
is to make predictions. Taking into account uncertainty and a variety of possible models 
and a number of assumptions in each model, the task of prediction cannot have the 
‘correct’ answer. This fact alone can confuse many students. This chapter investigates 
students’ opinions regarding differences in predictions from three different models 
based on the same real data. The task given to the students might look very simple. They 
neither needed to build a model nor solve the given models. All they needed to do was 
to read the given real life problem, look at the predictions from three different models 
and give their reasons for the differences in the predictions. We tested one of the model-
ling competences described by Kaiser in (2007): “Relating back to the real situation and 
interpreting the solution in a real-world context”. We also gave the same task to univer-
sity lecturers who teach mathematics or mathematical modelling courses. Our idea was 
to compare the responses of the students and lecturers. The main research question was 
to investigate possible patterns within each group and also similarities and differences 
between the two groups when they do the same modelling task. In particular, to which 
extent the two groups use their intuition, common sense and past experience explaining 
the differences in predictions from three familiar models.

The theoretical framework of this study was based on the works of Haines and 
Crouch (2001, 2004). A measure of attainment for stages of modelling has been 
developed in (Haines and Crouch 2001). The authors expanded their study in 
(Crouch and Haines 2004) where they compared undergraduates (novices) and engi-
neering research students (experts). They suggested a three-level classification of the 
developmental processes which the learner passes in moving from novice behaviour 
to that of an expert. One of the conclusions of that research was that “students are 
weak in linking mathematical world and the real world, thus supporting a view that 
students need much stronger experiences in building real world mathematical world 
connections” (Crouch and Haines 2004). This was consistent with the findings from 
the study by Klymchuk and Zverkova (2001) on possible practical, not cognitive 
reasons for students’ difficulties linking mathematics and real world. Referring to that 
study Crouch and Haines wrote: “…students across nine countries all tended to feel 
that they found moving from the real world to the mathematical world difficult 
because they lacked such practice in application tasks” (Crouch and Haines 2004).

We believe that doing even simple mathematical modelling activity can be 
beneficial for students. We agree with Kadjievich who pointed out that “although 
through solving such … [simple modelling] … tasks students will not realize the 
examined nature of modelling, it is certain that mathematical knowledge will 
become alive for them and that they will begin to perceive mathematics as a human 
enterprise, which improves our lives” (Kadijevich 1999).
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2  The Study

2.1  The Models

Infectious diseases hit mankind from time to time on a large scale. In the  
mid-fourteenth century, the Black Death plague epidemic killed one-third of the popula-
tion of Europe – 34 million people. In 1563, up to half of the population of London died 
from the Bubonic plague. In 1918 the Spanish Flu pandemic killed, by different estima-
tions, from 50 to 100 million people worldwide (Patterson and Pyle 1991). An esti-
mated 500 million people were infected. In 1957 the Asian Flu killed up to 4 million 
people. In 2003 a new highly infectious disease Severe Acute Respiratory Syndrome 
(SARS) spread rapidly around the world. In March 2003 the WHO, for the first time 
in history, issued a global warning about the disease. Globally 8,422 people were 
infected and 916 died. Hong Kong was one of the countries that was hit most by the 
disease: 1,755 people were infected and 299 died. “Predicting the trend of an epidemic 
from limited data during early stages of the epidemic is often futile and sometimes 
misleading. Nevertheless, early prediction of the magnitude of an epidemic outbreak 
is immeasurably more important than retrospective studies” (Hsieh et al. 2004). Two 
common types of epidemic models were used to analyze the spread of SARS in Hong 
Kong. The first type was a long-established susceptible-infected-recovered (SIR) 
model and its modifications. The model was developed by Kermack and McKerdrick 
(1927). The fixed population N is divided into three distinct groups: Susceptible (S) 
(those at risk of the disease), Infected (I   ) (those that have it), and Removed (R) (those 
that are quarantined, dead or have acquired immunity). That is: N = S + I + R. The 
model is represented by the following system of differential equations:
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where r > 0 is the infection rate and 0 < a < 1 is the removal rate.
A typical prediction from this model based on the first 30 days since WHO 

started publishing daily reports for Hong Kong was given in Shi and Small (2003). 
The predicted number of infected people was 1,700 versus 1,755 in reality. So the 
deviation was only 3.1%.

The second model was a relatively new Small-World (SW) network model. 
The concept of the SW model was imported from the study of social networks into 
the natural sciences by Watts and Strogatz (1998). As a full epidemic network in 
Hong Kong was not available, numerical simulations were applied to construct an 
epidemic chain based on social contacts. The model was established on a grid network 
weaved by m parallel and m vertical lines. Every node in the network represented a 
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person. The value of m was 2700 for the population 2 67.29 10 .N m= = ×  The model 
predicted 1,830 cases, so the deviation was 4.3% (Shi and Small 2003).

Public measures were very important in controlling the epidemic. If the epidemic 
was allowed ‘to run its natural course,’ in other words, to die down by itself, up to 
several million people would fall victim to SARS in Hong Kong alone. An epi-
demic will die down only when the basic reproductive number (number of people 
infected by a patient) is less than 1. This can be achieved only in two ways: when 
herd immunity is high enough (natural course of events), or when effective public 
health measures limit the spread of the epidemic.

Apart from complicated mathematical models, three easier models – linear, 
exponential and logistic – were used for the analysis of the epidemic. These models 
were offered as a student project in calculus in Hughes-Hallett et al. (2005). 
Although the models were based on the same data reported in March 2003, they 
gave very different predictions of the spread of the disease for June 12, 2003 
when the last case was reported in Hong Kong. We decided to ask two groups of 
people – students and lecturers – about their opinions on the differences in predic-
tions from these three familiar models in an unfamiliar (for students) context. 
Below is the questionnaire given to the participants of the study.

2.2  The Questionnaire

The questionnaire took the following form:

Please read the case below and answer the questions. You don’t need to 
solve anything.

Models of the Spread of SARS

In 2003 a highly infectious disease SARS spread rapidly around the world. 
Predicting the course of the disease – how many people would be infected, 
how long it would last – was important to officials trying to minimize the 
impact of the disease. A number of mathematical models of the spread of 
SARS were developed to make the predictions. Below are three simple mod-
els of the spread of SARS in Hong Kong. We measure time t, in days since 
March 17, the date the World Health Organization (WHO) started to publish 
daily SARS reports. Let P(t) be the total number of cases reported in Hong 
Kong by day t. On March 17, Hong Kong reported 95 cases. We compare 
predictions for June 12, the last day a new case was reported in Hong Kong 
(87 days since March 17). The constants in the differential equations were 
determined using WHO data from 17 to 31 March (15 days).

(continued)
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A Linear Model 
d

30.2
d

P

t
= , P(0) = 95. The prediction for June 12 was 2,722 

cases.

An Exponential Model 
d

0.12
d

P
P

t
= , P(0) = 95. The prediction for June 12 

was 3,249,000 cases.

A Logistic Model 
d

(0.19 0.0002 )
d

P
P P

t
= − , P(0) = 95. The prediction for June 

12 was 950 cases.

The actual number of cases on June 12 was 1,755.

Questions:

 1. What were possible reasons for the differences in the predictions from the 
three models above?

 2. On what were your reasons from question 1 based (e.g. your experience 
in modelling, common sense, etc.)?

 3. What could make the predictions more accurate?
 4. Are you interested in learning more about epidemic modelling and possibly 

doing research projects in this area (e.g. modelling the spread of swine flu)? 
Why?

3  The Responses

3.1  Students

The students’ group consisted of first-year undergraduate students majoring in 
engineering from a German university and second and third year students majoring 
in applied mathematics from a New Zealand university. Ninety questionnaires were 
distributed over 2009 and 2010. Forty-eight responses were received so the response 
rate was 53%. It was a self-selected sample. We systematized and grouped students’ 
answers into different categories according to the nature of their responses. We 
used either the key words or exact quotes to name the categories. Some students 
gave multiple responses to some of the questions and some students did not answer 
all the questions. The students’ categorized responses are presented below.

1. What were possible reasons for the differences in the predictions from the three 
models above?

  Different models (16), lack of biological factors (10), different ideas of the speed 
of spread (8), isolation of infected people (8), population density (6), different 
assumptions of cases per day, report of cases is not correct (3), different infection 
rates (3), counter actions, for example pharmaceuticals, different side conditions 

(continued)
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(1), different assumptions for each model (1), probability of onset (1), people 
developed immunity (1), the predictions are theories, which are different from 
the reality (1), not enough data (1).

 2. On what were your reasons from question 1 based (e.g. your experience in 
modelling, common sense, etc.)?

  Common sense (19), mathematical knowledge and experience in modelling (7), 
both modelling experience and common sense (3), the given information (1), 
idea of spread of disease (1), I have never seen such problems in [a] mathemati-
cal context before, so I don’t know exactly, how to solve it (1), reality, never a 
constant number of persons will be sick (1), my knowledge about curves of 
elementary functions (1).

 3. What could make the predictions more accurate?
  Use experiences from studies of other epidemics, in other regions (14), use more 

data (7), more knowledge of the virus (3), look for preventive steps, compulsory 
registration (2), improve data collection (1), average value of cases from 7 days 
(1), a constant showing the rate of infections (1), side effects like number of 
travellers to and from Hong Kong (1), information of medical doctors or scien-
tists for the course of disease (1), a study of people behaviour and their health 
state (1), more facts (1), evaluation of the models (1), the logistic model looks 
more realistic and it could be improved by using more variables (1), set up a limit 
of resources (1), adjust the models results to the reality all the time (1), compare 
the first 2–3 days to find the initial condition (1).

 4. Are you interested in learning more about epidemic modelling and possibly doing 
research projects in this area (e.g. modelling of the spread of swine flu)? Why?

  Yes – 4. An interesting topic (4), important for the science on viruses (2).
No – 39. Not my area of interest (18), lack of time (8), this is only making 

panic (3), don’t see the point to play with numbers or equations which are not 
correct (2), it is going to have too many factors and the predictions may not be 
that reliable (1), not enough knowledge in mathematics (1).

3.2  Lecturers

The lecturers’ group consisted of university lecturers from different countries who 
teach mathematics or mathematical modelling courses. Some of them were involved 
in research on teaching mathematical modelling and applications. Some of the 
lecturers were from the same universities as the students participated in the study. 
Thirty-eight questionnaires were distributed over 2009 and 2010. Twenty-three 
responses were received so the response rate was 63%. It was a self-selected sample. 
We systematized and categorized the lecturers’ answers in the same way as the 
students’ answers. The lecturers’ categorized responses are presented below.

 1. What were possible reasons for the differences in the predictions from the three 
models above?
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  The models (19), different ideas of the spread of the disease, certain factors were 
not considered (2), the models were developed for other epidemics, SARS does 
not fit (1), the assumptions are not the same in all three models (1), did not con-
sider the spread style of the disease (1), infinite number of predictions exist (1).

 2. On what were your reasons from question 1 based (e.g. your experience in 
modelling, common sense, etc.)?

  Experience in modelling (13), common sense (5), both modelling experience 
and common sense (3).

 3. What could make the predictions more accurate?
  More data (6), a better model (3), better parameter estimation (3), knowledge 

about infection mechanism and other factors e.g. travelling routes, social pat-
terns (2), more accurate analysis of influencing factors (2), a deeper understand-
ing of how infectious disease spreads (1), the parameters in all the models must 
be the same (1), distribute the observing time in intervals and use different mod-
els in different intervals (1), use learning methods (1).

 4. Are you interested in learning more about epidemic modelling and possibly 
doing research projects in this area (e.g. modelling of the spread of swine flu)? 
Why?

  Yes – 14. Because I work in a similar field, overlapping in research (2), inter-
ested in modelling real-life situations to get a grip on it (2), it is important to 
learn about this modelling since nowadays the disease is increasing (1), interesting 
subject for my students MS theses (1), modelling of real things is fascinating 
(1), I am always thrilled how a model helps us in understanding a process and 
forecasting future data (1), important and relevant area to see maths applied 
(1), most important in considering today’s swine flu, it is a fascinating subject to 
consider modelling, teachers and students would be motivated by both the 
mathematics and the consequences for cities and countries to consider (1).

No – 8. Not my subject (3), no time (2).

3.3  Analysis of the Responses

After consultations with professional mathematicians specialising in epidemic 
modelling we estimated percentages of appropriate answers to questions 1 and 3 in 
both groups. The results are presented in the table below. ‘CS’ means ‘common 
sense’ and ‘Exp’ means ‘experience’ (Table 48.1).

Table 48.1 Summary of the findings from the questionnaire

N

Question 1 Question 2 Question 3 Question 4

Appropriate CS Exp Both Other Appropriate Yes No

Students 48 73% 56% 20%  9% 15% 74%  9% 81%
Lecturers 23 92% 24% 62% 14%  0% 90% 64% 36%
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The majority of the students had no or very little experience in mathematical 
modelling. The closest activity to real mathematical modelling for them was solv-
ing application problems. To our surprise the students did quite well in both model-
ling questions 1 and 3. They were not much behind the lecturers, giving 73% 
appropriate reasons for the differences in the predictions from the models versus 
92% given by the lecturers. They were not much behind the lecturers giving 74% 
appropriate ways to improve the accuracy of the predictions in the models versus 
90% given by the experts. This is consistent with the findings of Haines and 
Crouch (2001, 2004) where the researchers found that sometimes novices exhi bited 
aspects of expert behaviour although they were not consistent in doing so. In par-
ticular, in their study on self-assessment and tutor assessment they found that stu-
dents were almost as good as tutors in assessing group (project) presentations on 
modelling and so they could recognize modelling behaviour in others. It is the 
consistency that demonstrates expert behaviour that perhaps the differentiates 
lecturers.

In question 2 the reverse polarity on the answers by the students and the lecturers 
was anticipated: the students relied more on common sense (56%) rather than on 
experience (20%) compared to the lecturers (24% on common sense and 62% on 
experience). Apart from lack of modelling experience by the students, one of 
 possible reasons for this reverse polarity might be elements of the lecturers’ 
 behaviour where they were reluctant to attribute their responses to common sense, 
preferring to classify them as experience. After all they have invested a great deal 
of time in mathematics/modelling.

Based on the participants’ comments in the questionnaire and follow-up inter-
views with some of them, we attempted a comparison of the processes used by the 
students and the lecturers in terms of links between the mathematical world and the 
real world in a similar way to that done by Crouch and Haines (2004). We took the 
first “level (a) where there was clear evidence that the participants took into account 
the relationship between the mathematical world and the real world” (Crouch and 
Haines 2004). The students referred explicitly to that relationship in 65% of cases 
(though not always in a correct way) whereas the lecturers in 20% of cases. The 
lecturers tended to concentrate more on the mathematical aspects of the models 
probably implicitly assuming that relationship. One of the possible reasons might 
be that the lecturers used their experience in modelling and knowledge in mathe-
matics much more than their common sense whereas the students relied more on 
their common sense and life experiences, lacking the experience in mathematical 
modelling.

In question 4 very few students (9%) reported that they were interested in doing 
a research project in epidemic modelling. This was understandable taking into 
account that the majority were majoring in engineering. The lecturers were more 
enthusiastic in doing research in epidemic modelling (64%), mostly because of the 
importance of the topic and/or relevance to their current research. The lecturers also 
indicated that the topic was very useful for teaching purposes because it was timely 
and could increase students’ motivation.
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4  Conclusions

This study indicates that in spite of lack of experience in real mathematical model-
ling, students can effectively use their common sense and general knowledge of 
mathematics to evaluate some modelling issues dealing with prediction. The 
responses at a more general level indicated that both students and lecturers would 
have preferred to include more parameters in the model to make the modelling 
more realistic and intuitive, that is, to have a theoretical basis for the modelling that 
included hypothetical rates of spread, infection mechanisms, etc. It is possible that 
engineering students, in particular, would have engaged more with the modelling 
exercise if they saw it as a parameter optimisation problem so that the model was 
both explanatory and predictive.

We are very aware of the limitations of the study. It was intended as a pilot study 
to check our assumptions and share the findings with the mathematics education 
community. Future work should explore students’ and lecturers’ (i.e., novices and 
experts according to Haines and Crouch 2004) responses to more sophisticated 
mathematical models that allow for the adjustment of parameters to optimize the 
output from the model.

Acknowledgements We would like to express our gratitude to Professor Chris Haines from City 
University, UK for his help with analyzing participants’ responses.

References

Caron, F., & Belair, J. (2007). Exploring university students’ competences in modelling.  
In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): 
education, engineering and economics (pp. 120–129). Chichester: Horwood.

Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and 
the mathematical world. International Journal on Mathematics Education in Science and 
Technology, 35(2), 197–206.

Galbraith, P., & Haines, C. (1998). Some mathematical characteristics of students entering applied 
mathematics courses. In J. F. Matos et al. (Eds.), Teaching and learning mathematical model-
ling (pp. 77–92). Chichester: Albion.

George, D. A. R. (1988). Mathematical modelling for economists. London: Macmillan.
Haines, C., & Crouch, R. (2001). Recognizing constructs within mathematical modelling. 

Teaching Mathematics and Its Applications, 20(3), 129–138.
Hsieh, Y., Lee, J., & Chang, H. (2004). SARS epidemiology modeling. Emerging Infectious 

Diseases, 10(6), 1165–1167.
Hughes-Hallett, D., Gleason, A., McCallum, W., et al. (2005). Calculus: Single and multivariable 

(4th ed.). Hoboken: Wiley.
Kadijevich, D. (1999). What may be neglected by an application-centred approach to mathematics 

education? Nordisk Matematikkdidatikk, 1, 29–39.
Kaiser, G. (2007). Modelling and modelling competences in school. In C. Haines, P. Galbraith,  

W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and 
economics (pp. 110–119). Chichester: Horwood.



498 S. Klymchuk et al.

Kermack, W. O., & McKerdrick, A. G. (1927). Contribution to the mathematical theory of 
epidemics. Proceedings of the Royal Society of London. Series A, 115, 700–721.

Klymchuk, S., & Zverkova, T. (2001). Role of mathematical modelling and applications in 
university service courses: An across countries study. In J. F. Matos, W. Blum, S. K. Houston, 
& S. P. Carreiara (Eds.), Modelling and mathematics education: ICTMA-9: Applications in 
science and technology (pp. 227–235). Chichester: Horwood.

Neunzert, H., & Siddiqi, A. H. (2000). Topics in industrial mathematics. New York: Springer.
Patterson, K. D., & Pyle, G. F. (1991). The geography and mortality of the 1918 influenza 

pandemic. Bulletin of the History of Medicine, 65(1), 4–21.
Shi, P. and Small, M. (2003). Modelling of SARS for Hong Kong. Populations and Evolution. 

http://arxiv.org/abs/q-bio/0312016. Accessed 13 Sep 2009.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393, 

440–442.



499

Abstract In this chapter I propose a method to display mathematical modelling 
progress by using response analysis mapping. I focus on components that are con-
structed for each model created by the modeller. In addition, I identify components 
of the modelling based on each modellers’ prior experiences; components based 
on real experiences (CRE) and components based on mathematical experiences 
(CME). As a case study to illustrate the method, the attempts of two modellers are 
compared. Links between CRE and CME during modelling have been confirmed 
by this method.

1  Introduction

The schema of mathematical modelling in modelling literature indicates an ideal 
modelling cycle, and procedures for progressing through the processes for success-
ful problem-solving. Mathematical modelling attempts are not always successful, 
so it is important for researchers/teachers to gain insight into actual mathematical 
modelling progress. It is difficult to capture the essence of such progress because it 
is different for each modeller. Borromeo Ferri (2007) focussed on the mathematical 
modelling progress of individual modellers calling their overall attempts “model-
ling routes”. From a cognitive perspective she identified mathematical thinking 
styles and modelling routes based on the modelling cycle by Blum and Leiß (2007). 
In this chapter, I focus on components that are constructed in each model created 
by individual modellers. So I propose to display mathematical modelling progress 
by using the method based on response analysis mapping (Stillman 1996; Stillman 
and Galbraith 1998) for viewing the whole progress of an attempt.
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2  Components Based on Experiences

In mathematical modelling, the experiences of one modeller are different from 
those of another. These can be used to control the solution path as one of the sup-
ports to the final solution (Busse and Kaiser 2003; Stillman 2000). For example, 
when a certain person faces some problem, he or she may recall a situation where 
he or she has solved a similar mathematics problem. Models constructed based on 
this situation are related to mathematics and prior knowledge taken into account in 
the models is based on mathematical experiences. On the other hand, when a cer-
tain person faces some problem, he or she may recall a real life situation. Models 
constructed based on this situation are related to reality, and components con-
structed in the models are based on real experiences. Thus, components based on 
the experiences of each modeller can follow two directions. Furthermore, it is pos-
sible to investigate modelling progress by visually displaying links between com-
ponents that are used to construct models using this idea. The aims of this chapter 
are (1) to identify components based on a modeller’s own experiences in order to 
display details of their mathematical modelling progress and (2) to describe how 
some components change during the mathematical modelling progress.

3  Applied Response Analysis Mapping as an Analysis Method

Response analysis mapping is one of the methods used for erroneous answer analy-
sis based on answer descriptions, and together with task analysis mapping as a 
means of the qualitative evaluation of learning (Biggs and Collis 1982; Biggs and 
Telfer 1987; Stillman 1996; Stillman and Galbraith 1998). A typical map is now 
described (see Fig. 49.1).

In my use of response analysis mapping, mathematical components (MC) are 
shown as cues or nodes indicated by ●, and non-mathematical components (RC) 
are shown as cues or nodes indicated by ○. These components used by modellers 
in their solution are distinguished by researchers from the written task response 
after solving ends. The interrelationships between components are shown by 
arcs. The processes that bind related components together are shown as nodes of 

Fig. 49.1 A typical 
applied response analysis 
map
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intersection of arcs on the way to a final result shown as ■. Thus the relations 
between components can be followed visually in a diagram. In the case of abandon-
ing the solving process, such nodes are shown with a right side bracket symbol ‘]’. 
We can trace modelling progresses from the upper left to the lower right on such 
a diagram.

In this study I itemize prior experiences of modellers and incorporate them into 
applied response analysis mapping. The objects recalled from prior knowledge are 
of two different types; firstly based on real world experiences and secondly based 
on mathematical experiences. In short I itemize all components in the form of prior 
experiences that each study participant used in his or her solutions that are made 
clear using the think-aloud method. In applied response analysis mapping, prior 
knowledge related with reality, that is components based on real experiences 
(CRE), are shown as cues or nodes indicated by Ⓞ. Prior knowledge related to 
mathematics, that is components based on mathematical experiences (CME), are 
shown as cues or nodes indicated by . The components indicated by ● or ○ are 
identified from worksheets, whereas the components indicated by Ⓞ or  are iden-
tified from protocols or responses in interviews. By incorporating CRE and CME 
into maps, it is possible to describe details of transition components that are not 
presented in the written response of the modeller.

By using applied response analysis mapping as a method to display mathemati-
cal modelling progress, it is possible to display relations or links between compo-
nents and processes during the construction of models. Modellers will sometimes 
carry out additional verifying or confirming of the progress of their solutions and 
this can be shown on the maps after the final node has been connected. An example 
of this will follow in Sect. 5.1.

4  Research Setting

The participants were asked to tackle an electronics problem using the think-aloud 
method so the researcher could follow each element of their mathematical model-
ling progress. The focus cases are a graduate school student, NT, majoring in physi-
cal science education and an electronics worker, KN. The data collection involved 
interviews after responses on worksheets were completed and transcriptions of 
think-aloud protocols. The investigation involved two stages. The questions and the 
procedures each time were as follows:

For the first investigation stage, the problem situation ‘How much brightness is 
needed to read a book?’ is located in a real situation in accordance with the math-
ematical modelling cycle. The participants tackled four questions; ‘(a) What is 
necessary to solve the problem situation?’, ‘(b) What kind of things did you imag-
ine on thinking about (a)?’, ‘(c) State a problem by using all or some of (a)’ and 
‘(d) Solve the problem that you stated for (c)’.

For the second investigation stage, the participants were interviewed by the 
researcher based on descriptions or protocols from the first stage. Using a lux 
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meter, each participant measured the brightness of the room where the investiga-
tion was carried out, and attempted to pose a problem with reference to the 
measured data. As additional information, they were presented with the sizes of  
the room and illumination standard for houses before tackling the questions.  
In this chapter the focus is the first investigation stage. In this stage the participants 
were required to tackle the problem situation and questions based on their own 
experiences.

5  Modelling Progress Using Applied Response  
Analysis Mapping

5.1  The Case of a Graduate School Student

The first participant, NT, was a graduate school student who had studied physical 
science education. The components of the mathematical modelling progress of NT 
are displayed by using the method of applied response analysis mapping in 
Appendix 1.

For questions (a) and (b), NT focused on light and selected components related 
with light as necessary cues (i.e., first to third in Appendix 1) to solve the original 
problem situation. Next he recalled two cues: the desk in his own room (i.e., his 
own house or the laboratory to which he belonged) and the room cue where he 
tackled the questions. He made the following comment:

04:58 Is it difficult to imagine the thing, which [is] only the thing that I have watched, 
only a certain thing around me? I think that it is this.

Thus, before posing a problem, NT pointed out several cues that were all related 
to reality except for the ‘numbers of lights’ (i.e., ‘light’ to ‘desk in the laboratory’ 
cues in Appendix 1).

For question (c), NT posed the following problem: ‘There is a desk right under a 
light A. Reading was made with less than 1 m distance from light A to the desk. Can 
you read a book now when you prepare for light B with half the brightness of light 
A if the distance of light B from the desk is less than what value in metres?’

When NT posed this problem, some of his prior knowledge of light was not 
related with the solving process (shown by use of ‘]’ in Appendix 1), and he made 
the following comments:

09:07 How much is readable far and wide if I light it more? Is such a problem good?
09:15 It [problem posing] does not come easily.

One problem set by NT was based on mathematics, namely the ‘distance 
between light and desk’ shown as  in Appendix 1. Prior knowledge (from 13th 
to 15th cues in Appendix 1) is related with reality and so shown as Ⓞ, but these 
cues are not used for checking the setting of the problem or reflecting on the 
solution.
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For question (d), NT applied his knowledge of physical science (e.g., brightness 
is inversely proportional to square) to solve the problem set in question (c). These 
components are CME shown as  and are linked to the final solution shown as ■.

12:22 …. The brightness of the light works for the area ratio of the circumference… It 
should be inverse proportion to square…

After solving the problem set in question (c) mathematically and finding the 
final result 1 / 2r = , that is, 0.7 times, NT recalled prior knowledge of an 
operating room cue related with reality. He explained this cue (CRE) by the  
following comments show:

20:52 … I think that I have heard such a story in physics….
21:09 … There are … an operating table … operating table, and there is a light then. The 
distance from a light to an operating table assumes that it is 1,000 luxes at the distance of 
1 m. It is a case under 2 m. In other words it is just a floor where there is the light of the 
operating table, and there is an operating table and the floor is said to be 1 m below. During 
the night, the illumination of the floor was said to decrease considerably.

These components are not used for solving the problem but are used to check 
whether the answer is right or not. In Appendix 1, the final two cues (‘operation table’ 
and ‘astral lamp’), shown as , are confirmed as linked to the final result shown as ■.

5.2  The Case of an Electronics Expert

The second participant, KN, was an electronics expert who worked in an electronics job. 
The components of the mathematical modelling progress of KN are displayed using the 
method of applied response analysis mapping in Appendix 2.

For question (a), KN divided the initial task into three groups of cues to consider 
(individual differences, lighting, and books) which are all non-mathematical.  
He discussed necessary components to solve the original problem situation:

11:18 About an element of the ambiguity that I just said as necessary things [referring to 
these cues], I think that [a] definite decision is necessary.

For question (b), KN wrote on the worksheet: ‘I can’t decide whether I apply a 
problem to general various people or it is not performed under the condition’. His 
own indecision is evident in the following comment:

19:11 Rather than a problem for calculation, I feel like a problem is demanded experi-
mentally through the piling up of data one by one.

Although the participants had to pose a problem based on the original problem 
situation for the first investigation stage, the participants would tackle such  
problems based on experimental data during the second investigation stage 
(Matsuzaki 2007).

For questions (c) and (d), KN used almost all the components raised in  
question (b) and set the following problem: ‘Find necessary brightness in each 
age group.’
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He made the following observations with regards to solving this problem:

43:02 I make five phases of indexes about brightness and make a questionnaire.
46:26 I handle it using statistical technique…

KN used some ideas based on his own job experiences as the following com-
ments show:

27:01 The case of the general type of house…The distance from roof to desk.
31:43 The illumination is fluorescent, and that is three wavelengths. Because the case 
used generally is three wavelengths…
32:50 The kind of the illumination is decided in the rating…

KN finished his solutions without coming to a final result, but he indicated the 
prospect for a mathematical solution; that is a statistical technique be used for a 
questionnaire, and to indicate this lines from 16th to 18th cues in Appendix 2 are 
drawn to the node labelled “accumulation of data”. After presenting this solution 
he focused on a large space that was different from the cues used until then.

48:08 When I think about the most suitable illumination, I had better think in space.

These components shown as the last two cues in Appendix 2 are related with 
mathematics (CME), but they are not used for checking or reflecting on solutions.

6  Discussion

The mathematical modelling progress can be displayed by using the method of 
applied response analysis mapping, which shows the influences of modellers’ own 
prior knowledge based on their own experiences. This prior knowledge has two 
aspects (CME and CRE). Especially CRE indicate prior learning experiences or job 
experiences, and it is shown that these are one of the components that are used to 
construct some models in modelling.

6.1  Focus on CRE

NT applied physical science knowledge in his mathematical modelling progression; 
for example, diffusion of light or relationships between distance and brightness. 
At this time he recalled some cues based on his prior experiences such as lighting 
instruments in an operating room. These CRE can be based on his current or prior 
experiences. The former CRE are ‘Fluorescents in this room’ and ‘Lamps in the 
room’ and the latter CRE are ‘My own light stand’ and ‘Desk in the laboratory’. 
The operating room cue is used for confirming that one of the roles of CRE is as 
a support of the interpretation of the presented situation (cf., Stillman 2000). Both 
CRE ‘operation table’ and ‘astral lamp’ are used to confirm results. CRE derived 
from the initial non-mathematical components, ‘light’ and ‘my own desk’, are ‘How 
much is readable if one approaches?’ and ‘How much is readable far and wide?’
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In contrast, KN applied his expertise in his electronics job, for example, standards 
of brightness and wavelengths of fluorescence. We are able to check that CRE are 
incorporated in lighting cues in his mathematical modelling. In his written response, 
KN noted that he used these features in his job and tried to solve the problem he posed 
with statistical knowledge and skills. Additionally, he limited the target RC to ‘Each 
age group from 10 generations to 80 generations’ when he attempted to make the 
questionnaire. He used his own illness, dry eyes, to limit the solution to people with 
‘not illness of eyes’. One of the characteristics of his modelling progress is to identify 
three cues, namely, individual differences, lighting and books. In particular, CRE in 
the lighting group of components (e.g., ‘Flicker’) are based on his electronics work.

6.2  Focus on CME

Finally I focus on prior knowledge related with mathematics. In the mathematical 
modelling progress of NT, the ‘light A’ components (CME) is the starting point for 
solving mathematically. This component is based on other components, namely 
two RC and two CRE. At this time, ‘light A’ is an independent component and 
‘light B’ (MC) is set as a dependent component. Additionally, prior knowledge 
of ‘inverse proportion to square’ cue (CME) is derived from ‘light’ component 
(RC) via ‘area ratio of the circumference’ cue (CME). In this way, NT constructed 
relationships between selected components in his modelling.

The mathematical modelling progress of KN used all components except two 
(19th cue and 20th cue in Appendix 2). ‘Distance between surface of books and a 
light source’ (CME) is a mathematical model that was derived from the connection 
between lighting cue and book cue, two of the three groups of cues he chose to con-
sider. On the one hand, some CME (e.g., ‘size of a pocket edition’) are reflected as 
components in the ‘questionnaire’, but on the other hand he does not use ‘large of 
space’ cue and ‘a six-mat room or eight-mat room’ cue related with mathe matics, that 
is, these components (CME) are not used for checking or reflecting on solutions. 
Thus cues related with mathematics might not always function within the solution.

7  Conclusion

In mathematical modelling, the prior experiences of a modeller can be used to 
control the solution path as one of the supports for the final solution (Busse and 
Kaiser 2003; Stillman 2000), but these components based on the experiences of 
each modeller can follow two directions. In this study I distinguished prior know-
ledge related with reality based on real experiences (CRE) from prior knowledge 
related with mathematics which is based on mathematical experiences (CME). 
In addition, I itemized prior experiences of modellers and incorporated them into 
applied response analysis mapping as an analysis method. By using this method, 
the influences of CRE and CME on modelling progress can be displayed, including 
how some of these components are used to construct some models.
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1  The Challenge

Mathematical modelling as an activity is absent from the implemented curriculum 
in most classrooms around the world, after the early years where counting is com-
monplace. Students are taught standard models and expected to apply them. To take 
some simple examples, proportional models are a major feature of middle-grade 
mathematics. Students are expected to solve problems like:

6 friends bought a six-pack of cola for $3.

How much should each of them pay?

However, in most textbook chapters on proportion, all the situations are indeed 
proportional. Students are rarely asked to identify whether the situation is one for 
which a proportional model is appropriate. They do not meet problems like:

If it takes 40 minutes to bake 5 potatoes in the oven.

How long will it take to bake 1 potato?

where the appropriate model depends on the type of oven1, let alone a situation 
like:

King Henry VIII had 6 wives.

How many wives did King Henry IV have?

– a fact with which modelling cannot help you.

H. Burkhardt (*) 
Shell Centre, University of Nottingham, Nottingham, UK 
e-mail: Hugh.Burkhardt@nottingham.ac.uk

Chapter 50
Modelling Examples and Modelling  
Projects – Overview

Hugh Burkhardt 

1 Constant, i.e., roughly 40 min, in a regular oven; Proportional, i.e., roughly 8 min, in a micro-
wave oven.

G. Kaiser et al. (eds.), Trends in Teaching and Learning of Mathematical Modelling, 
International Perspectives on the Teaching and Learning of Mathematical Modelling,  
DOI 10.1007/978-94-007-0910-2_50, © Springer Science+Business Media B.V. 2011
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Thus modelling presents teachers and students with a new kind of challenge. 
Students are accustomed to this – school is all about new challenges. However, 
modelling will take most teachers outside their comfort zone of professional exper-
tise. This chapter is focused on the various pedagogical and mathematical demands 
of teaching modelling and applications, and how teachers may be helped to respond 
to them effectively.

1.1  Analysis of the Challenge

In this book there are two papers with the emphasis on analysing the challenge 
modelling poses on teachers and students.

Barbara Schmidt looks at obstacles from the teacher’s perspective. What factors 
do they say are holding them back from introducing modelling into their class-
rooms? She reports on a questionnaire-based study of the views of 101 teachers, half 
of whom take part in training in teaching modelling. There were also in-depth 
interviews with six teachers. The questionnaire was administered four times over a 
year – before, during, and after the training period, and 5 months later. It was 
designed to probe 14 factors. Seven are related to the kinds of obstacle that Blum 
has described: organizational; pupil-related; teacher-related; and materials related. 
(The other seven, not analysed here, have a more positive focus – on the affordances 
that modelling provides).

The teachers’ responses identified three major factors that inhibit their teaching 
of modelling:

Ninety-seven percent mentioned the time that modelling problems require as an •	
obstacle, a view that was only slightly changed by training. This is  a generic 
problem – the learning of mathematical concepts also requires a process of 
reflection, building the connections that are essential for robust long-term 
understanding.
Before the training, 61% of the teachers said there was too little material avail-•	
able for them to use in the classroom; happily, this concern more or less  
disappeared during the training, for those who had it but not the control group. 
(This still leaves the issue of making these materials widely known to teachers, 
through training and other channels).
The third obstacle that teachers mentioned was the challenge of assessing per-•	
formance in modelling. Eighty-four percent of teachers mentioned it, and this 
view was not affected by the training. While teachers of history or first-language 
studies are accustomed to assessing essays and other forms of open writing, 
school mathematics is still dominated by “answers” that are correct or not.

The study notes the importance of teachers’ beliefs about mathematics itself, 
which many felt does not extend to modelling. As with any study of this kind, the 
overt responses may conceal some deeper discomforts, of the kind that everyone 
feels when required to extend their professional practice.
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Richard Cabassut and Anke Wagner compare French and German primary school 
textbooks, looking at the role that modelling plays in those curricula from an anthro-
pological perspective. They focus on the use of the term ‘modelling’, which is rare 
in the French primary context. They recognize that problem-solving in the primary 
school includes modelling, but they do not see both of these as strategic/process 
skills rather than ‘knowledge to be taught’. They argue that modelling is perhaps 
knowledge that is preparatory for the mathematics curri culum. That modelling is not 
‘knowledge to be taught’ presents challenges for teacher education.

1.2  Helping Teachers

Teachers face the biggest challenges when modelling is introduced into the 
curri culum. All teachers have a well-established pattern of professional practice 
involving a spectrum of ‘moves’ in the classroom that covers the situations they 
face day-by-day. For most teachers of mathematics, this spectrum does not cover 
all the skills that teaching modelling requires. These include the teacher:

Moving from a view of mathematics as a large set of separate “things to learn” •	
to seeing it as a well-connected set of concepts and skills that, used flexibly, 
enable you to solve problems and understand the real world better. (In the 
teaching of language, this would mean moving from seeing the language as a set 
of rules for spelling and grammar to a focus on reading and writing substantial 
pieces – a focus which, of course, all native language teachers have).
Moving from short item fragments of mathematics to tasks involving longer •	
chains of reasoning – with a teacher’s focus on students’ reasoning, not just their 
answers.
Giving students greater responsibility for their own and each others’ learning, •	
moving them into “teacher roles” like explaining their assumptions and assess-
ing each others’ reasoning.
Becoming a diagnostician and adviser rather than a source of answers and •	
summative right/wrong judgements – for modelling, it is an essential part of the 
students’ job to decide if their solutions and reasoning are correct (as in life).

Three of the papers in this chapter address these challenges, and the teacher 
education programmes that address them. All three relate to learning and  education 
in and through modelling and applications (LEMA), a Europe-wide professional 
development course focused on modelling.

Katja Maaß and Johannes Gurlitt describe the overall framework of the LEMA 
project and its evaluation. They outline the theoretical background, the design of 
the course and its evaluation, and the results.

The design of the course focused on the following theoretical ideas: modelling 
and its teaching, professional development of teachers, and their beliefs about self-
efficacy and about mathematics education – procedures and formalism, processes 
and application. These ideas were embodied in the five modules of the course. 
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These addressed, respectively, modelling, tasks, lessons, assessment, and reflection. 
The course was piloted in six countries.

The cross-country evaluation used a pre–post control group design, investi-
gating the following questions with the differences from the control group briefly 
noted here:

 1. Does the professional development course influence the pedagogical content 
knowledge of the teachers? Improvement.

 2. Does the professional development course influence teachers’ beliefs about 
mathematics education? No change.

 3. Does the professional development course influence teachers’ self-efficacy 
regarding modelling? Improvement.

 4. Does success in one dimension include success in another dimension (correla-
tional)? Results on 1–3 above correlated at about 0.5.

 5. How satisfied were teachers with the professional development course? High 
level of satisfaction.

The course was appreciated and had a positive effect on the teachers’ pedagogical 
content knowledge and modelling self-efficacy, without affecting their beliefs.

Geoff Wake looks at case-study data generated by five teachers as an ‘e-narrative’ 
of their work in their classrooms at the initial stages of introducing modelling 
activities in the UK context, which is heavily dominated by tests that do not include 
modelling. He seeks to identify the issues of concern to teachers as they attempt to 
change their pedagogic practices to include mathematical modelling and to draw 
conclusions for professional learning both in general, and in relation to modelling 
in particular. He uses cultural historical activity theory (CHAT), which provides a 
tool for understanding how the work of a collective, such as teacher and pupils in 
mathematics classrooms, is mediated by different factors. Success in mathematics 
(and English) tests of a school’s pupils at age 16 is crucial in the school’s annual 
performance measure, an important factor in seeing low-risk strategies in teaching 
mathematics. This manifests itself in classroom discourse and behaviour that 
focuses heavily on ‘the test’, with little in the way of assessing modelling sub-
competencies such as ‘interpretation’. It is in this culture that the teachers need to 
find the motivation to adopt new pedagogies that support modelling.

We see, through the lens of CHAT, that expansive professional learning in rela-
tion to teacher knowledge cannot be left to chance. The case studies suggest that, in 
general, professional learning requires the intersection of three important factors:

 1. The key personnel involved must have at least approximately aligned long term 
goals, and a professional expertise and understanding of the context that allows 
them to work within the rules of the system but adapt these to the benefit of the 
desired professional learning.

 2. A climate in which new or potentially emerging rules appear to mediate an 
expansion in the object of activity.

 3. Networks of personal relationships that facilitate ease of communication and 
boundary crossing.
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In the particular case of teacher development in relation to modelling, the case 
studies point to the teachers’ and students’ changing roles in the classroom as being 
of most concern to teachers as they first use modelling activities. This has important 
implications for those supporting such changes through facilitating professional 
development.

Javier García and Luisa Ruiz-Higueras use an anthropological approach to the 
analysis of teachers’ practices to study the changes resulting from the LEMA 
course in teachers’ practices involving modelling and applications. They consider 
the problem of initial teacher training and professional development (particularly in 
modelling and applications) as a problem of the teaching profession more than a 
teacher’s problem. They use the anthropological theory of didactics (ATD), which 
assumes that:

In order to understand how individuals act, we need to know first how the •	
institutions they belong to act.
Mathematics as a human activity requires the integration of the •	 practical with 
the theoretical aspects.

They argue that teaching modelling and applications is more than a problem 
that teachers face in their classroom; it should be considered a problem that the 
teaching profession faces due to systemic changes, in the way mathematics is 
being considered, in the new general aims assigned to schooling, and in the inad-
equate training of those responsible for developing the curriculum. The paper 
describes how this generates professional problems like: How can real contexts 
and situations be used in order to give meaning to mathematics? So, for example, 
teachers who like a modelling approach face didactical problems like: How can the 
ideas given in this textbook be restated to encourage students to explore ‘variables’ 
in real contexts?

LEMA offers teachers opportunities to develop their practice with a wide range 
of teaching techniques that support modelling, and to reflect and justify the why of 
these practices that is to develop their theoretical perspective.

1.3  Situations for Modelling

The final seven papers all present interesting and novel situations that have been 
used in the teaching and learning of modelling at high school or undergraduate 
level.

Hans Humenberger’s paper is concerned with a problem of interest and concern 
to most of us – how does Google decide where different websites appear in the list 
resulting from a search. He shows how this can be tackled at undergraduate level, 
using a wide range of mathematical techniques including directed graphs and tran-
sition matrices that embody the Markov process structure of the problem. The 
general approach can be realized in a more elementary form with a spreadsheet.
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Matthias Brandl describes an internet portal that offers modelling problems 
aimed at gifted upper high school students. He describes the results of an attitude 
survey which suggests that mathematically gifted and highly gifted students 
are (very) interested in applicability and therefore in word problems with 
connection to real world application. He presents two examples that emphasize 
modelling processes:

Using the context•	 2 of a champagne glass, which cone made from a circle of fixed 
radius has the greatest volume
How does the number of winners in a lottery depend on the number of •	
participants?

The first example involves straightforward algebraic modelling and the second 
more challenging probability theory.

Usha Kotelawala shows how basic models of reliability theory can provide moti-
vating problems for secondary students as they develop skill and understanding in 
probability and algebra within secondary mathematics. The author gives an outline 
of reliability theory, presented as a simple application of the probability, and gives 
simple examples such as:

Grandma called yesterday to ask you to help her hang holiday lights for the •	
winter season. Her lights are the old type of light strings. If one bulb fails, 
the whole string fails. The probability of each bulb working is 0.75. If one of the 
strings has only two bulbs (a short string for illuminating very small areas) what 
is the probability of the string working?
FlyCheap Airlines has only one route from London to Hamburg. Recently, the •	
company purchased a used 727 jet airplane having three engines. It can actually 
fly on just one engine. For each engine, the probability of it working over the 
course of the trip is 0.98. What is probability that the plane will be able to 
successfully fly? Find at least two different ways to determine your answer.

before moving onto more complex (both “series” and “parallel”) problems. As well 
as requiring reliable procedural skills (simple and complex substitution, expressing 
and simplifying polynomials, solving polynomial equations), the problems 
included opportunities for students to work on inductive reasoning for generalized 
models and the strategy of simplifying parts of a problem along the path to a larger 
solution.

Tetsushi Kawasaki and Seiji Moriya address the widespread concern in Japan at 
the estrangement of science from mathematics in the mathematical curriculum of 
Japanese senior high schools. For example, in order to connect mathematics to 
the fields of Newtonian physics through mathematical modelling, they provided 
concrete examples. The one described in some detail focused on ‘Kepler’s Laws’. 
First Kepler’s “data”, summarized in the first and second laws, is provided and 
analysed, with IT support. Then Newton’s second law and that of gravitation is 
described. The students focus on numerical solutions using Euler’s method, 

2 Nice but not directly relevant – they don’t make champagne glasses that way.
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confronting the error and stability issues. The evaluation suggests that this approach 
succeeded in increasing students’ knowledge about the laws with the simulation of 
planetary movements and, at the same time, their making of a “mathematical devel-
opment model”. It also suggests that mathematics materials involving physical 
perspectives are effective for senior high school students.

Mette Andresen and Asbjoern Petersen describe a study of upper secondary 
students in Denmark using technology in modelling chemical equilibrium, a context 
that integrates mathematical and chemical modelling.

‘Multi-disciplinarity’ was prescribed in Danish Upper Secondary Schools’ cur-
riculum by governmental regulations, with requirements centred on applications of, 
and reflections upon each subject. The revision of mathematics teaching is intended 
to support the students’ knowledge about ‘how mathematics adds to understanding, 
formulating and treating problems in different subject areas’ and to know about 
mathematical reasoning. The learning goals served as a basis for the design of 
multidisciplinary mathematics teaching.

This example is based on dynamic equilibrium in chemistry in which, for example, 
the two-way reaction comes to equilibrium when the forward reaction rate (propor-
tional to the concentrations of A and B) and backward reaction rate (similarly for 
the concentrations of C and D) become equal. The students worked on a project that 
involved both theoretical and experimental work, leading to written reports. These 
were analysed for their perceptions of modelling in a multi-disciplinary teaching 
environment. The authors found that there was little evidence of a focus on the 
modelling3. The reason for this are discussed.

Martin Bracke and Andreas Geiger describe in their paper experiences with a 
long-term teaching experiment, in which they included real-world modelling 
examples in regular lessons. They describe several challenging realistic tasks such 
as the design of a track for the German high-speed rail. They evaluated the tasks 
and showed that students were mainly interested and fascinated by this kind of 
modelling activities. The students reported that they had learnt modelling and 
sometimes even changed their attitude towards mathematics.

The paper by Gabriele Kaiser, Björn Schwarz and Nils Buchholtz reports on 
modelling activities with even more demanding authentic modelling problems in 
the framework of modelling weeks with students from upper secondary level. 
Students’ solutions to one demanding task, namely the development of infected 
lady bugs, were described and show that the students reached impressive solutions 
from a mathematical and real world perspective. Furthermore, the results of the 
evaluation point out that most of the students were deeply impressed by these kinds 
of authentic examples and really interested in these activities.

Both approaches show that ambitious modelling examples can be dealt with 
in mathematics teaching, but they require long-term processes, but then lead to 
unexpected high results.

3 This reflects earlier work that found that, when actual experiments are involved, making these 
work took most of the students’ attention, leaving little for scientific reasoning.
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Abstract This chapter presents an example of mathematics within a multidisci-
plinarity context, which took place recently in Danish upper secondary school. 
The case’s topic was modelling a system of chemical equilibrium in a solution of 
molecules and ions. The teacher deliberately focused on the intertwined mathemati-
cal modelling and chemical modelling, as a means to realize a multidisciplinary 
teaching perspective of the two subjects. The students’ written reports were analy-
sed with the aim to study different aspects of their perceptions of modelling, as a 
result of multidisciplinary teaching. Means and obstacles for support of modelling 
competency by multidisciplinary teaching are discussed.

1  Introduction

The construct ‘multidisciplinarity’ was prescribed in Danish Upper Secondary 
Schools’ curriculum by governmental regulations in 2005. The Ministry’s inten-
tions and requirements were centred on applications of, and reflections upon, each 
subject. The revision of mathematics teaching intended to support the students’ 
knowledge about ‘important aspects of the interplay between mathematics and 
culture, science and technology’. The students were also supposed to acquire 
knowledge about ‘how mathematics adds to understanding, formulating and treating 
problems in different subject areas’ and to know about mathematical reasoning. 
The learning goals served as a basis for the design of multidisciplinary mathematics 
teaching, which was also intended to result in knowledge that enabled the students 
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to competently take a position on the applications of mathematics and to pass 
further education involving mathematics. The design and potential for the use 
of multidisciplinary mathematics teaching, as well as the characteristics which 
differentiate it from interdisciplinary and transdisciplinary teaching, are further 
discussed in Andresen and Lindenskov (2008).

2  The Case

This chapter reports on the use of multidisciplinary teaching involving the subjects of 
mathematics and chemistry. The overarching topic was modelling a chemical equilib-
rium system in a solution of molecules and ions. This topic was chosen as an example 
of intertwined mathematical modelling and chemical modelling, with the aim to realize 
a multidisciplinary teaching perspective on modelling in both subjects. The core issue 
of the case was to study the students’ perceptions of models and modelling, developed 
during a teaching sequence where the teacher deliberately focused on the intertwining 
of modelling concepts from mathematics and chemistry. The aim of the study was to 
inquire whether multidisciplinarity as a construct was able to support students’ reflec-
tions about modelling and to support their modelling competencies in general.

In addition, the topic was also suitable for the study of the impact of technology 
use on students’ learning processes, since it provided the opportunity to combine 
the chemical and the mathematical modelling in a technological environment. Such 
a combination provided the opportunity to consider approximations and the use of 
technology, with elements of each of the four approaches mentioned in (Confrey 
and Maloney 2007, p. 57):

 1. Teach concepts and skills without computers and provide these technological 
tools as resources after mastery, i.e., to solve the systems of equations by hand 
and subsequently introduce the discussion of different approximations and the 
use of MathCad.

 2. Introduce technology to make patterns visible more readily, and to support math-
ematical concepts: in our case, the concept of the sets of solutions and how to 
choose between them was supported.

 3. Teach new content necessitated by a technologically enhanced environment; in 
our case handling systems of eight or more equations and unknowns.

 4. Focus on applications, problem solving and modelling and use the technology as 
a tool for their solution: this was the very aim of the equilibrium project.

The data for this study consisted of teaching materials (separated into a teacher’s 
part and a student’s part) prepared by the second author (Petersen 2009) who taught 
the class chemistry, the students’ written reports, and notes from informal talks with 
the second author. The teacher’s part of the teaching materials is of interest for our 
analysis because it articulates the intentions and reflections behind the choice of 
topics and the design of the complete teaching sequence. The students’ part of the 
teaching materials gives information about the expectations for their work, sup-
ported by details from the informal interview with the second author.
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3  Models of Chemical Equilibria

The teaching sequence studied here deals with chemical reactions in a solution of 
substances, where each solution simultaneously reaches equilibrium. And, as such, 
the bidirectional reaction proceeds with the same speed, thereby ensuring that the 
amount of each substance remains the same. The topic of interest then is to describe 
the chemical system at equilibrium with regard to the amount of each substance. 
This chemical system can be described in three, independent but closely related, 
ways: (1) by experimental modelling in chemistry, (2) by theoretical modelling in 
chemistry and (3) by theoretical modelling in mathematics.

Modelling the chemical system based on mathematical, chemical equilibrium 
theory takes as the starting point, that the composition of a system of chemical equi-
libria in a solution can be described by the actual concentration of molecules and ions 
contained in it. The relationship between concentrations may be written in a number 
of equations based on the law of mass action,1 the law of conservation of matter and 
energy2 and conservation of charge. Any mathematical model is intertwined with the 
chemical model in the sense that the mathematical model of the chemical equilibrium 
system must consist of a number of equations with the same number of unknowns 
(the unknown concentrations). The number of equations may correspond to the 
degree of accuracy of the model, but some approximations are better than others. 
Traditionally, approximations were needed for technical reasons when these systems 
of equations had to be solved by hand. Now it is possible to solve any solvable system 
of equations with the use of technological tools, which gives an opportunity for a 
discussion with the students about which are the appropriate approximations and 
why. A number of possible solutions are obtained by solving the system of equations; 
however, only one of these is acceptable from a chemical point of view. This fact, 
along with discussions regarding the approximations used, offers the potential for 
students’ to reflect on modelling in chemistry and in mathematics, and on the links 
between these two branches of modelling. The overall objective then is to support the 
students’ development of modelling competencies in mathematics and in chemistry.

3.1  Chemical Equilibria in Our Case

One example, used in our case, of a system suitable for inquiry is realised in dis-
solution of silver nitrate in aqueous ammonia. The system may, as described 
above, be modelled on different levels of complexity, depending on the number 

1 The law of mass action: When a reversible reaction has attained equilibrium at a given tempera-
ture, the reaction quotient (the product of the molar concentrations of the substances to the right 
of the arrow divided by the product of the molar concentrations of the substances to the left, with 
each concentration raised to a power equal to the number of moles of that substance appearing in 
the equation) is a constant. (Holtzclaw et al. 1984 p. 4).
2 The law of conservation of matter: During an ordinary chemical change, there is no detectable 
increase or decrease in the quantity of matter. The law of conservation of energy: During an ordi-
nary chemical change, energy can be neither created nor destroyed, although it can be changed in 
form. (Holtzclaw et al. 1984 p. 4).
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of approximations. In the following, we give one version and outline two other 
versions (Petersen 2009, first author’s translation from Danish).

Version 1. If the law of conservation of matter and the law of equilibrium  
are applied twice, four equations can be set up to give a medium – complex 

des crip tion involving the four unknown [ ] + + +é ù é ù é ùë û ë û ë û3 3 3 2NH Ag Ag(NH ) Ag(NH )  

concentrations.
Reaction schemes for two steps of the stepwise formation of chemical 

complexes:
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 ( ) ( ) ( ) ( )3 3 3 2
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+ +
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The reaction schemes (A) and (B) give the two equations (51.1) and (51.2), respec-
tively, which in total contain the four unknown concentrations (with fixed values of 
the constants K
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 and K

2
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Since no silver ions or ammonia may have disappeared, we find for the (well-
known) formal concentration of silver, Agc , that:

 Ag 3 3 2Ag Ag(NH ) Ag(NH )c + + +é ù é ù é ù= + +ë û ë û ë û  (51.3)

and for the (well-known) formal concentration of ammonia,
3NHc , that:

 [ ]
3NH 3 3 3 2NH Ag(NH ) 2 Ag(NH )c + +é ù é ù= + +ë û ë û  (51.4)

Version 2. Chemical arguments may point to decreasing the number of unknown 
concentrations which will give a model consisting of fewer equations. The system, 
then, can be reduced to three equations with three unknowns.

Version 3. On the other hand, regarding Ammonium as a base gives rise to a 
model which includes four additional unknowns and equations, stemming  
from Ammonia’s reaction with water. To these eight unknown concentrations 
correspond eight equations, some of which are identical to equations in the first 
system.
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4  Aims of the Students’ Work

In the students’ part of the teaching materials, formulation of the equations and 
iden tification of unknowns, etc. is developed as a guided, stepwise modelling 
process, in parallel with experiments conducted by the students in the chemistry 
laboratory. The experiments, which are not described in this chapter, involved 
measuring the concentrations in equilibrium under various conditions. During 
the modelling process, the students were asked to compare the results of the expe-
riments with their results, obtained by theory under different approximations 
(as described previously). They were asked to treat the theoretical results mathe-
matically, with the use of appropriate technology. By asking them to evaluate the 
results of the mathematical modelling, the teacher encouraged the students to 
reflect upon the process of model ling in mathematics and upon differences and 
similarities between the processes in mathematics and in chemistry; such as the 
issue of approximations and the complexity of the models seen from the perspec-
tives of the two subjects, respectively.

The following example illustrates how the teacher intended to establish connec-
tions between theory and practice in chemistry by modelling: the students were 
guided to reach version 2 above, starting with version 1, using the questions provided 
by the teacher (see below) (Petersen 2009, first author’s translation from Danish):

Try to carry through the chemical argument, that only negligible amount of silver ions are 
of the form. Write down the three equations, obtained in this case. The one which disap-
pears is an equilibrium equation. Solve this system of equations. Does it fit looser with the 
experiments’ results than the original system of four equations? (…)

The teacher’s part of the teaching materials includes the following two excerpts 
concerning modelling and mathematics, which explains the learning goals of the 
case (Petersen 2009, first author’s translation from Danish):

In chemistry, students gain experiences in working with calculations of concentrations and 
with the principle of equilibrium. The goals may be varied, but in this version the aim is to 
let the students recognise the following:

Our determinations do not give a perfect model of nature…•	
We may choose to base our calculations on more or less complex models (…), and this •	
choice influences the degree to which the calculations fit with our observations
Good simplifications of the mathematical model may be based on chemical argu-•	
ments (…)

To sum up, the materials were specifically designed to make chemical modelling 
and mathematical modelling, and the connection between the two, a focus of atten-
tion. The idea was to let the students inquire into the connections between chemical 
theory and practical experiment in the laboratory by comparing the results from 
both, whilst also building, testing and modifying the mathematical model of  
the chemical system supported by the use of calculators and/or com puters with 
mathematical software. In their written reports the students were requested to 
explain and reflect upon the model they used and upon their modifications of it.
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5  Methods for Examination of Data

The case was meant to study:

The students’ perception of modelling in mathematics and in chemistry•	
The students’ understanding of the system of chemical equilibrium•	
The students’ understanding of connections between theory and practice•	
Technology in mathematics as a means to make the modelling process more •	
explicit.

These perspectives were underlined in the teacher part of the teaching material 
and discussed with the students during the lessons. The analysis of the students’ 
written reports aimed to find signs of the perspectives in the students’ own interpre-
tations of the events.

The students prepared written reports on the complete project. Reports from all 
nine students were read carefully and analysed with the aim to get an impression of 
the students’ perception of models and modelling, as they are revealed in their 
reports. The excerpts above from the teachers’ part of the materials were used to 
compare the students’ outcome, as it was revealed in the reports, with the sequence’s 
learning goals. In the following paragraph, short excerpts from the students’ reports 
are quoted (first author’s translation from Danish).

In general, the nine students’ reports show a huge variety in quality with regard 
to language and fluency, thoroughness and reflections. The descriptions of the 
project’s aim in each report, for example, vary from recounting the concentrations 
of ions to be measured: ‘The aim of this exercise is to find the true concentrations 
of Ag+ …’(Report 8, p. 5), to considering the comparison between theoretical 
and practical values and reflections upon these: ‘The project aims to (…) give an 
understanding of the interplay between theory and experiment. Besides (…) see if 
the “laws” in chemistry are in accordance with reality’ (Report 4, p. 4) and ‘There 
is a connection between the worlds of chemistry and of mathematics, since the 
chemical formulas and expressions are based on mathematics. (…) The aim of this 
exercise is to measure concentrations of Ag+ …’ (Report 5, p. 4).

6  Results

6.1  Students’ Perception of Modelling in Mathematics  
and in Chemistry

Modelling in mathematics and chemistry is most explicitly mentioned in the 
reports’ introduction, where the aims and goals are presented. In the other 
parts of the individual reports, modelling is for the larger part touched upon via 
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the distinction between mathematical theory and chemical practice, which is a 
common issue since all the experiments showed huge discrepancies between 
theoretical and  practical results. The reports gave mere technical explanations 
during the experiments for the discrepancies, with no discussion of the model or 
its approximations, for example: ‘The other possibility for our incorrect result 
could be that we did not stir careful enough in our vessel with NH

3
 while we 

added HCl’ (Report 9, p. 11). Thus, the validity of the model was taken for 
granted in all reports, even those which explicitly claimed that the goal was to 
compare theory with reality, like here: ‘Our measurements in the practical and 
theoretical shows that our experiment failed’ (Report 6, p. 14). Very few reports 
show examples of comparison between different models as results of different 
approximations.

6.2  The Students’ Understanding of the System  
of Chemical Equilibrium

In the reports, chemical equilibrium is described using quotations from the text 
book, not with the students’ own words. In our interpretation, the reports did not in 
general reveal signs indicating a deeper or more profound understanding of chemi-
cal equilibrium, than it would usually be the case in any second-year chemistry 
class in the same school. The reports contained no discussion of the different 
approximations, as was intended in the teaching materials and during the lessons, 
according to the chemistry teacher.

6.3  Students’ Understanding of Connections  
Between Theory and Practice

It is remarkable that none of the students discusses the ‘useless’ solutions to the 
system of equations. A common argument is the criterion that concentrations must 
be positive: ‘In the result, a lot of numbers appear, but these four are the right ones, 
since there are no negative results. It is not possible for an actual concentration to 
be negative’ (Report 3, p. 20). None of the reports refers to the issue of existence 
and uniqueness of a chemically acceptable set of solutions.

A few students mention ‘calculation error’ as an error-source to explain the 
discrepancies. Apart from these few examples, all the discrepancy is dismissed into 
technical reasons like defective measuring instruments, wrong measurements, 
contamination of the solutions, etc., for example: ‘Suggestion: The voltmeter did 
not function appropriately’. (Report 1, p. 13).
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6.4  Technology as a Means to Make the Modelling  
Process More Explicit

This study was not conclusive; the students’ use of technology is almost ‘invisible’ 
in the reports meaning that the use of MathCad is documented in the reports with 
excerpts from the calculations but with no discussion of the strategies or other com-
ments, such as: ‘MathCad was used to solve these 7 equations with 7 unknowns. 
More results are obtained for the solution of each substance’s concentration, but 
since a concentration must have a positive, real value, only one set of solutions is 
useful for each equation’ (Report 4, p. 14).

Focus in the students’ work was on the experiments, not on theoretical perspec-
tives or modelling perspectives, except in most of the introductions. Neither was the 
possibility of treating more complex systems of equations weighed against the 
chemical validity of different approximations in any of the reports.

7  Conclusion

We have identified a number of ‘weak points’ in the first trial of this project and 
these difficulties are listed below.

7.1  Technical Obstacles

There was a lack of time for the students to prepare the written reports. The project 
lasted 2 weeks including 1 day in the chemistry lab. Consequently, most of the 
students spent too much time on the experiments and, subsequently, had to write 
the report without having time for profound discussions in their working groups 
or for substantial supervision from the teacher during the writing. The lack of 
time was reflected in the reports’ short, summary paragraphs on conclusions and 
perspectives which did not match the introductions’ presentation of the aims and 
goals. The instruction sheets for the experiments were not tailored for this project. 
It is a common pedagogical practice in this class that the students must somehow 
modify or alter their working sheets before the experiments, to ensure that they do 
not experience only ‘cookbook’ exercises in a laboratory. When this project is 
repeated, the teacher will prepare new working sheets, tailored for this experiment. 
Measuring the potentials of electrodes, which was part of the experiment, was a 
new method for the students. To reduce the complexity when this experiment is 
repeated, the students will undertake a small experiment using this method, before 
the equilibrium project is commenced.
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7.2  Few Students’ Reflections

To encourage students’ reflections upon modelling and strengthen the written con-
clusions and perspectives, classroom reflection-discussions will be introduced in 
the next round of the project, as a forerunner and support for the writing of the latter 
parts of the report. Such reflection-discussions aim to balance the students’ ‘tech-
nical-applications’ view by explicitly requiring reflections upon the use of models 
as well as the modelling process. These discussions can follow the model of com-
bining levels of mathematical activities with levels of reflections as described in 
Andresen (2009), based on a reflection guide prepared by the teacher in advance. 
The request for explicated reflections as part of the written reports’ conclusions 
should ensure that more weight will be put on this important section of the report.

7.3  Little Focus on Modelling

The project’s intention was to study chemical and mathematical modelling, and the 
connections between the two, which was not really fulfilled in this case. One rea-
son, apparently, may be the fact that the model of chemical equilibrium is based on 
fundamental principles like the law of mass action and the laws of conservation. 
Such fundamental principles are rarely discussed in the classroom; more often, they 
serve as a prerequisite embedded in the basis for treatment of their consequences in 
series of concrete or special cases. As a forerunner for the next project, an example 
of a less-fundamental and trusted scientific model will be a topic for one or two; for 
example, theories about earth rays or phlogiston. The aim of including this fore-
runner in the next project is to make the students aware of the role of scientific 
models to explain observations and establish a shared basis for discussion of 
criteria for validity of such models. With this background, the possibility to 
compare different models of chemical equilibrium, resulting from different approx-
imations, will be an issue for discussion in the next round. A comparison between 
at least two different models (with three, four or eight equations), then, will be 
requested in the reports.

To sum up, we still find this topic suitable for further investigations with the 
above-mentioned amendments.

8  Perspectives

This case study leads us to draw an inference in line with the concept of forced 
autonomy introduced by Jeppe Skott in Skott (2004). As in Skott’s study, the 
requirement for multidisciplinary teaching leaves the teacher in a situation, where 
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‘expected classroom practices and learning outcomes (are) formulated outside the 
classroom, but there is no set of well-defined methods for the teacher to carry out 
and only vague hints as to what kind of practice a certain situation may require’. 
Skott argues in his study, that the notion of forced autonomy, based on the concep-
tions of mathematics and mathematical learning, should be extended to encompass 
not only the roles of the teacher when supporting students’ learning in classrooms, 
but also the multitude of other obligations that emerge in the course of the class-
room interactions. In the case of multidisciplinarity, the teacher’s situation appears 
even more complex when the perspectives from different subjects have to be 
connected or even intertwined in a challenging teaching task that involves theory 
as well as practical activities.

An extended notion of forced autonomy may, according to Skott, serve as a 
better means for researchers to understand the teacher’s role for the enacted curricu-
lum. In our case, the complexity of the multidisciplinary teaching sequence may 
serve to explain why the students’ understanding of connections between mathe-
matical modelling and chemical modelling, as it was revealed in their written 
reports, was rather loose in spite of the deliberate focus.
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Abstract This chapter introduces a long-term modelling project that has been 
conducted at Goethe-Gymnasium-Germersheim with 14-/15-year-old students. The 
main question of this project was if (and how) it is possible to integrate real-world 
modelling tasks into regular math lessons in a way that demands for the application 
of knowledge from selected topics of a whole school year. Moreover we wanted to 
know if the pupils accept the intended frequency of five modelling phases as a con-
venient diversion or if they consider them not worthwhile (concerning the effort)? 
Finally, we were curious to learn to which extent we can expect pupils to learn 
mathematical modelling through frequent repetition. The students had to deal with 
five realistic modelling tasks and one final comparison task. Solutions developed 
by the students as well as the concept of the questionnaires used for evaluation are 
presented.

1  Idea of the Experiment

The Department of Mathematics of TU Kaiserslautern has a long tradition in 
modelling real-world problems with students and high school students. The follow-
ing list briefly summarises the important previous steps:
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Introduction  
of activity Activity Educational level of students

Early 1980s Modelling seminars with industry projects Graduate
1987 ECMI1 modelling week Graduate
1993 Mathematical modelling week for high school 

students and teachers (annual event)
Secondary level, teacher 

training
1999 Modelling days in high schools, 1–3 days, 

compact form
Primary and secondary level  

(grade 2–13)
2001 Modelling seminars Undergraduate, teacher students

It was quite natural to transfer the successful idea of modelling seminars 
when we started to offer modelling activities for high school students. Hence, the 
modelling week was planned similar to the ECMI modelling weeks as a compact 
course with duration of 1 week. Students and teachers work together on real-world 
problems during those modelling weeks. Thereby, each team has its own academic 
supervisor (usually researchers from university).

Since the feedback – from both teachers as well as students – was very positive the 
natural evolution was to develop a concept for the transfer to regular mathematics 
lessons in schools.2 But although many teachers wanted to introduce real-world tasks 
in the style of the modelling weeks into their regular lessons the problem of a chronic 
lack of time seemed to make this undertaking very hard to realise. Therefore, we 
started to offer so-called modelling days, that is events of 1–3 days duration having 
a structure very similar to that of the modelling week. After some experiments an 
appropriate organisational structure was found and today it is a standard task to 
perform such events for high school students of grade 7–13. Recently, we started to 
work with even younger students (primary level, grade 2–5) – a task which is more 
challenging but it is mainly a matter of finding suitable real-world projects and 
providing appropriate concomitant material, respectively.

In summary, we confidently claim to know how to do modelling projects with 
students at primary as well as at secondary level in compact form. But as mathe-
matical modelling started to play a more prominent role in the math curricula a 
new question arose: How can mathematical modelling of real-world problems be 
integrated into mathematics lessons on a regular basis rather than being singular 
events which take place once a year (or even less frequently)?

There are several studies on this issue (see, e.g. Blum 2006; Kaiser and Maaß 
2007; Maaß 2004; Schwarz and Kaiser 2007). Nevertheless, looking at everyday 
school life we did not find teachers practicing a long-term integration of real-world 
modelling problems (2–6 lessons duration for each of them) for the period of a 
whole school year.3

2 Another reason was the fact that mathematical modelling started to appear more often in the math 
curricula in Germany.
3 This is no general statement of course – it relates to our experience with schools in our region, 
but studies indicate that this phenomenon is not only restricted to Germany (see Kaiser and 
Maaß 2007).

1 ECMI = European Consortium for Mathematics in Industry.
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To summarise, the central questions of our project are:

(Q1) How to integrate real-world modelling tasks into regular lessons?
(Q2) Do pupils accept the intended frequency of modelling phases (attitude)?
(Q3) To which extent can we expect pupils to learn mathematical modelling 

throughout frequent repetition (learning)?

And there is a fourth question that we would like to have answered but which could 
not be addressed with the chosen design of the study:

(Q4) Are contents learned more deeply when learned within modelling projects?

2  Design of the Experiment

When we started to think about the implementation of a long-term modelling project 
the very first question was How to teach mathematical modelling? A possible 
answer to this question comes from Learning Theory: Firstly, our brain cannot be 
trained in an unspecific way (Haag and Stern 2003), that is there is no significant 
learning effect just by working on challenging tasks. And secondly, strategies for 
learning and thinking can be learnt but in general they cannot be taught directly. 
The key to success is Learning by Doing (Stern 2006)! Our conclusion for the 
project was that we did not start with a ‘lecture’ on mathematical modelling but 
almost immediately started modelling with the students.4

Moreover, there is a consensus on the following aspects of a supportive learning 
environment (Stern 2006):

(S1) A (challenging) task from the actual topic
(S2) Application of specific strategies is standing to reason5

(S3) Appropriate material is provided
(S4) Suitable hints are given by teachers/supervisors.

To fulfil (S1) we had to consider the Framework Curriculum Mathematics 
(MBWJK 2007) which includes two main concepts: On the one hand we have to 
address the mathematical key competencies (K1) Mathematical Reasoning, (K2) 
Problem Solving, (K3) Mathematical Modelling, (K4) Use of Mathematical 
Representations, (K5) Go around with Symbolic, Formal & Technical Aspects of 
Mathematics and (K6) Communication. On the other hand the central themes (L1) 
Numbers and Ranges, (L2) Measures and Quantities, (L3) Space and Shape, (L4) 
Functional Relations had to be covered.

4  This concept is not new (see e.g. Kaiser and Maaß 2007; Schwarz and Kaiser 2007) – but it is 
important!
5 Specific strategies which have been investigated and trained in preparatory lessons might be 
helpful during the modelling process.
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The next list shows the contents that should be covered in grade 9 mathematics 
lessons and the corresponding links to the central themes (topics in the order of 
their appearance).

  I Linear Functions (L4)
    II Systems of Linear Equations (L4)
   III Real Numbers, Computing with Square Roots (L1)
    IV Similarity (Central Dilation, Intercept Theorems) (L2, L3)
   V Theorem of Pythagoras (L3)
    VI Quadratic Functions (L4)
VII Quadratic Equations (L4)

The next step was to look for five real-world tasks that should be worked on over 
the whole period of one school year. The next section describes all projects in detail 
and shows the corresponding central themes that we expected to be addressed. Our 
goal was to cover as many topics as possible from the list above.

Finally, there have been (anonymous) questionnaires after task numbers 2–5 
including control statements for evaluation purpose (see Sect. 5 for details of the 
evaluation).

3  Choice of Five Real-World Modelling Tasks

The target group was a complete school class (grade 9) with 26 pupils (14 male,  
12 female) and the tasks should be integrated into regular lessons. Based on our 
experience with modelling events in a compact form, we set up the following 
requests:

Real-world problems as modelling tasks, questions should be very open (cf. (S1))•	
Modelling tasks have to be interesting and challenging (for grade 9 pupils!)•	
Rising difficulty from task 1 through task 5•	
Modelling teams consist of three to four students•	
Intended duration of each task was one to six lessons and every team had to write •	
a report at the end of each task.6

The work on the individual tasks was conducted with the greatest possible 
autonomy but the teams receive hints from the teacher whenever this was necessary 
(S4). The modelling tasks were chosen in such a way that the students were directed 
to use methods which have been discussed in the lessons before the start of the 
respective task in order to meet (S2) and (S3) (see the timeline in Fig. 52.1).

In order to introduce the pupils to the idea of modelling the first task has been 
conducted as a guided modelling. In the remaining four tasks the pupils worked 
with greatest possible autonomy.

6 2–4 pages, as a homework.
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3.1  First Task: A Guided Modelling as an Introduction

After just naming some typical questions7 that could be answered using a suitable 
mathematical model the main steps of a modelling cycle were discussed by means 
of a specific example: How accurate is my bicycle computer? Of course the first 
step is to understand the actual problem. Here the simple question is to which extent 
one can trust the current velocity displayed by a bike computer – and how to verify 
its accuracy (Fig. 52.2).

The second step is to find an appropriate mathematical model. After some 
experiments with a real bike one could observe the proportional relation between 
a time interval and the distance travelled within that interval assuming that the 
velocity is kept constant. Hence the idea is to collect data and plot distance versus 
time to obtain the constant velocity as the gradient of the resulting straight line. 
The third step is to solve the mathematical problem that was set up in the previous 
step, that is here the question is how to compute the gradient of the straight line 
plotted from some data points (e.g. using Excel). The final step is to interpret 
the result, that is to compare the gradient that was computed before with the 
constant velocity that was displayed during the experiment. At this point usually a 
conversion of units is needed since the distance most probably is measured in 

7 How large is the moon? or Will there ever be a man running 100 m below 9 s?

Fig. 52.1 Timeline of the long-term modelling project
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metres and the corresponding time will be some seconds while the velocity  
displayed by the bike computer is in kilometres per hour. In most cases the  
correspondence between the displayed value and the computed velocity will be 
very good and since the cheap computers display integers only (or maybe velocities 
in steps of 0.5 km/h) one would conclude that the device’s accuracy is almost 
perfect.

The guided modelling was stopped after shortly mentioning that there is still 
some room for improvement of the model. Some ideas were collected but there 
was no time to dive again into the modelling cycle. As we will see later in the 
discussion of the comparison task8 it would have been better to take an extra  
lesson at this time to discuss at least one possible enhancement of the model in 
detail: The students seemed to have acquired the impression that one can stop 
modelling after having achieved any sensible solution without taking time to think 
about improvements (see Sect. 7). For this special task one could have asked how 
sensible the assumption of a constant velocity during data collection really is – and 
how to change the model if it turns out to be inaccurate (a fact one easily observes 
when using a bike computer which displays the current velocity up to one decimal 
place).

Link to curriculum and duration. 1 lesson, L2 (measuring and quantities), L4 
(functional relations).

8 The comparison task was presented to the pupils at the end of the project (cf. Sect. 7).

Fig. 52.2 Bicycle computer 
(From Wikipedia)
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3.2  Second Task: Is the Olympic Medals Table Fair?

After every big sports event like Olympic Games or IAAF World Championships in 
Athletics people interested in sports all over the world start discussing the official 
medals table. Even the ones with lower interest in sports want to see their nation as 
highly ranked as possible. And the official algorithm to compute the ranking is very 
simple: The nations are sorted by their number of gold medals (in descending 
order), if this number is equal for several nations they are ranked by their number 
of silver medals and the same is done for the bronze medals if again identical 
numbers appear. In the USA an alternative table is shown quite often which only 
considers the total number of medals to rank all nations.

Looking at an extract of the 2008 Olympic Summer Games medals table one 
recognises that there are several configurations which provoke a discussion on the 
fairness of the official ranking:

For example, France has won many more medals than Japan but has only seven 
gold medals (in contrast to nine for Japan) – hence the French team is listed behind 
the Japanese. A similar situation holds for Jamaica and Spain or the trio White 
Russia, Ethiopia and Canada. There are a lot of factors, which could be taken into 
account: The amount of competition for different decisions, number of athletes in 
the national team, amount of money spent to support sports in different countries 
or just the population of the country. Or maybe it would be fairer to use a weighted 
sum of the number of gold, silver and bronze medals?
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Link to curriculum and duration. 4 lessons, L1 (numbers and ranges), L4 (lin-
ear functions).

3.3  Third Task: How to Type on a Container?

The photos in Fig. 52.3 show some advertising that is printed on a freight  
container. Typically, containers of this type have no flat exterior walls but feature 
a kind of trapezoidal wall shape (seen in a cross section). As one easily recognises 
the letters either look strange or even are not readable if one just types on the 
wall as on a flat plane. Therefore, the question, which immediately arises, is How 
to adjust the scripture such that these effects do not appear (if possible at all!)?

Link to curriculum and duration. 6 lessons, L3 (space and shape)

3.4  Fourth Task: Building of an ICE-Track9

This project is described in more detail in Sect. 4 where we exemplarily present 
some solutions of the pupils. Hence, we just state the main question: Given the 
photo of an ICE-track (see Fig. 52.4), can you determine the amount of ground 
that has to be carried away to build the part of the track depicted in the photo?

Link to curriculum and duration. 2 (+5)10 lessons, L3 (similarity, Pythagoras).

Fig. 52.3 Text on a freight container – more or less readable

9 cf. (Fries et al. 2004).
10 The pupils worked for approximately 5 weeks on this task in the form of a constant homework 
with an estimated work load of five lessons; this was in addition to two regular lessons spent on 
modelling this task.
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Fig. 52.5 Free throw by 
NBA player Dirk Nowitzki 
(From Wikipedia)

3.5  Fifth Task: How to Do an Optimal Free  
Throw in Basketball11?

In the NBA playoffs of the period 2008/09 the free throw rate ranged from 72% to 
80.5%, individual rates of the players were between 30% and over 90%. Of course 
there are different factors that have an influence on success and failure (e.g. fatigue, 
psychology). But evidently there exist infinitely many possible trajectories for a 
successful free throw and the simple question is if there is an optimal one (maybe 
depending on the height of a player and his/her special skills)(Fig. 52.5).

Link to curriculum and duration. 4 lessons, L4 (quadratic functions, quadratic 
equations).

11 Idea taken from Gablonsky and Lang (2005).

Fig. 52.4 ICE-track  
(From Fries et al. 2004)
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Fig. 52.7 How interesting were the tasks for the pupils?

Fig. 52.6 Difficulty felt by the pupils

3.6  Difficulty and Attractiveness of the Projects

From evaluation of the questionnaires it can be seen that our aim of a rising difficulty 
from task number 2 (medals table) to task number 5 (basketball) was fulfilled quite 
well (cf. Fig. 52.6) and the second goal of providing interesting tasks (to keep the 
pupils motivated) was met to a large extent (cf. Fig. 52.7).

Probably it would have been better to allow for multiple choices in the question 
for the most interesting problem(s) but the answers are still of some value.

4  Detailed Discussion of Task Number 4: ICE-Track

As said before, we now have a closer look at modelling task number 4 which is 
about the new building of an ICE-track (Fries et al. 2004).
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At the beginning, the photo shown in Fig. 52.8 was given to the students.  
The story behind is that for building this new track a lot of ground had to be dug 
and carried away. In order to coordinate the building project one has to know how 
many trucks are needed to accomplish this work.

The pupils immediately understood the actual question behind this task as they 
stated that at first the volume of the ditch must be calculated. But how can this be 
done since the ditch is of no regular shape like the objects that are normally inves-
tigated in school?

After looking at the photo for a while and some team discussions later, the idea of 
an approximation of the ditch using a prism came up (cf. Fig. 52.9). Since the cross 
section of a prism is a trapezium, this led to the following result: The volume 
of the prism pV  can be calculated by multiplying the area of the trapezium tA  with 
the length l  of the ditch which finally leads to the following term:

= = +p t

1
· ( ) · ·

2
V A l a c h l

Fig. 52.8 Photo of an ICE-track

Fig. 52.9 Approximation of the volume by using a prism
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But now a big problem arose: The pupils wanted us to give them the values of the 
variables , ,a c h and l , otherwise they would not be able to continue. This was 
something they had never been confronted with before but nevertheless it was part of 
this particular problem. So we told them that we did not know those quantities and 
they were forced to think about possibilities of how to obtain the necessary data.

We want to present three different approaches of how the pupils finally managed 
to come to a result. We try to stick very close to the original solutions – except for 
the standardised notation – such that the reader gets a genuine impression.

The •	 first group started with writing an e-mail to Deutsche Bahn AG in order to 
get some information about the gauge of an ICE-train. After having received this 
information (1.435m) they used it to estimate the values of their unknowns to be 

7m, 19ma c» »  and h ≈ 7m. Furthermore, they estimated the length of the 
ditch at l ≈ 270m without any special source of supply and were finally able to 
calculate the volume of the prism (V

p
 = 24570m3). However, this solution is quite 

poor as their estimates are all too small and not very elaborate.
The •	 second group tried a form of calculation. First they searched the Internet for 
the gauge of an ICE-train. Having found this (1.435 m) they used the ratio 
between the real length and the corresponding length on the photo to compute 
= =10.66m, 26.65ma c  and 13.94mh =  (all these values are written down in 

the same way the pupils did). Additionally the length of the train (which had also 
been found on the Internet) was used as an estimate for l , ( 410.72ml = ). This 
finally allowed for computing the volume of the prism: V

p
 = 106808.0235m3 

(note the accuracy! The pupils did not see a discrepancy between this value and 
their assumptions).
The •	 third group followed a similar, but slightly different idea. From the measure-
ment of a real track in their neighbourhood they found out that 9ma = . Then 
they estimated the values of the other unknowns to be 15mh =  and 22.5mb =  
(where b  denotes the length of the slope). Making use of the symmetry of the 
trapezium and Pythagoras’ law they were able to calculate 42.5mc = . Finally, 
taking l  as a variable, they arrived at the following functional relationship for the 
volume of the prism: 2

p ( ) 387m ·V l l»  (leads to 158948.64m3 using 410.72ml =  
as group 2 did).

5  Evaluation

In Sect. 1 we presented three questions (Q1)–(Q3) we wanted to answer throughout 
this long-term project on mathematical modelling. Our first question How to inte-
grate real-world modelling tasks into regular lessons? has already been answered 
in the previous sections since we found a way to achieve the integration.

In particular, we wanted to investigate the attitude pupils develop towards 
modelling during a whole school year (Q2) and learning to model (Q3). Therefore, 
we made use of continuous evaluation through questionnaires. As the first task was 
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a guided modelling task, there was no questionnaire at all. After the second, third 
and fourth tasks questionnaires arranged with respect to the current task were given 
to the pupils. However, the questionnaire presented after the fifth task was some-
how different: Since it was the last task12 we wanted to have some kind of review 
on the whole project.

5.1  Concept of Questionnaires

As an example we can have a look at the section questionnaire number 4 (see 
Fig. 52.10). On the whole this questionnaire consists of 17 items – 10 of them you 
can see here. Except for the first item they are all formulated as statements to which 
the pupils can agree or disagree (how this is done in practice will be explained 
below). The statements can be assigned to different topics. For example statement 
number 6 clearly corresponds to the question of learning. In order to make sure that 
the pupils’ answers are consistent, controlling statements are added. In the case of 
number 6 the corresponding controlling statement is number 9. Another example 
can be seen from statement numbers 10 and 17. This time the attitude towards 
modelling is investigated.

Now, in order to start the evaluation process, data has to be generated. A range 
is added to each statement on which the pupils can agree or disagree continuously. 

(1) Gender    

(5) I could bring in my ideas to the teamwork

(6) I feel that practice comes with repeated
modelling

(8) For dealing with modelling problems I  
prefer working on my own to teamwork   

(9) I have not developed any 
modellingstrategies yet

(10) Modelling  problems should get more
space in regular lessons

(14) I think that modelling can be learnt 

(15) This problem showed to me where  
mathematics is applied in real world 

(16) By means of modelling you do not learn      
anything new

(17) I don´t like modelling problems

Fig. 52.10 Part of question-
naire number 4

12  Besides the final comparison task.
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After having filled in the questionnaire, a scale is used in order to analyse the judge-
ment. Doing so, we get one value for each pupil and statement. In the next step, this 
data is analysed by calculating mean values for each statement – distinguishing 
between male and female students. In order to show these results simultaneously 
two different colours for boys (black) and girls (grey) will be used in the diagrams. 
In the next subsection we will look at some selected results with respect to the state-
ments above and particularly how they have developed over time.

5.2  Development from Second to Fourth Task  
and Final Judgements

First we deal with question (Q2) attitude towards modelling problems (cf. Fig. 52.11 
(left)). As there is a lot of information contained in this diagram we have to interpret 
it carefully. First of all, two different statements are analysed – one is formulated in 
a positive way and the other in a rather negative way. The corresponding scale is on 
the y-axis. The x-axis is used for task numbers 2, 3 and 4).13

We can see that the boys want to give modelling problems more space in 
regular lessons on a rather high level; the girls seem to be not that convinced. 
Except for the second project there is a big difference between their value and 
the boys’ value and this difference even seems to increase with time. This is in 
clear correlation to the second statement. While the male pupils clearly disagree 
with this statement constantly the girls’ attitude changes throughout time. At the 
begi nning they like modelling as much as the boys do but later they are more 
reserved about it.

Fig. 52.11 Development of attitude towards modelling problems (left) and opinion about learning 
of modelling (right)

13 Note that the solid and dashed lines shall not indicate a development over time but are there to 
show the common bonds of the different data sets.
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Almost the same result can be stated for the topic learning (see Fig. 52.11 
(right)). Note that this time both statements are formulated in a positive way. For 
the first statement again the assessments of the male pupils are on a high positive 
level, even higher for the more difficult tasks. Against that the female pupils 
start at a similar point but the values decrease from task to task. For the second 
statement we have an almost analogue behaviour except for the fact that this time 
the difference between male and female students is not as clear as before. But 
besides this gender-specific discrepancy one should not forget that all the values 
themselves are in the upper half of the quadrant. Hence, on average they are posi-
tive for all students.

In order to get something like a final and general judgement, questionnaire 
number 5 was designed to be a kind of review – looking back at the whole school 
year (see Fig. 52.12). Of course to obtain a review the items must be modified but 
they still aim at the same main questions, such as learning (no. 3) or the attitude 
towards modelling (no. 6/7). The statement numbers 1 and 2 were added in order 
to obtain some information concerning the general framework. These judgements 
can be useful for a possible repetition of such an experiment.

Having a look at our results we can state the following:

 1. The number of modelling tasks during the whole school year was more or less 
perfect from the pupils’ point of view and they dealt with interesting 
subjects.

 2. For all the other statements we have quite positive judgements, for example 
concerning learning (no. 3) or the attitude towards modelling (no. 6/7).

But we can make a remarkable observation: There is still a discrepancy between 
the male and female pupils’ judgements and their votes are given in a way that for 
every single statement girls do not vote as positively as boys do! This does not seem 
to be a coincidence – there have to be some reasons.
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Fig. 52.12 Final judgement (after fifth project)
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After having found out about this gender-specific discrepancy we looked a bit 
closer at the filled-in questionnaires. It turned out that there were always two 
special female students who made negative judgements. Of course this has an effect 
on the mean values which are used to obtain the graphs. But even if we neglect 
these two pupils there is still another explanation: Two of the modelling problems 
had a rather technical background (type on container/ICE-track) and, typically, 
girls are not as interested in technical ideas. This is not an assertion but the result 
of another survey. Seven out of 11 female students stated that one of these two 
technical problems was the least interesting one.

6  Comparison Project: Setting and Results

After the fifth task we were almost at the end of the school year and all the results 
gained so far were based on self-assessment. Fortunately, with the help of other 
teachers it was finally possible to establish a comparison task in which the trial 
group and inexperienced pupils of other courses – altogether 95 students – worked 
on the same two modelling problems:

The first problem is called Save Teufelstisch and it deals with a famous and 
bizarre stone-formation in the Pfälzer Wald near Kaiserslautern (see Fig. 52.13). 
The actual problem now is that Teufelstisch is in danger of breaking down because 
of erosion. To prevent this happening, the idea is to build an artificial pillar – but 
for that, one needs to know the mass of the stone-plate.

Thinking of the ICE-track problem some parallels can easily be drawn: Again 
an irregularly shaped object needs to be approximated by a regular one and again 
there are no data given. One should now expect that the pupils of the trial group 
who know the ICE-track problem have a clear advantage.

Fig. 52.13 Teufelstisch, task (A)
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Therefore, we presented a second modelling task which was new to the trial 
group as well as to the other pupils. This is Waiting all the time… (see Fig. 52.14): 
Imagine you are in the supermarket and want to pay for your purchases – but there 
are two open check-outs to choose. The first queue is short but all customers have 
lots of commodities in their shopping trolleys. The second queue is much longer 
but all customers have only a few things in their trolleys. Now, which check-out 
would you choose?

There is no similarity between this task and the ones the pupils of the trial group 
had previously worked on – so this task was new to everybody. Nevertheless it is 
not too complicated so that 14-year-old students cannot cope with it. What we now 
want to investigate is the following:

Did their modelling experiences give the trial group an advantage over the other •	
pupils?
What kind of attitude do the other pupils develop towards modelling during this •	
single event?

Before we can answer these questions we want to give some information about 
the general framework of the comparison modelling: As the period of time was only 
4 h from 8 o’ clock to 12 o’ clock the pupils were asked to work on one of the two 
problems.14 In order to prevent dissemination of ideas the trial group and the other 
pupils had to work in different classrooms. The comparison event was announced 
as some kind of mathematical competition: A prize would be awarded to the best 

Fig. 52.14 Waiting at the check-out, task (B)

14 Again they were supposed to work in teams of three to four pupils and we had an equal number 
of teams working on each task.
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modelling team of each class. Therefore, it was necessary that each team docu-
ments the solution carefully and hands this report in at the end. At the end every 
student (of the trial group and of the other courses) had to fill in a questionnaire. 
This questionnaire together with the personal observations of the supervisors and 
the assessment of the reports provides information that can be used to answer the 
central questions stated above.

The structure of this questionnaire is analogue to that of previous projects. Again 
several statements are given (partly even the same as before) to which the pupils can 
agree or disagree on a continuous range (see Fig. 52.15). Some of the statements 
clearly correspond to the question of learning (e.g. no. 1–4), others investigate 
the attitude towards modelling problems (such as no. 5/8). When we now present 
the results, note that this time we do not distinguish between male and female 
students but between the trial group and the other pupils by using different colours. 
We start with the results for the first problem: What you can see on the first view is 
that there is indeed an advantage for the trial group over the other pupils, even  
in all issues of learning. For example the level of difficulty of this problem is 
judged to be much lower by the trial group than by the other pupils. Similar results 
can be observed by looking at the statements concerning ‘background-information’ 
(no. 3) or the challenge (no. 4). In addition to that, the attitude towards modelling 
problems is a lot more positive in the trial group than it is among the other pupils 
as you can see in statement numbers 5 and 8.

Now we compare this with the results of the second modelling task (B) (see 
Fig. 52.16). One can still observe an advantage for the trial group over the other 
pupils in almost all issues of learning but it is less clear than in the first task. This 
is consistent with the fact that the attitude towards modelling problems again is 
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more positive in the trial group than among the other pupils but again this is less 
clear than in the case of the first task.

Now we are ready to summarise what we have found in our study15:

There are several indicators for a learning effect – at least the pupils think that •	
they have learned how to do mathematical modelling.
In case of familiar modelling tasks this is more distinct than in the case of new •	
ones. Nevertheless the effect is still measurable.
Finally, the attitude towards modelling problems is more positive in the trial •	
group than among the other pupils.

In addition to the self-assessments of the pupils we add a more objective 
component by looking at the reports that had to be handed in. For assessment of the 
reports we developed different categories16:

For the item Finding a solution we observed an advantage for the trial group over 
the other pupils as every team of the trial group managed to develop a solution but 
only 16 out of 20 teams of the other pupils could cope with their task. This advantage 
remains when concentrating on the category Quality of documentation. Regarding 
this, the reports of the trial group were a lot better than the other pupils’ ones. For the 
latter, solutions often were not understandable without any deeper knowledge of the 
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Fig. 52.16 Selected results for task (B) ‘Waiting all the time…’

15 Note, that only 95 pupils participated in the comparison project – hence there is no simple 
generalisation of these findings.
16 The reports were assessed by members of TU Kaiserslautern who did not know any of the 
pupils.
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underlying task. Regarding Using appropriate formal notation there are only slight 
differences between the trial group and the other pupils. Some of the other pupils’ 
reports were written using prose rather than mathematical terms. Therefore, we 
claim a slight advantage for the trial group here. Now we come to the most interest-
ing aspect: the Quality of the solutions themselves. Comparing solutions of the 
same deepness we note that the pupils of the trial group had finished them earlier. 
Therefore, we consider the trial group to be faster than the other pupils. But if we 
investigate the deepness of solutions on average, there is a clear advantage for the 
other pupils over the trial group – to our biggest surprise! For example in the task 
‘Save Teufelstisch’ each team of the trial group used a cuboid as an approximation 
of the stone-plate, that is the simplest possible model. Against that, some teams of 
the other pupils used a more realistic and therefore better object, namely, a prism.

We have some ideas of possible reasons for this phenomenon, but since there is 
no real evidence for one of them we leave these questions without being able to 
answer them.

7  Summary and Conclusion

In the introduction we formulated certain aims that we wanted to achieve by this 
long-term project: The first one was that we wanted to prove that (against common 
opinions) real-world modelling tasks can be integrated into regular lessons of a 
whole school year. It can be said that this was successfully done within this project. 
As a by-product, the pupils have learnt interesting and realistic applications of mathe-
matics during one school year. Secondly, we wanted to collect information about 
learning to model. On the whole the question of learning seems to be answered. 
At least the pupils claim that they learnt modelling and besides that, some more 
objective effects could be observed. One consequence of the unwanted learning 
effect we just discussed is the modification of the guided modelling (task no. 1) to 
include several refinements of the model.

Our third question (Q3) was about the attitude pupils develop towards modelling 
throughout such a long-term project. Especially the comparison tasks showed that 
this attitude among the pupils of the trial group is not only quite positive on average 
but in particular is better than among the other students.

Our conclusion at the end of the study is that it is not enough to have a single 
(and short17) modelling event once a school year (or even less frequently). Instead, 
one should try to create a long-term modelling experience which can be seen as a 
red thread throughout the whole mathematics education. Ideally, in addition there 
are modelling days or weeks, which are very intensive experiences and allow for 
even deeper analysis of the modelling problems.

17  Here it was just 4.5 h for the comparison event – this is definitely too short!
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Abstract The Internet portal “Program for Gifted” (title in German: “Begabte 
fördern”) was set up by the Chair for the Didactics of Mathematics at the University 
of Augsburg in the science Year of Mathematics 2008. The published materials are 
developed for the support of mathematically gifted students both in the context of 
extracurricular study groups and within-class grouping. There are several topics 
available already. We present two examples from this variety that arise from appli-
cation and therefore emphasize the process of mathematical modelling.

1  Fostering of Gifted Students

There are several indications that the fostering of gifted students at German secondary 
school has been neglected in the last years and decades. First, the Association of 
Teachers at Higher Secondary Schools in Germany (DPhV) said in the press release 
DPhV (2008) that in contrast to the fostering of the so-called at-risk students who only 
achieve competency level 1 in international tests there is too little done in Germany for 
the gifted or highly gifted students. It is claimed that there are not enough special offer-
ings in the form of enrichment (such as extra courses, competitions, summer schools) 
or ways of diversification within regular class lessons. Besides this, the missing of a 
clear top flight within German students at higher secondary level cannot be overlooked 
(see OECD 2001). Heller (2002a) infers from this that the fostering of gifted or highly 
gifted students at German higher secondary school is not done properly.

In order to contribute to resolving this situation, the Internet portal “Program for 
Gifted” was set up by the Chair for the Didactics of Mathematics at the University 
of Augsburg in the science Year of Mathematics 2008 (see www.lehrer-online.de). 
The published materials are developed for the support of mathematically gifted 
students both in the context of extracurricular study groups and within-class group-
ing by open learning environments as proposed in Heller (2002b), for example.
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2  The Interests of Gifted Students: A Bottom-up Approach

In order to address the needs of students gifted in mathematical thinking we con-
ducted a pre-study for a future questionnaire among 14 (aged 16–18) students from 
10th to 12th grade of secondary school who were allowed to study mathematics and 
informatics at the University of Augsburg (Group 1). This group was followed up 
by a survey among 26 participants of two intensive mathematics courses from a 
12th grade at a higher secondary school (Group 2). Ignoring any gender discrep-
ancy, they gave the following answers that were not pre-classified:

Question 1: “What are you interested or fascinated in concerning mathematics?”

Answer Group 1 Group 2

Logic (logical), proofs (provable), strength, uniqueness 57% 54%
“Language of nature”, applicability 21% 16%
(Surprising) connection between different fields 11% 14%
Demand, difficulty 11% 16%

Question 2: “What is your favourite type of task?”

Answer Group 1 Group 2

Complex, long non-standard-tasks with surprising solutions 
and different ways of solving

57%  8%

Riddles, proofs, tasks from competitions 21% 50%
Word problems with connection to (real world) application 11% 42%

So, by the answers to open questions, we can see that mathematically gifted and 
highly gifted students are (very much) interested in applicability and therefore in word 
problems with connection to real world application. This context is strongly connected 
to the process of modelling, which is described in the didactical debate (besides others 
see Blum 1996; Kaiser 2007). Additionally, designing the learning units in a way that 
is based on the interests, wishes and needs of the students, promises to be a highly 
satisfying “bottom-up” approach – in contrast to a “top-down” way inspired by a 
strongly followed curriculum in mathematics that, according to Burkhardt (2006), is 
mainly driven by people whose core interest is in mathematics itself, not in its use.

3  Examples Containing Modelling Components

We briefly describe the two units that are designed by the principle given in Heller 
(2002b), where (in a mathematical sense) rich learning environments are demanded 
for gifted students. Furthermore, they follow the method of connections as exten-
sively described in Brinkmann (2008), for example, to establish successful learning 
processes by embedding the new content into a framework of different related 
mathematical aspects.
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All units start with a simple problem taken from reality, whose provisional 
mathe matical content is part of the standard curriculum. By the strategy of “variation” 
and the corresponding question “What happens when …?” as proposed in Baptist 
(2000), the students are led to extra-curricular elements related to their interests.

The modelling aspect shows up in different forms:

(a) Algebraic formulation of a geometric problem (see Sect. 53.3.1)
(b) Algebraic formulation and proof of a kinasectic illustration of a geometric–

algebraic transformation or deformation, respectively (see Sect. 53.3.1)
(c) Algebraic formulation and analytic discussion of a stochastic problem (see 

Sect. 53.3.2)

Furthermore, the units are classified by the addressed fields of mathematical 
thinking as it was sketched in a simple model for mathematical intelligence in 
Brandl (2009b) that can be embedded in a more comprehensive model of mathe-
matical giftedness as discussed in Heller and Perleth (2007), for instance. The first 
unit addresses two- and three-dimensional geometrical thinking as well as numeri-
cal, functional, formal and problem-solving thinking. The second topic brings 
together the fields of stochastics and analysis addressing numerical, functional, 
formal thinking, problem-solving and reasoning, too. Above all, both units deal 
with a modelling problem. As to the material there are worksheets guiding the 
student through the modelling process, additional information sheets for the intro-
duction of new mathematical facts and dynamic software applets for the investiga-
tion of certain aspects appropriate for this kind of medium.

3.1  From Cones to Higher Algebraic Curves and Back

This unit strongly connects algebraic and geometric aspects within a modelling 
context. It therefore concurs with Burkhardt (2006, p. 189), who points out:

Algebra remains the key to higher performance in modelling as in so much mathematics; 
however, aspects that are crucial for modelling, particularly the formulation of algebraic 
models, are hardly touched in many current curricula, which focuses elsewhere – mainly 
on solving given equations. Geometry, too, needs a change of emphasis for modelling – 
with more emphasis, for example, on design.

The question to be tackled at first view is a very simple one: “Which champagne 
glass of the form shown in Fig. 53.1 has the biggest capacity?” Hereby the upper 
section of the glass always is a cone with fixed generator m.

The first approach should be made by building real paper models of possible 
solutions – quite similar to the one in Affolter et al. (2004) – in order to obtain a 
first impression of the strongly non-linear aspect. The importance of such an 
approach is underlined by the experience of Nisawa and Moriya (2011), for 
instance, where, in the context of two-dimensional functions, paper models are cre-
ated, too, which were highly recommended by the students. The possible cones 
made of sectors with fixed radius m = 10 cm and sector opening angles f from 30° 
to 330° in 30° are illustrated in Fig. 53.2.
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The algebraic modelling uses some formulas linked to the cone or the sector, 
respectively (see Brandl 2009a). These formulas are well known to a student in 
the 10th grade, so the mathematical modelling process can be done by the student 
self-dependently and successfully. With the abbreviations :

360
x

ϕ
°

 and 3:
3

k m
π

=  

we obtain the following “very non-linear” function : [0;1]kV +®   for the cone 
volumes

2 2
kV ( ) k 1 , 0, 0.x x x k x= - > >

The corresponding graph is shown in Fig. 53.3.
According to Fig. 53.3, the approximate value of the maximal opening angle for 

the sector can be determined approximately graphically by x » 0.82 that is f » 295°. 

The exact value 
2

3
x =  can be determined either by the use of the calculus 

(if available) or even without it by methods as illustrated in Schupp (1997), where the 
inequality between arithmetic and geometric mean is used to detect the maximum of 
a function in an elementary way. So for the interpretation of the solution in the real 
world situation: among the cones in Fig. 53.2 the cone we were looking for is the 

Fig. 53.1 Cone-shaped glass with fix generator m

Fig. 53.2 Paper models of possible cones with generator m = 10 cm
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second from the right – a surprising fact. The aspect of validation, which should be 
carried out in a discussion among the students, leads to the same result as the related 
optimizing problem asking for the form of a cylindric tin having the smallest surface 
for a given fixed volume: the optimal glass or tin, respectively, is not very “handy”. 
So aspects of design and ergonomics will succeed over maximal volume.

Up to this point the unit was carried out successfully in a 10th grade. For gifted 
students there is a second part generalizing the optimizing problem to a discussion 
of higher algebraic curves (as discussed in Schupp and Dabrock 1995, or Schmidt 
1949, for example). Within this context an intra-mathematical modelling problem 
appears.

Mirroring the graph at both axes results in a smooth “tie” curve (see Fig. 53.4).
Looking at a (suitable scaled) ellipse (see Fig. 53.4), the “tie” curve can be 

achieved by a clever deformation process. It is motivated by an intuitive kinaes-
thetic approach suggesting an algebraic model of this deformation that leads to a 
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formal proof of the coincidence with the “tie” curve. For more details and further 
content of the learning unit see Brandl (2008, 2009a).

3.2  From the Lottery to the Pascal Triangle

To quote Burkhardt (2006, p. 189), again: “Statistics and probability are essential in 
thinking sensibly about many problems.” This is the context of the second unit to be 
presented here: “From the lottery to the Pascal triangle – a different kind of curve 
sketching” (see Brandl 2009c). It is suitable for students of upper secondary level 
and can be downloaded in German from the Internet portal www.lehrer-online.de.

What’s the starting point? It is the question if it is more likely that there are more 
winners of the (6 out of 49) lottery when there are more participants. And, of 
course, the intuitive answer is easy: yes, of course. But the question remains, 
exactly how does this fact depend on the number n of participants. Is it linear? Are 
there regions of interesting behaviour?

The algebraic formulation of the model turns out to be a combination of the 
hypergeometric and the binomial distribution:
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= - - - -
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The subsequent curve sketching shows that the probability for n to infinity is 1, of 
course, and that the graph is strictly monotonically increasing. The high school 
students need to learn two new easy but powerful mathematical facts besides their 
curriculum in this context: first the formula for the derivative of xa , and second the 
rules of l’Hospital. Both were part of the German mathematics curriculum at upper 
secondary school previously but they are not today.

The graph of P(n) increases very slowly because of the small value of p
Z
(6). But 

its behaviour can be illustrated for small n if one looks at the chance for just one 
correct tip, for example, instead of winning the jackpot (see Fig. 53.5). The graph 
shows that there must be an inflection point somewhere.

So the next question can be: “From what number on does the rising of the graph 
slow down?” This can be calculated and the answer for one correct tip is three, 
whereas for the Jackpot it is 280 million, which – as for the interpretation of the 
result – far exceeds the population of Germany. Hence, one always stays in the 



55753 Modelling Tasks at the Internet Portal “Program for Gifted”

unfavourable steeper ascending part if one takes part in the game. However, accord-
ing to the rush of participants every time the jackpot gets very big, this – just like 
the fact that with more and more participants the chance for a single jackpot-winner 
sinks – appears not to be common sense.

In a second, more mathematical part the unit is followed up by a variation that 
leads to very interesting aspects. The question now is: “How does the possibility 
vary that k participants have to share a Jackpot with increasing number n of partici-
pants?” Hence, the function to discuss is

( , , ) ( | , ( )) · ( ) ·(1 ( )) ,k n k
Z z

n
P n k r Bin k n p r p r p r

k
-æ ö

= = -ç ÷
è ø

where the odd thing (for the student) is the appearance of the binomial coefficient 
within this term. By an interpretation of the binomial coefficient as a polynomial of 
kth degree in n with zeros at 0, 1, 2, …, k − 1, the task can be successfully tackled. 

Based on the binomial coefficient, the relation 
1 1

1

n n n

k k k

- -æ ö æ ö æ ö
= +ç ÷ ç ÷ ç ÷-è ø è ø è ø

 leads to the 

Pascal triangle and several other mathematical facts as further items of the unit.

4  Summary

Based on the postulate that there seems to be a lack in the fostering of mathemati-
cally gifted students at upper secondary school, we presented two comprehensive 
learning environments that match the interests of the addressed group as stated in 
literature hitherto and evaluated in a small pre-study. These units are, or are to be, 
published at the dedicated established portal “Program for Gifted” at www.lehrer-
online.de. Both units start with a real word problem to be solved by mathematical 
reasoning leading to new aspects of interesting mathematics.
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Abstract The teaching of modelling is a place where mathematical knowledge and 
real world knowledge are transposed in the school institution to become a taught 
knowledge. We will use a French–German qualitative comparison to propose a 
theoretical reflection based on Anthropological Theory of Didactic (ATD) to analyse 
this double transposition at primary school level. The comparison of the curriculum 
shows the difficulty to designate modelling as knowledge to be taught. The com-
parison of textbooks illustrates the characteristics of the modelling tasks and the 
progression of this teaching through the school year. We conclude by pointing the 
challenges for the production of resources and teacher training.

1  Origin, Method and Theoretical Framework of the Study

The two authors are partners of the European project LEMA1 proposing a teacher 
training course on modelling and its application. They have decided to begin a 
comparison on the teaching of modelling at primary school level. A further study 
will compare it at secondary school level. For Germany we limit the comparison to 
Baden-Württemberg where the German author’s institution is situated. Primary 
school is from grade 1–5 in France and from grade 1–4 in Baden-Württemberg. 
The comparative method through qualitative examples points to similarities and 
differences. The differences reveal observations that are usual in a country and as a 
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consequence less taken into consideration, and that are not present in another country. 
Comparison helps to break the apparent naturality of the observations showing the 
role of the institutions. We compare qualitatively curriculum and textbooks. This 
multiple approach does not intend to define national styles but offers examples in 
order to analyse questions and problems related to the teaching of modelling. The 
method is qualitative.

We adopt the definition of modelling considered in the LEMA project, based on 
the PISA (2006) theoretical framework and summarised in the following modelling 
cycle (Fig. 54.1).

We shall now use the terms of ATD2 to point out the role of different institutions. 
The “scholarly” mathematics institution is composed of institutions (mathematics 
department of universities, mathematics research centres…) producing and using 
the “scholarly” mathematical knowledge. The real world institution is composed of 
different institutions producing extra mathematical knowledge and using it in the real 
world. For example, everyday life can be considered as one of these institutions3 
producing and using everyday life knowledge.4 Modelling uses these two types of 
knowledge. Then other institutions (educational system, noosphere…5) decide if 
modelling will be a knowledge to be taught and explicitly designated in the cur-
riculum. If modelling is a knowledge to be taught, this knowledge will appear as 
taught knowledge in the classroom and as learned knowledge in the community of 
study. Modelling that uses mathematical and real-world knowledge produced by 
different institutions is successively changed into knowledge to be taught, then into 
taught knowledge and finally learned knowledge. This process is called didactic 

Fig. 54.1 LEMA modelling cycle

2 Anthropological Theory of Didactics.
3 Different authors use the term “everyday life”. For example (Chevallard 1992, p. 88, translation 
R.C.) asserts “Everyday life is an institution” [La vie quotidienne est une institution]. (Stein 1986, 
p. 14–15, translation R.C.) considers “everyday life theory” [Alltagstheorie].
4 Pupils’ a class number can be considered as a social knowledge acquired by a child living all 
along the year in the class. Proportionality between the total amount paid and the number of bread 
loaves bought at the bakery can be acquired by a child used to buy the bread every day.
5 Noosphere is the “sphere of those who think about education” (Bosch and Gascon 2006).
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transposition. Two types of knowledge, the mathematical one and the real world 
one, are involved in this transposition that we can consider therefore as a double 
transposition (Fig. 54.2).

2  Comparison of Curricula: Is Modelling  
a Knowledge to Be Taught?

We shall first compare the curricula in France and in Baden-Württemberg to 
observe how modelling is designated as knowledge to be taught. In Baden-
Württemberg, at secondary school level, curriculum documents for Gymnasium, 
Realschule and Hauptschule6 (Ministerium 2004) quotes explicitly “modelling” as 
a leading idea and all along the curriculum, at every grade, appears a paragraph of 
contents and competencies allocated to the leading idea “modelling”. In this case 
we can assert that modelling is explicitly a knowledge to be taught. The facts are 
less clear at primary school level in France and in Baden-Württemberg.

In Baden-Württemberg modelling is quoted only one time7 related to the ability 
to transfer a concrete situation in a modelling process using a mathematical model. 
Modelling is not a leading idea but we find relations with modelling in the leading 
ideas “measuring and magnitudes”,8 “patterns and structures”9 and “data and concrete 
situations”10 where the mathematisation of concrete situations is mentioned. 
Problem solving and discovery learning are two important features of mathematics 
teaching with possible relation with modelling. Modelling is not explicitly a leading 
ideal as it is in secondary school. We shall consider that, in the Baden-Württemberg 
curriculum of primary school, modelling is a knowledge to be taught as preparation 
to modelling as a leading idea at secondary school level.

In France the term “modelling” is not quoted but it is mentioned that mathematic 
helps to act in everyday life and that problem solving related to everyday life has 

6 In Baden-Württemberg, the three main types of secondary school are Gymnasium, Realschule 
and Hauptschule.
7 Kennzeichnend für Sachrechenkompetenz ist die Fähigkeit, eine Sachsituation in einem 
Modellierungsprozess in ein mathematisches Modell zu übertragen, dieses mithilfe des verfügbaren 
Wissens und Könnens zu bearbeiten und auf dieser Ebene eine Lösung zu finden. Diese Lösung 
ist dann auf Plausibilität zu prüfen. Translation R.C.
8 Messen und Grössen (Ministerium 2004).
9 Muster und Strukturen (Ministerium 2004).
10 Daten und Sachsituationen (Ministerium 2004).

Modelling knowledge 
to be taught produced 
by educational system

Learned modelling
knowledge

produced in class
the community of

study

Taught 
modelling 
knowledge 
produced in 
classroom

Modelling knowledge 
produced by 

mathematical and real 
world institutions 

Fig. 54.2 Didactic double transposition process
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to be worked for the leading ideas “numbers” and “organization and processing 
of data” and concrete problems are advocated for “measuring and magnitudes”. 
Problem solving is explicitly designated as knowledge to be taught and two official 
pedagogical documents were published on “problems to search” and on “problem 
solving and learning”.11 We shall consider that, in the French primary school cur-
riculum, modelling is a knowledge to be taught as a part of problem solving.

The fact that in both countries modelling does not appear explicitly as a know-
ledge to be taught has consequences: this knowledge will appear less explicitly, less 
regularly, less strongly as taught knowledge in the resources and in the class. Why 
is modelling not explicitly a knowledge to be taught at primary school? Is it because 
this idea is cognitively too difficult for young pupils? Numerous researchers have 
shown that modelling can be successful at primary school, even for low achievers 
(Peter-Koop 2002). Cabassut (2009) has pointed out the difficulties related to the 
double transposition. But difficulties are not reasons not to teach knowledge. 
Difficulties could be in the constructivist mind a condition to learn. Help is needed 
for low achievers and limits to avoid discouragement.

Is it because the beginning of learning in the school has to concentrate on the 
main leading ideas and so modelling is not one of these? In this case a minor 
place is allocated to modelling at primary school. This choice has to be argued and 
the noosphere (those who think about education) has to explain to the teachers the 
reasons for these choices. Until now, we do not know the answers of the noosphere 
to the previous questions. Let us consider now textbooks where modelling is taught, 
in order to describe this taught knowledge.

3  Articulation Between Real and Mathematical  
World in Textbooks

The importance of textbooks in mathematics lessons was expressed by many 
researchers.12 In France the textbook market is a national one because the curriculum 
is national which enables a big variety in the offerings. In Baden-Württemberg there 
is a national market with regional editions adapting to the regional curriculum. In both 
textbooks are often produced by a mixed team with teachers, teacher inspectors, 
teacher trainers and less often researchers in didactics of mathematics. When comparing 
French and German textbooks13 we found no essential differences between the two 

11 “Problèmes pour chercher” and “Résolution de problèmes et apprentissage” in (Ministère 2005).
12 Pepin (2001).
13As shown in Cabassut (2007) it is very difficult to get national styles from a comparative study. 
Here we do not pretend that the textbooks chosen are typical representatives of France and 
Germany. Our approach is only qualitative. The textbooks show the existence of facts but do not 
prove how extended among the textbooks and in every country the facts are. In some cases we 
have illustrated the same facts in both countries. In other examples we illustrate a fact only by a 
textbook from one country without asserting that it is not possible to find a corresponding example 
in the other country. The textbooks help to point out facts and problematic questions about them.



56354 Modelling at Primary School Through a French–German Comparison

countries concerning the kind of tasks used but we consider that in both countries 
tasks used in textbooks have special characteristics: the real world domains, the math-
ematics world domains, and the representations involved in the tasks.

3.1  Real World Knowledge

The first modelling task comes from a German textbook and it shows one example 
of a real world domain about “consumption of water” in everyday life. The task is 
illustrated with real photographs. To know how much water a pupil consumes on 
1 day we need to know the situations where water is consumed and how to estimate 
the consumed quantities (Table 54.1).

The second example of modelling task from a grade 2 French book is based on 
school life: How to calculate the cost of a class trip? In this example we can observe 
the different register of data representations: drawing of a map (simplified represen-
tation of a real map), a flyer, a price table and texts. It is interesting to note that the 
map brings no information about the cost; the pupils have to sort the useful infor-
mation. Pupils need real world knowledge to solve these tasks. In German didacti-
cal literature (Schipper et al. 2000, p. 208–209) there are proposals to share the real 
world domain depending on the grade. For grade 1 for example, the following real 
world domains are proposed: school, classroom, pets, shopping situations, school 
bus, birthdays and calendar.

In France an editor (Antoine et al. 2007) proposes a mathematics textbook to 
introduce the contents of the natural sciences syllabus. In this textbook different 
natural science themes are worked through the different mathematics domains 
(number, geometry, measuring and magnitudes, problem solving). We show in 
the following illustration the real world content planned throughout the year 
(Table 54.2).

In the textbook by Myx et al. (2003) you can find what we could call a real world 
“theorem”: In situations of everyday, prices are generally proportional to the quan-
tities (Table 54.3).

Table 54.1 Example of modelling tasks in textbooks

Germany grade 4 (9–10 years old) France grade 2 (7–8 years old)

How much water do we consume daily? 
Estimate it. For what do we need more water?  
(Eccarius 2002, p. 96)

All pupils, the teachers, two fathers and 
one mother join the trip. We will 
help them to calculate the cost of the 
trip. (Charnay et al. 2001, p. 162)
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The questions that we want to pose here are: How is the real world knowledge 
taught? Is this real world knowledge part of a curriculum? In which subject? Who 
teaches it (the school, the real life institution, the natural sciences lesson…)? How 
can teachers obtain this real world knowledge (initial training, in-service training, 
resources…)?

3.2  Mathematical World Knowledge

Some text books (Charnay et al. 2003, p. 11) try to plan a sharing of mathematical 
knowledge (Table 54.4).

Another problem is the way to articulate the mathematical knowledge involved 
in the mathematic problem, modelling the real world problem and the work on this 
modelling task. Following ATD framework (Artaud 2007) mentions the six 
moments of the study of a type of mathematics problem: the first encounter, the 
exploration and the elaboration of a technique to solve this type of problem, 
the justification of this technique, the technical work (to exercise the technique), 
the institutionalization and the evaluation. Depending on the moment where the 
modelling task is worked, the articulation will be different. If a modelling task is 
used to introduce new mathematics knowledge (first encounter) or to apply available 

Table 54.3 Example of real world “theorem”

The price of meat is proportional  
to its weight.

The price of a tissue is proportional to  
its length.

In situations of everyday, prices are 
generally proportional to the 
quantities.

Table 54.2 Example of real world knowledge planning in a textbook

Real world knowledge  
Grade 4 (9–10 years old)

Development of insects
The growth of arthropods and molluscs
Water in vapour
Evaporation
Digestive system
The rotation of the earth
Digestion of nutrients
Attraction of the earth: verticality
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mathematics knowledge (the technical work), the competencies worked will not be 
the same. In a similar way, if a modelling task is used to introduce new real world 
knowledge (first encounter) or to apply available real world knowledge (the technical 
work), the competencies worked with will not be the same. In the teacher practice, 
the moments of the mathematical study and the moments of the real world study, 
where the modelling task is worked, will define the didactic functions of the modelling 
task. Here is a specific difficulty of modelling with this double transposition articu-
lating the two kinds of moments, especially when the pupils have to switch between 
the mathematical world and the real world (Cabassut 2009).

3.3  Representation Involved in the Tasks

To illustrate mathematical tasks in textbooks many different representations are 
used. Realistic representation can be made by photographs, pictures and authentic docu-
ments such as bills.

A linguistic representation of reality is usually done by texts that describe a 
situation. Some representations (photographs) are a kind of bridge between the two 
worlds. Some searchers (Maaß 2006, p. 115) use an intermediate physical model 
between real problem and mathematical problem (drawing, simplified problem) 
that is a kind of representation of the real world problem. In research there exists a 
long tradition for representations (Bruner 1966; Lompscher 1972) (Table 54.5).

Bruner, for example, distinguishes three modes of representation: enactive, 
iconic and symbolic. The proximity with the real world means more cognitive 
complexity, because we have the mathematical world representations, the real 
world representations, and treatments in and conversions between different registers 
of representation (Duval 2006). That means that the representation enables focus on 
specific competencies: to know how to read a table, a graphic, a map and of course 
to switch between the different kind of representations.

Table 54.4 Example of mathematics knowledge planning in textbook

Mathematics knowledge involved in problem 
solving (Charnay et al. 2003, p. 11):

Addition and subtraction. Multiplication,  
division and proportionality. Table,  
diagram, graph. Geometry. Measuring. 
Strategies to search Reasoning, deduction. 
Data processing. Argumentation.

The left table precises the expert knowledge 
involved in the problems. This knowledge 
is not necessary the knowledge used by 
the pupils to solve the problem. They can 
use personal procedures that use other 
knowledge.
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3.4  Whole Competencies and Partial Competencies:  
Didactical Functions of Tasks

In the first presented tasks (water consumption and class trip), the tasks are model-
ling tasks (opened, complex, authentic and related to real world) and enables use of 
all the competencies of the PISA modelling cycle (Fig. 54.1). The other previous 
tasks use only treatment and conversion competencies in order to learn to set the 
mathematical model.

The example to the right comes from 
a French teacher guidebook for grade 1 
(ERMEL 2000). These guidebooks are 
proposed all along the primary school 
curriculum to work problem solving for 
numerical learning. The attached task 
proposes a real world context familiar 
to the pupils: a birthday party The task 
objectives for grade 1 pupils are to learn 
to raise ques tions about a situation and 
to sort the questions where the answer 
needs mathe matics knowledge (e.g., Are 
there enough chairs?) and the question 
you can be answered without using 
mathematics (e.g., What gift could you 
offer to the girl?) This task is not a 
modelling task but a teaching task: it 
uses prerequisite competences that you 
need to set a mathematical model.

Table 54.5 Example of representations involved in tasks

Treatment and conversion on graph and table 
representations (Schütte 2004, p. 83)

Treatment and conversion on representations 
of the space (Blandino and Bourgoint 2006, 
p. 164)
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In the textbook of Table 54.2, the plan of problem solving competencies used 
throughout the year is the following: to select the pertinent information to answer 
the questions (3),14 to analyse solutions: to recognize a false solution and to explain 
why (2), ask questions: to formulate questions depending on the wording and to 
answer questions (2), to use or draw a diagram or a graph (6), to solve complex 
problems with several reasoning and computing steps (3), to solve a research (6).

4  Conclusion: Challenges for Modelling Resources  
and Teacher Training

In the curriculum of primary school, modelling is not explicit knowledge to be 
taught but it can be implicitly considered as knowledge to be taught as preparation 
for the secondary school curriculum (Baden-Württemberg) or as a part of problem 
solving (France). The consequence is that modelling is not explicitly a study theme 
in the textbooks. Nevertheless modelling tasks appear in textbooks invol ving varied 
domains of the mathematics world and of the real world. Furthermore teaching 
tasks appear that are not modelling tasks but that support achieving partial compe-
tencies as prerequisite of work on modelling tasks, which shows that modelling is 
a taught object. Some mathematics text books plan, through the school year, the 
teaching of real world knowledge and mathematical knowledge and their articula-
tion. These different observations show a moving of the textbooks from pupils’ 
practices to teachers’ practices. The specific competencies of modelling (in relation 
to real world and in the role of representations) and the generic competencies of 
problem solving have to be different enough to justify the interest of modelling in 
teaching and learning. The double transposition in the teaching of modelling has to 
be taken into consideration in the resources and in the teacher training in order to 
support better the learning of modelling. The report (IGEN 2006, p. 66 translation 
R.C.) on mathematics teaching at French primary school comments: “Some prob-
lems are given with a vague objective ‘how to play to be a mathe matician.’ This is 
against productive when it leads to neglect of the basic math: learning to solve a 
problem is also a built training, with a progressive and intelligent methodology.” 
Here are challenges for resources and teacher training related to modelling.
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Abstract Many studies consider initial teacher training and professional development 
a crucial lever for a wider introduction of modelling and applications. Despite the 
efforts made in recent years, a deeper understanding of teachers’ practices in relation 
to modelling and applications is needed. In this chapter, after some reflections con-
cerning the dimensions of the problem, we introduce a model to describe, at least 
partially, teachers’ practices based on the Anthropological Theory of Didactics. As 
our interest is modelling, we apply this model in order to analyse to what extent, 
and in which direction, training materials from a European-funded project promote 
changes in teachers’ practices involving modelling and applications.

1  Introduction

As reported in many studies, despite progress in the research field of modelling and 
applications, the inclusion of modelling and applications tasks or the adoption of 
modelling-oriented pedagogies is still marginal in many educational systems 
(although important differences exist from one country to another). Teachers’ initial 
training and professional development is considered crucial to make this situation 
evolve; however, the case of modelling and applications seems to be special. 
According to Burkhardt (2006, p. 191), “in many countries teachers are expected to 
deliver a curriculum on the basis of the skills they acquired in their pre-service 
education, consolidated in the early years of classroom practice”. On the other hand, 
for many teachers, modelling and applications did not constitute an important issue 
either in their past as students, in their training to become teachers, or in their early 
years in the classroom. As Doerr (2007, p. 69) states: “one reason for the limited 
use of applications and modelling at the primary and secondary levels of schooling 
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is the lack of knowledge by those who are expected to teach mathematics through 
applications and modelling”. In addition, as she stresses, beyond the lack of subject 
knowledge related to modelling, teachers need other kinds of knowledge. The 
main issue that remains a basic research question is to determine the knowledge 
teachers need in order to be effective in using applications and modelling in their 
practice (Doerr 2007), which is automatically connected to a new fundamental 
question: How should teachers be trained/supported in order to be able to implement 
modelling-oriented pedagogies effectively?

Aware of this situation, a group of European researchers applied for a Comenius 
project (LEMA project) aimed at designing a professional development course on 
modelling and applications. The materials created during the project are examined 
although they are not the main focus of this chapter. Particularly, in which direction 
and to what extent these materials promote changes in teachers’ practices are analysed 
through a specific model of teachers’ actions.

2  Teacher Education on Modelling and Applications:  
From a Teachers’ Problem to a Professional Problem

Teacher training in modelling and applications is at the core of tension between two 
different trends:

On the one hand, research on modelling and applications concerning teachers’ •	
initial training and professional development is a complex domain which is still 
in its early stages. The situation is not extraordinary. In the extensive review of 
the state of the art concerning research in mathematics-teacher education 
carried out by Adler et al. (2005), they conclude that small-scale qualitative 
research predo minates in the field, focused mainly on case studies of a few 
teachers. The authors consider this an indicator of an emerging research field, 
where particular issues come first and precede generalisation. Furthermore, 
they consider this also to be a consequence of a research field that appears to 
be more complex than others.
On the other hand, due to the evolution of the educational system in many •	
countries in recent years, teachers’ initial training and professional development 
related to modelling and applications has become a crucial and urgent issue 
(for instance in Spain, Germany or England, due to the new national curricula, 
as reported in García et al. 2010). In many countries, increasing pressure is being 
exerted by society, educational authorities, curriculum, teachers, etc.

The tension is far from being solved but, meanwhile, research and many profes-
sional development initiatives are being proposed to encourage teachers’ knowledge 
to evolve.

Following Chevallard’s (2006a) distinction, we consider the problem of initial 
teacher training and professional development (particularly in modelling and appli-
cations) as a problem of the teaching profession more than a teacher’s problem. 
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Modelling and applications (as content or as a teaching strategy) is more than a 
problem that teachers face in their classroom and that they normally express by 
asking for direct help (e.g., Where can I find new tasks? What innovative pedagogical 
approaches exist?). It should be considered a problem that the teaching profession 
faces due to profound (intended) changes: in many educational systems, in the way 
mathematics is being considered, in the new general aims assigned to schooling, 
and (as reported in many studies) in the inadequate training of those responsible for 
developing the curriculum.

From this perspective, the focus is not on how teachers are making their personal 
models evolve from reflection concerning their (personal) practice, but rather 
on models that would be useful to the profession in order to deal with the complexity 
of teaching when modelling and applications are involved. Our approach represents 
a shift in how the problem is described and undertaken. We might consider a 
top-down approach to teachers’ pedagogical needs concerning modelling against 
the bottom-up approach from other perspectives. Ultimately, the path is different 
but the goal is shared – that is, identifying useful models for teachers to deal with 
the complexity inherent in the teaching and learning of modelling or in the use of 
modelling-oriented pedagogies.

3  A Theoretical Framework to Describe Teaching Actions

From our approach, any attempt to progress in the profession’s needs to make 
effective use of modelling and applications has to be integrated into a deeper under-
standing of teachers’ actions while using modelling and applications in their teaching 
(as a content or as a tool). This means that general models or theories to describe 
teachers’ actions need to be considered.

The anthropological theory of didactics (ATD) has been developed over the last 
25 years as a comprehensive framework for research in mathematics education. Its 
origins can be found in the first formulation of the didactic transposition theory, 
which pointed out that what is being taught at school (‘content’ or ‘knowledge’) is, 
in a certain way, an exogenous production (i.e., something generated outside school 
that is ‘transposed’ into school out of a social need of education and dissemination) 
(Bosch and Gascón 2006). This led to the notion of institutional relativity of knowledge 
and the ecological metaphor: mathematical knowledge emerges, evolves, changes, 
migrates and sometimes dies in institutions and between institutions. Modelling 
and applications as school content is not exempt from these processes.

In a brief description, ATD is founded on two basic hypotheses. The first one, 
which distinguishes it from other theories in mathematics education, is the hypothesis 
that, in order to understand how individuals act, we need to know first how the 
institutions they belong to act:

Behind the persons, and the knowledge, there appeared the institutions, to be regarded on 
par with the persons, in the light of a dialectic between persons and institutions. Persons 
are the makers of institutions which in turn are the makers of persons. Generally, however, 
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institutions come before those persons – their “subjects” – thanks to whom they will continue 
to exist and change. So that, in order to understand what persons are made of, we have to 
understand how institutions live, develop or recede. (Chevallard 2006b, p. 4).

This seems especially crucial both for research in mathematics education as well 
as in teacher education. Students and teachers are members of various institutions 
(school, mathematics classroom, the teaching profession, etc.) with explicit and 
implicit rules, idiosyncrasies, restrictions, connections to other institutions, functions 
and so forth which largely (although not completely) shape the behaviour of those 
students and teachers.

A second fundamental hypothesis of the ATD, which is not unique to this 
framework, is to consider mathematics to be a human activity. This leads to the 
notion of praxeology, in order to describe human mathematical activities and, 
moreover, any human activity:

One can analyse any human doing into two main, interrelated components: praxis, i.e., the 
practical part, on the one hand and logos, on the other hand. “Logos” is a Greek word 
which, from pre-Socratic times, has been used steadily to refer to human thinking and 
reasoning – particularly about the cosmos. […] no human action can exist without being, 
at least partially, “explained”, made “intelligible”, “justified”, “accounted for”, in whatever 
style of “reasoning” such an explanation or justification may be cast. Praxis thus entails 
logos which in turn backs up praxis. For praxis needs support – just because, in the long 
run, no human doing goes unquestioned. Of course, a praxeology may be a bad one, with 
its “praxis” part being made of an inefficient technique – “technique” here is the official 
word for a “way of doing” – and its “logos” component consisting almost entirely of sheer 
nonsense – at least from the praxeologist’s point of view! (Chevallard 2006c, p. 23).

Clearly, the notion evolved as new problems were arising and was later refined 
in order to produce more precise tools to describe and analyse institutional didactic 
processes. A distinction between specific, local, regional and global mathematical 
praxeologies was introduced, depending basically on the range of the practical and 
the theoretical blocks. This distinction has become critical in order to understand 
special features of how mathematics is being taught at school as well as to identify 
didactic phenomena.

3.1  Modelling the Teaching Activity

Not only mathematics can be considered as a human activity and modelled in terms 
of praxeologies, but also teaching is a human activity and, therefore, a didactic 
praxeology is activated each time a teacher interacts with students in the classroom. 
Didactic praxeologies are also made up of problematic tasks that teachers face, 
teaching techniques they use (or could use), and technologies and theories that 
describe, explain and justify their actions. It is also possible to distinguish between 
specific, local, regional, and global forms of didactic praxeologies.

For instance, Fig. 55.1 shows how an English textbook introduces, in a classical 
way, the notion of variables. Stereotyped and opportunistic relation with reality is 
used in order to make the situation closer to the students, seeking to stir motivation.
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Write down the short form of these rules.
Use the red letters and numbers.

The total money raised in a sponsored swim at £5 for each length.

The total money raised on a sponsored walk at £4 for each mile.

The total cost of a weekly magazine at £2 each week.

t = ...  ...

t = ...  ...

t = ...  ...

1

2

3

Fig. 55.1 Excerpt from a textbook

Fig 55.2 A possible didactic technique

This way of introducing new concepts is quite usual and generates a professional 
problem: How can real contexts and situations be used in order to give meaning to 
mathematics? In our particular example, a didactical problem teachers face could 
be reformulated as: How can the ideas given in this textbook be restated to encourage 
students to explore “variables” in real contexts?

Any solution to this didactic problem can be considered a didactic technique. 
While there is no single solution to this problem, Fig. 55.2 offers one possibility.

This approach to the problem is described and justified by (didactic) techno
logies and theories, which constitute the logos of this didactic praxis, as shown in 
Table 55.1.

Compared with describing mathematical praxeologies, it is more difficult to 
explain how and why teachers act (i.e., their didactic praxeology) because they mix 
components of mathematical praxeologies with others (e.g., group work, time 
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management, assessment, giving feedback to students). Whereas mathematics is 
characterised as rational structured knowledge, teaching is often viewed as a vague 
combination of disparate competencies with a strong personal filter.

In contrast with mathematical praxeologies, for which the components are 
normally not difficult to describe, it is unclear how best to describe teaching practices. 
That is, what is a teaching technique and what is it made of? What is a teaching 
technology/theory and what is it made of? Moreover, if teaching processes are not 
conceived in a normative and prescriptive way, then teaching techniques cannot 
be considered determined or closed.

To build a framework to model teachers’ actions, at least partially, Sensevy et al. 
(2005) used some general constructs from the theory of didactic transposition. These 
researchers adopted a non-prescriptive position: “describing the interaction of a 
teacher and his students in order to improve our understanding while respecting the 
complexity of the teaching process” (Sensevy et al. 2005, p. 153). Basically, they con-
sider a teacher’s work to consist of initiating, establishing and monitoring the students’ 
relationship with knowledge. To do this, teachers’ need to employ a wide range of 
teaching techniques, which comprise their didactic praxeology. Some of these tech-
niques are content-dependent (i.e., different techniques could be observed in an 
algebra class than, for instance, in a geometry class, and in a teaching process where 
modelling and applications are involved) and others can be considered general.

Sensevy et al. (2005) considered a triple dimension that describes teachers’ work 
related to starting and maintaining the didactic relationship, giving rise to a classi-
fication of teaching techniques in:

•	 Mesogenetic techniques, which involve all the actions teachers take in order to 
organize the learning situation and its milieu.

•	 Topogenetic techniques, which involve all the actions by teachers in order to 
divide and orient student–teacher responsibilities during the study process: 
students’ topos and teacher’s topos (a Greek word meaning, in this context, the 
place students and teacher occupy within a teaching process).

Table 55.1 Didactic logos

Technological elements Theoretical elements

Students can develop a more appropriate meaning  
of “variables” in real situations that offer the  
possibility of exploring relations between  
different quantities.

Modelling for learning 
mathematics

Before being told, students should have the  
opportunity of exploring the situation.

Collaborative learning

Working in groups is more effective for students to  
develop their capacities.

Student-centred pedagogies

After working in groups, it is necessary for students to explain  
and reflect on the work done by certain groups.

ATD: meaningful school 
mathematics

Before the class ends, it is important for the teacher  
to summarize the main mathematical ideas  
embedded in the task.

…
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•	 Chronogenetic techniques, which involve actions by teachers in order to make 
the didactic relationship evolve over time.

For instance, in the above example, a mesogenetic technique can be identified 
when the teacher changes the situation (milieu) by introducing the “petrol station” 
task. By introducing group work, the teacher is performing a topogenetic technique 
(the responsibility has been transferred to the students). After the group work, the 
teacher introduces the poster to summarize the solution. That technique has 
mesogenetic (the milieu has changed), chronogenetic (students’ activity is extended 
in time) and topogenetic influences (once again, the responsibility belongs to the 
students). Finally, when the teacher assumes responsibility for summarizing, this 
can be considered a topogenetic technique (but in the reverse direction: now 
responsibility is on the teacher’s side).

To what extent these models are useful to explore teaching processes when 
modelling and applications are involved is a question that we have just started to 
explore. We use these models in the following section to determine the direction in 
which training materials from the LEMA project are trying to move teachers’ actions 
related to modelling and applications.

4  LEMA Professional Development:  
Changing Teachers’ Practices

LEMA is the acronym of the Comenius European funded project, Learning and 
Education in and through Modelling and Applications. In this project, mathematics 
educators from six different countries have being working together on a set of 
professional development materials for primary and secondary school teachers. 
The main aim is to change teachers’ practices and beliefs towards modelling and 
applications.

As reported in García et al. (2010), many challenges have been faced: different 
theoretical backgrounds and research traditions, different school systems in each 
country, different roles of applications and modelling within each country, different 
teaching cultures in each country, different teacher professional development systems, 
etc. All these restrictions have led to a set of training materials organized in modules 
and sub-modules (see Fig. 55.3) that are mutually dependent but that can be arranged 
in many different ways in order to be adaptable to each country.

LEMA offers teachers opportunities to develop their praxis with a wide range of 
teaching techniques that support modelling (as content or as vehicle). LEMA offers 
teachers opportunities to reflect and justify the why of this praxis, that is, to develop 
their logos. By bringing both together, LEMA offers the profession opportunities 
to develop current didactic praxeologies towards modelling and applications. 
We extract brief examples from the materials that exemplify these changes.
Example 1: The sub-module “competencies” in the module “lessons” offers different 
teaching methods aimed at developing both the modelling competency as a whole 
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and the associated sub-competencies in particular. For instance, in order to support 
students’ sub-competency of “setting up a model”, teachers need to decide, from a 
set of cards with some hints about the situation, the ones that are useful to arrive at 
the solution (see Fig. 55.4). Introducing the cards is a way of changing the didactic 
milieu. Thus, this training activity offers teachers a useful mesogenetic technique 
related to the development of specific modelling sub-competencies. Moreover, it can 
be considered also to be a topogenetic technique because it is meant for assigning 
the responsibility of establishing the model to students, in contrast with the usual 
didactic contract where students assume the work inside the model (considered to 
be the authentic mathematics) but they neglect the previous work of structuring the 
situation, considering that it is teacher’s responsibility to offer a situation in which 
it is clear what type of mathematics should be used.

Example 2: The “assessment” module includes a sub-module dealing with assess-
ment for learning techniques. Teachers explore, among other aspects, how they can 
encourage students by giving feedback. Following Black and William (1998) 
Working inside the Black Box, questioning techniques are studied and, especially, 
the fact that many teachers do not give students enough time to look for an answer 
after a question is given, as reported in this study. Therefore, teachers explore tech-
niques to formulate effective questioning in modelling activities by giving students 

Fig. 55.4 Card game to help set up a model competency

Modelling Tasks Lessons Assessment Reflection

What is modelling? Exploring Methods Formative Challenges 

Why modelling? Creating Competencies Summative Implementation 

Classifying Content Feedback

Varying ICT 

Fig 55.3 LEMA professional development course: modules and sub-modules
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enough time to construct their own answer. These techniques, which deal with the 
time during which the teaching and learning processes occur, can be considered 
chronogenetic techniques.

5  Conclusions and Implications

Teacher education related to modelling and applications has become an urgent issue 
in many countries. Beyond individuals, it can be considered to be a problem the 
teaching profession faces. At the same time, it is a problem of those institutions in 
charge of providing initial teacher training and professional development. A deeper 
understanding of the challenges faced by the profession is needed to provide both 
the training institutions and the profession with appropriate materials and peda-
gogical approaches. However, while strong efforts have been made to understand 
which teaching methods support the best modelling and applications, little is being 
done to systematize, classify and question them. Frequently, we find lists of teaching 
methods that support modelling but these are often based on experimental evidence 
with a weak theoretical background. The framework introduced in this paper 
attempts to clarify and structure, at least partially, those pedagogical approaches 
(didactic praxeologies) that support modelling, with the objective of better informing 
initial training and professional development programmes in modelling.
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Abstract Very many people use internet search engines like Google nearly every 
day, in most cases more than once a day. Here the following question arises: How 
does Google come to a ranked list, how does Google know which site is an impor-
tant one and should be placed at the top of the list? It turns out that this question can 
be dealt with at a very elementary level. Here we show a possible way.

1  Introduction

Very many people use Google; it has become the most used internet search engine 
all over the world.1 In most cases the relevant sites (concerning the word we looked 
up) are more or less on the top, so it is not necessary to have a look at hundreds of 
sites to read something important and informative. Here the following question 
arises quite naturally: How can Google manage this ranking? How does Google 
know whether a special site is a relevant one and therefore should be presented 
quite at the top of the list? It turns out that the answer has to do with the so-called 
“PageRank”. Google’s PageRank can be dealt with at school (upper secondary) in 
two different manners: (1) as another application if “multi stage processes” or 
“Markov chains” have already been discussed, (2) as an introduction to the men-
tioned fields.

First a simple possible problem for the introduction: The telephone market of a 
country is dominated by three companies (A-tel, B-tel and C-tel). They have annual 
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contracts with their customers,2 the customers stay at their former company to a special 
percentage and change to other companies, respectively. This situation can easily be 
described with a so-called directed graph (also transition graph → Fig. 56.1): This 
means, for example, for the company C-tel that 70% of their customers stay at C-tel 
after 1 year, 20% change to A-tel and 10% to B-tel. The other transition rates can 
be interpreted in a similar way. Let’s suppose that these transition rates do not 
change throughout the next 5 (10; 20) years.

1

1

1

0.8 0.3 0.2

0.1 0.6 0.1

0.1 0.1 0.7

n n n n

n n n n

n n n nC

A B C A

A B C B

A B C

+

+

+=

+ + =
+ + =
+ +

What would be the distribution (fractions, percentages) of the customers to the 
companies at that time if at the beginning it was ( )0 0 0( , , ) 1 / 3,1 / 3,1 / 3A B C =  or 

( )0 0 0( , , ) 30%,50%,20%A B C = ? Even if students have not heard anything about 

Markov chains or transition matrices they can handle this problem easily by using 
a spreadsheet programme (e.g. EXCEL). One can establish the associated recur-
sions (→ above) by looking at the transition graph and entering them as a formula. 
Especially for such iterative situations (problems) spreadsheet programmes  
are a very useful tool! Using the well-known pulling down method one can  
easily and quickly see the values after 5, 10, 20 years (using only a calculator 
would be much more cumbersome here). One will realize that the values quickly 
tend to be ( )( , , ) 55%,20%,25%n n nA B C =  independent of the initial distribution 

0 0 0( , , )A B C .

Fig. 56.1 Transition graph

2 Assumption: these contracts are always made for 1 year, at the end/beginning of a year the 
 customers may possibly change the telephone provider.
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For experimentally determining such limit distributions in the case of only a 
few possible “stations” (above only 3: A-tel, B-tel, C-tel) spreadsheets are a 
wonderful tool. One does not need matrices or theories behind it, one only needs 
very elementary knowledge of EXCEL. The process in EXCEL is an iterative 
one and so is the real determination of the PageRank in the practice of Google. 
Using spreadsheets here therefore on the one hand is a simple introduction and on 
the other hand it is not so far away from the procedure in reality (iterative methods 
are used there too).

For dealing with such “limit distributions” in a more detailed way (especially a 
few theoretical aspects) EXCEL does not suffice, we need “transition matrices”.

2  The WWW as a Directed Graph and the Description  
by Transition Matrices

Search engines start their procedure by “combing through” the WWW with a so-
called spider or webcrawler (special computer programme): on which pages (sites) is 
there something written about the word (item) we are interested in and looking for?

The aim of this very large search process is to get a description – as good as 
 possible – of the contents of the pages and the structure of links3 in the WWW con-
cerning the word (item) looked up. Let us start with a very simple example: A, B, C, 
D are four different sites that are linked to each other as shown in Fig. 56.2. (e.g., 
there is a link from site A to B and C, from B there are links to C and D and so on).

Modelling assumption 1: For reasons of simplicity we assume that every link on a 
page will be used with the same probability.4 That means if there are two leaving 
arrows from a site each of them ought to have the number ½ , when there are 3 (k) 
leaving arrows, each arrow ought to have the number 1/3 (1/k). On the basis of this 
assumption no probabilities are written to the arrows.

Fig. 56.2 Links of four 
sites

3 Which site (containing the word looked up) has links to which other one?
4 Of course in reality this is not exactly the case; a conspicuous link at the top of the page is prob-
ably used more often than a “small link” at the bottom. But these kinds of simplifications and 
idealisations are very typical for mathematical modelling: we have to make such simplifying 
assumptions in order to be able to use mathematics successfully.
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Now we can imagine – just like in the case with the telephone companies – that 
many users are in the system of the sites A, B, C, D, at the beginning with the rela-
tive frequencies 0 0 0 0, , ,A B C D  (fractions, percentages; 

0 0 0 0 1A B C D+ + + = ). The 
change of a telephone company corresponds here to the change of an internet site. 
We again think of discrete steps in time: The users change the sites in these time 
steps (by following the links), so that after n time steps the distribution of the users 
is , , ,n n n nA B C D . We can again read off the recursions (→ above) easily from the 
transition graph (Fig. 56.2). In order to check whether there is a limit distribution 
( , , , )A B C D  (i.e., a stable distribution in the long run) and if it is the case how does 
it look like, we could again use EXCEL. But linear equation systems can also be 
described very comfortably by using matrices and vectors (→ above).

The vectors nv


 denote the distribution after n time steps. All transitions 
1n nv v +® 
 are given by the same matrix T (“transition matrix”). In column i there 

are the probabilities that a user on site i changes to site j in the next step by using 
a link i j®  ( , 1, ,4i j = ¼ ). Somebody who is at the moment on site C has to go 
to site A (probability 1) in the next step; this can be seen in the transition graph and 
in the transition matrix (the probability 1 in column 3 and row 1). For the transitions 
we get in sequence:

( ) ( )

2

1

2
10

3
0

0 1 0 2 0 3 0

·

·

· , · · , · · · , , ·

v

v

n
n

vT v

T v

T v v T T v v T T T v v T v v
æ ö
ç ÷= = = ¼ =
ç ÷è ø










       
 



When using matrices we have a possibility to get a direct formula for nv


 (not only 
an iterative description like with EXCEL).

A vector that has probabilities (relative frequencies, percentages; sum = 1) as 
entries is called a “stochastic vector”.5 A square matrix is called “stochastic” if its 

5 A vector v


 is called “stochastic”, if its components are from the interval [0;1] with sum 1.
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column vectors are stochastic. Transition matrices are of course stochastic because 
they are square matrices and in the first column there are the probabilities for users 
at A landing at A, B, C, D in the next step. Of course these numbers come from the 
interval [0; 1] and have sum 1 (analogous with the other columns).

2.1  How Can We Measure the Relevance of a Site?

On relevant sites one expects to read something informative, relevant and worth 
knowing. Of course, a site s is the more relevant the more sites have a link on s, 
especially when these links come from relevant sites. But these words do not say 
how relevance can be measured. Which is the most relevant page in the above 
graph, which is the next relevant, etc.? How can one determine the relevance of a 
site within a directed graph? One can think of the following situation:

Many users are in the network (directed graph): What fraction (percentage) of them 
is at A, B, C, D during their investigations in the long run? If it turns out that a special 
site attracts 90% of the users, then it is clear that this site is most relevant and must be 
placed at the top of the list. These fractions in the long run are a  possibility to measure 
the relevance of a site and for these fractions we need “limit distributions”.

Let us assume that the users start to surf at the four pages by chance and that the 
fractions of the users at the beginning are ¼ for A, B, C, D: 0 (0.25,0.25,0.25,0.25)tv = ; 
if they continue surfing and using the links by chance the distribution in the next 
step will be: 1 0· (0.25,0.25,0.375,0.125)tv T v= = 

 and in the next but one step 
2

2 1 0· · (0.375,0.1875,0.3125,0.125)tv T v T v= = =   ; the sites A and C seem to have 
an advantage here. This is also plausible: all sites have a link to C and from there 
one must go to page A. By multiplying always with T from the left one gets all the 
following distributions 0·n

nv T v= 
; they converge to a “limit distribution” nv v® 

, 
which is given by (3 / 9,2 / 9,3 / 9,1 / 9)tv = . According to this result sites A and C 
should be placed ex aequo at the first place, followed by B and D.

Such limit distributions can be determined at school in several manners:

 1. Repeating the iteration with EXCEL so long until the values do not change 
anymore.

 2. Determining a high power nT  of the matrix with CAS, so that 
0·n

nv T v=   should 
be near the limit distribution.

 3. We are looking for a vector v
  with component sum 1 that does not change under 

multiplication with T: ·T v v=  . One has to solve a linear equation system, of 
course, by CAS.6

6 With means of higher mathematics one can speak of an eigenvector of T to the eigenvalue 1. But 
in most cases at school students will not know these words and the corresponding ideas. Therefore 
we do not go into details in this respect.
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Problems that could occur:

Is it possible that there are more such limit distributions •	 v


? If there are more 
than one, do the vectors (distributions) iv


converge sometimes to the one and 

another time to the other (depending on the start distribution 0v


)? This would 
be not so good for our purpose because we want to use this limit distribution 
as a neutral and stable basis for a ranking concerning the relevance. A not 
unique limit distribution depending on the start distribution would be not a 
good basis. It would be best if the limit distribution were unique and independent 
of the start distribution.
All three possibilities mentioned above to determine the limit distribution •	 v


 

only work for relatively low dimensions, as above a 4 4´  matrix, eventually 
also 20 20´ , but in the case of a 1,000,000 1,000,000´  matrix (or more, as 
coming up in the practice of Google) other methods are used: iterative algo-
rithms that come to an approximate solution. They have to be very fast algo-
rithms because there are very many queries given to Google every second. 
And all users do not want to wait a long time for the result.

Regardless of whether or not Markov chains are dealt with, the following limit 
theorem is very important because it provides a simple condition to the transition 
matrix T that guarantees the existence of the limit distribution v

 , the uniqueness of 
it and the independence of the start distribution 0v


 (without proof): 

T is stochastic and nT contains for some 1n ³  (at least) one row with only positive 
entries Þ  The limit matrix : lim n

n
L T

®¥
=  exists, is stochastic and has equal 

columns.7
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04 4 4 4 4
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It is clear that these columns then determine the unique limit distribution v


independent of the start distribution 0v


: Because of 0 0 0 0 1A B C D+ + + =  in case 
of a 4 4´ matrix one gets for the limit distribution  v


 with this limit matrix L (inde-

pendent of the concrete values of 0 0 0 0, , ,A B C D ).

7 That means the entries are constant in each row. This theorem needs not necessarily be proven at 
school; one can simply use it for understanding the PageRank algorithm in its basics. Also the 
other specialties of the theory around it need not be dealt with at school.
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Of course we have 1it =å  because L is stochastic. In our example not T 
itself has such a row with only positive entries but already 2T  has it. So the 
convergence and the independence of the start distribution is guaranteed by the 
limit theorem above. In our case we determine, for example, 20T  and get with a 
CAS (4 significant digits):

Here ( )3 / 9,2 / 9,3 / 9,1 / 9
t

v =  – the limit distribution mentioned already above – 
can be easily seen.

2.2  Now to an Example Slightly More Complicated

The link structure of a still very small network consisting of 6 internet sites is shown 
in Fig. 56.3. The transition matrix can be read off easily again (→ matrix T).

0 0 1 / 3 0 0 0

1 / 2 0 1 / 3 0 0 0

1 / 2 0 0 0 0 0

0 0 1 / 3 0 0 1 / 2

0 0 0 1 / 2 0 1 / 2

0 0 0 1 / 2 1 0

T

æ ö
ç ÷
ç ÷
ç ÷

= ç ÷
ç ÷
ç ÷
ç ÷ç ÷
è ø

This is a new situation: From site  there is no arrow leaving, there are no 
links on this page. Within the process of surfing one could call such a situation 
a “dead end” or “sink”. This we can see in the second column of the matrix T; 
it contains only zeros. This is really bad for our purposes (stochastic matrix, 
column sum should be 1). What will one do in such a situation if this happens 
during surfing?

Fig. 56.3 Small network
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There are several possibilities:

 (a) Stop surfing and stay at site ; in the matrix this would mean to replace the 
second zero in the second column by 1, in the directed graph we would have to 
add an arrow from  to itself. We will not choose this possibility.

 (b) One could go back one step in the browser and then use another link instead of 
 (hopefully not again a dead end). One would have to distinguish from what 

page one came to  – this would make things rather complicated.
 (c) We decide in favour of another alternative: One leaves this site – coming back 

to the list (which we think as not yet ranked) – and by chance clicks one of the 
many other sites.

This we want to formulate explicitly as:

Modelling assumption 2: When we come to a dead end during the surfing process 
we go back to the list and click one of the m possible sites by chance, each with the 
same probability of 1/m.

Here we do not consider that one probably won’t click at the same page again 
(if there are really many sites, it will not make a big difference to “take off ” the site 
or not): We replace the entries in the second column (zeroes) by 1/6 (in general: 1/m 
if there are m websites). Instead of the zero column we write the m-dimensional 
column vector ( )1 / , ,1 /

t
m m¼  and get 1T :

1

0 1 / 6 1 / 3 0 0 0

1 / 2 1 / 6 1 / 3 0 0 0

1 / 2 1 / 6 0 0 0 0

0 1 / 6 1 / 3 0 0 1 / 2

0 1 / 6 0 1 / 2 0 1 / 2

0 1 / 6 0 1 / 2 1 0

T

æ ö
ç ÷
ç ÷
ç ÷

= ç ÷
ç ÷
ç ÷
ç ÷ç ÷
è ø

So we can get a stochastic transition matrix 1T  although there are dead ends in 
the structure of the network.

Question: What about the situation of a site to (instead of from) which no link 
exists? Would this also be so bad?

Modelling assumption 3: From the experiences concerning the dead end situation 
we can say: Although a page is not a dead end it is very possible that one does not 
follow the links on a page but comes back to the list and clicks another page (at 
random). Let us assume that one follows the links on a page with probability α and 
comes back to the list and takes a new chance with probability 1 α-  (the new 
chances are taken at random with probability 1/m). How can this scenario be 
described mathematically? What does the new transition matrix U look like in 
this situation?
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When following the links of a page the transition matrix is given by 1T .
What must the transition matrix look like in the case of coming back to the list 

and taking a new chance (problem for students)? Because the sites are taken at 
random with probability 1/m in this case the next distribution must be (1 / , ,1 / )tm m¼ , 
that means the transition matrix has to be

2

1 / 1 /

1 / 1 /

m m

T

m m

æ ö
ç ÷= ç ÷
ç ÷
è ø


 


 because: 

=

æ öæ ö æ ö
ç ÷ç ÷ ç ÷=
ç ÷ç ÷ ç ÷

è ø è øè ø

å


   




1

1

1 / 1 / 1 /

.

1 / 1 / 1 /

f f

i

m

v

m m v m

m m v m
.

In sum or in combination we get for the new transition matrix U by weighting 
these two cases with the factors α  and 1 α-  respectively:

  ( )
( )

1 2

With probability With probability 1
following the links "new start"

·  1 ·U T T
-

= + -
α α

α α  (56.1) 

It is easy to see (problem for students): Because 1T  and 2T  are stochastic matri-
ces U  is also stochastic.

2.3  The Crucial Attribute of U

The matrix U has only positive entries, no zeroes any more. According to the limit 
theorem above with this transition matrix we have the wanted and easy case of a 
unique limit distribution independent of the start distribution. This limit distribution 
can give us a ranking of the pages concerning their relevance (→ “PageRank”).

Which value should we take for α ? It is known that Google has used  
0.85α =  for a long time. Possibly nowadays Google uses another value.  

In the example above we get for the solution of the linear equation system  
·U v v=   ( 0.85α = ; 1 60, 1iv v v³ + + = ; CAS; 4 decimal places): 

( ) ( )1 2 3 4 5 6, , , , , 0.0517, 0.0737, 0.0574, 0.1999, 0.2686, 0.3487
t t

v v v v v v = .

The components iv  of the solution vector v


 determine the relevance of the sites 
and are called “PageRank values”. We get the same result if we determine a high 
power of U and then take one column of it. Also with EXCEL we would get the same 
result. According to it the ranked sites (concerning their relevance) would be:

site 6 → site 5 → site 4 → site 2 → site 3 → site 1.

This describes in the general case how the matrix U is created within the 
PageRank algorithm8 in an elementary way.

8 For deeper mathematics to this topic see: Chartier (2006), Langville (2006), Wills (2006).
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2.4  Explicit Solution (Formula)

When we insert (56.1) in ·U v v= 
 and when we use matrix notation we can manip-

ulate the equation (I hereby denotes the m-dimensional identity matrix). So we get 
an explicit formula for the limit distribution v


: 1 2

(1/ , ,1/ )

· · (1 ) · · ·
tm m

T v T v I v
= ¼

+ - =  α α  Þ

1

1 /

( · ) · ( 1)·

1 /

m

T I v

m

æ ö
ç ÷- = -
ç ÷
è ø

 α α  Þ
 

1
1

1 /

( 1)·( · ) ·

1 /

m

v T I

m

-

æ ö
ç ÷= - -
ç ÷
è ø

 α α  

One can show that the matrix 
1·T Iα -  is not singular so that we always have a unique 

solution.9

However, Google cannot use this explicit solution formula in practice because 
there we have very big linear equation systems (e.g. 1,000,000m =  or more) and in 
such high dimensions to determine the inverse matrix is a very hard and time con-
suming job. In practice iterative and approximate algorithms are used to come to a 
solution, but we don’t want to discuss these numerical problems in detail here.

3  Summary and Reflections

In this example we can see •	 the use of mathematics in modern society. In math-
ematics education we should have such examples: mathematics is more and 
more disappearing from societal perception and we should counteract this fact 
as good as possible.
Three elementary modelling assumptions (see above) had enormous effects. •	
These ideas are simultaneously elementary and ingenious, they guarantee that 
the algorithm “always works”.10 Of course this modelling process is not meant 
to be done by the students themselves (autonomous work) but with teacher’s 
help they get to know a piece of a very up to date application of mathematics 
(see also Voskoglu 1995).
All over the world we can detect the so-called relevance paradox of mathematics: •	
Mathematics is used more and more extensively in modern society (mobile 
phones, internet, electronic cash, cars, computers, insurances, CD players, 
 networks . . . one could give hundreds of examples!) and therefore becomes more 
and more important for us as a society. Mathematics surely is a so-called key 
technology for our future. But in many cases the mathematics behind these things 
is very complex and can only be understood by mathematics specialists. And for 

9 This follows also from the limit theorem above.
10 One has to admit: In practice the algorithm is more complicated but its “heart” is a very elemen-
tary one – see above – and can be understood by students.
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just using these things – we have to admit – understanding is not  necessary. This 
means in some sense mathematics gets less and less important for the individual. 
This is one reason why many people do not see the importance of mathematics at 
all. Therefore, in mathematics educating we should come up with examples that 
show the importance of mathematics in a striking and elementary way. And I 
think the example of this chapter is one such example.

•	 Consequences for teaching: We should foster examples that show the use of 
mathematics: for our society and for individuals. Mathematical modelling (with 
or without autonomous work of students) can be a way of doing that success-
fully. For teaching in this way it is important that students have basic knowledge 
of several mathematical fields (above: matrices, vectors, using computers, etc.) 
and that it is allowed to mention and use single unproved mathematical theorems 
(e.g., the limit theorem from above) in order to come to interesting mathe-
matical phenomena. Of course, this does not mean that reasoning in mathematics 
education wouldn’t be important!
In many preambles to syllabuses it is stressed that “cross-linking fields” is something •	
desirable. Also most researchers and teachers in the field of mathematics educa-
tion say that the teaching and learning process should more often give the oppor-
tunity for cross-linking mathematical topics. Here we have a very good chance 
for cross-linking stochastics (probabilities etc.), linear algebra (vectors, matri-
ces, etc.), and analysis (limits, etc.), (see also Wirths 1997). Besides, dealing 
with this topic provides a possibility for a reasonable use of computers in math-
ematics education (EXCEL, CAS).
This example may give reason for motivation and surprise: with how elementary •	
ideas one can establish something world shaking and earn a lot of money.11 
Therefore it may serve as sort of advertisement for mathematics: a great career 
is possible by cleverly using both elementary and ingenious ideas. We also have 
an affirmation: Basic ideas are still important!
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Abstract This chapter presents experiences with modelling activities at the 
University of Hamburg, in which small groups of students from upper secondary 
level intensely work for 1 week on selected modelling problems, while their work 
is supported by pre-service-teachers. The paper presents one authentic solution of 
a group of students concerning a biological question and describes the approach 
of the students in detail. The form of an authentic description also includes math-
ematical errors and thoughts of the students that either have been discounted during 
the development of a solution or found their way into their ultimate solution. So 
an insight into the modelling-activities of the students during the modelling week 
can be gained. Finally some results of an evaluation are presented that has been 
conducted after the modelling week.

1  Theoretical Framework for Modelling  
in Mathematics Education

There is a consensus within mathematics education that applications and modelling 
play an important role. However, how these kinds of examples are implemented, 
which kinds of examples are used and how the process of modelling can be imple-
mented in school is contentious and a matter for debate. Influenced by the goals, 
which are connected to the teaching of applications and modelling and mathematics 
education in general, one can distinguish different perspectives of the modelling 
debate worldwide: there are perspectives, which emphasise the use of authentic 
problems – named in a comprehensive framework developed by Kaiser and 
Sriraman (2006) as realistic or applied modelling. Other positions emphasise more 
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pedagogical goals such as the development of concepts or the structuring of learning 
processes. As an overall perspective a meta-perspective is discriminated, called 
cognitive modelling, which focuses on the cognitive processes taking place during 
modelling activities. We are not concerned in this paper with the other approaches 
developed and refer the reader to Kaiser and Sriraman (2006) and the extensive 
ICMI-study on modelling (see Blum et al. 2007).

The approach described in the following belongs to the so-called realistic model-
ling perspective. Based on our extensive empirical research (see, e.g. Kaiser-Meßmer 
1986) we see the necessity of treating authentic modelling problems, which promote 
the whole range of modelling competencies and broaden the radius of action of the 
students. The approach takes its essential starting point that – in order to promote mod-
elling competencies – the students need their own experiences with authentic 
modelling problems. Similar proposals are developed by Haines and Crouch (2006) 
or at the beginning of the modelling debate by Pollak (1969).

Authentic problems are defined as problems that are only a little simplified and, 
in accordance with the definition of authentic problems by Niss (1992), recognised 
by people working in this field as being a problem they might meet in their daily 
work. The modelling activities described in this paper – so-called modelling weeks – 
are developed within a framework based on the realistic or applied modelling 
approach. A central feature of these activities is the use of authentic modelling prob-
lems in order to implement pragmatic-utilitarian educational goals like understand-
ing of the real world or the promotion of modelling competencies. These authentic 
examples should explain the relevance of mathematics in daily life, the environment 
and the sciences, and impart competencies to apply mathematics in daily life, envi-
ronment and sciences. Running modelling weeks is considered to be a powerful and 
effective way to promote modelling in school on an extensive basis.

2  Framework and Structure of the Modelling Week

Modelling activities have been carried out at the University of Hamburg since 2000 
in a cooperation of the department of mathematics (applied mathematics) and the 
department of education (mathematics education). Since then, many students from 
the upper secondary level (age 16–18) have taken part in different forms of the 
project and were supervised by future teachers during their modelling activities. 
Since 2001, modelling weeks are carried out twice a year with about 200 students 
from upper secondary level (16–18-years-old students) from schools in Hamburg 
and its surroundings.

In the following, the characteristics of our modelling activities are described. 
These are didactical aims, requirements for the examples and didactical reflections 
about the students’ modelling activities especially focusing on a modelling week 
carried out in spring 2009 with 350 students.

Pragmatic-utilitarian educational goals can be implemented by the students’ inde-
pendent work on modelling examples, precisely in developing mathematical questions 



59357 Authentic Modelling Problems in Mathematics Education 

from given problems by themselves and developing solutions for real world problems; 
a comprehensive overview on modelling approaches on the contrary is not taken into 
focus. In addition, also the students’ motivation can be enhanced because at the 
end of the week, the groups have to present their solution within a presentation to 
the other participants. A fundamental part of realistic modelling is authenticity; the 
modelling examples used have to conform to necessary “authentic” requirements. 
For example, they have to be suggested by applied mathematicians working in 
industry, and may only be simplified a little, so that the modelling examples are still 
embedded into reality. This leads to the difficulty that neither the students nor the 
questioner knows an adequate solution for the modelling examples. Additionally, a 
problematic situation is described in the example and the students have to determine 
or develop a question, which they can solve, themselves. Various problem defini-
tions and solutions are possible; they all depend on the norms of the modellers.

But besides the authenticity, it has to be considered whether the examples are 
compatible with the students’ mathematical knowledge, which might not be very 
high, only covering the beginning of calculus. The modelling competencies differ 
on a large scale and the authenticity of the given real-world problems often creates 
difficulties for the students. In order to deal with this heterogeneity, it is necessary 
to foster independent work within small groups. A fast intervention by the future 
teachers would hinder the students’ independent work. The teacher should rather 
only support the students in case of lacking mathematical means or when the stu-
dents are in a cul-de-sac. After all, experiencing helplessness and insecurity is a 
central aspect and a necessary phase when dealing with mathematical modelling. 
Modelling is not a “spectator sport”, it can only be learnt by own activities.

3  Students Modelling the Spread of Disease in a Population  
of Ladybirds

Among other examples, the modelling example described in the following has been 
proposed to the students in the modelling week carried out in March 2009:

How can the spread of a sexually transmitted disease with ladybirds be predicted concern-
ing the development of the population itself?

The problem deals with the reproduction of ladybirds which are affected by 
sexually transmitted diseases. This problem was developed by Göttlich and Bracke 
(2009). The source is an article taken from the internet1 about an Australian study 
dealing with the reproductive behaviour of ladybirds with two dots (Adalia bipunc-
tata). Due to promiscuity great parts of the population of ladybirds are affected by 
sexually transmitted diseases caused by acarines (mites). Despite these diseases the 

1 The article is taken from http://www.wissenschaft.de/wissenschaft/news/258584.html. Bild der 
Wissenschaft. 25 October 2005. Retrieved 20 April 2010.
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size of the population has stayed the same over several years. The students’ task 
was to examine the statements about the long-term development of the population 
of ladybirds and find out whether the ladybirds might be at risk of extinction. We 
will restrict our descriptions on the approach of one small group of students in order 
to have space to show their various ways of tackling the problem, their errors and 
their final solution. Due to lack of precise information about the long-term develop-
ment of the population within the article the students2 started with research in the 
library and on the internet to find out further information about this species of 
ladybirds and especially about their reproductive behaviour. To grasp all this infor-
mation (e.g. about the time to sexual maturity and the incubation period of the sexu-
ally transmitted disease, but also climatic information like the temperature profile 
because the reproductive behaviour of ladybirds depends on the temperature), the 
students plotted the data in a graph. One can clearly recognize the influence of the 
context and its complexity on the students’ solution approach.

After the research and after getting a first idea the students agreed on factors that 
might influence the model in their opinion. These were the following:

Size of the population•	
Ratio of bugs affected by the disease•	
Reproductive activity•	
Temperature•	
Mortality rate•	
Birth rate•	
Time•	

The students first formulated a hypothesis about the connection between the first 
derivation of the time-dependent size of the population and the reproductive activ-
ity, which was to depend on the time and temperature. They developed as first 
approach: Let ( )p t  be the size of the population at the time t and T the temperature 
as well as ( ),r T t  the reproductive activity depending on time and temperature (on 
a scale from 0 to 1). Then the hypothesis was: ( )( ) ,p t r T t¢ = .

The formulation of the hypothesis, which was soon dropped by the students 
because it did not correspond with the data, clarifies another feature which can 
often be observed in students’ modelling. Usually the students use known concepts, 
in this case the concept of the derivative rather than developing models which 
would require further support by the teacher. Furthermore, well-known mathemati-
cal concepts are used without further reflection such as steady functions. While 
discrete models, which are rarely taught in school, would also be possible for popu-
lation models, the students did not consider this option in the beginning and they 
formulated a well-known function from their mathematics classes instead.3

2 The following descriptions are based on the considerations made by students from the Emil-
Krause-Gymnasium in Hamburg.
3 It has to be added that the students considered this option in the course of the modelling and 
included it into their model.
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To develop a new hypothesis the students then decided to include the ratio of 
infected ladybirds as a further factor, which was to be stated on a scale from 0 to 1 
just like the reproductive activity. The students called this “infestation” ( )b t . 
Furthermore, they decided that the reproductive activity was not to depend on the 
temperature any more. Instead the temperature dependence was to be included in 
the time dependence. Motivated by the previous research about the temperature 
patterns, the students assumed that the temperature mainly depends on the season 
and they decided that it was therefore sufficient to modify the reproductive activity 
only in dependence of time. All in all, the students therefore examined the follow-
ing three factors of which they assumed that they influence the derivative of the size 
of population as in the previous approach:

Size of population•	
Infestation•	
Reproductive activity•	

The students made all factors depend only on the time. Afterwards the group 
identified the factors that have to increase or decrease to result in an increase of 

( )p t¢  (the students called this “rise of the population”) or in a decrease of ( )p t¢  (the 
students called this “breakdown of the population”). The students presented the 
results in the above scheme about the connection of the values (Fig. 57.1). An 
upward arrow represents an increase and a downward arrow represents a decrease 
of the respective value.

It can be recognized that only the infestation ( )b t develops contrarily to the other 
values. To even this out and to include all the values into one equation, the students 
examined the value ( )1 ( )b t-  instead of ( )b t , which develops like the other values.

Thus, this new equation resulted as hypothesis:

 ( )( ) ( ) 1 ( ) ( )p t r t b t p t¢ = -
 

(57.1)

In the next step, the students added a time-independent mortality rate m to the 
existing factors, turning the result into the following equation:

 ( )( ) ( ) 1 ( ) ( ) · ( )p t r t b t p t m p t¢ = - -  (57.2)

b(t)p´(t) r(t) p(t)

Fig. 57.1 Scheme about the interrelation of the changing of the different factors
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This formula matches at least in parts structurally those population models that 
do not include a limit of capacities of the system. Notable is the way the students 
chose to arrive at this formula. They multiplied the previous equation (57.1) with 
( )1 m-  to adjust also the new factor to the existing ones just like they did with the 
infestation. This resulted in: 

( ) ( )( ) ( ) 1 ( ) ( ) 1p t r t b t p t m¢ = - -

The students expanded this formula with ( )1 m- . And they called the first 
addend of the right side of the expanded equation “birth”, the second addend 
“death” to differentiate between the different causes influencing the development 
of the population (in this case the derivative of the population size). This resulted 
in the following equation:

( ) ( )( ) ( ) 1 ( ) ( ) · ( ) 1 ( ) ( )

birth death

p t r t b t p t m r t b t p t¢ = - - -
 

Based on this equation the students stated the following: “We were able to cross 
out ( )·r t m  and ( )1 ( ) ·b t m-  because the mortality rate only refers to the popula-
tion”. This led to Eq. 57.2. Even if the mortality rate really only refers to the 
 population, the students of course did not cross out the factors ( )r t  and ( )1 ( )b t- , 
but equated them with 1.

As a last factor the students added the offspring per female bug in the first 
addend as a time-independent value. They called this “birth rate” X. The students 
estimated the value of X on the basis of their previously researched information. For 
this estimation they multiplied the amount of eggs a female bug produces in her life 
(4004) with the chance of survival of an egg (0.38%) and the ratio of female bugs 
in the bug population (9/105). This resulted into 1.4X =  approximately and as 
formula:

( )( ) · ( ) 1 ( ) ( ) · ( )p t X r t b t p t m p t¢ = - -

Subsequently the group took the value 1,000 for the initial size of the population 
(0)p  and 10% for the mortality rate.
To be able to calculate the population’s development using the presented dif-

ferential calculus the students would have had to identify a closed form for ( )p t

besides developing the functions for ( )b t  and ( )r t . That means that they would 
have had to solve the differential equation or alternatively they would have had 
to calculate it numerically with a computer. The group did not use any of these 

4 The values concerning this matter vary in different sources. In the text we strictly use the values 
used by the students independent of their biological correctness.
5 Independent of its exact value the ratio of female bugs indeed is very high for two-dotted lady-
bugs. This is due to symbiotic bacteria in the ovule and explains the promiscuous lifestyle of these 
bugs.
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Fig. 57.2 Students’ graph of the infestation ( )b t

methods possibly due to insufficient knowledge about these means. The group 
therefore did not decide to ask the teacher for assistance to solve the mathematical 
problem, but decided to use a discrete model with a recursive formula instead of a 
steady model. The decision was therefore not based on considerations with regard 
to content, but rather on considerations about available mathematical methods, 
which enabled them to work on a related discrete model. To transform the steady 
model into a discrete one, the students decided to keep the original form and the 
previous considerations and only add them in the sense of a recursive procedure to 
the size of the population in the previous month. The recursive formula was 
therefore:

( ) ( )1 · ( ) 1 ( ) ( ) · ( ) ( )p m X r m b m p m m p m p m+ = - - +

Furthermore, the students calculated graphs for the development of ( )b t  and 
( )r t , which allocates one value for ( )b t  and one for ( )r t  for each month of the 

year, based on information they had looked up and on the data from the text as well 
as on estimations. The resulting graphs of ( )b t  and ( )r t  are depicted in Figs. 57.2 
and 57.3.

With this formula the students were able to calculate the development of the 
ladybirds’ population over a year according to their model. Figure 57.4 depicts the 
development of the population on the basis of their calculations:

Although the composition of the formula and its calculated values are disputable, 
the students succeeded in developing a model which displays the stability of the 
population over the years. In their model the population size varies throughout 
the year but it reaches the initial size again at the end of the year. The important 
step of validation of the model was unfortunately omitted due to missing compara-
tive data and time spent on the preparation of the presentation of the solution, but 
it would have confronted the students with their own estimation of adequacy of 



598 G. Kaiser et al. 

their model and they would possibly have revised or corrected the model. But yet 
after this first result, without validation, the students thought of further modifica-
tions of the model, such as a stronger temperature dependence of the development 
of the population. This was especially motivated by the wording of the problem, 
in which the author speculated about a breakdown of the population due to a rise 
of temperature because of climate change. Furthermore, they discussed the pos-
sibility of looking at the infestation ( )b t  not only as a value depending on time, 
but also as a value ( ), ( )b t r t  depending on the reproductive ratio. Other ideas 
concerned including predator–prey relationships into the mortality rate or refining 
the time intervals and considering the fact that a bug is sexually mature only after 
4–5 weeks. Even if these modifications are comprehensible, the validation of the 
model is missing and this could indicate that the developed model is arbitrary to 
the students, as long as they get to a model, so further didactical insistence on the 
validation of solutions should be taken into focus when teaching mathematical 
modelling.
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4  Evaluation of the Modelling Week

For the evaluation of the modelling week in March 2009 we used a questionnaire 
with four mainly open questions on the beliefs of students about mathematics 
teaching and three open questions on the appreciation of the modelling examples 
tackled in the modelling week and five closed questions, which had to be answered 
on a five-point-Likert-scale. The questionnaire was filled out at the end of the mod-
elling week by 289 students from 19 schools from Hamburg and its surroundings; 
originally 350 students participated, but not all of them were present on the last day 
or were willing to fill out the questionnaire. Based on methods of Grounded Theory 
(see Strauss and Corbin 1998) we used in-vivo-codes for the open questions, that is 
codes extracted from the students’ answers, written as verbatim quotations, and 
grouped them to similar quotations under a theoretical perspective. In order to 
analyse the students’ answers in the open questions we transformed the grouped 
in-vivo-codes into theoretical codes. We used methods of consensual coding for 
reasons of quality assurance, which means that a coding team consisted of two cod-
ers, who conducted all steps described above together. According to Steinke (2000) 
interpretations in groups are a “discursive way to create inter-subjectivity and com-
prehensibility by means of handling data and the respective interpretations explic-
itly” (p. 326, translation by Karen Stadtlander) and thus serve to assure quality.

Within this paper, we concentrate on questions about the students’ perception of 
their learning outcomes. The following question was asked: “From your point of 
view, what did you learn when dealing with the modelling example?”. Two hundred 
and six (about 71%) of the students gave a detailed answer that could be coded; 
only 49 did not see any learning outcomes from the modelling week. The answers 
demonstrated that the students perceived the main factors of their learning progress 
to be insights into the applications of mathematics and working techniques. Other 
factors like learning formal mathematics, the (formal) application of computers or 
the comprehension of mathematics or social aspects were also named, but more 
seldom. The students described that they now were aware of the relevance of math-
ematics in their environment and able to use their mathematical knowledge to apply 
mathematics in daily life.

…that mathematics not only can be applied in school, but also to specific examples in real 
life. (Female student, 19 years old)

…to solve arising problems autonomously. (Female student, 16 years old)

Even though most of the reactions and answers of the students to the learning 
outcome of the modelling week were positive, 82 of 260 students (about 32%) gave 
a negative answer to the question: “Should these examples be increasingly dealt 
with as part of regular math classes or would you reject this?” Apparently, these 
students are not willing to deal with modelling, when it comes to modelling in their 
own mathematics education.

Taking a look at the negative answers, time pressure was the most often named 
factor against including mathematical modelling in ordinary mathematics teaching. 
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Other factors like disinterest or insignificance of modelling problems, difficulty of 
modelling problems or the impreciseness of mathematical solutions were also 
named, but again, more rarely. This clearly shows that the students are aware of the 
time pressure in their mathematics curriculum, which conflicts with the time-
consuming character of mathematical modelling experienced in the modelling week. 
Thus, even though they may have liked mathematical modelling, they were not in 
favour of including modelling in their ordinary mathematics classes. On the other 
hand, it shows, that still today there are only few opportunities to integrate mathe-
matical modelling in school.

To my mind this would be too time-consuming. It is more important to master the subject 
itself. (Female student, 18 years old)

It would not make sense to use this in class, because it has little relation to maths. It is more 
like something you could puzzle over. (Male student, 17 years old)

No, because the tasks were not narrowed down and there were too many possible solutions 
to choose from. (Female student, 17 years old)

Concerning the positive answers for the inclusion of mathematical modelling in 
ordinary teaching, the most named reason here is the relation of mathematical mod-
elling to reality. Other arguments for the inclusion are the promotion of working 
techniques or variation in mathematics classrooms. Some students proposed to 
change the modelling problems before working on them in regular mathematics 
classes. Finally, the positive answers of the students demonstrate that dealing with 
mathematical modelling enables the students to understand the utility and necessity 
of mathematics in real life.

I think that these examples should DEFINITELY be dealt with in maths classes. Because 
of these examples one will only realise what mathematics is needed for. (Male student, 
16 years old)
Such problems SHOULD be dealt with in class, because they will improve the so-called 
‘competence in problem solving’. Furthermore, it will train the knowledge gained in previ-
ous grades. (Male student, 19 years old)

Our evaluation demonstrates that these kinds of examples can be tackled suc-
cessfully by ordinary students in upper secondary level. The students describe high 
learning outcomes reflecting all the goals of modelling in mathematics education, 
ranging from psychological goals, such as motivation, meta-aspects, such as pro-
moting working attitudes, to pedagogical goals, namely enhancing the understand-
ing of the world around us. The strong plea of the students for the inclusion of these 
kinds of examples in usual mathematics lessons support our position that it is 
appropriate to include these kinds of problems in ordinary mathematics lessons, 
clearly not everyday, but on a regular basis.
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Abstract The estrangement of science from mathematics in the mathematical 
curriculum of Japanese senior high schools is a subject of widespread and grave 
concern. Thus, in order to connect mathematics to the fields of Newton’s science, 
for example, through mathematical modelling, it is suggested that it will be necessary 
to provide concrete examples such as “Kepler’s Laws”. This approach succeeded 
in increasing a class of Year 12 students’ knowledge about the laws with the simu-
lation of planetary movements and the making of a “Mathematical development 
model” occurring together. Consequently students will realize the necessity of dif-
ferential equations in order to analyze actual phenomena. This empirical research 
suggests that mathematics materials involving physical perspectives are effective 
for senior high school students.

1  Introduction

In school education in Japan, it is thought that it is enough for mathematics teachers 
to teach only theory. It is believed that the science teachers practice the application 
and the use of mathematics; but it has not been actually achieved. Mathematics is 
removed from the phenomena of daily life and science. Students will understand 
the ideas through the formal theory of mathematics; but they have not gleaned the 
scientific spirit. Additionally, it is difficult for them to understand the concept of 
mathematics theory. The reason why students study mathematics is “to notice its 
necessity and to learn the thought” (cf. Stephens and Yanagimoto 2001). The solution 
of problems by mathematical modelling is necessary to achieve these two purposes.
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Fujii (1987) pointed out the following problems about mathematics that is aimed 
at preparation for science: “The calculus education in Japanese senior high schools 
includes a unit in which students must learn a theory of Newton’s science. However, 
senior high school mathematics does not aim at the dynamics. An educational 
practice to determine the elliptic orbit of a planet using Newton’s law of gravitation is 
necessary” (p. 86). The differential equation of the law of universal gravitation 
(Newton’s Law) is necessary to prove Kepler’s Laws. However, high school phys-
ics does not prove Kepler’s Laws, they are only presented (Fig. 58.1). High school 
mathe matics mainly treats the ellipse in orthogonal axes coordinates. High school 
phy sics mainly treats uniform circular motion. Both high school mathematics and 
physics only show formal knowledge. Students will not be able to notice the 
necessity of mathematics to solve problems in science or as it applies to their lives. 
They will also be unable to learn correct thinking about applying mathematics. 
The result is uncertainty as to whether the students can gain the spirit of modern 
science well by the current situation in school education in Japan. As an alterna-
tive, Kawano (2001) conducted a class using mathematical modelling but there 
were no data from the students about the recognition of change of understanding 
and satisfaction.

We carried out a survey of student knowledge concerning Kepler’s laws. The 
low percentage of students in a Year 12 class (N = 39) with the mathematical back-
ground theory used for Kepler’s Laws is shown in Fig. 58.2. They did not know the 
deep meaning though they knew the formal theory. The students knew that a planet 
orbits the sun. They learned Kepler’s law in Year 11. However, they learned eccen-
tricity in their mathematics class, but they did not remember the word or its meaning. 
In addition, they had not used a computer for such a class. Perhaps it is thought that 
the students would not understand “the common point of the focus and the sun” or 
“the planet’s motion”.

When we analyze a real event that needs mathematics, it is necessary for us to 
apply mathematics (Applied Problem) and it is necessary for us to think about the 
solution by understanding the meaning of the problem. We practice this, and it 
becomes necessary to look back at the results as in the modelling cycle process 
(Borromeo Ferri 2006) as in Fig. 58.3a.

Fig. 58.1 Formal knowledge and illustration of Kepler’s Laws in physics textbook (Suken 
Syuppan 2003)
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Then, when the actual model describes the scene and the case of reality, we call 
it an “Elementary Model” (see Fig. 58.3b). The model described by using mathe-
matics that the students have studied is called a “Pre-model”, because it becomes a 
part of, and a connection to, the development model though it is unsatisfactory 
as a model. The model which guides students to the new mathematics is called a 
“Mathematical development model”. These models provide the basis for introductory 
teaching materials of the new mathematics unit where students develop an image 
of modelling (see Fig. 58.3b).

When the model changes from simplicity into complexity, students repeat this 
modelling. However, it is advisable that the student do not think about this process 
alone, because they cannot find the new model from only their experiences. A minimum 
of support by the teachers is necessary (cf. Blum and Ließ 2007).

An example of this modelling is the teaching materials using “Kepler’s Law” 
and the law of universal gravitation which will be explained in the next section. 

Knowledge survey concerning Kepler's laws
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Fig. 58.3 (a) Kaiser’s Mathematical modelling cycle (b) The development of modelling image
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To make high school students consider how mathematics is connected with science 
is very difficult. Why is it difficult?

The following educational situations have always existed in Japan. According to 
the course of study (Ministry of Education, Culture, Sports, Science and Technology 
2005) in Japan, all teachers must comply with curriculum guidelines that are 
managed by the commonwealth institution. Teachers should use the textbooks that 
follow these guidelines. The guidelines have not treated the approach of mathematical 
modelling until now. So in mathematics and science education in Japan, a curriculum 
for modelling activities does not exist. The school system in Japan does not 
permit mathematics teachers to teach other subjects such as physics or information 
processing. Also, educational materials beyond the guidelines are not test require-
ments for university entrance examinations. Given the circumstances, teachers 
are presently unable to further develop teaching materials. So teachers depend on 
the textbook. In addition, the students’ classes emphasize mathematics to gain 
entrance into university as demanded by their parents or guardians. Consequently, 
the reason students study mathematics is for university entrance examinations. 
A lot of high school students do not have basic knowledge of the connections 
between mathematics and other areas (Fig. 58.2). If this continues, not only students 
and citizens but also teachers will eventually come to lack recognition of the necessity 
of mathematics. To address such situations, new teaching materials need to be 
developed and evaluated in a teaching experiment.

2  An Example Using Modelling: Teaching Materials for 
Kepler’s Law for High School Students Becoming Scientists

This example is not only to foster modelling. It is also intended we should address 
the problems of school education outlined in the previous section. We want to 
recommend the proof of the elliptical orbit of the planet as mathematics material 
with physical viewpoints, because the essence of modern science is connected to 
Keplerian and Newtonian science.

2.1  Premodel

First of all, students will practice using the observational data of Mercury. This will 
be called the elementary model to understand Kepler’s Law (Table 58.1, Fig. 58.4).

The elliptical orbit of Mercury appears as the envelope of the tangential lines, 
“Kepler’s 1st Law” (Fig. 58.5). And, when the length of observational periods are 
equal, the sectoral areas caused by the segment that connects the sun with Mercury 
are equal, “Kepler’s 2nd Law”.

Usually only this model must be satisfactory, and as a result, we think that students 
will confirm the image of Kepler’s Law.
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Table. 58.1 The observational data of mercury (cf Kyoto Chigaku Kyoiku Kenkyukai 1993)

Year Eastern max. angle (E) Western max. angle (W)

1990 April 14 20* February 1 25*
August 12 27* May 31 25*
December 6 21* September 24 18*

1991 March 27 27* January 14 24*
July 25 27* May 13 26
November 19 22* September 8 18*

December 28 22

1992 March 10 18* April 23 27*
July 6 26* August 21 19*
November 1 24* December 9 21*

Fig. 58.4 The maximum angle (cf Kawasaki 2007)

Fig. 58.5 Drawing in mercury orbit using tangential lines: (right) elementary model, (left) premodel 
(cf Kawasaki 2007)
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However, it is doubtful whether the students understand these correctly. In fact 
we showed them a simulation of two planetary movements (Fig. 58.6), and we 
made them judge which was correct. At once students could not judge, and selected 
Fig. 58.6a later.

This elementary model is not enough for students’ knowledge to mature, but it 
is a good result as a model. Before long they will demand a new model. Therefore, 
we call it the premodel that prepares for a new model. It is necessary to prepare the 
new content of mathematics. The new model is shown in the next section. It 
becomes one composition by these two models. The new model is also a means to 
lead to a new mathematics unit. Students will make the best use of the new model 
for the next practice.

2.2  Mathematical Development Model

It is necessary to introduce the differential equation. The equation of Kepler’s Laws 
by Newton’s Law is a second order linear differential equation with scalar constant. 
This is very difficult and the students cannot find the new model from only their 
own investigations. A minimum of support by the teacher is necessary, and the first 
author tried to help the students gain understanding, using the analysis method of 
numerical values by computer programming. They will be able to have full realization 
of Kepler’s Laws and Newton’s Law by drawing the solution curve using Euler’s 
method (Fig. 58.7).

The solution curve by Euler’s method has the feature that the error grows when 
the input value increases, and the graphs separate (Fig. 58.8). When teachers give the 
student the base program, regard for error is necessary. Figure 58.9 is the system 
diagram showing how differential equations are introduced. A feature of this is the 
treatment of simple harmonic motion in high school physics by the differential 
equation. This second order differential equation relates to the law of universal 
gravitation. Other necessary mathematical content includes polar coordinates and 
linear transformations (see Fig. 58.10).

Fig. 58.6 (a) Uniform motion (b) Planetary motion (cf Kawasaki 2007)
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Fig. 58.7 Euler method

Fig. 58.8 By Euler method

Students were able to smoothly make the mathematical development model 
using a supplied worksheet and computer programming (Fig. 58.11). In addition, 
this mathematical development model means the polar equation of ellipse is, 

1 cos
r

e q
=

-
  ( 0 , 0)e> > . Students confirmed whether this solution accorded 

with the drawing of the solution curve (Fig. 58.12).
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3  Students’ Evaluation and Impressions

The whole Year 12 class (N = 39) participated in the teaching experiment up to the 
premodel stage of the teaching materials and were given a questionnaire where 
items were rated from 1 (lowest) to 5 (highest) evaluating their understanding of 
the modelling lessons. A further treatment of the mathematical development model 
was conducted with only three students from the class and this was also evaluated 
in a similar fashion.

3.1  The Class Treated the Premodel

The students understood the mathematics background to Kepler’s Law well. 
Understanding and interest show high scores (Fig. 58.13). It appeared they liked the 
work on the planetary orbit. They noticed that Kepler’s 2nd law used mathematics 
they had not learned. However, they could not interpret the new mathematics very 

Fig. 58.9 System diagram to introduce differential equations (Kawasaki 2007)
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Fig. 58.10 Transform of coordinates and mathematical development model (Kawasaki 2007)

well, because they had trouble choosing the correct answer from two planetary 
movements. They seemed to be unable to understand, but had the will to learn new 
mathematics (Fig. 58.13 (6)).

There were some students who gave low scores for Fig. 58.13 (6) and (7) as they 
were not accustomed to the calculator, and also the classes advanced quickly.

3.2  The Class Treated the Mathematical Development Model

At this time, students were busy for the university examination, so this next lesson 
was carried out for only three students. They entered the science faculty of Kyoto 
University. Almost all of the survey answers were composed of high scores. One 
student’s impression was “This lesson was a valuable experience of learning the 
interest of natural science before I get into college”. Analysis by programming 
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proved to be very effective in increasing the students’ understanding (Fig. 58.14 
(11) (12) (14)). However, there was a lot of content covered in only a few classes. 
It seemed that students had difficulty understanding the content though they were 
interested in it. After all, it was difficult for students to make the model by them-
selves. Moreover, it was also difficult for the teacher not to provide assistance and 
allow them to work unaided (Fig. 58.14 (9)). Another student’s opinion was that, 

Fig. 58.11 Computer  
programming

Fig. 58.12 Simulation result (a) dq = 0.1 (b) dq = 0.01
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“Both content of modelling and guidance to Kepler’s motion is too greedy”. A little 
more time might have been necessary so that the students might master the knowledge. 
However, this modelling aims at the introduction into a new mathematics unit such 
as differential equations by making a mathematical development model.

The students would have achieved this step with further study and repeated 
modelling tasks. In schooling in Japan, there is no custom of using information 
technology effectively and the strong and weak points of the programming were 
caused by the students’ ability. This is difficult if there is no educational environment 
that treats information technology properly.

4  Conclusion and Future Subjects

Both models showed utility as educational content raising awareness of interrelations 
between science and mathematics. This example resulted in students understanding 
the true concept of the mathematical theory against the background of a great scientific 
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discovery. Students also learnt some more mathematics. Incomplete models might 
not be helpful when trying to solve a problem by applying mathematics knowledge. 
It is also important to give students new mathematics knowledge, if the model has 
contradictions or limits. Modelling practice in more advanced stages is also necessary 
so teachers should prepare new content. Students will grow if preparation is well 
founded, and the modelling can bridge to a new mathematics unit. When students 
must make a previously unseen mathematical model, teachers should assist when 
the application of learnt mathematics or new mathematics is needed. High school 
students in Japan are not accustomed to problem solving by modelling. There are 
few chances for them to appreciate the necessity of mathematics, when they study 
it. Even if it is late when students treat modelling, it is necessary to improve teacher’s 
guidance when applying such modelling. This time, students made the mathematical 
model with teacher support. It is difficult for a teacher to judge whether it was the 
minimum support needed, but in the future students might have to research in 
teams, or solve problems alone. In order to do this, students need as much such 
self-help as possible at early stages of their growth (cf. Blum and Ließ 2007). This 
teaching experiment showed mathematics was useful for understanding science. 
Students could glimpse the scientific spirit. Though not all students achieved, they 
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experienced and understood the mathematical theory. Such modelling practice is 
important for students who aim to become scientists and engineers and for students 
to become wise citizens.
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Abstract Basic models of reliability theory can provide relevant and motivating 
problems for secondary students as they develop skill and understanding in probability 
and algebra. This paper introduces the stochastic measurement of a system’s reli-
ability. It then presents problems which can be used in secondary mathematics class-
rooms discussing the prerequisite mathematics and the variation in the types of 
problems which can be posed within the framework of reliability theory. This includes 
providing an example of an open-ended project with an assessment rubric. Finally, 
it summarizes the mathematical residue as a rationale for secondary teachers to con-
sider incorporating interesting applied stochastic problems within their curricula.

1  Introduction

While examples of modelling have been developing rapidly over the past few 
decades, the proportion of teachers using these materials remains low (Blum et al. 
2002). To encourage teachers to incorporate modelling within their curricula, they 
must see the tasks accessible. This chapter provides examples demonstrating the 
utility of stochastic case problems in motivating and engaging secondary students 
in developing modelling skills. The problems presented demonstrate contextual 
problems that can be accessed by students in a range of varying skill levels.

This report introduces a case of mathematical modelling and mathematical 
applications for the secondary classroom taken from reliability theory. In light of 
the continuing challenge of getting teachers to consider areas which they are not 
familiar with, the following two questions guided the development of this report:

 1. Do applications of reliability theory provide accessible, engaging, and motivating 
problems for secondary students?
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 2. Can the mathematics from reliability theory be seen as accessible and useful to 
broad audiences of secondary mathematics teachers?

First, this paper summarizes the basic concepts of reliability theory and its history. 
The following section presents sample reliability tasks for secondary classrooms. 
This section includes discussions of prerequisites and a variety of questions which 
can be posed within the framework of reliability theory. This includes providing an 
example of an open-ended project with an assessment rubric. Finally, the paper 
closes by summarizing the mathematical residue which can be extracted through 
the use of reliability theory problems in the classroom. This provides a discussion 
of characteristics which can persuade teachers to consider varying their traditional 
curricula to sample modelling in their classrooms.

2  Reliability Theory

Utilizing ideas from reliability theory provides a platform for presenting interesting 
problems while demonstrating a need and use for basic algebraic skills and 
concepts in probability. Examples of contexts approachable by secondary school 
students include:

 1. How many engines does a 747 need to fly? What’s the probability of all engines 
failing at the same time?

 2. Christmas lights go dark when just one fails. What is it worth to get better bulbs?

2.1  Brief History

Building blocks of reliability theory were developed by German rocket engineers 
in Peenemunde, Germany during World War II and then in Huntsville, Alabama 
following the war (Kececioglu 2002). In both cases collaboration was within the 
teams created by Wernher von Braun. The two early pioneers of the field were Eric 
Pieruschka and Robert Lusser who initially worked on trying to improve a failing 
missile by improving the weakest link. They later recognized that a rocket’s 
reliability was equal to the product of the reliabilities of component parts and this 
concept became known as Lusser’s law.

It may be its utility in the aviation industry which elevated reliability theory as 
its own field. It is argued that Z.W. Birnbaum, a professor at the University of 
Washington and a consultant to the mathematics division at the Boeing Scientific 
Research Laboratories, led formalized development of the field in a 1961 issue of 
Technometrics, “Multi-Component Systems and Structures and Their Reliability1” 

1 The term “reliability” has meanings in common language and with slight variances in different 
regions of the world. For the purpose of this paper, the author is using the specific stochastic meaning 
initiated in Mathematical Theory of Reliability by Barlow and Proschan in 1965.
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(Barlow 2002). This was significantly motivated by industry needing and wanting 
to increase the safety of flying. Through a set of simplifying assumptions, such as 
dichotomy (systems either perform or fail), and components with common reliabilities, 
they examined requirements for building multicomponent systems more reliable 
than individual components.

2.2  A Summary of the Reliabilities of Simple  
Fundamental Systems

Reliability is the probability that a multicomponent system performs adequately 
over an interval of time (Barlow and Proschan 1965).

Systems can often be modeled using series systems, parallel systems, or combi-
nations of both. In these models, a system functions successfully as long as there is 
a path through working components from the start (generally the left-most point) to 
the finish.

2.2.1  Series Systems

In Fig. 59.1, components 1 through n must all work for the system to work.

1 2
1

n

n i
i

R p p p p
=

= ´ ´ ´ =Õ

The probability that the i-th component will work is denoted as p
i
. In a system 

of components in a series, the reliability of the system is the probability that all 
components work. The reliability of the whole system is labeled as R, the probabil-
ity that all components work.

2.2.2  Parallel Systems

In a parallel system, the system will work as long as at least one of the components 
is working. In Fig. 59.2, the system works as long as at least one of the components is 
working and it fails if and only if all components are failing.

The reliability of the system of n parallel components is,

[ ]1 2
1

1 (1 )(1 ) (1 ) 1 (1 ).
n

n i
i

R p p p p
=

= - - - ¼ - = - -Õ

… n1 2

Fig. 59.1 n components in series
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2.2.3  Combined Systems

For systems composed of both series and parallel components, the whole system’s 
reliability can be found by finding the reliabilities of subsystems and then again 
applying the routines for series or parallel sets of components. For example 
Fig. 59.3 uses components in series and parallel.

By finding the reliability of the subsystem of components 1 and 2 in series, what 
will be labeled as R

1
, I can then treat the new reliability as a single component in 

parallel with component 3 as is shown in Fig. 59.4. The reliability of R
1
 is p

1
 × p

2.
 

Thus the whole system’s reliability is,

1 3 1 2 31 (1 )(1 ) 1 (1 )(1 )R R p p p p= - - - = - - ´ -

This method of dealing with combined systems provides an explicit and visual 
case for students to see how simplifying a problem becomes a critical strategy in 
modelling and determining the reliability of a system. This process can be repeated 
with any system to obtain the system reliability. This paper focuses on this solution 
method2.

1 2

3

Fig. 59.3 A combined system

2 The purpose of this paper is to demonstrate how an extracted type of problem from a field gene-
rally taught only in tertiary programs can be used to generate interesting and educationally useful 
problems. The methods demonstrated thus far only present a small portion of the beginning ideas 
of reliability theory. It is common for next steps to be consideration of minimal paths and minimal 
cuts to generate an algorithm for determining the reliability of a system. While this too may have 
potential with secondary students, it is outside the scope of this paper.

Methods which build the reliability function from minimal paths or minimal cuts can 
frequently be found in textbooks for Operations Research (Hillier and Lieberman 2010) and in the 
work of Birnbaum et al. (1961).

1 

2

n

.

.

.

Fig. 59.2 n components in parallel
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3  Reliability Theory Problems for the Secondary Classroom

3.1  Prerequisites for Reliability Theory

Problems using reliability theory require understanding of a few fundamental concepts 
of probability, namely, independent events and the consequential multiplication law 
of joint independent events. While other ideas are also critical to utilizing reliability 
theory, such as the probabilities of complementary events, they can be taught through 
the use of reliability theory in considering a single component and generalizing.

The level of algebraic proficiency required varies from none to advanced depen-
ding on the design of the problems used, as is evident in the problems which follow.

3.2  Examples of Problems for Secondary School

A variety of problematic contextual tasks can be created for students to explore and 
solve. These have been separated into Levels I and II to show both simple and 
complex problems within the realm of secondary students. These are followed by a 
sample project giving students a chance to create their own designs while maximi-
zing reliability.

3.2.1  Level I Problems

In the Level I problems below, the systems are either exclusively series or exclusively 
parallel. Questions have been designed to push students to see the patterns emerg-
ing from multiple components either in series or in parallel. A choice was made to 
select simpler component reliability values over the more realistic true reliabili-
ties. For example, in problem B below, the real reliability of a jet engine is much 
greater than the 0.98 given. If a teacher wanted to focus on concepts around decimals 
and scientific notation, they might choose to use more realistic numbers. These 
numbers were chosen to prioritize the objective of examining the probabilities while 
lowering anticipated student struggles with decimals and significant digits.

Problems A and B ask students to find more than one way of answering a problem. 
This allows different methods of solution to arise which can be discussed to compare 
the efficiency of different methods. Problem A asks students to get to the general case 
for components in series, which is Lusser’s Law for n component parts in series:

1 2 .nR R R R= ´ ´ ´

R1

3

Fig. 59.4 Simplified modifi-
cation of Figure 59.3
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Problem B asks the student to list all possible cases of success and failure for a 
system. Additional problems could be added to confirm that students realize the 
role of multiplication in generating all possible cases for a set of components.

Problem A.  Grandma called yesterday to ask you to help her hang holiday 
lights for the winter season. Her lights are the old type of light 
strings. If one bulb fails, the whole string fails. The probability 
of each bulb working is 0.75. If one of the strings has only two 
bulbs (a short string for illuminating very small areas) what’s 
the probability of the string working?

      (a) Draw a picture of this situation.
      (b) Find two different ways to solve the problem.
      (c)  What is the probability of a string of 5 lights working?  

13 lights? N lights?

Problem B.  FlyCheap Airlines has only one route from London to 
Hamburg. Recently, the company purchased a used 727 jet 
airplane having three engines. It can actually fly on just one 
engine. For each engine, the probability of it working over the 
course of the trip is 0.98.

      (a) Draw a picture to represent this scenario.
      (b)  What is the probability that the plane will be able to 

successfully fly? Find at least two different ways to 
determine your answer.

      (c)  There are various different possibilities which could occur 
such as: Engine 1 works, Engine 2 works, Engine 3 fails. 
We could represent this particular case as (1, 1, 0) where a 1 
indicates an engine working, a 0 indicates an engine failing 
and its place in the order indicates which engine it is.

          i. List all possible cases where the system would work.
         ii. List all possible cases where the system would fail.

      (d)  If the reliability of an engine was unknown, call it x, how 
could you represent the system’s reliability?

      (e)  How much would the reliability improve if 4 engines were 
used?

3.2.2  Level II Problems

Each of these problems includes systems in which both series components and 
parallel components are both used.

Problem C provides a contextual description and leaves the task of creating 
the diagram to the student. Using this exercise in pairs with discussion allows the 
teacher to check student understanding and interpretation of parallel and series 
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systems which connects and supports understanding the importance of the words 
“and” and “or” in various areas of mathematical logic and problem solving.

Problem D asks for finding the system’s reliability as a function of one of the 
component reliabilities. It provides an example of how reliability problems can be 
used as simple applied practice problems of basic algebra. The reliability model can 
be expressed as [ ]1 (1 0.5 )(1 0.7)R x= - - - . Teachers can also use this in the study 
of functions and different problems can be used to generate more complicated 
polynomial functions.

Problem C. Consider a stereo system consisting of the following components:

       1. A radio
       2. A CD player
       3. An iPod connection device
       4. An amplifier
       5. Two speakers

Assume the system works only if the amplifier, at least one 
speaker, and either the radio, CD player, or iPod connector works.

With this stereo system, we can ask what components must 
work for the system to produce music3. There are a number of 
possibilities that would allow the system to work. For example 
if 1, 4, and 5 work we can hear music from the radio. If the 
amplifier, component 4, is down the system cannot function.

(a) Create a diagram to model the stereo.
(b)  What are other combinations of working components that 

would allow the system to work at least minimally? List as 
many possibilities as you can.

Problem D. In the system below, the reliabilities of two components are fixed.

(a) What is the maximum reliability of the system?
(b)  What must the reliability of the third component be in 

order for the system to have a reliability of 0.8?
(c) Express the system’s reliability as a function of x.
(d)  Graph the function and determine the maximum and 

minimum reliabilities of the overall system.

3This question could become an entry point into the varied methods of solution involving minimal 
paths and minimal cuts.
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Problems E and F get the student to compare parallel components over components 
in series as they consider cost and varying reliabilities of components in the same sys-
tem. They push student thinking with a simple three component system to determine 
where weaker components do the most harm to a system. Problem E puts the question 
into a realistic context where increasing a component’s reliability is associated with a 
cost. Problem F lets student consider changing arrangements with given reliabilities.

Problem G leads to examination of higher-degree polynomial functions. It provides 
an example of how more complex problems can be utilized to differentiate work and 
determine how well students can organize and track their solutions. Question c is a 
problem where technology can be used to solve the resulting reliability polynomial.

Problem E. The reliabilities for each component in this system are given.

      (a)  The cost of improving a component is $10,000 to obtain an 
increase of 0.1 in the component reliability.

      (b)  What would be the minimum cost of raising the system’s 
reliability to 0.95?

Problem F.  How do you arrange three components with reliabilities 
0.5, 0.6, and 0.7 in each system below to maximize the 
system reliability? Is there a different arrangement of three 
components which would generate an even higher reliability?

Problem G.

5 

6

7

1 2 3

4

      (a) Create the reliability function for the diagram above.
      (b)  Suppose the reliability of each component has the same 

value, x. Determine the resulting reliability function.
      (c)  If each of the components has the same reliability, what 

must that reliability be for the whole system to have a 
reliability of 0.95?
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3.2.3  Sample Project

The Dormitory Electrical Wiring project asks students to design and assess the 
reliability of the college dormitory electrical system. This provides opportunities 
to consider how various designs increase or decrease overall reliabilities with an 
open-ended task which would be appropriate for multiple-student teams. This 
project accomplishes several of the critical design principles recognized by prac-
titioners and researchers in mathematical modelling (Lesh and Kelly 2000), such 

Dormitory Electrical Wiring: Project in Reliability Theory

You are an electrical contractor bidding for a job with Fordham University. 
You need to find an appropriate model for wiring a college dormitory. Your 
goal is to maximize reliability while minimizing wiring costs.

The new dormitory will be a 12 story building. Each floor has a hallway, two 
mini-kitchens, and eight clusters. A cluster consists of 4 two person dorm rooms, 
bathroom, and a small common area. Here are the SPECS (specifications):

Hall: 6 ceiling lights
Mini-kitchen: 1 ceiling light, 1 double plug-in outlets, one oven/cook-top 

plug-in
Dorm room: 1 ceiling light, 2 desk lights, 4 double plug-in outlets
Bathroom: 2 central ceiling lights, a row of 6 lights, 3  double plug-in outlets
Common Area: 1 ceiling light, 2 double plug-in outlets

You also know the following (reliabilities are given for successful use over a 
10 year period)

$2 for a 95% reliable plug-in outlet
$4 for a 98% reliable plug-in outlet
Reliability of ceiling light hook-up and row lighting: 0.95
Reliability of oven/cook-top plug-in: 0.97

1. Draw a separate diagram for each of the following:

•	 One	diagram	representing	wiring	to	one	dorm	room
•	 One	diagram	representing	wiring	to	one	cluster
•	 One	diagram	representing	wiring	on	one	floor
•	 One	diagram	representing	the	wiring	to	each	floor

2. For each of the following systems create the model that allows you to 
calculate the reliability of that system based on variable reliability values 
for the components:

•	 One	dorm	room
•	 One	cluster
•	 One	Floor
•	 The	whole	building
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as requiring construction of a model, connecting to a meaningful context (Kaiser 
and Schwarz 2006), encouraging self-assessment in the process, and promoting 
seeking reusable subsystems.

To focus on greater student independent thinking, the teacher can make a 
pedago gical choice to begin with the larger case problem such as the dormitory 
wiring problem. Then problems such as those presented at Level I and Level II can 
be used as needed to help students consider simpler problems such as the sound 
system problem.

A teacher may also develop a mini-unit letting problems grow gradually from 
the more simple series, parallel, and combined problems of Level I to gradually 
arrive at the point where students are ready to work on the more complicated project 
problem. There can also be opportunities for students to compete in generating 
more reliable systems.

4  Conclusion: The Mathematical Residue  
of Reliability Tasks (RT)

The work of Maab (2006) resulted in a set of questions to use in guiding the develop-
ment of modelling tasks as presented by Mousoulides in “Mathematical Modelling 
for Elementary and Secondary School Teachers” (2009). In conclusion this paper 
focuses on two of these central questions: (1) How relevant and authentic is the 
task? and (2) How does the task fit into the curriculum and general framework?

Contexts such as sound systems and wiring provide a way to present topics with 
real world relevance for students. Authenticity and relevance are often subjective 
and often arguable. However, the problems also demonstrated how variations of 
problem types are possible and this can also provide materials for differentiation 
within a classroom. The strength of these problems is in addressing relevant topics, 

3. Using the information given in the SPECS, calculate the reliability of 
each of the systems listed in two.

4. Discuss the difference in reliability that results for using the more 
expensive parts. Which parts would you recommend?

Your project must include each of the following:

(A) A written proposal to submit to the Fordham University
(B) A table of components, the reliability, and their failure probability
(C)  Work showing how you found the reliability for each part of the 

system
(D) Research on a manufacturing/reliability issue.
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understandings, and skills which are extendable to other problems with contexts 
which can capture student interest.

The mathematical residue of simple reliability problems fit into curriculums by 
focusing on central concepts of secondary mathematics. The primary topics utilized 
and potentially developed through use of the problems focus on probability and 
algebra, central topics to any secondary curriculum. Problems utilized procedural 
skills such as simple and complex substitution, expressing and simplifying polyno-
mials, and solving polynomial equations. The problems also included opportunities 
for students to work on inductive reasoning for generalized models and the strategy 
of simplifying parts of a problem along the path to a larger solution.

In conclusion, the problems presented provide relevant contextual motivating 
problems which secondary teachers with basic understandings of probability can 
consider using in their classrooms. The mathematics of these problems provides a 
rationale for their use, which may then become a path toward greater incorporation 
of modelling in the classroom.
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Abstract LEMA was an international project which aimed at designing a professional 
development course for modelling. Materials for professional development which 
were to be used in different national contexts were designed, piloted and evaluated. 
In this chapter, we present the overall framework of the project and its evaluation 
by outlining the theoretical background, the design of the professional development 
course, the design of the evaluation, and summative results. In brief, the summative 
results of the evaluation showed that the professional development course had no 
effect on teachers’ beliefs but a strong positive effect on their pedagogical content 
knowledge and self-efficacy in terms of modelling, as well as a high degree of 
satisfaction among participants regarding their professional development.

1  Theoretical Background

Researchers, practitioners and policy makers in mathematics education agree that 
an educational goal should be to enable students to apply mathematics to their 
everyday lives and contribute to the development of active citizenship. Nevertheless, 
throughout Europe modelling is still rare in day-to-day teaching (Blum et al. 2002). 
LEMA (Learning and Education in and through Modelling and Applications) was 
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a transnational European Project1 (2006–2009) that attempted to tackle this problem 
at teacher level by designing a common course of professional development in 
mathematical modelling. To this end, LEMA was a design research project 
(Burkhardt 2006). Given the different types of schools and educational structures 
in partnership countries and the different theoretical backgrounds of partners situated 
in various cultural contexts, the main challenge within this transnational project 
was to agree on essential concepts and to design materials which can be used across 
Europe within a wide range of different national contexts.

Mathematical modelling means applying mathematics to realistic, open problems. 
There are many descriptions of modelling processes (Kaiser-Meßmer 1986) that vary 
according to the described modelling cycle, the relevance given to the context, and the 
justifications seen for modelling in mathematics lessons (Kaiser and Sriraman 2006). 
In this study, we followed the description of the modelling process in PISA (Baumert 
et al. 2001), although we restricted it to context-related problems. There are also 
a large variety of types of modelling tasks which can be differentiated according to a 
number of features, such as the modelling activity carried out and its relation to reality 
or data given (e.g., Burkhardt 1989; Galbraith and Stillman 2001). Modelling competency 
is the ability to carry out modelling processes independently. It comprises competencies 
to carry out the steps of the modelling process, competencies in mathematical reasoning 
and metacognitive modelling (see e.g., Haines and Izard 1995; Maaß 2006).

Teaching modelling: Empirical educational research has provided insights into the 
basic dimensions of good teaching quality which supports insightful learning 
(Prenzel et al. 2004). These are among others: clarity, comprehensibility and 
structure in the subject and tasks presented, promoting insightful learning by taking 
metacognition into account (Weinert 1998), and dealing with heterogeneity by 
offering different tasks and by varying methods. Formative assessment which gives 
constructive, motivating feedback is seen as a method that supports students in 
developing their competencies (Black and Williams 1998). In relation to modelling, 
a variety of studies have shown that working in small groups, and students working 
independently can support the development of modelling competencies (see e.g., 
Galbraith and Clatworthy 1990; Ikeda and Stephens 2001).

Professional development of teachers: When considering teachers’ competencies in 
teaching, we follow Krauss et al. (2004) and Shulman (1986) by distinguishing 
professional knowledge (content knowledge, pedagogical content knowledge, peda-
gogical knowledge), beliefs, motivational orientation, self-efficacy and competencies 

1 Partners of LEMA: Katja Maaß (Coordinator) University of Education Freiburg, Geoff Wake, 
University of Manchester, Fco. Javier Garcia Garcia, University of Jaen, Nicholas Mousoulides, 
University of Cyprus, Ödon Vancso & Gabriella Ambrus, Eötvös Lóránd University Budapest, 
Anke Wagner, University of Education Ludwigsburg, Richard Cabassut, IUFM Strasbourg. This 
project has been funded with support from the European Commission. This publication reflects 
the views only of the authors, and the Commission cannot be held responsible for any use which 
may be made of the information contained therein.
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in reflection. Empirical studies of teachers’ professional development (Tirosh and 
Graeber 2003; Wilson and Cooney 2002) have shown that professional develop ment 
interventions lead to changes if the courses are long term, with embedded phases 
of teaching and reflection, and take into consideration both the context in which 
teachers work (e.g., the school director, parents etc.) and teachers’ own beliefs.

Teachers’ beliefs about mathematics and its education are thought to have a major 
impact on if and how a teacher employs innovation in everyday teaching. According 
to Pehkonen and Törner (1996), beliefs are composed of a relatively long-standing 
subjective knowledge of certain objects as well as the attitudes linked to that know-
ledge. Kaiser (2006) showed that innovations required by the curriculum are inter-
preted by the teacher in such a way that they fit into his or her existing belief 
system. Grigutsch et al. (1998) classified beliefs about mathematics into the aspect 
of scheme (fixed set of rules), the aspect of process (problems are solved), the 
aspect of formalism (logical, deductive science), and the aspect of application 
(important for life and society). These aspects of beliefs can also be found in teachers’ 
beliefs about effective teaching (Maaß 2009).

Teachers’ self-efficacy beliefs in this context can be described as teachers’ ability to 
believe in their own capabilities to organize and execute mathematical modelling 
activities in their planning and classroom practice (see Bandura 2006). Based on 
Bandura’s social cognitive theory and theoretical models of behaviour prediction 
(e.g., theory of planned behaviour from Ajzen 1985), self-efficacy about modelling 
should be a valuable predictor for the intention to use modelling and (although 
beyond the scope of this study) for the actual use of modelling in the classroom.

In conclusion, teachers’ knowledge and beliefs about the nature of the subject, 
their views on how to teach the subject and their self-efficacy concerning modelling 
all influence how they design or select tasks, plan, implement and evaluate their 
lessons (e.g., Brickhouse 1990).

2  Design of the Course of Professional Development

In order to design the course for professional development, the development team 
tried to answer the question of what knowledge a teacher needs in order to teach 
modelling. Based on our theoretical backgrounds, we came up with a theoretical 
model of the pedagogical content knowledge needed for modelling. We distinguish 
between four main categories, which are further divided into sub-categories.

 1. Modelling: To implement modelling in lessons, teachers need background infor-
mation about this concept (Sub-categories: What is modelling? Why use it?).

 2. Tasks: When it comes to planning lessons, teachers need to learn how to select 
appropriate tasks for their students and anticipate the modelling outcomes. In 
line with our assumptions on how to teach modelling, a variety of tasks should 
be chosen. (Sub-categories: Exploring tasks, Creating tasks, Classification of 
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tasks, e.g. according to area and context, and Variation of tasks, e.g. in order to 
adapt them to the specific needs of a class).

 3. Lessons: Teachers need information about how to design lessons appropriate for 
modelling and how to act in the classroom (Sub-categories: Teaching methods, 
Using ICT, Supporting the development of modelling competencies, Exercising 
mathematical content through modelling).

 4. Assessment: If modelling is implemented in lessons, it also has to be evaluated. 
Assessment should be used not only for grading but also for supporting learning 
through feedback (Sub-categories: Formative Assessment, Summative Assess-
ment, Feedback).

Incidentally, this model has been validated by the fact that Borromeo Ferri and 
Blum (2009) came up with a similar model for pedagogical content knowledge with 
reference to prospective teachers.

As the designed course for professional development should not only be based on 
theory but also meet teachers’ needs, an analysis of needs in relation to teachers’ 
beliefs about mathematics, its teaching, modelling and the actual modelling tasks 
themselves, was carried out with 561 voluntary teachers from all participating partner 
countries (Maaß and Gurlitt 2009). The results revealed a discrepancy between 
 tea chers’ beliefs in mathematics as an important method for problem solving in every-
day life and negative perceptions of open, complex, tasks related to everyday life.

Based on the needs, analysis and our theoretical background, we developed a 
professional development course consisting of five key modules, of which four 
mirrored the four categories named above. Further, we added a fifth module on 
reflection. As outlined in the theoretical background, reflection on implementation 
in lessons and dealing with challenges is crucial for the success of professional 
development courses. The course was designed for use with primary and lower 
secondary teachers, and it was piloted in 2008 over a period of 5 days and evaluated 
in all six partnership countries. Implementation, however, was quite different in 
each country, as it had to meet the different statutory requirements and contexts of 
every country. Further, every partner had to draw on given opportunities to implement 
the course. For example, in France the training was given as a one-block course in 
January 2008, addressing teachers of students aged 6–8 years. In Spain, the course 
contained two blocks in April and May. In Germany the course consisted of five 
separate days from January to November.

3  Design of the Evaluation

Given the different national contexts and the various piloting approaches (see 
above), one may question whether it makes sense to evaluate the course as it took 
place in all countries together. As the course materials, which are designed to be 
used in different countries, are detailed and as all countries followed the materials 
closely, we felt that a cross-country evaluation would mirror the quality of the 
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materials while depending neither on specific implementation nor target group. For 
the evaluation, we did not consider the students because this seemed to be almost 
impossible, given the variety of pupils involved (age 6–16) and the given national 
contexts. Thus, we focused on teachers and used questionnaires.

Therefore, first and foremost the goal of the evaluation was to assess whether, 
and in which dimensions, the professional development course had an impact on 
teachers. This included teachers’ pedagogical content knowledge about modelling, 
beliefs about mathematics education and teachers’ self-efficacy regarding imple-
menting mathematical modelling. We were also interested in determining whether 
teachers who scored highly in one dimension also succeeded in the other dimen-
sions and vice versa. Finally, the evaluation also investigated the degree of satisfaction 
teachers felt with the professional development course and their intention to imple-
ment modelling. We will give reasons for this selection later. Subsequently, our 
evaluation focused on the following research questions: (1) Does the professional 
development course influence the pedagogical content knowledge of the teachers? 
(2) Does the professional development course influence teachers’ beliefs about 
mathematics education? (3) Does the professional development course influence 
teachers’ self-efficacy regarding modelling? (4) Does success in one dimension 
include success in another dimension (correlational)? (5) How satisfied were teachers 
with the professional development course?

Design and participants: In order to evaluate the course, we used a pre-post-control 
group design. This design allowed us to evaluate changes over time (before and after 
the course of professional development) and compare these changes within the inter-
vention group and with a control group. This seemed necessary in order to make sure 
that changes were not due to any other influencing factors such as media coverage or 
new curricula. The participants were 155 teachers (124 females, 31 males) with a 
mean age of 41 years (SD = 9.86) and a mean teaching experience of 16 years 
(SD = 10.35). More than half of these teachers, specifically 89, taught primary school, 
63 teachers taught in secondary schools and 3 did not provide an answer. One hun-
dred and four teachers were assigned to the intervention group and 51 teachers were 
assigned to the control group. Whenever possible, the assignment was randomized; 
however, in some instances this was not possible and thus it was necessary to find 
similar teachers who filled out the questionnaire during similar time intervals. 
Teachers not selected for the intervention group were offered the chance to receive 
the training at a later time. All teachers completed the pre-questionnaire and post-
questionnaire. Participants in the teacher training also filled in a so-called “optimiza-
tion questionnaire” after each of the five training days (investigating satisfaction with 
the course and suggestions for future improvements of the course).

Instruments and measures: The design and implementation of the questionnaire 
conformed to the following principles. First, the questionnaire was designed to mir-
ror the theoretical background and key aspects of the modules of the professional 
development. Second, considering the target group and their understandable prefer-
ence for a short questionnaire, our target was a balance between a reasonable length 
and what would still provide a reliable assessment. Subsequently, we provided no 
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questions about pedagogical knowledge or motivational aspects. Third, careful 
guidelines were developed to ensure uniformity (as far as possible) when asking 
teachers to complete the questionnaire. Fourth, to further build on previous 
research, the scale construction was based on established scales wherever possible 
(see below). Fifth, the questionnaire was designed in several steps to improve its 
validity and reliability (for details see Maaß and Gurlitt 2009). The questionnaire 
comprised four parts: (i) pedagogical content knowledge, (ii) beliefs, (iii) self-
efficacy and (iv) modelling intention. We did not insert any questions relating to 
content knowledge, as we did not want the teachers to feel as though their subject 
knowledge was being tested. Due to time limits, when completing the question-
naire we restricted our questions about beliefs to those concerning mathematics 
education, as we felt that they would be relevant for all teachers. For the peda-
gogical content knowledge we used open items, as we reasoned that this would 
be less suggestive in eliciting teacher responses. Three out of the four questions 
related to one particular modelling task, following on from the results of the 
analysis of needs, which had shown that the more concrete an item was the more 
evident the objections became. Identical questionnaires were used before and 
after the intervention. Among other things, teachers had to answer to the follow-
ing items:

1. What characteristics do modelling tasks have?
2.  Imagine you are teaching children whom you regard the right age for 

this task. The following five questions are all related to the task below 
and all connected with each other.

Task: It is the start of the summer holidays and there are many traffic 
jams. Chris is on holiday in Germany and has been stuck in a 20-km 
traffic jam for 6 h. It is hot and she is longing for a drink. Although 
there are rumours that the Red Cross is coming around with a small 
lorry distributing water, she has received nothing so far. How long will 
the Red Cross need to provide everyone with water?

2a.  Give as many reasons as possible (pros and/or cons) to use the task 
and mark them as such (+/−)

2b.  Imagine you are planning your lesson and you decide to use this 
task the next day. You want students to work on this task in groups 
and afterwards to present their results. How will you organize the 
presentation phase?

The scale of belief items about the nature of mathematics education was based 
on Grigutsch et al. (1998). Teachers rated their beliefs on a five-point scale, ranging 
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from strongly disagree to strongly agree. The following items are an extract from 
the scale:

School mathematics in my lessons  
from my point of view as a teacher

Strongly  
disagree

Strongly 
agree

5.1.1 School mathematics is a collection of procedures  
and rules which determines precisely how a  
task is solved.

  

5.1.2 School mathematics is very important for the  
students later in life.

  

5.1.3 Central aspects of school mathematics are  
flawless formalism and formal logic.

  

Based on Bandura’s method for measuring self-efficacy beliefs (Bandura 2006), 
we designed a self-efficacy scale assessing efficacy beliefs on a 100-point scale, 
ranging in 10-unit intervals from 0% (“cannot do at all”), to 100% (“highly certain 
can do”) (see examples).

7.1.1 I feel able to adapt tasks and situations in text books to provide realistic  
open problems.

–

7.1.2 I feel able to distinguish between modelling tasks and other reality-based tasks. –

To measure the future modelling intention we used the following question:

Not very likely Very likely

In future I will use the modelling approach  
in my teaching.

 

4  Results and Discussion

We used a two-factorial repeated measure ANOVA, to analyze the data with group 
(intervention vs. control) and time (pre-test vs. post-test) as factors. The effect 
under consideration for the research questions of the current study was whether the 
intervention group outperformed the control group over time, which is the interac-
tion effect between group and time, thus only this effect will be reported below 
(neglecting main effects indicative of mean differences between the groups or the 
two points in time). As an effect size measure, we used partial h², qualifying values 
< 0.06 as small effects, values in the range between 0.06 and 0.13 as medium effects, 
and values > 0.13 as large effects (Cohen 1988). Table 60.1 provides an overview 
of the results.
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The two groups (control vs. intervention) were analyzed in respect of the aspects 
below at two points in time (pre and post-intervention in terms of the intervention 
group).

Pedagogical Content Knowledge (PCK): This yielded the effect that the partici-
pants of the intervention group improved their pedagogical content knowledge in 
relation to modelling while the control group did not change. This was indicated by 
an analysis of variance, more precisely the large effect of the interaction between 
group and time F (1,153) = 41.52, p < 0.01, h² = 0.21. Analyzing the crucial interac-
tion between group and time further, post hoc tests showed that participants in the 
intervention group improved their pedagogical content knowledge during the inter-
vention F (1,103) = 123.49, p < 0.01 while participants in the control group did not 
change their pedagogical content knowledge over time F (1,50) = 1.55, p = 0.22.

Beliefs about Mathematics Education: There was no difference in change over time, 
F (1,152) = 0.04, p = 0.84, and no main effect for time F (1,152) = 0.50, p = 0.48.

Self-efficacy for modelling: The intervention group showed a greater improvement 
in self-efficacy than the control group. This was indicated by a large effect of the 
interaction between group and time F (1,148) = 65.25, p < 0.01, h² = 0.31. Analyzing 
the crucial interaction between group and time further, post hoc tests showed that 
participants in the intervention group improved their self-efficacy during the inter-
vention F (1,101) = 149.49, p < 0.01 while participants in the control group did not 
change their self-efficacy regarding modelling over time F (1,48) = 0.02, p = 0.89.

Satisfaction: Evaluating satisfaction with the intervention, we assessed satisfaction 
ratings after each respective module. The mean satisfaction was 4.25 (SD = 0.47); 
the satisfaction ratings of participants ranged from 3.28 to 5.00. As the rating scale 
had a scale from 1 to 5, a mean of 4.25 can be interpreted as a rather high level of 
satisfaction with the intervention.

Correlations between post-test measures: The correlations between the post-test 
measures (PCK, beliefs, self-efficacy) were all positive and significant and ranged 
from r (152) = 0.27 to r (152) = 0.54, indicating that high scores in one dimension 
were related to high scores in the other dimensions measured. In detail, the lowest 
correlation was between beliefs and the self-efficacy measures in the post-test with 
r (152) = 0.27, p < 0.01; the highest correlation was between self-efficacy and 
pedagogical content knowledge with r (154) = 0.54, p < 0.01.

Table 60.1 Means and standard deviations (in parentheses) of dependent variables

Pre-test Post-test p

Pedagogical  
content knowledge

Control 0.47 (0.60) 0.69 (0.48) <0.01
Intervention 0.69 (0.52) 1.27 (0.47)

Beliefs Control 3.19 (0.40) 3.22 (0.40) 0.84
Intervention 3.43 (0.46) 3.45 (0.47)

Self-efficacy Control 45.31 (22.73) 45.15 (23.75) <0.01
Intervention 49.47 (18.88) 70.92 (11.55)



63760 LEMA – Professional Development of Teachers in Relation

The mean intention to use modelling in the classroom was 3.91 on a scale from 
1 to 5. Theoretically plausible is the high correlation between pedagogical content 
knowledge in the post-test and the intention to use modelling r (148) = 0.50, 
p < 0.01, and especially self-efficacy and this intention r (148) = 0.60, p < 0.01. 
Without knowledge of modelling it would not be very likely that teachers will use 
modelling in their classes. Similarly, according to Banduras social cognitive theory 
(Bandura 1997, 2006) and theoretical models of behaviour prediction (e.g., theory of 
planned behaviour from Ajzen 1985), self-efficacy is an important predictor for 
the intention to conduct the specific behaviour. Taken together, these relationships 
support the validity of the conducted evaluation. Last, the beliefs measured before 
and after the intervention showed a negative correlation with age r

pre
 (155) = −0.31, 

p < 0.05; r
post

 (154) = −0.16, p < 0.05, and years of teaching r
pre

 (155) = −0.37, p < 0.01 
and r

post
 (154) = −0.24, p < 0.01, indicating that older teachers with more years of 

teaching experience had less favourable beliefs about modelling.
In conclusion, the evaluation of the intervention showed strong positive effects 

on pedagogical content knowledge and self-efficacy ratings and received high 
satisfaction ratings from the participants. Teachers showed a high intention to 
integrate modelling into their lessons. These results can be regarded as important 
necessary preconditions for the implementation of modelling. Beliefs across the 
different countries and target group were surprisingly similar. However, not surpri-
singly, beliefs about modelling did not change as a result of the intervention. On the 
one hand, beliefs are well established and deeply entrenched frameworks and are 
probably very difficult to change through an intervention – even one that took several 
weeks. On the other hand, the questionnaire may not have been sensitive to any 
changes that took place. Looking at the changes, the high level of satisfaction with 
the course hints to the fact that the design of the course – based on prior empirical 
findings (about modelling and professional development, e.g. including phases of 
reflection on practice) and the analysis of needs – indeed met teachers’ needs and 
supported them in the development of both self-efficacy and pedagogical content 
knowledge.

The correlations between the post-test measures show that success in one domain 
was linked to success in another domain. This relationship between pedagogical 
content knowledge, beliefs and self-efficacy may provide an important basis for a 
successful implementation. For example, it may not be helpful if the PCK is high but 
the self-efficacy is low. The correlations between age and beliefs may be due to new 
modes of teacher education which have already started, perhaps giving us hope that 
1 day modelling will be found more and more in day-to-day teaching.

So far, we cannot assess to what extent the project contributed to a more wide-
spread implementation of modelling into day-to-day teaching. However, the empirical 
results indicate that the intervention made the use of modelling in day-to-day teaching 
more likely. Within LEMA, as a European project, it was necessary to analyze the 
given national contexts carefully and to strive for common ground in relation to 
modelling in order to design a course for use in the different countries. We used the 
different perspectives and experiences to learn from each other (Garcia et al. 2010) 
so as to improve teachers’ pedagogical content knowledge and self-efficacy about 
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modelling. LEMA thus contributes to the discussion about modelling by providing 
an internationally usable course and by providing empirical evidence that the 
course improved teachers’ self-efficacy and pedagogical content knowledge of 
modelling in different European countries.
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Abstract Modelling is not only written into educational standards throughout 
Germany; other European countries also demand the integration of reality-based, 
problem-solving tasks into school mathematics. In reality, however, things look 
quite different: in many places mathematics lessons are still dominated by exercises 
in simple calculation. So why? What is stopping teachers from introducing model-
ling? In order to explore this issue in depth, an empirical study was conducted. 
A 55-item questionnaire to investigate teachers’ perspectives on mathematical 
modelling in classrooms was developed and refined. A sample of 101 teachers, 52 
of whom had undergone a training programme in modelling, completed the ques-
tionnaire. Major factors perceived by teachers as hindrances to using modelling 
were lack of time, assessment of performance and lack of materials.

1  Basic Theory

1.1  Mathematical Modelling

Mathematical modelling generally refers to using mathematics to solve realistic and 
open problems. At the same time, the exact definition varies depending on the aims, 
which model of the modelling process is being used, and the nature of the context 
assigned to a modelling task (Kaiser-Meßmer 1986; Kaiser and Sriraman 2006).

1.2  Obstacles to the Integration of Modelling

In day-to-day school life, modelling still plays a much smaller role than one 
would wish (Burkhardt 2006; Maaß 2004). It appears that at the moment teachers 
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see more obstacles to using modelling than advantages. Blum (1996) divided 
these obstacles into four categories: organisational, pupil-related, teacher-related 
and material-related.

Organisational obstacles refer mainly to the short amount of time – 45-min – for 
lessons.

Pupil-related obstacles: Modelling makes the lesson too difficult and less predic-
table for pupils (e.g., see Blum and Niss 1991). Pupils can have difficulties carrying 
out individual steps or even the whole modelling process (Maaß 2004). Standard 
calculating tasks are more popular with some pupils because they are easier to 
understand and to solve the problem one simply has to apply a particular formula 
making it easier for pupils to obtain good grades in mathematics.

Teacher-related obstacles: There appear to be a variety of obstacles for teachers. The 
literature on this issue refers repeatedly to the time aspect. Teachers need more time 
to update tasks, to adapt them to the needs of the respective class, and to prepare them 
in detail (Blum and Niss 1991). In addition, there are obstacles in relation to the actual 
lessons: teaching becomes more demanding and more difficult to predict. Furthermore, 
a teacher requires other skills and competencies in order to be able to deal with a 
changed approach to teaching. The most recent literature also refers to teachers’ 
beliefs about – or attitudes to – mathematics teaching as being an obstacle to innova-
tion in the classroom (Pehkonen 1999; Törner 2002). These studies point to the fact 
that, in general, teachers do not view modelling as mathematics. Moreover, some 
teachers do not consider themselves competent enough to carry out modelling tasks 
when the context is taken from a subject area they did not study. In addition, a signifi-
cant aspect of the perceived obstacles is the question of how to assess performance, 
as teachers feel overwhelmed by the increasing complexity of this process.

Material-related obstacles: Often teachers simply do not know of enough modelling 
examples which they feel would be suitable for their lessons, or they select excessively 
detailed materials.

1.3  Research Questions

The previous section identified some of the obstacles to the introduction of model-
ling in mathematics classrooms. However, these have not been subjected to empiri-
cal analysis. This suggests the need for some kind of instrument with which to 
measure or assess empirically the arguments against modelling. In order to ensure 
the resulting point of view is not one-sided, this instrument should also analyse the 
arguments for modelling. This has the additional advantage that not only are the 
deficiencies revealed, but also solutions may be revealed. Therefore, the central 
questions to be explored are:

 1. What are the obstacles which teachers perceive with regards to modelling?
 2. Which obstacles appear meaningful when putting modelling into practice?
 3. Which changes in the obstacles can be identified during a teacher training course?
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2  Methodology

2.1  Instruments for the Study

To find out which aspects teachers view as obstacles to modelling, quantitative and 
qualitative methods were used. Among other instruments, a questionnaire was 
designed with the aim of ascertaining the obstacles. In addition, guided interviews 
were conducted.

2.2  Study Design

The questionnaire was implemented at three points in time: at the beginning of the 
study before any training was undertaken; immediately following the completion of 
five training modules (12 months later); and 5 months after completing the training 
(see Fig. 61.1). The interviews were conducted at the same points of time. However, 
one additional elicitation of the interviews was of interest in order to register possi-
ble changes during the teacher training course (see case study in Schmidt 2010).

2.3  Sample

The study took place in Germany in the Bundesland Baden-Württemberg (south 
west Germany) with teachers from primary and secondary school. From secondary 
school there were teachers from the low achievement school (Hauptschule) and the 
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Fig. 61.1 Study schedule
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middle school (Realschule). One hundred and five teachers1 registered interest in 
the training course. From these, participants were selected at random for the experi-
mental group (n = 52) who would take part in the training with the remainder being 
the control group (n = 49), who would not participate in the course.

The interviews were not conducted with all the teachers of the experimental 
group, but with a selection of six. The selection was based on the results of the 
pre-tests with three teachers being selected who saw many obstacles to introducing 
modelling and three who instead saw many affordances.

3  Questionnaire Development

To lay the foundations for the study and to answer the first research question, a 
questionnaire was developed whose purpose was to throw light on the constraints 
and affordances for the teacher regarding modelling in mathematics lessons. To be 
able to guarantee this, a four-stage design was developed.

3.1  Questionnaire Development

The first items were developed from the subjective theories of researchers (i.e., 
using deductive item construction). For this, the obstacles described above were 
restated as items. To guarantee the authenticity of the items, the “natural” polarity 
of the obstacles was retained. The result was a preliminary questionnaire that 
included a total of 65 items. The response format corresponded to a five-level 
Likert scale (Rost 1996), ranging from “strongly disagree” to “strongly agree”. As 
the items were not expected to provide complete insight into the issues, additional 
open questions were integrated allowing the teachers to identify any further 
obstacles to the use of modelling. With the help of these open items, together with 
the evaluation and optimisation of the closed items, the aim was to create a second 
and third test version of the questionnaire. This was necessary in order to be able 
to change the phrasing of items with ceiling effects, thereby minimising the effect. 
At the same time, it was important to check the changed items once again in another 
test version in order to ensure that all ceiling effects were eliminated. The initial 
open items also generated new items that were checked in subsequent test versions 
for ceiling effects.

The questionnaire was piloted on three occasions on 240 mathematics teachers 
from south-west Germany.

The fourth step was to organise the 55 items into scales. To do this, the scales 
should be formed from the items (inductive categorisation). The first indications for 

1 Drop out rate: four teachers
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scales were provided by Blum’s classification (1996) as illustrated above. In addition, 
the items, however, were repeatedly analysed together as a whole, so as to check 
for more possible scale indicators with the help of the qualitative content analysis 
(Mayring 2007). Finally, the 55 items generated 14 scales each of which have internal 
consistency of content.

3.2  Format of Questionnaire

In Fig. 61.2 there is an example of the items for the scale: “time”. What was of 
interest was whether teachers were being discouraged from modelling because 
modelling tasks take too much time. But first of all it was important to find out if 
teachers do actually think that modelling tasks take too much time. Therefore, 
there was a five-point scale on which teachers could mark the extent to which they 
agreed with an item (see Fig. 61.2). However, agreement does not actually indicate 
if the teacher then feels deterred from or motivated into carrying out modelling 
tasks. So there was a second column with a scale on which teachers could express 
this more exactly. This approach corresponds to Vroom’s expectancy-times-
valence model (1964). This states that expectancy multiplied by valence produces 
motivation.

As you can see in the questionnaire not only obstacles/constraints were referred 
to but also motivations/affordances for modelling were referred to (see second 
scale). That was important to not only know what hinders teachers from modelling 
but also to know factors that make them more likely to engage in modelling. 
However in this chapter I only focus on the obstacles.
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It takes a lot of time to find the 
approach to the solution. 
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to, and consider the pupils’ various 
solution possibilities. 
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Fig. 61.2 Scale: time
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4  Results

In the following the main aspects which teachers named as obstacles in the ques-
tionnaire are explored. Two analyses were made: (i) the first column of the 
questionnaire was evaluated to find out to what extent teachers agree with particular 
obstacles to modelling (ii) the extent to which this particular obstacle constrains 
their teaching was evaluated. The scale values of both columns were multiplied 
according to Vrooms model mentioned above.2

In addition, the established results from the questionnaire were triangulated with 
statements from the interviews.

Seven of the 14 scales were supposed to become a hindering factor for the teachers.3 
However, most of the teachers saw mainly obstacles in three aspects: the time, the 
performance assessment of modelling tasks and the material. They are described 
more in detail in the following.

4.1  I Have Too Little Material

Sixty one percent of the questioned teachers complained about too little material and 
considered this as an obstacle (M = −1.674; SD = 3.34). With the control group this 
remained constant over time; with the experimental group, on the other hand, after 
the training course this no longer represented an obstacle (see Fig. 61.3 and 
Table 61.1). The teachers received lots of materials in the training course and also 
learned how to develop tasks. This may be a reason why they no longer claimed to 
have too little material to support their teaching after the training course. This diffe-
rence is of statistical significance and had a medium effect. F(1,97) = 6.79, p < 0.011, 
h2 = 0.07 (medium effect). This effect remained stable in the follow-up period.

The interviews gave a profound insight concerning the material. One teacher, for 
example, was of the opinion that modelling tasks had to fit to the particular mathe-
matical topic she was teaching at that moment. She wanted to have five tasks for 
every topic that she could use. As she did not have such a collection, she complained 
about having too little material. Another teacher had little problem finding model-
ling tasks for pupils at grades 5–7 (age 10–13) but did for pupils at grades 8–10 (age 
13–16). This was because she could not find a realistic context for a modelling task 
which fitted with the mathematical topics that were taught in these grades.

Another teacher found the content of the modelling tasks too far-fetched. In her 
opinion the tasks were not interesting for the pupils and the questions were too 
unrealistic and not relevant. As a result she complained about having too little good 

2 The numbers of the first column have been transformed into 0–4 for the further calculations.
3 The other 7 scales were supposed to become a motivation factor for the teachers.
4 A negative mean stands for a hindering factor; a positive mean stands for a motivation factor 
regarding modelling.
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Fig. 61.3 Material

Table 61.1 Material

M SD n

Pre-test EG −1.83 3.13 51
CG −1.51 3.57 48
Total −1.67 3.34 99

Post-test EG −0.39 1.33 51
CG −1.86 3.91 48
Total −1.10 2.96 99

Follow-up-test EG −0.58 2.14 50
CG −1.86 2.92 48
Total −1.20 2.62 98

material. When asked for an example of a good context for a task which pupils 
might be interested in, she had no idea at all.

4.2  Performance Assessment is Too Complex

Another aspect was the assessment of pupils’ performance which 84% of the teachers 
thought to be complex. The teachers named this aspect as an obstacle (M = −2.03; 
SD = 2.70). There was no significant change during training (F(1,98) = 0.46, p = 0.5) 
(see Table 61.2). It appears that this aspect has to be considered further in future 
training courses.
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Table 61.2 Performance assessment

M SD n

Pre-test EG −1.17 2.65 51
CG −2.93 2.49 49
Total −2.03 2.70 100

Post-test EG −1.41 2.99 51
CG −2.74 3.26 49
Total −2.07 3.18 100

Follow-up-test EG −1.51 2.89 51
CG −2.65 3.43 49
Total −2.07 3.20 100

The interviewed teachers reflected this thinking with some of them seeing no 
reason in assessing tasks as long as the final examination does not include model-
ling tasks. The fact that the examination does not yet include modelling tasks was 
also a reason for some teachers not to do modelling tasks at all.

4.3  I Don’t Have Enough Time for Modelling

The most important reason for not using modelling was the time aspect. Ninety seven 
percent of the teachers agreed that modelling tasks take up too much time in class. The 
teachers named this as an obstacle (M = −2.11; SD = 2.75). The experimental group 
changed their opinion marginally (see Fig. 61.4 and Table 61.3) within the period of 
the training course, but this change was not significant (F(1,99) = 3.1, p = 0.08).
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Teachers spoke a lot about the time in the interviews drawing attention to this 
acting as an obstacle to using modelling. Beside the time taken for pupils to work 
on modelling tasks, teachers also referred to other areas where time is an issue. For 
example, one teacher expressed having too little time to prepare modelling tasks in 
advance. Another was of the opinion that the presentation of the results absorbs too 
much time. The same teacher was of the opinion that pupils do not understand 
modelling tasks as quickly as the usual standard tasks which has a time problem as 
consequence. Similar to this, some teachers expressed that the curriculum contains 
already too many topics so that it seems impossible for them to fulfil all of their 
obligations in covering the curriculum. The time pressure becomes even greater 
again for these teachers when using modelling tasks. In line with this argument 
what another teacher said was modelling is “too little mathematics in too much 
time”. Another argument of a teacher was the insufficient availability of computers 
for use by pupils and internet connection which wastes too much time as well.

These statements from the interviews point to how complex the issue of time is. 
It is not surprising therefore that this aspect demonstrated only a marginal improvement 
during training.

5  Discussion

Three obstacles were identified which teachers see as the main factors hindering 
their use of modelling. From these, the aspect of the lack of material can be relatively 
easily addressed. The study showed that most teachers who received material in the 
teacher training course changed their opinion and saw this no longer as an obstacle. 
However, the other two aspects, the time problem and the assessment of perfor-
mance, seem to be very resistant to change. Even a 1-year teacher training course 
was not able to change beliefs in relation to these significantly.

These three aspects attracted attention in the categories mentioned by Blum 
(1996) (see above) and could be confirmed through this empirical study. 
Additionally, the study gave more background regarding each aspect.

Table 61.3 Time

M SD n

Pre-test EG −2.19 2.78 52
CG −2.02 2.73 49
Total −2.11 2.75 101

Post-test EG −1.65 2.92 52
CG −2.55 3.04 49
Total −2.08 3.00 101

Follow-up-test EG −1.33 3.13 52
CG −2.36 3.37 49
Total −1.83 3.28 101
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It seems that the lack of material might not be a general problem for all teachers 
but might be a special problem for teachers who teach older pupils (from class 8 
(age 13) and above). Teachers had no problem in finding modelling tasks for lower 
classes, but had no idea for real contexts for the curriculum of the upper classes. 
This suggests that many mathematics teachers are teaching topics every day without 
knowing of applications in the real world.

Teachers found it consistently difficult to assess modelling tasks. Even the 
teacher training course was not able to change this opinion. Consequently further 
thought must be applied to considering how these issues might be addressed in the 
future.

Not only the problem of the time used by modelling in class was mentioned but 
also the time required to prepare modelling tasks was an important issue. Another 
new aspect concerning the lack of time was identified: that associated with the avail-
ability of equipment and internet connection associated with using computer tech-
nology. Other teachers complained about the enormous demands of the curriculum. 
As teachers found it difficult to meet these needs in a short amount of time they 
wanted to concentrate on fulfilling the curriculum and not “wasting time” in doing 
modelling. This statement is in conflict with reality, because modelling has been 
part of the curriculum in Baden-Württemberg since 2004. This means that if these 
teachers want to fulfil the curriculum they have to include modelling.

In conclusion, this study was able to empirically confirm in which areas there 
are problems that hinder teachers from using modelling in their teaching and point 
to which of these obstacles might be reduced through teacher engagement with an 
appropriate training course.
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Abstract This paper explores teachers’ professional learning in mathematical 
modelling using a range of theoretical tools. The study on which it is based gives 
a snapshot of the work of a development group of teachers near the outset of their 
journey into modelling. Narrative accounts of their development in terms of both 
their teaching and students’ learning are analysed using an instrument developed 
for this purpose. The results provide insight into important issues to consider when 
supporting professional learning in general and modelling in particular. This small 
scale study points to the importance for teachers of renegotiating the didactical 
contract of their classrooms when introducing modelling and consequently the need 
for professional learning that expands their repertoires in relation to both subject 
knowledge and particularly pedagogy more generally.

1  Introduction

This paper explores the work of a teacher development group consisting of five 
teachers and two local authority mathematics specialists from two different local 
authorities of the conurbation of Greater Manchester, England. Their aim was to 
build on the work of the European project LEMA (Learning and Education in and 
through Modelling and Applications1) that had stimulated the desire of two of the 
group, one a teacher and the other one of the local authority specialists, to ensure that 
more pupils had experience of modelling in their mathematics lessons. The group 
was funded by a research grant from the English National Centre for Excellence in 
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Teaching Mathematics (NCETM). Throughout the work was supported by me as 
mathematics education researcher and partner in the LEMA project.

Here I seek to identify the issues of concern to teachers as they attempt to change 
their pedagogic practices to include mathematical modelling and to draw conclu-
sions for professional learning both in general, and in relation to modelling in 
particular. In doing so I draw on case study data produced by the five teachers 
themselves as they developed an ‘e-narrative’ of their work in their classrooms at 
the initial stages of introducing modelling activities. The majority of the case study 
data on which the analysis is based is publicly available at a Web site2 where text, 
images and video clips document the teachers’ and local authority specialists’ jour-
neys into mathematical modelling. This site served multiple purposes including the 
archiving of case study data as well as the provision of a resource for teachers who 
wish to know how mathematical modelling can become part of teaching and learning 
in the context of urban schools. However, it was found that the development of the 
Web site in itself, as a product, also gave a clear focus and purpose to teacher 
engagement with the project and consequently their professional development.

2  Classroom Practice and Its Transformation

In England in mathematics classrooms mathematical modelling is rarely seen as 
teachers appear constrained to using pedagogies that are low risk and that in the 
main conform to a normative cultural ‘script’ (Wierzbicka 1999) that sees periods 
of transmissionist exposition by teachers (Askew et al. 1997) interspersed with 
periods in which students practise rules and procedures that are in the main situated 
in contexts that favour mathematics itself above any other form of reality (Ofsted 
2008). It should not be assumed that such lessons are necessarily in line with 
what teachers might favour or believe should be the case, but it does seem that 
such practice is widespread and forms the dominant style of didactical contract 
(Brousseau 1997).

In this paper, therefore, I consider professional development of the individual 
teacher as being culturally and historically situated and in order to take account of 
this draw on theoretic analytical tools provided by Cultural Historical Activity 
Theory (CHAT) (for example see Engestrom and Cole 1997). Such an approach 
conceptualises the work of a collective such as teachers and pupils in mathematics 
classrooms as an activity system focused on an object such as the learning of 
mathematics with their activity mediated by different factors including explicit and 
implicit rules and how the division of labour is organised by the community.

Engestrom (2001) in third generation activity theory re-conceptualises how 
expansive learning may occur in workplace situations. In doing so he points to how 
historically accumulating tensions within and between activity systems, perhaps 

2 http://www.education.manchester.ac.uk/research/centres/lta/LTAResearch/lema/
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brought about by a change in the rules that ‘govern’ the system or the introduction 
of a new technology, can lead to contradictions which may give rise to conflicts that 
may be personal to the members of the community, and ultimately innovative 
attempts to change the nature of the collective’s activity. In the study here we have 
multiple activity systems (namely, the school classroom, the development group, my 
university research group and the local authority support teams) that have the same 
object, student learning of mathematics, that we consider as a ‘boundary object’ (see 
for example, Engestrom 2001). In each of these communities the individual key 
players (subjects in CHAT terms) have shorter-term goals and actions. For example, 
(1) I, as researcher have goals in relation to fulfilling obligations relating to the 
NCETM funding such as writing a report of the work (Wake 2009a), whereas these 
are not the goals of the individual teachers; (2) one of the teachers (E) operating in 
both the development group and her school, and therefore in CHAT terms a bound-
ary crosser, has needs that include supporting her goal of infor ming curriculum 
development and specification in her school (see Wake 2009b). Engestrom (2001) 
suggests that for expansive learning to take place individuals need to question and 
deviate from established norms and that a collaborative and deliberate effort towards 
change that can support a collective journey through the Vygotskyian Zone of 
Proximal Development (ZPD) can result in a full cycle of expansive transformation. 
In such cases this may lead to changes in actions of individuals as they seek to ensure 
continued successful outcomes but in new and enhanced activity.

In the case explored here we see the teachers seeking to take part in such an 
expansive transformation as they attempt to introduce modelling although the 
rules of the system (including the implicit didactical contract) are such that, on the 
whole, they discourage this. We do, however, detect potentially supportive struc-
tural contradictions in the school activity system where performance is measured 
not only by pupil attainment but also by government inspectorial judgment of 
teaching. This is highly critical of the type of low-risk transmissionist teaching 
which we have seen dominating in response to national assessment (Ofsted 2008) 
and favours pupils engaging in a range of mathematical activity that includes 
modelling. A problem for the mathematics teacher, therefore, is how to meet the 
demands of ensuring that pupils continue to obtain high grades in procedurally 
orientated assessment whilst also ensuring that their teaching also promotes the 
learning of process skills and modelling. It is with this backdrop that this paper 
explores the concerns of the development group’s teachers as they attempt to bring 
about change by introducing modelling in their classrooms.

3  Knowledge for Teaching and Learning in Modelling 
Classrooms

In an attempt to identify teachers’ professional learning in relation to their initial 
steps in modelling I draw on Ball et al.’s (2008) recent attempts to build on 
Shulman’s construct of pedagogic content knowledge (Shulman 1986) to gain 
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Table 62.1 Ball et al.’s (2008) categorisation of knowledge for teaching

Subject knowledge
Specialised content 

knowledge
Mathematical knowledge and skills unique  

to teaching – “unpacking” mathematics – understanding 
“why?” – explaining so that important ideas are made 
visible to learners

Common content knowledge Mathematical knowledge and skills that others have  
as well – not special to the work of teaching

Horizon content knowledge Understanding how mathematics is connected both internally 
and externally (to other subjects/disciplines, its use in the 
world of work etc.)

Understanding how mathematical ideas develop and build 
on earlier concepts and form the foundations for later 
concepts/topics

Pedagogic content knowledge
Content of knowledge  

and students
Understanding the way that different students and groups 

of students talk about mathematics
Anticipating what students
•  Are likely to think and what they will find confusing
•  Will find interesting/motivating
•  Will find hard/easy

Content of knowledge  
and teaching

Understanding of the design of teaching tasks/sequences of 
instruction

In the classroom knowing when and how to interact with 
students’ responses. Evaluating which materials to use  
and in what sequence

Content of knowledge  
and curriculum

Understanding the place of particular mathematics in the 
prescribed curriculum – how this relates to expectations 
and assessment

Understanding of both content and process skills and how 
these are developed in the curriculum – for example, in 
relation to modelling and applications

empirical insight into knowledge for teaching. In doing so their analysis of many 
mathematics lessons leads them to propose that ‘content knowledge for teaching’ 
may be categorised using two overarching categories, subject knowledge and 
pedagogic content knowledge, each of which may be subdivided into three further 
sub-categories that I summarise in Table 62.1.

These categories were used in a systematic analysis of the teachers’ accounts 
that also categorised these in a second dimension in relation to their pupils’ learning. 
This was informed by Cardella (2008) who, building on the work of Schoenfeld 
(1992), identifies five key aspects relating to mathematical thinking of learners as 
summarised in Table 62.2.

This gives a two dimensional framework (with six sub-domains for knowledge 
for teaching and five in relation to student learning), Table 62.3.

Before analysing the experiences of the teachers as they went about introducing 
modelling into their teaching I briefly consider their potential reflections in relation 
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to this framework in light of the literature regarding the knowledge of teachers about 
mathematical modelling. Much of this has in effect focused on the difference in 
mathematical activity that results for students due to the introduction of mathematical 
modelling tasks and teacher knowledge appropriate to this. Central to the concerns 
of researchers has been teacher knowledge of modelling competencies and 
meta-cognition of the modelling cycle as a pre-requisite for working effectively 
with students (see, e.g. Kaiser et al. (2010)). Clear understanding of such matters is 
considered as a pre-requisite for competent teaching using modelling approaches 
and suggests that in the framework proposed the horizon content knowledge 
domain will be of particularly increased importance as teachers consider how 
mathematics might be used effectively to mathematise and describe ‘reality’ (or the 
non-mathematical world). It appears that the content knowledge and curriculum 

Table 62.2 Cardella’s (2008) categorisation of key aspects of learning mathematics

Knowledge base Specialised knowledge of school mathematics content

Problem solving strategies Global or local strategies learned from mathematics courses, 
e.g. (local) considering special cases, (global) refining a 
model by revisiting assumptions

Mathematical practices Activities or actions that people engage in and with mathematics, 
i.e. what it is to use mathematics (e.g. as a mathematician, as 
a scientist …)

Use of resources Including social resources, time and metacognitive processes 
such as planning and monitoring work

Beliefs and effects Beliefs and emotions about mathematics and one’s mathematical 
ability

Table 62.3 Two dimensional framework used to analyse teachers’ concerns in early teaching  
of modelling

Student related

Knowledge 
base

Problem 
solving 
strategies

Mathematical 
practices

Use of 
resources

Beliefs 
and effects

Te
ac

he
r 

re
la

te
d

Specialised CK

Common CK

Horizon CK

PCK content  
and students

PCK content  
and teaching

PCK content  
and curriculum
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domain would be important in this regard as teachers seek to understand how the 
process skills and competencies associated with modelling might best be developed 
by students. From the point of view of the student, the changing nature of the 
mathematical activity in which they engage might be expected to result in concerns 
about the problem solving strategies and mathematical practices they employ 
and may therefore result in an increased focus by the teachers in the appropriate 
domains of the framework.

Research in relation to teacher knowledge for mathematical modelling recogn-
ises the challenge that the introduction of new pedagogic practices poses for teach-
ers and the development of professional knowledge that this entails, but also 
recognises an underlying requirement that teachers often need to make a change 
in their attitudes and beliefs in relation to their classroom practice (see for exam-
ple, Kaiser and Maaß (2006)). With respect to this the didactic contract which 
results in the enactment of long-held expectations about the nature of mathematics 
teaching and learning in our classrooms by teachers is likely to prove difficult to 
modify by both teachers and students alike. However, it is also the case that much 
research suggests that the attitudes and beliefs that are brought to bear by teachers 
in lesson implementation are deep seated (Pehkonen and Torner 1996) and diffi-
cult to modify.

The self reports of the teachers as they worked with their classes on a series of 
initial lessons in mathematical modelling were written for sharing within the group 
and more widely as web-based accounts for the project Web site. The framework 
(Table 62.3) was used to analyse for each teacher to situate each of their statements 
in relation to their early experiences of using modelling. For example, statements 
such as ‘a resources table with calculators and metre rules was set up for pupils 
to use as they wanted’ and ‘each group was given mini white boards to use for 
planning as well as paper and markers for the presentations of their solutions’ were 
located as being concerned with students’ use of resources and teachers’ PCK: 
content and teaching. Table 62.4 shows the results of this analysis for each of the 
five teachers’ case studies of their classrooms.

Whilst each of the sub-domains of teacher knowledge and student learning will 
have a role to play in modelling classrooms it seems clear as I suggest above that 
we might expect concerns about pedagogic content knowledge relating to curricu-
lum (teacher related) and problem solving strategies (student related) to have some 
priority. However, Table 62.4 shows that the main areas of teachers’ concerns are 
related to pedagogic content knowledge in relation to teaching and students and 
the intersection of this with students’ practices and use of resources. In general 
teachers are concerned about:

 1. Learning to employ group work effectively (e.g. ‘Before I attempted a modelling 
task I used some other closed group work tasks to get classes used to working in 
groups and to producing a presentation of their solutions’. Teacher C)

 2. Use and adaptation of tasks (e.g. ‘I have started with some modelling tasks that 
have sporting connections … The sporting link seems to have motivated the 
pupils well…’ Teacher B)
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 3. Perceptions of pupils’ increased motivation (e.g. ‘Feedback from the students 
about the tasks has been extremely positive’. Teacher E)

In telling of their initial steps in using mathematical modelling with their classes, 
therefore, the teachers point to their concerns in relation to managing changes in 
their and students’ practices and in particular, using resources:

For the modelling task I allowed pupils to sit at one of four tables in groups of up to five. 
Two groups worked really hard, one was divided where two people did all of the work and 
one group did virtually no work. The disengaged pupils were the same each lesson and so 
in future I need to not only look at group structuring but at social skills for learning. 
(Teacher C).

My preparation before the lesson was different to that for a ‘traditional lesson’ as my main 
concerns became how to set up the classroom and how to organise pupils into groups. 
(Teacher E).

The general lack of concern over issues of student knowledge in relation to 
mathematics and modelling is perhaps just as telling. It seems that overwhelmingly 
the concerns of teachers focus on changing roles and relationships both socially and 
with regard to mathematical activity as teachers consider how they might change the 
didactical contract in their classrooms. It is important not to interpret this finding 
as meaning that issues of content knowledge are not important, but rather that in the 
initial stages of introducing modelling approaches in mathematics lessons teachers 
are more concerned about general pedagogic approaches that fall outside of their 
usual pedagogic repertoires.

Table 62.4 Analysis of teacher statements in relation to teacher knowledge and aspects of student 
learning (Note: Teachers have been anonymised as A, B, C, D and E)

Student related

Knowledge 
base

Problem 
solving 
strategies

Mathematical 
practices

Use of 
resources

Beliefs  
and effects

Te
ac

he
r 

re
la

te
d

Specialised CK B

Common CK A B C A B B

Horizon CK B

PCK content  
and students

C C E E 
E E

A B C E E E 
E E E E E

A B B E E 
E E

A B B B B D 
D D D C C C 
C C C C C C 
C E E

PCK content  
and teaching

A A C E A A B B C 
C C D D D 
D D D D D 
D D

A A A B B 
B B B B C 
C C C C C 
C D D D D 
D D D D E 
E E E

PCK content and 
curriculum

B B B A A B B D D
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4  Further Theoretical Reflections

As I have noted earlier Engestrom’s analysis, using third generation Activity 
Theory, would suggest that in this case we appear to observe the start of expansive 
learning of the Activity System of the teacher related to their classroom practice. 
Importantly the learning that we detect might be considered as ‘horizontal’ as the 
teachers seek to bring about the changes they pragmatically need to instigate 
modelling lessons in their classrooms. This might be considered ‘horizontal’ trans-
formation following the analysis of Engestrom (2001) who after drawing attention 
to the classical understanding of concept formation being at the intersection of 
everyday and scientific understanding (Vygotsky 1987) and the vertical direction 
of this, suggests that in his analysis of the professional learning of health workers 
he detected ‘sideways’ moves in their re-conceptualisations of their practice.  
In the case I describe here, I suggest we also see a horizontal shift in the teachers’ 
expanded view of their classrooms as they focus on re-negotiating the didactical 
contract and associated pedagogies with their pupils.

For the individual teachers this development may, therefore, be conceptualised as 
a consequential transition, in the sense of Beach (1999), as it sees a developmental 
change in the teacher in relation to their professional activity that is consciously 
reflected on, and stimulated within the development group, particularly due to the 
teacher’s engagement with the production of their e-narrative or case study. Whilst 
ultimately the developmental progress in relation to modelling will occur within the 
school, for the individual teachers at the key moment of kick-starting this develop-
ment it is their engagement in both classroom and development group that is crucial. 
This suggests that for these particular teachers their transition may be considered col-
lateral as it requires their to-and-fro movement between activity systems as boundary 
crossers. Ultimately, it is to be hoped that other teachers in their schools will be able 
to undergo encompassing transitions, as stimulated by the development group teach-
ers, their departments attempt to shift practice within the school. Therefore, for the 
teachers of the development group we again need to consider the idea of horizontal 
learning, development or progress. Beach suggests that such horizontal development 
might be more difficult to understand because of the multi-directionality of move-
ment of the individuals which is not necessarily aligned with their development. Here, 
therefore, it is the teachers’ reflections on their professional practice, afforded within 
the development group, that allows a space in which they can meet with new scientific 
concepts (for example, the modelling cycle) and with colleagues consider how they 
might develop new conceptualisations of teaching and learning.

We should note the similarities (and of course differences) we have here with 
Engestrom’s boundary crossing laboratory where CHAT itself provides a media-
tional tool in the professional workers’ reflections on their practice. Here the 
meetings of the development group provide a similar reflective space with the tool 
of the production of teachers’ e-narratives important in supporting their reflections 
and horizontal re-conceptualisations of their practice.

Crucially we note that expansive professional learning in relation to teacher 
knowledge for modelling cannot be left to chance. The case studies reflected upon 
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here suggest that in general professional learning requires the intersection of three 
important factors:

 1. The key personnel involved must have at least approximately aligned long-term 
goals in relation to the object of the activity systems in which they operate and a 
professional expertise and understanding of the context that allows them to work 
within the rules of the system but adapt these to the benefit of the desired profes-
sional learning.

 2. A climate in which new or potentially emerging rules appear to mediate an 
expansion in the object of activity (importantly in this case, we draw attention to 
the contradiction that occurs in the different measures used to judge schools as 
being potentially significant in this respect).

 3. Networks of personal relationships that facilitate ease of communication and 
boundary crossing (for example, so that teachers can comfortably operate in both 
their school classrooms and the post-LEMA development group).

In the particular case of teacher development in relation to modelling the case 
studies here point to the teachers’ and students’ changing roles in the classroom as 
being of most concern to teachers as they first use modelling activities. This has 
important implications for those supporting such changes through facilitating 
professional development.

With regard to the tools we might use to support such professional learning in 
general I draw attention to the potential of the production of e-narratives by the 
teachers as providing an important reflective instrument for them as well as providing 
important data for researchers. Additionally, in supporting professional development 
in modelling in particular, the analysis tool developed and used here might prove useful 
in stimulating teachers’ reflections, particularly as it allows individuals and groups 
opportunities to conceive of, and understand their practice in relation to both 
important aspects of content knowledge in relation to modelling such as modelling 
competencies and students’ learning more widely than a focus on modelling per se. 
The initial findings here suggest that in the early stages of introducing modelling in 
classrooms teachers appear to need to focus on the development of general pedagogic 
practices such as managing group work rather than specific content knowledge. 
The use of an analytic tool such as that developed here might allow teachers to monitor 
their changing practices over time and in reflective discussion of this bring to the 
focus of attention their attitudes and beliefs and any changes they might recogn-
ise or negotiate in these. This seems particularly important in the case of modelling, 
as certainly in the English context, it struggles to find space in the curriculum.
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Over the years we have seen many mathematical modelling projects being 
 carried out and described in past ICTMA proceedings. In these projects, aims and 
objectives of mathematical modelling, varying between pragmatic or scientific-
humanistic (Kaiser-Messmer 1986), were brought into practice in classrooms. 
Often these projects depended on personal initiatives of passionate teachers and 
dedicated researchers. In those projects, modelling education was often small scale, 
temporary, and detached from the mathematics curriculum. Formalization and 
sustainability of modelling education were not easily achieved due to lack of insti-
tutionalization, funds, or encouragement.

However, since the turn of the millennium in the ICTMA proceedings we see 
descriptions of mathematical modelling being shaped into curricula, whereby 
formal documents frame the intentions for modelling education. Guided by curri-
culum documents and teaching manuals, teachers implement these intentions in the 
classroom, whether trained or untrained. In the ICMI-14 Study on Modelling and 
Applications by Blum et al. (2007) there are descriptions of large-scale curriculum 
innovations in Ontario (Suurtamm and Roulet 2007), Queensland and Victoria 
(Stillman 2007) and South Africa (Julie and Mudaly 2007). In the ICTMA-13 pro-
ceedings Vos (2009) added another description of a large-scale curriculum innova-
tion favoring modelling in the Netherlands. These country case studies show that 
modelling can take up different positions with regard to the mathematics curri-
culum. While in traditional mathematics curricula modelling is at best a fragment 
of the mathematics curriculum, being used as a marginal illustration that comes 
after the core, the new curricula put modelling to the fore as a basis for learning 
mathematics (modelling as a vehicle for mathematics) or as the central focus of the 
mathematics curriculum in itself.
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When studying curricula, many educational researchers use a framework to 
distinguish aspects of curricula at different levels, going back to a framework 
established by Goodlad and Richter (1966):

The intended curriculum at the macrolevel consists of what society at large •	
prescribes students to learn; the intended curriculum is often described in formal 
documents containing aims and exemplary tasks; an intended curriculum may be 
synonymous to, or approximate, the planned and the formal curriculum.
The implemented curriculum at the mesolevel is what happens at classroom •	
level; the implemented curriculum includes teacher’s instruction and students’ 
activities; the implemented curriculum contains the enacted and the experienced 
curriculum.
The attained curriculum at the microlevel is the final result at the level of the •	
students: it consists of what is actually learnt by students, but also includes 
beliefs, perspectives, values, and motivation that emerge from the implemented 
curriculum.

The papers in this chapter mainly deal with aspects of the implemented curri-
culum and thus extend prior research by our ICTMA colleagues Burkhardt and 
Pollak (2006), who have written about barriers and levers for implementing inten-
tions of mathematical modelling. The papers contribute to further understanding of 
curricular aspects of mathematical modelling, in particular with respect to the 
implementation of mathematical modelling curricula.

1  Paper Summaries

This chapter contains five papers that deal with the implementation of mathematical 
modelling into education. Two papers (the joint paper by Ikeda and Stephens and 
the paper by Vos) are literature studies, while the studies described in the other papers 
contain evidence from surveys, interviews, and observations. One paper studies the 
implementation through the eyes of instructional actors: teachers (by Villa-Ochoa 
and Jaramillo). Another paper also includes teachers’ views, but additionally has 
data about the views of curriculum experts (the paper by Stillman and Galbraith). 
Finally, one paper studies the implementation of modelling through the eyes of 
academic actors: mathematical modelling experts at a university on aims and peda-
gogical practices in their modelling courses (the paper by Spandaw).

The paper by Ikeda and Stephens studies a medium for implementing mathe-
matical modelling into education: a textbook. Textbooks are the embodiment of 
curricular intentions and guide and shape classroom implementation. Object of 
Ikeda and Stephen’s study is a series of textbooks, published in 1943–1944, which 
covered the grades 7–11. The textbooks contain an abundance of real world exam-
ples, and these were used for mathematical modelling, both as a basis for learning 
mathematics and as a validation of pure mathematics. Ikeda and Stephens point at 
two interesting design principles applied in the textbooks. The first is the recurrence 
of one and the same real world situation in subsequent textbooks, with tasks that 
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increase in difficulty and complexity. The second is the use of real world situations 
for modelling tasks in which a variety of mathematical concepts is applied.

The paper by Vos studies the use of the term ‘authentic’ as a qualification of the 
correspondence between reality and mathematical modelling. The term ‘authentic’ 
is used at the level of the intended curriculum, when designers describe ‘authentic 
learning environments’ or ‘authentic contexts’ for mathematical modelling. Vos criti-
cizes this holistic use of the term ‘authenticity’, in particular for simulations, replicas, 
or copies which are not ‘authentic’ by definition. She explains that ‘authenticity’ is 
a social construct, which is actor-independent (unlike ‘relevance’). It requires a 
direct and certifiable origin in real life. At the level of the implemented curriculum, 
for example, a resource should only be characterized as ‘authentic’ if it truly origi-
nates from out-of-school. Or, an ‘authentic’ model is one that is used in real-life 
modelling research, and which can be certified by scientific researchers in person.

The paper by Spandaw studies the knowledge of authentic mathematical modelers 
(i.e. experts at universities who use modelling in their research) on the teaching and 
learning of modelling. At the level of the implemented curriculum, the participants 
mention the difficulties of supervising modelling. At the level of the intended 
curriculum, they strongly advocated an approach in which mathematical concepts 
are taught first, and therefore, they recommend only limited modelling at secondary 
schools, ignoring motivational aspects of modelling. They were horrified by numeri-
cal methods. Yet, Spandaw offers an interesting example of how the attained curricu-
lum can be a reversal of the intended curriculum: for civil engineering students a 
theoretical course was identified as a necessary prerequisite for a computer model-
ling course, but most students only managed to pass the theoretical course after 
seeing applications of the theory in the computer modelling course.

The paper by Villa-Ochoa and Jaramillo starts from the intended mathematics 
curriculum in Columbia, which includes modelling. Within this context, the 
researchers interviewed and observed four teachers in light of their beliefs and their 
abilities to implement the curriculum, using a framework termed as ‘sense of real-
ity’, which includes the capacity to detect modelling opportunities suitable for 
students. The teachers indicate that many modelling situations are technological 
and inaccessible to students. Villa-Ochoa and Jaramillo conclude that implement-
ing a modelling curriculum requires teachers to unveil mathematics from situations 
close to students’ experiences, which is a complex competence.

Finally, the paper by Stillman and Galbraith reports on the evaluation of a state-
wide and longitudinal curriculum intervention in Queensland (Australia), in which 
modelling was included into the intended curriculum as a focus of mathematics 
education. Their study deals with the implementation thereof, containing data 
from interviews with both teachers and curriculum experts. The study shows that 
even after 20 years of implementation, the views differ, for example, when asked 
about the robustness of modelling as an established practice. Although the teachers 
expressed satisfaction with their skills with respect to designing modelling tasks, 
the designed tasks showed a large variety from minimalist to very rich approaches. 
It is interesting that the respondents experience applications and modelling as 
promoting mathematical thinking and understanding, as demonstrating utility and 
relevance, and as engaging students.
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Abstract This study will look at a surprising resolution of the tension that arises 
in trying to strike a balance between modelling and pure mathematics by examining 
Japanese textbooks for the junior high school nearly 70 years ago. Three charac-
teristics are found: (1) two distinct roles –first as objects to mathematize in order 
to solve real world problems and second as evidence by which to test the validity of 
mathematical concepts; (2) repeated instances of the same contexts through which 
new phases of mathematization could be developed; and (3) a series of real world 
questions focussed on the reason for solving a real world problem.

1  Aims in This Study

One of the unresolved tensions in the teaching and learning of mathematics is how 
to strike a balance between modelling and pure mathematics. At the Rome 2008 
Centennial of ICMI, Niss (2008) reiterated the importance of such a balance, 
challenging today’s accepted opinion that instruction in mathematical ideas and 
techniques should come first, and only then might it be possible or desirable for 
students to apply those ideas in modelling activities. This study will look at a 
surprising resolution of that tension by examining Japanese textbooks for the junior 
high school nearly 70 years ago – before and during World War II (Ikeda 2008).
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The aims of this study are to clarify:

 1. The roles of real world problems in acquiring mathematics knowledge in 
mathematics textbooks before World War II in Japan.

 2. What kinds of teaching sequences can connect solving real world problems with 
acquiring mathematics knowledge?

To attain these aims, the following procedure is applied:
Focussing on 7th to 9th Grade mathematics textbooks of that era,

(a) To extract the contents concerned with real world problems and examine  
the role of these problems in helping students to acquire mathematical 
knowledge.

(b) To examine what kinds of teaching sequences can be seen to combine or con-
nect solving real world problems with acquiring mathematical knowledge.

2  Mathematics Textbooks Before World War II in Japan

The “Midori Hyoshi” textbooks in elementary school, which had already focussed 
on mathematization from a real world, created a necessity of improving the national 
curriculum in junior high school mathematics for those who were ente ring to junior 
high school from 1941. In 1942, the “Examining Committee of Secondary Mathe-
matics Curriculum” was set up under the Ministry of Education. In the same year, a 
“Revised Curriculum of Mathematics and Sciences in Junior High School” was 
announced. In this document, the following aim was pointed out (Nagasaki 1990):

It is required for the teacher to cultivate students’ ability to mathematize a real world  
phenomenon based on number, quantity and space, treat the result mathematically and 
apply it into national life. Through these activities, it is expected for students to contribute 
to society as a nation. (p. 93)

In 1943, the textbooks for 7th, 8th and 9th Grades were published (Tyuto 
Gakko Kyokasho Kabushiki Kaisya 1943), and in 1944 those for 10th and 11th 
Grades. These were the most common textbooks which targeted all junior high 
school students in Japan. Nagasaki (1990) outlined the five aims of this series of 
mathe matics textbooks:

 1. The contents of mathematics are divided into two parts: content concerned 
with number and quantity, and one concerned with space. These parts should be 
connected to attain the aims of mathematics.

 2. In lower levels, the ability to apply basic mathematical methods should be 
fostered by treating concrete activities, and gradually more accurate methods 
should be introduced.

 3. Connections between mathematics with science should be emphasized.
 4. Mathematical methods should be applied in other areas based on intuition about 

number, quantity and space, avoiding concepts that are too abstract or placing 
too much emphasis on logic.
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 5. Practical content, such as measurement, statistics and descriptive geometry, 
should be enlarged and concepts of limit should be emphasized. (p. 95)

Consequently, real world situations were incorporated into mathematical text-
books with a view to helping students to construct mathematical knowledge.

3  Roles of Real World Situations

Real world situations in these textbooks serve two distinct roles in their relation to 
students’ mathematical thinking. These two roles are not stated explicitly by the 
authors and are distinct from the five curriculum principles outlined above. They are:

[Role 1]: As objects to mathematize in order to solve real world problems.
[Role 2]: As evidence by which to test the validity of mathematical concepts.

This is an interesting reversal of accepted opinion where mathematical ideas are 
simply assumed to possess for students their own validity. We pick up the example 
concerning role 2. Here, a real world situation is used as evidence of how to 
expand number concepts, in other words, how to define the rule of multipli cation 
of negative numbers. At the 1st Grade in Ichirui, the following explanation is 
described.

We are not suggesting that it is easy or even possible to construct mathematics 
knowledge simply by focussing on the direction from a real world situation into a 
mathematical model. The reverse direction which connects mathematical knowledge 
to real world situations is, however, very important. Rarely do teachers employ 
concretized models to show how existing mathematical concepts can be validated 
in such concretized models. If mathematics education is to enable students to form 
mathematics concepts or methods in their internal world, not simply having them 
injected from an external world of a teacher or textbook, then it is important to 
introduce students to concretized models that give these mathematical concepts 
personal meaning and validity. This is shown in the above example (see Fig. 64.2), 
where they can see that moving in a negative direction for x on a negative slope 
results in a positive increase in height.

Fig. 64.1 Concretized Model 1

Let’s consider how to determine the code (plus 
or minus) if you multiply a positive or negative 
number by negative number. There is a slope in 
the direction from East to West (Fig. 64.1). 
When we go east, the height is increased 
“0.2 m” per “1 m”. If we go East “x m” in the 
horizontal direction, the height is increased  
“(0.2 × x) m”.
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4  Repeated Instances of the Same Contexts

As students’ grasp of mathematical knowledge and techniques becomes more 
sophisticated, it is often thought desirable to seek out and use different contexts and 
situations to illustrate the usefulness of those ideas and techniques. By contrast, 
these Japanese textbook authors tended to use repeated instances of the same con-
texts through which new phases of mathematization could be developed.

This characteristic has been pointed out by Sato (2001) and Tanaka (2008). 
Following Sato, we argue that, even though they may lack the authenticity of real 
world situations, some problems strongly appeal to the usefulness of mathematics 
for students, for example, the problem of making a square prism box by cutting 
same-sized squares from the four corners of a square. These kinds of problem 
situations are repeatedly located in the textbooks at several grades. Students can 
re-encounter these situations, by applying new mathematical concepts or methods. 
Further, students see how their solution becomes more precise by applying new 
mathematical concepts or methods.

Actually, the problem making a square prism box by cutting same-sized squares 
from the four edges of square is treated 3 times as shown in Figs 64.3–64.5.

Tanaka (2008) follows the analysis of Sato in arguing that similar and related 
real world problems can be used by students:

Fig. 64.3 Unit “Figure, table and formula” at Grade 7

Fig. 64.2 Concretized Model 2

In the next example there is a different 
slope (Fig. 64.2), when we go East, the 
height is increased “–0.2 m” per “1 m”. 
If we go East “x m” in the horizontal 
direction, the height is increased 
“(–0.2 × x) m”. We would like to calcu-
late the increased height by the previous 
formula when horizontal distance, x, is a 
negative number. How can we define the 
rule of multiplication, namely negative 
number times negative number?
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Fig. 64.4 Unit “Quadratic equation” at Grade 8

Fig. 64.5 Unit “Quadratic equation” at Grade 8

… to mathematize the phenomenon according to their mathematical knowledge and skill. 
Therefore, the phase of mathematization should be changed according to (students’) mathe-
matical knowledge and skill by treating the same problem situations repeatedly. (p.13)

In the following geometrical example, an open-ended problem in a unit on 
Measurement in Grade 7 (see Fig. 64.6) is posed for students at first before learning 
the particular mathematical concepts and methods. Two years later, more complex 
problems are posed for students in an introduction to the unit “Triangles and 
Trigonometric function” unit at Grade 9 as shown Fig. 64.7.
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Fig. 64.7 Introduction of unit “Triangle and Trigonometric function” at grade 9

Fig. 64.6 Unit “Measurement” at Grade 7

Thus, new and more sophisticated mathematical knowledge and techniques are 
applied to familiar contexts and familiar results.

5  Making Connections Between Real World Problems

Several different ways of connecting real world problems can be observed from the 
textbooks. The first uses a series of real world questions from general to specific, 
or from specific to general. To illustrate this first idea, students are introduced to 
the general (basic) problem of how to measure a distance where for some reason 
direct measurement is not practicable. Then students are expected to apply the 
techniques they have learned to similar situations.

For example, the “Measurement” unit at 7th Grade is sequenced based on a 
series of real world questions in which students are taken through several distinct 
stages as follows.

(a) Introducing the question in a basic form: In Sub-unit 1 called “Measuring the 
dis tance”, the reason why students need to solve the problem is explained in 
Fig. 64.8.

(b) Widening the original question: In the same unit, the explanation is noted to 
connect problems tackled before with a new question such as “We have thought 
how to measure the distance between one point and another point where it is 
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impossible to measure. From now on, let’s consider how to measure the 
distance between two points which are both far from here”. The following 
problem is posed for students (see Fig. 64.9).

(c) Posing a different but related question: In sub-unit 4 called “Approximate 
measurement”, students here must select an appropriate method according to 
the aims in a real world situation shown in Fig. 64.10.

At other times, the textbook writers use a sequence of real world questions using 
related or similar kinds of scientific ideas. For example, a sub-unit called “Contour 
lines” is located in the unit “Chart and formula” at 7th Grade. In this sub-unit, a 
series of real world situations such as isotherms, isobars, contour lines and lines of 
inclination are treated successively. Different mathematical concepts or methods 

Fig. 64.8 Island problem

Fig. 64.9 Gateway and fire tower problem

Fig. 64.10 High-voltage cable problem



676 T. Ikeda and M. Stephens

Fig. 64.12 Solution of inclination problem

Fig. 64.11 Slope of inclination 
20 and new inclination in the 
climbing

are used to solve these real world problems. We cannot show these problems in 
detail. In a problem, based here on lines of inclination, the concept of cosine is 
introduced and applied as follows:

When we go up 100 m in the slope, the height is increased by 20 m. We say 
this slope is of “inclination 20” (Fig. 64.11 upper). [Problem] If we climb it 
at an angle of 60° to the straight line we create a different (easier) slope (this 
path is not straight up but is a succession of zigzags.) (Fig. 64.11 lower). 
What is the new inclination in this climbing?” (See Fig. 64.12 for solution).
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6  Implications for Teaching of Mathematics  
Today Including Modelling

Three points are suggested for teaching of mathematics today including modelling:
Students do not construct mathematics knowledge by only focussing on the direc-

tion from a real world situation into a mathematical model. The reverse direction from 
mathematical knowledge into a real world situation is also important. Especially, 
when students consider how to expand the existing mathematical concepts, it is 
crucial to build up a concretized model in a concrete world (especially, real world) 
and consider it under the concretized model. In these historical Japanese textbooks, 
these two distinct roles are assumed rather than stated as key organizing principles: 
first as objects to mathematize in order to solve real world problems; and second 
as evidence by which to test the validity or reasonableness of mathematical con-
cepts. Both abstracted models (real world → mathematics) and concretized models 
(mathematics → real world) are treated complementarily to strike a balance between 
modelling and constructing mathematics concepts.

As students’ grasp of mathematical knowledge and techniques becomes more 
sophisticated, it is now thought desirable to seek out different contexts and situa-
tions to illustrate the usefulness of those ideas and techniques. By contrast, the 
Japanese textbook authors tended to use repeated instances of the same contexts 
through which new phases of mathematization could be developed. Thus, new 
and more sophisticated mathematical knowledge and techniques were applied 
to familiar contexts and familiar results. This helps students to see that phases of 
mathematization can be changed according to the growth of their mathematical 
knowledge.

Several sequences were explicitly based on a series of real world questions that 
focus on the reason why students have to solve it. Sometimes, these sequences 
moved from specific real questions to discuss general principles; at other times 
they moved from the general to the specific; and made sure that students could see 
mathematical connections between the different contexts used. Knowing why to 
solve a real world problem is important for both teachers and students, more impor-
tant than knowing how, and very important for fostering in students a sense of the 
power and utility of mathematics.

7  Conclusion

While the context of early secondary education in Japan has changed greatly over 
the past 70 years, the guiding principles of curriculum design which informed these 
earlier textbooks continues to provide a helpful reference point – and a point of 
challenge to those assumptions which are too readily made today – in deciding 
how to balance modelling and the construction of mathematical knowledge in the 
teaching and learning of mathematics and in the writing of school textbooks.



678 T. Ikeda and M. Stephens

References

Ikeda, T. (2008). Reaction to M. Niss’s plenary talk – Perspectives on the balance between  
applications and modelling and ‘pure’ mathematics in the teaching and learning of mathematics. 
In M. Menghini, F. Furinghetti, L. Giacardi, & F. Arzarello (Eds.), The first century of the 
International Commission on Mathematical Instruction (1908–2008) reflecting and shaping 
the world of mathematics education (pp. 85–90). Rome: Enciclopedia Italiana.

Nagasaki, E. (1990). Reconstructing movement of mathematics education and the arrival of 
“Mathematics Dai Ichirui and Nirui”. Journal of National Institute for Educational Policy 
Research, 20, 85–102 (in Japanese).

Niss, M. (2008). Perspectives on the balance between applications and modelling and ‘pure’ 
mathematics in the teaching and learning of mathematics. In M. Menghini, F. Furinghetti,  
L. Giacardi, & F. Arzarello (Eds.), The first century of the International Commission on 
Mathematical Instruction (1908–2008) reflecting and shaping the world of mathematics 
education (pp. 69–84). Rome: Enciclopedia Italiana.

Sato, E. (2001). Mathematics education during World War 2. The Japanese Journal of Curriculum 
Studies, 10, 17–29 (in Japanese).

Tanaka, Y. (2008). Analysis of teaching materials with common situations in the course, mathe-
matics category I, focusing on “Mathematization of Phenomenon”. Journal of Japan Society 
of Mathematics Education, 90(1), 12–25 (in Japanese).

Tyuto Gakko Kyokasho Kabushiki Kaisya. (1943). Mathematics 1–3 (Textbooks at Grade 7-9) Dai 
Ichirui and Nirui, Sanseido (in Japanese).



679

Abstract This chapter describes the results of interviews with 12 research 
mathematicians, scientists, and engineers exploring their professional knowledge 
about modelling and the teaching of mathematical modelling. The interviews deal 
with the issues of goals, competencies, meta-cognition, beliefs, epistemology, com-
puters, and implementation. Differences and similarities between the interviewees’ 
views and mathematics education literature on mathematical modelling are discussed. 
Some suggestions regarding how mathematical modelling in secondary education 
might profit from the interviewees’ experience are provided.

1  Introduction

In the Netherlands, as elsewhere, there have been several attempts to strengthen the 
role of mathematical modelling in secondary mathematics and science education 
(Lijnse 2006). Lijnse attributes this focus on modelling to attention for students’ 
preconceptions (mental models), attention for the nature of scientific knowledge, 
and the availability of computers for doing numerical simulations. In fact, already two 
decades ago, Hestenes claimed that “mathematical modelling should be the central 
theme of physics instruction” (1987, p. 25) and he has repeated that ever since (e.g., 
Hestenes 2006). Researchers in mathematics education also advocate modelling, 
even for young students, not only to learn to apply mathematics, but also to learn 
mathematical concepts (see e.g., Blum et al. 2007). However, this popularity of mod-
elling in secondary mathematics education is not ubiquitous. In the Netherlands, there 
has been strong opposition from mathematics professors against the joint efforts 
of mathematics and science educators to develop interdisciplinary modelling teaching 
materials. As a result, the mathematicians backed out of the project, effectively 
leaving modelling to science education.
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In this chapter, we investigate the practical knowledge about mathematical 
modelling of several mathematicians, scientists, and engineers, who use modelling 
in their research and teach modelling at university level. Although they are not 
experts on secondary education, this is interesting since (a) one might profit from 
their expertise in modelling and teaching modelling, and (b) their opinions have an 
impact on secondary education curricula. Duffee and Aikenhead (1992) identified 
teachers’ practical knowledge as a major factor in their response to curriculum 
change. Prac tical knowledge is defined as the integrated set of knowledge, beliefs, 
intentions, and attitudes teachers develop with respect to their teaching practice 
(Grimmett and MacKinnon 1992). The literature on mathematics education 
(e.g., Blum et al. 2007) has also identified beliefs as an important factor in the 
educational debate.

We have the following research questions: What do the interviewees have to say 
about modelling and modelling education? What are the similarities and differences 
between interviewees and mathematics education researchers? What is the range of 
opinions about modelling within the group of interviewees?

To answer these questions the author conducted semistructured in-depth inter-
views with 12 scientists: four mathematicians (researching and teaching differential 
equations, numerical mathematics, and mathematical physics), two statisticians, one 
physicist, two system biologists, one geo-physicist, and two civil engineers. The 
interview findings are summarized after presenting the theoretical framework and 
the design of the case study. In the final section we discuss the findings and try to 
answer the research questions.

2  The Case Study

In this section the theoretical framework and the design of the case study are 
presented.

2.1  Theoretical Framework

As in part 1 of Blum et al. (2007) I take mathematical modelling to be “the entire pro-
cess consisting of structuring, generating real world facts and data, mathematizing, 
working mathematically, and interpreting/validating (perhaps several times around the 
loop)” (pp. 9–10). In particular, it differs from applied mathematics and applied prob-
lem solving. I distinguish two directions: using known mathematics to solve a non-
mathematical problem using modelling and conversely, using mathema tical modelling 
to develop mathematical concepts (“modelling for mathematics”). Mathematical mod-
elling concerns many related issues. In part 3 of the volume cited above the most 
important ones are grouped as follows: epistemology, authenticity and goals, compe-
tencies, applications and modelling for mathematics, pedagogy, implementation, and 
assessment. To this I add mathematical knowledge and domain knowledge.



68165 Practical Knowledge of Research Mathematicians, Scientists, and Engineers

Mathematical modelling from the point of view of physics educators is described 
in Hestenes (1987, 2006), and Lijnse (2006). Some interesting descriptions of 
imple mentations of modelling in secondary science education can be found in 
Vollebregt (1998) on the use of modelling in scientific theory, and in Löhner (2005) 
on computer modelling. Ormel (2010) describes an interesting recent experiment in 
complex dynamic “modelling for physics” using Powersim, a user friendly general 
modelling tool with graphic interface. Modelling goals are described in Blum and 
Niss (1991), who distinguish formative, critical, practical, cultural, and instrumen-
tal goals. The modelling process is usually described using a modelling cycle. For 
my purposes, the simple version in Maaß (2006) suffices. I interpret the mathe-
matical step “working mathematically” liberally: it may include substantial use of 
software. I adopt Maaß’ view that modelling competencies consist not only of the 
competencies of performing the steps of the modelling cycle, but also of meta-
cognitive competencies such as monitoring the modelling process, and attitudes 
(Maaß 2006).

2.2  Design of the Case Study

As mentioned above, the interviewees use mathematical modelling in their scien-
tific research. They also teach modelling at different universities. The interview 
questions were divided into six groups, covering all major issues from the literature 
mentioned above: (1) goals of modelling and education in modelling; (2) imple-
mentation and assessment of modelling education; (3) students’ competencies, 
meta-cognition, beliefs, and epistemological understanding; (4) use of computers; 
(5) mathematical and context knowledge; (6) opinions about mathematical model-
ling in secondary education. The first 5 groups concerned the interviewees’ research 
and teaching experience at tertiary level. Using my notes I summarized the inter-
views and submitted the summaries for verification to the interviewee to guarantee 
their correctness. This led to some minor modifications. The corrected summaries, 
together with the lecture notes used in the modelling courses for bachelor degree 
mathematicians and civil engineers, as well as the 2009 report “Biomathematics – A 
vision for success” by the Royal Dutch Academy of Sciences form the input of my 
analysis below, based on the theoretical framework described in Sect. 2.1.

3  Summary of Interview Findings

The most important interview findings are now overviewed: first, goals of teaching 
modelling; second, implementation of teaching modelling, including authenticity 
and the use of computers; third, students’ modelling competencies, including 
epis temological understanding, beliefs, and meta-cognition; and finally opinions 
about modelling in secondary education.
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3.1  Teaching Goals of Modelling in Tertiary Education

The main goals mentioned by most interviewees were (1) becoming acquainted 
with, and learning how, to apply standard models and standard techniques such as 
balance equations and dimensional analysis, (2) identifying the appropriate tools 
such as the relevant concepts or standard models, and (3) the use of common sense 
and rough estimates. Also widely mentioned were awareness that models have 
restricted applicability, the relation with the research question, validation, and the 
iterative nature of modelling, and learning to use the appropriate software.

Another goal was the critical use or evaluation of models made by fellow 
engineers or scientists. Biology and geophysics masters students had to learn how 
to deal with mathematical models found in scientific journals. For example, they 
had to learn to uncover hidden assumptions in scientific papers (cf. Blomhøj and 
Kjeldsen, this volume).

The main goal for most mathematicians was to connect mathematics with reality, 
to teach students how to apply mathematics which they were supposed to be familiar 
with. Similarly, the physics professor wanted to teach how to apply basic physical 
knowledge to understand complex physical processes. To him the process of ana-
lyzing the problem conceptually using modelling was more important than the 
resulting model itself.

The steps of the modelling cycle played a prominent role in the bachelor courses 
in modelling for mathematicians and civil engineers. Both courses dealt with the 
use of models to make predictions, or as a substitute for experiments. The professor 
who designed the latter course also mentioned development of “a critical modelling 
attitude,” the courage to simplify, and understanding the necessity to do so.

The masters courses for biologists and geophysicists aimed at computer-aided 
modelling for quantitative analysis of complex systems. One biology professor 
distinguished “top-down” and “bottom-up” modelling. In top-down modelling one 
tries to find patterns in experimental data to formulate new research questions. 
Bottom-up modelling on the other hand aims at understanding complex systems 
starting from the basic theory.

3.2  Modelling Courses in Tertiary Education

In all cases modelling was preceded by teaching basic mathematics (e.g., differen-
tial equations) and context knowledge (e.g., heat transport). Modelling for math-
ematics was almost completely absent: Only one professor mentioned the 
possibility of emergent modelling in a stochastics course for engineers. The fol-
lowing example shows how persistent belief in “skills first” can be. A masters 
program for civil engineers consisted of two theoretical courses on partial differ-
ential equations followed by a course on computer modelling, where students 
learned how to ana lyze engineering problems using a dedicated software package. 
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Most students only managed to pass the theoretical exams after seeing applications 
of the theory in the computer modelling course. As a result, most students now 
postpone the theoretical part until after computer modelling. The faculty, however, 
still insists that the theoretical course is a necessary prerequisite for computer 
modelling!

Epistemological aspects of modelling and the process of modelling were usually 
treated in passing, often reduced to heuristic rules such as “simplify,” “proceed 
conceptually,” and “use physical dimensions.” A bachelor course for engineers 
which did pay extensive attention to different types of models (conceptual and 
phenomenological, quantitative and qualitative, deterministic and stochastic), the 
nature of modelling, and the steps of the modelling cycle was abolished after a few 
years. A drastically shortened version is now used for bachelor degree students in 
applied mathematics, with much emphasis on numerical issues.

Authenticity of the modelling problems varied among the courses. The bachelor 
courses for engineers, mathematicians, and physicists mentioned above use every-
day contexts, such as waiting queues or gas bubbles in soft drinks. Information 
could be deliberately inadequate, so students had to decide whether they needed 
more data, and which data they should ignore. In more advanced courses, on the 
other hand, modelling problems were “authentic” in the very different sense of 
“standard models used by scientists.”

Supervising open modelling problems is difficult, especially the first steps. 
One of the mathematics professors confessed that supervising new problems with 
unfamiliar contexts is “impossible” even for highly educated university staff! To 
prevent students getting completely stuck and frustrated with open modelling prob-
lems, one mathematics department introduced the following interesting educational 
design: They gave students a simple mathematical model and a research question 
which was just too subtle to be answered using the model, so the students had to 
refine the model.

In most cases, the degree of idealization decreased during the course. For 
example, the bachelor course for physicists started with simple standard models, 
which were later combined to model more complex situations. A masters course for 
biologists, on the other hand, started with concrete experiments and experimental 
data from scientific papers which students had to analyze (top-down modelling). 
Next, the course turned to bottom-up modelling. The course then gradually moved 
away from experiments toward abstract mathematical models.

Computers were widely used. The bachelor course for civil engineers used 
Powersim. The bachelor course for applied mathematicians used Matlab. Since this 
is an important tool for masters students and professional engineers, designing and 
programming numerical methods in Matlab is an important part of the course. Some 
masters courses used more specialized software, such as FlexPDE in the case of 
geophysics and DIANA in the case of civil engineers. An important goal of these 
courses is to learn how to transform the problem context into input of these software 
packages: partial differential equations with boundary conditions for FlexPDE, and 
basic engineering elements such as beams for DIANA.
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3.3  Students’ Modelling Competencies

Each step of the modelling cycle was reported to present difficulties to students. 
All students had great difficulties getting started in open modelling problems. They 
had no recipes; at most some heuristic rules how to proceed. They needed help with 
dealing with ill-posed problems (leading to complaints about unclear assignments), 
simplification, conceptual analysis (e.g., understanding and choice of appropriate 
theory, introduction of relevant variables, feedback loops), and mathematization. 
The mathematical step of solving the mathematical equations was difficult for most 
students in biology and geophysics. Physics students had difficulties working 
with general variables and parameters, rather than numerical values. Mathematics 
students had difficulties with interpreting mathematical equations and program-
ming in Matlab. Students were reported as omitting interpretation and validation, 
leading to absurd model predictions, which were not identified as such by the 
students. Students often did not validate their models using dimensional analysis, 
common sense, or rough estimates. Losing touch with the research question some-
times led to unnecessary refinements of models.

Problems about the epistemology of modelling were also mentioned. Some 
students invented arbitrary new “laws of nature” to rescue their flawed models. 
Masters students in civil engineering dismissed a rather realistic 3D model of 
H-beams simply because it differed from a more familiar, but less realistic 1D 
model! A third example concerns biology masters, who were so impressed by 
mathematical modelling that they forgot about the simplifications and restricted 
applicability of models. They did not realize that by tuning the many parameters in 
complex models you can “explain” almost anything!

According to the interviewees the most important factors contributing to suc-
cessful modelling are good command of both mathematics and context knowledge 
which can be applied effortlessly, the courage to simplify the problem, common 
sense, and interest in the mathematical and nonmathematical aspects. The latter was 
seen as problematic, especially for mathematicians and biologists. It was suggested 
that only masters students are “mature” enough for modelling.

3.4  Opinions about Modelling in Secondary Education

In the previous subsections we discussed the professional knowledge of the inter-
viewees in university education. Now we consider their opinions about secondary 
education.

Most interviewees were skeptical about mathematical modelling in secondary 
education. In their opinion even many bachelor degree students were “too imma-
ture” for modelling! (According to the 2009 report by the Royal Dutch Academy 
of Sciences about mathematical modelling in biology, modelling should be 
restricted to masters students.) It was fine to show simple applications if possible, 
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but they abhorred “quasi-real applications riddled with numerical coefficients,” 
rather than general parameters. Modelling in secondary education should be 
restricted to teaching simple, classical examples, such as exponential decay or 
Hooke’s law. Problems and contexts should be cleanly idealized, rather than “messy 
and blurred.” Modelling is time consuming, and that time should be spent on basic 
mathematical skills (algebra, analysis) and basic physics. Early use of computers 
was seen as a threat for developing and maintaining algebraic skills. Finally, super-
vision of modelling was said to be too difficult for teachers.

4  Discussion and Conclusions

We now turn to the remaining research questions.

4.1  Similarities Between Interviewees and Education 
Researchers

Being expert modelers, the interviewees knew, of course, that modelling is more 
than “applying mathematics”; all steps of the modelling cycle were mentioned. 
Some steps such as mathematical analysis and validation were worked out in more 
detail than in Maaß (2006). They also realized that basic mathematical and context 
knowledge do not lead automatically to successful modelling. They mentioned 
cognitive and affective barriers, as well as meta-cognitive aspects such as monitor-
ing of the modelling process. They considered students’ epistemological under-
standing of models important and not unproblematic. Nonmathematical competencies 
such as communication, cooperation, gathering, and judging information, and com-
mon sense were also considered important. Modelling open problems was said to 
be time consuming and very difficult to supervise.

4.2  Differences Between Interviewees and Education 
Researchers

The main sources of students’ difficulties with modelling were reported to be, first, 
lack of interest, and, second, lack of basic skills and knowledge in mathematics, 
physics, and biology. This lack of interest was attributed to lack of maturity. 
Furthermore, the interviewees believed strongly in “skills first.” As a result, they 
concluded that mathematical modelling at school should be restricted to teaching a 
few clean standard models, classics such as exponential decay or harmonic oscilla-
tors. Modelling of fuzzy real world problems was said to be too time consuming, 
time better spent on basic mathematics and science. Besides, in their opinion, 
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supervision of such modelling tasks is very difficult, and cannot reasonably be 
expected from teachers in secondary education.

The interviewees had a strong preference for working qualitatively with general 
(dimensionful) parameters, rather than (dimensionless) numerical coefficients. For 
example, high school students should not solve y¢ = ay numerically for different 
values of a using software; instead they should investigate the dependence of y on 
the parameter a using mathematical means only.

Since the interviewees are not experts on secondary education, and often impli citly 
reduce secondary education to the upper secondary science stream, it is not surpris-
ing that they have blind spots. The interviewees did not know that soft ware can be 
used to develop and maintain mathematical skills, and can greatly enhance students’ 
motivation. As mentioned in Sect. 3.2, belief that theory should precede use of 
computers was very persistent, even when it obviously failed in practice. Most inter-
viewees did not realize the possibilities to use modelling to develop mathematical 
concepts, not to mention meta-cognitive skills. They did not know how important 
applications are to motivate high school students (cf. e.g., Muller and Burkhardt 
2007). They attributed students’ difficulties to blend mathematical and nonmathe-
matical skills to “lack of maturity,” rather than to their lack of experience with 
mathematical modelling and their misguided beliefs about mathematics and sci-
ence, which are the result of current secondary education. Kaiser and Maaß (2007) 
report how modelling helps to improve these issues. The respondents underesti-
mated the importance of applications and modelling (everyday and scientific) to 
motivate high school students, to teach them how mathematics is used in science and 
society through mathematical modelling, and to develop meta-cognitive skills. 
Making estimates and using common sense were identified as important for uni-
versity students, but not for high school students. The same holds for the formative, 
critical, practical, and instrumental goals of modelling (Blum and Niss 1991). 
Finally, the interviewees were unaware of the possibilities of open modelling tasks 
even for very young students (Kaiser and Maaß 2007).

4.3  Differences Among Interviewees

The interviewees had different notions of “authenticity.” For some “authentic” 
means “meaningful for students.” For others it means “models used in science.” 
This is related to the use of models: engineers or applied mathematicians solve a 
(complex) everyday life problem, whereas (geo-)physicists model idealized situa-
tions to gain scientific understanding of natural phenomena.

Although all modelling courses used computers, the opinions about the use of 
software in modelling education varied from strong reservations (“Early use  
of software is harmful for acquiring basic mathematical skills”) via acceptance of 
its necessity (“Modelling complex phenomena is impossible without computers”) 
to enthusiasm (“It’s silly not to use computers” and “If only I’d had this software 
when I was a student!”).
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Finally, although all respondents were rather wary about modelling in secondary 
education, some did mention the importance of illustrating the use of mathematics 
in other subjects. One even mentioned “understanding restricted applicability of 
models” as a goal.

4.4  Possible Implications for Secondary Education

The interviewees are expert modelers and experienced teachers in tertiary education. 
Their opinions do affect the design of new curricula for secondary education, so 
they cannot be ignored. In my opinion they are right in emphasizing the difficulty 
of supervising open modelling tasks, the necessity of basic skills, and the merits of 
working conceptually. Modelling in (upper) secondary education could pay more 
attention to balance equations, as a rather general method to construct models. 
Physical units should not be considered as a (nonmathematical) nuisance, but rather 
as a welcome source of information. Dimensional analysis is a purely mathematical 
(algebraic!) technique, and is extremely valuable for understanding and checking 
modelling equations and the behavior of their solutions, and for estimating the 
characteristic quantities of a modelling problem. This necessitates the use of 
abstract parameters instead of numerical coefficients. The mathematical study of the 
behavior of solutions is indeed important, but contrary to some interviewees’ beliefs 
this study can be preceded and supported by computer experiments.

The resistance to messy models and the insistence on classics receives unin-
tended experimental support from Ormel (2010): During an emergent modelling 
teaching experiment in high school the author had to retreat twice from “the realistic 
constraints of climate modelling” to classic contexts: a double pendulum for chaos 
and radioactive decay for differential equations. He concluded that it is preferable 
to teach differential equations and basic concepts from thermodynamics first, using 
simple standard models, before embarking upon more complex modelling tasks.

I conclude that, while modelling in secondary mathematics education should 
profit from experts’ experience, it should not be abolished in favor of “pure” math-
ematics. We need a “diverse curriculum featuring both abstract and applied math-
ematics [to] enable more students to achieve higher levels of mathematical 
competence” (Muller and Burkhardt, p. 270). High school students must learn what 
mathematics is actually good for and how they can use it.
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Abstract In Queensland Australia, mathematical modelling and applications have 
featured in senior secondary mathematics curricula for two decades. Part of a lon-
gitudinal study of the implementation of this initiative, as seen through the eyes of 
selected teachers and administrators who have been centrally involved in its devel-
opment and on-going practice, is reported. The data consist of responses to structured 
and open interview questions, syllabus documents, and application and modelling 
tasks designed and implemented by teachers. Perceptions of why modelling and 
applications are valuable at this level of schooling, the distinction between applica-
tions and modelling, how established applications and modelling are in the curriculum, 
the sources of such tasks, and the sufficiency of support for the development of 
these tasks by teachers are presented.

1  Introduction

One of the challenging educational issues with regard to the teaching of applications 
and modelling in schools identified by Niss et al. (2007) was curricular implemen-
tation in practice. Three questions relevant to this issue are the following:

 1. How are different versions of the modelling process being applied within  
particular contexts and levels of education, and what are their achievements and 
ongoing challenges?
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 2. What pressures do teachers indicate are significant in deciding when and how 
they will incorporate applications and modelling tasks in their teaching? What 
purposes do they have in using such tasks?

 3. How have efforts at incorporating modelling at a curriculum level unfolded, and 
what impediments have impacted on the outcomes achieved?

Such questions are not answered from single shot designs; but rather they are 
informed through accumulated evidence and data from studying a variety of 
initiatives. In this chapter we provide such a contribution by examining one sub-
stantial initiative covering 20 years – mathematical modelling in Queensland senior 
secondary mathematics courses (i.e., Years 11 and 12).

2  Mathematical Modelling and Applications in Queensland

Presently school education in Australia is the responsibility of the respective states, 
which means that syllabus content and objectives, and assessment procedures, are 
designed and implemented at state level. Unlike other states, assessment at the 
upper secondary (pretertiary) level in Queensland is entirely school based, with 
panels at district and state levels performing critical reviewing roles to assure com-
parability of outcomes across schools and districts. There are no common external 
leaving examinations across the system as such. Applications and mathematical 
modelling were first introduced in 1990–1991 within senior mathematics curricula 
in Queensland in a limited number of schools. A particular emphasis in the chapter 
is the development of the initiative from the perspective of implementing teachers 
and key curriculum figures responsible for its introduction and evolution. For this 
purpose structured interviews were conducted with 23 individuals (9 at the end of 
2005 and 14 at the end of 2007) as part of an on-going study of Curriculum Change 
in Secondary Mathematics (CCiSM).

2.1  Syllabus Objectives

The objectives of the 1989 Trial/Pilot Syllabuses (e.g., Queensland Board of Senior 
Secondary School Studies QBSSSS 1989) included the identification of the assump-
tions and variables of a mathematical model, formulation of a model, derivation of 
results from a model, and interpretation of these in terms of the given situation. Once 
statewide implementation occurred, despite syllabus refinements over the years 
(e.g., QBSSSS 1992, 2000; Queensland Studies Authority QSA 2009), the mathe-
matical modelling component remained essentially stable although different emphases 
brought to the fore different aspects in implementation at different times.

Four approaches to mathematical modelling within curricular implementations 
have been identified in the Australasian context (Stillman et al. 2008). An approach 
using real world examples to motivate the study of mathematics is employed by 
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some teachers to stimulate positive affect rather than promote mathematics learning 
(Pierce and Stacey 2006). Modelling as curve fitting reduces model development to 
the exercise of regression options on technological devices, without regard to the 
mathematical structures underlying the data – effectively distorting the modelling 
process by overemphasizing one (albeit important) possibility within the solution 
process. At times mathematical modelling is used as a vehicle for teaching mathe-
matical content, emphasizing the provision of “an alternative – and supposedly 
engaging – setting in which students learn mathematics without the primary goal of 
becoming proficient modelers” (Zbiek and Conner 2006, p. 89). In contrast, treating 
modelling as content (e.g., Ikeda et al. 2007) aims to equip students with skills that 
enable them to apply and communicate mathematics in relation to solving problems 
in their world. This approach enables students to use their mathematical knowledge 
to solve a range of real world-related problems and simultaneously scaffolds their 
development as modelers. The generic objectives of the Queensland syllabuses 
provide for both these purposes where the intention is for the continuing presence 
of modelling across the four semesters of Year 11 and 12 mathematics subjects.

2.2  Implementation in Schools

Since, as noted above, assessment at upper secondary level in Queensland (years 11 
and 12) is entirely school based, individual schools and teachers design specific 
work programs (including assessment tasks) within syllabus expectations. Hence, a 
key element is the translation of general objectives into specific criteria for teach-
ing, lear ning, and assessment of school-based activity. In alignment with syllabus 
objectives, assessment criteria such as those for a task based around koala popula-
tions in Australia using information from the Australian Koala Foundation website 
(https://www.savethekoala.com/) (see Fig. 66.1) are developed by teachers in 
schools. To eva luate the student modelling efforts, the following criteria were used 
as a basis for awarding credit: 

Appropriateness of interpretation of data•	
Reasonableness of assump tions•	
Quality of mathematical model for population changes•	

Fig. 66.1 Koala task

The enclosed pages (data from the Koala Facts pages of the Australian Koala Foundation 
website Media Centre and a newspaper article by Harbutt, 2004) provide information 
about koala populations in Australia. You are to develop a mathematical model based on 
Leslie matrices to represent the population changes of the koala population. Choose some 
region in which the population might be increasing, investigate the growth over at least 10 
years, and then use this to discuss ways to maintain a population that the environment can 
sustain.



692 G. Stillman and P. Galbraith

Justification of choice of values for model parameters•	
Discussion of strengths and weaknesses of model•	
Evaluation of model and recommended changes to maintain a suitable population•	

This exemplifies how a school has turned the syllabus general objectives into 
criteria for assessing student work. For this to be successful, a viable pathway 
between syllabus statements and school implementations must exist and be able to 
be validated by moderating panels. The extent to which schools and teachers in 
general find this essential process workable and valid in terms of syllabus expecta-
tions, given other administrative and curricular pressures, acts as a litmus test for 
evaluating the continuing implementation of this initiative of mandating modelling 
in syllabus requirements. To pursue this goal more broadly an on-going longitudinal 
study is being conducted into this curriculum initiative.

3  Research Methods

Syllabus and review documents from the late 1980s up to the latest syllabuses 
implemented in 2009 were examined. In addition purposeful samples of 5 key 
curriculum figures (e.g., nonteacher members of expert advisory committees or 
statutory authority officers overseeing syllabus implementation), 6 key teachers 
(i.e., secondary mathematics teachers in key implementation roles such as members 
of state review panels or district review panel chairs), and 12 secondary mathematics 
classroom teachers were selected. The teachers were representative of several 
school districts and of state, Catholic and independent schools systems. A series of 
questions covering the period of introduction and later periods of widespread 
implementation and modification were asked of these 23 interviewees. In addition, 
practising teachers provided artefacts, usually in the form of tasks that typified their 
use of real world applications and modelling in teaching and assessment, and 
their use of technology in these contexts. In order to identify emergent themes 
within the interview responses, and the teaching and assessment artefacts, these 
data were entered into an NVivo 8 database (QSR 2008) and analysed through 
intensive scrutiny of the data to develop and refine categories related to these 
themes. This chapter addresses emergent themes related to interviewee responses to 
the following questions which link to the three general questions articulated in the 
introduction:

 1. Why was the introduction of applications and modelling considered to be a 
valuable initiative in senior secondary mathematics?

 2. While the general objectives of the 1992 syllabuses were for mathematical 
modelling, it could be argued that the implemented syllabuses were mainly 
concerned with mathematical applications. Does that distinction have meaning 
for you?

 3. Do you believe that mathematical modelling is an established part of upper sec-
ondary school practice in Queensland? Why?
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 4. The courses require a balanced assessment plan that includes a variety of tech-
niques such as extended modelling and problem-solving tasks and reports. What 
is your source of tasks? Do you believe you have sufficient support to develop 
tasks, or have you gone past that?

4  Findings

4.1  Reasons Applications and Modelling  
Valuable Initiative at Senior Secondary

At the upper secondary level applications and mathematical modelling are not 
always seen as relevant let alone central to the mathematics curriculum. The inter-
viewees in this study, however, having experienced the realities of curriculum 
implementation at this level of schooling had little trouble providing arguments for 
why modelling is seen as valuable in the context of the mainstream upper secondary 
mathematics curriculum. The spectrum of responses is shown in Table 66.1.

Most were highly positive as typified by the following response:

The content is important and you need the content but it is the application of that 
content in a way that is meaningful and the kids can make sense of that so there is 
a purpose for it. Nowadays, unless the kids can see a reason for doing something 
they just park up [refuse to budge]. You will get the small handful of kids who will 
just jump through any hoop … but the vast majority of kids, unless there is a reason 
for doing it, they just won’t engage. [Key Teacher 3, Nov., 2005 interview].

Two interviewees expressed reservations as exemplified here by a classroom 
teacher:

I think there is a huge divergence of opinion still…people who say that students are 
not getting enough practice at the nitty gritty, and trying to solve problems…is a bit 

Table 66.1 Frequency of arguments pro modelling in upper secondary curriculum

Arguments Frequency

Promotes mathematical understanding/ thinking rather than regurgitation 9
Makes mathematics applicable/demonstrates utility of mathematics 9
Demonstrates relevance of mathematics 7
Engenders student interest in mathematics promoting engagement 6
Promotes variety in teaching strategies 3
Promotes enjoyment in mathematics 2
Promotes success leading to retention of students in mathematics 2
Develops a world view of modelling to solve problems 2
Counterbalances abstract mathematics 1
Enhances recall of mathematical concepts and processes 1
Appeases employer demands 1
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like putting the cart before the horse. They really ought to be spending more time 
understanding the concepts and looking at application later on. [Classroom 
Teacher 1, Nov., 2005 interview].

4.2  Distinction Between Applications and Modelling

The objectives of the 1992 syllabuses were meant to encourage development of 
problem solving and mathematical modelling skills. The latter focus was generally 
not evident in implementation (Stillman 1998) and this was confirmed by most 
interviewees reflecting back on this syllabus implementation. The main reason for 
this was seen as mathematical applications being much closer to what teachers were 
already doing whilst mathematical modelling was not well understood.

They didn’t understand what mathematical modelling was about basically—the 
whole idea of building a model, use a set of data, build a model, then generalising 
that model. They probably tended to look at an application where the kids had a 
model or something like that and the kids had to do something with it…so I would 
say it was probably lack of understanding of what was expected. (Key Teacher 3, 
Nov., 2005 interview).

Other reasons given for modelling being less likely to be taken up were that it 
was perceived as difficult and time consuming resulting in it often being confined 
to alternative assessment.

Applications could easily descend into teaching this application, and that appli
cation, and that application. So today we will do the application of this Calculus we 
have been doing to this, this biological situation here and that is a lot easier to do I think 
than teaching the other more messy business with the modelling. … teachers generally 
felt that they didn’t have much time and therefore it is the modelling sorts of things that 
were really time consuming. (Key Curriculum Figure 3, Dec., 2007, interview).

There was, however, a group of enthusiasts who pursued modelling and often these 
teachers were also technology innovators and this resulted in an alternative route for 
modelling to grow in prominence through the period of the 1992 syllabuses. 
“Graphing calculators … were valuable tools in any modelling exercise…that 
removed the grinding mathematics which was the aim of a lot of people and allowed 
people to discuss applications without being bogged down in the arithmetic of doing 
it” (Classroom Teacher 7, Oct., 2007 interview). Furthermore, when in-services 
were conducted for new technologies, “the material being used was modelling 
material … giving teachers some idea which way to go, how they could use the 
technology and develop modelling” (Key Teacher 5, Dec., 2007 interview).

Gradually monitoring panels applied more pressure to make sure all general 
objectives with respect to modelling were being fully addressed. Some teachers 
embraced the new changes after an initial period of caution as expressed by the 
following teacher:

I was very nervous at first but I really like the approach … From my point of view 
I think it gives us, with the technology that we have got on hand, a chance to do 
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mathematics that has more meaning for the students so you can use real life data…. 
It has given me great insight into how students actually think. (Key Teacher 5, Dec., 
2007 interview).

Sometimes efforts by panels to assure better teaching of the general objectives as 
a whole had unexpected outcomes. Ensuring students address particular elements 
such as “extending and generalising from solutions” in the standard for, say, an A 
in Modelling and Problem Solving resulted in some mechanistic approaches as the 
following demonstrates.

Our kids will ask us, ‘Have I got enough G’s? Have I generalised enough?’ 
because we actually count how many times. I don’t suppose a lot of schools do that. 
And we think. ‘Oh, we might have to put a G on the next test’ or we might have to 
put a ‘refine the model’, something which gives them the opportunity to demon
strate what we call A attributes in that criteria [sic]. So I just feel sometimes that 
they are jumping through hoops. (Classroom teacher 6, Nov., 2007 interview).

In some cases this could be construed as a response by schools to a perceived 
desire by the panels for schools to show explicit evidence of developing particular 
competencies in tasks targeting these specifically (see Fig. 66.2), or alternatively, 
it could be due to the continued persistence of a lack of differentiation between 
applications and modelling.

One of the interviewees, for example, had been involved in the implementation 
as a classroom teacher and mathematics department head since the early 1990s but 
still in 2007 did not distinguish between applications and modelling despite this 
long involvement. Not surprisingly, she did not recognise the essential elements in 
the assessment criteria distinguishing modelling from applications. She described 
the panel’s focus on such elements of the criteria as “nit picky” continuing: “I would 
like to see this trimmed down. I am happy with things like synthesis of procedures 
and strategies, I think that is very important in the problem solving; selecting 
appropriate procedures for the particular modelling question involved” (Classroom 
teacher 5, Nov., 2007 interview). However, when it came to exploring the strengths 
and limitations of a model, extending and generalising from solutions, recognition 
of the effects of assumptions used, evaluation of the validity of arguments, these 
were all considered superfluous.

Fig. 66.2 Task exploring strengths and limitations of models and effects of assumptions

dv
dt

A streamlined object falls from a satellite towards earth. One model to represent the 
motion of this object is to consider there is no air resistance. Considering downwards as 
positive, the velocity at any time will be given by v = gt. How long will it take for the 
object to be travelling at 40ms−1? Another model to represent the motion of this object is to 
consider there is air resistance to the motion producing a retardation of 0.2v, so that the 
acceleration of the  object is given by a = g − 0.2v, where downwards is considered positive. 
Solve the differential equation    =g−0.2v to  find an expression for velocity at any time t. 
How long will it take now for the object to be travelling at 40ms−1? Compare the two 
answers in light of the assumptions made and the limitations of each model.
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4.3  Embedding Applications and Modelling in Current Practice

Opinions about the robustness of modelling as an established practice in 
Queensland upper secondary schools were almost equally divided between those 
who agreed it definitely was and those who saw a continuum from minimalist 
approaches to very rich. In the main, classroom teachers agreed modelling was 
established often influenced by what was happening in their local context. 
Teachers in key implementation roles gave a broader view. “I still think there are 
schools who teach all the purely mathematical aspects of it and they’ll throw in 
the pseudoreal world problem to satisfy us.” (Key Teacher 5, Dec., 2007, inter-
view). In contrast, two curriculum figures most remote from classroom practice 
thought there was little modelling occurring. The most positive interviewees saw 
the establishment of modelling in classroom practice as a “slow evolutionary 
process” (Key Teacher 4, Dec. 2005) strongly supported by the panel system and 
the insistence on alternative assessment. A tolerance for diversity in uptake of 
modelling has led to the situation where “everybody has moved a certain amount, 
some people have moved a large amount, others are still being pushed” (Key 
Teacher 4).

4.4  Designing Tasks

Questions relating to task design were asked of only teachers from the classroom 
and key teacher groups (i.e., n = 18). All teachers interviewed expressed satisfaction 
with their own or their mathematics department’s capability of designing suitable 
tasks seeing this as a creative, enjoyable and interesting task.

I think we are now getting deluged with applications… Teachers are thinking of 
them themselves now. It’s been a wonderful development in the 15 years since that 
92 syllabus came in. (Classroom Teacher 9, Nov., 2007, interview).

It can take you several hours to start this little idea off and then get the things 
together and then write it and trial it and share it with someone else and get the 
criteria sheet right but I like doing it. I enjoy doing that. (Key Teacher 5, Dec., 
2007, interview).

Teachers interviewed were generally satisfied that they had sufficient support to 
produce or source tasks by themselves through colleagues, the Board or profes-
sional bodies as indicated by this classroom teacher.

I am lucky in a sense that I’ve been involved, so that I’ve got people that I could 
contact for help. Personally, yes, I feel I would have the support. (Classroom 
Teacher 12, Nov., 2007, interview).

Some reservations were expressed regarding other schools especially from 
interviewees on local monitoring panels and with respect to teachers experiencing 
geographical or professional isolation as Queensland is a large state with a diversity 
of school sizes.
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I think I am pretty right myself and the staff here are pretty good. They are 
coming up with some good stuff too…other schools you see on panels (like 1 in 5) 
are having problems I think. (Classroom Teacher 11, Nov., 2007, interview).

You need to contact other schools out west though, because they do struggle. 
(Classroom Teacher 10, Nov., 2007, interview).

The main sources of ideas mentioned by interviewees for tasks are given in 
Table 66.2. Colleagues, personal experiences and print sources figured strongly, but 
the internet, television and the commercial world infrequently.

5  Discussion and Conclusion

With respect to the responses of participants, we note that arguments for inclusion of 
modelling as a valuable component of the upper secondary mathematics curriculum 
were, in the main, predominately in service of the promotion of mathematics learning 
by students at this level along the lines of modelling being one of the “tactical 
devices to improve the situation for traditional mathematics instruction” (Blum & 
Niss, 1991, p. 47). Despite being emphasised in the rationale of the syllabuses, 
there was no mention of critical competence, that is, “preparing students to live and 
act with integrity as private and social citizens” (p. 43). Opportunities provided by 
modelling were taken up by those teachers welcoming a syllabus supporting a 
desire for change. Others wanted to remain within familiar territory by interpreting 
‘applications’ as little different from previous activity as noted by Stillman (1998) 
in the early implementation. Several teachers embraced the mutually supportive 
relationship between modelling and technology use.

The teachers felt they had sufficient support to produce appropriate tasks but 
raised concerns on behalf of more isolated colleagues. Suggestions from colleagues 
and personal experiences were the most frequent sources of tasks but internet 
sources were not amongst these. The tasks in Figs. 66.1 and 66.2 illustrate the 
variety exhibited in this task development. The former is much more open, with the 
making of assumptions, choice of mathematics, and interpretation in context essen-
tial aspects of this modelling problem. The latter is an application where essential 
activities central to modelling are absent. The elaboration of modelling assessment 

Sources Frequency

Teaching colleagues 12
Personal experiences  9
Books  8
Professional journals  4
Newspapers  4
Monitoring panel meetings  4
Presentations at professional gatherings  

(national, regional, local)
 3

Table 66.2 Most frequently 
mentioned sources for  
applications and modelling 
tasks
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criteria in a later syllabus revision was generally viewed as helpful in providing 
enhanced guidelines for task production and assessment of performance. However, 
there was evidence of some teachers continuing with minimalist approaches, 
attempting to assimilate challenging new requirements into traditional conservative 
practices. If review panels are viewed as agents for change and guardians of com-
parability, evidence of implementations along the continuum from minimalist to 
very rich suggests that these functions require further work. The assessment by 
interviewees of current practice reflected this variety. A deliberate tolerance for 
diversity in uptake of modelling has ensured some progress in all schools, perhaps 
more than if full immediate compliance was required.

To conclude, we reflect back on the three general questions listed in our intro-
duction with regard to curriculum implementation in practice. For the first, we 
have obtained a cross-sectional view of representative implementations at senior 
secondary level in a state context. There is evidence that implementations include 
opportunities for students to use their mathematical knowledge to solve a range of 
real world-related problems and at the same time scaffold their development as 
modellers but this is by no means universal. For the second, our interviewees have 
indicated pressures that apply to teachers in meeting syllabus requirements, and 
the challenges they feel these impose on what can be achieved. The main purpose 
for using such tasks was to enhance the uptake and learning of mathematics. 
Finally, useful insights have been obtained into ways in which changing focus on 
assessment criteria have been used (or not) to facilitate the teaching of modelling 
at senior secondary.
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Abstract We present the results of a research project which deals with a qualitative 
case study in the field of mathematical modelling. The study investigates the role of 
“real” life modelling situations of the learner in the construction of mathematical 
knowledge at school. The study of episodes, interviews, questionnaires, and direct 
observations allowed analysis on how teachers describe their teaching performance 
when approaching the content of school mathematics. However, the most important 
aspect was to be able to detect the necessity of a “sense of reality”, which is charac-
terized in this paper. The development of this research project shows that it is still 
necessary to develop a sense of reality as a tool to facilitate interaction between the 
sociocultural context and school mathematics, all through modelling.

1  Introduction

Modelling and model application have their roots in the study of real world problems, 
which have served both the mathematician applied to the development of theories 
that explain phenomena, and the mathematics education teachers and researchers 
who approach the study of such reality, connect it to mathematical knowledge, and 
use it as a teaching resource for the learning of mathematics. Mathematics teachers 
who use modelling as a resource to introduce mathematics concepts become engaged 
in reflection processes about real problems, their relevance, and a way of approaching 
them in their classrooms. This paper describes the way sense of reality is understood 
as the knowledge that mathematics teachers have.
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2  Brief Description of Modelling in Colombian  
Educational Regulations

Colombia, since the publication of the document Lineamientos Curriculares 
(curricular guidelines) in 1998, has given mathematics a wider scope, which makes 
it possible for the students to use their knowledge outside the classrooms in settings 
where they can formulate a hypothesis and make decisions to face new situations 
and adapt to them. In this sense, Ministry of National Education [MEN] (1998, p. 35) 
states that it is necessary to relate the content of learning to students’ daily life, 
presenting them in the context of problem situations and exchange of points of 
view. According to this perspective, one of the purposes of teaching mathematics at 
school is to develop mathematical thinking and therefore, modelling and problem 
solving are fundamental to achieve this goal and at the same time overcome the 
perspective of “concept transmission” that is sometimes held at school regarding 
mathematics teaching.

Among the arguments that support the importance of modelling in Colombian 
classrooms, MEN (1998, p. 101) states that modelling allows students to observe, 
reflect, discuss, explain, predict and revise, and thus build mathematical concepts 
based on meaning. Therefore, it is considered that all students need to experiment 
with mathematization processes that lead them to discover, create, and establish 
models at all levels. Villa-Ochoa and Ruiz (2009) claim that both MEN (1998) and 
MEN (2006) suggest incorporating modelling and problem solving processes, but 
do not make reference to the elements on which such processes converge or dif-
ferentiate, which is indispensable at the moment of classroom implementation, 
since the classroom is where “reality ” makes sense.

In spite of the fact that modelling was incorporated as a process in the curricular 
guidelines of the Ministry of National Education (MEN), we have not found enough 
evidence to observe an important development of this process in the classroom, 
which is in keeping with the abundant empirical data reported in international lit-
erature (Kaiser and Maab 2007).

3  The Project

3.1  The Context

This research counted on the participation of four teachers who worked in various 
levels of public schools. The four teachers hold bachelor degrees in Mathematics 
and one of them holds a specialization degree in mathematics teaching. They 
worked in a Colombian subregion 3.5 h away by road from Medellín, one of 
the main cities in Colombia. The four teachers volunteered their participation  
in the research project after working as teaching internship counselors with four 
students in the undergraduate program Bachelor of Education in Mathematics  
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in the same subregion. The teachers were observed by the researchers while 
they were engaged in their teaching practice from April to June 2008. Later on 
they answered a questionnaire, and held a 5-hour meeting in which they discussed 
episodes related to modelling and finally had an interview. Based on the results, we 
established some beliefs that teachers have in the presence of elements corre-
sponding to the modelling process (reality), which determines certain practices in 
the classroom.

3.2  Methodological Approach

The project paid special attention to the ways teachers acknowledge the importance 
of modelling in the classroom and the practical work used to implement mathemat-
ics at school. This way, the main questions of the project were: (a) What beliefs do 
teachers have regarding the mathematical modelling process in the classroom? And 
(b) What factors enable or not enable the implementation of mathematical model-
ling as a process in the classroom? In this chapter we present some results of the 
second question, in particular some aspects of sense of reality. In that sense, we 
adopted case study as our research method. Yin (2009) establishes that a case study 
is an empirical inquiry that investigates a contemporary phenomenon within its real 
existence context, when the boundaries between the phenomenon and the context 
are not clearly evident. We recorded information gathered through various means 
(audio, video, field diaries, and other written records) to later on organize and analyze 
it through a data triangulation process. According to Yin (2009, p. 115) “the most 
important advantage presented by using multiple sources of evidence is the develop-
ment of converging lines of inquiry, a process of triangulation and corroboration”. 
In Table 67.1, we present other details of instruments and some results.

4  Results

We return to the concept of sense of reality presented in Villa-Ochoa et al. (2009) 
and discuss how such meaning, regarding modelling and applications, is influenced 
by the relationship between the subject’s (teacher) academic training and his/her 
interaction with sociocultural contexts. In this sense, we report the cases of Alberto 
and Alexander1; Alberto is a teacher who had about 13 years of experience, and 
Alexander had 5 years of experience. Both Alberto and Alexander have been 
mathematics teachers in several grades of elementary and high school (students 
from 11 to 18 years of age). These cases were chosen due to the close link between 

1 Alberto and Alexander are not their real names.
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Table 67.1 Some instruments and results in this research

Instruments/records/dates Purpose Achievements

Classroom observation/
Field diary

To identify the main trends, 
methodologies, activities,  
and tasks used by teachers

It was found that teachers still  
use explanatory strategies  
in sequences such as: 
introduction  concept 
definition  explanation  
examples  exercises and/or 
application  evaluation

Data: from April to 
June, 2008

Episode analysis/audio 
and video

To identify some beliefs about 
school mathematics and 
contribute to the reflection 
and interpretation of several 
modelling situations

There was reflection about  
the role of mathematics  
when solving real everyday 
problems. Also, about the  
need to develop a sense of 
reality that makes it possible  
to link the real world and  
school mathematics.

Data: collected on the 
second week of 
November, 2008

Questionnaire/written 
information

To collect information about 
the why and the how of 
mathematics in Secondary 
School (11–15 years of age) 
and to identify some beliefs 
about school mathematics

Three types of situations used in 
the classroom were found:  
(1) Situations or exercises that 
favor made-up reality (Alsina 
2007), (2) prototype exercises 
within mathematics and  
(3) exercises related to the 
themes studied, applied to 
generally artificial contexts

Data: collected in 
the first week of 
December, 2008

Interview/audio and 
video

To collect information about 
beliefs and the why of 
real problems in school 
mathematics

Three beliefs were found:  
(1) Mathematical concepts are 
first taught and then applied, (2) 
constructing a model  
is a matter of finding the 
representation of the situation, 
and (3) a real problem is any 
situation that uses every day 
words and that shows the 
applications of mathematics

Data: collected on the 
second week of 
February, 2009

the concepts the teacher has about reality and the way he is observed in his teaching 
practice regarding modelling, so we need to study not only the conceptions teachers 
have about mathematics and mathematics teaching, but also the ways they observe 
their own teaching practice.

4.1  What is Sense of Reality?

The concept sense of reality was present by Villa-Ochoa et al. (2009) as sensitivity 
that a teacher should have towards reality, that also includes intuition and the 
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capacity to detect situations and opportunities in the sociocultural context towards 
which students’ knowledge can be geared. Such sense includes a good dose of 
imagination and creativity. A sense of reality, more than a rational component of 
teacher’s knowledge, is a subjective component that metaphorically acts as a 
magnifying glass with which the teacher observes objective reality and facilitates 
the (re)significance of such reality as of a mathematical modelling process. The 
concept appeared as a need observed in a teacher, in whom we identified certain 
positive attitudes towards mathematics and their role in teaching. This teacher made 
evident a search for situations that would establish relationships between school 
mathematics and the real world. However, such a search was unattainable, since in 
most cases, they were situations characterized as made-up reality, manipulated, 
faked, or far fetched (Alsina 2007).

4.2  What is Reality for Alberto and Alexander?

Alberto Alexander

Episode No 2, shows the following word 
problem: “A family of four (4) people 
has invited three (3) friends to eat at 
home. How many places will be set at 
the table?” (MEN, 1998: p 78). The 
teacher said that:

I would think that it is not [real], it may  
not happen […] my kids would say  
“we don’t have food for one, let alone 
to invite three” What is real, the 
language used? what is common in 
reality is what I live and what may 
actually happen […]. For him a real 
situation is not something that exists 
per se, but something that exists in the 
ambit of the language he knows, he 
sees, he has touched, he can work with, 
but not those real situations that are 
real, but out of context, or concealed 
and actually all the problems posed are 
of the same kind: cross a river, throw 
a liana, estimate an angle, measure the 
distance. Anyway […]. To ask us to 
use real situations to solve problems, 
no. They are rather common situations, 
and the language; it wouldn’t justify 
[mathematics] usefulness either.

In episode No 1 “The cartoon” (see  
Attachment 67.1) Alexander said:

We have seen that question many times.  
You get there and tell them [the students] 
what they are good for [mathematics]; you 
even make diagrams for them to show them 
how they can use math. However, the kid 
[student] does not want to look at it, uh, it is 
not part of mathematics, but the procedural 
part, the part where it is used. But the 
kid does not want to learn the concepts 
and I think that if something is missing in 
mathematics, it is learning concepts.

I study auto mechanics, an associate degree, 
and one of the electronics professors 
commented that electronics would be 
practically impossible without mathematics 
because everything that has to do with 
circuits and everything else, is actually 
mathematics. So you start to observe that 
and feel motivated, but with the kids, you 
can show them how to do it, how to take it 
to real life. However you are followed by 
the same two or three kids that are always 
interested, and the others [say] “It is not 
that I am not interested in the device, I just 
want to know what it is good for” that’s 
then, the great difficulty.
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We also observed how for Alberto, reality is a characteristic that situations 
should have per se, that have meaning for students, which becomes a tool, and 
when implemented in the classroom, helps the students see the importance of 
mathema tics; it is a way to answer the everyday question what is mathematics 
good for? However, the incorporation of such reality through situations in the 
classroom is a dream that for him is still difficult to achieve. Alexander identifies 
himself with the answer given by the teacher in the cartoon, to his students, and 
considers that students are not interested in such reality. In that sense, it is 
observed that the list of applications that can be presented to the students, makes 
part of a far fetched, not really attainable reality, since even though mathematics 
originated such applications, it is also true that such reality is not part of school 
discourse, as it only enumerates a series of applications through which the stu-
dents cannot visualize why and how mathematics played an important role in the 
development of those applications. It is observed, then, that while for Alberto 
reality is closer to situations lived by the students in their context, for Alexander 
reality is given by a series of technological and/or scientific developments that 
play an informational role, but do not manage to make the students participate in 
their construction.

Attachment 67.1 Episode No 1. The cartoon
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4.3  Sense of Reality in School Mathematics

Alberto Alexander

In episode No 1, “The cartoon”. The teacher said 
that:

I say that it depends on the grade you are going 
to; I say, if you are going to sixth grade, I 
think that, if, if mathematics didn’t have 
clothes. […] but anyway, I don’t have enough 
[enough clear arguments]. What is it good 
for? […] it is in college where you are gonna 
need it buddy, it’s going to be tough [you’ll 
have a lot of difficulty] but I know that it 
is an answer that comes out of my lack of 
capacity to tell them: uh that trigonometric 
identities, uh; I don’t know; of course. When 
I don’t know, I have said I don’t know, but 
in this particular case, I haven’t’ been able to 
[…] We have to tell the students. ¡You have 
to study it because you have to!

In episode No 1, “The cartoon”.  
The teacher said that:

Regarding this theme, you say, “if the 
binary system didn’t exist, the airplane 
wouldn’t fly”. How do you link it 
[relate] to electronics. But how do you 
take the kid there, if you are looking 
at, for example, the binary system, out 
of the binary system? That problem 
has a lot of mathematics. So, you show 
the students a minimum part and it is 
not enough for the kid, because the kid 
says “show me everything”

Both for Alberto and Alexander, the question, what is mathematics good for? 
presented in the cartoon, appears in many different ways in the classroom, usually 
in the local contexts of mathematics, which is to say, in a specific theme or concept. 
However, the way of facing it is different in both teachers. Alberto acknowledges 
that the training he received in college was not enough to unveil the relationship 
existing between mathematics and the real world, and his relationship with the world 
has not been wide enough to develop a sense of reality that allows the identification 
of such relationship in order to design situations that help him shape them into class-
room situations. On the other hand, for Alexander, his knowledge of Electronics has 
helped him use this discipline to “mention” some applications of mathematics, with-
out making it an object to design situations through which the students face serious 
modelling processes for experiments, search for data, variable identification, regu-
larities, abstractions, and possible simplifications; all of them elements of modelling 
as a classroom process. It is observed, then, how Alexander’s experience with aca-
demic contexts in electronics has made it possible for him to expand his relationship 
with mathematics and the real world. However, it has not been enough to develop a 
sense of reality that involves the modelling of situations in a sociocultural context.

4.4  A First Approach

Seeking teachers’ reflection about the role of real situation modelling problems in 
the classroom, a series of situations were proposed for teachers in order to analyze 
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aspects like: appropriateness in the classroom, reality within the situation, appro-
priateness of the situation in the particular classroom context, the mathematical 
concept involved in the situation, and the specific school grade in which the situa-
tion is developed. In that respect, the following comments appeared:

Alberto Alexander

In episode No 3 (see Villa-Ochoa et al. 
2009). The teacher said:

I think this situation can be used with the 
students in ninth grade. Even though it 
is not a problem per se in their reality, 
I think it can be adapted to utilities 
service or Internet service, but within 
the companies in the township where 
I work. Also, for example, the bills in 
the hotels or banks can be used to work 
mathematics in class and ask questions 
they can start working on.

In episode No 2, 3, 4. The teacher said:

They are real situations that students might 
like, but the problem is, they would say they 
want the formula to solve the questions, 
so they won’t find the answer. However 
these are situations that require the kind 
of mathematics they are being taught; the 
problems are not so big that the students 
don’t have enough mathematical knowledge 
to solve them.

It can be observed that the discussion about some episodes (modelling situations 
created in other contexts) presented elements that the teachers could assume in a 
critical way, claiming that they wouldn’t be appropriate in the students’ context. 
Throughout this discussion, the teachers make some reflections on the subject of 
their own contexts, and establish elements for the design of situations that are 
adequate for their context. Though new reality views were developed, for the teacher, 
it is not enough to affirm that sense of reality was developed by these teachers.

5  Discussion

The question what is Mathematics good for? appears very often in mathematics 
classes and brings along an invitation for the student to understand, somehow, the 
mathematical concepts locally2 addressed from a more realistic and useful perspec-
tive. However, it was found that such a question puts the participants in this project 
in deep trouble, since even though they showed command of global concepts in 
which mathematics is “applicable” they had difficulty posing particular situations 
for local concepts. The teachers agreed that mathematics is everywhere! but, like the 
teacher in the cartoon, it poses examples that relate to scientific discoveries restricted 
to some kind of reality that is not really accessible to the students, thus preventing 
them from assuming the challenge of implementing modelling processes.

2 When we say locally, we refer to the mathematical concepts presented in a particular class or a 
segment of a class.
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The statements above confirm the need to develop a Sense of Reality, with which 
the teacher can use modelling as a tool to answer questions at a local level, instead 
of just giving a general list of themes and applications that give the students a 
passive role when considering mathematical concepts. Through a sense of reality, 
teachers can recognize situations from their sociocultural context to use with the 
students, letting the role of modelling and applications of school mathematics 
overcome the concept that mathematics is just “information or data” modeled 
by “others”, to acquire a more meaningful role where the students become part of 
knowledge development.

Based on the above, we consider that when facing real situations in the socio-
cultural context of the classroom, modelling becomes a tool that allows the (re)
significance of such contexts. But in addition to this, we think that modelling must 
advance toward the notion of practice that includes the (re)elaboration and inter-
pretation of models already developed. Therefore, the problems must be assumed 
as real context problems; understanding real context as daily, social, cultural, 
consumption, and other science contexts, where students are required to identify 
and manipulate data, simplify and make abstraction of amounts and variables in 
order to build a model to solve the problem.

6  Conclusions

The cases reported in this article are evidence that there are teachers who have 
learned that mathematics is everywhere in nature, and in all other sciences, and in 
the context; but they haven’t learned how to unveil it yet. Sense of reality built 
through mathematical modelling outlines the need to unveil mathematics within the 
sociocultural context. It must transcend beliefs about reality as something artificial, 
made up, dressed, to put ourselves into a kind of reality closer to the needs of the 
students’ contexts.

In the case of Alexander, he points out the fact that sense of reality is strongly 
influenced by the academic situations lived by the subject regarding mathematics, 
even though in this case “technical” knowledge of mathematics can be observed. 
However, contact with modelling situations belonging in the sociocultural context 
seems to propitiate a certain degree of familiarization and a new look at reality out 
of school, thus promoting alternatives to seek new contexts to work modelling in 
the classroom. This way, sense of reality may permeate the development of math-
ematical knowledge in school, since according to D’Ambrósio (2005) the develop-
ment of mathematical knowledge in school is mainly built as of the way the 
individual acknowledges reality and its various manifestations (individual, social, 
planetary, and cosmic reality).

The sense of reality must make possible the appraisal of school realities 
(Alsina 2007) and promote the implementation of other realities closer to daily life 
in the students’ sociocultural contexts. This way, close or tangible reality (see, 
Villa-Ochoa et al. 2009) can be privileged in the first instance, since being part of 
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the students’ contexts, transcends the idea of possible contexts to set up real problems 
that make it possible for students to have a critical perspective of some social 
demands (such as consumption). This is a way to comply with one of the social 
duties of modelling in school mathematics, since through a sense of reality, model-
ling not only is in charge of the interpretation and solution of real life problems, 
but also promotes its transformation (subjective reality) by (re)signifying such 
(objective) reality.

These case studies have created certain implications for teaching undergraduate 
and graduate programs, since, based on Alberto’s case, the need for reflection about 
the sociocultural context to develop a sense of reality, is clear. It demands serious 
research processes that should inquire into various aspects, among them:

The ways teachers interpret reality.•	
The ways teachers think that a situation “is in harmony” with the textbook.•	
The way teachers consider that a situation “accommodates” or adjusts to school •	
reality.
The level of comfort and appropriation that the teachers have about the sociocul-•	
tural context.
The “rationality” that teachers assign the phenomenon related to the concept to •	
be built.
The level of “training” that teachers have regarding the modelling process.•	

Finally, we consider that just awakening a sense of reality does not transform 
conditions in the classroom, but without such a sense, there is a risk of remaining 
in the knowledge transmission model, which does not know about the tools offered 
by the sociocultural context to build mathematical knowledge at school.

The results of this research raise others new questions for future inquiry:

Are there relationships between •	 sense of reality and teacher’s mathematical 
knowledge?
How can a •	 sense of reality be developed?
What are the relationships between •	 sense of reality and competences in mathe-
matical modelling?

References

Alsina, C. (2007). Si Enrique VIII tuvo 6 esposas, ¿cuántas tuvo Enrique IV? Revista 
Iberoamericana de Educación (43), 85–101.

D’Ambrósio, U. (2005). Sociedade, cultura, matemática e seu ensino. Educação e Pesquisa, 31(1), 
99–120.

Kaiser, G., & Maab, K. (2007). Modelling in lower secondary mathematics classroom – Problems 
and opportunities. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling  
and applications in mathematics education. The 14th ICMI Study (pp. 275–284). New York: 
Springer.

Ministerio de Educación Nacional [MEN]. (1998). Lineamientos Curriculares: Matemáticas. 
Bogotá: Magisterio.



71167 Sense of Reality Through Mathematical Modelling

Ministerio de Educación Nacional [MEN]. (2006). Estándares básicos de competencias. 
Bogotá: Magisterio.

Villa-Ochoa, J.A., & Ruiz, M. (2009). Modelación en Educación Matemática. Una mirada desde 
los Lineamientos y Estándares Curriculares Colombianos. Revista Virtual-Universidad 
Católica del Norte (27), 1–21. With access by http://revistavirtual.ucn.edu.co/index.
php?option=com_docman&task=doc_download&gid=57&Itemid=21.

Villa-Ochoa, J. A., Bustamante, C. A., Berrio, M., Osorio, J. A., & Ocampo, D. A. (2009). Sentido 
de realidad y modelación matemática. El caso de Alberto. ALEXANDRIA. Revista de 
Educação em Ciência e Tecnologia, 2(2), 159–180. With access by http://www.ppgect.ufsc.br/
alexandriarevista/numero_2_2009/jhony.pdf.

Yin, R. (2009). Case study research, design and methods. Thousand Oaks: Sage.



713

Abstract There are different perspectives on the use of the adjective ‘authentic’ 
(c.q. the noun ‘authenticity’) in the teaching and learning of mathematics, and in 
particular in mathematical modelling. Researchers use a variety of meanings, describ-
ing authentic tasks, authentic situations, authentic learning environments, authentic 
models, and so forth. On the one hand, authenticity refers to being genuine (true, 
honest); on the other hand, authenticity refers to properties of simulations (copies) 
of out-of-school aspects. I use a framework from sociology to describe authenticity 
as a social construct, pointing at a number of definition problems. I will propose a 
pragmatic resolution to these problems with a pragmatic definition of authenticity 
for separate aspects in tasks (themes, resources, activities) if these are “clearly not 
created for educational purposes”.

1  Introduction

The terms authentic and authenticity are frequently used in research on the teaching 
and learning of mathematical modelling. Researchers report on authentic contexts 
(situations), authentic problems (tasks, assessment), authentic learning environ-
ments (learning situations), authentic models, and so forth. The use of the terms 
goes back to the 1990s, when the term authentic became functional to criticize the 
multiple-choice format in assessment, and in mathematics education to criticize 
stereotype word problems. For example, Kaiser (2002) writes on German mathe-
matics classes: “… it is typical for German mathematics teaching that real-world 
examples discussed in lessons are not authentic real-world problems, but made to 
illustrate mathematical contents. Therefore, these examples give a quite artificial 
and far from reality impression” (p 253). In mathematics education research, not 
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authentic is synonymous to: pseudorealistic, artificial, constructed, deviating from 
and distorting out-of-school practices, and concealing underlying mathematical 
problems. Still, we remain with the question: what can be labelled as authentic in 
mathematical modelling education?

According to several dictionaries (e.g. Webster’s Online Dictionary) authentic 
means: genuine, known to be true, being of undisputed origin. The term is illus-
trated with the discipline Archaeology, where found artifacts are considered 
authentic when they truthfully originate from human activities in the past. In this 
discipline, the term authentic is used as a contrast to being a copy, such as imita-
tions and forgeries. The qualification is binary: an artifact is either authentic or not; 
one cannot say that an artifact is ‘more authentic than another’. It is possible that 
an artifact receives the tag: ‘authenticity cannot be established’, but this doubt does 
not render the artifact ‘a little bit authentic’. In Archaeology, only acknowledged 
experts can give an artifact the classification of authenticity; if an outsider finds an 
object in his/her backyard, she/he will need an expert to confirm the authenticity.

In this exemplary discipline, we observe that authenticity is constructed in 
interplay between objects and actors. The objects are: (1) an artifact as object of 
study that may be qualified as authentic or not; (2) an origin that has produced the 
object. The actors are: (3) the experts who attest the qualification of authenticity; and 
(4) the public who observe the artifact as outsiders and trust the expert’s authority, 
see Fig. 68.1.

In this paper, I draw on sociological studies of social constructs (Berger and 
Luckmann 1966). Social constructs are agreements pertaining to perceptions, 
norms and values, and these are developed and sustained in relations between 
actors and objects. I will analyze authenticity as a social construct with respect to 
task design for mathematical modelling.

My personal interest in task design and authenticity goes back to a series of 
design studies in Mozambican mathematics classes. We designed geometry lessons 
starting from reed baskets, fish traps and drums, and we designed statistics lessons 
star ting from genuine newspaper articles (Vos et al. 2007). We termed the artifacts 
as authentic resources, we brought these physically into the classroom, and the 
students appreciated how these embodied a connection of mathematics to out-of-
school life. However, we noted that the artifacts were not educational in themselves. 
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Fig. 68.1 Authenticity in archaeology as a social construct
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For example, baskets are created to contain objects and this container quality can be 
connected to geometrical calculations of area and volume. Nevertheless, neither the 
basket nor the basket maker directly generated mathematical questions suitable for 
classroom tasks. The task designer creates these with educational aims in mind, and 
in the design process the tasks may become quite inauthentic, such as: what is the 
circumference of the basket in cm? Thus, we observed the combination of authentic 
resources and inauthentic activities and operationalized the term authentic for sepa-
rate aspects in tasks, if these are “clearly not created for educational purposes”  
(pp 53, 64). According to this definition, authenticity requires an aspect to originate 
from an out-of-school environment, and authenticity can be agreed in consensus 
regardless of the actor: whether one is student, teacher, or fisherman, all can agree 
that a reed basket is an out-of-school object with an out-of-school purpose.

In the ensuing text I discuss definitions of authenticity, compare between defini-
tions and validate these with examples from education, in particular on mathematical 
modelling.

2  Variations of Tasks in Mathematics Education

In the definitions of authenticity, terms such as situation, realism and relevance 
reappear. In this section, I offer a number of exemplary tasks to illustrate these 
terms.

In mathematics education, the abstract discipline of mathematics can be con-
nected to out-of-school reality through ‘situated problems’, ‘context problems’, 
‘real-world problems’, or ‘work-related problems’. For example, the abstract 
exercise 1 1

2 43 ...÷ =  can be adapted into “how many quarters of an hour go into 
three and a half hours?” In this reformulation the mathematical problem is situated 
(contextualized). The exercise can also be set into a money situation or a pizza 
situation, and such situations can allow students to apply common sense knowledge 
for solving the problem. In a situated problem all numbers have a meaning (e.g. in time 
units, in money value, or in pizza slices), but this does not make the exercise mean-
ingful (interesting) to all students. Task designers can make the problem realistic 
(as if from real-life, but clearly not real) by setting this problem on the division of 
fractions into the office of a doctor during a morning (8.30–12.00 h), where patients 
have visits of a ¼ h, and the question is: how many patients can the doctor see?1

In this last example, the doctor’s practice is a situation (figurative context) for a 
task on the division of fractions and one may question the authenticity of the 
described situation. Thus, authenticity can be a qualification of a task situation. 
However, a task is carried out within a social context (learning environment) 
through task activities. These task activities can also be rendered authentic, for 

1 Adding reality implies adding complexity. The doctor needs a coffee break and the schedule 
requires flexibility to fit in emergencies or late comers.
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example, by the response format of the task. Palm (2002, 2007) studied achievement 
results on two variations of the bus problem: how many buses are needed for a 
school excursion with 360 children, while each bus has 48 seats? In this study, Palm 
offered students a variation of this traditional, pseudorealistic word problem, asking 
students to fill in an order sheet from a bus company: on the sheet they had to put 
the school name, date of the excursion, the number of buses needed, and additional 
remarks. Palm found that the group in the sheet-condition outperformed the control 
group with the traditional word problem. Nevertheless, this variation on the bus 
problem was constructed by the researcher, the bus company was imaginary and the 
numbers in the task were invented. Thus, the problem situation was not authentic, 
but the activity was special: to fill in an order form was a simulation of real-life 
activities and this activity rendered the task more worthwhile (inviting to spend 
effort) or relevant (probably useful in the future).

With Palm’s study, we see that one mathematical task (the bus problem) can be 
designed in task variations. We also see task variations in the Giant Shoe problem, 
a case encountered in a number of studies on mathematical modelling. Blum (2011) 
presented a giant shoe sculpted in bronze, depicted by a photograph, and the stu-
dents were asked to calculate the height of a person who fits the shoe. This Giant 
Shoe problem matches the curricular concept of similarity and proportionality, and 
this makes the exercise valuable to mathematics teachers. However, depending on 
one’s background, one may raise other questions. A shoe maker may ask how much 
leather is needed for a leather copy of the bronze shoe. A bronze thief may ask how 
much bronze the statue contains. An art student may ask into what artistic tradition 
the statue fits. Therefore, the task resources may be authentic, but the posed math-
ematical question may lack relevance, both to people working with bronze statues 
and to students. In an interesting adaptation of the Giant Shoe problem, Biccard and 
Wessels (2011) designed a task variation, asking students to assist the police in 
relating foot prints found at crime scenes to the possible size of suspects, a question 
truly asked in crime scene investigation. In this variation, the Giant Shoe problem 
did not merely ask for a number related to the size of an imaginary giant, but the 
question asked was identical to a question that professional crime scene investiga-
tors also set, and thus: in this variation the question was authentic. Thus, variations 
of tasks and differences in the correspondence of task aspects to reality indicate that 
separate task aspects can be considered for authenticity.

3  Definitions of ‘Authenticity’ in Mathematics Education

In this section I offer a cross-section of definitions of ‘authenticity’ in mathematics 
education. For example, Gulikers et al. (2005) write:

An authentic learning environment provides a context that reflects the way knowledge and 
skills will be used in real life. This includes a physical or virtual environment that 
resembles the real world with real-world complexity and limitations, and provides options 
and possibilities that are also present in real life. (p 509) [emphasis added by PV].
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Here are a number of definitions of an ‘authentic task’:

The task asks students to address a concept, problem, or issue that is similar to one they 
have encountered or are likely to encounter in life beyond the classroom. (Newmann et al. 
1995, emphasis added by PV).

authentic tasks (are) based on situations which, while sometimes fictional, represent the 
kinds of problem encountered in real life. (OECD 2001:p 23, emphasis added by PV).

the term authentic task refers to a task in which the situation described in the task (…) is 
a situation from real life outside mathematics itself that has occurred or that might very 
well happen. In addition, the task situation is truthfully described and the conditions under 
which the task solving takes place in the real situation are simulated with some reasonable 
fidelity in the school situation. (Palm 2002:p IV-7, emphasis added by PV).

In the above definitions, authenticity means that the object (a task/an environ-
ment) is a copy that honestly simulates reality. Thus, the object does not originate 
from reality, but it has been designed to mirror reality. In the diagram, the arrow 
between object and reality is reversed, see Fig. 68.2. There is no authorization on 
the honesty of the simulation, thus, the simulation may be quite fake. According to 
this definition, the student may not even recognize the reality that is simulated by 
the task. Of course, the task presentation can includes media (e.g. photographs) as 
a window on reality. Also, the task designer/teacher may be an expert of the prob-
lem area (e.g. the task designer has a background in scientific research). In these 
cases, authenticity can be added to the task to assist students to imagine that the 
copy simulates reality.

In the above definitions authenticity is connected to simulations (copies) of 
reality, while the dictionary definition states that authenticity is opposite to being a 
copy. Somehow, some educators detached the term authentic from the meaning in 
the dictionary and started to use it synonymously to realistic, to worthwhile or to 
relevant. Used in this way, authenticity can be relative to the actor’s view, and then 
a task can be less authentic to some and more to others.
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Fig. 68.2 Simulation tasks constructed as being ‘authentic’
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Below are definitions of authenticity that differ from the simulation definitions 
above:

Authentic mathematical activities are actual work samples taken from a representative col-
lection of activities that are meaningful and important in their own right. They are not just 
surrogates for mathematical activities that are important in “real-life” situations.  
(Lesh and Lamon 1992:p 17, emphasis by L&L).

We define an authentic extra-mathematical situation as one which is embedded in a true 
existing practice or subject area outside mathematics, and which deals with objects, 
phenomena, issues, or problems that are genuine to that area and recognized as such by 
people working in it. (Niss 1992, cited in Palm 2002:p I-20, emphasis added by PV).

In these definitions, the object (task, situation, activity) originates from an 
out-of-school reality, just like original Mozambican reed baskets for geometry 
lessons. The task designer uses true out-of-school reality for a task. These definitions 
align with the dictionary definition of ‘not being a copy’. Thus, authenticity cannot 
be added, because the authenticity was already present before the task designer 
created the task.

Also, the above definitions mention a social agreement. The Niss-definition 
includes an actor who authorizes the qualification of authenticity: people working 
in a true existing practice or subject area outside mathematics. By including experts, 
the Niss-definition converges with the archeological construct of authenticity, in 
which experts authorize the authenticity. However, the Niss-definition has its 
limitations, with experts being equated to ‘people working in that practice or area’. 
With this formulation, Niss excludes other stakeholders of problem situations. For 
example, consumer problems (finding the best price) or environmental problems 
(optimizing CO

2
 reduction) can be recognized as being important, not only by 

people working in these areas, but also by out-of-school stakeholders, such as con-
sumers, environmentally engaged citizens, or the students themselves, and other 
‘not formally’ working people who take up responsibilities.

4  Problems with Defining ‘Authenticity’

Below, I will present a number of definition problems, which emanate from the fact 
that authenticity is a social construct and needs to be agreed upon in different com-
munities (educators, students). In the first place, the term has been used by many 
different educational specialists as shown in the previous paragraph. Besides being 
frequently used, the term is used in a variety of interpretations, and sometimes 
not clearly defined at all. I agree with Palm (2002), who in his study on ‘authentic 
assessment’, observes: “authentic assessment can mean almost anything” (p I-10). 
In the same way, authenticity in mathematical modelling education can mean almost 
anything. For example, authenticity can both refer to not being a copy, and to being 
a copy. Thus, contradictory and unclear definitions are being used, and this calls for 
a clarification of the differences.
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A second problem emanates from what quality we want ‘authenticity’ to have: 
should it be a binary qualification, or do we accept it to have an ordinal scale? Do 
we accept it as an absolute qualification, which does not depend on the viewpoint 
of the actor, or do we accept that we may have different opinions and that ‘some-
thing can be authentic to some students, but not to others’?

A third problem arises from whether we want authenticity to apply holistically 
to a complete task (or to a complete learning environment), or only to partial 
aspects in a task. For those who use holistic terminology such as ‘authentic student 
projects’ or ‘authentic enquiry’, the question then is: how much correspondence 
with reality is sufficient to qualify for authenticity? Or in other words: what essen-
tial aspects can, and what cannot be cut out for the sake of education?

I will illustrate the last problem with an example from vocational education. 
In the training of pilots flight simulators are crucial training tools. Externally, they 
are containers standing on poles that enable the simulator to shake. Inside the 
container is a partial cockpit with one or more pilot’s seats, steering rudders, engine 
throttles, and all around and overhead are panels with instruments, keyboards, 
displays and signals, radio and navigation equipment, and many other details that 
make the simulator resemble an original cockpit. When a candidate sits there, 
he/she sees through the windows a number of panels on which a realistic horizon 
is projected. To ‘add authenticity’, a candidate is requested to dress in full pilot 
gear. According to some definitions (e.g. Gulikers et al. 2005), a flight simulator is 
an ‘authentic learning environment’ because it simulates a real plane with sufficient 
accuracy. Nevertheless, flight simulators do not fly and there is not one account of 
a fatal accident with flight simulators. What clearly distinguishes flight simulators 
from real planes is that a candidate has no responsibility over lives or material. 
Thus, if essential aspects of the origin have been cut out for educational purposes, 
can we still speak of an authentic task, of authentic activities, or of an authentic 
learning environment? Defining authenticity holistically for complex units (tasks, 
environments) creates a problem of delineation: what are the essential aspects of 
the original that need to be taken into the definition, and what can be deleted with-
out losing the qualification of authenticity? The example of the flight simulator 
shows us that deleting authenticity does not downplay the value of an effective 
learning environment: deleting responsibility over material and lives offers students 
a safe environment to learn.

5  Pragmatically Constructing Authenticity  
in Mathematical Modelling

As described before, there are several aspects that require attention in defining 
authenticity. First, one needs to consider whether the term covers copies and simu-
lations, or whether the qualification is only applicable for true originals. As I have 
argued above, applying the term ‘authenticity’ for simulations, such as a flight 
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simulator, will only obscure the term and raise questions on how much authenticity 
must be added or can be deleted to allow for the qualification of authenticity.

Second, one needs to consider whether it has a binary (yes/no) or an ordinal 
(more/less) scale. In my view, the definition should align with the Archeology-
construct of authenticity, with the binary scale to be used. As a consequence, the 
definition can then only apply to aspects within a task and not to complete tasks.  
I therefore criticize terms such as ‘authentic tasks’, because the educational setting 
will require adaptations in the same way as with the flight simulator: it is not an 
authentic airplane (but an effective learning environment); the horizon seen 
inside is not authentic (but realistic). Still, a flight simulator can contain authentic 
instruments (originating from a real plane), candidates wear their authentic pilot’s 
uniforms, and a flight simulator can contain authentic software equal to the one 
used in reality. Also, the training activities can be authentic, being exactly identical 
to activities in reality. Similarly, in mathematical modelling a task can ask students 
to work with authentic data, with authentic modelling software (the original soft-
ware that modelling researchers use), while the activity to use the software is 
adapted for training purposes. Some aspects in a task/learning environment can be 
authentic while others aren’t.

Besides simply defining authenticity, it is a social construct on which a com-
munity agrees on its qualification. For this, the term cannot be dependent on an 
actor’s viewpoint. I claim that the term authenticity can be a qualification clear to 
all actors, even if the aspect has no meaning or relevance to them. This implies that 
the link between the object (aspects of the task) and its out-of-school origin must 
be direct and certifiable. With such an origin, the term authentic differs from 
actor-dependent terms such as relevance and meaning.

The construct of authenticity is certifiable if experts authorize the qualification. 
In fact, out-of-school experts embody the authenticity. In the Niss-definition 
experts were ‘people working in the area’, but in my view the actors with expertise 
can also be stakeholders linked to the area by concerns and responsibilities. In the 
field of mathematical modelling education, there are two out-of-school areas for 
experts. First, we have the area of the problem situation with stakeholders for 
workplace problems, consumer problems, environmental problems, scientific research 
problems, and so forth. Second, we have mathematical modelling researchers, that 
is: people who apply mathematical techniques to resolve the aforementioned prob-
lems. The modelling researchers can testify to the authenticity of the problem-
solving approaches, to the authenticity of used mathematical models (including 
the symbols used in reality), to the authenticity of computer software (software 
used by professional modelling researchers). By truthfully incorporating authentic 
aspects of mathematical modellers’ work, we can enculturate students into the 
research field of mathematical modelling. Thus, authenticity is not only a qualifi-
cation for aspects in the nonmathematical side of the modelling cycle; also the 
mathematical side of the modelling process can contain authentic aspects (see 
Fig. 68.3).

Asserting that the qualification of authenticity should only apply to genuine origi-
nals, be binary, apply to separate task aspects, and be independent of the actor, I now 
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return to the pragmatic definition of being authentic in mathematical modelling 
education for objects that are “clearly not created for educational purposes”.  
This operationalisation has a number of advantages: (1) it connects to an out-of-
school origin, (2) it is binary, (3) it can be applied to separate task aspects, and 
(4) it is actor-independent (‘clear to anybody’), which can be certified by actors 
(stake holders, modelling researchers). If objects serve out-of-school purposes, 
there are out-of-school actors by or for whom the object was created.

According to the above, pragmatic definition, a task can have some authentic 
aspects, while other aspects are included for educational purposes. I shall illustrate 
this with a final example of a modelling task: in the Porsche Task (Maaß 2006) 
students are asked to calculate the amount of paint needed for a Porsche 911. This 
task contains aspects, which originate from reality and have clearly no educational 
purpose: a Porsche 911 (purpose: driving fast), paint (purpose: protect against 
corrosion), the need to know the amount of paint (purpose: factory stock). Even the 
calculation method used by the students (segmenting the car’s surface into trian-
gles) was identical to the method of the mathematical modelers in the factory and 
thus, even the calculation method served out-of-school purposes. On the other 
hand, the Porsche Task also contained aspects with an educational purpose: for 
example, there was no absolute urge for correctness of the calculation. The students 
weren’t in an internship in the factory and they weren’t responsible for correct 
answers. If that would be the case, an error has repercussions in the factory (wrong 
stock) or with the consumers (rusting cars). However, in education we allow stu-
dents to commit errors. Fortunately, not all aspects in a task need to be authentic, 
but tasks are more engaging if a number of aspects are.
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presents 

task

problem in 
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Fig. 68.3 The social construct of ‘authentic’ aspects in a mathematical modelling task
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