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Abstract In the post-genomic era, the continuing development of high-throughput
technologies has led to the explosion of enormous amount of omics data, rang-
ing from genomics, transcriptomics, proteomics, metabolomics, to phenomics.
Integration of diverse omics data can help us to understand the complete functions
of genes in the cell. However, the complexity, heterogeneity, and large-scale of the
omics data have created significant challenges to the gene function prediction field.
Currently, the focus of this field is to develop efficient and accurate algorithms to
integrate omics data for predicting gene function. In this chapter, we first intro-
duce the various types of omics data, and how they relate to gene functions. Then,
we review current algorithms available for integrating omics data for gene function
predictions. Next, we use a combined algorithm named Funckenstein as an example
to further illustrate the integration process. In the final two sections, we discuss cur-
rent limitations and potential improvements of this field, and offer perspectives for
future directions.

Introduction

Understanding the function of genes, including the molecular function, the bio-
logical role it plays in the cell, and the impact of its malfunction on phenotypes
and diseases, is a central task in biology. Traditionally, experimentalists study the
function of genes by focusing on one or a few at a time. The advent of genomic
era has completely revolutionized our approach to study biology. Since the ini-
tiation of the Human Genome Project (HGP) in 1990 [1], the breakthrough of
modern high-throughput sequencing technologies has allowed for the decoding of
the complete genomic DNA sequences of more than a thousand cellular organisms
including human genome. Along with the accomplishment of complete genome
sequences have emerged a diverse range of high-throughput technologies such as
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oligonucleotide array, cDNA array, high-throughput two hybrid system, mass spec-
trometry, and so on. Thanks to the continuously reduced cost of the high-throughput
technologies, it is now a routine task for many laboratories to study the proper-
ties and relationships of thousands of genes in parallel, presenting biologists an
unprecedented opportunity to study the function of genes at a system level.

Given the sheer volume of the omics data, how to take advantage of the data
to generate biologically meaningful insights about gene functions presents a crit-
ical challenge to the field of biology. Computational biology or bioinformatics
is thus emerging as a new discipline, aiming to develop computational and sta-
tistical algorithms to effectively sort, analyze and interpret the omics data. Gene
function prediction is one of the most important goals of computational biology.
It can not only provide hypothesis about the function of a particular set of genes
of interest that can be verified experimentally, but also uncover important mech-
anisms of gene function through learning the rules of predicting gene function
accurately.

As the genomics era starts with the flood of genomics data, i.e., gene and protein
sequences, the computational approaches initially focus on inferring gene functions
by sequence comparison [2–6]. The underlying hypothesis of the sequence-based
methods is that homologous proteins evolving from the same ancestor are likely
to share the same function. The sequence-based methods play important roles in
annotation of the newly sequenced genomes, with the majority of genes function-
ally inferred on the basis of the sequence similarity to previously characterized
proteins. However, this approach can provide functional insights to only 50%
of the genes in the genome by detecting evolutionary relationship with known
proteins [7].

The sequence-based methods on gene function prediction are effective in assign-
ing the molecular function of genes, for instance, the catalytic activity of enzymes.
However, it often fails to answer what role a gene plays in a biological process, how
it interacts with other genes, and where it functions in the cell, which are fundamen-
tal questions in biology. This failure is mostly because those functional aspects of
the gene are determined not only by the gene sequence, but also by its relationships
with other genes that may not be evolutionarily related with the target. To answer
those questions, information beyond sequence alone is required. The rich trove of
omics data, ranging from genomic sequence, gene expression, protein–protein inter-
action, genetic interaction, phenotypic change, to epigenetic information, provide
information about the behaviors of a gene from various aspects. Therefore, a current
challenge in gene function prediction field is to design computational algorithms to
piece together information from various types of omics data, in order to obtain the
whole picture of the biological role of genes in the cell.

This chapter is organized as the following sections. In the first section, we focus
on omics data preparation by describing the latest high-throughput technologies to
generate the data and how each type of omics data is related to gene function. In the
second section, we review current algorithms available for integrating omics data to
predict gene functions. In the third section, we describe in detail a combined algo-
rithm named Funckenstein to illustrate the process of omics-based gene function
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prediction [8]. In the final two sections, we discuss current limitations and potential
improvements of the field, and offer perspective for future directions.

Omics Data Preparation

Before describing omics data and how they relate to gene functions, let’s first clarify
the meaning of function. The functions of a gene essentially are observations of its
behavior in the cell. For a protein kinase, from a biochemist’s point of view, its func-
tion can be the phosphorylation of a hydroxyl group of a specific substrate; while
in a geneticist’s opinion, its function can be the signaling transduction pathway in
which the gene is involved, or the disease phenotype appearing when the gene is
mutated or knocked out. In order to have a complete picture of the gene function,
we need to have an ontology system covering various aspects of gene functions.
Gene Ontology (GO) is such an ontology system [9]. It contains three ontologies:
molecular function, biological process, and cellular component. Molecular function
describes the biochemical activity of a gene product, “protein tyrosine kinase” for
example. Biological process refers to the biological role to which a set of genes
and gene products contribute, e.g. “DNA damage pathway”. Cellular component
tells where in the cell a gene operates its function, for instance, “nucleus”. The GO
terms are organized in a directed acyclic graph, and arranged in a manner from
general to specific, making it easy to be parsed by computers. GO has become
the most widely used functional annotation scheme, and the current goal of gene
function prediction is to predict the GO terms associated with each gene in the
genome. GO term annotation of genes in different genomes can be found in the GO
database.

Following the central pathway of biological information flow from the genome to
cellular phenotype, we classify the omics data into five main categories: genomics,
transcriptomics, proteomics, metabolomics, and phenomics (Fig. 1). Genomics rep-
resents the whole genome sequence information including gene, regulatory element,
and non-coding RNA, etc. Transcriptomics covers the whole RNA transcripts in
the cell, while proteomics characterizes all proteins in the cell. Metabolomics con-
sists of proteins, mostly enzymes, and metablotes that are catalyzed or produced by
enzymes in the cell. Phenomics is the combined result of genomics, transcriptomics,
proteomics, and metabolomics, representing all observable cellular or organism
characteristics.

Genomics

The first complete genome of a living organism was sequenced in 1995 [10]. In
2003 the complete sequence of the human genome was finished [11]. Today, there
are more than 1,000 completely sequenced genomes in the public domain, and
some estimates this number could reach to more than 10,000 by 2012. This owes
to the introduction of the next-generation sequencing technologies which employ
massively parallel sequencing strategy, capable of sequencing millions of sequence
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Fig. 1 Omics, database and gene function prediction. Omics data are classified into five main cat-
egories: genomics, transcriptomics, proteomics, metabolomics and phenomics. Sub-types of omics
data and the representative associated databases under each category are shown. The reference for
each database can be found in the main text. The link of each category of omics data to GO func-
tion is shown. Here, MF, BP, and CC are abbreviations of molecule function, biological process and
cellular component, respectively. The thickness of the line linking omics data to gene function rep-
resents their empirical relative strength in predicting the corresponding GO functions. For example,
among the three GO terms, genomics data are most effective in predicting MF, while phenomics
data predict BP better than the other two GO terms. In contrast, proteomics and transcriptomics
data predict BP and CC better than MF, while metabolomics data are effective in predicting MF
and BP

reads in a single run, such as the 454 [12], Illumina [13] and SOLid system [14].
Using the new technology, the full genome of James Watson, the well-known
DNA pioneer, was sequenced and assembled with 7.4 fold coverage in less than 2
months [15]. With such a development pace, the personalized-genomics era will be
coming soon.

Model organism databases curate, manage, and store detailed up-to-date informa-
tion about the gene mapping, annotation, protein domains and structures, expression
data, mutant phenotypes, physical and genetic interactions, etc, of the model
genomes, such as the Saccharomyces Genome Database (SGD) [16], the Mouse
Genome Informatics (MGI) [17], the Arabidopsis Information Resource (TAIR)
[18], the Fly Base [19], etc. Such databases are now the researcher′s starting
point for informed hypothesis generation. There are also databases that store
specific genomics data. According to the genome organization, we can classify
those databases into coding gene, functional unit such as regulatory sequence, and
non-coding RNA databases.
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The coding gene and protein sequence databases contain information from a wide
range of gene and protein sequence features. They have been the largest sources of
training data for gene function prediction. Detection of evolutionary relationships
is the first step of functional inference for sequence-based methods. Pfam is a
database of evolutionarily related protein sequences [4]. It currently contains more
than 10,000 protein families generated from the multiple sequence alignments
(MSAs) of evolutionarily related sequences using Hidden Markov Models (HMMs).
Those protein families cover more than 70% protein sequences in the protein uni-
verse. Evolutionary relationships between sequences can be further distinguished
as orthology, paralogy, and inparalogy [20]. Because orthologous sequences are
resulted from a speciation event, and likely retain the ancestral function, detection of
orthologous relationships can be effective in making gene function prediction [21].
Such databases include Cluster of Othologous Groups (COGs) [22] and InParanoid
[23], etc. Phylogenetic profile shows the pattern of the presence and absence of
the homolog of a given gene in different genomes. Two genes with similar phylo-
genetic profile tend to be functionally related, e.g., involved in the same pathway.
It provides a non-homology based way to infer functions. ProLinks is a databases
of phylogenetic profiles [24]. In addition, there are databases focusing on protein
sequence features and patterns related to protein functions, such as Prosite [25]
and PRINTS [26]. Direct functional inference can be made when a new sequence
matches a known protein feature or pattern.

Functional unit databases include those containing regulatory sequences (e.g.,
transcription factor (TF) binding sites), repeat elements, and other functional units,
such as enhancer, silencer, etc. Those functional units are not genes, but they are
located in the vicinity of gene, e.g., in the promoter region, and often evolution-
arily conserved. They play important roles in regulating, altering and determining
gene functions. Patterns of the functional units can provide important hints about
gene function [27]. Identification of genome-wide patterns of TF binding sites can
be done by high-throughput technologies including CHIP-chip [28] and CHIP-seq
[29]. TF binding sites can also be predicted by in silico methods, mostly based
on evolutionary conservation. TRANSFAC [30] and JASPAR [31] are two large
TF binding site databases, consisting of both experimentally validated and puta-
tive evolutionarily conserved TF binding sites in eukaryotic genomes. In addition,
though the functional role of repeat elements remains in speculation, a recent study
found that in human genome, functionally similar genes are overrepresented among
genes with similar repeat element profiles in the promoter region [32], suggesting
that repeat elements information is worth continuing exploration for gene func-
tion prediction. RepBase [33] is the database storing repeat element information.
The promoter region contains rich information responsible for regulatory role of
gene function, and DBTSS (DataBase of Transcription Start Sites (TSS)) [34],
which includes precise positional information for TSS and promoter region of the
eukaryotic mRNA, can be useful for predicting gene function as well.

More and more evidence have shown that the majority of transcriptome consist
of non-coding RNA transcripts [35]. Thus, RNomics, the study of the struc-
ture, function, and process of non-coding RNAs, is starting to attract more and
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more attention. Though the function of most non-coding RNAs remains myster-
ies, the discovery and extensive studies of microRNA or microRNomics have led
to a new paradigm of gene regulation which takes place post-transcriptionally
and pre-translationally [36]. MicroRNAs regulate the process of cell development,
differentiation, proliferation, mobility, and apoptosis through the regulation of its
target genes. Target genes regulated by the same microRNA may be involved in
the same biological process. miRGen is a database that provides information about
the miRNA target genes and their corresponding TF in human and mouse [37].
miR2Disease provides comprehensive information about human diseases associated
with miRNA deregulation from literatures [38].

Besides genomics data, epigenomics that study the epigenetic changes, including
DNA methylation and histone modifications, across the entire genome can provide
important insights about the function of genes as well [39]. Epigenetics changes
can lead to activation or inactivation of genes, and play important roles in cell
development, differentiation and tumorigenesis. The DNA Methylation Database
(MethDB) [40] and Human Histone Modification Database (HHMD) [41] contain
information about DNA methylation and histone modification in human genome,
while the ChromatinDB [42] database contains genome-wide ChIP data for histone
modifications in yeast genome. With more and more experimental data becoming
available, mining epigenomics data will provide a novel approach to predict gene
functions.

Transcriptomics

The transcriptome represents the complete set of RNA transcripts in the cell [43].
Both the expression and abundance of RNA transcripts can change in response
to cellular development, physiological and environmental condition changes. The
microarrays and serial analysis of gene expression (SAGE) represent the most well-
used technologies to study transcriptome [44]. Recently, deep sequencing RNA
transcripts using the next-generation sequencing technologies has detected RNA
transcripts at single base resolution, allowing for the discovery of novel transcripts
that cannot be detected with traditional technologies [45]. Transcriptomics data are
invaluable to understand gene functions. By focusing on differentially expressed
genes under different development stages, one may identify genes responsible for
the biological process governing cellular development. In addition, genes with cor-
related expression patterns under different conditions are likely functionally related
[46]. Gene Expression Omnibus (GEO) is the largest public repository of transcrip-
tomics data [47]. It currently contains more than 400 thousands samples submitted
from a wide range of platforms on many organisms, and this number is increasing
every day. In addition, there are species-specific expression databases, such as GXD
for mouse [48], FLIGHT for fly [49], and GeneVestigator [50] for Arabidopsis; tis-
sue specific expression databases, such as BGED for brain [51], and BloodExpress
for blood [52]; pathway specific expression databases, such as GermOnline for
germ line development [53] and Cyclebase for cell cycle process [54]. The vast
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amount of transcriptomics data under a wide range of conditions makes mining of
transcriptomics data an active field for gene function prediction.

Proteomics

Proteins are the main components of the metabolic pathway, and many pro-
teins interact with each other either in a complex or transiently to function in a
biological process. Proteome is the complete set of proteins encoded in the genome.
Proteomics is the large-scale study of proteome, focusing on the post-translational
modifications of proteins, protein abundance, protein variants, and protein-protein
interactions [55]. Depending on the environmental and cellular physiological condi-
tions, proteome may vary significantly from one cell or condition to another. Protein
abundance may not be inferable from RNA expression, due to post-transcriptional
regulation. Proteins are also subject to post-translational modifications, such as
phosphorylation, glycosylation, and acetylation, which are critical for some proteins
to be functional.

The most widely used proteomics techniques are two-dimensional gel elec-
trophoresis [56] and mass spectrometry [57]. Both can identify and quantify cellular
proteins. New technologies, such as shotgun proteomics, promise to significantly
improve the accuracy and coverage of proteome detection [58]. Latest technolo-
gies to determine post-translational modifications of proteins include PROTOMAP
which combines SDS-PAGE with shotgun proteomics [59]. Databases of post-
translational modifications include dbPTM [60], an integrated database containing
information about protein phosphorylation, glycosylation and sulfation, etc. Protein
subcellular localization is one of the three ontologies of gene functions in GO. There
are several species-specific databases of subcellular location, e.g., YPL.db for yeast
[61] and Flytrap for Drosophila.

Interactomics is the study of all protein physical interactions in the cell. In a broad
sense, the interaction can be extended to refer to the interaction between protein and
DNA or RNA, or the genetic interactions between proteins as well. High-throughput
interaction technologies include yeast two-hybrid system [62] and tandem Affinity
purification followed by mass spectrometry (TAP) [63], etc. Genome-wide protein-
protein interactomes have been reconstructed in several model organisms, including
yeast [64], worm [65], and human [66]. A number of interaction databases have
been established, including BIOGRID [67], MIPS [68], IntAct [69], MINT [70],
DIP [71] from published literatures, PIP [72] and OPHID [73] from computa-
tional predictions, and the integrated databases, such as BIND [74], HPRD and
STRING [75]. Technologies detecting protein-DNA and RNA interactions include
Protein-chip [76]. BIND [74] and ENCODE [77] databases contain information
about protein-DNA interactions. Genetic interactions can be captured by syn-
thetic genetic array (SGA) [78], diploid-based synthetic lethality analysis with
microarrays (dSLAM) [79], synthetic dosage-suppression and lethality and hap-
loinsufficiency [80]. BIOGRID [67] database contains genetic interactions from
literatures.
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Metabolomics

Metabolomics is the study of small chemical metabolite in the cell. Enzymes are the
major components of metabolism that catalyze to convert or give rise to metabolites.
In response to change of environmental and cellular condition, the gene expression,
translation, and catalytic activity of enzymes can change, which can lead to the
change of metabolite profiles. Small metabolites in turn can play important regula-
tory roles in gene expression, translation, and the biological processes. Therefore,
it is necessary to integrate transcriptomics, proteomics and metabolomics data in
the same context, in order to obtain a complete picture of gene functions. High-
throughput metabolomics technologies include gas chromatographic mass spec-
trometry (GC/MS) [81], liquid chromatographic mass spectrometry (LC/MS) [82],
as well as nuclear magnetic resonance (NMR) [83]. Examples of Enzyme databases
include BRENDA (BRaunschweig ENzyme DAtabase) [84] that contains infor-
mation about classification, nomenclature, reaction, specificity and many features
of enzymes. Metabolic pathway databases include KEGG (Kyoto Encyclopedia of
Genes and Genomes) [85], MetaCyc [86], and EcoCyc [87].

Phenomics

A phenotype is an observable characteristic of a cell or an organism. It is the conse-
quence of genome, transcriptome, proteome, and metabolome combined. It can be
the morphology, development state, biochemical property, physiological condition,
or reaction to the external environment. Phenomics, which associates the pheno-
type with the genotype, investigates genome-wide phenotypic manifestations at
cellular and organism level. High-throughput phenotyping (HTP) is critical to phe-
nomics. Current technologies include genome-scale RNAi screens for knock down
analysis and phenotype microarray for simple assessment of microbe growth capa-
bility. Further advances in experimental technologies and computational algorithms
are needed to speed up the phenomics studies. The Online Mendelian Inheritance
in Man (OMIM) database has the largest collection of human genotype-disease
information [88]. The online Mendelian Inheritance in Animals (OMIA) provides
genotype-disease information in animals [89]. PhenomicDB [90] and GeneCards
[91] databases provide heterogenous phenotypic information from a number of
different model organisms. Phenotype Ontology systems are being developed to
store, organize, and manage phenotype in a structured way, similar to that in GO.
Mouse Phenotype Ontology (MPO) [92] and PhenoGO [93] provide such frame-
work. Phenotype has been used for gene function prediction. Philip et al. cluster
genotype-phenotype data, and assign the overrepresented functions in the cluster to
the known gene [94].

In summary, omics data ranging from genomics, transcriptomics, proteomics,
metabolomics, to phenomics, are being generated at an unprecedented pace, provid-
ing us with tremendous opportunities to tackle the biologically important questions
at a whole new level. However, the complexity, heterogeneity, and scale of omics
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data present significant challenges to the biology community as well. Developing a
standard procedure to store, manage, and share omics data is being strongly advo-
cated [95, 96]. The establishment of a common standard will greatly facilitate the
process to design better strategies to mine and integrate the omics data.

Computational Algorithms to Integrate Omics Data
for Gene Function Prediction

Many computational algorithms have been developed to predict gene functions from
omics data. As the omics era starts with completely sequenced genomes, early
efforts on algorithm development focused on exploring genomics data for gene
function prediction. With diverse sets of omics data introduced by high-throughput
technologies continuously emerging, the current focus of the gene function predic-
tion field has switched to omics data integration. Because of the high complexity,
heterogeneity, and large-scale of the omics data, it is often difficult to design the
integration rules beforehand. Machine learning or statistical algorithms are fre-
quently used to learn from and integrate the complex data to make predictions.
Recently, interaction networks or broadly speaking, functional linkage networks,
have been used to integrate omics data. In this section, we first briefly summa-
rize sequence-based gene function prediction methods. Then, we introduce several
machine learning and statistical algorithms for omics data integration. Finally, we
describe in detail the network-based integration, by introducing the construction
of functional linkage network and the exploration of network topology for gene
function prediction.

Sequence-Based Algorithms for Gene Function Prediction

Most sequence-based gene function prediction methods are based on a sim-
ple assumption, i.e., function tends to be conserved among evolutionary related
sequences. Thus, detecting evolutionary relationships is a critical step, which is
often done by a database search for homologous sequences with powerful tools,
such as PSI-BLAST [2]. Function of an unknown gene can be predicted if it is
found to share a significant sequence similarity with a known gene. However, this
approach is often unreliable, especially for inference of specific functions [3, 6].
For example, systematic analysis of enzyme function inference using homology-
based methods reveals that on average, above 60% sequence identity is required for
accurate enzyme function inference [6]. With such a restrictive cut-off, however, a
significant amount of false negatives would be produced. Modifications of sequence-
based methods have been made and achieved significant improvement, including
those by distinguishing orthology from paralogy [22, 97], those by inspecting phylo-
genetic profile information [98], and those by focusing on the functionally important
residues in the sequences [5], etc. The sequence-based methods mostly focus on
predicting the molecular function aspect of genes. Recently, Hawkins and Kihara
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investigated the association relationships between different GO terms [99]. They
built a Function Association Matrix (FAM) between GO terms from different GO
categories. By considering the FAM and PSI-BLAST hit, their PFP algorithm can
make predictions of GO terms beyond the molecular function terms. In addition to
sequence information, three-dimensional structural information of proteins has also
been extensively explored for predicting gene functions [100–102].

Non-network Based Omics Data Integration
for Gene Function Prediction

The omics data type can be very different from each other. For example, gene
expression is represented by a real value, while a sequence pattern is a binary
value, either “present” or “absent” in a gene, and a phenotype can be a categori-
cal value, e.g., “normal”, “sick”, “very sick”. Some machine learning algorithms,
such as neural network and Support Vector Machine (SVM), are flexible to the for-
mat of the input data. For simplicity, however, the real value and the categorical
value can be transformed into binary values. For example, gene expression value
can be divided into several bins, with each bin considered as a new feature. After
the appropriate coding systems of the omics data are decided, gene function pre-
diction can then be considered as a binary classification problem, for which many
machine-learning algorithms are available. Popular machine-learning algorithms
include SVM, Bayesian Network (BN), Decision Tree (DT), Neural Network (NN),
and so on. Here, we briefly introduce these algorithms, and then focus on examples
of using them for omics data integration.

SVMs represent a family of statistical machine-learning methods that aim
to optimally separate data into two categories by drawing a hyperplane in an
N-dimensional vector space [103]. BN is a representation of a joint conditional prob-
abilistic distribution that encodes the probabilistic relationships among features of
interest [104]. DT is essentially a series of questions from which the classification or
probability of a gene having a given function can be inferred [105]. NN mimics the
human neuron perception system by consisting of a large number of highly inter-
connected elements to solve a problem [106]. Some of the algorithms can provide
the rules of how a prediction is made, making it easier for human to understand,
such as BN and DT, while others act like a “black box”, such as NN. Yet, all these
algorithms have been successfully applied in predicting gene functions.

Pavlidis and coworkers used a kernel-based SVM to combine gene expres-
sion profile and phylogenetic profile to infer yeast gene MIPS function categories
[107]. Rather than simply concatenating both expression and phylogenetic profiles
into a vector space, they used two kernel functions to transform the data into a
higher dimension space separately. The new kernels were trained by SVM, with the
results simply combined to make a final prediction. Lanckriet and coworkers fur-
ther improved the kernel-based SVM to combine protein complex, protein domain,
protein-protein interaction, genetic interaction, and gene expression information
[108]. Instead of simple addition, a weighted linear combination was implemented
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to combine the results from each kernel. Troyanskaya and coworkers developed a
BN-based algorithm named MAGIC to predict functional linked gene pairs from
genetic and physical interactions, microarray, and transcription factor binding sites
data [109]. Because learning the conditional probability in the BN structure is not
an easy task, the authors consulted experimental experts and designed an expert-BN
reflecting relationship between different evidence. The results from the BN inte-
gration were superior to unsupervised clustering algorithms significantly. Zhang
and coworkers used a probabilistic DT to predict co-complex protein pairs from
mRNA expression, transcription regulator, subcellular localization, phenotype and
some sequence features [110]. Unlike BN, the DT does not rely on any previous
assumption about conditional dependence; it automatically weights each data type
when building tree. King and coworkers used the DT to make prediction of gene
functions from patterns of annotation, and compare the result with that done by BN
[111]. The result showed that DT is comparable to BN and in some cases better. NN
has been widely used in biological data analysis. Jensen and coworkers developed
a NN to predict protein function from various types of predicted potein features,
including post-translational modification, sub-location and sorting [112]. Mateos
and coworkers used a NN to predict gene function from gene expression data [113].
In addition, they pointed out that the poor performance of machine learning can be
attributed to incomplete protein function annotations.

The algorithms introduced above employ a single model to integrate omics data.
Multiple models can also be applied. Then, a new model is used to combine the pre-
diction results. Hibbs and coworkers employed three different algorithms, bioPIXIE,
MEFIT and SPELL, to predict genes involved in the process of mitochondrion
organization and biogenesis [114]. bioPIXIE is a BN model aiming to integrate
diverse sets of omics data. MEFIT focuses on integration of only microarray data.
SPELL focuses on identifying coexpressed genes associated with the target bio-
logical process. The results of the three algorithms were combined with different
weights determined based on their association with functional relationships. The
combined algorithm achieved better performance than any single classifier did. Tian
and coworkers developed a combined algorithm named Funckenstein which has two
component classifiers [8]. The two classifies use different sets of omics data to pre-
dict gene function independently. A regression model is used to combine the results
from these two classifiers. We will describe this algorithm in detail in the third
section.

Network-Based Omics Data Integration
for Gene Function Prediction

The wide use of high-throughput interaction technologies has allowed for the recon-
struction of genome-scale protein physical interaction network in several organisms
[64–66]. Extensive studies have been conducted on the interaction network, includ-
ing using it to integrate omics data and for gene function prediction. In protein
interaction network, the nodes are genes, while the edges are protein physical
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interactions (PPI). The edge can be any sorts of functional relationships as well,
including genetic interaction, correlated gene expression, homologous relationship,
etc. Thus, the network can be conveniently used as a framework to integrate various
sources of omics data. The integrated network is often called functional linkage
network (FLN) to indicate the functional links between genes. In addition, the
network structure can be explored to obtain more information for gene function
prediction. Here, we first introduce the reconstruction of FLN for omics data inte-
gration and gene function prediction. Then, we review current algorithms available
to explore network structure, in particular the network module, for gene function
prediction.

The concept of FLN was first introduced by Marcotte et al. in 1999 [115]. In their
work, the functional links between proteins were constructed by combining protein-
protein links from various sources: experimentally derived PPI, correlated gene
expressions, related domain fusion, correlated phylogenetic profiles, and related
metabolic function. Different evidences were simply combined without weight.
High confidence protein links were defined as those with more than two evidences.
Marcotte group further extended the idea of functional linkage by introducing a
probabilistic FLN in yeast genome [116]. They computed a likelihood score of
whether a pair of genes has a functional linkage defined by a common KEGG
pathway given the evidence. The final FLN was a result of the integration of eight
types of omics data, including physical interactions, genetic interactions, mRNA
coexpression, functional linkages from literature mining, and computational link-
ages from gene-fusion and phylogenetic profiles. The resulted functional linkages
showed a comparable accuracy in predicting KEGG pathway relationships to that
by protein-protein interactions determined by small-scale experiments. Linghu and
coworkers employed machine-learning algorithms to automatically integrate five
types of omics data: PPI, genetic interaction, expression data, sequence similarity,
phylogenetic profile and domain fusion to generate a FLN in yeast genomes [117].
The functional linkage was defined as the presence in the same KEGG pathway.
Then, they designed a decision rule to infer protein pathway function from the FLN.
Karaoz and coworkers constructed a FLN by using protein-protein interactions as
the edges, with the weight determined by the correleated expression value of the
interacting genes. A GAIN (Gene Annotation using Integrated Network) algorithm
was then used to predict protein functions, by systematically propagating the labels
of genes with known GO terms to unlabelled genes across the FLN [118]. Tian and
coworkers applied a probabilistic decision tree (PDT) to construct FLN from vari-
ous sources of experimentally determined protein physical and genetics interactions,
and use this FLN to predict candidate gene with specific function annotations [8].
Reconstruction of FLN can also be found in other recent works [119, 120].

Besides integrating multiple sources of omics data into a single FLN, multiple
FLNs can also be constructed. The final results can be either from the integration
of the result from individual FLN, or from a new FLN integrated from multiple
FLNs. For example, GeneMANIA [121], an algorithm developed by Mostafavi and
coworkers, first builds multiple FLNs from various sources of omics data. Then,
it employs a fast heuristic algorithm derived from linear regression to integrate
multiple FLNs into a composite FLN. Finally, it applies a Gaussian field label prop-
agation algorithms to predict gene function from the composite FLN. This algorithm
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was ranked one of the best methods in predicting gene function in the first critical
assessment of mouse gene function based on the evaluation measurement of area
under the ROC [122].

Given an interaction network or a FLN, network information can be explored
to assist in the prediction of gene functions. The approaches exploring network
information can be generally classified into two categories: the direct approach and
the module-assisted approach. The direct approach utilizes the local or global net-
work information to predict function. The module-assisted approach is inspired by
the observation that interacting or functional linked genes tend to be localized in a
dense region in the network, i.e., module [123]. It involves two steps: the first step
is to identify the module, and the second step is to predict the function of unknown
genes based on the distribution of known genes present in the same module. Here,
we introduce the algorithms for both approaches.

The simplest method of the direct approach is the neighbor counting method.
For example, Schwikowski et al. counted the neighbor proteins of an unknown pro-
tein, and simply assigned the three most frequent functions of the known neighbor
proteins to the unknown protein [124]. Hishigaki et al. implemented a χ2 test for
the enrichment of known functions among the neighbor interacting proteins, and
assigned the statistically significant functions to the known [125]. Further opti-
mization was done by considering not only the direct interacting proteins, but also
the near-neighbor proteins and their distances in the network graph [126]. These
methods consider the local information and employ simple statistical test to make
predictions. More sophisticated models that consider the global network informa-
tion have also been developed, including the graph theory based methods. Graph
theorey-based methods take the global and full topology of the network into account
and employ either a cut- or flow-based algorithm to assign function, which can be
generalized as a minimum multi-way cut problem. Vazquez et al. applied this the-
ory to the yeast protein physical interaction network to predict functional class of
unknown proteins, by minimizing the number of protein interactions among differ-
ent functional categories with simulated annealing [127]. In contrast to Vazquez’s
approach that considers multiple functions at once, Karaoz et al. handled one func-
tion at a time, and employ a propagation algorithm to allow the flow of functional
information in the network, and assign a score to candidate genes of having the
function. Other attractive methods include the Markov Random Field (MRF) theory-
based method, which assumes the function of a protein is dependent only on its
neighbors and independent of all other proteins. Deng at el was the first group
to formalize the idea of MRF in predicting protein function from protein interac-
tion network [128]. Their approach was further generalized by allowing for the use
of multiple networks, such as protein physical interaction, genetic interaction and
coexpression network [129]. The MRF model is based on a sophisticated statistical
theory, and mathematically sound. However, a number of machine learning algo-
rithms have been reported to outperform the MRF model with the same benchmark
data used by Deng et al. [8, 130].

The module-assisted approaches involve the identification of modules or dense
local structure in the network, which was originally proposed by HartWell [123]. A
number of algorithms have been developed for module identification, which can
generally be classified as clustering based and non-clustering based. Clustering
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based methods include algorithms based on the pairwise distance of protein pairs
defined as the shortest path length in the network [131], or more sophisticated
ways, e.g., using the graph theory. Spirin and Mirny developed two algorithms,
SPC (superparamagnetic) and a Monte Carlo-base method, to maximize the density
of the obtained clusters [132]. Bader and Hogue developed a molecular complex
detection algorithm (MCODE) to isolate the dense regions into modules [133].
The MCODE consists of three steps: vertex weighting based on the core clustering
coefficient, prediction of complex memberships, and an optional post-processing
filtering or addition of proteins based on connectivity data. Sharan et al. developed
a NetworkBlast algorithm to assign a likelihood ration score for each candidate set
of proteins in the network [134]. This method uses a greedy network search algo-
rithm and can identify conserved region over several networks. The non-clustering
based methods involve the use of prior information about protein-protein interaction
or complex information. This information is used to seed a module, which is then
expanded based on network connectivity. The Complexpander software developed
by Asthana et al., first produces a rank of core proteins from complex data; then, it
assigns a probability to the involvement of each protein in the core, and then com-
putes a weighted score for each pair of proteins in the end [135]. Information other
than protein physical interactions can also be utilized to identify network modules.
For example, Segal et al. proposed a probabilistic model to identify modules not
only enriched for interactions, but also enriched for high sequence similarity [136].
Hanisch et al. used the expression information as a filtering process [137], while
Tanay et al. integrated the PPI data with gene expression, phenotypic sensitivity and
TF binding site, to identify modules [138]. Once the modules are identified, usually
statistical tests of the enrichment of known functions are conducted to infer function
of the unknown proteins.

Funckenstein, a Combined Algorithm for Omics-Based
Gene Function Prediction

Having described various types of omics data and a number of algorithms avail-
able for predicting gene function by integrating omics data, here we use a
combined algorithm named Funckenstein [8] as an example to further illustrate
the process of integrating omics data for gene function prediction. Most algo-
rithms described in the previous section can generally fall into two categories: the
“guilt-by-profiling” approach and the “guilt-by-association” approach. The “guilt-
by-profiling” approach focuses on mining the gene characteristics, e.g., a conserved
sequence motif. The “guilt-by-association” approach explores the relationships
between genes for functional association, e.g., orthologous relationship, corre-
lated expression profile, etc. Either approach has its own merit. Funckenstein is an
algorithm that combines both approaches to achieve a synergistic performance bet-
ter than either approach alone does. It has been applied for predicting gene functions
(GO) in both yeast and mouse genomes [8, 139].
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There are three steps in Funckenstein (see Fig. 2 for the flow chart). The first
step is to classify omics data. Following the definition of guilt-by-profiling and
guilt-by-association approaches, the collected diverse sources of omics data are
classified into two categories: one describing gene characteristics, and another

Fig. 2 Flowchart of the Funckenstein algorithm. There are three steps in Funckenstein: omics
data preparation, omics data integration, and results integration. RF and FL refer to the random
forest and functional linkage classifiers, respectively. The decision tree under the RF is an example
of many decision trees in the forest, while that under the FL is an example of 12 decision trees
specific for different GO categories
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describing gene-gene relationships. Take yeast gene function prediction for an
example, the gene characteristics include protein sequence patterns, gene pheno-
types, the common transcriptional regulators, protein sub-cellular localization, and
protein complex memberships. Some of those characteristics were collected from
databases, such as UniProt database, while others were obtained from the supple-
mentary materials of the published literatures. The gene-gene relationships include
various types of protein-protein interactions (both physical and genetics) determined
by different experimental technologies, which were downloaded from the BIOGRID
database directly. In the second step, two component classifiers of Funckenstein (the
random forest (RF) and the functional linkage (FL) classifier) are trained to make
predictions from the gene characteristics and gene-gene relationships, respectively.
The RF classifier employs a random forest algorithm [140] to build hundreds of
decision trees from the gene characteristics. Each decision tree outputs a probability
of a gene having a given function, which is then averaged across all decision trees.
The FL classifier first builds a FLN from gene-gene relationships using a decision
tree. Then, it computes the functional linkage score of a query gene with the genes
known to have the function, which are then averaged to output a probability of
the query gene having the function. In the final step of Funckenstein, a regression
model is implemented to combine the probability scores from both the RF and FL
classifiers and output the final probability.

There are several things about Funckenstein that need attention. First of all,
Funckenstein predicts each GO term independently, i.e., the parent-child GO term
relationships are not considered. Secondly, Funckenstein does not allow GO term
annotation to be used as a feature in the training to avoid the issue of circularity.
Third, rather than building one FLN, Funckenstein builds 12 FLNs by consider-
ing the type of ontology, i.e., Molecular Function, Biological Process and Cellular
Component, and the specificity of GO terms which is defined by the number of
genes annotated with the GO term and ranges from 3 to 10, 11 to 30, 31 to 100,
and 101 to 300, respectively. Fourth, when measuring the prediction performance,
the area under the precision-recall curve instead of the ROC curve is used. ROC
curve has been widely used as a measure of performance, which plots the true pos-
itive rate against the false positive rate [141]. In comparison, the precision-recall
curve is the plot of precision against the true positive rate. Suppose the number of
true positives, false positives, true negatives, and false negatives are TP, FP, TN and
FN, respectively, then the true positive rate = TP/(TP+FN), the false positive rate =
FP/(FP+TN), and the precision = TP/(TP+FP). When the number of real negatives,
(FP+TN), is far more than the number of real positives, (TP+FN), the false posi-
tive rate can be very small, even though FP is much larger than TP. In that case,
the predictions may not be useful to biologists. In fact, to most biologists, they may
be concerned more with the positive predictions the computational biologists made
than the negatives. In contrast, the precision-recall curve is independent of the num-
ber of real negatives, and is more intuitive to biologists. Accordingly, Funckenstein
is optimized based on the area under the precision-recall curve.

Funckenstein has been benchmarked with the same dataset used by a previous
integrated algorithm for yeast gene function prediction. That algorithm, developed
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by Deng et al., uses a Markov Random Field (MRF) to integrate protein-protein
interaction, coexpression, and genetic interaction networks, and estimates the prior
probability of a gene having a given function by a Naïve Bayes method from pro-
tein complex memberships [128]. Funckenstein outperformed this algorithm by a
significant margin in predicting yeast gene MIPS functions [8]. In the first critical
assessment of the mouse gene function prediction which was participated by nine
leading groups in the omics-based gene function prediction field, on average, for
most GO categories evaluated, Funckenstein outperformed all other groups in terms
of the precision at 20% recall [122]. In sum, Funckenstein achieves state-of-the-art
performance in integrating omics data for gene function prediction.

Here we’d like to describe several interesting points during the development of
Funckenstein. First of all, to achieve best synergistic effects in performance, it is
better to use as different omics data as possible to train the guilt-by-profiling and
the guilt-by-association methods separately. For example, a sequence pattern can be
considered as a gene characteristic, but it can also be used to link two genes that
have the same pattern. In yeast gene function prediction, we tested to code gene
characteristics as additional gene relationships to train the FL classifier. Although
we could improve the performance of the FL classifier greatly with the new addi-
tions, the combined results were worth than before. This suggests that the same
omics data should not be utilized more than once. Second, more interactions data
can substantially improve the performance of the FL classifier and consequently
that of Funckenstein. In the benchmark with Deng et al.’s dataset, there were only
a few thousands interactions available; while in the BIOGRID database, there are
nearly a hundred thousands interactions curated from various high-throughput stud-
ies. The relative contribution of the FL classifier to Funckenstein’s performance
is significantly increased in the latter benchmark. This suggests by adding more
gene-relationships from new omics data, we could further improve Funckenstein’s
performance. Third, building a FLN helps the FL classifier play a bigger role in
predicting specific gene functions. When a GO term is associated with only a few
known genes, it is difficult to train from the “positive” samples. In contrast, the
‘transfer rules’ are learned from the many GO terms within the specific GO cate-
gory in the FLN. This stresses the importance of reconstructing a FLN in predicting
gene functions.

Current Limitations and Potential Improvements

Omics Data Are Not Thoroughly Used

Figure 3 shows the frequency of different types of omics data used in the pub-
lished “gene function prediction” algorithms since 2001. It is apparent that protein
sequence, gene expression, and protein-protein interaction are the dominant omics
data for gene function prediction, with the rest of omics data seldom or not used.
For the three most used types of omic data, protein-protein interaction and gene
expression data are becoming the focus in current algorithm development, which is
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Fig. 3 Heat-map of the number of published gene function prediction algorithms using different
types of omics data from 2001 to 2010. A Pubmed search with the “eutils.pl” script obtained from
NCBI using different synonyms of “gene function prediction” from 2001 to 2010 results in over
800 literatures. Synonyms corresponding to different types of omics data are then used to count
the number of publications using the corresponding omics data each year. The number is plotted in
the heatmap. The blackness of each square in the heatmap represents the relative frequency of the
corresponding publications each year

consistent with the trend that microarray and two-hybrid high-throughput technolo-
gies are becoming widely used. The lack of use of other omics data by current
algorithms can be attributed to the fact that some omics data are not abundant
enough. For example, the phenomics data are still lacking because developing an
efficient high-throughput screen for phenotypic change is not an easy task. However,
even the genomics data are not fully used. For example, although some algorithms
integrate the TF binding site information, only the presence or absence information
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of the TF binding sites is used. In fact, the combination of TF binding sites, its
relative position and the number of occurrence of TF sites in the promoter region
all contribute to the target gene functions. In addition, the 5′ UTR and 3′ UTR of
the target gene may also contain important functional unit information necessary
for the function of the genes. Therefore, a more thorough use of omics data should
be done in order to make further improvements. On the other hand, the metabolite,
non-coding RNA, and epigenetics information are completely ignored by the cur-
rent algorithms, which also points out where a potential improvement of the current
algorithms can be made.

Omics Data Sharing Is Urgent and Needs to Be Standardized

Another reason why the omics data are not thoroughly used by current algorithms is
because of the problem of omics data sharing. Although we have listed a large num-
ber of databases storing specific omics data in the first section, these databases may
not be updated frequently enough to include the most recent high-throughput stud-
ies. In those cases, computational biologists often have to collect a large fraction
of omics data from the supplementary of the published literatures by themselves,
which is very time-consuming and laborious. In some cases, it may deter computa-
tional biologist from using the data. For example, the gene-naming system is often
inconsistent from one high-throughput study to another, making automatic cross
comparison almost impossible. With more and more omics data accumulated, this
issue has become so serious that a number of algorithms for gene name translation
have been published lately [142, 143]. In addition, the omics data are often lack
of appropriate annotation, making it difficult for computational biologists to use or
to interpret the results. With large amount of omics data being generated every day,
standardization of omics data for sharing has never been so urgent. The advocate for
a guideline like Minimum Information Requested In the Annotation of biochemical
Models (MIRIAM) for omics data sharing is becoming louder than ever [95, 144].
The establishment and enactment of such a common standard for omics data sharing
will greatly facilitate the improvement of current algorithms.

Omics data sharing is also an issue among computational biologists. A com-
mon benchmark omics dataset is important for computational biologists to test
their algorithms and compare with others, so that they can make proper improve-
ment. However, most times the benchmark omics dataset used by one algo-
rithm is not accessible to others. CASP (Critical Assessment of Techniques for
Protein Structure Prediction) has been successfully conducted for evaluating pro-
tein structure prediction methods [145]. A similar project can be extremely useful
to the gene function prediction community. The first critical assessment of mouse
gene function prediction project (MouseFunc) has been conducted [122], and more
such project should follow. However, unlike protein structure prediction which
can be compared with an experimentally determined structure, function is difficult
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to measure in an objective and timely manner, making effective benchmark for
function prediction comparison not an easy task.

Is a Complex Model Better than a Simple Model?

The network-based data integration for gene function prediction has attracted the
attention of many computational biologists. Various sophisticated algorithms have
been developed to explore global network information, including those based on
graph theory, and those based on identification of network modules. However,
Murali et al. found that a simple local guilt-by-association method outperforms
a graph-theory based global method to predict gene function from protein inter-
actions [146]. In addition, Song and Singh recently tested the efficacy of various
clustering algorithms in clustering protein interaction networks and predicting pro-
tein function [147]. They also compared the clustering algorithms with a simple
guilt-by-association algorithm based on neighbor counting. Surprisingly, the simple
guilt-by-association algorithm outperformed the sophisticated clustering algorithms
in predicting gene functions. This thus raises an interesting question: Is a complex
model better than a simple model?

The sophisticated algorithms are often backed by strong mathematics and statis-
tics theories, while a simple model is usually based on empirical observations.
However, the sophisticated algorithms often have to make an assumption that the
current knowledge about the protein interaction network is complete, which is usu-
ally not the case. Take protein interaction network for an example, the interaction
network is reconstructed by collecting interactions from various experiments and
literatures; i.e., it is an ensemble of protein interactions all kinds of cellular condi-
tions. However, in reality, it is unlikely that all protein interactions in the network
are present in the cell at the same time. For example, protein A interacts with both
B and C according to current knowledge. But it is possible that B and C may be
expressed at different developmental stages. In such case, the presumed informa-
tion flow from B→A→C or from C→A→B based on network structure is not be
true. Accordingly, the label propagations based on network structure would lead to
the wrong answer. Therefore, it is not that a simple model is better than a complex
model; instead, it is whether a complex model is applicable to the omics data.

Model Driven or Biology Driven?

We have described many machine-learning and statistical algorithms for omics
based gene function prediction. A beginner may be confused of which algorithm
to choose. Should he choose SVM, BN, DT, . . ., or RF? In fact, before any model
is applied, the raw omics data has to be pre-processed or selected. Different groups
may use different tricks to treat the raw omics data, which would lead to different
outcomes. Take Funckenstein for an example, it classify the omics data into gene
characteristics and gene-gene relationships categories before the application of the
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RF and FL classifiers. This classification is critical to Funckenstein’s success, as
can be shown in yeast gene function in which the performance is worse without
such classification. But how to process the raw omics data? The rational behind
Funckenstein’s classification is that the biological function of a gene is not only
determined by its sequence, but also by what other genes it “interacts” with. As we
can see from Funckenstein, perhaps a thorough understanding of the biology behind
omics data and make appropriate treatment of omics data may be more effective
than trying out a different model.

Prospective of Future Directions

Non-coding RNA Function Prediction

With more omics data emerging, the future of gene function prediction field will
be continually focused on integrating newly added the data. However, coding gene
sequence only accounts for a tiny fraction in the genome, while current results have
shown that more than 70% of the genome are transcribed, with most of the tran-
scripts being non-coding RNA [35]. The important biological role of non-coding
RNA in the cell needs to be investigated. Many algorithms have been dedicated to
coding gene function prediction. With the development of non-coding RNA exper-
imental technologies, the next wave of gene function prediction will be the omics
driven non-coding RNA function prediction.

Gene Function in a Dynamic Context

Gene Ontology provides an excellent system to describe the functions of a gene
at three aspects, i.e., molecular function, biological process, and cellular compo-
nent. However, these definitions do not take the dynamic cellular environment into
account. Take catching a terrorist as an example, it is important to know what and
where he is going to take actions. But it will be even more useful if we know
when he is going to take actions. Similarly, besides knowing that two proteins inter-
act with each other, it would be more interesting for biologists to know at what
developmental stage, or by what environmental stimuli, they will interact with each
other? Therefore, put gene functions in a dynamic context should be one of the most
important and challenging directions in the future.
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