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Preface

Elucidation of protein function has been a central question in molecular biology,
genetics, and biochemistry. The importance of computational function prediction
is increasing because more and more genome sequences are being determined by
genome sequencing projects. Recent advancement of sequencing technologies fur-
ther achieves surprisingly fast speed for sequencing complete genomes. It is clear
that genome sequencing will become a routine in biological and medical studies
in very near future. In addition, it is noteworthy that structural genomics projects
have been launched for over few years, which are producing an increasing number
of protein structures of unknown function. Besides the flood of protein sequences
and structures, other types of large scale biological data, including protein–protein
interaction data, gene expression data, are awaiting biological interpretation. Thus,
the post-genomics era has entered to the second phase, the omics era, when various
types of large-scale biological data are generated and referred to each other toward
systems level understanding of organisms and life. Obviously function prediction is
indispensable for capitalizing the rich sources of the omics data.
It has been 20 years since FASTA and BLAST, the most commonly used homol-
ogy search tools, were developed. As exemplified by the fact that the first complete
genome was finished 6 years after the two homology search tools were developed,
the circumstance of biological research has dramatically changed since then. The
appearance of omics data has brought different needs and sources for function pre-
dictions. Conventional use of homology search methods is not necessarily most
suitable for analyzing large scale data. For analyzing data which have many genes
included, large coverage in function annotation is essential. For biological inter-
pretation of large-scale data, detailed biochemical function assignment to genes is
not always necessary. A broad class of function, or low-resolution function, is still
helpful to understand functional unit of genes and speculate biological background
of coordinated behaviour of genes. Omics data is not only the targets for analyses,
but also provide additional sources for elucidating functional relationships between
genes. Thus, in recent years we observe emerging development of computational
function prediction methods, which use various sources and techniques to address
the needs of biology of this century.

In this book, we provide a snapshot of this emerging field by providing reviews
of notable computational methods and resources. In Chapter 1, we state the current
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vi Preface

situations of protein function prediction and overview computational frameworks.
Chapters 2, 3, 4, and 5 address sequence-based function prediction methods. In
Chapter 2, Chitale and myself review two methods we have developed, which
exploit function information from PSI-BLAST searches more thoroughly than con-
ventional usage. In Chapter 3, Kim and his colleagues discuss the use of conserved
gene clusters for genome annotation. Chapter 4 by Uchiyama discusses issues in
the ortholog classification and introduces an algorithm for ortholog group construc-
tion and a database for comparative genomics for microbial genomes. In Chapter 5
Livesay et al. present a sequence-based functional site prediction method, which
identifies a local region as functional site whose mutation pattern is restricted by
phylogenetic constraints.

The next five chapters, Chapters 6, 7, 8, 9, and 10, address structure-based
function prediction. In Chapter 6 Orengo and her colleagues analyze structural con-
servation in protein superfamilies and describe an approach for assigning functional
subfamilies based on global structure comparisons between inter and intra super-
families. In the subsequent chapter, the Liang group describes global and local
structure alignment methods which align structures in sequence-independent man-
ner. The local alignment method is applied to identify conserved atoms in functional
pockets of a family of protein structures (Chapter 7). Chapter 8 by Chikhi, Sael,
and myself describes pocket shape representation and comparison methods which
use two dimensional and three dimensional moments. The methods are applied for
predicting binding ligand molecules for a pocket. Chapter 9 by Ahmad overviews
computational methods for DNA binding sites prediction ranging from available
datasets, computational techniques, to properties of proteins that can be used for
input for prediction. In the subsequent chapter, Ondrechen and her colleagues
describe a method for predicting functionally important residues in proteins by
computing theoretical titration curves for ionisable residues (Chapter 10).

Finally, we move on to omics data driven approaches and omcis data resources
in Chapters 11, 12, 13, 14, and 15. In the first chapter in this section, Chapter 11,
Kinoshita and Obayashi discuss the use of protein tertiary structure, particularly
protein surface shape, to predict molecular function and to use protein–protein inter-
action and expression data for predicting cellular function of proteins. Chapter 12
by Tian et al. overview types of omics data as well as computational approaches for
integrating various omics data for function prediction. In Chapter 13, Wong and his
colleagues discuss the use of indirect interactions in addition to direct interactions
in protein–protein interaction networks for function prediction. The idea was also
appplied for protein complex prediction and cleansing interaction data. Chapter 14
by the Kanehisa group overviews KEGG and GenomeNet resources, which contain
genomic, chemical, and systems (e.g. pathways) information of organisms. In partic-
ular they discuss their recent developments including databases of plant secondary
metabolites, crude drug molecules, and prediction tools for metabolic pathways
and enzymatic reactions. In the last chapter, Chapter 15, Mori, Wanner and their
colleagues describe GenoBase, which contains high-throughput experimental data
for E. coli, including the single-gene deletion library, phenotype screening, genetic
interactions, and protein–protein interactions.



Preface vii

There are many other existing methods and databases and new approaches are
being published month by month in this active research field. Nevertheless, chapters
in this book cover almost all the types of function prediction approaches. Thus,
I believe this book successfully provides comprehensive overview of this exciting
and important field. I believe this book is informative for those who are interested
in developing new approaches and also for biologists who are looking for tools and
resources for elucidating protein function. In closing, I would like to thank all the
authors of chapters in this book. It is very fortunate to have leading experts of the
field as the authors. I am also thankful to the editors in Springer, Dr. Meran Owen
and Ms. Tanja van Gaans, for their patience and professional work. At last, I would
like to share with the readers the happiness and the excitement to observe dramatic
changes of biology in the omics era, which are made possible by brilliant ideas and
dedicated efforts by researchers across the world.

West Lafayette, Indiana Daisuke Kihara
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Computational Protein Function Prediction:
Framework and Challenges

Meghana Chitale and Daisuke Kihara

Abstract Large scale genome sequencing technologies are increasing the abun-
dance of experimental data which requires functional characterization. There is a
continually widening gap between the mounting numbers of available genomes
and completeness of their annotations, which makes it impractical to manually
curate the genomes for function information. To handle this growing challenge
we need computational techniques that can accurately predict functions for these
newly sequenced genomes. In this chapter we focus on the framework required for
computational function annotation and the challenges involved. Controlled vocabu-
laries of functional terms, e.g. Gene Ontology, MIPS functional catalogues, Enzyme
commission numbers, form the basis of prediction methods by capturing the avail-
able biological knowledge in the form, suitable for computational processing. We
review functional vocabularies in detail along with the methods developed for quan-
titatively gauging the functional similarity between the vocabulary terms. We also
discuss challenges in this area, first pertaining to the erroneous annotations floating
in the sequence database and second regarding the limitations of the functional term
vocabulary used for protein annotations. Lastly, we introduce community efforts to
objectively assess the accuracy of function prediction.

Introduction

With the advances in technology, whole genome sequencing for new organisms is no
longer an enormous project. Numbers of genomes are being sequenced every year
adding the tremendous amount of data available for computational investigators.
As shown in Fig. 1, the number of entries of genomes in KEGG database [1] have
almost doubled form year 2007 (~ 600 genomes) to year 2010 (~1,200 genomes).

D. Kihara (B)
Department of Biological Sciences; Department of Computer Science; Markey Center for
Structural Biology, College of Science, Purdue University, West Lafayette, IN 47907, USA
e-mail: dkihara@purdue.edu

1D. Kihara (ed.), Protein Function Prediction for Omics Era,
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2 M. Chitale and D. Kihara

Fig. 1 Growth of genomes in KEGG database from year 1995 till 2010. Yearly release information
of KEGG data was obtained from GenomeNet (http://www.genome.jp/en/db_growth.html)

The pace of accumulating sequence data will only increase, in fact, the new gener-
ation technology can sequence microbial genome within a couple of days [2, 3].

However, it is still a daunting task to correctly assign functional annotations
to these newly sequenced genomes based on their sequence information. It is not
feasible to conduct conventional experimental procedures on this entire stockpile
of sequences for recovering the functional information, and this has triggered the
need for methods that can consistently assign functions to unknown proteins [4–8].
Conventionally in this scenario researchers have focused on using homology or
sequence similarity to transfer annotations to newly sequenced proteins using popu-
lar homology search algorithms such as BLAST [9] and FASTA [10, 11]. Although
considering homology is a genuine way of inferring function in the light of evolu-
tion, practically, it is not always trivial to extract correct function information from
a sequence database search result. Another weakness of the conventional homology
searches is that a considerable portion of genes in a genome are left as unanno-
tated. In Fig. 2, we have analyzed the number of annotated genes in the genome
sequences taken from the KEGG database [1] (version March 2010). We have exam-
ined the genomes to separate the number of genes that have unknown annotations
characterized by keywords mentioned in the caption for the figure. This gives us
a crude idea about the percentage of unknown genes in each genome. It can be
seen from Fig. 2 that for around 50% of genomes in the database we know func-
tional characteristics of less than 60% of genes in there. Even for well studied
model organisms such as Saccharomyces cerevisiae (82.4% annotated), Escherichia
coli K-12 MG1655 (64.9% annotated), Arabidopsis thaliana (66.3% annotated), a
significant number of genes have no annotation. Therefore, new methods in this
area are required to improve the function prediction accuracy as well as the genome
annotation coverage.
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Fig. 2 Annotation levels of genomes in KEGG database. 1,172 genomes in KEGG database
were analyzed to separate the number of annotated genes from unknown genes (entries in the
database annotated with terms “hypothetical”, “putative”, “unknown”, “uncharacterized”, “pre-
dicted”, “no hits”, “codon recognized”, “expressed protein”, and “conserved protein”). The figure
shows cumulative percentage of genomes having specified percentage of annotated genes

As the first chapter in this book, we explain the fundamental information, which
lays the framework of computational protein function prediction. We first sum-
marize controlled functional vocabularies and evaluation measures for accuracy of
protein function prediction. Along with this, we would like to draw readers’ atten-
tion to challenges in this area, first pertaining to the erroneous annotations floating
in the sequence database and second regarding the limitations of the functional term
vocabulary used for protein annotations. Lastly, we introduce community efforts to
objectively assess the accuracy of function prediction.

Controlled Functional Vocabularies

For managing computational function prediction we need to transform the descrip-
tive biological knowledge into qualitative and quantitative models, which requires
robust and accessible biological information system. Protein functions or annota-
tions have long been described with vocabularies that are conventionally used within
each research community or research group. Thus, there have been cases that essen-
tially same annotations are described with different terms across different species
and research communities. However, such situations hinder computational handling
of functional information, including extraction of function information of genes
from databases and summarizing such information to predict function. A practi-
cal solution for this is to unify the functional terms used for functional annotation
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of genes. In recent years controlled sets of functional vocabularies have been devel-
oped along this direction. Below we describe several ontologies, including Gene
Ontology (GO) [12], Enzyme Commission (EC) number, [13], MIPS functional
catalogue [14] (FunCat), Transporter Classification System [15], KEGG orthology
[16], and the other efforts of constructing ontologies.

Gene Ontology

The Gene Ontology (GO) Consortium [17] of collaborating databases has developed
a structured controlled vocabulary to describe gene function. GO vocabulary terms
are arranged in a hierarchical fashion using a Directed Acyclic Graph (DAG) and
are separated into three categories: Biological Process (BP), Molecular Function
(MF), and Cellular Component (CC). One or more terms from each category can
be used to describe a protein. Cellular component indicates to which anatomical
part of the cell the protein belongs to, for example, ribosome (GO:0005840) or
nucleus (GO:0005634). Biological process terms indicate assemblies of molecu-
lar functions which achieve a well defined task through a series of cellular events.
Examples of biological processes are carbohydrate metabolism (GO:0003677), reg-
ulation of transcription (GO:0045449) etc. Molecular functions represent activities
carried out at molecular level by proteins or complexes, for example, catalytic activ-
ity (GO:0003824) or DNA binding (GO:0003677) etc. Thus each GO term will have
a category and an identifier in the format GO:xxxxxxx associated with it, along
with a term definition to explain the meaning of the term. For example, term protein
binding is referred using identifier GO:0005515 and its definition says following
Interacting selectively and non-covalently with any protein or protein complex. The
vocabulary is arranged as a DAG where each term can have one or more parents.
Figure 3 represents the tree structure obtained for the term hemoglobin binding
showing all its parents till the root term all. As you go deeper in the hierarchy the
terms become more specific.

All terms in GO other than the root term have either is-a, is_part_of, positively
regulates, or negatively regulates relationship with some other more general term.
For example as shown in Fig. 4 the term glucose transport (GO:0015758) is_a

Fig. 3 Structure of Gene Ontology for term hemoglobin binding displayed using AmiGO browser
(http://amigo.geneontology.org/cgi-bin/amigo/go.cgi) for GO terms. Against each term the number
of gene products that are annotated with the given term in the GO database, is displayed

http://amigo.geneontology.org/cgi-bin/amigo/go.cgi
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Cellular component

Gene Ontology

Biological Process

Carbohydrate
Transport

Monosaccharide
transport

Glucoside
transport

Molecular function

Glucose transport

Hexose transport

Pentose transport

Transport

Fig. 4 Partial Gene Ontology hierarchy describing the ancestors of terms Glucoside transport and
Glucose transport. Double lined arrows show the path to the Lowest Common Ancestor (LCA) of
the two terms

Hexose transport (GO:0008645), which ultimately is_a transport (GO:0006810).
Due to this relationship when a protein is annotated by term X then it is auto-
matically annotated by all ancestor terms of X which are basically less specific
descriptions of X. Similarly, some more relationships have been defined in GO,
e.g. B is part_of A, which implies that when B exists it is part of A. For exam-
ple, mitochondrial membrane (GO:0031966) is part of mitochondrial envelope
(GO:0005740). Regulates relationship is used in GO to capture the fact that one
process can directly affect the manifestation of another process; this relationship
has two sub-relations positively regulates and negatively regulates to capture the
specific forms of regulation.

Association between a gene product and its GO annotation is generally based
on one or more supporting evidences. GO has defined the evidence codes that help
capture information about the source from which this association is obtained (http://
www.geneontology.org/GO.evidence.shtml). Inferred from Electronic Annotation
(IEA) is the only evidence code that is not reviewed by a curator indicating that
assignment of annotation to the gene product is automatic. All curator-assigned evi-
dence codes fall into one of the four categories; (1) experimental (e.g. Inferred from
Direct Assay (IDA), Inferred from Genetic Interaction (IGI) etc), (2) computational
analysis (e.g. Inferred from Sequence or structural Similarity (ISS), Inferred from
Genomic Context (IGC)), (3) author statement (Traceable Author Statement (TAS),
Non-traceable Author Statement (NAS)), and (4) curatorial statement (Inferred by
Curator (IC) and No biological Data available (ND)). It should be noted that evi-
dence codes do not indicate quality of annotation but only provide information about
the source of annotation.

http://www.geneontology.org/GO.evidence.shtml
http://www.geneontology.org/GO.evidence.shtml
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Fig. 5 Hierarchical structure of MIPS functional catalogue displayed partially using FunCat
Database tool (http://mips.helmholtz-muenchen.de/proj/funcatDB/search_main_frame.html)

MIPS Functional Catalogue

Similar to Gene Ontology, MIPS Functional Catalogue (FunCat) [14] is a hierar-
chically organized species independent vocabulary (Fig. 5). FunCat is organized
as a tree rather than a DAG. In FunCat there are 28 main catalogues, each of
which is organized in a hierarchical tree structure. These main branches or cata-
logues cover features like localization, transport, metabolism, etc. FunCat currently
contains 1,307 categories each of which is assigned a two digit number. FunCat
identifier is represented as a series of category numbers separated by a dot based
on the level in the hierarchy, for example metabolism is 01 and locates at first level,
while 01.01.03.02.01 is biosynthesis of glutamate which belongs to most specific
level.

Enzyme Commission Numbers

The Enzyme Commission (EC) numbers [13] are another functional classifiers that
are used to classify enzymes based on reactions they catalyze. Thus as compared to
the GO vocabulary, the EC numbers are reaction oriented and describe only the
biochemical activity of proteins. In the enzyme nomenclature, each EC number
consists of four numbers, i.e. EC x.x.x.x, each describing the enzyme at different
levels of detail. There are six top levels of EC numbers from 1 to 6 which represent
oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases, respec-
tively. The next level of depth contains more details about the reaction, for example,
EC number 2.1 indicates transferase (2 at the top level) involved in transferring
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Fig. 6 EC number hierarchy displayed partially as shown by ExPASy Proteomics Server (http://
ca.expasy.org/enzyme/enzyme-byclass.html)

one carbon groups (1 at the second level) as shown in Fig. 6. The KEGG pathway
database [1, 18] uses the EC numbers to indicate enzymes involved in metabolic
pathways.

Transport Classification (TC) System

Almost all transmembrane transport processes are mediated by integral membrane
proteins which are classified using Transporter Classification System [15] (http://
tcdb.ucsd.edu/tcdb/). As compared to EC numbers which are focused only on func-
tion, TC classification is based on both function and phylogeny. According to this
system, the transporters are classified based on five criteria and each of these pro-
vides one component of TC number for a protein. A TC number has usually five
components, A, B, C, D, and E, where A corresponds to the transporter class, B
corresponds to the transporter subclass, C corresponds to the family (or superfam-
ily), D corresponds to subfamily, and E specifies the substrate transported as well as
polarity of transport (in or out).

KEGG Orthology (KO)

The KEGG database includes the KEGG Orthology (KO) [16] database as one of its
components [1, 18]. The primary purpose of KO is to provide the list of orthologous
genes in genomes. KO is structured as a DAG hierarchy that can be effectively
used for the definition of the function of ortholog groups. It has four levels with
the first one consisting of five classes; metabolism, genetic information processing,
environmental information processing, cellular processes, and human diseases, as
shown in Fig. 7. The second level consists of finer functional sub-categories, third

http://ca.expasy.org/enzyme/enzyme-byclass.html
http://ca.expasy.org/enzyme/enzyme-byclass.html
http://tcdb.ucsd.edu/tcdb/
http://tcdb.ucsd.edu/tcdb/
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Fig. 7 KEGG orthology
displayed partially (http://
www.genome.jp/kegg/ko.
html)

level consists of KEGG pathways and fourth one corresponds to functional terms.
The unique feature of the KO is that each entry has links to pathways and reactions
as well as orthologous genes and hence it is convenient to annotate a set of genes
with KO function terms and identify pathways where the genes belong to [16].

Other Biological Ontologies

Along with the aforementioned vocabularies for protein function, there are some
other interesting ontologies that provide annotations to proteins in different domains
specifically for particular species or research communities. Smith et al. [19] have
developed Open Biological and Biomedical Ontologies (OBO) Foundry which
consists of a collaborative effort to merge ontologies, where we can find a wide
variety of open biological ontologies listed on their project website (http://www.
obofoundry.org/). The ontologies include Protein Ontology developed by Protein
Information Resources (PIR, http://pir.georgetown.edu/pro/), which encompasses
evolution and multiple protein forms of a gene, Chemical Entities of Biological
Interest (CHEBI) developed by the European Bioinformatics Institute, which clas-
sifies structures of biologically relevant chemical compounds, and ontologies for
phenotype and anatomy of individual organisms. Such efforts are helping stan-
dardize the representation of domain knowledge across research communities and

http://www.genome.jp/kegg/ko.html
http://www.genome.jp/kegg/ko.html
http://www.genome.jp/kegg/ko.html
http://www.obofoundry.org/
http://www.obofoundry.org/
http://pir.georgetown.edu/pro/
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increase its application. By combining different ontologies, function prediction
methods which output GO terms could be expanded to predict other types of
ontology terms, such as phenotype.

Definition of Functional Similarity

Definition of functional similarity for protein pairs is important when comparing
predictions with actual annotations of proteins to compute the prediction accuracy.
A quantitative functional similarity score is also used as the target function to be
optimized in the course of developing a function prediction method. In this section
we overview several metrics proposed for quantifying functional similarity using
the function ontology. We use the GO here since the proposed metrics are developed
for the GO. However, application of the metrics to the other ontologies should be
straightforward. For a review on this topic, refer to Sheehan et al. [20].

The simplest technique that can be used to compare annotations is head to head
comparisons [21, 22] where we check for exact matches. Its key disadvantage is
that the information embedded in the vocabulary structure is not used. Vocabulary
structure relates terms to each other and with head to head comparisons we will be
penalizing inexact predictions that are close to the actual ones on the GO DAG. Set
based similarity measures have been developed based on head to head comparisons
to match the two objects described using a set of features. Tversky et al. [23] use Eq.
(1) to describe similarity between two objects a and b which have feature sets A and
B respectively, as some function F of features that are common, that only belong to
A and that only belong to B.

sim(a, b) = F(A ∩ B, A − B, B − A) (1)

Another technique [21, 24, 25] that is commonly used for GO annotations is to
base the similarity on the minimum path length between a pair of terms on DAG
or on the fact that ancestors are less specific representation of the same term in
DAG hierarchy. This technique can suffer from drawback that not all parts of GO
are developed equally and not all terms at the same depth in the structure represent
same biological details.

Some techniques describe a protein as a binary vector with 1’s and 0’s specifying
presence and absence of terms in the annotation set of a protein. The similarity
between two such vectors can be defined as a cosine distance (Eq. (2)), where pi

and pj are vectors describing annotations of two proteins. Instead of binary values,
the terms can also be represented as weights based on their frequency of occurrence
in the database reflecting how specific they are [26, 27].

sim(pi, pj) = pi · pj

|pi|
∣
∣pj
∣
∣

= pi · pj√
pi · pi · √

pj · pj
(2)
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In the function prediction category in CASP7 [21], the assessors designed a score
based on the depth of common ancestor between predicted and actual GO terms as
shown in Eq. (3). Each annotation is compared to its closest target prediction which
forms a “computable pair”, and the total score is given by the sum of depths of
common ancestor of all computable pairs normalized by the maximum possible
value of score. Along with this they have also used the head to head comparison of
GO term predictions for comparing different methods.

GOscore = sum of common ancestor depths of computable pairs

sum of annotated terms depth
(3)

Resnik [28] has defined the Information Content (IC) of a term c based on the
frequency of the occurrence of that term in the database as explained in the Eqs.
(4), (5), and (6), where each term’s frequency depends on its children node in the
vocabulary structure because of the is_a relationships in the GO.

freq(c) = annot(c) +
∑

h∈children(c)

freq(h) (4)

p(c) = freq(c)/freq(root) (5)

IC(c) = –log(p(c)) (6)

He has developed a graphical method to compute similarity between two terms
(say c1 and c2) in the taxonomy, by using the IC of their Lowest Common Ancestor
(LCA) term (Eq. (7)). Figure 4 illustrates the concept of LCA by showing that the
LCA of terms Glucoside transport and Glucose transport in the GO hierarchy is the
term transport which is common ancestor for both terms and is located at the maxi-
mum depth in the DAG. Lin [29] further extended this semantic similarity measure
to include information content of both terms being compared along with the infor-
mation content of the ancestor term (Eq. (8)). Lord et al. [30] have first applied this
IC based semantic similarity technique from Eq. (7) to Gene Ontology vocabulary
to compute functional similarity based on protein annotations.

SimLin(c1, c2) = max
c ∈ {common ancestors of c1 and c2} (− log(p(c))) (7)

SimLin(c1, c2) = max
c ∈ {common ancestors of c1 and c2}

(
2 log p(c)

log p(c1) + log p(c2)

)

(8)

These term based similarity scores were extended to develop a pair-wise protein
similarity score by Schlicker et al. [31]. They combined Resnik’s and Lin’s scores
to compute a semantic similarity score for a pair of GO terms as shown in Eq. (9).
To compute the semantic similarity between pair of proteins A and B they used the
pair wise similarity values between the GO annotations GOA and GOB of both pro-
teins respectively. Then scores from two different GO categories were combined to
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finally compute the overall similarity between the given two proteins (Eq. (12)). As
shown in Eq. (10), semantic similarity matrix Sij holds the pair wise similarity scores
for all pairs of annotations from GOA and GOB where set GOA has N annotations
and GOB has M annotations. For these two sets the overall similarity score referred
as GOscore is computed by finding best matched hits for annotations in one of the
directions using either row wise or column wise average of maximums (Eq. (11)).
Further as shown in Eq. (12) BPscore and MFscore values computed using annota-
tion sets from each of these categories are combined to yield the final funsim score
that represents semantic similarity between pair of proteins under consideration.

SimRel(c1, c2) = max
c ∈ {common ancestors of c1 and c2}

(
2 log p(c) · (1 − p(c))

log p(c1) + log p(c2)

)

(9)

Sij = sim(GOi
A, GOj

B), ∀i ∈ {1...N} and ∀j ∈ {1...M} (10)

GOscore = max

⎧

⎨

⎩

(

1

N

N
∑

i=1

max
1 ≤ j ≤ M

Sij

)

,

⎛

⎝
1

M

M
∑

j=1

max
1 ≤ i ≤ N

Sij

⎞

⎠

⎫

⎬

⎭
(11)

funsim = 1

2
·
[(

BPscore

max(BPscore)

)2

+
(

MFscore

max(MFscore)

)2
]

(12)

Methods developed in the last few years have mainly focused on pair-wise pro-
tein similarity, but with the development of high throughput techniques we are
frequently required to functionally interpret a computationally or experimentally
determined set of proteins and check if they are functionally homogeneous [27,
32–37]. Earlier coherence of set of proteins was based mostly on the enrichment
of annotations in the set [38, 39], but it has been shown that average number of
enriched GO annotations in random groups is more than the number in coherent
groups of proteins [37]. This has put forth the need to further develop better pro-
tein group coherence detection methods that can segregate groups of biologically
relevant proteins from random ones.

Chagoyen et al. [27] use Eq. (2) for computing pair wise similarity between
proteins in the set under consideration. Later they aggregate the scores across all
pairs of proteins in the set S to obtain coherence score for the set as shown in
Eq. (13). Statistical significance of this coherence score is computed in the context
of reference set using hypergeometric distribution.

score(S) =

|S|∑
i=1

|S|∑
j=i+1

sim(pi, pj)

|S|(|S| − 1)/2
(13)

Pandey et al. [36] performed similar aggregation basing their pair wise protein
similarity score on the information content of minimum common ancestor set to the
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sets of terms annotating two proteins. For annotations of proteins pi and pj they com-
pute minimum common ancestor term set and find the number of proteins annotated
by all of those terms, which is given by | GΛ(pi, pj) |. Further the pair wise protein
functional similarity score is given by Eq. (14) where Gr is set of all proteins. The
pair wise scores for all pairs of proteins in a set S are averaged in Eq. (15) to obtain
the coherence score for S.

ρI(pi, pj) = −log2

( |G�(pi,pj)|
|Gr|

)

(14)

σA(S) =

|S|∑
i=1

|S|∑
j=i+1

ρI(pi, pj)

|S|(|S| − 1)/2
(15)

Zheng et al. [37] use probabilistic model to extract biologically relevant top-
ics from GO annotation corpus and classify each word from MEDLINE document
abstracts into these topics. A document is semantically represented as count of
the number of words belonging to each of the topics. A bipartite graph called
ProtSemNet is constructed by joining topics obtained from each document with
the proteins associated with that document, where edge weights in the graph are
based on the count of words for the topic. For evaluating functional coherence of
group of proteins, they construct Steiner tree from ProtSemNet for the given group
of proteins where the number of edges and total distance of the tree are used as two
metrics for computing protein group coherence.

Aforementioned techniques offer an interesting new avenue in the domain of
functional similarity by complimenting high throughput techniques which require
formal analysis of groups of proteins.

Limitations of Homology Based Function Transfer
and Erroneous Database Annotations

As an increasing number of genomes are being sequenced, more and more genes
are annotated computationally mainly by using homology search tools, i.e. BLAST
[9] or PSI-BLAST [40], and assigned annotations will be eventually stored in the
public sequence databases [41, 42]. Once these annotations are included in the
databases, they will be used as a source of function information in the annotation
of new genomes. Computational annotations based on homology, however, are
not always trivial [43–45]. There are numerous cases where proteins with high
sequence identity have different functions [46]. Galperin and Koonin discussed
major causes of questionable function assignments. These include taking into
account only the annotation of the best scoring database hit, insufficient masking of
low complexity regions, ignoring multi-domain organization of the query proteins
or the database hits, and non-orthologous gene displacement [47]. It should be also
reminded that proteins which have multiple seemingly unrelated functions in a
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single region (moonlighting proteins) further add complications to description of
protein function [48].

Indeed several studies report potential wrong annotations to genes in genomes.
Brenner compared annotations by three groups to the Mycoplasma genitalium
genome and found that 8% of the genes have serious disagreement [49]. Devos
and Valencia analyzed the different functional descriptions in genes of M. genital-
ium, Haemophilus influenzae, and Methanococcus jannashii relative to the sequence
identity and estimated the error rate of annotations [50]. A recent study by Schnoes
et al. [51] analyzed public databases for misannotations. Their results indicate that
there are significantly less potential misannotations in Swiss-Prot [41], which is
manually curated, as compared with GeneBank [42], TrEMBL [41], and KEGG [1]
for the six superfamilies they studied.

The main problem of erroneous annotations is that they will be reused in anno-
tating newer genes and thus will be propagated in the databases [8]. A model of
error propagation throughout the database shows that it can significantly degrade
overall quality of annotations [52]. Then, how can we avoid the catastrophic deteri-
oration of annotation of databases? First, it is important to examine the validity of
annotations by experts of each protein and organism. Researchers of E. coli K-12
have held a meeting to examine annotations of this important model organism [53].
A recent attempts to use wiki [54] as a tool for community annotation are along
the same direction [55, 56]. Another important direction is to make information and
procedure transparent, which are used to make individual annotation. The afore-
mentioned evidence codes available in the GO database provide such important
information. Also, as a future direction, the architecture of biological database may
need to be improved so that the lineage of annotation, i.e. the software or evi-
dences used to make a particular annotation, homologous sequences from which
the annotation are transferred, etc. can be dynamically tracked [57].

Critical Assessment of Function Prediction Methods

For the last section of this chapter, we would like to introduce community efforts
for objective assessment of protein function prediction methods. As observed in
the structural bioinformatics field, namely, the protein structure prediction and the
protein docking prediction, evaluating methods by a quantitative score using blind
prediction targets can help assessing the status of the field and also stimulates
researchers’ motivation for method development. In the protein structure predic-
tion field, the Critical Assessment of Techniques for Protein Structure Prediction
(CASP, http://predictioncenter.org/) while the Critical Assessment of Predictions
of Interactions (CAPRI, http://www.ebi.ac.uk/msd-srv/capri/capri.html) for the pro-
tein docking prediction have served well for these purposes.

For the protein function prediction, there are two such critical assessments.
The first one is as a Special Interest Group (SIG) held alongside the Intelligent
Systems in Molecular Biology (ISMB) meetings. In 2005, the first meet-
ing for the Automatic Function Prediction Special Interest Group (AFP-SIG)

http://predictioncenter.org/
http://www.ebi.ac.uk/msd-srv/capri/capri.html
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(http://biofunctionprediction.org/) was held at the ISMB conference at Detroit,
Michigan; later meetings were followed in 2006, 2007 and 2008. The meetings
are focused on exchanging ideas for automatic function predictions, which use
protein sequence similarity, motifs, structures, protein-protein interactions, phy-
logeny, and combined data sources [58]. In 2005, they had set up a blind prediction
contest where each participating research group had to provide a web interface
where query sequences can be submitted and prediction results were evaluated
by the organizers (thus fully automatic function prediction). The predictions were
made in terms of GO terms, which were evaluated by using Eq. (7). The subse-
quent past AFP-SIG meetings consisted of only presentations but it was recently
announced that the critical assessment of the methods will be held in the meeting
of 2011.

The CASP has also started the function prediction category from CASP6 in 2004
[59]. In CASP6, predictors were allowed to provide GO terms from all three cat-
egories, binding site, binding, residue role and posttranslational modifications for
each of the targets. As an exploratory category, the prediction groups were not
scored and ranked at that time. In the subsequent CASP7 (2006), predictions were
accepted for GO molecular function terms, EC numbers, and binding sites [21]. The
aforementioned Eq. (3) in the previous section was used to assess the GO term pre-
dictions. In the CASP8 (2008) and CASP9 (2010), the function prediction is only
restricted to ligand binding residue prediction, mainly because binding residues can
be obtained from protein structures solved by experiments and thus can be eas-
ily assessed. In future there are many challenges in front of such blind prediction
competitions: First of all, there should be availability of new functional knowledge
from experimental data to evaluate the results. Also better automatic evaluation
techniques may need to be developed to compare predictions with actual annota-
tions. Finally, there should be good consensus on what types of functions will be
predicted.

Summary

This chapter started with stating the motivation for development function prediction
methods. Then, we overviewed fundamental technical issues for function prediction
methods, including the functional ontologies and metrics for assessing accuracy for
function prediction. Although steady continuous works are needed, these frame-
works, especially functional ontologies, have made it possible to handle protein
function computationally and also have opened up ways to for bioinformatics
researchers to enter this field.

Acknowledgements MC is supported by grants from Purdue Research Foundation and Showalter
Trust. DK also acknowledges a grant from National Institutes of Health (GM075004) and National
Science Foundation (DMS800568, EF0850009, IIS0915801).



Computational Protein Function Prediction: Framework and Challenges 15

References

1. Kanehisa, M., Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 28(1): 27–30 (2000).

2. Flicek, P., Birney, E. Sense from sequence reads: methods for alignment and assembly. Nat.
Methods 6(11 Suppl): S6–S12 (2009).

3. Reeves, G.A., Talavera, D., Thornton, J.M. Genome and proteome annotation: organization,
interpretation and integration. J. R. Soc. Interface 6(31): 129–147 (2009).

4. Bujnicki, J.M. Prediction of protein structures, functions, and interactions. Chichester, West
Sussex: Wiley. xiv, 287p., [2] p. of plates (2009).

5. Eisenberg, D., et al. Protein function in the post-genomic era. Nature 405(6788): 823–826
(2000).

6. Friedberg, I. Automated protein function prediction – the genomic challenge. Brief Bioinform.
7(3): 225–242 (2006).

7. Hawkins, T., Chitale, M., Kihara, D. New paradigm in protein function prediction for large
scale omics analysis. Mol. Biosyst. 4(3): 223–231 (2008).

8. Karp, P.D. What we do not know about sequence analysis and sequence databases.
Bioinformatics 14(9): 753–754 (1998).

9. Altschul, S.F., et al. Basic local alignment search tool. J. Mol. Biol. 215(3): 403–410 (1990).
10. Pearson, W.R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods

Enzymol. 183: 63–98 (1990).
11. Pearson, W.R., Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl.

Acad. Sci. USA 85(8): 2444–2448 (1988).
12. Harris, M.A., et al. The Gene Ontology (GO) database and informatics resource. Nucleic

Acids Res. 32(Database issue): D258–261 (2004).
13. Nomenclature committee of the international union of biochemistry and molecular biology

(NC-IUBMB), Enzyme Supplement 5 (1999). Eur. J. Biochem. 264(2): 610–650 (1999).
http://www.ncbi.nlm.nih.gov/pubmed/10491110

14. Ruepp, A., et al. The FunCat, a functional annotation scheme for systematic classification of
proteins from whole genomes. Nucleic Acids Res. 32(18): 5539–5545 (2004).

15. Saier, M.H., Jr. A functional-phylogenetic classification system for transmembrane solute
transporters. Microbiol. Mol. Biol. Rev. 64(2): 354–411 (2000).

16. Mao, X., et al. Automated genome annotation and pathway identification using the KEGG
Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19): 3787–3793 (2005).

17. Ashburner, M., et al. Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat. Genet. 25(1): 25–29 (2000).

18. Kanehisa, M., et al. KEGG for representation and analysis of molecular networks involving
diseases and drugs. Nucleic Acids Res. 38(Database issue): D355–360 (2010).

19. Smith, B., et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical
data integration. Nat. Biotechnol. 25(11): 1251–1255 (2007).

20. Sheehan, B., et al. A relation based measure of semantic similarity for Gene Ontology
annotations. BMC Bioinformatics 9: 468 (2008).

21. Lopez, G., et al. Assessment of predictions submitted for the CASP7 function prediction
category. Proteins 69(Suppl 8): 165–174 (2007).

22. Vinayagam, A., et al. GOPET: a tool for automated predictions of Gene Ontology terms. BMC
Bioinformatics 7: 161 (2006).

23. Tversky, A. Features of similarity. Psychol. Rev. 84(4): 327–352 (1977).
24. Hawkins, T., Luban, S., Kihara, D. Enhanced automated function prediction using distantly

related sequences and contextual association by PFP. Protein Sci. 15(6): 1550–1556 (2006).
25. Wass, M.N., Sternberg, M.J. ConFunc – functional annotation in the twilight zone.

Bioinformatics 24(6): 798–806 (2008).

http://www.ncbi.nlm.nih.gov/pubmed/10491110


16 M. Chitale and D. Kihara

26. Chabalier, J., Mosser, J., Burgun, A. A transversal approach to predict gene product networks
from ontology-based similarity. BMC Bioinformatics 8: 235 (2007).

27. Chagoyen, M., Carazo, J.M., Pascual-Montano, A. Assessment of protein set coherence using
functional annotations. BMC Bioinformatics 9: 444 (2008).

28. Resnik, P. Using information content to evaluate semantic similarity in a taxonomy.
Proceedings of International Joint Conference on Artificial Intelligence 1: 448–453 (1995).

29. Lin, D. An information-theoretic definition of similarity. Proceedings of the 15th International
Conference on Machine Learning 1: 296–304 (1998).

30. Lord, P.W., et al. Investigating semantic similarity measures across the Gene Ontology: the
relationship between sequence and annotation. Bioinformatics 19(10): 1275–1283 (2003).

31. Schlicker, A., et al. A new measure for functional similarity of gene products based on Gene
Ontology. BMC Bioinformatics 7: 302 (2006).

32. Martin, D., et al. GOToolBox: functional analysis of gene datasets based on Gene Ontology.
Genome Biol. 5(12): R101 (2004).

33. Pehkonen, P., Wong, G., Toronen, P. Theme discovery from gene lists for identification and
viewing of multiple functional groups. BMC Bioinformatics 6: 162 (2005).

34. Huang da, W., et al. The DAVID Gene Functional Classification Tool: a novel biological
module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8(9): R183
(2007).

35. Carmona-Saez, P., et al. GENECODIS: a web-based tool for finding significant concurrent
annotations in gene lists. Genome Biol. 8(1): R3 (2007).

36. Pandey, J., Koyuturk, M., Grama, A. Functional characterization and topological modularity
of molecular interaction networks. BMC Bioinformatics 11(Suppl 1): S35 (2010).

37. Zheng, B., Lu, X. Novel metrics for evaluating the functional coherence of protein groups via
protein semantic network. Genome Biol. 8(7): R153 (2007).

38. Curtis, R.K., Oresic, M., Vidal Puig A. Pathways to the analysis of microarray data. Trends
Biotechnol. 23(8): 429–435 (2005).

39. Draghici, S., et al. Global functional profiling of gene expression. Genomics 81(2): 98–104
(2003).

40. Altschul, S.F., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25(17): 3389–3402 (1997).

41. Boeckmann, B., et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL
in 2003. Nucleic Acids Res. 31(1): 365–370 (2003).

42. Benson, D.A., et al. GenBank. Nucleic Acids Res. 37(Database issue): D26–31 (2009).
43. Devos, D., Valencia, A. Practical limits of function prediction. Proteins 41(1): 98–107 (2000).
44. Valencia, A. Automatic annotation of protein function. Curr. Opin. Struct. Biol. 15(3): 267–

274 (2005).
45. Bork, P., Koonin, E.V. Predicting functions from protein sequences – where are the bottle-

necks? Nat. Genet. 18(4): 313–318 (1998).
46. Tian, W., Skolnick, J. How well is enzyme function conserved as a function of pairwise

sequence identity? J. Mol. Biol. 333(4): 863–882 (2003).
47. Galperin, M.Y., Koonin, E.V. Sources of systematic error in functional annotation of genomes:

domain rearrangement, non-orthologous gene displacement and operon disruption. In Silico
Biol. 1(1): 55–67 (1998).

48. Jeffery, C.J. Moonlighting proteins – an update. Mol. Biosyst. 5(4): 345–350 (2009).
49. Brenner, S.E. Errors in genome annotation. Trends Genet. 15(4): 132–133 (1999).
50. Devos, D., Valencia, A. Intrinsic errors in genome annotation. Trends Genet. 17(8): 429–431

(2001).
51. Schnoes, A.M., et al. Annotation error in public databases: misannotation of molecular

function in enzyme superfamilies. PLoS Comput. Biol. 5(12): e1000605 (2009).
52. Gilks, W.R., et al. Modeling the percolation of annotation errors in a database of protein

sequences. Bioinformatics 18(12): 1641–1649 (2002).



Computational Protein Function Prediction: Framework and Challenges 17

53. Riley, M., et al. Escherichia coli K-12: a cooperatively developed annotation snapshot – 2005.
Nucleic Acids Res. 34(1): 1–9 (2006).

54. Hu, J.C., et al. The emerging world of wikis. Science 320(5881): 1289–1290 (2008).
55. Florez, L.A., et al. A community-curated consensual annotation that is continuously updated:

the Bacillus subtilis centred wiki SubtiWiki. Database (Oxford) 2009: bap012 (2009).
56. Huss, J.W., 3rd, et al. The Gene Wiki: community intelligence applied to human gene

annotation. Nucleic Acids Res. 38(Database issue): D633–639 (2009).
57. Zhang, M., Kihara, D., Prabhakar, S. Tracing lineage in multi-version scientific databases.

Proceedings of IEEE 7th International Symposium on Bioinformatics & Bioengineering
(BIBE) 1: 440–447 (2007).

58. Friedberg, I., Jambon, M., Godzik, A. New avenues in protein function prediction. Protein
Sci. 15(6): 1527–1529 (2006).

59. Soro, S., Tramontano, A. The prediction of protein function at CASP6. Proteins 61(Suppl 7):
201–213 (2005).



Enhanced Sequence-Based Function Prediction
Methods and Application to Functional
Similarity Networks

Meghana Chitale and Daisuke Kihara

Abstract After reviewing the underlying framework required for computational
function prediction in the previous chapter, we discuss two advanced sequence-
based function prediction methods developed in our group, namely the Protein
Function Prediction (PFP) method and the Extended Similarity Group (ESG)
method. PFP extends the traditional homology search by incorporating functional
associations between pairs of Gene Ontology terms based on the frequencies of
co-occurrences in annotation of the same proteins in the database. PFP also consid-
ers very weakly similar sequences to the query, thereby increases its sensitivity and
ability to predict low resolution functional terms. On the other hand, ESG recur-
sively searches the sequence similarity space around the query to find consensus
annotations in the neighborhood. The last part of the chapter discusses the net-
work structure of gene functional space built by connecting proteins with functional
similarity. Function annotation was enriched by predictions by PFP. Similarity to
structures of protein-protein interaction networks and metabolic pathway networks
is discussed.

Introduction

In the previous chapter we have seen that there is a strong need to develop accurate
function prediction techniques to deal with the explosive growth of newly sequenced
genomes. The basic approach used for more than a decade is based on homology
based annotation transfer. The assumption underneath this approach is that proteins
that are evolutionarily related are also functionally related [1]. In this chapter we
describe two advanced function prediction techniques, PFP [2, 3] and ESG [4],
developed by our group, which extend the conventional homology search methods.
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Conventional Sequence-Based Function Prediction Methods

Conventionally, computational protein function prediction is largely based on trans-
ferring the functional knowledge from sequences similar to the one being searched.
A typical procedure would be to first use sequence homology searches, such as
BLAST [5] FASTA [6], or SSEARCH [7] to identify similar sequences from a
sequence database. Functional annotations of these homologous sequences were
transferred to the query sequences based on the E-value of the searches. SSEARCH
[7] is the implementation of the rigorous Smith Waterman algorithm [8], and thus
is the most accurate among the three methods [9, 10]. Due to computational com-
plexity of this task, two faster algorithms, BLAST [5] and FASTA [6], that work
on approximating the search without missing obvious homologs, are more pop-
ular in the research community. PSI-BLAST [11] is another method, which is
more sensitive than the aforementioned three methods, which iterates searches by
using a sequence profile computed from a multiple sequence alignment obtained
from the search from the previous round. Following the homology search, it is
common to identify functional domains and motifs in the query sequences by
searching against domain databases, like BLOCKS [12], InterPro [13], Pfam [14],
PRINTS [15], ProDom [16], PROSITE [17], SMART [18], SUPERFAMILY [19],
TIGRFams [20], and PROSITE [17]. For more details, refer to recent review articles
[21–23].

However, as discussed in Chapter 1, there are many cases that open reading
frames in newly sequenced genomes do not find close homologs in the database,
which will result in no annotation to the proteins. This situation has motivated the
development of advanced techniques for function prediction. These methods are
designed to use sequence search results in a more complex setting for obtaining
larger annotation coverage yet maintaining or improving the accuracy. A class of
methods extend homology search tools to extract function information in terms of
Gene Ontology (GO) terms from retrieved sequences. These include Goblet [24],
OntoBlast [25], GOFigure [26], Gotcha [27], GOPET [28], and ConFunc [29].
Using controlled vocabulary is essential for computationally retrieving and sum-
marizing functional terms from a database search.

Protein Function Prediction (PFP) Method

Our group has developed two function prediction methods, the Protein Function
Prediction (PFP) method [2, 3] and the Extended Similarity Group (ESG) method
[4], both of which predict GO terms from PSI-BLAST search results. There are
some technical commonalities between the two methods, however, they are different
in their design concepts.

PFP (http://kiharalab.org/pfp.php) is designed to extend the conventional PSI-
BLAST search to consider very weakly related sequences. In a conventional use of
(PSI-) BLAST searches, only significantly similar sequences to the query, which

http://kiharalab.org/pfp.php
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have a similarity score (e.g. E-value) above a predefined threshold value (typical
E-value threshold values are 0.001 or 0.01), are considered for extracting function
information. However, there are frequently cases where weakly similar sequences
have common function to the query, even if they appear below the threshold value
in a search result [2]. Common functions between weakly similar sequences may
be of “low resolution”, which are less specific terms and are generally at shallower
positions in the hierarchical structures of functional vocabularies. Such functions
might not be useful for designing biochemical experiments but will be valuable
information in large-scale functional analysis, e.g. analyses of microarray data
or protein-protein interaction data, when functional information is not available
otherwise.

The main advantage of PFP is that it can predict low resolution functions even in
the absence of apparent sequence similarity with the query sequence. It extracts
functional information (GO terms) from weakly similar proteins with weights
derived from the E-value and combines them to form consensus about function of a
query protein. PFP also uses an association mining tool called Function Association
Matrix (FAM) that captures the relations between pairs of GO terms in term of
conditional probabilities of observing one annotation provided that the protein has
another annotation.

PFP Algorithm

PFP takes a query sequence as an input and predicts GO terms that are likely to
annotate the sequence with a confidence score. It predicts GO terms in all the
three categories, Molecular Function (MF), Biological Process (BP), and Cellular
Component (CC). PFP first uses PSI-BLAST [11] to obtain similar sequences from
a database with the E-value cutoff of 100. For each of the retrieved sequences, GO
annotations are obtained from the PFPDB database, which combines GO anno-
tations from Gene Onotology Association (GOA) [30] database, HAMAP [31],
InterPro [13], Pfam [14], PRINTS [15], ProDom [16], PROSITE [17], SMART
[18], and TIGRFams [20]. GO terms taken from each sequence are weighted and
summed as follows:

s(fa) =
N
∑

i=1

Nfunc(i)
∑

j=1

(

(− log(E_value(i)) + b)P(fa|fj)
)

, (1)

where s(fa) is the final score assigned to the GO term fa, N is the number of similar
sequences retrieved by PSI-BLAST, Nfunc(i) is the number of GO terms annotating
sequence i, E_value(i) is the E-value given to the sequence i, fj is a GO term anno-
tating sequence i, and b is the constant value, 2 = (log10100), which keeps the score
positive. P(fa|fj) is the association score for fa given fj obtained from the function
association matrix (FAM).
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FAM captures the co-occurrence of pairs of GO terms annotating the same
protein in UniProt [32] database as the form of the conditional probability. FAM
captures knowledge that is obvious to biologists but not reflected to annotations in
the database. For example, a GO term in the MF category, DNA binding is frequently
related to another GO term in the BP category, regulation of transcription. Thus, if
we obtain a sequence hit with annotation DNA binding then the term regulation
of transcription will obtain a share of the score from the association. Importantly,
the relationship of these two GO terms cannot be captured by considering the GO
hierarchy, because the two terms are on different trees.

FAM conditional probability score is obtained as follows:

P
(

fa|fj
) = c(fa, fj) + ε

c(fj) + μ · ε′ (2)

where c(fa, fj) is number of times fa and fj are assigned simultaneously to each
sequence in UniProt, and c(fj) is the total number of times fj appeared in UniProt,
μ is the size of one dimension of FAM (i.e. the total number of unique GO terms),
and ε is the pseudo-count.

Thus, the association strategy allows PFP to explore the functional space fur-
ther from annotations obtained directly from sequence hits using PSI-BLAST,
which helps developing consensus about low resolution function in the absence of
strong hits.

Additionally, PFP makes use of the hierarchy of the GO terms (directed acyclic
graph, DAG) by propagating scores to each parent term based on the number of
gene products associated with parent term as compared to the child term, as shown
in Eq. (3). Due to this scheme some low resolution functions can get high scores
by summing the scores propagated from multiple child nodes, and thus helping PFP
predict some annotations where no strong sequence similarity exists.

s(fp) =
Nc∑

i=1

(

s(fci)

(
c(fci)

c(fp)

))

, (3)

where s(fp) is the score of the parent term fp, Nc is the number of child GO terms
which belong to the parent term fp, s(fci) is the score of a child term ci, and c(fci)
and c(fp) is the number of known genes which are annotated with function term fci

and fp in the annotation database.
Finally, we compute the p-value significance scores for each prediction using

the raw score distribution of each GO term obtained from a benchmarking dataset.
Each of the p-values is associated with an expected accuracy score calculated at
three different levels (correct predictions within 0, 2 and 4 edge distance on GO
DAG) using the benchmarking dataset [2]. Since raw scores from Eq. (1) tend to be
large for less specific terms, p-values and expected accuracy should be considered
when selecting predictions done by PFP.
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PFP Performance and Benchmarking

PFP has been benchmarked in two papers. In the first paper [3], we have studied the
prediction performance of PFP at different cutoff levels of E-value of PSI-BLAST
search. Namely, sequence hits above each cutoff value were ignored mimicking
situations that there are no significant hits up to the E-value. A dataset of 2,000 ran-
domly selected proteins from UniProt was used for the benchmark. The prediction
accuracy was measured in terms of the sequence coverage, which is the percentage
of sequences in the benchmark set which are annotated with correct predictions.
At all E-value cutoffs, PFP showed a significantly higher coverage over a simple
transfer of annotations from the top scoring sequence retrieved by PSI-BLAST (top
PSI-BLAST). At the E-value cutoff of 10 (i.e. only sequences with an E-value of
10 or larger are used), PFP showed nearly five times more coverage (50%) as com-
pared to the top PSI-BLAST method. It was also shown that the FAM improved
the sequence coverage by 5–20%. Interestingly, PFP showed a better coverage over
the top PSI-BLAST even when no sequence hits were ignored. This indicates that
taking consensus functions among sequence hits yields better prediction in general,
since often sequences of significant similarity have different functions. These results
indicate that PFP can very well utilize weakly similar proteins which do not share
apparent sequence similarity with a query protein.

In another study [2] using a benchmark dataset of 120,260 proteins from
11 genomes, performance of PFP has been compared against two protein function
prediction methods, GOtcha [27] and InterProScan [33], as well as the top PSI-
BLAST in terms of the three GO category version of the funSim score [34] (Eq. (12)
in Chapter 1). It was observed in the head to head comparison among PFP, Gotcha
[27], and the top PSI-BLAST [11] that PFP significantly outperformed both methods
at all E-value cutoffs used, winning around 60% of cases. We have also tested dif-
ferent parameter values thoroughly in the paper. In addition, the p-value of the raw
PFP score and the relationship between the p-value and the accuracy was examined.

As discussed above, one of the main advantages of PFP lies in its ability to
increase the annotation coverage as compared to conventional homology searches.
Annotations to fifteen genomes showed that more than two third of unknown pro-
teins in each genome were assigned molecular function term at a high confidence
with an expected accuracy level of 80%.

The effect of PFP’s annotation to less annotated genomes can be quite dra-
matic. As an illustration, functional enrichment by PFP for the protein-protein
interaction (PPI) network of Plasmodium falciparum (malaria) is shown in Fig. 1.
In the original annotations in the database 664 interactions have both interact-
ing proteins annotated (fully annotated), one of the proteins is annotated in 1,358
interactions, while 824 have neither of interacting nodes annotated. Using PFP
predictions with the expected accuracy of over 90%, the number of fully anno-
tated interactions increased to 2,674. And the number of interactions where both
interacting partners are unknown was dramatically reduced to 4. These annota-
tions will be useful for biological understanding of protein interactions in the PPI
network.
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Fig. 1 P. falciparum PPI
network with following color
coding for nodes – black
circles: proteins annotated by
PFP at high confidence
(>80% confidence) in at least
one GO category, gray
triangles: proteins previously
annotated in the database in at
least one GO category, white
diamonds: un-annotated
proteins

Extended Similarity Group (ESG) Method

The Extended Similarity Group (ESG) method [4] (http://kiharalab.org/esg.php)
iterates PSI-BLAST searches by using sequences retrieved in a previous round as
queries for the next round of search. GO terms taken from a retrieved sequence
are weighted in a similar way as PFP, considering the E-value of the sequence.
Since there are multiple rounds of searches, each round is weighted by another
parameter.

The ESG Algorithm

ESG begins with an initial PSI-BLAST [11] search from the query sequence Q,
which will retrieve N sequence hits, S1, S2, . . . SN each with E-value E1, E2, . . . EN ,
respectively. The sequences are weighted by Wi, which considers the significance of
E-value of sequence Si relative to the other sequences:

Wi = − log(Ei) + b
N∑

j=1

{− log(Ej) + b
}

,

(4)

where score, –log(Ei), is shifted by a constant value b, which makes the score a
non-negative value. Using the Eq. (4) assures that the weights to the N sequences
sum up to 1. Using the weights Wi assigned to each sequence, the probability of the

http://kiharalab.org/esg.php
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GO term fa annotating the query sequence Q is defined as the sum of weights of fa
that come from sequences annotated with fa:

Pd
Q(fa) =

N
∑

i=1

Wi·ISi(fa) (5)

The function I indicates whether the given sequence Si has annotation fa:

ISi(fa) =
{

1 if Si has fa annotation
0 otherwise

(6)

The index d on the left side of Eq. (5) denotes that function information comes
from direct annotations to sequences. Later we formulate integration of the FAM,
which captures associated GO terms rather than directly assigned GO terms to each
sequence, in the ESG framework.

Now we extend this concept to multiple levels of PSI-BLAST searches by sharing
the weights between levels using a weight parameter v. In the second round, each of
the sequences S1, S2, . . . SN retrieved in the first round are in turn used as a query.
Suppose sequence Si obtains N sequences by a PSI-BLAST run, each referred as Sij.
The weights for Sij, Wij can be computed in a similar manner to Eq. (4). Combining
the two level of searches,

Pd
Q(fa) =

N
∑

i=1

Wi · Pd
Si(fa) (7)

Pd
Si

(fa) = v · ISi(fa) + (1 − v) ·
Ni∑

j=1

Wij·ISij(fa) (8)

Equation (7) is essentially the same as Eq. (5), representing that the score of a
GO term fa for the query Q is contributed by sequences retrieved at the first level
(S1 to SN). The weight Wi is defined by Eq. (4). Equation (8) defines the score for fa
for sequence Si as a combination of ISi(fa), which is sequence Si’s annotation, and
the second level search. The first and the second terms are weighted by a factor ν.
The equations can be recursively extended to multiple levels of searches to explore
broader space around the query sequence.

The algorithm for the two level of the search is illustrated in Fig. 2. It shows the
probability computations as described by Eqs. (7) and (8).

The FAM, which considers association of GO term pairs (Eq. (2)), can be inte-
grated to the ESG algorithm. Equation (7) is replaced with the following equation,
which states that now FAM is used for function annotation:

PFAM
Q (fa) =

N
∑

i=1

Wi · PFAM
Si

(fa) (9)

For ESG with the second level search, Eq. (8) is modified to
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GO1 : W1
GO3 : W1

GO2 : W11
GO3 : W11

GO1 : W12
GO4 : W12

GO1 : W13
GO2 : W13

GO3 : W1N

GO2 : W2
GO4 : W2

Pd
Q(GO1) = 

PQ (GO2) = 

Pd
s2 (GO1) W1{ v + (1−v) [W12 + W13 + … ]}  +   + ……

Pd
s2 (GO2) + W13 + … ]} +   + ……W1{ (1−v) [ W11 

DB annotations of S1

Query sequence Q

S1 S2 SN

W1 W2 WN

DB annotations of S2

Examples of probabilities
computed using two levels

S11

W11

S12

W12

S13

W13

S1N

W1N

Fig. 2 Probability computation in ESG for two levels

PFAM
Si

(fa) = v

{

ISi(fa) + (1 − ISi(fa)) · max

(
NSi∑

j=1
P(fa|fj), 1

)}

+ (1 − v)

⎧

⎨

⎩

Nij
∑

j=1

Wij · PFAM
Sij

(fa)

⎫

⎬

⎭
,

(10)

where NSi is the number of GO terms annotating sequence Si. The first and the
second level searches are weighted by a factor ν. The first term shows that in case
Si is not directly annotated with fa, the FAM is used to consider association of each
GO term annotating Si to function fa. The max operation is used to not to let the
FAM-based score exceed 1. PFAM

Sij (fa) in the second term is expanded in the same
way as the first term:

PFAM
Sij

(fa) = Isij(fa) + (1 − ISij(fa)) · max

⎛

⎝

Nij
∑

j=1

P(fa|fj), 1

⎞

⎠ (11)

The formulation of the score (Eqs. (4), (5), (6), (7), (8), (9), (10), and (11))
provides a value ranging from 0 to 1.
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Performance of ESG

Performance of ESG has been benchmarked on a set of 2,400 protein sequences,
which consists of 200 randomly selected proteins from twelve different genomes.
The results of using two score cutoff values, 0.35, and 0.15, which were shown to
provide a good balance of precision and recall, are shown in Fig. 3. Predicted GO
terms were evaluated in terms of the funSim score with the three GO categories
(Eq. (12) in chapter “Computational Protein Function Prediction: Framework and
Challenges”). The FAM was not used and the search was iterated for two levels for
these results. It was observed for all but one genome that the funSim scores of ESG
are better than PFP. The average score of ESG was around 0.7 while that of PFP
was around 0.6. Both of the methods showed superior performance as compared to
the top PSI-BLAST method, which showed the average funSim score around 0.2.

Further, it was observed that ESG shows far better performance than PFP in terms
of precision. ESG predicts a smaller number of GO terms as compared with PFP
(average 7 GO terms are predicted by ESG while 60 terms by PFP), which generally
reduces false positives, and results in an increased precision. The average precision
for ESG was observed approximately 0.7 while that for PFP and top PSI-BLAST
was around 0.10 on this benchmark dataset. Moreover, ESG showed a slightly better
recall value than PFP, with 0.6 for ESG and 0.5 for PFP, respectively.

ESG has also been extended to incorporate the FAM, which has been shown to
improve prediction recall with slightly reduced precision. For 200 E. coli proteins in
the dataset, the recall increased from 0.773 to 0.810 by incorporating the FAM but

Fig. 3 The average semantic similarity score on the benchmark dataset. Two probability cutoff
values are used for ESG, 0.35 and 0.15. For the Top PSI-BLAST, GO terms are extracted from
sequence hits with E-value of 0.01 or smaller (better). For the PFP, GO terms with no less than
80% expected accuracy were considered. (This figure is modified from fig. 3 in [4])
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the precision decreased from 0.794 to 0.566. This effect is due to the increase of the
average number of predicted terms by using FAM. Overall the results indicate that
PFP and ESG have considerably improved the prediction accuracy for automated
function prediction using sequence similarity search.

Difference between PFP and ESG

Figure 4 illustrates difference of PFP and ESG with a conventional PSI-BLAST
search. In the conventional PSI-BLAST search, only significantly similar sequences
to the query (shown as the filled circle), e.g. within the E-value of 0.001 or 0.01
(dashed circle), are considered. In contrast, PFP extends the search to the E-value
of 100 in the sequence similarity space, which results in more sensitive prediction.
On the other hands, ESG iterates searches around the query and takes GO terms
that consistently appear among the searches. Thus, ESG is designed to increase
the precision of prediction. Both PFP and ESG outperform the conventional PSI-
BLAST search in general, because annotations in some of closely similar sequences,
which do not apply for the query, can be discarded by considering consensus among
a larger number of sequences.

There is also a significant difference in the design of the score of PFP and ESG.
In PFP, the raw score for each GO term is simply the sum of the scores computed
from each sequences retrieved in the search. Thus, the range of the raw score is prac-
tically not pre-determined. Therefore we normalized it to compute the p-value for
each GO term individually and further computed the expected accuracy by exam-
ining correlation between the p-value and the accuracy. On the other hand, ESG
computes probability values varying between 0 and 1, which can be used directly
for comparison and setting cutoffs.

Fig. 4 Conceptual difference
of PFP and ESG
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PFP and ESG Web Server

Both PFP and ESG are available as web servers at http://www.kiharalab.org/
software.php. Figure 5 shows the job submission page of the ESG web server. Users
can enter FASTA format sequences in the text box or upload a file containing one
or more amino acid sequences. The parameter “number of hits per stage” indicates
the number of PSI-BLAST hits considered at each stage of the ESG algorithm (N
in Eq. (7) and Ni in Eq. (8)). Another parameter “number of stages” indicates the
number of levels considered, e.g. we considered two levels in the previous section.
On the right side panel tutorials are provided for PFP and ESG which explain in
detail how to format input and how to download and interpret the results. The web
servers also provide ability to create a login account for users which can be used
for maintaining users’ private jobs and also for checking job status or access results
from old jobs. Users can choose to be informed about job completion by receiving
an email update.

Fig. 5 ESG web server’s job submission page at http://kiharalab.org/esg.php

Structure of the Gene Functional Space

In the previous sections we have discussed that PFP can significantly increase the
annotation coverage of genomes. The larger annotation coverage can benefit bio-
logical research in two ways: obviously, functional clues are provided to a larger

http://www.kiharalab.org/software.php
http://www.kiharalab.org/software.php
http://kiharalab.org/esg.php
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number of individual genes. Secondly, we can obtain an overview of the organi-
zation of functional space occupied by genomes. And we can further investigate
relationship between functions and other important properties of genes, proteins,
genomes, and organisms, such as the tertiary structure of proteins, pathways, and
gene location in a genome.

To enhance our understanding of the structure of gene functional space, we intro-
duced functional similarity networks [35]. We used three genomes, Escherichia
coli (4,381), Saccaromyces cerevisiae (yeast) (6,690), and Plasmodium falciparum
(malaria) (5,270) for this study. The number of protein genes is shown in the paren-
theses. E.coli and S. cerevisiae are well studied model organisms, where over 83.2
and 82.2% of genes, respectively, have been annotated with at least a GO term in
the database. P. falciparum is an example of less annotated genomes, where only
41.9% of genes have annotation. To the all three genomes, PFP provided a signifi-
cant number of high confidence predictions, increasing the annotation coverage to
95.2, 96.1, and 90.8%, respectively for E. coli, yeast, and the malaria genome.

Using annotated GO terms both in the database and those assigned by PFP, we
represented functional similarity of genes in each genome as a network, where genes
of similar function are connected with edges. The similarity of sets of GO terms
from two genes are quantified using Eq. (11) in chapter “Computational Protein
Function Prediction: Framework and Challenges”, which compares GO terms in the
three categories separately, and also by the three-category version of the funSim
score (Eq. (12) in chapter “Computational Protein Function Prediction: Framework
and Challenges”). Thus, four functional similarity networks, BP-score, MF-score,
CC-score, and funSim-score networks are computed for each genome (Fig. 6). In
all of the functional similarity networks, a majority of the genes are included in the
largest connected component.

Analyses of the network properties in comparison with protein-protein inter-
action networks revealed interesting characteristics of the functional similarity
networks. Three parameters of network structures were examined. First, we exam-
ined the degree distribution of the networks. The degree distribution concerns the

Fig. 6 Functional similarity networks of yeast genome. (a) Similarity of biological process terms
in the Gene Ontology are used; (b) cellular component terms; (c) molecular function terms; (d) fun-
Sim score is used to define functional similarity. (This figure was modified from fig. 3 in Hawkins
et al. [35])



Enhanced Sequence-Based Function Prediction Methods and Application 31

probability of nodes with each number of degree k (edges or connections). If the
degree distribution follows the power-law, i.e. P(k) ∼ k-γ , where γ is around 1.0, it
indicates that the network has few nodes with a large number of connections while
the majority of nodes have a small number of connections. In the case of yeast
functional similarity networks (Fig. 6), all of them showed a γ value close to 1.0,
namely, 1.22, 0.83, 0.96, and 1.31, for the BP-score, CC-score, MF-score, and fun-
Sim score networks, respectively. It is known that protein-protein interaction (PPI)
networks follow the power-law [36]. Indeed, the yeast PPI network has the γ value
of 1.80. Thus, in general both PPI and the functional similarity networks follow the
power-law.

Next examined was the clustering coefficient of the networks. The clustering
coefficient of a node indicates how well nodes neighboring to the central nodes are
connected to each other. It is defined in the following way:

C = n
k(k − 1)

2

(12)

k is the number of neighboring nodes connected to the central node and n is the
number of pairs of the neighboring nodes that are directly connected. We consider
that a network has high modularity if it has a large average clustering coefficient
[36, 37]. It turned out that the functional similarity networks distinguish themselves
from the PPI networks by having higher clustering coefficient, thus they are highly
modular compared to the PPI networks. The clustering coefficient value for the yeast
PPI network is 0.10, while the BP-, CC-, MF-, and funSim-score networks showed
values of 0.63, 0.77, 0.72, and 0.46, respectively.

We also discussed the network hierarchy based on the network model by Ravasz
et al. [37]. A network is considered to be hierarchical if the clustering coefficient,
C(k) follows the scaling law, C(k) ∼ k−1. The clustering degree exponent value β,
C(k) ∼ k−1 obtained for the functional similarity networks revealed that only the
funSim score network has a β value close to 1: 0.11, –0.05, 0.40, and 1.39, for the
BP-score, CC-score, MF-score, and funSim score networks, respectively. Therefore,
interestingly, hierarchy is observed in funSim network (Fig. 7) but not in individual
GO-score networks. The network hierarchy was first observed in metabolic path-
ways [37]. It is an interesting observation that hierarchy of the network arises for
the funSim score that integrates single GO-scores, which do not show hierarchy
individually. This might imply that the funSim score somewhat captures properties
of metabolic pathway networks.

In summary, we studied the landscape of the functional space of genes as the
functional similarity networks. Analysis of topological properties of these networks
revealed different network properties as compared with the PPI networks. This anal-
ysis demonstrates that applying annotations by PFP can have a significant impact in
investigating biological systems in an omics scale.
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Fig. 7 Hierarchical modularity of funSim score networks of the three organisms. Clustering coef-
ficient is plotted relative to the degree (k) of nodes. The dotted lines shows C(k) ~ k–1. (This figure
is modified from fig. 5 in Hawkins et al. [35])

Summary

In this chapter, we introduced two sequence-based function prediction methods
developed in our group, PFP and ESG. In contrast to conventional sequence-based
function prediction methods, the two methods effectively capture function informa-
tion in weakly similar sequences. Biological implication by the success of PFP and
ESG is that there exist functional commonalities among genes with are not tradi-
tionally considered as homologous, and such common functions can be captured by
making use of very weakly similar sequences. As the number of sequenced genomes
is rapidly increasing, there is even stronger need for sensitive and accurate function
prediction methods. These two methods show a new direction for function predic-
tion, which is to explore the twilight zone or even lower sequence similarity, rather
than sticking with high sequence similarity or conservation.

Acknowledgements MC is supported by grants from Purdue Research Foundation and the
Showalter Trust. DK also acknowledges a grant from National Institutes of Health (GM075004)
and National Science Foundation (DMS800568, EF0850009, IIS0915801).

References

1. Ofran, Y., et al. Beyond annotation transfer by homology: novel protein-function prediction
methods to assist drug discovery. Drug Discov. Today 10(21): 1475–1482 (2005).

2. Hawkins, T., et al. PFP: automated prediction of gene ontology functional annotations with
confidence scores using protein sequence data. Proteins 74(3): 566–582 (2009).



Enhanced Sequence-Based Function Prediction Methods and Application 33

3. Hawkins, T., Luban, S., Kihara, D. Enhanced automated function prediction using distantly
related sequences and contextual association by PFP. Protein Sci. 15(6): 1550–1556 (2006).

4. Chitale, M., et al. ESG: extended similarity group method for automated protein function
prediction. Bioinformatics 25(14): 1739–1745 (2009).

5. Altschul, S.F., et al. Basic local alignment search tool. J. Mol. Biol. 215(3): 403–410 (1990).
6. Pearson, W.R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods

Enzymol. 183: 63–98 (1990).
7. Pearson, W.R., Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl.

Acad. Sci. USA 85(8): 2444–2448 (1988).
8. Smith, T.F., Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol.

147(1): 195–197 (1981).
9. Brenner, S.E., Chothia, C., Hubbard, T.J. Assessing sequence comparison methods with reli-

able structurally identified distant evolutionary relationships. Proc. Natl. Acad. Sci. USA
95(11): 6073–6078 (1998).

10. Hulsen, T., et al. Testing statistical significance scores of sequence comparison methods with
structure similarity. BMC Bioinformatics 7: 444 (2006).

11. Altschul, S.F., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25(17): 3389–3402 (1997).

12. Pietrokovski, S., Henikoff, J.G. Henikoff, S. The Blocks database – a system for protein
classification. Nucleic Acids Res. 24(1): 197–200 (1996).

13. Hunter, S., et al. InterPro: the integrative protein signature database. Nucleic Acids Res.
37(Database issue): D211–215 (2009).

14. Finn, R.D., et al. Pfam: clans, web tools and services. Nucleic Acids Res. 34(Database issue):
D247–251 (2006).

15. Attwood, T.K., et al. PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res.
31(1): 400–402 (2003).

16. Bru, C., et al. The ProDom database of protein domain families: more emphasis on 3D.
Nucleic Acids Res. 33(Database issue): D212–215 (2005).

17. Hulo, N., et al. The 20 years of PROSITE. Nucleic Acids Res. 36(Database issue): D245–249
(2008).

18. Letunic, I., et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res.
32(Database issue): D142–144 (2004).

19. Wilson, D., et al. The SUPERFAMILY database in 2007: families and functions. Nucleic
Acids Res. 35(Database issue): D308–313 (2007).

20. Haft, D.H., Selengut, J.D., White, O. The TIGRFAMs database of protein families. Nucleic
Acids Res. 31(1): 371–373 (2003).

21. Hawkins, T., Chitale, M., Kihara, D. New paradigm in protein function prediction for large
scale omics analysis. Mol. Biosyst. 4(3): 223–231 (2008).

22. Chitale, M., Hawkins, T., Kihara, D. Automated prediction of protein function from sequence.
Prediction of protein strucutre, functions, and interactions. Bujnicki, J.M. (ed.). New York,
NY: Wiley, pp. 63–86 (2009).

23. Kaminska, K.H., Milanowska, K., Bujnicki, J.M. The basics of protein sequence analysis.
Prediction of protein structures, functions, and interactions. Bujnicki, J.M. (ed.). New York,
NY: Wiley, pp. 1–38 (2009).

24. Hennig, S., Groth, D., Lehrach, H. Automated Gene Ontology annotation for anonymous
sequence data. Nucleic Acids Res. 31(13): 3712–3715 (2003).

25. Zehetner, G. OntoBlast function: from sequence similarities directly to potential functional
annotations by ontology terms. Nucleic Acids Res. 31(13): 3799–3803 (2003).

26. Khan, S., et al. GoFigure: automated Gene Ontology annotation. Bioinformatics 19(18):
2484–2485 (2003).

27. Martin, D.M., Berriman, M., Barton, G.J. GOtcha: a new method for prediction of protein
function assessed by the annotation of seven genomes. BMC Bioinformatics 5: 178 (2004).

28. Vinayagam, A., et al. GOPET: a tool for automated predictions of Gene Ontology terms. BMC
Bioinformatics 7: 161 (2006).



34 M. Chitale and D. Kihara

29. Wass, M.N., Sternberg, M.J. ConFunc – functional annotation in the twilight zone.
Bioinformatics 24(6): 798–806 (2008).

30. Barrell, D., et al. The GOA database in 2009 – an integrated Gene Ontology Annotation
resource. Nucleic Acids Res. 37(Database issue): D396–403 (2009).

31. Gattiker, A., et al. Automated annotation of microbial proteomes in SWISS-PROT. Comput.
Biol. Chem. 27(1): 49–58 (2003).

32. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res. 38(Database issue):
D142–148.

33. Zdobnov, E.M., Apweiler, R. InterProScan – an integration platform for the signature-
recognition methods in InterPro. Bioinformatics 17(9): 847–848 (2001).

34. Schlicker, A., et al. A new measure for functional similarity of gene products based on Gene
Ontology. BMC Bioinformatics 7: 302 (2006).

35. Hawkins, T., Chitale, M., Kihara, D. Functional enrichment analyses and construction of
functional similarity networks with high confidence function prediction by PFP. BMC
Bioinformatics 11: 265 (2010).

36. Barabasi, A.L., Oltvai, Z.N. Network biology: understanding the cell′s functional organiza-
tion. Nat. Rev. Genet. 5(2): 101–13 (2004).

37. Ravasz, E., et al. Hierarchical organization of modularity in metabolic networks. Science
297(5586): 1551–5 (2002).



Gene Cluster Prediction and Its Application
to Genome Annotation

Vikas Rao Pejaver, Heewook Lee, and Sun Kim

Abstract Improvements in sequencing technology have made whole-genome
sequencing a lot more accessible to researchers in the life sciences. There has
been a huge explosion in genomic sequence data over recent years and auto-
mated genome-wide function annotation has become a great challenge. The most
popular approaches for gene function assignment have been based on sequence
similarity. However, homology-based methods are limited in cases where novel
sequences show no significant sequence similarity to known genes. This has led to
the exploration of innovative methods that make use of additional information such
as co-localization, co-evolution and fusion to assign functions computationally. In
the case of prokaryotic genomes, functionally related genes tend to be physically
clustered together due to evolutionary pressure. Thus, such gene clusters provide
effective clues for gene function assignment in prokaryotes. In this chapter, we
survey a few of the prominent techniques in this area of research. We also per-
form simple experiments to detect gene clusters across a given set of genomes.
Finally, we provide a few examples from the results of these experiments to show
how gene cluster information can be applied to genome annotation and can resolve
ambiguities in function assignment.

Introduction

Next generation sequencing technology has made it possible to sequence genomes
at a fraction of the cost incurred by using the traditional Sanger sequencing method.
Thus, the number of genomes available to research community is growing rapidly
and analysis of such a large number of genomes will be a significant challenge.
A key issue that needs to be dealt with is that of accurate genome annotation.
Experimentally, it is a huge challenge to attempt to identify functions for every
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gene in a given genome. The process of manual or semi-automated annotation is
time-consuming and laborious. Although, automated methods tend to alleviate this
situation, accuracy of annotation still remains an issue.

Comparative genomics has played an important role in advancing function pre-
diction and has contributed to great improvements in the accuracy of gene function
prediction. The most common methods for automated function assignment rely on
sequence homology. The idea is that genes with similar sequences would code for
proteins with similar structures and thus, would possess similar functions. This
approach has been fairly successful but is ineffective when a given sequence shows
no significant sequence similarity to existing genes. This has given rise to methods
where sequence similarity information is augmented by genomic context informa-
tion that allows for function assignment based on a “guilt-by-association” principle.
Thus, one important problem is to discover gene sets that are common and/or
unique to a subset of genomes as this information can aid in understanding the
characteristics of organisms in terms of gene content.

Conserved gene clusters provide effective means to obtain clues about a gene’s
function based on its neighboring genes. This has been very popular in the case of
prokaryotes as physical clustering of functionally related genes is a prominent phe-
nomenon in their genomes. Clusters of genes can be thought of as patterns of genes
in terms of their physical proximity, i.e., on the chromosomes. Mining sequential
patterns of genes in a number of genomes is a data mining problem as one does not
have any prior knowledge about the existence of patterns, the size of patterns, and
the genomes in which a gene pattern exists, as shown in Fig. 1. In addition, other
challenges in pattern mining from genomic data include: the lack of family defini-
tion, the distorted order of genes, missing or inserted genes in pattern occurrences,

Fig. 1 Illustration of gene cluster mining. We do not know which gene clusters occur in which
subset, Gi, Gj, Gn and Gm in this case, of many genomes, say 100 genomes
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and different contexts of patterns such as sequences of genes (metabolic pathway or
protein-protein interaction networks).

It is worth noting that the gene cluster prediction problem is fundamentally dif-
ferent from the widely studied synteny prediction problem. Synteny prediction aims
at finding conserved genomic regions in multiple genomes. Also, it is assumed that
all genomes in a given genome set share common syntenic regions. On the con-
trary, the gene cluster prediction problem seeks to mine gene clusters in an unknown
subset of the genomes, with various constraints as shown in Fig. 1.

Mining gene clusters conserved in multiple genomes can be a useful method for
characterizing genomes. For example, Overbeek et al. [1] showed that conserved
gene clusters corresponded to biological pathways. Mining conserved gene clusters
can help us to characterize subsystems that can be used for genome annotation [2].
In this chapter, we will summarize computational methods for predicting conserved
gene clusters and show some examples how gene clusters can be used for genome
annotation.

The detection of gene clusters generally follows two broad approaches. In the
first approach, sequence similarity information is used as a starting point for clus-
ter detection. This augments the homology-based methods as discussed earlier and
can be regarded as a systematic combination of sequence similarity with proximity
information. The second approach begins with the assumption that gene families are
known. This implies that in order to use this approach one has to have prior knowl-
edge of gene families (such as COG categories [3]). Note that we make a clear
distinction between these two approaches and focus only on the first in this chapter.
Therefore, we have not included computational methods [4–6] that use pre-classified
family information.

Description of Existing Techniques

A number of methods have been proposed to detect conserved gene clusters and can
broadly be grouped as those that detect clusters within a single genome, a pair of
genomes or within multiple genomes. Single genome methods are generally trivial
but become challenging when they take information from other genomes into con-
sideration. The pairwise gene cluster detection problem is well-studied and therefore
we discuss some of the more recent approaches on this topic. In the case of multi-
ple genomes, the problem is non-trivial and is much more difficult to address than
the detection of gene clusters from within a single genome or conserved between
a pair of genomes. It is interesting to note that since most multi-genome methods
use pairwise gene cluster information as a starting point, the number of genomes
used for the detection of gene clusters may not necessarily be a good way to dis-
tinguish between these methods. Therefore, in this section, we cover a few methods
across all these categories and provide a brief description of how they work. We
focus on the innovative approaches used to solve this problem, ranging from graph-
based approaches to query-based strategies. For a detailed study of each of these
approaches, we refer the reader to their respective papers.
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Graph-Based Approach

One of the first attempts at identifying conserved gene clusters from multiple
genomes was made by Fujibuchi et al. [7]. This approach involved the use of
two graph algorithms, that had been developed by the group previously [8, 9].
First, locally similar regions were detected across genomes based on a novel graph
comparison algorithm. Second, clustering was performed based on a graph linkage
feature called P-quasi complete linkage. The resulting information would be analo-
gous to a “multiple genome alignment”, but at the level of gene clusters, rather than
genes.

The methodology involves an automated analysis pipeline that is summarized in
Fig. 2. and consists of three major steps:

1. Application of the graph comparison algorithm to obtain gene clusters conserved
in two genomes.

2. Incorporation of related clusters from multiple genomes by means of P-quasi
complete linkage analysis.

3. Resolution of issues involving orthology, paralogy and gene fusion by P-quasi
can COG clustering methods to generate unambiguous gene cluster tables.

The first step entails the representation of a pair of genomes as a pair of
one-dimensionally connected graphs whose vertices correspond to their respective
genes. Irrespective of the direction of transcription, two adjacent genes on a chromo-
some are regarded to be connected to each other by an edge. A sequence similarity
matrix is created for both the genomes, based on Smith-Waterman alignment [10] of
all pairs of genes in both the genomes. The matrix element is 1 if the optimized score
of SSEARCH is 100 [10]; in other cases it is 0. Thus, an m × n matrix is generated
where m is the number of genes in one genome and n is the number of genes in the
other genome. This serves as a representation of the correspondences between genes
in one genome and genes in the other. A dynamic programming algorithm that is a
minor modification of the Floyd-Warshall algorithm is then applied to the similarity
matrix to detect all pairwise shortest paths (shorter than a given gap parameter). A
detailed description of this graph comparison algorithm can be obtained from [9].
For the detection of conserved gene clusters from a pair of genomes, the authors
have allowed gap lengths of up to two for each genome and clusters containing
at least two homologous gene pairs with or without rearrangements. This heuristic
pairwise gene cluster detection algorithm has been shown to work really well and
effectively filters out noise from gene similarity data.

The next step involves the use of correlated gene cluster information from all
pairwise analyses to obtain clusters conserved across multiple genomes. Initially,
for a pair of genomes, each conserved cluster pair is assigned a similarity score.
This similarity score can be defined as the number of best hit gene pairs within
a cluster (Fig. 2). In order to avoid overcounting, in cases of paralogy, multiple
pairs involving the same node are combined. Grouping of gene clusters is then done
based on linkage of similar cluster pairs across multiple genomes by means of a
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Fig. 2 A schematic description of the three steps involved in the graph-based algorithm proposed
by Fujibuchi et al. [7]

clustering algorithm. Typically, clustering is done either by single linkage or com-
plete linkage algorithms. However, Fujibuchi et al. noted that for the detection of
clusters conserved across multiple pairs of genomes, these algorithms had certain
limitations. The single linkage algorithm would result in a smaller number of genes
clustered in larger groups. The complete linkage would cause the creation of groups
that are too fine and would be relatively uninteresting in the context of biological
inference. This motivated the application of a P-quasi complete linkage algorithm.
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This method allows for the creation of groups where any member in one group is
connected to ≥ P% of all the other members within the group. The authors have
tested different values of the completeness parameter P and have found that gener-
ally, as P increases, the number of gene clusters detected increases. They also note
that computation of P-quasi linkages is very memory-intensive and time-consuming.
We refer the reader to a more comprehensive discussion of the algorithm in [8].

The final step involves the refinement of these merged gene clusters at the gene
level. Each gene is defined either as an ortholog, a fused gene or a paralog, based on
a set of criteria. For this analysis, the P-quasi complete linkage method is adopted
again to assign groups of homologous genes. In cases where one gene in a genome
is homologous to more than one gene in another genome, a fused gene is defined
based on individual sequence similarity scores and other criteria. If these criteria
are not satisfied, the homologs are assumed to be paralogs and are further divided
based on the COG triangle method. We refer the reader to the original article for
the more specific criteria set for all cases. On the whole, this step results in the
formation of the multiple genome alignments discussed earlier and a gene cluster
table as illustrated in Fig. 2.

Fujibuchi et al. analyzed 17 completely sequenced microbial genomes, at a com-
pleteness parameter 40% and obtained 2313 clusters. Approximately 25% of these
contained at least two genes in metabolic and regulatory pathways in the KEGG
database [11]. Although a quantitative validation was not performed, qualitative
analyses showed that clusters tended to contain functionally related genes. It is
interesting to note that the authors found very low cluster conservation, even at rea-
sonable phylogenetic distances. This can be explained by the fact that this method
does not incorporate any phylogenetic information. The method has since then been
applied to more genomes as and when they have been sequenced. All results from
this method can be obtained from the KEGG gene clusters database [12].

Note: The multiple genome alignments are considered as a rough draft and the
final results that can be accessed from the KEGG database have been subjected to
manual curation.

Evolutionary Model-Based Approach

A few years later, Zheng et al. argued that gene proximity conservation in micro-
bial genomes could be a result of various factors other than functional selection or
vertical inheritance [13]. Thus, there would be a tendency to inaccurately estimate
the significance of a cluster. Zheng et al. proposed a robust phylogenetic method
to detect clusters that contained functionally related genes and to provide a mea-
sure of significance that indicated whether they were a likely result of functional
selection. Another issue that this method was expected to tackle was that of biases
in genomic databases. Microbial genomic data, even today, is not uniform and
there are experimental preferences towards model organisms, pathogenic species
and easily culturable strains. In several cases, the use of phylogenetic information
from genomes that are not properly sampled from databases, could result in errors.
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The method involves the use of a stochastic evolutionary model to describe
conserved gene clusters. At the uppermost level, this method makes use of two con-
servation scores to determine whether a pair of genes should be included in a longer
conserved cluster or not. For the gth gene on a given chromosome, these scores are
defined as:

Cu(g) =
k+1
∑

i=1

s(g − i, g)

Cd(g) =
k+1
∑

i=1

s(g, g + i)

where Cu(g) is the upstream conservation score for the gth gene, Cd(g) is the down-
stream conservation score for the same gene and k is the number of intervening
genes allowed in a conserved pair (typically k = 1). In general, the term s(g1, g2),
is the tree-based conservation score for a gene pair consisting of genes g1 and g2.
This tree-based conservation score represents the overall probability that a gene
pair is conserved in a given phylogenetic tree. This score can be explained with the
following example:

Consider a simple phylogenetic tree as shown in Fig. 3. Let the leaf nodes rep-
resent extant genomes G1, G2, G3, G4 and G5. The internal nodes A0, A1, A2, and
A3 represent the inferred ancestor genomes. The idea is to model the evolution of a
gene cluster as a stochastic process on this tree. A gene cluster can be regarded as a
group of gene pairs and thus, for Fig. 3, the basic unit that needs to be considered is
a gene pair. The phylogenetic tree in Fig. 3 can be treated as a Bayesian network in
a tree form. If a gene pair is present in a particular genome as a pair of neighboring
genes, we assign it a value 1 and if it is absent, a value of 0 is assigned. These val-
ues are determined by the definition of conserved neighboring gene pairs – a gene
pair is said to be neighboring if each of these genes is separated by no more than k
open reading frames as mentioned previously. A conserved neighboring gene pair
is a gene pair where the orthologs of its members form a neighboring gene pair in

Fig. 3 A simplified example
of a phylogenetic tree where
the filled node represents a
genome in which a gene pair
is not conserved
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another genome. Note that this definition results in gene pairs (and thus, clusters)
that do not take strand direction into account and are solely based on orthology or
similarity data (BLAST E-value < 1E − 5) [14].

In order to model the probability that a gene pair in one of the leaf genomes is
conserved across the phylogenetic tree in Fig. 3, the binary random variables dis-
cussed previously, are used. Consider a situation where a gene pair in query genome
G1 is conserved in genomes G2, G4, and G5, but not in G3. It becomes obvious that
the vertical inheritance along any path on the tree is a generative probabilistic pro-
cess and the inheritance of a gene pair depends on the immediate ancestor. However,
since the probability of a gene pair existing in a genome, but not in its immediate
ancestor is negligible, A0 can be assigned the value 1. Thus, the following expression
can be deduced for a phylogenetic tree T:

P(conservation of a gene pair) = P(G1 = 1, G2 = 1, G3 = 0,

G4 = 1, G5 = 1|A0 = 1)

= ∏

X,YεT
P(X = 1|Y = 1)

where Y is an immediate evolutionary ancestor of X in T. For a detailed derivation of
this expression, we refer the reader to the original article. The product on the right
hand side of this expression can be converted into a summation context by taking
the negative logarithm on both sides. A key assumption of this methodology is that
log(P(X = 1|Y = 1)) is proportional to the phylogenetic distance between X and Y.
Therefore,

log(P(conservation of a gene pair)) ∼
∑

X,YεT

d(X, Y)

where d = − ln(s) and s is a measure that is used to derive pairwise distances for the
construction of the phylogenetic tree. s is defined as the ratio of the number of shared
orthologs to the average of the total numbers of genes in a pair of genomes. Thus,
for each gene pair, a genome phylogenetic tree can be constructed, irrespective of
the query genome and conservation scores can be calculated based on the branch
lengths.

Once the upstream and downstream conservation scores are calculated, longer
clusters are formed on the basis of the following criteria:

• In order to define the “boundary genes” of a long cluster, either Cu or Cd (not
both), for the genes should exceed a predetermined threshold.

• All genes in between these two genes would then be considered as being a part
of the cluster.

The threshold cutoff value for the conservation scores is determined based on
their P-values so that only statistically significant clusters are preserved. These
P-values are calculated from bootstrap simulations where each genome is randomly
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shuffled and conservation scores are calculated on these genomes to obtain the null
distribution.

The authors tested this method on a set of 345 operons from E. coli from the
RegulonDB database [15] and it was found that a sensitivity of 65% and a specificity
of 85% could be achieved when starting with orthology data. When gene similar-
ity data was used as a starting point, the sensitivity improved but the specificity
worsened. This could be explained due to the conservative nature of the recipro-
cal BLAST hit method to determine orthology. This method was extended to other
genomes and it was generally found that 10-40% of the total number of genes
in a genome lie in gene clusters. Conserved gene clusters have now been com-
puted for over 200 microbial genomes and have been stored in a database called
GeneChords [16].

Note: Although, in practice, the above method predicts clusters on a given query
genome, it successfully captures information from multiple genomes and projects
that information on to the query genome. Therefore, we have included its discussion
in this section.

EGGS: Gene Pattern Prediction Based on Genome Context

Kim et al. developed a gene pattern prediction algorithm [17], called EGGS
(Extraction of Gene clusters by iteratively using a Genome context-based Sequence
matching technique). Given all pairwise gene similarity data, EGGS predicts a set
of gene patterns in two genomes. The most widely used approach to gene pattern
prediction is to model it as an optimization problem where all gene matches are
treated “equally” although the optimal score considers interdistance between genes.
However, it is obvious that some gene matches are more accurate than others. The
simplest way to discriminate significance of gene matches is to use match scores
such as E-value, Zscore, or bitscore. Adding genome context to gene similarity
improves the correctness (specificity) of gene matches. The motivation for EGGS
is to utilize genome context to distinguish more reliable gene matches from less
reliable ones, which was inspired by the seminal work from Overbeek et al. [1].

First, EGGS defines a four-level gene matching technique and uses it in an iter-
ative constraint relaxation fashion from least to most significant. At Level 1, gene
matches are defined by simply using standard pairwise sequence match tools. By
default, EGGS uses FASTA [18] with a Z-score cutoff score of 200. At Level 2, two
genes are matches if they are bi-directional best hits (BBHs). This uses genome con-
text since the constraint of being the best hit requires the best match on the whole
genome. At Level 3, two pairs of matching genes (a quartet of genes) are considered
and they are called pair of close homologs (PCHs). The definition of being “close”
means that two genes in one genome should be in the same run of genes. A run
of genes is defined by Overbeek et al. [1] and it can be seen as a cluster of genes
where distance between any adjacent genes on the same strand is within a certain
threshold, say 300 bp (Fig. 4). At Level 4, two pairs of BBHs are considered and
they are called pair of close BBH (PCBBH) (Fig. 4).
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Fig. 4 Graphical representation of PCBBH and PCH

First, gene clusters are defined at the level 4 with the PCBBH criterion and then
at level 3 with the PCH criterion. The basic idea to determine clusters first by merg-
ing PCBBH and PCH quartets when two quartets share a common side and then by
adding more genes using BBH and pairwise matches. This can be viewed as relax-
ing iteratively two constraints distance(proximity) and similarity to achieve highly
accurate gene cluster predictions. Below are the steps of the algorithm.

1. Compute PCBBHs and PCHs.
2. Construct a graph where nodes are PCBBH and PCH quartets and edges are

defined when two quartets share a common side, i.e., a pair of genes.
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3. Clusters are determined by computing connected components of the graph.
4. Relax the distance constraint (say < 1000 bp) and merge adjacent clusters if two

clusters are within the new distance criterion.
5. Create a hyper graph where nodes are gene clusters and edges are created

between adjacent clusters.
6. For each adjacent pair of nodes (edge of the hyper graph), introduce new BBH

and pairwise matches above a certain threshold (say Z-score > = 200) if they are
consistent with the clusters in terms of distance. This will create a local graph
by defining edges between “close”(< 3000 bp) nodes.

7. Gene clusters are predicted by computing connected components of the local
graph.

8. Post-process the clusters and remove those smaller than a preset threshold (say,
> 3 gene pairs)

Kim et al. claimed that the gene cluster prediction based on genome context
works well for distantly related genomes. For example, it was shown that EGGS was
able to produce 99 gene clusters of 2268 genes between distantly related genome
pairs, Sulfolobus tokodaii (NC_003106) and Sulfolobus solfataricus (NC_002754)
while an optimization method FISH [19] was not able to find gene clusters.

Gene Cluster Prediction Based on a Mutable Pattern Model

Hu et al. have developed a gene cluster model called mutable patterns [20, 21].
The idea behind this method is to detect gene clusters by extending pattern mining
techniques that are widely used in the data mining community. The pattern mining
problem is to look for a set of items that appear frequently in many records where
a record is a set of items. By “frequently,” it means that the set of items occurs
together at least in a certain number of records; the number of records is called the
support of the pattern. Searching for frequent patterns is done by exhaustively look-
ing for all maximal patterns. The maximality condition is that the pattern cannot
be a sub-pattern of any pattern without changing the support value. There are sev-
eral challenges involved while applying pattern mining methods to the gene cluster
prediction problem.

1. There are no item labels in the gene cluster prediction problem; the protein fam-
ily labels can be seen as item labels but family classification is not used since
only a fraction of genes in many genomes are classified as families. Thus match-
ing genes across multiple genomes are based on sequence similairty, which can
lead to errors in matching genes.

2. The order of matchings genes in genomes can be different.
3. Gene clusters typically appear only in a subset of genomes, within a given

genome set. Thus, we have to enumerate all possible combinations of genomes
to find gene clusters exhaustively according to the maximality constraint, which
can be computationally very expensive.
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The mutable pattern method utilizes a two-scan approach to deal with these chal-
lenges. First it uses a concept of interchangeable gene set that is a set of genes
that share sequence similiarity above a preset threshold. The first scan of genomes
constructs interchangeable gene sets where a gene can belong to multiple inter-
changeable gene sets. Then in the second scan, it uses a concept of reachability.
Two genes ga and gc are reachable if and only if there are genes gc1 , . . . , gck between
ga and gc such that no adjacent genes in a gene sequence, (ga, gc1 , . . . , gck , gc), are
distant in bp no more than a preset threshold, say 200 bp. This simple concept of
reachability can be used to handle distorted pattern based on the mutable sets. In
the traditional sequential pattern model, a sequence supports a pattern only when
the total order defined by the pattern is contained by the total order defined by the
sequence. However, in the gene cluster prediction problem, we are interested in
finding groups of genes appearing in proximity of each other on a certain number
of genome sequences. The exact order is not important since the order of genes in
genomes could be distorted. To deal with the challenge, Hu et al. used a new pattern
mining concept called mutable order-distorted pattern. This method has been shown
to perform significantly better in terms of the COG database [3] when compared
with the widely used method based on the bi-directional best hit concept.

Query-Based Approach

More recently, Yang et al. have suggested that a query-based strategy could be used
to identify gene clusters conserved across a given genome set that contains hundreds
of genomes [22]. Genome sequence data has greatly increased over the recent years
and scalability is an important issue for the conserved gene cluster detection prob-
lem. Since the time complexity of the GCQuery algorithm, proposed by Yang et al.
is O(n2), it is expected to perform really well for larger genome sets. Moreover,
by querying experimentally confirmed gene clusters, it is also possible to achieve
a relatively higher accuracy as well. Another key aspect of this approach is that it
does not depend on gene densities or orientations within a cluster and utilizes only
proximity information. This contributes greatly to its flexibility and robustness.

GCQuery assumes that genes from a cluster are provided and first, finds all the
locations of all their related genes on each chromosome (genome) for a given set.
The basic ideas behind this algorithm are that a window-based approach can be
adopted to model the distribution of related genes on each chromosome and that they
can be modeled by a hypergeometric probability distribution. In order to identify
gene clusters, the expectation value (E-value) is calculated based on this distribution.
An appropriate E-value cutoff across a list of windows would result in accurate gene
cluster detection.

Consider a query cluster Q and chromosome c from a given set, such that each
chromosome c is represented by an ordered sequence of genes (g1, g2, g3, ..., gn).
The set of all genes related to Q on c are first identified by considering BLASTP
matches between genes from Q and c with E-values less than 10−7. Thus, a subse-
quence c′ = (g′

1, g′
2, g′

3, ..., g′
n′ ) is defined, where each g′

i is related to at least one
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Fig. 5 An illustration depicting the basics of the GCQuery algorithm

gene in the query cluster. GCQuery then estimates E-values for each substring on
c′ between the jth gene and the (j + k′ − 1)th gene, i.e., (g′

j, g′
j+1, g′

j+2, ..., g′
j+k′−1).

These substrings are considered as potential gene clusters spanning the window on
c between the ith gene and the (i + k − 1)th gene, i.e., (gi, gi+1, gi+2, ..., gi+k−1),
where gi = g′

j and gi+k−1 = g′
j+k′−1. An example of such a window has been illus-

trated in Fig. 5. The E-value is estimated from the following equation for a circular
chromosome c:

e(n, n′, k, k′) = n.p(n, n′, k, k′)

The left hand side of this equation represents the expected number of clusters
spanning a window k. The probability on the right hand side of the equation is
modeled by a hypergeometric distribution and represents the probability of finding
a cluster of size at least k′, that spans a window of k. This is given by:

p(n, n′, k, k′) =
k
∑

i=k′

(
n′

i

)(
n − n′

k − i

)

/

(
n

k

)

For more details on the actual GCQuery algorithm and its time complexity
analysis, we refer the reader to the original article.

Yang et al. have applied this algorithm to study gene clustering in 400 bacterial
genomes spread across 18 different phylogenetic groups. For validation purposes,
GCQuery was also applied to the B. subtilis and the E. coli genomes and the results
were compared to experimentally verified operons. In both cases, the query clusters
were 123 known operons from E. coli. Evaluation was done considering two crite-
ria: smin and smax. These terms represent the ratios of the overlap of genes between
actual operons and predicted gene clusters to the minimum and maximum, respec-
tively, of the sizes of the operon and the predicted cluster. In the case of B. subtilis,
for a given GCQuery cutoff of 10−5, the average smin score was found to be 0.59
and smax score was 0.31. Apart from this quantitative comparison, the authors have
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also discussed detailed qualitative analyses of certain operons across different bac-
terial groups. Sections have also been dedicated to the discussion of rearrangements
within and across clusters.

Experiments

Researchers are often interested in looking at or finding gene clusters that are con-
served over multiple genomes. However, this problem poses several challenges that
have to be overcome. One of the biggest challenges is that the problem size grows
rapidly as the number of genomes increases. In order to tackle this problem, we
need an effective gene cluster prediction algorithm. Availability of gene clusters
from given genomes allows scientists to further explore functionally coupled genes
conserved over multiple genomes [1]. Also, predicting gene clusters that are con-
served over well studied genomes and draft genomes provides a starting point for
annotation. In this section, we propose an algorithmic framework which predicts
gene clusters and demonstrate its ability and application by conducting a small
experiment.

Formulation and Algorithm

Due to the rapidly growing problem size, an algorithm to solve this problem must
be able to effectively cut down the problem size and still be able to compute a set of
gene clusters. One way of addressing this issue is to utilize phylogeny information.
Assuming that phylogenetic distance reflects the rate of divergence between two
organisms, we can incorporate the phylogenetic tree with distance, of n genomes as
a guide to hierarchically compute gene clusters. Then, we can give the following
problem formulation. Given all pairwise gene cluster sets and a phylogenetic tree
of n genomes, for each internal node, compute a set of gene clusters over all of the
child genomes of the node. Let’s call this algorithm PhyloEGGS (Fig. 6) and it is as
follows:

Input: A set of all pairwise gene clusters sets and a phylogenetic tree of n
genomes.

Output: A set of gene clusters conserved over n genomes.
Tree Traversing Direction: left to right and bottom-up

For each internal node,

1. Compute the intersection between the gene clusters of both subtrees of the cur-
rent node based on the pairwise gene clusters of two closest genomes defined by
phylogenetic distance.

2. Expand the result by rescuing based on sequence similarity results.
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Demonstrative Experiments

Gene Cluster Prediction

This experiment demonstrates how gene clusters of multiple genomes are predicted
by PhyloEGGS.

Methods

1. Selected the following 6 genomes: Escherichia coli str. K-12 substr. MG1655,
Shigella flexneri 2a str. 301, Salmonella typhimurium LT2, Enterobacter sp. 638,
Yersinia pestis CO92, and Haemophilus influenzae Rd KW20.

2. Using EGGS, computed all pairwise gene cluster sets.
3. Constructed a phylogenetic tree using 16s rRNA sequences from the six

genomes.
4. Applied PhyloEGGS to compute the set of gene clusters over the genomes.

Annotation Assignment based on Gene Cluster

In this experiment, we used Annotation Confidence Score (ACS) [23] to assign
annotation to a given gene cluster. ACS is a annotation scoring system for exist-
ing genome annotation. ACS computes a confidence score to each annotation of a
target genome by comparing annotations of a set of selected reference genomes.

Methods

1. Ran ACS with each genome as a target genome and the rest of the genomes as
reference genomes.

2. Assumed that there is no annotation for the ith genome from the gene cluster
prediction experiment

3. For each gene of the ith genome of each gene cluster,

a. Compared ACS scores of the corresponding genes of the rest of the genomes.
b. Selected the annotation with the highest ACS score.
c. Assigned the selected annotation to the gene.

Results

Given a draft or newly sequenced genome, one of the most common ways to infer
functions of genes is based on sequence homology. BLAST often serves as a pop-
ular tool to make this homology based inference. However, often in this type of
inference, there are occasions where it is difficult to assign annotation with con-
fidence due to weak homology or multiple matching genes. The context of gene
clusters provides more confidence in such cases. Consider a case where certain
genes are observed as a tightly conserved cluster over multiple genomes and one
of the genes has a weak match in another genome. In this case, we can infer, with
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more confidence, that the weakly matched gene in another genome has similar func-
tion. Alternatively, when there is a tightly conserved gene cluster over multiple
genomes, one or more genes in the cluster may have multiple matching genes in
another genome. In this case, since the proximity information is utilized when com-
puting gene clusters, the algorithm is able to pick the best gene; Hence resulting in
more confident assignment of annotation. Here we provide a few examples of such
clusters reported in the previously described experiment.

Case 1 : Gene clusters with weak pairwise matches

Here is a gene cluster of the sigma E heat shock sigma factor cluster [24] con-
served over the six genomes, rpoE-rseABC. These four genes are tightly conserved
in E. coli, S. flexneri, S. typhimurium, Enterobacter, and Y. pestis and BLAST
E-values are very small. However, in H. influenzae, BLAST E-value of rseC to
its orthologous genes in the rest of genome is much higher for this specific gene.
Also, unlike in the other five genomes, rseC is remotely located from the rest of
the genes on this genome. Despite the high e-value and remoteness, the context of
gene cluster suggests a clear indication that they should be clustered as functionally
coupled genes. To verify, a profile HMM for rseC genes from the five genomes was
built using HMMER [25]. Then, the program, hmmsearch was invoked to search
rseC from H. influenzae against the model and the e-value of the hit provided by
HMMER was significantly low, hence, supporting the case.

Case 2: Gene clusters with multiple matches

dmsABC is a gene cluster responsible for encoding anaerobic dimethylsulphoxide
reductase [26]. All of the three genes are very tightly conserved among the six

Fig. 7 Pictorial representation of dmsABC cluster over six genomes. Darker shaded shapes repre-
sent the orthologous copies and lighter shaded shapes represent the paralogous copies. The figure
is just a pictorial representation and it is not drawn to scale



52 V.R. Pejaver et al.

genomes in terms of sequence similarities and relative positions. Interestingly, these
genomes happen to have one or more paralogs to at least one of dmsA, dmsB, and
dmsC. S. flexneri, S. typhimurium, and Y. pestis actually have a paralogous cluster
that is tightly conserved and most of the paralogs have high sequence similarities
(Fig. 7). In case of the dmsB genes of E. coli and S. typhimurium, they have strik-
ingly high sequence similarity both in terms of identity (over 95%) and E-value.
When there are multiple matches that have such high sequence similarity, it is
often very difficult to select a correct pair with a simple homology based approach.
Consideration of gene cluster context can often help in this situation. The proposed
algorithm was able to predict dmsABC cluster with only orthlogous copies over the
six genomes.

Summary

In this chapter, we have briefly discussed methods that enable the prediction of
gene clusters. Each of these methods have unique approaches that provide unique
advantages. They have been summarized in Table 1 The approach for the KEGG
database as outlined by Fujibuchi et al. is deterministic in nature and is rigorous
in its approach. However, it suffers from a lack of scalability. This problem is cir-
cumvented by the GCQuery algorithm. However, a query-based strategy assumes
the knowledge of known clusters to begin with and may thus, be a limiting factor
when it comes to the discovery of novel gene clusters. The probabilistic approach
prescribed by Zheng et al. seems to strike a balance between the above approaches.
However, probabilistic approaches are based upon assumptions that may result in

Table 1 Summary of existing approaches to detecting gene clusters

Method Section Overview

KEGG graph-based
approach [7]

Graph-based
approach

Starts with gene clusters conserved across a pair of
genomes (obtained by graph comparison) and
extends them to multiple genomes by P-quasi
linkage analysis

GeneChords [13] Evolutionary
model-based
approach

Uses a stochastic evolutionary model for the
conservation of gene clusters to identify
potentially related genes

EGGS [17] EGGS: gene pattern
prediction based
on genome
context

Detects gene clusters conserved across a pair of
genomes by iteratively merging PCBBHs, PCHs,
BBHs and pairwise matches

Mutable pattern
model approach
[20, 21]

Gene cluster
prediction based
on a mutable
pattern model

Uses a pattern mining technique to predict gene
clusters across multiple genomes

GCQuery [22] Query-based
approach

Uses a hypergeometric distribution to model the
occurrence of conserved gene clusters within a
given window, across multiple genomes
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conservative results. Therefore, the use of a method to detect conserved gene clus-
ters across multiple genomes greatly depends on the requirements of the researcher.
The decision to use an appropriate method for cluster detection solely depends on
whether a researcher prefers accurate coverage or a lesser runtime for a larger exper-
iment or the application of evolutionary constraints. However, with all their merits
and demerits, the above methods have certainly paved the way for breakthroughs in
structural, functional and comparative genomics and have proved to be useful tools
in the study of the co-localization of genes in bacterial genomes.

The detection of conserved gene clusters is still an open area of research and we
still have not reached the full potential of this domain yet. Apart from shedding light
on genomic structure and evolutionary patterns, gene clusters provide useful insights
into gene function and serve as good additions to known annotation methods. We
have shown that gene clusters can be really effective when resolving ambiguities
obtained by the simple homology method. When genes show really weak sequence
similarity or show matches to multiple genes, gene clusters provide greater confi-
dence in assigning function. Additionally, novel genes found within known clusters
can also be annotated based on their neighbors. Thus, improved solutions to the
gene cluster detection problem can be regarded as major comparative genomics
approaches for genome annotation and genome-wide function prediction.

We have discussed some of the benefits of using genome context information
for annotation by mainly focusing on the problem of gene cluster detection. It
becomes obvious that methods utilizing genome context can serve as a complemen-
tary alternative to homology-based methods. A good example of using such genome
context information for characterizing gene functions is MSOAR [27], which makes
ortholog assignments based on genome rearrangement information. We expect such
methods to be more prominent and widely used for gene function assignment in the
years to come.
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Functional Inference in Microbial Genomics
Based on Large-Scale Comparative Analysis

Ikuo Uchiyama

Abstract By virtue of the recently accumulated microbial genomic sequence data,
we can utilize this large amount of information for predicting and understand-
ing microbial gene functions and microbial life through comparative analysis of
variously related genomes. Here, I introduce basic concepts and issues in micro-
bial comparative genomics including ortholog analysis and core genome analysis,
and introduce our approach to large-scale comparative genomics focusing on our
database, Microbial Genome Database for Comparative Analysis (MBGD) and
related methods and tools.

Introduction

Since the completion in 1995 of the first and second whole-genome sequences of
cellular organisms, i.e., those of Haemophilus influenzae and Mycoplasma genital-
ium [1, 2], comparative genome analysis has played a central role in understanding
microbial life from a genomic perspective. Indeed, the first comparison of the com-
pleted H. influenzae genome and the then incomplete Escherichia coli genome
was conducted soon after the first whole-genome sequence became available [3].
Subsequently, the minimal-gene-set concept was proposed on the basis of compar-
isons between the genome sequences of H. influenzae and M. genitalium [4]. During
these initial studies, the problem of distinguishing orthologs from paralogs was
recognized as being important for identifying equivalent genes between genomes
through exhaustive homology analysis.

The terms “orthology” and “paralogy” were originally introduced into the
molecular evolution field by Fitch in 1970, in order to denote different types of
homologous relationships [5]. Orthology is a type of homology that is derived from
speciation, while paralogy is a type of homology that is derived from duplication.
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This distinction is essential in molecular phylogenetics, since the phylogeny of a
given set of orthologs, by definition, always coincides with the species phylogeny.
More importantly in the genomics context, gene functions are typically conserved
between orthologs, whereas paralogs generally acquire different functions; this is a
consequence of the famous concept of “evolution by gene duplication” proposed by
Ohno in 1970 [6]. Therefore, ortholog identification is crucial for identifying a pair
of genes that have the same function in different genomes, which is a central task in
genome annotation.

As of the end of 2009, more than 1,000 genomic sequences have been deter-
mined, and the number of completed sequences continues to grow. Ortholog identi-
fication has been proved to be effective and is now routinely used in the genome
annotation process. However, ortholog identification is not just similarity-based
prediction of individual gene functions; it can also serve as a basis for any kind
of comparative genomics study, whose goals include extracting useful information
for understanding the diversity and evolution of living systems.

Here, I focus on microbial (mainly prokaryotic) genome comparison. Thanks
to their small genome sizes with a relatively simple organization, prokaryotic
genome sequences have accumulated rapidly, and although more complex eukary-
otic genomic sequences have also accumulated recently, prokaryotic genomics is
still at the forefront of large-scale comparative genomics studies. This is partly
because of the large diversity of microbes whose habitats span a broad range of
environments, and partly because of their dynamic genome evolution due to hori-
zontal gene transfers between distantly related organisms. Moreover, the emerging
field of metagenomics, which analyzes sequences of collective microbial genomes
obtained from environmental samples, is now addressing the issue of elucidat-
ing the structure, function and evolution of microbial communities in their natural
habitats.

In this chapter, I introduce some of the recent problems of microbial genomics as
well as the basic concepts and methodologies of comparative genomics, including
ortholog analysis, and then I introduce our approach to this problem, focusing on
our database, the Microbial Genome Database for Comparative Analysis (MBGD)
[7, 8], and some related methods and tools.

General Schemes in Comparative Genomics

As described above, the number of completed microbial genome sequences has been
increasing during the past decade; more than 1,000 genomes are now completed,
and the number continues to grow (Fig. 1a). Reflecting the variety of relation-
ships between microbes and human life, the motivations behind the sequencing
projects have also been diverse, including medical, biotechnological, agricultural
and environmental concerns (Fig. 1b). In addition, there are thousands of ongo-
ing sequencing projects, and those recently launched include large-scale microbial
genome projects, such as the Human Microbiome Project (HMP) [9] and the
Genomic Encyclopedia of Bacteria and Archaea (GEBA) [10], both of which are
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generating sequence data on tens or hundreds of genomes covering a broad range of
organisms (Fig. 1b).

However, when we look at the taxonomical breakdown of the completed
genomes, the number of unique species is about 700, and the number of unique
genera is less than 400 (Fig. 1a). Therefore, the majority of the newly sequenced
genomes are closely related to some genomes which have already been determined.
On the other hand, the higher taxonomic ranks, i.e., phyla, classes and orders, appear
to be almost saturated. However, when we look at the figure on a smaller scale
(Fig. 1a, inset), we can see that the number of phyla is still increasing gradually. In
fact, it is considered that more than 99% of microbes from environmental samples
are unculturable, and our knowledge of the extent of microbial diversity even on
the phylum level is still very limited. Therefore, the challenge is to extract useful
information from the vast amount of genomic sequence data, taking into account
the taxonomic relatedness among organisms.

Figure 2 illustrates the general scheme of the extraction of various types of
information from comparisons of differently related genomes. For comparisons of
closely related genomes, we can construct nucleotide sequence alignments from
which we can enumerate polymorphic sites in order to understand the elementary
processes of genome evolution or extract well-conserved regions in order to infer
functionally important sites. For more distantly related genomes, it may become
difficult to align nucleotide sequences correctly, but we can still identify the con-
servation of gene order on a chromosome (hereafter, we use the term “synteny” to
refer to the concept of gene order), from which we can infer mid-term evolutionary
process. For genomes which are further distantly related, it becomes difficult to iden-
tify syntenic conservation, but we can still identify orthologous relationships and

CGATGACACGAT 
CGATGGC-CGAT 
CGATAACCCGAT

Fig. 2 Various approaches to comparative genomics for variously related organisms
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use this information to infer gene functions. Moreover, gene neighborhood relation-
ships among several genes may be conserved even between such distantly related
organisms, which strongly suggests functional coupling among these genes.

There are several methods and tools for calculating [11–14] and visualizing [15–
17] a genomic sequence alignment (including ours [18]), but this is beyond the scope
of this chapter. Here, I focus on the issue of functional inference based on genome
comparisons among distantly or moderately related organisms.

Functional Inference Based on Comparative Genomics

Comparative sequence analyses, including similarity searches (e.g., by BLAST
[19]) and motif searches (e.g., by InterProScan [20]), are the most commonly used
approach for gene function prediction. In fact, although protein or gene function was
traditionally described only in natural languages that have quite complex seman-
tics, the sequence-similarity-based approach has successfully been applied to the
problem of functional inference as an almost universal tool. The basic logic behind
this approach is quite simple: transferring the annotation from similar sequences
identified in the database to the query sequence. However, determining what infor-
mation can be allowed to be transferred and what cannot is generally not easy,
and the actual annotation process usually requires a more complex manual task
called “curation.” Recent developments in functional genomics resources, such
as GeneOntology (GO) [21] and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [22], have greatly improved the situation and facilitated the computeriza-
tion of the annotation process. In GO, the terms (or concepts) required to describe
various gene functions are arranged in a directed acyclic graph, in which each node
represents a term and each edge represents a relationship between terms, where
types of relationships include is_a, part_of and regulates. To address the
ambiguity of the term “gene function,” there are three top-level categories in the
GO hierarchy: molecular function, biological process and cellular component. This
semantic structure helps overcome the difficulty in dealing with complex gene func-
tions. On the other hand, KEGG represents molecular functions using pathway map
diagrams, which are more intuitive for human cognition. KEGG also provides a hier-
archical gene function classification scheme that is much simpler than that of GO,
which is, in many cases, practically more useful for microbial genome annotation
and comparison.

Advanced similarity-based methods for functional inference have also been
developed. Traditionally, many research endeavors have focused on the issue of
improving the sensitivity of similarity searches; i.e., the possibility of detecting
more subtle similarities. Methods using a scoring system based on profiles [23],
the position-specific scoring matrix (PSSM) [19, 24] and the profile hidden Markov
Model (HMM) [25] are the most important advancements in this direction and have
been successfully applied to the identification of distantly related proteins of sim-
ilar folds. However, although the use of such a sensitive method can allow the
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prediction of functional similarities even between weakly similar sequences, the
more distantly related two proteins are, the more difficult it generally becomes
to infer the exact function, because homologous proteins can acquire versatile
functions during the course of evolution. Nonetheless, identifying locally con-
served motifs that are likely to be related to functionally important sites, such as
ligand-binding sites and catalytic active sites, often allows researchers to infer the
functions of distantly related proteins in detail. In any case, however, this approach
is applicable only to the inference of biochemical molecular functions, and is dif-
ficult to apply to the prediction of biological functions in the context of cellular
processes.

In this regard, comparative genomics based on orthology analysis is another
important approach to this issue. The basic assumption behind this approach is
that orthologs have an equivalent function in different organisms. This assump-
tion allows the user to transfer annotations from one gene to its orthologs, not
only in terms of biochemical functions, but also in terms of biological functions.
Moreover, this scheme is simple enough to be easily extended to the whole genome,
and whole-genome comparative analysis provides additional “genomic context”
information, which allows more powerful functional inference. For example, if a
genome contains the entire set of genes encoding a certain biochemical pathway,
this strongly indicates that this genome contains the entire pathway, whereas if the
genome contains only one of the genes in the pathway, it is unlikely that the genome
contains that pathway, and therefore it is likely that the gene has lost its function
under this pathway and probably plays a different role, even if the similarity to the
gene of known function is sufficiently high. Alternatively, if the genome contains
all but one of the genes in the pathway, it is likely that the genome has this path-
way, and some gene that is not orthologous to the missing gene may play the role
of this missing gene [26]. Such a phenomenon, called “non-orthologous gene dis-
placement” [27], apparently represents one of the limits of ortholog analysis, but this
limit can often be overcome by an inference using the genomic context described
above, together with a more detailed analysis based on motif or profile analysis (see
ref. [28] for various examples of this type of analysis).

The basic idea behind the above consideration is that gene function can be
defined in the context of molecular interactions, and that genes which function
together should, in principle, coexist in organisms that have this function. This idea
has led to the establishment of a function prediction method called the “phylogenetic
pattern (or profile) method” (Fig. 3a) [29]. A phylogenetic pattern is defined as a
binary vector for each orthologous group that represents the presence (1) or absence
(0) of genes in each genome, and, in this method, two orthologous groups are pre-
dicted to have a related function if they have similar phylogenetic patterns. Several
other methods that predict functional linkages between genes have also been inves-
tigated, including the domain fusion method [30, 31] and the gene neighborhood
method [32]. In the domain fusion method (also known as the “Rosetta Stone
method”) (Fig. 3b), when two proteins (domains) are fused into a single gene in
a genome, the fusion protein is considered to be evidence (Rosetta Stone sequence)
of a functional linkage between the two fused proteins. In the gene neighborhood
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genome1 genome2 genome3 genome4 genome5 genome6

a

b c

genome1 genome1

genome2 genome2

Phylogenetic profile

Domain fusion Gene neighborhood

Fig. 3 Prediction of functional links between genes by comparative genomics approaches. (a)
Phylogenetic profile method, (b) domain fusion method, (c) gene neighborhood method. Genes
with the same pattern represent orthologs among different organisms

method (Fig. 3c), two genes that are identified as neighbors in several differ-
ent genomes are considered to have related functions. This method is especially
effective in comparisons of prokaryotic genomes, where functionally related genes
often form operons. The prediction accuracy of this type of analysis can be further
improved by combining it with multiple methods. For example, STRING [33] uses
the above three methods along with additional methods, including co-expression
(genes that have similar expression patterns), text-mining (co-occurrence of gene
names in scientific texts) and simple homology (homologs of interacting genes),
and evaluates the reliability of the interaction by combining multiple sources of
evidence.

The inference methods using the genomic context are sometimes called “non-
homology methods” [34], since they do not directly use homology to infer functions,
as in the traditional homology method. However, they do use homology in an indi-
rect manner. In fact, these methods are based on the assumption that functional
linkages between proteins in one organism are conserved in different organisms, and
ortholog identification is a crucial part of identifying corresponding genes between
organisms.

Ortholog Classification Problem

As described in the Introduction, “ortholog” and “paralog” are terms that are defined
on the basis of evolutionary events that generate homologous genes, i.e., specia-
tion and duplication, respectively [5]. Therefore, orthology and paralogy are binary
relationships between two genes, and whether two given homologous genes are
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speciation-1

duplication-1

duplication-2

speciation-2

A1
A3A2 B1B3 B2 C2 C1

Organism A Organism B Organism C

LCA of organisms
A,B,and C

LCA of organsisms
A and B

Fig. 4 The ortholog-paralog distinction problem. Pairs of genes indicated by the same line type,
such as (A1, B1), (B2, C2) and (A3, B3), are orthologs, since they originated as a result of a spe-
ciation event. On the other hand, (B2, C1) and (B2, A3) are paralogous, since they originated from
a duplication-1 or -2 event, respectively, while (C2, A3) is orthologous, since it originated from
the speciation-1 event. To define orthologous relationships among multiple organisms, one must
consider the speciation of the last common ancestor (LCA) of the target organisms as the reference
speciation event and separate the paralogous lineages generated by duplications before this specia-
tion. In this case of the three organisms A, B, and C, speciation-1 is the reference speciation event,
and there are two orthologous groups, (A1, B1, C1) and ([A2, A3], [B2, B3], C2). The paralogous
genes (B2, C1) are called outparalogs, since they were separated by a duplication before the given
speciation event, while the (B2, A3) genes are called inparalogs, since they were separated by a
duplication after the given speciation event [36]. In general, outparalogs are classified into different
orthologous groups, whereas inparalogs are classified into the same orthologous group and form
many-to-many orthologous relationships. Note that these definitions are dependent upon the set of
target organisms

orthologs or paralogs can be determined unambiguously by examining whether the
type of event that generated them is speciation or duplication, provided that the
phylogenetic gene tree and species tree are exactly known (Fig. 4). For example,
in Fig. 4, the gene pairs (A1, C1) and (B2, C2) are orthologs because both of them
originated from a speciation event (speciation-1), whereas (A1, A2) and (B2, C1) are
paralogs because both of them originated from a duplication event (duplication-1).

Since orthology is a binary relationship, it is natural that orthology is defined in
pairwise genome comparison, and the simple-criterion bidirectional best-hit (BBH)
is often used in such a situation: two genes, a and b in genomes A and B, respectively,
are BBH if a is the best-hit of b in genome A and b is the best-hit of a in genome
B. This strategy for identifying orthologs is very simple and does not require any
knowledge of species phylogeny, and yet it typically gives results in good agreement
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with those of more complicated methods. Therefore, the BBH strategy has been
widely used for the genome-wide identification of orthologs.

However, there are some cases where the BBH criterion misidentifies the cor-
rect orthologs. First, the BBH strategy generally assumes one-to-one orthologous
relationships, whereas many-to-many orthologous relationships can be generated by
duplication in each lineage after speciation. The BBH strategy can misidentify some
orthologous relationships, although in such cases, all pairs of homologous genes
between the two species should be orthologous since they all originated from a sin-
gle speciation event. For example, both (A2, C2) and (A3, C2) in Fig. 4 are orthologs
because both originated from speciation, but one of the relationships can be missed
by the BBH strategy when one of the scores is significantly smaller than the other.
According to the terminology proposed recently [35, 36], paralogs that are generated
as a result of duplication before and after a given speciation event are called “outpar-
alogs” and “inparalogs”, respectively (Fig. 4); thus, the lineages of outparalogs, but
not inparalogs, should be separated in the ortholog identification process. A solu-
tion to this problem requires a clustering procedure that incorporates inparalogs into
an orthologous group and correctly distinguishes them from outparalogs. Inparanoid
[35] was the first to address this problem, and gives one of the best-known solutions.

Second, paralogous genes may become a BBH pair when both of their respective
orthologs have been lost, although a single gene-loss event generally does not make
them a BBH pair. For example, in Fig. 4, B1 and C2 can become a BBH pair if
both B2 and C1 are lost during the course of evolution. This problem is difficult
to overcome when using only two genomes, but can be overcome by using a third
genome [37].

Third, although orthology is originally defined on a pairwise basis, for simulta-
neous comparison of multiple genomes, it is necessary to derive sets of orthologs, or
orthologous groups, among multiple genomes. The single-linkage clustering algo-
rithm or a related method is often used for constructing homologous gene groups, or
families, from pairwise homology relationships. The rationale behind this method
is that the homology relationship is transitive, i.e., the homolog of a homolog of
a certain gene is a homolog of that gene. However, the orthology relationship is
not necessarily transitive [38], and, therefore, it is not clear how to extend binary
BBH relationships into an orthologous relationship for multiple genomes. Some
sophisticated graph-based clustering algorithms have been developed to improve
this situation. For example, the Markov Clustering (MCL) algorithm [39] eval-
uates transitive similarities with a probability measure, instead of just assuming
transitivity, using the equilibrium probabilities of a Markov chain defined on the
similarity graph. The MCL algorithm is applied in a protein classification program,
TribeMCL [40], which is also successfully applied in an ortholog classification
program, OrthoMCL [41].

Alternatively, a phylogenetic tree-based algorithm is generally more accu-
rate than a graph-based algorithm with BBH relationships for identifying
ortholog/paralog relationships in multiple genomes. Here, an orthologous group is
defined as a set of homologous genes that are derived from the speciation event in
the last common ancestor of the target set of organisms. Therefore, one can identify
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orthologous groups by first assigning a speciation or duplication event to each node
of the gene phylogeny and then identifying the nodes corresponding to the target
speciation event. The plausible assignment of speciation/duplication events can be
done by a procedure for reconciling the gene tree with the species tree [42–44],
provided that the exact topologies of both trees are known. One of the drawbacks
of this approach is that constructing an accurate phylogenetic tree is generally not
easy and requires a long computation time for genome-scale analysis. It is also dif-
ficult to assume the knowledge of the exact topology of the species tree. Incorrect
assumption of the tree topology for either the gene tree or the species tree leads to
incorrect assignment with many more duplication events than in reality. Therefore,
although the theoretical advantage of tree-based methods over BBH-based meth-
ods is obvious, a straightforward implementation of this approach is not suitable
for large-scale automatic classification. Instead of using a precise tree reconciliation
approach, some programs [45] including our own, DomClust [46] (see below), uses
a simpler “species overlap” criterion where only intraspecific paralogous genes are
considered to be excluded from an ortholog cluster. One benchmark test concluded
that a species reconciliation method cannot outperform a species overlap method
even when a trusted species tree can be assumed [47].

Horizontal gene transfer (HGT) is quite a common event in prokaryotic evo-
lution, but is ignored in the traditional ortholog/paralog distinction scheme. HGT
is another event that generates homologous genes within a genome, and the exis-
tence of HGT nullifies the above ortholog/paralog assignment rule. In fact, Fitch
introduced another term, “xenolog”: two homologous genes are defined as xenologs
when their gene history since the time of their common ancestor involves an HGT
event [38, 48]. However, although several methods have been developed to address
the issue [49, 50], it is generally not easy to identify HGT events exactly, even when
the true topologies of both the gene tree and the species tree are known.

However, as discussed above, an orthology relationship is typically used for func-
tional inference through “annotation transfer” between orthologous proteins, and
knowing the exact evolutionary history may not be so important for this purpose.
In fact, two genes sharing highly similar sequences can be considered to share the
same function, whether or not these genes experienced horizontal transfers during
the course of evolution; such a situation may arise when the original orthologous lin-
eage is replaced by a functionally equivalent xenologous gene [51]. In such cases, a
simple BBH strategy or a species overlap strategy may be sufficient, or even more
effective, than more complex tree-based classification schemes.

Domain fusion/fission events are frequently seen in both prokaryotic and eukary-
otic evolution, and are yet another factor that complicates the ortholog classification
problem. Since a domain fusion/fission event violates the one-to-one correspon-
dence between orthologs, a simple BBH strategy cannot identify the correct
relationship. Moreover, fusion proteins often cause serious trouble in the cluster-
ing procedure by connecting independent, non-homologous domains. To avoid this
problem, fusion proteins should be split into domains. Another solution is to con-
sider only global matches (i.e., the alignment coverage must be above a certain level)
as orthologous relationships. Interestingly, domain fusion events can also be used
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for inferring functional relationships between fused proteins [30, 52], and automatic
detection of fusion events is also useful for identifying such interesting cases. On
the other hand, the strict criterion that takes into consideration only global matches
always classifies genes with different domain organizations into different groups.
This strategy might be more useful for reliable annotation.

Many methods and databases for orthology identification have been developed so
far. In the next section, we introduce some of these databases, mainly focusing on
those useful for microbial comparative genomics. A more comprehensive list which
includes those useful for eukaryotic genome comparisons can be found in a recent
review [53].

Ortholog Databases for Microbial Comparative Genomics

Table 1 summarizes the resources useful for microbial comparative genomics.
Besides collections of genome project information such as the Genomes Online
Database (GOLD) [54] and primary genomic sequence databases such as NCBI
Genomes (Table 1A), many types of databases geared toward comparative genomics
have been developed, and these databases require ortholog assignment among
organisms as a basis for comparison (Table 1B).

The clusters of orthologous groups (COGs) database [55], established in 1997,
is probably the best-known database of orthologous groups in microbial genomes.
The BBH strategy is used for constructing the COG database at the step of identify-
ing orthologous gene pairs, which are subsequently extended to orthologous groups
among multiple genomes through a unique clustering algorithm based on triangles
that consist of three consistent BBH relationships [55]: two triangles are merged
if they share a common side. To overcome the problems associated with BBH
described in the previous section, however, the overall construction process must
be implemented in conjunction with several additional procedures, which include
the addition of pre-identified species-specific inparalogs, the splitting of proteins
into multiple domains if required, and the splitting of large groups into appropri-
ate small groups by manual inspection of multiple alignments and phylogenetic
trees [56]. The latest version of the COG database, released in 2003, was con-
structed through an incremental process, and comprises 4,373 COGs generated from
66 genomes [57]. Although the COG classification is still widely used for various
genome analyses, the database itself has not been updated since 2003.

Several other ortholog databases have been constructed through the curation
processes, e.g., TIGRFAMs [58], KEGG Orthology (KO) [59, 60], HAMAP
[61] and FIGfams [62]. These databases aim at collecting “functionally equiva-
lent homologs” or “equivalogs” [58] useful for genome annotation, rather than
identifying true evolutionary orthologs. Although these databases do not ensure
comprehensive classification, they do provide reliable classification.

On the other hand, other databases have been constructed by automated proce-
dures, such as Inparanoid [63], OrthoMCL-DB [64] and our database, MBGD [8].
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Inparanoid is a database of orthologous relationships between two genomes identi-
fied by the Inparanoid program [35], which is an improvement on the BBH strategy
for correctly identifying orthologous groups that contain inparalogs. Although the
Inparanoid program can only be used for pairwise genome comparisons, the creators
of this program later developed MultiParanoid, a program that can construct orthol-
ogous groups among multiple genomes by merging multiple pairwise orthologous
groups generated by the Inparanoid program [65]. OrthoMCL-DB [64] is a database
constructed by means of the OrthoMCL program [41], which uses an improved BBH
strategy in combination with an improved clustering algorithm, TribeMCL [40],
and is applicable to multiple genomes. However, these databases classify mainly
eukaryotic genomes and contain none (Inparanoid) or a limited set (OrthoMCL-
DB) of prokaryotic genomes. Recently, large-scale ortholog databases that contain
hundreds of prokaryotic genomes have been developed, including EggNOG [66]
and OMA [67]. EggNOG was constructed based on the COG database; the trian-
gular linkage clustering method used in the COG construction procedure was used
to extend each COG group and to construct new groups that were not assigned to
any COG.

In addition to the general ortholog databases, there are some integrated sys-
tems providing various functions for the comparative analysis of microbial genomes
(Table 1C). Such databases include CMR [68], IMG [69] and MicrobesOnline [70].
Our database, MBGD [8], can also be classified into this category. Another type of
database is an integrated database of genomes and metabolic pathways or interaction
networks, such as KEGG [22] and BioCyc [71] (Table 1D). Such databases inte-
grate various resources and are extremely useful for genomic data annotation. The
SEED project, which is an annotation system for thousands of genomes based on
the subsystem approach [72], is another effort in a similar direction. These systems
are also reliant on ortholog identification for integrating genomic data and path-
way/subsystem information. Functional prediction methods using genomic context
information, such as STRING [33], Phydbac [73] and Predictome [74], also depend
on ortholog identification as a fundamental basis (Table 1E). Actually, many of these
databases appear not to be actively updated, possibly because of the discontinuance
of the COG database updating; the exception is STRING, which is based on the
EggNOG database.

Before introducing MBGD in detail, I would like to briefly describe in the follow-
ing section the ortholog classification method that is used in the MBGD database,
named DomClust, which was developed to overcome many of the drawbacks of the
BBH-based methods described in the previous section.

DomClust: Hierarchical Clustering Algorithm for Ortholog
Group Construction at the Domain Level

As an ortholog grouping method, DomClust adopts an intermediate approach
between the graph-based and the tree-based approach. Instead of using BBH,
DomClust uses as input all-against-all similarity search results, and applies a
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traditional hierarchical clustering algorithm, UPGMA. The most significant feature
of DomClust is that it can detect domain fusion or fission events during the course
of clustering, and splits clusters into domains if required. The subsequent proce-
dure splits the resulting trees, such that intra-species paralogous genes are divided
into different groups so as to create plausible orthologous groups. As a result,
the procedure can split genes into the domains minimally required for ortholog
grouping.

In the DomClust algorithm, similarity search results are represented as a similar-
ity graph, G=(V,E), where V is the set of protein sequences (vertices) and E is the
set of homologous relationships identified by BLAST or other methods (edges). The
clustering procedure is basically a successive contraction of this graph by UPGMA
[75]. At each iteration, the procedure takes the best-similarity edge and replaces the
vertices connected by the best edge with a new vertex (a merged cluster). In addi-
tion, for each vertex connected to the merged vertices (e.g., S3 in Fig. 5a), it also
merges the edges that join these vertices, assigning the averaged score. The proce-
dure is repeated until the best score becomes worse than the given cutoff, c. While
the usual UPGMA requires a complete similarity matrix, many edges are missing in
our similarity graph, G, due to the elimination of insignificant similarities. When one
of the two edges is missing, we assign a fixed score (parameter), m (<c), to the miss-
ing edge for calculating the average. This modification reduces the computational
cost of UPGMA from O(|V|2) to O(|E|).

To address domain fusion/fission events, we added a process for domain split-
ting to the basic procedure outlined above (Fig. 5a, b). At each iteration with the
best edge sim(s1, s2), a merged vertex was split into at most 5 vertices according
to the aligned segment of the best-scoring edge: the aligned segment itself and the
left and right overhangs on either of the sequences (or clusters). For each vertex
s3 connected by the best edge, the edges sim(s1,s3) and sim(s2,s3) were recon-
nected to one or more of the new segments, and the information for these edges
was updated appropriately, by averaging the alignment lengths as well as the scores
over all of the relationships included in the merged edges. The resulting structure
is a directed acyclic graph representing overlapping trees, as shown in Fig. 5c. On
this graph, one can split genes into the domains minimally required for ortholog
grouping by specifying a set of internal nodes as roots. To do this, one can carry
out tree reconciliation between the gene tree and the species tree [42, 76], but
this requires the assumption that there are no horizontal transfers and that both
the gene tree and the species tree are exactly known. Instead, here we adopted
the simpler “species overlap” criterion: each root node is recursively cut until the
two clusters that are merged at that node share no or few intra-species paralogous
genes (Fig. 5d). More precisely, a root node with two child nodes, A and B, is cut
when |Ph(A ∩ Ph(B)|/ min(|Ph(A)|, |Ph(B)|) > p with a given cutoff parameter, p,
where Ph(A) denotes the set of species contained in cluster A (phylogenetic pattern).
Strictly speaking, the parameter p must be 0 according to the definition of orthologs,
but actually we found that a relaxed condition, around p = 0.5, often generated a
more plausible classification and better coincided with the COG classification.
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Fig. 5 Overview of the domain-splitting procedure in the DomClust algorithm. (a) A similar-
ity graph that has 7 clusters (vertices) containing 12 sequences, which are constituted from six
domains, (A–F), each of which is 100 residues long. The numbers in brackets on each edge indi-
cate the coordinates of the aligned segments. The best similarity edge, sim(s1,s2), that is selected
for merging is indicated by a thick line. At the bottom is a schematic illustration of the alignment
between s1 and s2. (b) A similarity graph, which shows the situation after the two clusters have
been merged and split. (c) The resulting clustering tree. The process of merging ABCD and BCDE,
at the center of the figure, corresponds to the process shown in (a) and (b). (d) Orthologous groups
of RNA polymerase beta (RpoB) and beta’ (RpoC) subunits, as an example of hierarchical clus-
tering trees created by the DomClust program. Each tree corresponds to an individual domain.
(e) Schematic illustration of the gene structures of RpoB and RpoC in the selected genomes. (f)
Comparison of the various clustering methods with the COG recovery test

Figure 5d shows an example of DomClust classification containing domain
fusion or fission events: the orthologous groups of RNA polymerase beta (RpoB)
and beta’ (RpoC) subunits. These subunits are fused into one gene in the genomes
of two strains of Helicobacter pylori, 26695 (Hpy) and J99 (jHp), while, in most
archaea, each subunit is further divided into two genes. The algorithm first joined
the fused genes of Hpy and jHp, and then divided the cluster into two domains
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when joining the cluster with the RpoC ortholog of the Campylobacter jejuni (Cje)
genome; the remainder domain was subsequently joined with the RpoB ortholog
of Cje. By repeating the procedure, DomClust finally identified five orthologous
domains (Fig. 5e).

The algorithm was evaluated based on the COG recovery tests [46], where the
orthologous groups were regenerated using the same set of sequences that were
used for COG construction, and the resulting classification was evaluated according
to the agreement with that of the COG database. Three other clustering methods
were tested for comparison, including single-linkage clustering (Slink), triangular
linkage clustering (TriLink) (our implementation of the basic procedure for con-
structing the original COG database), and the TribeMCL algorithm (which has been
used for the construction of the OrthoMCL database). In addition, we also tested
the DomClust algorithm without a domain-splitting procedure (gUPGMA). In each
test, we first optimized the parameters to those giving the best agreement with
the COG recovery test, and compared the results of different clustering methods.
The outcome is shown in Fig. 5f. DomClust recovered 1,060 out of 2,360 (44.9%)
well-defined COGs exactly (Exact). If we consider two OGs having the same phy-
logenetic patterns as equivalent (taking into account only the presence/absence of
orthologs and ignoring the number of inparalogs), 1,429 (60.6%) OGs are correctly
recovered (PhyloPat); if we consider two OGs sharing at least 80% of each of their
member genes as equivalent, 1,685 (71.3%) OGs are correctly recovered (Match80).
For any of the equivalency criteria, DomClust showed the best agreement with the
COG database, followed by gUPGMA, TribeMCL, TriLink and Slink, although the
difference between gUPGMA and TribeMCL was relatively small (Fig. 5f). The
performance superiority of DomClust over gUPGMA indicates that the domain-
splitting procedure is indeed effective for reconstructing the COG classification. On
the other hand, COG groups often include many apparent outparalogs that should
not be included in the same ortholog group by definition. This tendency seems
to have emerged in the above result as a difference between Exact and PhyloPat,
which should reflect the difference in the number of inparalogs between the results
of different classification systems. In this sense, we think PhyloPat gives a better
indication of the classification performance than Exact.

Actually, benchmarking ortholog classifications is quite a difficult task, in that
the way classification results should be evaluated is still a debatable issue. Recently,
several assessments of different ortholog classification schemes have been done in
terms of functional equivalence and/or phylogenetic relationships [77–79]. In these
tests, COG (or its eukaryotic version, KOG) did not necessarily give a better result
than other methods. In fact, in some tests, COG gave worse results than the simpler
BBH methods [77, 79]. This is partly because of the aforementioned drawback of
COG, i.e., the inclusion of many apparent outparalogs that cause many false posi-
tive assignments. On the other hand, most of these assessments examined pairwise
orthologous relationships rather than the all the members of the orthologous groups,
as in our COG recovery test. As a result, these assessments could not evaluate the
clustering quality well. In fact, the way of evaluating orthology assignment should
depend on the purpose of the analysis: accurate identification of orthologous gene
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pairs is generally sufficient to ensure an accurate transfer of functional annotation,
but is not necessarily sufficient for phylogenetic pattern analysis; the latter requires
all the information on the orthologous groups.

MBGD: Microbial Genome Database for Comparative Analysis

MBGD is a microbial genome database for comparative analysis established in
1997. It is not simply an ortholog database where precalculated orthology relation-
ships are stored, but a platform for large-scale comparative genome analysis based
on comprehensive ortholog classification [7]. MBGD uses the DomClust program
to automatically construct orthologous groups. Hence, MBGD is comprehensive
and routinely updated. In addition, unlike other automatically constructed ortholog
databases, MBGD allows the user to classify genes dynamically using a specified
set of genomes. This feature is especially useful when the user’s interest is focused
on specific taxonomically related organisms.

In MBGD, a default ortholog table has been precomputed using a default set of
organisms that contains one strain from every species. Currently, this set contains
less than 40% of all the completed genomes (see Fig. 1), and offers an unbiased
sample of the entire set of genomes currently sequenced, which is useful for com-
paring distantly related genomes. In addition, to cover all the genomes in the
database, MBGD also has an “extended” ortholog table, where each gene of the
unselected genomes in the default set are assigned to the orthologous group that
gives the best average similarity score. In this way, MBGD provides orthology infor-
mation for every gene stored in the database. On the other hand, MBGD allows
the user to choose a set of genomes for ortholog analysis; for this purpose, the
user can refer to taxonomic information taken from the NCBI Taxonomy database,
or phenotypic information taken from the GOLD database. In this way, MBGD
identifies orthologous relationships among the genomes that the user is especially
interested in.

The orthologous groups among the selected genomes are not a simple subset of
the default ortholog groups, even if the selected species is a subset of the default
species set. In fact, as described above, an ortholog group can be defined as a set
of homologous genes that are derived from a speciation event in the last common
ancestor of the target set of organisms. Therefore, a different partitioning of the same
set of genes may result when different sets of organisms are considered (Fig. 6). In
general, when one compares the genomes of closely related organisms, the resulting
orthologous groups are expected to contain more one-to-one relationships than those
created from all of the organisms sequenced to date.

In addition, MBGD provides the MyMBGD functionality [80], which allows
the user to add his or her own genome sequences to MBGD to identify orthologs
among new and existing genomes. In this mode, the user can submit his or her data
either in GenBank format or as amino acid sequence data in FASTA format plus
a tab-delimited annotation table. Alternatively, the user can submit a raw genomic
sequence without any annotation, in which case a protocol based on GeneMarkS
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Fig. 6 Ortholog grouping as a mapping from tree structures to a classification table. In this figure,
a species tree that contains the organisms A, B and C is drawn with pipes, and a gene tree of genes
A1, A2, B1, B2, and C is drawn with lines. The left-hand table represents an ortholog grouping
that is created from organisms A and B and contains two ortholog clusters, whereas the right-hand
table created from organisms A, B and C consists of only one ortholog cluster. The broken line in
this table indicates the line separating ingroup-specific subgroups, which makes the table a nested
table; this type of ortholog table is available in the RECOG system described in the last section

[81] and Glimmer [82] is invoked to identify genes in the query genome. The sub-
mitted or identified amino acid sequence data are then subjected to similarity search
analysis against the published genomes selected by the user under the same protocol
as that for constructing the MBGD database, after which ortholog analysis of those
genomes is carried out. In MyMBGD mode, the private data and the public data
are logically merged using the “merge table” feature implemented in the MySQL
database management system. By this mechanism, the user can use almost every
function of MBGD without noticing the differences between the MyMBGD mode
and the usual mode.

MBGD provides several methods of retrieving specific orthologous groups from
the default or created ortholog table. For example, the user can specify keywords
on the top page of MBGD. The system searches for the keywords first in individual
gene records, after which it finds ortholog clusters containing the retrieved genes.
The user can also specify query sequences for a similarity search. In this function,
the system calculates similarities between the query and the database sequences
in the same way as all-against-all similarities are calculated in MBGD, and then
finds the clusters that contain these genes. Alternatively, MBGD also provides a
usual genome map interface if the user wishes to specify a particular locus in a
chromosome to retrieve a gene. All information about the retrieved gene is sum-
marized on a gene information page, which includes a link to an ortholog table
page showing the orthologs of the gene currently displayed. In any case, the user
can see the part of the ortholog table that contains the orthologous groups of their
interest.

An ortholog cluster entry page is shown in Fig. 7. Several types of informa-
tion are added to each cluster entry that are generated from the annotation of
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each member gene. The title of each ortholog cluster is automatically generated by
extracting the best-scoring title line among those of the member genes, where the
scores of the title lines are calculated based on the frequency of words appearing in
the title lines of the member genes. Each cluster entry also contains cross-references
to the corresponding entries of COGs [57], KEGG Orthology [22], TIGRFAMs [83]
and Gene Ontology [84] terms. Cross-reference data are also used to assign func-
tional categories: the functional category of each gene is taken from that of the
cross-reference entry of COG, KEGG and TIGR, and category assignment to each
cluster is based on a majority vote of categories assigned to individual genes.

The cluster entry page also contains several functions for comparing genes within
that orthologous group, including multiple sequence alignment for comparing pro-
teins or nucleotide sequences and multiple map comparison for comparing gene
orders around orthologous genes (Fig. 8). In addition, functions for comparing
different orthologous groups are also available. The function “Find homologous
clusters” lists the clusters that are homologous to the target cluster. The func-
tion “Similar phylogenetic pattern search” calculates dissimilarities in phylogenetic
pattern between each cluster and the target cluster, and orders the cluster table

Fig. 8 Comparative genome map of the purL orthologs and their vicinity. Genes that belong to
the same orthologous group are assigned the same color and pattern. Note that in some genomes,
including E. coli, the purL gene is fused with the purQ ortholog (enclosed by ellipse)
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according to the dissimilarity value, where the dissimilarities are calculated based
on a correlation coefficient, the hamming distance or mutual information [85]. This
function is useful for predicting functional linkages [29], and similar functions are
implemented in certain more specialized databases [33, 86]. In MBGD, the user can
combine this type of analysis with a more flexible ortholog analysis.

A Sample MBGD Session: Phylogenetic Pattern Analysis

MBGD also provides a function to search for orthologous groups that have a sim-
ilar phylogenetic pattern to the one specified by the user. This type of analysis
is especially useful when looking for genes that are potentially related to a par-
ticular phenotypic trait. In the following, we show an example of this type of
analysis.

By clicking the “View Ortholog Table” item on the top page of MBGD, the user
can see a summary of the current ortholog table. By default, this is a histogram
showing the distribution of cluster size; optionally, it can display the distribution of
phylogenetic patterns with colors assigned according to functional categories. The
histogram can be redrawn with a restricted set of clusters by specifying phylogenetic
patterns or keywords in the input form below. Alternatively, a detailed ortholog table
can be shown by pressing the [Show cluster table] button below.

Fig. 9 Organism selection window in MBGD for specifying a phylogenetic pattern using the
phenotypic properties defined in the GOLD database. Here a phylogenetic pattern corresponding
to “hyperthermophile-specific” is specified
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By pressing the [Change pattern] button in the Occurrence pattern box, the organ-
ism selection window is displayed for specifying a phylogenetic pattern (Fig. 9).
Here, the condition can be set by choosing the sets of present organisms and absent
organisms. For this organism selection, the phenotypic properties of each organism
provided by the GOLD database [54] can be used. By using this functionality, a user
can specify a query such as “What are the genes specifically present in hyperther-
mophiles?” To find the answer to this question, choose “temperature range” as the
property type and “Hyperthermophile” as the property value, and press the [Add to
presence] button; next, choose the remaining values other than “None assigned” in
the selection box, and press the [Add to absence] button; then press the [Set occur-
rence pattern] button below. The phylogenetic pattern bar is then updated with the
present organisms colored green and the absent organisms colored yellow. After
choosing “Mutual information” as the similarity (dissimilarity) measure and press-
ing the [Show cluster table] button below, the user can see the ortholog table, which
is ordered according to the dissimilarity of the phylogenetic pattern to the specified
pattern (Fig. 10).

In the resulting table, the ortholog group that is most similar to the specified
“hyperthermophilic” phylogenetic pattern is reverse gyrase, which was previ-
ously reported as the only hyperthermophile-specific protein [87]. The second best
ortholog group is putative transcriptional regulator (COG1318), which was also
reported in the same paper as a candidate hyperthermophilic-specific gene, but
was eliminated because of its absence in the Sulfolobus genomes [87]. Later, the
other authors adopted this family as a candidate hyperthermophile-specific tran-
scriptional regulator [88]. Since then, the increasing number of genomes appears to
strengthen the hypothesis that this gene is related to hyperthermophily. On the other
hand, negatively correlated patterns can also be identified when using the similarity
measure “mutual information.” In this case, three chaperone proteins, DnaJ, DnaK
and GrpE, show patterns that are negatively correlated with the hyperthermophilic
pattern, suggesting that this heat-shock system does not work in extremely high
temperatures.

Core Genome Analysis: What Is the Essential Part
of a Set of Related Genomes?

Another important application of ortholog analysis is to elucidate which genes are
shared among related genomes and which are not. The result of this type of anal-
ysis is often represented in a Venn diagram (Fig. 11a), in which the commonality
and difference among gene sets among genomes are displayed. In this diagram, the
intersectional area (area 7 in Fig. 11a), which contains universally conserved genes
in all the compared organisms, is particularly interesting because these genes are
commonly required for those organisms to survive in their natural habitats, and thus
correspond to the most essential part of the respective genomes. This type of analy-
sis can be applied to any set of phylogenetically related organisms, and is related to
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Fig. 11 Definition of a core gene set. (a) Venn diagram showing the commonality of genes among
three related organisms, A, B and C. (b) Phylogenetic trees showing two parsimonious evolution-
ary scenarios of the three organisms shown in (a). Each number represents a gene subset that is
included in each region of the Venn diagram; a plus sign indicates acquisition and a minus sign
indicates deletion. (c) The concept of a core genome as well-conserved genomic segments mainly
transmitted vertically. Here, black lines represent core regions and gray lines represent flexible
regions

the concept of a “core genome” in a broad sense, although the meaning of this term
is vague since it can be used in various contexts.

One of the related topics that has attracted broad interest is the problem of iden-
tifying the minimal gene set [4], which is defined as the smallest possible set of
genes that is sufficient for a cellular organism to survive under the most favorable
conditions [89, 90]. Since the universally conserved genes among all the cellular
organisms correspond to the genes commonly required under any environmental
condition, they are candidates for the minimal gene set. The first version of the min-
imal gene set was generated by comparison of only two genomes, H. influenzae
and M. genitalium, and comprised 256 genes [4]. Interestingly, this number coin-
cides well with the essential genes that were later identified in Bacillus subtilis
(271 genes) [91] and Escherichia coli (297 genes) [92] in systematic gene knock-
out experiments. However, when the same authors examined the conservation status
of each gene in the minimal gene set using the COG database with 21 genomes,
they found that only one third (81 genes) of the genes in the original minimal gene
set were still conserved in all organisms [89]. The number of genes appears to be
too small for organisms to survive, which was partly explained by the existence of
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non-orthologous gene displacement [89, 90]. In fact, currently only around 10 genes
are commonly conserved among all organisms in the MBGD default table, which
are clearly insufficient for maintaining cellular life. There are some trivial reasons
for this reduction in number, including the existence of unusually small genomes
such as those of endosymbionts, as well as possible annotation errors. In any case,
the requirement of 100% conservation will become too strict for this type of analysis
as the number of target genomes increases, and a more relaxed criterion is needed
to avoid the “extinction” of the core genes [93].

The core genome analysis can also be applied to comparisons of more closely
related organisms. In fact, this type of analysis is commonly done for intra-species
genome comparisons, and is often referred to in terms of the bacterial species
genome concept [94], since, in prokaryotic species, the gene contents can be quite
different among strains. In this context, “core genome” corresponds to the intersec-
tion of the gene sets, i.e., the set of genes commonly conserved in all the species,
and “pan-genome” corresponds to the union of the gene sets, i.e., the set of genes
contained in either of the genomes [95, 96]. A similar analysis can also be applied
to genus-level comparisons [97], and comparisons of even more distantly related
genomes [90, 98]. In any case, the set of genes conserved throughout a given tax-
onomic group should contain the genes commonly required for these organisms
to survive in their natural habitats. However, the number of universally conserved
genes may again decrease excessively as the number of target genomes increases.

From the evolutionary viewpoint, the universally conserved genes among related
organisms are likely to have been inherited from their common ancestor. However,
when applying the parsimony criterion to infer the evolutionary history of mul-
tiple genomes, many genes other than the universally conserved genes are also
assigned to the last common ancestor (Fig. 11b); such non-universal genes have
been lost during the course of evolution. This consideration allows the formulation
of a relaxed version of the definition of a core genome: the core genome of phy-
logenetically related organisms consists of those genes that existed in the genome
of their common ancestor and have been inherited by the majority of the current
genomes. In this regard, however, the existence of horizontal gene transfers (HGTs)
may become a serious problem in prokaryotic genome comparisons, and this has
introduced another aspect to the concept of a core genome.

A growing body of evidence is supporting the idea that HGTs have played a sig-
nificant role in prokaryotic genome evolution [51, 99–103], and these observations
have stimulated researchers to develop a new paradigm of HGT-driven reticulate
evolution that challenges the traditional tree-based phylogeny concept [104–106].
However, it can be argued that prokaryotic phylogeny can still be inferred using
a certain subset of genes that have mainly transferred vertically throughout evolu-
tion [107–109]. In fact, the genes constituting a prokaryotic genome appear to be
divided into two classes: a “core gene pool” that comprises intrinsic genes encoding
the proteins of basic cellular functions, and a “flexible gene pool” that comprises
HGT-acquired genes encoding proteins which function under particular conditions,
such as genomic islands [110] (Fig. 11c). Combining the conservation criterion with
the vertical/horizontal transference criterion, here we consider vertically transferred
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conserved genes as core genes. Then, the problem is how to identify the core genes
among the genes of the given genomes according to this definition.

Several criteria have been developed to identify HGT events, including (1)
unusual best-hit relationships or contradictory topologies of phylogenetic trees, and
(2) a biased nucleotide composition, which includes a codon usage bias and G+C
content at the third-codon positions. However, although these criteria can be suc-
cessfully applied to identify HGTs as extraordinary events, their precision is not
sufficient to exactly discriminate non-HGT genes from HGT genes. As a comple-
mentary approach to the identification of the core genome in the above sense, here
we take into consideration the information on gene order (or synteny) conservation.
In the next section, we introduce our own approach to this issue.

CoreAligner: Multiple Genome Alignment Procedure
for Identifying the Core Genome Structure

Here, we consider the “structural core gene set,” or simply the “core structure,” of
closely or moderately related genomes. It is defined as the set of sufficiently long
consecutive genomic segments in which gene orders are conserved among multi-
ple genomes so that they are likely to have been inherited from a common ancestor
mainly through vertical transfer [111]. The rationale behind this approach is that
horizontally transferred genes are unlikely to insert themselves at the same chro-
mosomal position. For this purpose, we developed an algorithm for aligning the
conserved regions of multiple genomes, which finds the order of pre-identified gene
families that retains to the greatest possible extent the conserved gene orders.

The program, named CoreAligner [111], requires a set of well-conserved orthol-
ogous groups (OGs) as input. Here, we compiled them using the DomClust
algorithm on the MBGD server, and considered an OG as “conserved” when it
was present in at least half of the genomes (the parameter CONS_RATIO=0.5).
Next, a neighborhood graph was constructed using the set of conserved neighbor-
hood pairs, which are defined as two conserved OGs that are located within 20
genes (the parameter MAX_GAP=20) in at least half of the genomes (Fig. 12a).
A neighborhood graph, G=(V,E), was then constructed with the set of conserved
OGs, V, as nodes and the set of conserved neighborhood relationships, E, as edges.
Our algorithm for constructing alignments of the core genome structures is based
on finding the longest path of this conserved neighborhood graph. A similar algo-
rithm has been previously developed mainly for identifying much shorter but more
widely conserved gene clusters such as operons [112], but, unlike that method, our
method considers not only genes in the same direction but also those in the opposite
direction as neighboring genes, thereby generally generating longer alignments. In
addition, our method uses the dynamic programming (DP) algorithm to calculate the
longest path. To apply the DP algorithm, we devised a heuristic scheme comprising
a series of preprocessing procedures to convert the initial conserved neighborhood
graph into a directed acyclic graph. Then, the extracted longest path is added to the
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Fig. 12 Schematic illustration of the core genome construction procedure. (a) A “core genome
alignment” is defined as the order of pre-identified conserved orthologous groups (OGs) (vertical
lines) that retains to the greatest possible extent the conserved neighborhood relationships on the
chromosomes (horizontal lines). To determine this order, a neighborhood graph representing the
neighborhood relationships is constructed (bottom). For simplicity, only OGs that are directly adja-
cent to each other are connected. (b) A part of the core structure constructed from the Bacillaceae
data set

core structure when the path consists of more than 10 OGs and at least half of the
genes (OGs) in that path are present in every genome. The procedure is repeated to
find the next longest path in the remaining graph, and the iteration is continued until
all such paths are found.

The method was applied to the genome comparison of two well-characterized
families, Bacillaceae and Enterobacteriaceae, and their core structures were found
to comprise 1,438 and 2,125 OGs, respectively [111], which corresponds to a third
of the number of genes in the B. subtilis genes (4,105) and half of the E. coli genes
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(4,237), respectively (see Fig. 12b, which shows a part of the resulting core struc-
ture of the Bacillaceae dataset). The core sets contained most of the essential genes
(>90%) identified in B. subtilis [91] and E. coli [92]. In addition, the ratio of core
genes to non-core genes was quite different among functional categories: the func-
tional categories related to primary metabolism, genetic information processing and
cellular processes generally contained a higher proportion of core genes, while the
categories of membrane transport, signal transduction and secondary metabolism
contained a lower proportion thereof [111]. Since the latter categories are likely to be
related to adaptation to specific environments, this finding supports the notion that
the genes included in the core structures indeed tend to play core-functional roles.

Actually, the core gene sets of Bacillaceae and Enterobacteriaceae share some
common orthologs. The two core gene sets share around 700 OGs (class CC: core to
core), while the other core OGs are specific to each family (class CO: core to non-
core ortholog; class CN: core to none). As expected, the majority of the essential
genes (around 200 genes for each family) are included in the CC class (Fig. 13a).
We also examined the proportions of the KEGG functional categories and found
that the “core-functional” characteristics of the core genes described above appear
to be mainly linked to the CC class (Fig. 13b). On the other hand, although the
majority of OGs in the CN class are not categorized in any functional class, they
also include a substantial number of sporulation-related genes, an obvious Bacillus-
specific function.

As discussed above, one of the drawbacks of the universality criterion in defining
the core genome is that the number of universally conserved genes should monoton-
ically decrease as the number of genomes increases. In other words, this definition is
not robust against the increase in the number of genomes. To examine the robustness
of our core genome definitions, we generated all the possible subsets of six genomes,
with which we ran the CoreAligner program to define the core structures. We also
examined the numbers of universal genes (CONS_RATIO=1) and genes conserved
in at least half of the genomes (CONS_RATIO=0.5) for the same genome subsets
(Fig. 14). As expected, the number of universal genes decreases monotonically as
the number of genomes increases. In contrast, the number of conserved genes fluc-
tuates widely with the change in the number of genomes, probably because of the
fluctuation of the actual CONS_RATIO values due to the rounding-up effect. On
the other hand, the number of core genes shows a relatively stable pattern in both
families (Fig. 14). In fact, the magnitude of fluctuation is much smaller than that
for the conserved genes described above. These observations suggest that the use
of synteny information with a relaxed conservation criterion helps the CoreAligner
program to identify robust and reliable core gene sets, although the setting of the
CONS_RATIO parameter still remains somewhat arbitrary.

To further characterize the structural core genes, we also investigated them in
terms of G+C content homogeneity and phylogenetic congruence, which are impor-
tant indicators of the indigenousness of genes (i.e., non-HGT genes). As a result, we
found that the structural core genes primarily had higher homogeneous G+C con-
tents at the third-codon positions (GC3) than non-core genes [111]; more precisely,
core genes showed the smallest standard deviation of the GC3 values in almost all
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circle indicates the core gene set. The number in parentheses indicates the number of essential
genes in B. subtilis and E. coli. (b) Functional breakdown of each subtype defined in (a): CC core
to core; CO, core to non-core ortholog; CN, core to none. The functional classification is based on
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the organisms examined, followed by non-core-conserved genes and non-conserved
genes. To test the phylogenetic congruency, we also compared the topologies of
individual gene trees with the reference tree topology created from the concate-
nated core gene sequences and identified significant incongruent trees using the
Shimodaira-Hasegawa (SH) test [113]. The result indicates that the structural core
genes (orthologous groups) tended to have less incongruent topologies (rejected by
the SH test) than non-core genes in every conservation ratio [111]. These results
indicate that structural core genes indeed show the expected characteristic, i.e.,
being indigenous and sharing the same history in comparison to non-core genes.
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RECOG: Research Environment for Comparative Genomics

To integrate the various methods of comparative genomics described so far and to
incorporate the knowledge of individual genomes and gene functions into one anal-
ysis, we are now developing a general workbench for comparative genomics named
RECOG (Research Environment for COmparative Genomics) (Fig. 15). The entire
RECOG system employs a client-server architecture. The RECOG server program
has been developed based on the MBGD server, sharing the same database con-
struction protocol. The RECOG client program is a Java application running locally
that receives data from any RECOG server. By default, the user can connect to the
public MBGD server to analyze publicly available data, but, optionally, the user can
install the RECOG server program on his or her local machine to analyze his or her
own genomic data.

As with MBGD, RECOG allows the user to choose a set of organisms to
compare, and constructs orthologous groups among those organisms using the
DomClust program. However, RECOG also allows the user to specify ingroup
species and outgroup species in order to combine a comparison of closely related
genomes with a comparison of distantly related genomes, where the ingroup is usu-
ally specified as a set of taxonomically related organisms that the user is interested
in. The result is displayed as a nested table, where the genes in the outgroup species
form an outgroup cluster that corresponds to multiple sub-clusters consisting of
genes in the ingroup species (see Figs. 6 and 15b).

The central function of RECOG is to display and manipulate a large-scale
ortholog table, but this function is much more enhanced and flexible than that
of MBGD. The ortholog table viewer in the central portion of the main window
(Fig. 15a) can display the entire ortholog table. Using the zoom in/out function, it
can display the entire table or a section of the main table with more detailed infor-
mation (Fig. 15b). In RECOG, several basic operations on the ortholog table are
defined, which are classified into categories such as filtering, sorting and coloring,
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Fig. 15 Screenshots of the RECOG client software. (a) The main window of RECOG. (b)
A nested ortholog table generated from the organisms in Bacillaceae as ingroup species and
Escherichia coli and Pseudomonas aerugninosa as outgroup species. (c) Core genome alignment
viewer showing the core structure of the Bacillaceae dataset. (d) Genome comparison viewer
showing the entire chromosomal maps of the Bacillaceae core genes. (e) Genome comparison
viewer showing a zoomed-in picture of (d) around a particular orthologous group
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and various comparative analyses can be done by combining these basic opera-
tions. For example, “Neighborhood gene clustering” identifies a set of genes that
are located in the vicinity of each other in both the ortholog table and the genomic
sequence, and assigns the same color to each group. By combining this with vari-
ous sorting functions, the user can use this function to efficiently identify conserved
neighborhood genes. “Phylogenetic pattern clustering” performs hierarchical clus-
ter analysis based on the dissimilarity between phylogenetic patterns, and reorders
the ortholog table according to the clustering result. In addition, RECOG allows the
user to input arbitrary gene properties such as sequence length, nucleotide/amino
acid contents and functional classes, which can be used in conjunction with table
operation functions such as filtering and coloring.

For the comparison of closely or moderately related genomes, RECOG also
implements the CoreAligner program. With this function, the user can invoke the
CoreAligner program using the orthologous groups generated by DomClust as
input. The result is displayed in two graphical views. The core genome alignment
viewer (Fig. 15c) displays a schematic view of the core genome alignment shown
in Fig. 12b, in which one can easily see the local rearrangement of the core genome
structure in each individual genome, including insertions, deletions and breakpoints
of inversions or translocations. On the other hand, the genome comparison viewer
(Fig. 15d, e) displays the actual location of the core genes on linear chromoso-
mal maps with lines connecting corresponding orthologous genes. This map can
be zoomed in to see a detailed map of a specific orthologous group and its vicinity
(Fig. 15e) and zoomed out to see the entire map (Fig. 15d). The user can manipulate
these maps and the cluster table in the main window in a coordinated manner, which
facilitates the comprehension of the complex genome rearrangement that occurred
in the core genome structure during the course of evolution.

Conclusion and Future Prospects

In this chapter, I reviewed several basic issues in microbial comparative genomics
focusing on our own solutions primarily based on our microbial comparative
genome database, MBGD. Ortholog identification is the common basis for various
comparative genome analyses, although there are still some dificulties in defin-
ing plausible orthologous groups. Our DomClust algorithm addresses many of
these issues, including the domain-fusion/fission problem as well as the inpara-
log/outparalog distinction problem. Actually, however, the ortholog identification
problem is not well-defined in prokaryotic genome comparison due to the exis-
tence of horiontal gene transfers. The use of synteny information, as in our core
genome extraction strategy, is a promising approach to this issue for the comparison
of closely or moderately related genomes.

With thousands of microbial genome sequences in hand, we can now ask ques-
tions like “How prokaryotic genomes are organized?” and “Are there any general
rules or principles that underlie this highly diverse prokaryotic world?” From a
very simplified viewpoint, a prokaryotic genome is composed of the “core genome”
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that characterizes the taxonomic groups that that organism belongs to and vari-
ous functional modules that have been mainly acquired horizontallly depending on
the habitat. However, a detailed answer to the above question is yet to be given.
Combining various strategies for the genome comparison of both closely related and
distantly related organisms may lead us to a deeper understanding of prokaryotic
genome evolution, and a comparative genome workbench supporting such analy-
ses, like RECOG, can facilitate the study along this direction. The knowedge gained
from such study should further facilitate the next challenges to the understanding
of the diversity of microbial life, including microbial community analysis based on
metagenomics.
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Predicting Protein Functional
Sites with Phylogenetic Motifs:
Past, Present and Beyond

Dennis R. Livesay, Dukka Bahadur KC, and David La

Abstract More than sequence or structure, function imposes very tight constraints
on the evolutionary variability within a protein family. As such, numerous functional
site prediction methods are based on algorithms to uncover conserved regions that
lead to conserved function. Nevertheless, evolution does allow for some system-
atic variability within functional regions. Based on this tenet, we have introduced
the MINER algorithm to predict functional regions from phylogenetic motifs.
Specifically, our approach identifies alignment fragments that parallel the overall
phylogeny of the family, which are more likely to be functional due to increased
evolutionary signature. In this chapter, we provide an overview of the method,
summarize recent developments, and comment on future work.

Introduction

Due to the rapid increased in the number of solved sequences from next-generation
sequencing technologies, accurate prediction of protein function and functional sites
from sequence-derived data is now more important than ever. There are many differ-
ent functional site prediction algorithms in the literature [1], most of which attempt
to identify some sort of evolutionary feature within the input alignment. Meaning,
they are primarily based on the simple and common dogma that conservation of
function is the ultimate evolutionary driving force.

The evolutionary constraints imposed by function severely limits sequence vari-
ability at certain sites, which has led to myriad algorithms to predict function
from conservation [2–4]. However, the constraints imposed by function need not
completely limit variability within a given site. Rather, functional sites frequently
vary somewhat dependent upon exact functional criteria (i.e., substrate specificity,
catalytic efficiency, etc.) and the context of the rest of the protein, thus yielding sys-
tematic variations between subfamilies [5–6]. Unfortunately, prediction algorithms
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based solely on these “evolutionary trace” positions result in an unsatisfactory
number of false positives [7–9]. MINER is based on a similar notion; however,
it attempts to identify phylogenetic motifs (PMs), which are contiguous alignment
fragments, not alignment positions, that have co-evolved to satisfy the functional
evolutionary constraints. Along with some judicious algorithmic implementation
details discussed below, it is this distinction that leads to improved prediction
accuracy of our approach.

The Past

Based on work published between 2005 and 2007, this section describes the
original MINER algorithm. In addition, we present a summary of application
of the approach to the NSS protein family, which highlights MINER’s utility
and limitations.

The MINER Algorithm

The MINER algorithm, originally introduced in La et al. [7], is inspired by our
earlier observation that motifs taken from regions known to be functionally impor-
tant a priori conserve the overall phylogeny of the family [10]. Meaning, MINER
reverses this scenario to look for regions that reproduce the phylogenetic cluster-
ing, and then presents them as putative functional sites. The algorithm, which is
summarized in Fig. 1, begins with a sliding sequence window that generates all pos-
sible alignment fragments of fixed width from an input alignment. Subsequently,
a tree is constructed on each fragment using standard phylogenetic reconstruction
algorithms, which is compared to the phylogenetic tree of the whole family using
a bipartition metric algorithm that counts topological differences between the pair
[11]. In the original implementation of the algorithm, all overlapping fragments that
score pass some threshold are grouped into a single PM. Based on the competition
between site specificity and evolutionary signal, we have determined that a window
width of five is ideal in most situations [7].

Tree similarity is quantified using the ubiquitous bipartition metric algorithm
[13], which is also commonly referred to as the symmetric difference or the
Robinson-Foulds distance. The bipartition metric simply counts the number of par-
titions, defined by tree branch points, varying across the pair. To improve prediction
accuracy, the bipartition metric employed by MINER is actually a slightly modified
algorithm, but the details of the modification and its rationale are beyond the scope
of this discussion (cf. Roshan et al. [11] for a full discussion).

Figure 1 includes a typical phylogenetic similarity spectrum for the glycolytic
enzyme triosephosphate isomerase, which plots tree similarity (recast as statistical
z-scores) versus fragment number. We call the MINER output values phyloge-
netic similarity z-scores (PSZs). Because the bipartition metric provides a distance,
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Fig. 1 A cartoon describing the original MINER algorithm. First, MINER starts with a multi-
ple sequence alignment, from which all possible L − W + 1 windows are generated, where L
is the alignment length and W is the window width. Second, using standard phylogenetic recon-
struction techniques, a tree is generated for each window and the complete alignment. Third, the
topological similarity of each window tree is compared to the overall phylogeny using a bipartition
metric algorithm. The raw bipartition metric scores are then converted to statistical z-scores, called
PSZs for phylogenetic similarity z-scores. Note that more negative values indicate greater tree
similarity since the raw bipartition metric values represent distances. Finally, all overlapping win-
dows scoring past some threshold are grouped into a phylogenetic motif (PM). As applied to the
triosephosphate isomerase enzyme family, six PMs are identified. The smallest PM is composed
of only a single window, whereas the largest is composed of eight contiguous windows. Note that
the largest PM overlaps the PROSITE definition of the family [12]. The algorithm is more fully
described in La et al. [7]

smaller values indicate greater phylogenetic similarity. Using a PSZ threshold of
1.5, Fig. 2 clearly demonstrates that the predicted functional sites map to the
enzyme’s active site region. In fact, with the exception of the one PM in the upper-
right corner, all identified PMs (dark grey) clearly cluster around the enzyme’s active
site (a co-crystalized substrate analog is shown in light grey). However, this PM is
actually interacting with the substrate at the active site of its homodimer partner,
meaning all six PMs overlap the enzyme’s active site. In a later follow-up study
[14], we demonstrated the functional roles of PM residues are commonly explained
in a rational way by sophisticated continuum electrostatics calculations. Therein, the
biophysical calculations demonstrated that the PM residues were interacting with
the strictly conserved catalytic residues to fine-tune their chemical properties. This
result highlights the power of synergistically combining empirical and first princi-
ples viewpoints to understand protein function. However, biophysical calculations
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Fig. 2 Triosephosphate
isomerase. The PMs
identified in Fig. 1 are
mapped to the structure of an
example structure. Dark grey
colored spheres represent
α-carbon atoms of the
predicted sites. The enzyme’s
substrate analog is colored
light grey and shown in
spacefill

are generally expensive and require structural input, thus limiting their utility for
high-throughput investigations.

The PSZ threshold used can be predefined by the user or automatically deter-
mined. Threshold values of ∼ 1.5 ± 0.5 standard deviations are generally ideal;
however, large prediction differences can occur within this range. While there are
myriad signal-to-noise methods, we have developed the EXTREME algorithm to
be specifically appropriate to the problem at hand [15]. The approach is based
on three primary features. The first is that we pre-process the MINER output to
highlight the evolutionary signal. Specifically, because they are associated with a
single PM, contiguous stretches of scores within the above range are represented
by a single data point, which we call sharpening. Second, the sharpened scores
are then clustered into k = 2 groups using partition around medoids cluster-
ing. We use k-medoids clustering because it is less sensitive to outliers compared
to the more common k-means clustering. The threshold is defined as the largest
score within the second (more negative) cluster. Finally, there are number of algo-
rithmic overrides that have been developed to ensure that the resultant threshold
has the desired properties, such as not predicting too many PMs. A quantita-
tive assessment of prediction accuracy on a small dataset of 32 protein families
demonstrates that EXTEME leads to 69% correct predictions and 23% useful pre-
dictions. Only 11% were deemed wrong. As previously done with evolutionary
trace [16], the assessment of correct, useful, and incorrect is determined from
whether the predicted sites are, respectively, within, overlapping, or distinct from
the known functional site. However, as we have discussed previously, this assess-
ment is overly strict because it completely ignores functional roles outside the
active site.
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Prediction of Functional Sites Within the NSS Protein Family

The accuracy and utility of the MINER functional site predictions has been born out
many times. As an example, we focus here on our application of the method to the
neurotransmitter/sodium symport (NSS) family, which is a large and functionally
diverse family of transporter proteins. In the NSS family, free energy provided by
the flux of sodium and chloride ions with their electrochemical gradients across a
membrane barrier is used to move chemical substrates against theirs. The chemical
substrates recognized by members of the family are extremely chemically diverse,
and include amino acids, biogenic amines and osmolytes. Application of MINER,
along with a number of other common functional site prediction methods, identified
a large number of putative functional sites, which were compared to residues identi-
fied as important from the leucine transporter transporter solved by Yamashita et al.
[17] and an exhaustive survey of the experimental mutagenesis data.

MINER had the best prediction coverage of the six methods considered, pre-
dicting an impressive 62% of the benchmark sites. Moreover, MINER’s overall
performance was among the best considered. Interestingly, the others with similar
performance were primarily conservation measures. Yet, MINER performed much
better than evolutionary trace and SDPpred [18], which is another common predic-
tion technique based on subfamily differences. To provide a balanced description of
coverage and accuracy, overall performance is calculated as the Cartesian distance
between (coverage, accuracy) of each method to a hypothetical perfect method (cov-
erage = 1.00, accuracy = 1.00). The distances are normalized such that a method
with 0.00 coverage and accuracy would have a value of unity. The reason that
MINER’s overall performance is slightly below the conservation measures is that
it tends to over-predict sites. This is simply due to each prediction within MINER
actually corresponding to five residues. As such, we also evaluated a relative accu-
racy, which is normalized by the number of predicted windows (not residues). The
relative accuracy of MINER is very good, but should not necessarily be compared
to the site specific methods since they are fundamentally different quantities. These
results are presented in Table 1.

A very interesting result from this work was that the set of predictions from each
of the six methods are generally orthogonal to each other. As such, we demonstrated
that predictions based on simple intersections of the various methods significantly
improve prediction accuracy. Meaning, only positions that are simultaneously pre-
dicted by multiple methods are put forth as a prediction. Impressively, prediction by
any three methods (except for SDPpred that was excluded due to poor overall per-
formance), the coverage and accuracy reached 0.56 and 0.44, respectively, which
is much higher than any of the individual methods. Another interesting result from
this work is based on consensus predictions. We demonstrated that predictions with
better support, meaning they are predicted by multiple methods, are more likely to
cluster around the leucine-binding site and the proposed transport route (cf. Fig. 3).
Taken together, these two sets of results highlight the synergy and complementarity
across various functional site prediction methods.
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Table 1 Coverage and accuracy of the various functional site prediction schemes across all the
NSS functional site benchmark

Methoda Coverage (%) Accuracyb (%) Overall performancec

Phylogenetic motif 62 24 (55%) 0.40
Motif conservation 53 35 (90%) 0.43
Position conservation 59 35 0.45
Rate4Site 50 37 0.43
Evolutionary trace 44 27 0.34
SDPpred 12 27 0.19
Intersect 2d 71 29 0.46
Intersect 3 56 44 0.50
Intersect 4 32 50 0.40
Intersect 5 18 67 0.37

aThese results are reproduced from Livesay et al. [8], which provides details of the methods
employed.
bAccuracies are reported as the ratio of correct to total alignment positions predicted. For methods
that are based on alignment fragments, the relative accuracy that describes the ratio of correct
predictions to the total number of alignment windows is provided in parentheses.
cOverall performance is calculated as the Cartesian distance between (coverage, accuracy) of
each method and that of a perfect method (coverage = 1.00, accuracy = 1.00). The distance is
normalized such that a method with 0.00 coverage and accuracy would have a value of unity.
dThe Intersect predictions describe a hybrid approach composed of the unique prediction strate-
gies. Whenever the number of predictions for a particular site are greater than the intersect value,
that site is put forth as a prediction

The Present

Based on work published between 2008 and 2010, this section describes our
recent attempts to improve the MINER algorithm and to explain its pre-
dictive power. Specifically, we demonstrate that the accuracy of MINER is
improved by translating it into a site-specific model. Moreover, development
of more rigorous hybrid methods that combine PMs and conservation provide
very good predictions. Finally, we have also demonstrated, not unexpectedly,
that the bulk of the predictive power of MINER comes from its topological
description of evolutionary variability.

Residue Specific Predictions

As discussed above, MINER does a very good job of identifying known func-
tional sites; however, its accuracy is somewhat tempered by its window-centric
view. Moreover, the NSS family results above are just a single example, which
may or may not be representative of average performance. To determine how well
MINER performs relative to conservation measures, we have constructed a large
well-curated and nonredundant benchmark dataset based on the catalytic site atlas
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Fig. 3 The NSS family. Structural superposition of all functional site predictions within the neu-
trostransmitter/sodium symporter family that are predicted by at least four methods are highlighted
in dark grey within the leucine transporter structure, which do a good job of covering the extra-
cellular/periplasmic gate and ligand-binding site residues. The leucine, sodium ions and chloride
ion are also shown in spacefill (light grey) at the center of the structure. Reproduced from Livesay
et al. [8]

[19]. Specifically, we defined active sites from the catalytic residues plus all residues
interacting with them [9]. To make MINER position-specific, a given alignment
position is simply assigned the phylogenetic similarity score of the window centered
on it.

As such, there are two key differences between this approach and what we have
done prior. First, of course, we have removed MINER’s inherent window-centric
view. Second, we have also removed the threshold needed to group windows into a
PM. Rather, like other site-specific measures, we now just have a list of scores rank-
ordered from best to worst predictions. And like all methods along these lines, the
appropriate cut-off to balance sensitivity and specificity is a degree of freedom to
be optimized. To eliminate the arbitrariness of defining such a threshold, we apply
receiver operator characteristic (ROC) analysis to quantify the balance between the
two over a systematic range of cut-offs. Table 2 provides the area under curve (AUC)
at a false positive rate of 0.1, which is a standard measure of the predictive power
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Table 2 Receiver operator characteristic analysis for position specific predictions of active site
residues across a large nonredundant dataseta

Method AUCb
0.10

MINER (based on phylogenetic similarity of window centered on target position) 2.13
SCORECONSc (which is a sum of pairs conservation score) 1.95
psMINER (based on SCORECONS) 2.38
hMINER (based on SCORECONS and α = 0.6) 2.48

aThese results are reproduced from KC and Livesay [9]. While not provided here, statistical
significance of the improvements is discussed in the cited paper.
bAll reported values are × 10−2.
c The citation for SCORECONS is Valdar [2]

of functional site prediction algorithms. (Note that AUCs at larger false positive
rates are generally not considered because they would produce too many spurious
predictions to be of practical usefulness as a guide for experimental studies.) Our
results demonstrate that the modified PM approach is very powerful. Specifically,
the PSZs result in a 9% improvement over the common sum-of-pairs conservation
metric. Similar results are observed for other conservation scores.

Integrating Conservation and Evolutionary Viewpoints

Based on the complementarity between variability and conservation viewpoints dis-
cussed above, we have recently developed more rigorous algorithms to integrate
both approaches. Specifically, we have developed two hybrid site-specific versions
of MINER [9]. Both incorporate conservation information, but do so in distinct
ways. The first approach, called psMINER for position-specific MINER, starts by
rank ordering each alignment position with respect to a calculated conservation
score. Next, each position is interrogated about whether or not it is found within
a PM. If so, then its ranking is unaffected. However, if not, the position is shuffled
to the bottom of the list and is never considered to be a possible functional site.
Again, based on ROC AUC values, Table 2 demonstrates that psMINER leads to
large improvements over MINER itself and the underlying conservation scores in
the prediction of active site residues. In fact, the improvement over sum-of-pairs is
22% and the improvement over the PSZs is nearly 12%.

One drawback of the psMINER algorithm is that it only uses PM information
as a binary, meaning a residue is either part of a PM or not. To incorporate a
quantitative aspect, we have also developed a hybrid MINER (hMINER) approach
that averages the phylogenetic similarity and conservation scores using optimized
statistical weight α. The hMINER score for alignment position i is given by:
Hi = αMi + (1 − α)Ci, where Mi is the MINER similarity score and Ci is the
conservation score. Again, Table 2 demonstrates that hMINER does an excellent
job of improving predictive power. The improvement over sum-of-pairs is 27% and
the improvement over the PSZs is 16%. Nevertheless, an equally interesting aspect
of the hMINER approach is that the value of α dissects the relative importance
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of the evolutionary variability and conservation aspects of the hybrid approach.
For example, depending upon the conservation score used, typical values range
from α ∼ 0.5 − 0.7, indicating that descriptions of the phylogenetic variability
are generally slightly more important than conservation.

The Importance of Topology

In prior work, we demonstrated that improving phylogenetic descriptions is another
straightforward way of improving the predictive power of MINER [11]. Specifically,
we demonstrated that we could improve prediction accuracy by focusing on phylo-
genetic trees reconstructed using parsimony, rather than neighbor-joining methods.
However, an interesting report recently demonstrated that an algorithm similar to
MINER, but instead focused on distance matrix comparisons rather than phyloge-
netic trees, could also provide acceptable prediction accuracies [20]. To test their
assertions more rigorously, we performed an exhaustive assessment of 39 different
variants of their approach over a range of window widths [21]. We considered three
different types of distance matrices [22–24] and thirteen different matrix-to-matrix
comparison metrics. Figure 4 summarizes our results. Specifically, it plots the ROC

Fig. 4 The importance of
topology. Average AUC0.10
values for active site
prediction are plotted for each
matrix similarity metric class
(black squares = MINER,
solid black line = Tanimoto
coefficient, solid grey line =
distance-based, long dashed
grey line = information
theory, and short dashed
black line = correlation
coefficient). The error bars
correspond to one standard
deviation. There are no error
bars for MINER and the
Tanimoto coefficient because
each is only a single metric.
Each row corresponds to,
respectively, ClustalDist,
TREE-PUZZLE, and
ProtDist distance matrices
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AUC0.10 values for the prediction of active sites for the distance-matrix variants and
the original MINER approach. The results clearly demonstrate the superior predic-
tive power of MINER. The three panels correspond to the three different distance
matrices and each curve corresponds to the four matrix comparison metric classes
+ MINER over a range of window widths. Taken as a whole, these results estab-
lish that the improved predictive power arises from the added evolutionary insight
provided by phylogenetic trees. Meaning, tree topologies represent a simple, yet
powerful way to improve the accuracy of PM functional site predictions.

The Future

The sum of our work to date in the realm of protein functional site prediction clearly
indicates that strategies based on strict conservation scores and alternate strate-
gies based on evolutionary variability both have merit. Moreover, we have clearly
demonstrated that integrating viewpoints is a convenient way to improve predictive
power. However, while not specifically discussed, another general conclusion from
our work to date is that all current functional site prediction algorithms (MINER
included) lack prediction specificity. While all published methods produce better
than random predictions of which positions within an alignment are important,
that is all they are able to do. The methods indiscriminately identify evolutionarily
important sites and/or regions, but provide little additional insight. Meaning they fail
to explain how or why these positions are important. In order to provide such mech-
anistic descriptions, we continually attempt to layer the results from biophysical
calculations on representative structures from the family onto the predicted sites to
assist interpretation and provided added value. Alternately, to provide the same sorts
of mechanistic detail from sequence-derived data alone, the bioinformatics commu-
nity needs to identify new ways to improve functional site prediction specificity
by development of algorithms that are able to distinguish between various func-
tional roles (i.e., catalytic residues, allosteric/regulatory sites, ligand-binding sites,
trafficking signals, etc.). Second generation functional site prediction algorithms
must provide this sort of specificity if we are ever going to fully extract biochem-
ical insight from the massive amounts of sequence information that is currently
being produced. To us, development of algorithms that include such mechanistic
specificity is the next grand challenge for the functional site prediction community.

Accessibility and miniMINER

MINER is accessible in three ways. First, we have developed a web-based imple-
mentation called webMINER [25]. The implementation contains full functionality,
including the EXTREME algorithm. It uses ClustalW [22] to construct phyloge-
netic trees, and uses our own partition metric implementation to compare them.
Input is either a multiple alignment or a set of unaligned sequences that we will
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Fig. 5 Screenshot of the webMINER output. In addition to PM identification, webMINER
includes a variety of additional functionality, including the option to map the PM predictions to
a representative structure (as shown here). The multiple sequence alignment, which highlights the
identified PMs, is hyperlinked to the structure viewer such that structural context of one or all of the
PMs can be interactively analyzed. Additionally, webMINER provides sequence logo descriptions
of the PMs so that the user can quickly evaluate the evolutionary variability within the identified
region. Finally, all of the raw data is available for download so that user can port the data to other
analysis programs

align for you. The basic ouput is a phylogenetic similarity z-score for each win-
dow, but depending upon user options, a number of additional analysis tools are
also provided. The webMINER is currently accessible at http://coit-apple01.uncc.
edu/MINER/. A screenshot from a typical output is provided in Fig. 5.

The second option is that, upon request, we will provide a standalone PERL pro-
gram that integrates all the relevant software used by the webMINER. Meaning,
it includes all of the visualization options, which can be either used or not.
Unfortunately, the standalone version is rather difficult to compile and integrate.
As such, if you have only a few families to analyze, we recommend that you use
our web-version. Conversely, if you want to apply MINER in a large-scale way, we
have recently developed a third option.

Our most recent work has focused on improving the utility of MINER by provid-
ing a streamlined version of MINER that has no dependencies upon other installed
software (but Java). Specifically, this miniMINER has been programmed to ease
the high-throughput use of MINER. The program simply outputs the PSZs for
a given input alignment. To ease installation, we have re-implemented all of the
underlying phylogenetic reconstruction and tree similarity functionalities within a
self-contained Java jar file that should work seamlessly on any computer with Java

http://coit-apple01.uncc.edu/MINER/
http://coit-apple01.uncc.edu/MINER/
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installed. This miniMINER is available upon request, and a paper describing these
results is currently being prepared.
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of a number of people. Specifically, we wish to thank Dr. Usman Roshan, Ehsan Tabari, Brian
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Exploiting Protein Structures to Predict
Protein Functions

Alison Cuff, Oliver Redfern, Benoit Dessailly, and Christine Orengo

Abstract The exponential growth of experimentally determined protein structures
in the Protein Data Bank (PDB) has provided structural data for an ever increas-
ing proportion of genomic sequences. In combination with enhanced functional
annotation from sequence, it has become possible to predict protein function from
structure. In this chapter we discuss a range of methods which aim to recognise
enzyme active sites and predict protein-ligand interactions. We then focus on algo-
rithms developed as part of the CATH database of structural domains, where an
evolutionary approach is used to recognise proteins with similar functions. While
protein domains that exhibit the same structural fold tend to display related func-
tional activities, there are a several large domain structure superfamilies that show a
high degree of functional diversity. In these cases, we have built novel tools (FLORA
and GeMMA) which are able to effectively identify sub-families of functionally
linked domains, where standard methods of homologue detection (e.g. sequence
profile and global structure alignment) fail.

Introduction

Many approaches for assigning protein functions attempt to exploit the 3D structure
of the proteins, either to recognise putative active site regions and binding sites
(e.g. for known ligands such as ATP), or to identify structural homologues likely
to possess similar functions. The prediction of protein function from structure has
become increasingly valuable as a significant proportion [1] of structures solved by
the structural genomics initiatives (SGI) lack functional annotation [2]. In addition,
structure-based approaches are particularly important for predicting binding sites
and/or catalytic sites for the purposes of protein engineering and targeting drugs
(for reviews see [1, 2]).
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Protein structures are more likely to be conserved during evolution than their
sequences and structural data has been exploited to classify protein domains into
evolutionary superfamilies. Nearly 40 years after the launch of the Protein Databank
(PDB), established as a repository of solved 3D structures, the two major structural
classifications, SCOP [3] and CATH [4] currently comprise more than 100,000
domain structures from the PDB classified into less than 3000 superfamilies.
Furthermore, recent analyses have shown that nearly 70% of domain sequences in
completed genomes can be predicted to belong to these families using HMM-HMM
and threading protocols [5].

Both SCOP and CATH also further classify homologous structures according to
their folds or topologies where structures are assigned to the same fold group if they
have equivalent secondary structures, connected in the same way and oriented sim-
ilarly in 3D space. Domains sharing the same fold are not necessarily evolutionary
related and both classifications consider other evidence from sequence similarities
or shared functional properties before classifying homologues [6]. Currently less
than 1500 folds are recognised in SCOP and CATH. However, the definition of
fold is somewhat subjective as no quantitative definitions exist and different pro-
tocols, employing manual inspection, are used to capture related folds by the two
classifications.

There is no strong tendency for functional conservation across fold groups.
Martin and Thornton explored the relationship between fold and function [7] and
observed that whilst many small fold groups, comprising single evolutionary super-
families exhibited only one molecular function, the highly populated fold groups
could encompass a wide range of different functions. For example, the TIM barrel
fold contains domains with more than 400 GO molecular function terms. However,
there is often a tendency for particular surface features to be associated with the
domain function. For example, Rossmann folds tend to bind substrates in the cleft
created by the chain crossover at the C-terminal ends of the strands in the central
β-sheet. Whilst structures adopting TIM barrel folds typically bind substrates in the
large pocket at the base of the β-barrel. Russell and co-workers described these
common sites as supersites [8]. These supersites may hint at remote homologies but
whatever the cause of the similarity, fold recognition can help in identifying residues
that are likely to be functionally important.

Whilst grouping protein domains into evolutionary families is important for
studying their evolution, it is also valuable for predicting the functions of
uncharacterised proteins since many analyses have revealed conservation of func-
tional properties, particularly molecular function, within protein superfamilies [9].
However, it is clear that the degree of functional conservation varies with the domain
superfamily as some superfamilies have diverged considerably in their structures
and functions during evolution.

In this chapter we review the challenges faced when exploiting protein structures
to predict function and describe some of the approaches that have been developed
to cope with these challenges. We focus in particular on global methods of struc-
ture comparison and methods, developed within our group, which perform structure
comparisons across a superfamily to identify specific structural features that are
highly conserved within functional subfamilies in the superfamily.
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Divergence of Protein Structures and Functions
During Evolution

Analyses of structural superfamilies have revealed that many superfamilies are
structurally very highly conserved during evolution and that this is accompanied by
considerable conservation of function [10, 11]. The CATH classification captures
structural divergence by determining the number of structurally distinct subgroups
within a superfamily. A structural subgroup clusters together domains whose struc-
tures can be superposed with a normalised RMSD of 5Å. This is defined as:

Normalised RMSD = (max length) × RMSD

N
(1)

where maxlength = number of residues in the largest structure, and N = total
number of aligned residues.

Many CATH superfamilies (45%) comprise a single structural subgroup.
Appendix A (http://www.biochem.ucl.ac.uk/~cuff/appendixA.html) lists the struc-
turally diverse superfamilies containing more than one structural subgroup and
shows the number of distinct GO and EC terms that can be identified for each of
these superfamilies.

Figure 1 shows that there is a correlation between the number of structural
subgroups and the number of distinct functional categories identified within the
superfamily. Previous studies have shown that 75 superfamilies (<4% of CATH
superfamilies) have diverged highly in their structures and functions [9]. These
superfamilies tend to be highly recurrent in the genomes accounting for nearly 40%

Fig. 1 Graph showing the correlation between number of structural subgroups and number of EC
numbers identified within the superfamily
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of predicted structural domains in completed genomes. They are also the oldest
superfamilies, with the majority found in all three kingdoms of life and therefore
probably present in the last common ancestor.

It is likely that the extensive duplication of these superfamilies within genomes
and the divergence of structure and function in the duplicated or paralogous domains
is accompanied by recruitment of the paralogues to different metabolic pathways or
biological processes. Several studies have shown evidence for this in highly dupli-
cated enzyme families [12] where homologues are frequently recruited to different
pathways where perhaps they bring a chemical activity characteristic of their super-
family [13, 14]. Other large, diverse, superfamilies display conservation of parts of
their ligands [15], possibly as the result of metabolic pathway retrograde evolution
where the duplicated copy of an enzyme is recruited to catalyse the previous reaction
in the same metabolic pathway [13, 16].

Extensive analyses of structural variation across these superfamilies has charac-
terised the extent to which secondary structures are inserted and/or deleted during
evolution. Whilst the secondary structures in the core of the domain tend to be very
highly conserved, there can be considerable embellishment of additional secondary
structures to this conserved core. Figure 2 illustrates structural divergence across
some relatives from the large HAD domain superfamily, showing the conserved
core and secondary structure embellishments.

Studies of the 31 most structurally and functionally divergent superfamilies
showed that secondary structure insertions are generally distributed along the whole

Fig. 2 Structural divergence among members of the mechanistically diverse haloacid dehalo-
genase (HAD) superfamily. The common structural core is coloured red and the structural
embellishments are grey
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length of the polypeptide chain with typically less than 3 being adjacent together
in the sequence [11]. However, they accumulate in relatively few locations in 3D to
give larger structural features. They were found to be modifying active site geom-
etry or providing alternative protein interaction surfaces in relatives with different
embellishments. Superfamilies adopting layered domain architectures such as αβα,
αβ and β sandwiches appear more able to accommodate structural embellishments
to the domain core [11].

Structural changes in domain relatives can also bring about changes in the
domain partners and changes in the protein partners and oligomerisation states
which can further modify functional sites or provide additional functional sites.
Examples of these phenomena are given in Todd et al. [12], Reeves et al. [11]
and Dessailly et al. [17]. Other evolutionary mechanisms causing structural change
include circular permutations [18, 19], segment-swapping [18], addition of major
structural embellishments to a conserved structural core [11], or more dramatic fold
changes [20].

Despite the considerable divergence in structure observed in some superfami-
lies, some aspect of the function is generally conserved. Early studies by Todd et al.
[12] revealed conservation of one or more chemical intermediates along the reaction
pathway occurring in many highly diverse superfamilies. Such superfamilies, which
are mechanistically diverse but share some common functional feature are being
increasingly studied. The SFLD established by Babbitt and her group [21] now
describes 6 such superfamilies and sequence diverse relatives within these super-
families have been deliberately targeted by associated structural genomics initiatives
to provide structures for characterising the diverse functional subfamilies. This work
has been accompanied by extensive experimental characterisation of relatives within
the superfamilies. Similarly the Structural Genomics Consortium (SGC), headed by
the Edwards group in Canada, is targeting relatives from large superfamilies, highly
expanded in human, to characterise relatives having different ligand specificities.
These initiatives, which combine structural characterisation with biochemical stud-
ies, will be very useful in expanding the repertoire of diverse structural relatives
within superfamilies with known functions which can be used to validate structure
function prediction algorithms.

To What Extent Can Function Be Predicted
from the Structure of the Domain

Global Structure Comparison

Since most structural domain superfamilies (>70% of superfamilies in CATH) are
rather homogeneous in function [13], classifying a new domain in one of these
superfamilies generally allows inheritance of function from one of the other exper-
imentally characterised superfamily members [22, 23]. Over the last 20 years a
plethora of structure comparison algorithms have been developed which attempt
to handle the diverse structural changes that can occur during evolution. For very
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Fig. 3 Dendrogram showing non-redundant relatives of the HUP superfamily clustered by a nor-
malised RMSD score (SIMAX). Domains that share similar functions are highlighted in the same
colour

remote homologues in these superfamilies, function can often be assigned using
reliable structure comparison methods (e.g. CE [24], DALI [25], CATHEDRAL
[26], Structal [27], FatCat [28]; see also [2, 29] for reviews).

Whilst a number of fast structure comparison methods exist [26, 28, 30] most of
which compare secondary structures between proteins and can be used to search
the PDB for putative fold matches, the most accurate methods compare residue
positions between proteins [2, 29]. Some of these algorithms exploit the dynamic
programming algorithms or other sophisticated optimisation protocols like simu-
lated annealing to handle residue insertions and deletions. However, whilst global
structural similarity is quite a good indication of functional similarity and can be
used to cluster together relatives sharing common functions within structural super-
families (see Fig. 3), rather high thresholds on similarity are required to ensure
significant conservation of function (see Fig. 4).

Assigning Functions Based on Local Structural Similarity

Various studies suggest that domains that seem unrelated as a whole may contain
evolutionarily-conserved subparts [31, 32] such as their active sites [33].

As structure is more conserved across protein families than sequence [10], struc-
ture comparison methods are able to detect far more distant relationships than the
most powerful profile methods. However, as discussed already, even domains in
the same superfamily can exhibit large amounts of structural variation [11]. This
may be due to different protein or domain interactions, or requirements to attach to
distinct cellular environments, or might simply be due to random evolutionary drift.
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Fig. 4 Plot showing relationship between structural similarity and functional conservation (mea-
sured as conservation of EC levels). The SSAP score ranges from 0 to 100 (for identical structures)

Consequently, these structural deviations can mean that even an accurate alignment
of two structures can produce a global similarity score that falls below reliable
thresholds for transferring a specific function.

In a similar vein to the way PRINTS [34] and PROSITE [35] focus on smaller
conserved sequence patterns, there are several approaches to identifying local struc-
ture motifs that are associated with specific functions. For example, the Catalytic
Site Atlas [36] concentrates on building 3D motifs of residues that are directly
involved in ligand binding or the catalytic mechanism in an enzyme. As ab initio
prediction of functional residues is a complex problem in itself, the Thornton group
at the European Bioinformatic Institute (EBI) have focussed on mining the primary
literature to obtain the information on which to build templates. Torrance et al. [37]
analysed the performance of this approach for enzymes with more than 2 catalytic
residues. They were able to discriminate related proteins from random with 85%
accuracy and found that it was important to focus on C-alpha/C-beta residues as
their position is better conserved than side chain atoms. However, even by capturing
the correct functionally active residues – for example, the catalytic triad in the serine
proteases – the flexibility of active sites significantly impacts on the ability of these
templates to detect mobile residues in X-ray crystal structures with different bound
ligands.

Methods That Search for Patterns of Conservation
Without Having Functional Groups or Motifs Defined

In contrast to exploiting information on known functional residues, the DRESPAT
method [38] uses graph theory to extract recurring structural patterns across super-
families in the SCOP database [3]. DRESPAT makes no assumptions about the
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location or nature of the motif positions, except by excluding hydrophobic residues.
A statistical model is built to assess the significance of each recurring pattern and
the authors were able to identify different metal binding sites in distantly related
proteins. However, as with many methods which seek small structural motifs, dis-
tinguishing between genuine similarities and background is hampered by high false
positive rates.

The PINTS methods [39] also shows promise for automatically detecting struc-
tural motifs in protein families, although is not able to annotate novel proteins with
high accuracy. Again, recurring side chain patterns are identified through a pair-wise
comparison of diverse members within a protein family. These motifs can then be
used to scan against a novel structure.

Instead of detecting 3D templates based on their structural conservation across
an enzyme family, Polacco and Babbitt [40] used a genetic algorithm (GASP)
to generate a functional template from a given structure based on its ability to
identify members of the same enzyme superfamily against a background of unre-
lated proteins in the SCOP database. An initial PSI-BLAST step builds a multiple
sequence alignment for each enzyme structure that is used to create a set of con-
served residues, from which a small number (∼10) are selected at random to build a
template. The performance of each template is then evaluated by using a geometric
matching algorithm, SPASM, to score matches to the functional relatives and the
SCOP library. Interestingly, the best template generally contains known functional
amino acids, although there are also a few additional residues with no known func-
tional role. This method is a promising development, although each template takes
up to 18 h to generate and the performance was only evaluated for five superfamilies.

Methods That Search for Structural Differences Between Defined
Functional Groups to Identify Functional Determinants

The FLORA Algorithm

A novel approach was [41], developed recently in our group to provide struc-
tural templates for assigning uncharacterised structures to functional subfamilies in
the CATH classification, performs global structural comparisons between relatives
within a superfamily to identify structural features that are highly conserved within
a functional subfamily but less conserved across the complete superfamily.

FLORA does not exploit information on known functional residues such as cat-
alytic residues from the Catalytic Site Atlas (CSA) to characterise functionally
important positions in the protein. Functionally relevant positions are identified
from structural comparisons within and between the functional subfamilies within a
superfamily.

Benchmark Dataset

The method was originally benchmarked by deriving a dataset of functional sub-
families in 29 large, enzyme superfamilies. Only functionally diverse superfamilies
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were included, with relatives accounting for at least 3 different Enzyme
Classification (EC) codes. A non-redundant set of structures were used for each
superfamily, generated by clustering relatives sharing 60% or more sequence iden-
tity. This threshold was used as it has been shown to be associated with a high
likelihood of functional similarity in the EC classification [41]. Subsequently, struc-
tures were clustered into functional subfamilies if they shared at least the first 3 EC
numbers. A CATH superfamily was then included in the dataset only if it contained
at least 3 functional subfamilies, where each subfamily contained at least 4 struc-
tures. These criteria were chosen to create a sufficiently diverse data set, which could
be effectively assessed using leave-one-out benchmarking. The final dataset con-
tained 82 functional subfamilies from 29 diverse CATH superfamilies (900 domains
in total) and constitutes one of the largest datasets available for evaluating struc-
ture to function prediction algorithms. Furthermore, although these superfamilies
account for <2% of the CATH superfamilies (currently 2600), they are very large
comprising nearly 50% of sequences in functionally diverse CATH superfamilies.

Overview of Method

Figure 5 shows a flowchart of the FLORA method. FLORA does not rely on ini-
tial seeds of known functional residues but explores the whole structure of the
domains in order to find discriminating positions. This information is then captured
by generating vectors between these positions which can be compared against query
structures to recognise functional homologues.

Structural comparisons within and between functional subfamilies are performed
using the CATHEDRAL algorithm, another in-house method [26]. This is a rel-
atively fast comparison method which exploits graph theory and double dynamic

Fig. 5 Flowchart of the FLORA method
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programming and had been shown to perform well against other established meth-
ods (e.g. DALI, Structal, CE) and which aligns the largest proportion of equivalent
residues with respect to manually curated alignments [26].

Step 1: Identify Structurally Conserved Residues

CATHEDRAL is used to perform pair-wise structural comparisons between all
representatives in the given CATH functional subfamily. Subsequently, for each
domain, residues are only considered if they can be aligned against residues in at
least 75% of other relatives from the subfamily (equivresidues). For each domain,
vectors were calculated between the equivresidues.

Vectors were calculated between the Cβ atoms of the equivalent residues (A→B)
and then multiplied by a co-ordinate frame calculated from the tetrahedral geometry
of the bonds of the Cα of residue A as described in [42]. As the Cα geometry of
residues A and B are not identical, vectors were calculated in both the A→B and
B→A direction. However, we found that taking only one of these vectors forward
to the next steps in the algorithm gave the same performance as using both, but
increased the speed of FLORA.

Vectors for each domain in the superfamily were then compared against equiv-
alent vectors in all other domain representatives from the superfamily. Equivalent
vectors were determined from the structural alignment of the two domains being
compared. Vectors were scored using the formula given in Eq. (2) below, where the
values for a and b were determined from trials. The optimal values were a=b=2.

score = a

|v1 − v2| + b
(2)

The next step is to identify those vectors for a given domain that are structurally
more conserved between members of the same functional subfamily than compared
to members of different functional subfamilies. The aim of this step is to elimi-
nate any vectors that are conserved across the whole superfamily. These vectors are
likely to be associated with the core of the domain structure which is common to all
members of the superfamily. Any remaining vectors are more likely to be associated
with functionally specific regions on the domain structure.

In order to identify these “functionally specific” vectors, two distributions were
calculated for each vector considered. One captures the scores obtained by compar-
ing the vector to equivalent vectors in domains in the same functional subfamily
and the other, scores for comparisons involving vectors in different subfamilies.
The means of these distributions were calculated and the vector was identified as
functionally specific if the following condition was met:

mean (functional subfamily distribution) − mean (superfamily distribution ) > 1

The set of selected vectors is reduced by jack-knifing the data set and repeating
the calculation above. That is, each domain is removed in turn and a vector is only
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selected as specific if the inequality is always satisfied. At the end of this process,
each domain is associated with a template set of functionally specific vectors.

Scoring Query Structures Against FLORA Template Sets
for Individual Domains

In order to determine whether a query structure can be assigned to a specific func-
tional subfamily within a CATH superfamily, the query is structurally aligned to all
representatives in the superfamily, using the CATHEDRAL algorithm again, and a
score calculated for each comparison.

When scoring the alignment of the query structure against a given member of
functional subfamily, the algorithm only scores the similarity over the set of func-
tionally specific vectors for the subfamily domain. Thus the algorithm is effectively
calculating a local score using the correspondences determined by a global structure
comparison. Each vector in the template set is scored against the equivalent vector
in the query domain using the following formula:

florascore =

N∑

i=0
score(v1, v2)

N
(3)

where N = number of template vectors; v1 = template vector; v2 = equivalent
vector in query domain.

Any vectors that are not aligned (i.e. gapped positions) are given a score of zero.
The total similarity of the query domain against enzyme domain (the florascore) is
simply the sum of these similarities, normalised by the total number of vectors in
the template (Eq. (3)).

In order to take account of the different degrees of structural-functional diversity
in different superfamilies this score is converted to a Z-score which could be applied
regardless of the superfamily being considered.

Assessing the Performance of FLORA

FLORA was benchmarked using the dataset of 29 functionally diverse CATH
enzyme superfamilies described above. In order to assess the performance in an
unbiased manner we used a standard leave-one-out approach. That is, for a given
superfamily being evaluated, one domain member is removed from the set which is
then used as a training set for the algorithm. The selected test domain is then scored
against FLORA templates for all superfamilies.

We compared the performance of FLORA against global structure comparison
algorithms CE [24], CATHEDRAL [26] and against another publicly available
structure–function prediction method, Reverse Templates [43]. Unfortunately few
structure–function prediction algorithms are available but Reverse Templates is
one of the leading methods. We plotted sensitivity (i.e. tp/(tp + fn)) versus
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Fig. 6 Graph of sensitivity versus precision to show the performance of CE, CATHEDRAL, RT
and FLORA for the prediction of enzyme family

precision (tp/(tp + fp)) and assessed the performance on individual superfamilies
by calculating AUC value (area under ROC curve).

It can be seen from Fig. 6 that both global structure comparison methods, CE and
CATHEDRAL, are poor at recognising the correct functional subfamily to which
a query domain should be assigned. CATHEDRAL outperforms CE, most likely
because it is able to align more equivalent positions, as identified in previous studies
[26]. However, neither method was specifically designed for recognising functional
homologues.

Even at high precision (>95%) FLORA significantly outperforms CE,
CATHEDRAL and Reverse Templates. At 90% precision it captures twice the
number of functional homologues than Reverse Templates. The sensitivity of the
algorithm derives from the fact that although FLORA uses an alignment derived
by CATHEDRAL, it only scores positions deemed to be functionally specific (i.e.
in the FLORA template set). By exploiting multiple structures from a functional
subfamily it can more easily identify these specific positions.

We have also examined the effect on the FLORA performance of using whole
protein chains rather than protein domains. There was negligible impact on per-
formance which suggests that there is enough signal in the domain structure to
recognise the specific function of the protein containing the domain. This is encour-
aging if we wish to exploit FLORA as a general function prediction method since the
majority of proteins differ between organisms [44] whilst the domain components
within them are related and can therefore, from these results, be used to suggest
functions for the whole proteins.
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Visualisation of Functionally Specific Positions Detected by FLORA

The power of FLORA lies in its ability to identify residues beyond the common
structural core of the domain subfamily. Our previous analyses observed that nearly
70% of residue positions identified by FLORA were located close to functional sites
[41]. Other FLORA positions were found to be close to interface surfaces involved
in protein interactions. To manually assess the ability of FLORA to recognise func-
tionally relevant sites in the domain structures, FLORA positions were mapped
onto representative structures from the HUP domain superfamily, which is one of
the largest and most structurally and functionally diverse superfamilies in CATH,
comprising more than 9 different functional subfamilies.

Domains in this superfamily adopt a Rossmann-like fold with a central parallel
β-sheet surrounded on both sides by α-helices. The main active site is always located
in the C-terminal half of the central β-sheet and is generally involved in nucleotide-
binding.

Figure 7 illustrates residue locations identified by FLORA templates for a
subfamily from the HUP domain superfamily. A representative structure for this
functional subfamily was chosen as the structure with the highest cumulative
structural similarity score to all other non-redundant members (at 100% sequence
identity) of the subfamily. Residue positions are highlighted if at least 30% of

Fig. 7 Superposition of PSI
structure 2pbl (dark grey)
with 1tqh (superfamily
3.40.50.1820, EC 3.1.1.-).
Flora residues are coloured
green, or gold if they are
conserved across the whole
superfamily, and catalytic
residues are shown in light
blue. It can be seen that there
is reasonable agreement in
the region of the active site
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FLORA templates for this subfamily include these positions. Any positions con-
served across a majority of the superfamily (i.e. 75% or more of the relatives) are
coloured gold.

Incorporating Sequence Based Protocols with FLORA
to Identify Functionally Specific Residues

We explored the effects of including sequence matching within the FLORA algo-
rithm. That is including a contribution to the score reflecting identical or similar
residues between the query and the template structure. However, this tended to
degrade the performance and was not included in the final version of the algorithm.

Instead we have developed a separate sequence based protocol (GeMMA
[45]) for identifying residue positions likely to be associated with the function.
This allowed us to annotate structural domains within each functional subfamily
with residue positions identified as functionally specific from both structural data
(FLORA) and sequence data (GeMMA).

More importantly, GeMMA allows to identify functional subgroups amongst all
the sequences assigned to a superfamily, even those without known structures. Since
the number of sequence relatives can be up to 100-fold greater than the number
of structures for some superfamilies, this gives a more accurate representation of
functional divergence across the superfamily. Functional subfamilies identified by
GeMMA can be used as sets for training the FLORA algorithm, provided they con-
tain three or more non-redundant structures and can therefore be used to identify
positions associated with function which are structurally conserved.

GeMMA exploits information from all the predicted sequence domains assigned
to a particular CATH structural superfamily and contained within our Gene3D
resource (http://gene3d.biochem.ucl.ac.uk/Gene3D). For example in the HUP
superfamily mentioned above, there are 85 non-redundant structures (at 60%
sequence identity) and 9484 non-redundant sequences stored within CATH-
Gene3D. Gene3D contains all the predicted domain sequences for CATH super-
families identified using HHM models built from the sequences of non-redundant
structural domains in CATH [23].

GeMMA initially compares (using BLAST) all the sequences against each other
and then progressively merges similar sequences into functional subgroups or sub-
families. This is initially done on the basis of pairwise sequence similarity but as the
clusters grow and there are enough sequences to make a sequence profile, profile–
profile comparisons are performed between clusters. Clusters are merged provided
the E-value returned from the comparison is below a threshold obtained by bench-
marking with superfamilies for which there are extensive experimental functional
characterisations [45].

Since profile–profile comparisons can be very computationally expensive, we
have developed a strategy for reducing the number of comparisons that need to be
performed and for running a modified version of the protocol on multiple compute

http://gene3d.biochem.ucl.ac.uk/Gene3D
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nodes. Alternative sequence based strategies for identifying functional subfamilies
within superfamilies tend to exploit tree based approaches that rely on a multi-
ple sequence alignment of all the sequences to build the tree. However, the most
functionally diverse superfamilies in CATH, which account for more than half
the sequences in the genomes, contain more than 10,000 sequences. This number
of sequences is beyond the scope of most multiple sequence alignment meth-
ods. Even when non-redundant datasets are generated at 60% sequence identity
to ensure functional coherence, there are still large numbers of sequences in these
very large superfamilies (i.e. > 5000). Therefore, the iterative clustering protocol
used by GeMMA (also described as agglomerative clustering), is the most tractable
approach for these very large and functionally diverse superfamilies.

FLORA templates can be derived for GeMMA functional subfamilies which
contain 3 or more non-redundant structures (at 30% sequence identity). As men-
tioned above FLORA analyses can exploit the structural data in these subfamilies to
identify structurally conserved positions associated with functional sites (e.g. active
sites and protein–protein interaction surfaces). GeMMA identifies >100 functional
subfamilies in the diverse HUP superfamily. Figure 8 shows a representative from
one of these subfamilies with residue positions highlighted according to whether
they are identified as sequence conserved by GeMMA or structurally conserved
by FLORA or both sequence and structure conserved. Mapping these conserved
residues onto the structure is clearly useful in suggesting the location of functional
sites on the protein domain. In the future CATH-Gene3D will be providing infor-
mation on GeMMA functional subfamilies for selected CATH domain superfamilies
being targeted for structural genomics by the protein structure initiative (PSI) in the
United States.

Fig. 8 Representative structure from one of the HUP protein subfamilies. Residues that are con-
served by structure are coloured green, those conserved by sequence are coloured blue and those
conserved by both sequence and structure are coloured red
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Sequence Order Independent Comparison
of Protein Global Backbone Structures
and Local Binding Surfaces for Evolutionary
and Functional Inference

Joe Dundas, Bhaskar DasGupta, and Jie Liang

Abstract Alignment of protein structures can help to infer protein functions and
can reveal ancient evolutionary relationship. We discuss computational methods we
developed for structural alignment of both global backbones and local surfaces of
proteins that do not depend on the ordering of residues in the primary sequences.
The algorithm for global structural alignment is based on fragment assembly, and
takes advantage of an approximation algorithm for solving the maximum weight
independent set problem. We show how this algorithm can be applied to discover
proteins related by complex topological rearrangement, including circularly per-
muted proteins as well as proteins related by complex higher order permutations.
The algorithm for local surface alignment is based on solving the bi-partite graph
matching problem through comparison of surface pockets and voids, such as those
computed from the underlying alpha complex of the protein structure. We also
describe how multiple matched surfaces can be used to automatically generate sig-
nature pockets and a basis set that represents the ensemble of conformations of
protein binding surfaces with a specific biological function of binding activity. This
is followed by illustrative examples of signature pockets and a basis set computed
for NAD binding proteins, along with a discussion on how they can be used for
discriminating NAD-binding enzymes from other enzymes.

Introduction

To understand the molecular basis of cellular processes, it is important to gain
a comprehensive understanding of the biological functions of protein molecules.
Although an increasing number of sequences and structures of proteins are now
available, there are many proteins whose biological functions are not known, or
knowledge of their biological roles is incomplete. This is evidenced by the existence
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of a large number of partially annotated proteins, as well as the accumulation of a
large number of protein structures from structural genomics whose biological func-
tions are not well characterized [1, 2]. Researchers have turned to in silico methods
to gain biological insight into the functional roles of these uncharacterized proteins,
and there has been a number of studies addressing the problem of computationally
predicting the biological function of proteins [3–8].

A relatively straightforward method for inferring protein function is to transfer
annotation based on homology analysis of shared characteristics between proteins.
If a protein shares a high level of sequence similarity to a well characterized family
of proteins, frequently the biological functions of the family can be accurately trans-
ferred onto that protein [9–11]. At lower levels of sequence similarity, probabilistic
models such as profiles can be constructed using local regions of high sequence sim-
ilarity [11–13]. The large amount of information of protein such as those deposited
in the SWISS-PROT database [14] provides rich information for constructing such
probabilistic models.

However, limitations to sequence-based homology transfer for function predic-
tion arise when the sequence identity between a pair of proteins is less than 60%
[15]. An alternative to sequence analysis is to infer protein function based on
structural similarity. It is now well known that protein structures are much more
conserved than protein sequences, as proteins with little sequence identity often
fold into similar three-dimensional structures [16].

Protein structure and protein function are strongly correlated [17]. Conceptually,
knowledge of three-dimensional structures of proteins should enable inference of
protein function. Computational tools and databases for structural analysis are indis-
pensable for establishing the relationship between protein function and structure.
Among databases of protein structures, the SCOP [18] and CATH [19] databases
organize protein structures hierarchically into different classes and folds based on
their overall similarity in topology and fold. Such classification of protein structures
generally depends on a reliable structural comparison method. Although there are
several widely used methods, including Dali [20] and CE [21], current structural
alignment methods cannot guarantee to give optimal results and structural align-
ment methods do not have the reliability and interpretability comparable to that of
sequence alignment methods.

Comparing protein structures is challenging. First, it is difficult to obtain a quan-
titative measure of structural similarity that is generally applicable to different types
of problems. Similar to sequence alignment methods, one can search for global
structural similarity between overall folds or focus on local similarity between
surface regions of interest. Defining a quantitative measure of similarity is not
straightforward as illustrated by the variety of proposed structural alignment scoring
methods [22]. Unlike sequence alignment, in which the scoring systems are largely
based on evolutionary models of how protein sequence evolve [23, 24], scoring
systems of structural alignment must take into account both the three-dimensional
positional deviations between the aligned residues or atoms, as well as other charac-
teristics that are biologically important. Second, many alignment methods assume
the ordering of the residues follow that of the primary sequence when seeking
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to optimize structure similarity [21, 25]. This assumption can be problematic, as
similar three-dimensional placement of residues may arise from residues with dif-
ferent sequential ordering. This problem is frequently encountered when comparing
local regions on proteins structures. When comparing global structures of proteins,
the existence of circular and higher ordered permutations [26, 27] also poses sig-
nificant problems. Third, proteins may undergo minor residue side chain structural
fluctuations as well as large backbone conformational changes in vivo. These struc-
tural fluctuations are not represented in a static snapshot of a crystallized structures
in the Protein Data Bank (PDB) [28]. Many structural alignment methods, which
assume rigid bodies and cannot account for structural changes that may occur.

In this chapter, we will first discuss several overall issues important for protein
structural alignment. We then discuss a method we have developed for sequence
order independent structural alignment at both the global and local level of pro-
tein structure. This is followed by discussion on how this method can be used to
detect protein pairs that appear to be related by simple and complex backbone
permutations. We will then describe the use of local structural alignment in auto-
matic construction of signature pockets of binding surfaces, which can be used to
construct basis set for a specific biological function. These constructs can detect
structurally conserved surface regions and can be used to improve the accuracy of
protein function prediction.

Structural Alignment

Protein structural alignment is an important problem [22]. It is particularly use-
ful when comparing two proteins with low sequence identity between them. A
widely used measure of protein structural similarity is the root mean squared dis-
tance (RMSD) between the equivalent atoms or residues of the two proteins. When
the equivalence relationship between structural elements are known, a superposition
described by a rotation matrix R and a translation vector T that minimizes the root
mean squared distances (RMSD) between the two proteins can be found by solving
the minimization problem:

min
NB∑

i=1

NA∑

j=1

|T + RBi − Aj|2, (1)

where NA is the number of points in structure A and NB is the number of points
in structure B and it is assumed that NA = NB. The least-squares estimation of the
transformation parameters R and T in Eq. (1) can be found using the technique of
singular value decomposition [29].

However, it is often the case that the equivalences between the structural elements
are not known a priori. For example, when two proteins have diverged significantly.
In this case, one must use heuristics to determine the equivalence relationship, and
the problem of protein structural alignment becomes a multi-objective problem.
That is, we are interested in finding the maximum number of equivalent elements as
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well as in minimizing the RMSD upon superposition of the equivalent elements of
the two proteins.

A number of methods that are heuristic in nature have been developed for align-
ing protein structures [30–37]. These methods can be divided into two categories.
Global structural alignment methods, which are suited for detecting similarities
between the overall backbones of two proteins, while local structural alignment
methods are suited for detecting similarities between local regions or sub-structures
within the two proteins. As discussed earlier, many structural alignment algorithms
are constrained to find only structural similarities where the order of the structural
elements follows their order in the primary sequence. Sequence order independent
methods ignore the sequential ordering of the structural elements and are better
suited to find more complex global structural similarities. They are also very effec-
tive for all atom comparison of protein sub-structures, as in the case of binding
surface alignment. Below we discuss methods for both global and local sequence
order independent structural alignment.

Global Sequence Order Independent Structural Alignment

Global sequence order independent structural alignment is a powerful tool that can
be used to detect similarities between two proteins that have complex topological
rearrangements, including permuted structures. Permuted proteins can be described
as two proteins with similar three-dimensional spatial arrangement of secondary
structures, but with a different backbone connection topology. An example of per-
muted proteins are proteins with circular permutations, which can be thought of as
ligation of the N- and C-termini of a protein, and cleavage somewhere else on the
protein. Circular permutations are interesting not only because they tend to have
similar three-dimensional structure but also because they often maintain the same
biological function [26]. Circularly permuted proteins may provide a generic mech-
anism for introducing protein diversity that is widely used in evolution. Detecting
circular permutations is also important for homology modeling, for studying protein
folding, and for designing protein.

A Fragment Assembly Based Approach to Sequence Order
Independent Structural Alignment

We have developed a sequence order independent structural alignment method
that is well-suited for detecting circular permutation as well as more complex
topological rearrangement relationships among proteins [27]. Our algorithm is
capable of aligning two protein backbone structures independent of the secondary
structure element connectivity. Briefly, the two proteins to be aligned are first sep-
arately and exhaustively fragmented. Each fragment λA

i,k from protein structure SA

is then pair-wise superimposed onto each fragment λB
j,k from protein structure SB,

forming a set of fragment pairs χi,j,k, where i ∈ SA and j ∈ SB are the indices in
the primary sequence of the first residue of the two fragment, respectively. Here
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k ∈ {5, 6, 7} is the length of the fragment. For each fragment, we assign a similarity
score,

σ (χi,j,k) = α

[

C − s(χi , j ,k) · cRM SD

k2

]

+ SC S, (2)

where cRMSD is the measured RMSD value after optimal superposition of the two
fragments, α and C are two constants, s(χi , j ,k) is a scaling factor to the measured
RMSD values that depends on the secondary structure of this fragment, and SCS is
a BLOSSUM-like measure of similarity in sequence of the matched fragments [24].
Details of the similarity score and the parameters α and C can be found in [27].

The goal of structural alignment for the moment seeks to find a consistent set of
fragment pairs Δ = {χi1,j1,k1 , χi2,j2,k2 , . . . , χit ,jt ,kt} that minimize the global RMSD.
Finding the optimal combination of fragment pairs is a special case of the well
known maximum weight independent set problem in graph theory. This problem
is MAX-SNP-hard. We employ an approximation algorithm that was originally
described for scheduling split-interval graphs [38] and is itself based on a fractional
version of the local-ratio approach.

Our method begins by creating a conflict graph G = (V , E), where a vertex is
defined for each aligned fragment pair. Two vertices are connected by an edge if any

of the fragments
(

λA
i,k, λA

i′,k′
)

or
(

λB
j,k, λB

j′,′k′
)

from the aligned pair is not disjoint,

that is, if both fragments from the same protein share one or more residues. For
each vertex representing aligned fragment pair, we assign three indicator variables
xχ , yχλA

, and yχλB
∈ {0, 1} and a closed neighborhood Nbr[χ ]. xχ indicates whether

the fragment pair should be used (xχ = 1) or not (xχ = 0) in the final alignment.
yχλA

, and yχλB
are artificial indicator values for λA and λB, which allow us to encode

consistency in the selected fragments. The closed neighborhood of a vertex χ of G
is {χ ′|{χ , χ ′} ∈ E} ∪ {χ}, which is simply χ and all vertices that are connected to χ

by and edge.
Our algorithm for sequence order independent structural alignment can now be

described as follows. To begin, we initialize the structural alignment Δ equal to the
entire set of aligned fragment pairs. We then:

1. Solve a linear programming (LP) formulation of the problem:
maximize

∑

χ∈Δ

σ (χ ) · xχ (3)

subject to
∑

at∈λA

yχλA
≤ 1 ∀at ∈ SA (4)

∑

bt∈λB

yχλB
≤ 1 ∀bt ∈ SB (5)



130 J. Dundas et al.

yχλA
− xχ ≥ 0 ∀χ ∈ Δ (6)

yχλB
− xχ ≥ 0 ∀χ ∈ Δ (7)

xχ , yχλA
, yχλB

≥ 0 ∀χ ∈ Δ (8)

2. For every vertex χ ∈ VΔ of GΔ, compute its local conflict number αχ =
∑

χ
′∈NbrΔ[χ ] x

χ
′ . Let χmin be the vertex with the minimum local conflict number.

Define a new similarity function σ new from σ as follows:

σnew(χ ) =

⎧

⎪⎨

⎪⎩

σ (χ ), if χ /∈ NbrΔ[χmin]

σ (χ ) − σ (χmin), otherwise

3. Create Δnew ⊆ Δ by removing from Δ every substructure pair χ such that
σnew(χ ) ≤ 0. Push each removed substructure on to a stack in arbitrary order.

4. If Δnew �= ∅ then repeat from step 1, setting Δ = Δnew and σ = σnew.
Otherwise, continue to step 5.

5. Repeatedly pop the stack, adding the substructure pair to the alignment as long
as the following conditions are met:

a. The substructure pair is consistent with all other substructure pairs that
already exist in the selection.

b. The cRMSD of the alignment does not change beyond a threshold. This
condition bridges the gap between optimizing a local similarity between
substructures and optimizing the tertiary similarity of the alignment. It guar-
antes that each substructure from a substructure pair is in the same spatial
arrangement in the global alignment.

Detecting Permuted Proteins

This algorithm is used in a large scale study, where a subset with 3,336 protein struc-
tures taken from the PDBSELECT 90 data set % [39] are structurally aligned in a
pair-wise fashion. Our goal is to determine if we could detect structural similarities
with complex topological rearrangements such as circular permutations. From this
subset of 3,336 proteins, we aligned two proteins if they met the following condi-
tions: the difference in their lengths was no more than 75 residues, and they had
approximately the same secondary structure content (see [27] for details). Within
the approximately 200,000 alignments, we found many known circular permuta-
tions, and three novel circular permutations previously unknown, as well as a pair
of non-cyclic complex permuted proteins. Below we describe in some details the cir-
cular permutations we found between a neucleoplasmin-core and an auxin binding
protein, as well as details of the more complex non-cyclic permutation.
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Nucleoplasmin-Core and Auxin Binding Protein

A novel circular permutation was detected between the nucleoplasmin-core protein
in Xenopu laevis (PDB ID 1k5j, chain E) [40] and the auxin binding protein in
maize (PDB ID 1lrh, chain A, residues 37 through 127) [41]. The structural align-
ment between 1k5jE (Fig. 1a, top) and 1lrhA (Fig. 1a, bottom) consisted of 68
equivalent residues superimposed with an RMSD of 1.36 Å. This alignment is sta-
tistically significant with a p-value of 2.7×10−5 after Bonferroni correction. Details
of p-value calculation can be found in reference [27]. The short loop connecting two
antiparallel strands in nucleoplasmin-core protein (in circle, top of Fig. 1b) becomes
disconnected in auxin binding protein 1 (in circle, bottom of Fig. 1b), and the N-
and C- termini of the nucleoplasmin-core protein (in square, top of Fig. 1b) are
connected in auxin binding protein 1 (square, bottom of Fig. 1b). For details of
other circular permutations we discovered, including permutations between aspar-
tate racemase and type II 3-dehydrogenase and between microphage migration
inhibition factor and the C-terminal domain of arginine repressor, please see [27].

Fig. 1 A newly discovered circular permutation between nucleoplasmin-core (1k5j, chain E,
top panel), and a fragment of auxin binding protein 1 (residues 37–127) (1lrh, chain A, bottom
panel). a These two proteins align well with a RMSD value of 1.36 Å over 68 residues, with
a significant p-value of 2.7 × 10−5 after Bonferroni correction. b The loop connecting strand 4
and strand 5 of nucleoplasmin-core (in rectangle, top) becomes disconnected in auxin binding
protein 1. The N- and C- termini of nucleoplasmin-core (in rectangle, top) become connected in
auxin binding protein 1 (in rectangle, bottom). To aide in visualization of the circular permutation,
residues in the N-to-C direction before the cut in the nucleoplasmin-core protein are colored red,
and residues after the cut are colored blue. c The topology diagram of these two proteins. In the
original structure of nucleoplasmin-core, the electron density of the loop connecting strand 4 and
strand 5 is missing in the PDB structure file. This figure is modified from [27]
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Beyond Circular Permutation

Because of its relevance in understanding the functional and folding mechanism
of proteins, circular permutations have received much attention [28, 42]. A more
challenging class of permuted proteins is that of the non-cyclic permutation with
more complex topological changes. Very little is known about this class of per-
muted proteins, and the detection of non-cyclic permutations is challenging task
[43–46].

Non-cyclic permutations of the Arc repressor were created artificially were found
to be thermodynamically stable. It can refold on the sub-millisecond time scale,
and can bind operator DNA with nanomolar affinity [47], indicating that naturally
occurring non-cyclic permutations may be as rich as the cyclic permutations. Our
database search uncovered a naturally occurring non-cyclic permutation between
chain F of AML1/Core Binding Factor (AML1/CBF, PDB ID 1e50, Fig. 2a, top)
and chain A of riboflavin synthase (PDB ID 1pkv, Fig. 2a, bottom) [48, 49]. The

Fig. 2 A non-cyclic permutation discovered between AML1/Core Binding Factor (AML1/CBF,
PDB ID 1e50, Chain F, top) and riboflavin synthase (PDBID 1pkv, chain A, bottom) a These
two proteins structurally align with an RMSD of 1.23 Å over 42 residues , and has a significant p-
value of 2.8×10−4 after Bonferroni correction. The residues that were assigned equivalences from
the structural alignment are colored blue. b These proteins are related by a complex permutation.
The steps to transform the topology of AML1/CBF (top) to riboflavin (bottom) are as follows: c
Remove the loops connecting strand 1 to helix 2, strand 4 to strand 5, and strand 5 to helix 6; d
Connect the C-terminal end of strand 4 to the original N-termini; e Connect the C-terminal end of
strand 5 to the N-terminal end of helix 2; f Connect the original C-termini to the N-terminal end
of strand 5. The N-terminal end of strand 6 becomes the new N-termini and the C-terminal end of
strand 1 becomes the new C-termini. We now have the topology diagram of riboflavin synthase.
This figure was modified from [27]
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two structures align well with an RMSD of 1.23 Å, at an alignment length of 42
residues, with a significant p-value of 2.8 × 10−4 after Bonferroni correction.

The topology diagram of AML1/CBF (Fig. 2b) can be transformed into that of
riboflavin synthase (Fig. 2f) by the following steps: Remove the loops connecting
strand 1 to helix 2, strand 4 to strand 5, and strand 5 to strand 6 (Fig. 2c). Connect
the C-terminal end of strand 4 to the original N-termini (Fig. 2d). Connect the C-
terminal end of strand 5 to the N-terminal end of helix 2 (Fig. 2e). Connect the
original C-termini to the N-terminal end of strand 5. The N-terminal end of strand
6 becomes the new N-termini and the C-terminal end of strand 1 becomes the new
C-termini (Fig. 2f).

Local Sequence Order Independent Structural Alignment

The comparison of overall structural folds regardless of topological reconnections
can lead to insight into distant evolutionary relationship. However, similarity in
overall fold is not a reliable indicator of similar function [50–52]. Several studies
suggest that structural similarities between local surface regions where biological
function occurs, such as substrate binding sites, are a better predictor of shared
biological function [8, 53–57].

Substrate binding usually occurs at concave surface regions, commonly referred
to as surface pockets [55, 58–60]. A typical protein has many surface pockets, but
only a few of them present a specific three-dimensional arrangement of chemical
properties conducive to the binding of a substrate. This protein must maintain this
physiochemical environment throughout evolution in order to maintain its biological
function. For this reason, shared structural similarities between functional surfaces
among proteins may be a strong indicator of shared biological function. This has
lead to a number of promising studies, in which protein functions can be inferred by
similarity comparison of local binding surfaces [55, 61–64].

A challenging problem with the structural comparison of protein pockets lies in
the inherent flexibility of the protein structure. A protein is not a static structure
represented by a Protein Data Bank entry. The whole protein as well as the local
functional surface may undergo large structural fluctuations. The use of a single
surface pocket structure as a representative template for a specific protein function
will often result in many false negatives. This is due to the inability of a single
representative to capture the full functional characteristics across all conformations
of the protein.

To address this problem, we have developed a method that can automatically
identify the structurally preserved atoms across a family of protein structures that
are functionally related. Based on sequence-order independent surface alignments
across the functional pockets of a family of protein structure, our method creates
signature pockets by identifying structurally conserved atoms and measuring their
fluctuations. As more than one signature pocket may result for a single functional
class, the signature pockets can be organized into a basis set of signature pockets
for that functional family. These signature pockets of the binding surfaces then can
be used for scanning a protein structure database for function inference.
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Bi-partite Graph Matching Approach to Structural Alignment

Our method for surface alignment is sequence order independent. It is based on a
maximum weight bi-partite graph matching formulation of [65] with further mod-
ifications. This alignment method is a two step iterative process. First, an optimal
set of equivalent atoms under the current superposition are found using a bi-partite
graph representation. Second, a new superposition of the two proteins is determined
using the new equivalent atoms from the previous step. The two steps are repeated
until a stopping condition has been met.

To establish the equivalence relationship, two protein functional pocket surfaces
SA and SB are represented as a graph, in which a node on the graph represent an atom
from one of the two functional pockets. The graph is bi-partite if edges only connect
nodes from protein SA to nodes from protein SB. In our implementation, directed
edges are only drawn from nodes of SA to nodes of SB if a similarity threshold is
met. The similarity threshold used in our implementation is a function of spatial
distances and chemical differences between the corresponding atoms (see [66] for
details). Each edge ei,j connecting node i to node j is assigned a weight w(i, j) equal
to the similarity score between the two corresponding atoms. A set of equivalence
relations between atoms of SA and atoms of SB can be found by selecting a sub-
set of the edges connecting nodes of SA to SB, with maximized total edge weight,
where at most one edge can be selected for each atom [67]. A solution to the max-
imum weight bi-partite graph matching problem can be found using the Hungarian
algorithm [68].

The Hungarian method works as follows. To begin, an overall score Fall = 0
is initialized, and an artificial source node s and an artificial destination node d are
added to the bi-partite graph. Directed edges with 0-weight from the source node
s to each node of SA and from each node of SB to the destination node d are also
added. The algorithm then proceeds as follows:

1. Find the shortest distance F(i) from the source node s to every other node i using
the Bellman-Ford [69] algorithm.

2. Assign a new weight w′(i, j) to each edge that does not originate from the source
node s as follows,

w′(i, j) = w(i, j) + [F(i) − F(j)]. (9)

3. Update Fall as Fall
′ = Fall − F(d)

4. Reverse the direction of the edges along the shortest path from s to d.
5. If Fall > F(d) and a path exists between s and d then start again at step 1.

The Hungarian algorithm terminates when either there is no path from s to d
or when the shortest distance from the source node to the destination node F(d) is
greater than the current overall score Fall. The bi-partite graph will now consist of
directed edges that have been reversed (point from nodes of SB to nodes of SA).
These flipped edges represent the current equivalence relationships between atoms
of SA and atoms of SB.
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The equivalence relations can then be used to superimpose the two proteins. After
superposition, a new bi-partite graph is created and the maximum weight bi-partite
matching algorithm is called again. This process is repeated iteratively until the
change in RMSD upon superposition falls below a threshold.

Signature Pockets and Basis Set of Binding Surface
for a Functional Family of Proteins

Based on the pocket surface alignment algorithm, we have developed a method that
automatically generate structural templates of local surfaces, called signature pock-
ets, which can be used to represent an enzyme function or a binding activity. These
signature pockets contain broad structural information as well as discriminating
ability.

A signature pocket is derived from an optimal alignment of precomputed surface
pockets in a sequence-order-independent fashion, in which atoms and residues are
aligned based on their spatial correspondence when maximal similarity is obtained,
regardless how they are ordered in the underlying primary sequences. Our method
does not require the atoms of the signature pocket to be present in all member
structures. Instead, signature pockets can be created at varying degrees of partial
structural similarity, and can be organized hierarchically at different level of binding
surface similarity.

The input to the signature pocket algorithm is a set of functional pockets from a
pre-calculated database of surface pockets and voids on proteins, such as those con-
tained in the CASTp database [60]. The algorithms begins by performing all vs all
pair-wise sequence order independent structural alignment on the input functional
surface pockets. A distance score, which is a function of the RMSD and the chem-
istry of the paired atoms from the structural alignment, is recorded for each aligned
pair of functional pockets (see [66] for details). The resulting distance matrix is
then used by an agglomerative clustering method, which generates a hierarchical
tree. The signature of the functional pockets can then be computed using a recursive
process following the hierarchical tree.

The process begins by finding the two closest siblings (pockets SA and SB), and
combining them into a single surface pocket structure SAB. Because of the recursive
nature of this algorithm, either of the two structures being combined may themselves
already be a combination of several structures. When combining the two structures,
we follow the criteria listed below:

1. If two atoms were considered equivalent in a structural alignment, a single
coordinate is created in the new structure to represent both atoms. The new coor-
dinate is calculated by averaging the coordinates of all underlying atoms that are
currently represented by the two coordinates to be averaged.

2. If no equivalence was found for an atom during the structural alignment,
the coordinates of that atom are transferred directly into the new pocket
structure.
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During each step in combining two surface pockets, a count of the number of
times that an atom at the position i was present in the underlying set of pockets is
recorded, which is then divided by the number of the constituent pockets. This is
the preservation ratio ρ(i). In addition, the mean distance of the coordinates of the
aligned atoms to their geometric center is recorded as the location variation v. At
the end of each step, the new structure SAB replaces the two structures SA and SB in
the hierarchical tree, and the process is repeated on the updated hierarchical tree. At
a specific height of the hierarchical tree, different signature pockets can be created
with different extents of structural preservation by selecting a similarity threshold
value.

The signature pocket algorithm can be terminated at any point during its traversal
of the hierarchical tree. Figure 3 illustrates this point by showing three differ-
ent stopping thresholds (horizontal dashed lines). Depending on the choice of the
threshold, one or multiple signature pockets may result. Figure 3a shows a low
threshold which results in a set of 3 signature pockets. Raising the threshold can
produce fewer signature pockets (Fig. 3b). A single signature pocket that repre-
sents all surface pockets in the data set can be generated by raising the threshold
even further (Fig. 3c). Since clusters from the hierarchical tree represent a set of
surface pockets that are similar within certain threshold, if a stopping threshold is
chosen such that there exist multiple clusters in the hierarchical tree, a signature
pocket will be created for each cluster. The set of signature pockets from differ-
ent clusters collectively form a basis set of signature pockets, which represent the
ensemble of differently sampled conformations for a functional family of proteins.
As a basis set of signatures can represent many possible variations in shapes and
chemical textures, it can represent structural features of an enzyme function with
complex binding activities, and can also be used to accurately predict enzymes
function.

1 2

3

1

2

1

a.) c.)b.)

Fig. 3 Different basis sets of signature pockets can be produced at different levels of structural
similarity by raising or lowering the similarity threshold (vertical dashed line). a A low threshold
will produce more signature pockets. b As the threshold is raised, fewer signature pockets will be
created. c A single signature pocket can in principle be created to represent the full surface pocket
data set by raising the threshold
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Signature Pockets of NAD Binding Proteins

To illustrate how signature pockets and basis set help to identify key structural ele-
ments important for binding and how they can facilitate function inference, we
discuss a study of the nicotinamide adenine dinucucleotide (NAD) binding pro-
teins. NAD consists of two nucleotides, nicotinamide and adenine, which are joined
by two phosphate groups. NAD plays essential roles in metabolism where it acts as
a coenzyme in redox reactions, including glycolysis and the citric acid cycle.

Using a set of 457 NAD binding proteins of diverse fold structures and diverse
evolutionary origin, we first extracted the NAD binding surfaces from precomputed
CASTp database of protein pockets and voids [60]. Based on similarity values from
a comprehensive all-against-all sequence order independent surface alignment, we
obtain a hierarchical tree of NAD binding surfaces. The resulting 9 signature pockets
of the NAD binding pocket form a basis set, which are shown in Fig. 4.

These signature pockets contain rich biological information. Among the NAD-
binding oxioreductase, three signature pockets (Fig. 4e, h, and i) are for clusters of
oxioreductases that act on the CH-OH group of donors (alcohol oxioreductases), one
signature pocket (Fig. 4j) is for a cluster that act on the aldehyde group of donors,
and the remaining two signature pockets (Fig. 4f and g) are for oxioreductases that
act on the CH-CH group of donors. For NAD-binding lyase, one of the two signature
pockets (Fig. 4d) represent lyase that cleave both C–O and P–O bonds. The other
signature pocket (Fig. 4b) represent lyases that cleave both C–O and C–C bonds.
These two signatures come from two clusters of lyase conformations, each with a
very different class of conformations of the bound NAD cofactor.

We found that the structural fold and the conformation of the bound NAD co-
factor are the two major determinants of the formation of the clusters of the NAD
binding pockets (Fig. 4a). It can be seen in Fig. 4b–j that there are two general con-
formations of the NAD coenzyme. The NAD coenzymes labeled C (Fig. 4b, c, f, g,
h, and j) have a closed conformation, while the coenzymes labeled X (Fig. 4d, e, and
i) have an extended conformation. This indicates that the binding pocket may take
multiple conformations yet bind the same substrate in the same general structure.
For example, the two structurally distinct signature pockets shown in Fig. 4f, g are
derived from proteins that have the same biological function and SCOP fold. All of
these proteins bind to the same NAD conformation.

We have further evaluated the effectiveness of the NAD binding site basis set by
determining its accuracy in correctly classifying enzymes as either NAD-binding or
non-NAD-binding. We constructed a test data set of 576 surface pockets from the
CASTp database [60] independent of the training set of 457 NAD binding proteins.
These 576 surface pockets were selected by taking the top 3 largest pockets in vol-
ume from 142 randomly chosen proteins and 50 proteins that have NAD bound in
the PDB structure, with the further constraint that they were not in our training data
set. We then structurally aligned all 576 pockets in our test data set against each of
the nine NAD signature pockets in the resulting basis set. The testing pocket was
assigned to be an NAD binding pocket if it structurally aligned to one of the nine
NAD signature pockets, with its distance under a predefined threshold. Otherwise it
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Signature Pocket Inhibitor

Lyase
E.C. #: 4.2.1.46 & 4.1.1.35
SCOP ID: c.2.1.2
SCOP Fold: NAD(P)-binding Rossman fold

Isomerase
E.C. #: 5.1.3.2
SCOP ID: c.2.1.2
SCOP Fold:  NAD(P)-binding Rossman fold

Lyase
E.C. #: 4.2.3.4 & 4.6.1.3
SCOP ID: e.22.1.1
SCOP Fold:  Dehydroquinate synthase-like
Note: Rossman fold topology binds NAD

CH-OH oxioreductase
E.C. #: 1.1.1.37 & 1.1.1.27
SCOP ID: d.162.1.1
SCOP Fold:  LDH C-terminal domain-like 
Note: Rossman fold domain

CH-CH oxioreductase
E.C. #: 1.3.1.9
SCOP ID: c.2.1.2
SCOP Fold:  NAD(P)-binding Rossman fold

CH-CH oxioreductase
E.C. #: 1.3.1.9
SCOP ID: c.2.1.2
SCOP Fold:  NAD(P)-binding Rossman fold

CH-OH oxioreductase
E.C. #: 1.1.1.35 & 1.1.1.141 & 1.1.1.178
SCOP ID: c.2.1.2
SCOP Fold:  NAD(P)-binding Rossman fold

CH-OH oxioreductase
E.C. #: 1.1.1.1
SCOP ID: c.2.1.2
SCOP Fold:  NAD(P)-binding Rossman fold

Aldehyde oxioreductase
E.C. #: 1.2.1.12
SCOP ID: d.81.1.1
SCOP Fold:  FwdE/GAPDH domain-like
Note: Rossman fold domain

Description
A.)

C

C

C

C

C

C

X

X

X

Fig. 4 The topology of the hierarchical tree and signature pockets of the NAD binding pockets.
a The resulting hierarchical tree topology. b–j The resulting signature pockets of the NAD bind-
ing proteins, along with the superimposed NAD molecules that were bound in the pockets of the
member proteins of the respective clusters. The NAD coenzymes have two distinct conformations.
Those in an extended conformation are marked with an X and those in a compact conformation are
marked with a C
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was classified as non-NAD binding. The results show that the basis set of 9 signature
pockets can classify the correct NAD binding pocket with sensitivity and specificity
of 0.91 and 0.89, respectively. We performed further testing to determine whether a
single representative NAD binding pocket, as opposed to a basis set, is sufficient for
identifying NAD-binding enzymes. We chose a pocket representative pocket from
one of the 9 clusters that were used to construct the 9 signature pockets. Here, a
testing pockets was classified as NAD-binding if its structural similarity to the sin-
gle representative pocket was above the same pre-defined threshold used in the basis
set study. We repeat this exercise nine times, each time using a different representa-
tive from a different cluster. We found that the results deteriorated significantly, with
an average sensitivity and specificity of only 0.36 and 0.23, respectively. This study
strongly indicates that the construction of a basis set of signatures as a structural
template provides significant improvement for a set of proteins binding the same
co-factor but with diverse evolutionary origin. Further details of the NAD-binding
protein study can be found in [66], along with an in-depth study of the metalloen-
dopeptidase, including the construction of its signatures and basis set, as well as
their utility in function prediction.

Conclusion

In this chapter, we have discussed methods that provide solutions to the problem of
aligning protein global structures as well as aligning protein local surface pockets.
Both methods disregard the ordering of residues in the protein primary sequences.
For global alignment of protein structures, such a method can be used to address
the challenging problem of identifying proteins that are topologically permuted but
are spatially similar. The approach of fragment assembly based on the formulation
of a relaxed integer programming problem and an algorithm based on scheduling
split-interval graphs works well, and is characterized by a guaranteed approxima-
tion ratio. In a scaled up study, we showed that this method enables in discovery
of circularly permuted proteins, including several previously unrecognized protein
pairs. It also uncovered a case of two proteins related by higher order permutations.

We also described a method for order-independent alignment of local spatial sur-
faces that is based on bi-partite graph matching. By assessing surface similarity
for a group of protein structures of the same function, this method can be used to
automatically construct signatures and basis set of binding surfaces characteristic
of a specific biological function. We showed that such signatures can reveal use-
ful mechanistic insight on enzyme function, and can correlate well with substrate
binding specificity.

In this chapter, we neglected an important issue in our discussion of comparing
protein local surfaces for inferring biochemical functions, namely, how to detect
evolutionary signals and how to employ such information for protein function pre-
diction. Instead of going into details, we first point readers to the general approach of
constructing continuous time Markovian models to study protein evolution [70, 71].
In addition, a Bayesian Monte Carlo method that can separate selection pressure due
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to biological function from selection pressure due to the constraints of protein fold-
ing stability and folding dynamics can be found in [57] and in [72]. The Bayesian
Monte Carlo approach can be used to construct customized scoring matrices that are
specific to a particular class of proteins of the same function. Details of how such
method works and how it can be used to accurately predict enzyme functions from
structure with good sensitivity and specificity for 100 enzyme families can be found
in a recent review [72] and original publications [8, 57]. The task of computing
surface pockets and voids using alpha shape is discussed in a recent review [73].
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Protein Binding Ligand Prediction Using
Moments-Based Methods

Rayan Chikhi, Lee Sael, and Daisuke Kihara

Abstract Structural genomics initiatives have started to accumulate protein
structures of unknown function in an increasing pace. Conventional sequence-based
function prediction methods are not able to provide useful function information
to most of such structures. Thus, structure-based approaches have been devel-
oped, which predict function of proteins by capturing structural characteristics of
functional sites. Particularly, several approaches have been proposed to identify
potential ligand binding sites in a query protein structure and to compare them
with known ligand binding sites. In this chapter, we introduce computational meth-
ods for describing and comparing ligand binding sites using two dimensional and
three dimensional moments. An advantage of moment-based methods is that the
tertiary structure of pocket shapes is described compactly as a vector of coeffi-
cients of series expansion. Thus a search against an entire PDB-scale database can
be performed in real-time. We evaluate two binding pocket representations, one
based on two-dimensional pseudo-Zernike moments and the other based on three-
dimensional Zernike moments. A new development of pocket comparison method
is also mentioned, which allows partial matching of pockets by using local patch
descriptors.

Introduction

Functional assignment of proteins is a fundamental and challenging problem in biol-
ogy and bioinformatics [1]. In recent years structural genomics projects have been
solving an increasing number of protein structures which were not able to be char-
acterized by traditional sequence based methods [2, 3]. Therefore, much effort has
been devoted recently to the development of function prediction methods based on
structural information. Structure-based function prediction methods aim either to
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capture global structure or local structure similarity to proteins of known function
in the structure database (PDB [4]). Global approaches are motivated by the obser-
vation that protein folds are better conserved than primary sequences. Alternatively,
local methods aim to capture properties of functional sites, where interactions with
ligand molecules or other proteins take place. Ligand binding sites are intrinsically
unrelated to global folds, as two sequentially and structurally dissimilar proteins
may bind the same ligand molecule [5]. Because two proteins with similar folds
often have different functions [6] ligand binding sites are of particular interest in
structure-based function prediction. In most cases ligand molecules bind to a pro-
tein at its surface pocket regions [7], hence detecting pockets enables identification
of binding sites [8–10]. Binding ligand prediction approaches have two logical steps:
(i) detection of the pocket region in a given protein surface and (ii) comparison of a
pocket against a database of known sites.

Several methods have been developed to predict the location of ligand binding
sites in a protein surface. These methods are based on the detection of specific
geometric properties on the protein surface. For instance, gaps can be detected
on a protein surface using probe spheres [11–13]. Grid-based methods [7, 14, 15]
scan protein surface points for various properties, e.g. voids, the visibility, or the
depth. Voronoi diagrams have also been applied to identify pockets by recog-
nizing depressed regions [16]. Recent methods combine geometrical criteria with
evolutionary information [17–20] and energetics [21–23].

Comparison of binding sites relies on how pockets are represented. These rep-
resentations are either based on coordinates of residues/atoms or shape of pocket
surfaces. In the former representation, protein binding pockets are described as sets
of three dimensional coordinates of key residues [24–26], for which pair-wise simi-
larity is computed, for example, with the root mean square deviation (RMSD). The
geometric hashing [27] technique defines a distance between two binding sites by
the number of spatially matching atoms. Alternatively, in a type of fingerprinting
methods, a site is represented by all the distances between residues, which are then
grouped by types for fast matching [28, 29]. Similar fingerprinting approaches have
also been applied to atoms on the solvent accessible surface [5, 30].

Surface-based representations of binding sites are based on a wide spectrum of
computational techniques. Moments-based methods belong to this category and are
thoroughly discussed in the next section. Graph-based representation is an alter-
native choice for representing protein surfaces. Klebe et al. employed subgraph
matching algorithm to describe the surface geometry and the electrostatic potential
of binding pockets [31]. Kinoshita et al. used a clique detection algorithm [32] for
local surface similarity retrieval in their method named eF-Site. Using the eF-Site
and its associated tool, eF-Seek, users can search functional sites in an unannotated
query structure [32, 33]. Another approach uses the spin-image, a 2D histogram rep-
resentation for protein surface points, which describes relative geometrical position
of each point to the other points [34]. Generally speaking, moment-based descrip-
tors have advantage over graph methods and 2D histograms in terms of lower time
complexity (thus faster running time).
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In this chapter, we review three-dimensional (3D) and two-dimensional (2D)
geometric moments for the representation and comparison of protein ligand binding
sites. Concretely, we describe application of the 2D pseudo-Zernike moments and
the 3D Zernike descriptors. The 2D pseudo-Zernike (p-Z) moments are employed
to describe the projection of the pocket surface on a 2D image. The 3D Zernike
descriptors (3DZD) can directly represent 3D pocket surface properties. These
moments compactly represent a binding pocket by a vector of coefficients of the
series expansion. The rest of this chapter is organized as follows: First, an overview
of the theoretical differences between these moments is given. In addition to the
p-Z moments and the 3DZD descriptors, we also discuss the spherical harmonics
in comparison with the two methods. Then, we describe our recent works on the
application of the 2D p-Z moments and the 3DZD for binding ligand prediction
for proteins. The methodology quantifies similarity of pockets by the Euclidean dis-
tance of the vector of p-Z/3DZD coefficients of pockets and uses a k-NN classifier to
make final prediction of binding ligand for a query pocket. Our methods are bench-
marked on two datasets. Finally, recent ongoing development in our group on a new
pocket comparison method is discussed, which uses local surface patch descriptors
to allow matching of flexible binding ligands.

Pocket Surface Shape Descriptors

In this section we briefly describe 3D and 2D moment-based pocket descriptors,
which will be used in the subsequent sections. For the 3D descriptors of pockets,
we introduce the spherical harmonics and the 3D Zernike descriptors. For the 2D
descriptors, we introduce the p-Z moments.

Spherical Harmonics

Spherical harmonics are a set of mathematical moments which are applied for 3D
volumetric representation of objects [35]. The object shape is approximated as a
spherical function f(θ ,φ) defined on the unit sphere, which describes the distance
to the outermost surface of the object from the center for the direction (θ ,φ). The
function f(θ ,φ) is then expanded as a series of spherical harmonics

f (θ , φ) ≈
lmax∑

l=0

l
∑

m=−l

clm Re [Ylm(θ , φ)] , (1)

where lmax is the moments order, Re[Ylm(θ , φ)] is the real part of the spherical
harmonic functions, and clm are the associated coefficients. The similarity of two
objects can be measured by the Euclidean distance of the vectors of coefficients
clm of the two pockets. Since spherical harmonics are not rotationally invariant, in
principle pose normalization of object is needed.
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Kahraman and colleagues [8] defined the Interact Cleft Model for ligand binding
sites by employing spherical harmonics as follows. For a ligand binding pocket,
the volume of a ligand binding pocket is defined by SURFNET [11] spheres within
0.3 Å to protein atoms interacting with the bound ligand. The software HBPLUS
[36] is used to determine such atoms. To achieve rotation invariance, a coordinate
system is defined at the center of gravity of the pocket volume. The moment of
inertia tensor for the pocket volume V is a matrix of components

Ii,j =
∫

V
(r2δi, j − rirj)dV , (2)

where i, j = x, y, z and r is the vector from the center of gravity to a point in the
volume. The pocket is rotated so that its moment of inertia tensor is diagonal with
maximal values in x followed by y then followed by z. The outermost surface of
these spheres is then expanded as a spherical harmonics series f(θ ,φ) where the
order lmax is set to 16.

3D Zernike Descriptors

We have applied the 3D Zernike descriptors (3DZD), which also give a series expan-
sion of a 3D function. It allows a compact and rotationally invariant representation
of a 3D object. Mathematical foundation of the 3DZD was laid by Canterakis [37],
then Novotni and Klein [38] have applied it to 3D shape retrieval. Here we provide
a brief mathematical derivation of the 3DZD. Refer to the two papers [37, 38] for
more technical details.

The surface of a ligand binding pocket is extracted using the Connolly surface
[39] of protein heavy atoms within 8 Å to any heavy atom of the bound ligand,
then placed on a 3D grid. To represent a surface shape, each grid cell (voxel) is
assigned the value of 1 if it contains the protein surface and the value of 0 other-
wise. For representing other physicochemical properties, such as the electrostatic
potentials and hydrophobicity values, values are also assigned only to the surface
voxels. The resulting voxels-values mapping is considered as a 3D function, f(x),
which is expanded into a series in terms of Zernike-Canterakis basis [38] defined by
the following collection of functions:

Zm
nl(r, ϑ , ϕ) = Rnl(r)Ym

l (ϑ , ϕ), (3)

with −l < m < l, 0 ≤ l ≤ n, and (n − l) even. The function Ym
l (ϑ , ϕ) are the

spherical harmonics [40] and Rnl(r) are radial functions defined by Canterakis, con-
structed so that Zm

nl(r, ϑ , ϕ) can be converted to polynomials, Zm
nl(x), in Cartesian

coordinates. Now 3D Zernike moments of f (x) are defined as the coefficients of the
expansion in this orthonormal basis, i.e. by the formula

�m
nl = 3

4π

∫

|x|≤1
f (x)Z̄m

nl(x)dx. (4)
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Finally, the rotational invariance is obtained by defining the 3DZD series, Fnl, as
norms of vectors �nl:

Fnl =
√
√
√
√

m=l
∑

m=−l

(�m
nl)

2 (5)

The parameter n is called the order of 3DZD, which determines the resolution of
the descriptor. As stated above, n defines the range of l and a 3DZD is a series of
invariants (Eq. (5)) for each pair of n and l, where n ranges from 0 to the specified
order. We use order n = 20 in the pocket comparison. which was shown to provide
sufficient accuracy in a previous works of shape comparison [38]. The order n = 20
yields 121 invariant numbers (Eq. (5)).

As for the surface electrostatic potentials, 3DZD is computed separately for the
pattern of positive values and for the negative values and later concatenated into
a single vector. The separation of negative patterns and positive patterns is done
by creating an input grid only of negative values and only of positive values and
calculating 3DZD for each grid separately [46].

The obtained 3DZD is normalized to a unit vector by dividing each moment by
the norm of the whole descriptor. This normalization is found to reduce dependency
of 3DZD on the number of voxels used to represent a protein [46]. An example of
the invariant values of the 3DZD of a ligand binding pocket (Fig. 1a) is shown in
Fig. 1b.

In our previous works, we have applied the 3DZD successfully to various protein
and ligand structure analyses [41–43], including rapid protein global shape analysis
(http://kiharalab.org/3d-surfer) [44, 45], quantitative comparison for protein surface
physicochemical property [46], small ligand molecule comparison [47], protein–
protein docking prediction [48], and comparison of low-resolution electron density
maps [49].

2D Pocket Model with Pseudo-Zernike Moments

We have also developed a new computational pocket model using two dimensional
moments [50]. The key aspect of this method is the projection on a 2D plane of a
spherical panoramic picture computed from the center of the binding pocket. The 3D
to 2D dimensional reduction relies on the finding that pockets can be quite reliably
pre-aligned using their opening.

Here, the shape of a pocket is extracted using the same procedure as 3DZD.
A 3D Cartesian coordinate system (�x, �y, �z) is defined relative to a binding pocket,
following the representation in Fig. 1c. The origin of the coordinate system is the
center of gravity of the binding pocket, provided the latter is not inside the protein
volume; otherwise, the origin is defined as any of the closest points outside. The
opening of a binding pocket is the set of rays starting at the center of gravity which
do not intersect the volume of the pocket. The unit vector of the x-axis is defined

http://kiharalab.org/3d-surfer
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Fig. 1 Examples of the binding pocket representation with the 3DZD and 2D pseudo-Zernike
descriptors. a, flavin adenine dinucleotide (FAD) binding pocket in PDB entry, 3grs. Pocket surface
region within 8.5 Å to the ligand is shown. b, the 3DZD of the pocket. c, the coordinate system
for projecting the pocket to the 2D map. d, the projected pocket. The distance from the center of
the pocket to the pocket surface is represented in a color code from blue (closer) to black (more
distant). Pink region shows aperture of the pocket. The x-axis is for θ and the y-axis shows φ.
e, the pseudo-Zernike descriptor of the pocket

as a collinear vector to the average vector of the pocket opening. In cases where
the opening is empty, the x-axis is arbitrarily defined. The remaining two axes,
�y and �z, are defined arbitrarily such that the basis (�x, �y, �z) is orthogonal. Optionally,
an additional pre-alignment step can be applied. The z-axis is rotated such that its
principal moment of inertia is maximized over all possible directions on the plane
orthogonal to the x-axis. Simulations showed that this pre-alignment step is not nec-
essary when using rotationally invariant descriptors, such as the p-Z moments used
here (See fig. 3 in Chikhi et al. [50]).

A spherical function f (θ , φ) is defined for the outermost surface of the binding
pocket. Practical computation of f (θ , φ) can be done using ray-casting. Rays are
shot in every direction (θ , φ) from the center of gravity of the pocket to the pocket
surface, and a value for the direction (e.g. distance from the center) is taken from
the surface point which first intersects the ray. If a ray never intersects the protein
surface, a null value is assigned to the ray direction. Note that the function f (θ , φ)



Protein Binding Ligand Prediction Using Moments-Based Methods 151

can also describe any surface property, such as geometry or electrostatic potential
[50]. Then, the function f is mapped to a 2D plane in order to be described using
two dimensional moments.

Since no 3D to 2D projection preserves area, shape, and distance properties
altogether, there is no solution to perfectly map function f to a 2D plane without dis-
tortion. It was found that a simple distance preserving projection, the plate-carrée
projection, is sufficient for the purpose of pocket matching. By mapping f (θ , φ) to a
planar image using this projection, the bottom of the pocket (θ = π ) is projected to
the center of the image and the opening of the pocket

(

θ = 0, φ = π
2

)

, is projected
to the sides (Fig. 1d). The resolution of the picture is 360 × 180, as coordinates are
mapped to integer values of (θ , φ), resulting in 64,800 rays shot from the pocket
center of gravity to each (θ , φ) direction. Rotations around the x-axis of the pocket
correspond to rotations around the center of the image. However, since the �z axis is
arbitrarily defined under the 2D pocket model, the φ coordinate has no reference.
Conveniently, the p-Z moments are mathematically invariant around the center of
the image. And practically, as we will see in the results, these moments can robustly
describe a projected pocket despite the lack of reference for the �z axis.

2D Pseudo-Zernike Moments

The p-Z moments [51] have been employed for describing an image shape in pat-
tern recognition applications, and they are shown to be less sensitive to noise than
conventional 2D Zernike moments [52, 53]. The p-Z moments use a set of complete
and orthogonal basis functions defined over the unit circle (x2+y2 ≤1) as follows:

Vn, m(x, y) = eimθ Rnm(r) = eimθ

n−|m|
∑

s=0

(−1)s(2n + 1 − s)!ρ(n−s)

s!(n + |m| + 1 − s)!(n − |m| − s)! (6)

where ρ = √

x2 + y2, θ = tan−1(y/x), and n ≥ 0, |m| ≤ n. Using the polynomials,
the p-Z moments of the order n and the repetition m for a 2D image f (x, y) are
defined as:

An,m = n + 1

π

∫

x2+y2≤1
f (x, y)V∗

n,m(x, y)dxdy (7)

The asterisk (∗) denotes the complex conjugate. In this study, the order of
moments n = 4 is used for most of the computation. An example of the pseudo
Zernike values is shown in Fig. 1e.

Theoretical Comparison of Moments in Shape Descriptors

We briefly discuss differences between these three moments from a mathematical
point of view. Obviously, the 2D p-Z moments describe a 2D function, hence a
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pocket 3D structure needs to be initially projected to a 2D image. On the other
hand, the spherical harmonics and the 3DZD represent 3D objects, thus they can
directly handle the 3D coordinates of a pocket. The coordinate system defined in
Fig. 1c makes the p-Z moments rotationally invariant around the center of the image.
However, a disadvantage arises from distortions caused by the projection, although
in the benchmark study the 2D pocket model showed comparable performance with
the 3DZD [50].

Comparing the spherical harmonics and the 3DZD, the 3DZD has a radial func-
tion Rnl(r), (Eq. (3)), while the spherical harmonics do not. This difference results
in an advantage of the 3DZD over the spherical harmonics in describing 3D pockets
which intersect with a ray of a certain direction (θ , φ) for multiple times at differ-
ent distance, r. The 3DZD can naturally handle such shapes (non star-like shapes),
because it can assign a different value at each r. On the other hand, naïve use of the
spherical harmonics can only take one value per direction. Therefore, usually only
the outermost (or innermost) surface of an object is described by the spherical har-
monics. To describe non star-like shapes, Funkhouser et al. used multiple concentric
spherical shells [35].

Another advantage of the 3DZD over the spherical harmonics is that it is invari-
ant to rotation of the object (Eq. (5)), while the direct use of the spherical harmonics
is not. Thus, the 3DZD does not need pose normalization (pre-alignment) of objects
for comparing and computing the similarity. This is advantageous in constructing
a database of pockets since the 3DZD of pockets can be pre-computed and stored.
The spherical harmonics can obtain the rotational invariance by the aforementioned
use of concentric spherical shells. However, there are several drawbacks to this
approach. As radial consistency of objects is not preserved (shells can be rotated
with no impact on the descriptors), a certain amount of shape information is lost.
Furthermore, because of polar sampling, spherical harmonics descriptors are not
practically robust to rotation [54]. Also the 3DZD is more compact than the spheri-
cal harmonics by one order of magnitude [55], because adjacent spherical shells in
the spherical harmonics descriptors are highly correlated.

Overall, the 3DZD is an improvement over spherical harmonics descriptors. The
p-Z moments have not yet been formally studied for the description of 3D objects
using a single projection, since this approach seems to be relatively specific to the
description of binding pockets.

Binding Ligand Prediction Using the Pocket Descriptors

Using the 3DZD and the p-Z descriptors discussed above, we built a binding ligand
prediction method for protein structures named Pocket-Surfer. Since both represen-
tations describe a pocket as a vector of coefficients, similarity of two pockets can be
quantified by computing the Euclidean distance of their descriptors (vectors).

The 3DZD and the p-Z descriptors contain shape information of the pockets.
However, the information of the size of the pockets is lost since the pockets are first
fit to a unit sphere (for 3DZD) or a unit circle (for the pseudo Zernike descriptors)
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in the process of computing the moments. Therefore, we add the size information
of a pocket into the vector as follows:

Descriptor(P) = (w · SP, AP
1, AP

2, . . . , AP
k , . . . , AP

N), (8)

where SP is the size of the pocket P weighted by a factor w, Ak
P is the kth value of

the pocket moments (either 2D or 3D), and N is the total number of values of the
moments. As the pocket size Sp, we used the average distance from the center of
gravity G of the pocket to the pocket surface.

Equipped with the pocket descriptors and a similarity metric (i.e. Euclidean dis-
tance), pockets in a database are sorted according to the distance to a query pocket.
Using the k nearest pockets to the query, the binding ligand for the query pocket
(pocket type) is predicted using a k-nearest neighbors (k-NN) classifier as follows.
The scoring function for a binding pocket of a ligand type F is defined as

Pocket_score(F) =
k
∑

i=1

(

δl(i),F log
(n

i

))

·

k∑

i=1
δl(i),F

n∑

i=1
δl(i),F

, (9)

where l(i) is a function that returns the ligand type (AMP, FAD, etc.) of the ith
closest pocket to the query, n is the total number of pockets in the database, and the
indicator function δX,Y equals to 1 if X is of type Y, and is null otherwise. The role of
the first term in this scoring function is to assign higher scores to pockets with higher
ranks, within the top k results. The second term is a normalization factor of the score
by considering the number of pockets of the type F in the database. The numerator
is the number of pockets of the type F retrieved within top k and the denominator is
the number of all the pockets of the type F in the database. Using Eq. (9), the score
is computed for all the pocket types and they are sorted by the score.

To summarize the Pocket-Surfer procedure, a flow-chart is presented in Fig. 2.
Given a query protein structure, ligand binding pockets on the protein surface are
detected (i.e. predicted) by geometrical criteria using a method like LigSite [18] or
VisGrid [7]. In the benchmark study, known ligand binding pockets are used (i.e.
pockets are extracted as the surface regions which are in contact to the binding
ligand molecule) to test the pocket comparison and the ranking ability of the pro-
cedure. Then, the Connolly surface [39] of pockets is constructed. Next, the pocket
descriptor (Eq. (8)), either the 3DZD or the p-Z descriptor, is computed for the
query pocket. Finally, the distance from the query to all pocket descriptors pre-
computed and stored in a database is computed, and the ligand type for the query
is predicted using Eq. (9). Pocket-Surfer has been implemented as a web server
at http://kiharalab.org/pocket-surfer/. Currently the pocket database to be searched
holds only a limited number of pockets used in the benchmark study of the pub-
lished paper [50]. Expansion of the database is under way to make the server bear
practical use of binding ligand prediction.

http://kiharalab.org/pocket-surfer/
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Fig. 2 Schematic flow chart of the binding ligand type prediction procedure using 2D pseudo-
Zernike or 3D Zernike descriptors

Benchmark Results of Binding Ligand Prediction

In a recent paper [50], we benchmarked the performance of binding ligand with
the p-Z, spherical harmonics, and 3DZD pocket models on two datasets. We briefly
summarize the results in this section. The first dataset (the Kahraman set, named
after the author [8] who compiled this dataset) consists of 100 evolutionary-distant
proteins binding one of nine different ligand molecules (see the legends of Fig. 3).
This dataset is used to train parameters and compare the performance of 3DZD and
p-Z with spherical harmonics. The second dataset (the Huang set [18]) is indepen-
dent from the first one in terms of proteins and ligand types. It contains 175 proteins,
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Fig. 3 The average binding ligand prediction accuracy for the Kahraman and the Huang dataset
with the 3DZD and the 2D p-Z descriptors. The Kahraman dataset contains 100 proteins, each of
which binds one of the following nine different ligands: adenosine-monophosphate (AMP) (9),
adenosine-5′-triphosphate (ATP) (14), flavin adenine dinucleotide (FAD) (10), flavin mononu-
cleotide (FMN) (6), glucose (GLC) (5), heme (HEM) (16), nicotinamide adenine dinucleotide
(NAD) (15), phosphate (PO4) (20), and steroid (STR) (5). In the second parentheses the number
of entries is shown. The Huang dataset consists of 175 proteins, which bind either of twelve lig-
and molecules: adenosine (ADN) (11), biotin (BTN) (12), fructose 6-phosphate (F6P) (12), fucose
(FUC) (14), galactose (GAL) (36), guanine (GUN) (12), mannose (MAN) (18), O1-methyl man-
nose (MMA) (10), 2-phenylimidazole (PIM) (5), palmitic acid (PLM) (26), retinol (RTL) (5), and
2′-deoxyuridine 5-monophosphate (UMP) (13). The average Top-1 and Top-3 success rates of
binding ligand prediction for all ligand type are reported. Results are shown for the shape descrip-
tors, the electrostatics descriptors and both combined. For the combination of the shape and the
electrostatic (e-s) potential descriptors, the average Euclidean distance by the pocket shape and the
electrostatic potential descriptors are used

each of which binds one of twelve ligand molecules. Based on the performance on
the Kahraman dataset, the descriptors parameters for p-Z (resp. 3DZD) descriptors
were set to w = 4.5 (0.04) and n = 4 (20). The number of neighbors used in the k-
NN classifier was set to k = 24. Using the two datasets, performance of the binding
ligand prediction was examined for the pocket shape descriptors that combine the
pocket and size shape information (Eq. (8)) and also for the electrostatic potential
descriptors. To compute the surface electrostatic potential descriptors, the electro-
static potential on the protein surface is mapped on the 2D image for the p-Z while
on the voxels of the 3D grid for the 3DZD [50].

First, we compared the performance of the shape descriptor of 3DZD and the
p-Z with that of the spherical harmonics on the Kahraman dataset. The value for the
spherical harmonics was taken from the paper by Kahraman et al. [8]. Both 3DZD
and the p-Z performed slightly better than the spherical harmonics in terms of the
Area Under the Curve (AUC) values of the receiver operating characteristic (ROC)
curve [56]. The AUC values of the 3DZD, the p-Z and the spherical harmonics were
0.81, 0.79 and 0.77, respectively. We have also examined the performance of the
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p-Z with pocket pre-alignment (Eq. (2)) but the improvement was only 0.75%. Thus
the p-Z is practically robust enough to rotation.

Figure 3 shows the Top-1 and Top-3 success rate of the 3DZD and the p-Z aver-
aged over all ligand types. For the Top-3 success rate, a ligand for a pocket is
considered to be correctly predicted if the correct ligand is included within the top
3 scoring ligand types according to the Pocket_score (Eq. (9)). For the Kahraman
dataset, the best Top-1 success rate was achieved by the pocket shape descriptor of
the p-Z (41.2%), while the shape descriptor of the 3DZD was the best for the Top-3
success rate (82.7%). The pocket shape descriptors (left bars) performed signifi-
cantly better than the electrostatic potential descriptors (middle bars) for both 3DZD
and the p-Z. Because of this, combining them did not improve the performance
(81.5% by the 3DZD and 75.9% by the p-Z). This observation is in agreement with
a previous report that electrostatic potential is variable within families of binding
pockets [57]. For the Huang dataset (Fig. 3, right), both 3DZD and the p-Z showed
lower success rate by the shape descriptor as compared with the Kahraman dataset.
On the other hand, the electrostatic potential descriptors of both 3DZD and the
p-Z showed a higher success rate on this dataset relative to the Kahraman set. As
a result, for the 3DZD, the combination of the shape and the electrostatic potential
descriptors showed improvement over the shape descriptor. The best Top-1 (35.9%)
and the Top-3 success rate (75.6%) were achieved by the p-Z shape descriptor.

Figure 4 shows the Top-1 and Top-3 accuracy for individual pocket types on both
datasets. PO4 was predicted very well because it is distinguished by its smaller size
from the other ligands. Some ligands, such as FMN, were poorly predicted. FMN
is the most flexible ligand among the three smallest ligands in the dataset (GLC,
FMN, and STR) with an average RMSD of 1.08 Å. The success rate largely differs
from ligand to ligand and the trends are consistent for the 3DZD and the p-Z. This
implies that the difference in the performance for each ligand is attributed not to the
characteristics of the approaches but to the actual similarity of pockets of particular
ligand types.

Performance with Ligand-Free Pockets and Predicted Pockets

In practical situations of binding ligand prediction, one of the two cases may arise:
(1) the binding pocket in a query structure is known, but it is in a ligand-free con-
formation or (2) a binding pocket is unknown, hence it needs to be predicted. The
challenge for the first case is the difference in shapes of ligand-free and ligand-
bound binding pockets. To assess this difference, we searched the Huang dataset
with ligand-free pockets and determined pocket retrieval accuracy with the p-Z and
3DZD pocket shape descriptors. For the p-Z (resp. 3DZD) descriptors, in 11 (resp.
7) out of 12 ligands the ligand-free pockets are retrieved with a similar or often bet-
ter AUC value than the closest ligand-bound pockets [50]. The RMSD value of the
ligand-bound and ligand-free proteins ranges from 0.19 to 2.48 Å with an average
value of 0.86 Å. This is consistent with a recent study [58] that reports the average
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Fig. 4 The Top-1 and Top-3 success rates of binding ligand prediction for individual ligand
types in the Kahraman and the Huang dataset. Results are shown for the shape descriptors, the
electrostatics descriptors and both combined
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RMSD between ligand-bound and ligand-free form is 0.74 Å. Our results indicate
that the p-Z and 3DZD descriptors are robust enough with respect to the actual
range of conformational difference between ligand-bound and ligand-free forms of
binding pockets.

For simulating the second case, the situation where binding pockets are not
known beforehand, we examined how well the p-Z and 3DZD descriptors per-
form with predicted pockets. We predicted pockets by running the LIGSITE [18]
program for each protein in the Kahraman dataset and queried against the dataset
(thus, dataset of known pockets) [50]. This resulted in a significant deterioration of
the performance: the AUC value of the p-Z and the 3DZD dropped from 0.79 to 0.52
(p-Z) and from 0.88 to 0.53 (3DZD). The Top-3 success rates of the 3DZD dropped
from 82.7 to 38.9% while for the p-Z it dropped from 77.3 to 41.0%. We note
that inaccuracies in binding pocket prediction largely accounts for the unsuccessful
retrieval of predicted pockets, hence more accurate prediction methods [17, 20] are
likely to improve results.

Computational Time of Pocket-Surfer

We estimated the running times for computing the p-Z and the 3DZD descrip-
tors and searching against a database of binding pockets. For computing the p-Z
descriptor of a pocket, pocket projection and p-Z moments computation steps typi-
cally take about 10 s [50]. Surface voxelization and 3DZD descriptors are computed
in around 40 s. Searching a query descriptor against a database of 100 descrip-
tors takes around 12 milliseconds for the p-Z descriptors and 20 milliseconds for
the 3DZD due to different moment orders [50]. By extrapolation to a PDB-scale
database, searching a query pocket can be done in about a few seconds with the p-Z
and 3DZD. This is significantly faster than the other methods of similar purpose.
Hence, the p-Z and the 3DZD pocket descriptors realize real-time pocket database
searches, where users can retrieve a search result instantly sitting in front of a
computer.

Pocket Comparison with Local Surface
3D Zernike Descriptors

At the last of this chapter, we will briefly describe our recent ongoing develop-
ment of binding ligand prediction method which considers similarity of local surface
regions in pockets. Shape of pockets for the same ligand molecule can significantly
vary due to several reasons, including the flexibility of ligand molecules and binding
of solvent molecules [8]. Therefore, pockets which bind the same ligand may be bet-
ter detected by scoring the local similarity of pockets. Comparing local regions of
pockets can be done by segmenting the pockets into local patches and comparing the
patches separately. The outline of the algorithm of local pocket surface comparison
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Fig. 5 Local binding site matching of FAD binding proteins. Three local binding patches from
a, protein 1e8g; and b, protein 1k87. Each patch color indicates equivalent position relative to the
ligand molecule

method works as follows [59]: First, seed points are evenly distributed on the pocket
surface. Then, the shape of surface patch region which is within a sphere centering at
each seed point is encoded by the 3DZD. Thus, a whole pocket shape is described as
a set of 3DZDs each of which encodes local patch shape. For example, ATP bind-
ing pockets are represented as 29.5 overlapping local surface patches on average,
while NAD binding pockets have on average 36.8 surface patches of a 5 Å radius.
The surface electrostatic potentials and other properties can be also computed in the
same manner. To compute the similarity of two pockets, we seek for a set of pairs
of surface patches, each taken from the two pockets, which maximizes the overall
score for the set. The score will consider the similarity of patches in each pair, the
relative position of the patches in each pocket, and the size of the pocket.

Figure 5 shows an example of a pair of FAD binding pockets for which the local
pocket surface method yields a better result. Using the global 3DZD, querying the
FAD binding pocket of protein 1e8g against the Kahraman dataset retrieved the first
FAD binding pocket at the 7th rank (1jqi). In contrast, the local surface compar-
ison method retrieved a FAD binding pocket, 1k87, at the 2nd rank. It is shown
in Fig. 5 that the overall pocket shape of 1e8g and 1k87 is quite different because
FAD molecule is in a stretched form in 1e8g but bent in 1k87. Despite of the differ-
ent overall shape, the local patch comparison method could identify the similarity
between the two by detecting similarity of the patch pairs shown in the same color.

We have further applied the local protein surface representation by the 3DZD for
characterization and classification of protein surface properties [60]. Here, the aim
is to annotate entire protein surfaces but not only to compare pocket regions. We
extracted local surface patches, which was defined as the surface within a sphere
of a 6 Å radius, from 609 representative proteins. This yielded in total of 118,009
patches. A patch was characterized by two features, the shape and the electrostatic
potential, and both are described by the 3DZD. We classified the patches using the
emergent self-organizing map (ESOM) [61]. The classification resulted in 30–50
clusters of local surfaces of different characteristics. These clusters can be used
as surface “alphabet”, with which protein surface can be labeled and classified. For
example, surface regions of certain biological function, e.g. DNA binding or protein-
binding, can be described as a set of the surface alphabets.
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Summary

In this chapter, we described moment-based approaches for representing shape of
protein surfaces, which are applied for binding ligand prediction by comparing bind-
ing pockets. 2D and 3D Zernike moments are able to capture various local protein
surface properties of binding pockets. While several other methods exist for bind-
ing sites representation and comparison, the moments-based methods benefit from
fast computational speed for database search, as well as good retrieval accuracy.
However, structure-based function prediction methods are in general vulnerable to
structural variability of proteins. To accommodate this problem, we are developing
the local pocket surface comparison method where two pockets are compared in
terms of matching pairs of local sites.

Comparison of the tertiary structure of proteins, both global and local, is more
complicated than comparison of one dimensional protein sequences. Therefore,
there have not been as many structure-based methods developed as the sequence-
based methods. The p-Z and the 3DZD we introduced in this chapter have potential
to change this situation, as they provide very convenient, compact and rotation
invariant representation of protein global and local surfaces.
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Computational Methods for Predicting
DNA-Binding Sites at a Genomic Scale

Shandar Ahmad

Abstract High throughput analysis of protein-DNA interactions is required to
make sense of omics-level data on protein and DNA sequences. Machine learning
approaches have been successful in mapping binding information available from
3-dimensional structures of complexes to sequences. This has allowed us to develop
methods to study interactions directly from sequence information. In this chapter, a
motivation to such analysis is provided and most significant works in this direction
has been reviewed. Primarily high-speed and coarse-grained approaches for de-novo
predictions, usually derivable or predictable from sequence are discussed.

Introduction

Due to their obvious role in controlling gene expression and hence almost all
natural or environment-induced biological processes in the living system, protein–
DNA interactions have been studied extensively for a long time [1–17]. Although
the genetic information is encoded in a simple four-letter (nucleic acid) language
[18, 19] and expressed in terms of a 20-letter (amino acid) syntax, a cascade of
events regulate the communication between information potential and functional
performance [20]. Robust as well as flexible mechanisms of switching, regulating,
repairing and catalyzing expression are rampant, creating fascinating and com-
plex transcriptional machinery that influences all the essential, benign as well as
disease-causing molecular events in the living systems. Although, one of the pri-
mary functions of gene expression is to make proteins, it is known for a long time
that these very proteins, encoded by some genes control the expression of other
genes [21–24]. Proteins (e.g. transcription factors) encoded by one gene control
the expression of another seemingly unrelated gene on the genomic DNA, which
in turn regulates another gene and so on, thus providing a very complex set of
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connections between genes, which cannot be understood by simply reading the
genomic DNA [25, 26]. Neither all proteins perform the function of gene regulation,
nor do the regulatory proteins affect all genes in the genome. Hence, it becomes
essential to first identify the proteins, which can interact with the genomic DNA
and then, in order to pharmaceutically or otherwise intervene into these interac-
tions, elucidate the exact mechanism of interaction, or at least identify the parts of
the protein sequence that directly participate in interactions. This essentially defines
the main motivation to develop methods for predicting DNA-binding proteins and
binding sites in them. In principle, it is possible to perform in vitro as well as in
vivo experiments to gain insights into these interactions and power of technological
advancement is growing rapidly, enabling to generate direct and indirect informa-
tion about protein–DNA interactions. However, accurate methods are prohibitively
expensive and frustratingly time-consuming, and high throughput methods throw
away an enormous amount of data, which cannot be examined manually. It is in this
background that computational approaches to predict protein–DNA interactions at
a large scale are needed. Since, most genomic information is encoded in sequences
and high throughput experiments also yield small or large sequence-fragments, com-
putational methods which can directly use protein and DNA sequences, even if they
are less accurate, are critically important for the large-scale analysis of genome-
scale behavior of interactions, as well as for providing the initial leads to perform
more accurate experiments.

Computational methods to study protein–DNA interactions have focused on dif-
ferent aspects of the problem ranging from the prediction of transcription factor
binding sites (TFBS) on DNA to the prediction of DNA-binding proteins and their
binding sites. Methods to predict TFBS have been widely reported [27–30] and do
not form the subject of this chapter, in which the main focus is on methods that
can be employed to predict DNA-binding sites in proteins as well as finding pro-
teins, which are likely to bind DNA. Obviously, alignment search through a data
set of known DNA-binding proteins is an efficient way to find DNA-binding sites
or proteins [31]. However, alignment-based methods work only if a similar protein–
DNA interaction has been previously discovered and are also limited by the fact that
some interactions may not be conserved in evolution [32–34]. Thus, we need meth-
ods which can detect binding sites and proteins when sequence identity with known
DNA-binding proteins is low or absent. Due to their ability to handle large data
sets and performance, primary focus in this chapter is on the statistical and machine
learning approaches applied to sequence-based predictions or coarse-grained and
bulk structural features such as secondary structure and solvent accessibility.

Data Sources

Any bioinformatics prediction method relies on previously annotated data sets.
In this regards, large amounts of data have been compiled by researchers, which
serves as the secondary but convenient source of information required for build-
ing prediction models and benchmarking their performance. The data sets relating
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to protein–DNA interactions may be grouped into three categories viz. structure
databases, thermodynamic or stability databases and sequence-based databases.
Brief outline of these databases is provided below.

Protein-DNA Complexes

PDB, NDB and PDBSum: The most reliable source of information on the mode
of protein–DNA interactions is arguably the structure of a protein-DNA complex
[35, 36]. Often protein and DNA structures in complex differ in their complex
and unbound states [37–39]. Protein Data Bank is an ultimate source of all three-
dimensional structures of proteins as well as DNA. Similar but more nucleic-acid
focused information is available in the Nucleic Acids Database (NDB). Together
these databases provide extensive information on the structures of proteins and
DNA as a complex or in the unbound form and are well connected to other derived
databases. A related database, PDBSum [40] provides additional information on
contacting residues, and is well linked to graphical representations of geometrical
features e.g. Nucplot [41]. Databases dedicated to protein-nucleic acid complexes
have also been developed. BIPA and ProNuc are the most noteworthy among them
[42–44].

Biological units and quaternary structure: Most protein–DNA interactions occur
by way of multiple proteins acting together or multimeric unit [45] of the same
protein recognizing sequence repeats or symmetric parts of DNA. In many cases,
detailed cooperative mechanism of interaction is not known. Three-dimensional
structures deposited in PDB and NDB, often give structure of the minimal asym-
metric unit. Reconstructing a fully functional “biological unit” incorporating the
quaternary structure of the complex is not straightforward [46]. PDB makes a pre-
liminary attempt to provide information on biological unit, which is based on certain
computational procedures and has certain shortcomings. More elaborate procedures
and databases have been developed [47–49]. However, in many cases quaternary
structure of protein-protein-DNA complexes remain unresolved and more research
in this direction is required.

Thermodynamics and In Vitro Experiments

Quaternary and tertiary structures of protein-DNA complexes provide most cru-
cial information on the DNA-binding modes of proteins and their binding sites.
However, three-dimensional structure of complex or unbound DNA-binding pro-
tein is often unavailable. Moreover, even the structure of the complex falls short
in revealing potential effects of mutation, specificity and stability of protein-DNA
complex. Therefore in vitro experiments have to be performed by systematically
or randomly mutating individual or several residues in a protein to ascertain their
contribution to the stability and hence the biological function of these proteins. A
large number of such experiments on various protein families have been reported
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by researchers. Information on these experiments has been compiled into a conve-
nient database, called ProNIT [50]. At the time of writing this text, ProNIT contains
more than 10,000 thermodynamic data entries, coming from 271 proteins, of which
nearly 3,000 entries correspond to mutants and others correspond to stability of the
Protein-DNA complex in its wild-type. Number of analyses on these data sets have
been conducted, which have helped in unraveling the salient features and the big
picture of protein–DNA interactions [51, 52].

Functionally Annotated Data Sets

Structural and thermodynamic information on protein–DNA interaction is neither
fully available nor sufficient to determine certain informative contexts such as
evolutionary footprint. Many times, knowledge of protein-binding sites on DNA
(transcription factor binding sites) and evolutionary variation measured in so-called
position-dependent weight matrices is handier or is the only source of information
on these interactions. Information on binding sites of related families and consen-
sus patterns form the main elements of databases such as TRANSFAC, JASPAR
and COTRASIF [53–55]. Although, this chapter is primarily focused on proteins,
the knowledge of target binding sites on DNA and their evolutionary patterns are a
powerful source to fine-tune DNA-binding proteins, not extensively used yet, but an
area in which the subject is likely to grow further.

Control Data Sets

All prediction methods need to be trained over a database of known interactions, and
require large number of samples of interacting proteins (or binding sites) as well as
non-interacting or control data sets from which a discriminating function need to be
generated. In the case of binding sites, interface and non-interface residues provide
automatic sets of positive and control data. However, problem is more complex in
full length proteins. One can never be fully sure for a protein to be non-binding
as there may be special conditions in and sequences to which a protein, not yet
known to be DNA-binding may actually bind. Moreover, if we treat all proteins not
reported to be DNA binding as our control data, we get a very large control data
(entire sequence space) compared to a few hundred positive data. To overcome this
problem, sampling of control proteins from an structure data sets such as SCOP and
Protein Data Bank have been attempted, under the assumption that such data sets
approximately sample the control protein sequence space [56].

Computational Techniques

Most bioinformatics prediction methods try to establish a relationship between a set
of features which can be directly computed from sequence and binding behavior.
Binding behavior (prediction) is usually a single Boolean or real number designating
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a residue or a protein to be (or its likelihood of being) binding or non-binding.
Specific implementations of these methods to DNA-binding problem are described
later in this chapter. It suffices here to state that most computational prediction
methods attempt to develop a relationship between a set of known features to the
binding status of a protein or residue. They differ from each other in the mathe-
matical details of the model as well as they method used in optimizing adjustable
parameters in the model. For example features may be simply modeled over a linear
regression model or Naïve Bayesian classifier model, assuming mutual indepen-
dence of features and making prediction by using a weighted summation of feature
values. Or, the features may be combined using a polynomial, radial or a logically
defined function as is done in a support vector machine. Similarly, features may be
combined by a function of unknown, complex and automatically determined shape
as is achieved by a neural network. Ability of a model to make accurate prediction
however depends much more strongly on the selection of initial features than on
the choice of the prediction model as such. For example SVM, neural network and
other machine learning methods can potentially model complex decision surfaces
well and also take care of non-additive nature of features, whereas linear regression,
Bayesian classifier cannot directly account for non-additive nature of features, but
are sometimes preferred due to their ability to identify direct contribution of indi-
vidual features and convenience and efficiency of obtaining an optimal solution. In
the following specific implementations to DNA-binding problem are discussed.

Methods for Predicting DNA-Binding Sites

Definition of a Binding Site

Ideally, a binding site must be defined in terms of its involvement in a biologically
meaningful interaction. At a single residue level, it means that residues which con-
tribute to the biological function or those which cause change of function when
a mutation to replace them is effected, are considered binding. However, such a
detailed annotation is hardly possible for all the residues of each complex. Direct
structure-based annotation of binding sites is therefore required. From a structural
perspective, this involves a number of amino acid residues directly in contact with
DNA. Again, from a structural point of view, residues form various kinds of inter-
actions such as hydrogen bond, salt-bridges, van der Waal’s interaction and even
water-mediated contacts with their target DNA. Identifying each of these interac-
tions and annotating binding residues is not straightforward, especially as crystal
structures from which this information is derived are often incomplete and error-
prone. More lenient definitions of binding sites are therefore frequently used. These
definitions are either based on a difference in the solvent accessibility of complex
with DNA compared to protein without DNA. If the difference is more than a cutoff,
residues are labeled as binding. An alternative to solvent accessibility change is the
nearest contact distance between any of the DNA atoms to any atom of the residue.
If the distance is less than a cutoff, residue is annotated as binding. Typical solvent
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accessibility cutoffs reported in literature are 0.1–1 Å and atomic contact distance
cutoffs have varied between 3.5 and 6 Å. More relaxed criterion of distance cutoff
are useful in balancing the negative and positive class data for prediction, but may
not be as informative as closer contact base-amino acid residues. Solvent accessi-
bility based definitions are intutively similar. A simple comparison can be made by
noting that change in solvent accessibility for a water probe (radius 1.4 Å) will hap-
pen if any atom from a residue is closer than 2.8 Å from any DNA atom. Thus the
two definitions roughly capture the same information. A benchmark between vari-
ous distance cutoffs for binding site definition shows that even those models which
were trained on data generated from other binding site definitions more accurately
predicted binding sites defined at 3.5 Å cutoff [57].

Residue Propensities

The first insights into the nature of protein–DNA interactions and determination of
initial candidates for further study can be performed by simply looking at the 20
amino acid types and obtaining their statistical preferences to occur in the interface.
Such a preference can be described by taking the ratio of the observed relative num-
ber of residues of a given type to the relative number of residues of all type in the
interface. For example if x% of all Arg are observed to be in the interface compared
to y% of all residues being in the interface, the propensity score for Arg is assigned
a real number x/y. Propensity score equal to one is an indication of no preference
and lower than one is an indication of excluded residues. This score is good for
identifying preferred residues in the interface as over-representation in interface is
directly related to propensity. However, for residue exclusion the propensity goes as
a reciprocal to over-representation (propensity is 0 for no residue of that kind in the
interface and 1 means its presence is similar to overall data). Thus the propensity
scores used in this way have a skewed distribution between of 20 values assigned to
each of the 20 amino-acids. Another issue is to calculate propensity by pooling all
the binding/non-binding data of all proteins together and getting a single score or
calculating propensity for each protein in the database and getting an average value.
In the first case, an unrealistic situation is created because residue populations are
specific to individual proteins and in the second option, data within each residue
type may be too small to be reliable. All these issues have implications to tests of
significance and determining p-values and therefore alternative scales for propen-
sity and methods to compute them have sometimes been used. Despite these efforts,
an accurate estimate of single residue preferences in interface and estimating their
statistical significance still remains a non-trivial problem and some more work is
needed to overcome difficulties outlined above.

Sequence-Based Prediction of DNA-Binding Sites

For a sequence-based prediction model, a binding site will be composed of seem-
ingly disparate regions on the protein sequence, which are geometrically close in
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Fig. 1 Distribution of DNA-binding residues over a sequence: multiple binding sites are created
on the sequence from a single binding surface on structure. In this example of zinc finger (PDB ID:
1aay), several DNA-binding regions can be seen (residues with a dot without a triangle). Although
these regions may only interact in presence of each other, challenge of sequence-based predictions
is to find all such regions

structure but may be far apart in sequence (see Fig. 1). Thus, multiple “binding
sites” made of a single or several contiguous regions need to be predicted. This
becomes possible, if each of these binding sites have strong binding signal and
their structural contiguity plays little or no role. However, prediction models may
implicitly account for structural contiguity. Prediction models also go beyond the
direct preferences of single amino acids to interact with DNA, which can be bet-
ter understood from propensity scores (see previous section). Results of such an
analysis expectedly indicate that basic or positive charged residues viz. Arg and
Lys are the preferred DNA-binding residues. Analysis of such preferences has been
reported [32, 58–60]. Propensity data derived from a recent version of PDB are
shown in Fig. 2. It may be noted that sequence-based propensities measure inter-
face enrichment of residue populations compared to all residues and hence may be
influenced by a natural tendency of some residues to be on the surface. Thus, Arg
and Lys propensities calculated from sequence alone may be slightly exaggerated.
However, this is acceptable – even required – because for sequence-based predic-
tion of DNA-binding sites, surface residues may not be a-priori known and these
propensities represent a more realistic picture. However, structure-based prediction
methods may get biased and hence different set of values must be used in those
approaches. Fortunately, our analysis shows that at least in the case of DNA-binding
sites, where the most frequently binding residues are Arg and Lys, propensity scores
for surface residues are not drastically different from all residues taken together and
the two are well-correlated (See Fig. 2). However, subtle differences do exist, which
may carry useful information and should be borne in mind, when selecting binding
sites from within well known interface residues.

Neither all Arg and Lys residues are located in the interfaces, nor is the inter-
face occupied exclusively of these two residues. It is therefore of utmost importance
to know what other factors can be helpful in predicting exact interface residues. If
we knew the structure, we may have a fairly good lead from the Arg/Lys enriched
regions (or charged patches) on the surface [61]. However, for sequence-based
predictions, local sequence environment (or multiple sequence alignments) is the
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Fig. 2 Whole sequence versus whole surface DNA-binding propensity of 20 amino acid residues

only information available and hence, we need to develop method that can make
use of sequence neighbor information within these single sequences or in a multiple
alignment of closely related sequences. A combination of these two pieces of infor-
mation is likely to work even better. This assumption has led to the development
of several machine-learning methods to predict DNA-binding sites. In almost all
such methods, residue environment is defined by its identity and rows of a position
specific substitution matrix derived from multiple alignments. Difference between
models lies in the way this information is translated to a prediction i.e. nature of
function that links this feature space to target space i.e. binding or no-binding. First
method to formulate DNA-binding site problem in this way was reported some time
ago [60]. Several other methods have been developed since then, which report a
better performance than the original model [60, 62–71]. A typical computational
approach to predict DNA-binding sites from sequence is shown in Fig. 3. In general,
first a set of features, which are likely to determine a residue’s interaction state, is
identified. These features may include simply the identity of the amino-acid residue
(as in propensity), and its sequence neighbors or may use evolutionary profile of
proteins in that residue position (and its neighbors), or a set of averaged biophys-
ical features of local environments, where exact residue identities are replaced by
cumulative physical parameters by combining charge, amino acid polarizability, etc.
Selected features are then correlated with a set of previously known binding states
of residues over a data set. A computational model such as artificial neural network,
support vector machine, or Naïve Bayes probabilistic model is than trained over
known examples. In principle selected set of features can fit the data in the training
examples to an arbitrary degree of accuracy. However, the key to a computational
model is its generalization-value i.e. its ability to predict binding sites over a data
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Fig. 3 A typical computational scheme for predicting DNA-binding residues

not used in training. For this purpose models are trained, tested and validated over
different data sets. If training data examples contain some of the examples present
in the test data sets, the model can give high performance during training, but will
underperform over a new data set, which is the actual goal of predictions. Thus care-
ful checks on training/validation procedures are required, when selecting a model
for de novo predictions.

Performance is improved due to the use of more complex models as well as
availability of more training data sets. Sometimes, reported performance looks exag-
gerated because issues of redundancy and similarity between training and test data
sets are not uniformly treated. Moreover, models can be easily over-fitted, as stated
above and hence a simplistic comparison of reported numbers may be quite mis-
leading. From a users’ point of view and in the opinion of this author, it is the best
to make predictions from multiple publicly available methods and try to reach a con-
sensus. When speed is a greater concern any of these methods can be used as their
performance may not be as different as it sounds in the published percentages. A list
of DNA-binding site prediction methods, along with their web-based availability is
provided in Table 1.

Can We Use Conservation Score to Predict DNA-Binding Sites

Generally speaking, DNA-binding sites can be detected effectively if a homolo-
gous protein with known functional information is available. However, to detect
a novel DNA-binding site, we need to rely on multiple alignments obtained from
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Fig. 4 Relative numbers of conserved residues in interface and non-interface regions of DNA-
binding proteins. Data sets and conservation scores are as used in reference [34]

diverse, remotely related proteins, which do not always share a common func-
tion and more likely do not contain a known DNA-binding motif. Successful use
of PSSM for predicting DNA-binding sites also prompts us to look at the evo-
lutionary aspect of DNA-binding residues. It is obvious that DNA-binding sites,
just like any other functionally important residues are more conserved than other
residues. Number of studies have confirmed this fact [33, 72]. However, evolv-
ability of proteins also requires that they are not fully conserved. A closer look
at histograms of conservation scores in the interface and non-interface (binding
or non-binding residues) in Fig. 4, makes clear that interface residues are indeed
more conserved than others. Quantitatively, about half of all interface residues are
conserved. However, for the remaining half, conservation scores in the interface
and non-interface are not significantly different. On the other hand about 15%
of non-interface residues are also conserved. In terms of absolute numbers 15%
of non-interface residues is much larger number than the absolute number of all
residues in the interface. This implies that conservation score alone cannot be used
to detect interface residues from sequence with high accuracy and that’s why more
sophisticated methods, such as machine learning are required and are continuously
developed.

Clusters of Conserved Residues (CCRs) and Binding Hot Spots

For many purposes, it may be more useful to predict key functional residues rather
than all functional residues. In one sense it means the residues which are most
essential for DNA-binding, such that mutations in those residues can disrupt the
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Fig. 5 Average single residue affinity (F-score) of 20 amino acid residues. Although overall sta-
bility strongly depends on sequence and structure contexts, average free energy changes in residues
occupying interface also shows an interesting trend, which is also biased for helical and irregular
secondary structures

formation of a stable complex between protein and DNA. These residues, called hot
spots, are well-studied in protein-protein interfaces, in which hot spots are defined as
those residues, whose mutations to Ala can cause a free energy change of more than
2.0 kcal/mol. Similar annotations in DNA-binding proteins have also been inves-
tigated and it is shown that the hot spots in protein-DNA complexes are made of
structurally contiguous conserved residues forming tightly packed clusters or inter-
action networks [34]. A preliminary look at the 20 amino acid types in proteins
reveals that different amino acids contribute differently to free energy on the aver-
age [73]. A rough energy scale derived purely from the averages of a thermodynamic
data is plotted in Fig. 5, where difference in helical and strand regions is also illus-
trated. More detailed investigation in terms of conservation scores reveals more
complex traits of protein–DNA interactions. It is observed that larger clusters of
conserved residues (CCRs) contribute more to stability of protein-DNA complexes.
Thus, clustering of conserved residues can be used as a means to predict DNA-
binding residues, specially the most significant ones. Figure 6 shows that the CCRs
are much more enriched in binding sites than any other residues in proteins, includ-
ing isolated conserved residues. Organization of these CCRs in proteins depends on
their functional and structure classes (see Fig. 7 for example).

Predicting Specificity of Protein–DNA Interaction

While, many methods to predict DNA-binding sites have become available during
recent years, not much has been achieved in the direction of predicting specific
binding sites. The objective of such predictions would be to pick up partner DNA-
binding proteins and their respective targets from a pool of proteins or genes.
Independent studies on predicting transcription factor binding sites (TFBS), not
covered in this chapter are available. However, simultaneously predicting partners
is a difficult task and far from complete. Some of the early efforts have relied on
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Fig. 6 Relative number of interacting residues is the highest for conserved and clustered residues
(CCRs), whereas conserved residue singlets (CRS) are excluded from the interface. Almost 80% of
Arg in CCRs are in the interface, which can be used to make first direct prediction of DNA-binding
sites. These residues are also typically the hot spot residues (Figure and data taken from [34])

Fig. 7 Typical organization of conserved residues in three-dimensional structure of DNA-binding
proteins. Some proteins such as HTH and zinc finger have several small clusters, whereas others
have a single cluster crucial for interactions. (a) Zinc Finger protein (PDB ID: 1p47) (b) p43 core
domain in complex with DNA (PDB ID: 3IGK). Images drawn using screenshots from http://ccrxp.
netasa.org outputs

knowledge-based potentials resolved between direct and indirect energy models
[74–77]. Contribution of indirect readout energy has been successfully developed
to predict novel targets for known transcription factors. On the other hand direct
interactions have been modeled in terms of base–nucleic acid interactions, as well
as DNA–trinucleotide interactions. A novel approach to consider powerful PSSM
for predictions was reported recently [78]. In this approach, DNA is broken into
overlapping dinucleotide steps and then binding sites corresponding to each of these

http://ccrxp.netasa.org
http://ccrxp.netasa.org
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Fig. 8 Base and dinucleotide-specific propensities of amino acid residues in major and minor
grooves. From purely sequence-considerations, certain preferences of amino acids for single bases
and dinucleotide steps can be inferred. These preferences are different in major and minor grooves.
Figure taken from [78]

steps are predicted on protein in the same way as is done for highly successful meth-
ods of predicting DNA-binding sites using machine learning methods. A first look
at base-amino acid or base-dinucleotide preferences reveals strong specificity con-
ferred by these simple considerations (Fig. 8). Including sequence and evolutionary
information is found to be quite successful in predicting interacting pairs at almost
the same level of accuracy as non-specific DNA-binding sites (typical area under the
ROC plot is ∼80%). Although, the performance of these methods are promising, it
will take a lot more work to reach a stage where predictions can match the accuracy
required to conduct or replace experimental investigations. Preliminary leads are
however possible straightaway and shows the usefulness of current state of the art.

Recent Advances and Current Directions

Computational methods have advanced to provide useful inputs and screen results
to reduce the experimental search space. However, pace of experiments has also
undergone drastic changes during recent years. High throughput sequencing is one
technique that has thrown up a huge amount of data giving a huge challenge to
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the existing computational techniques to scale up [79]. Thus, novel methodologies
for analyzing protein–DNA interactions revealed by these experiments are needed.
There is a pressing requirement to integrate experimental information with predic-
tions and use multiple sources of information in single computational experiments.
Some of these efforts have already proved useful. More work is needed, especially
in data management, large-scale modeling and perhaps most importantly catching
up with multiple and huge sources of information to unambiguously and accurately
elucidate protein–DNA interactions.

Conclusion

DNA-binding sites have been successfully analyzed and machine learning meth-
ods have been trained starting with protein-DNA complexes. These methods
have proved to be successful and performance has been continuously improving.
Computational challenges remain in making the methods more accurate and also
in trying to incorporate multiple and seemingly unrelated sources of information.
Machine learning approaches are likely to lead efforts in this direction.
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Electrostatic Properties for Protein
Functional Site Prediction

Joslynn S. Lee and Mary Jo Ondrechen

Abstract The development of computational tools for the prediction of protein
function from the three-dimensional structure is a very important problem in the
post-genomic era. To date there are over 9,900 structural genomics protein structures
in the Protein Data Bank and most of these are of unknown or uncertain function.
Methods for the identification of the residues in a protein structure that participate in
the biochemical function provide key information about the function of the protein.
We and others have developed computational methods for the prediction of function-
ally important residues in proteins. The focus of this chapter is on protein function
at the atomic level, i.e. catalysis and recognition. Methods that utilize computed
electrostatic properties, specifically THEMATICS and POOL, are described.

Introduction

The development of computational tools for the prediction of protein function from
the three-dimensional structure is a very important problem in the post-genomic era.
To date there are over 9,900 structural genomics protein structures in the Protein
Data Bank [1–2] and most of these are of unknown or uncertain function. Methods
for the identification of the residues in a protein structure that participate in the
biochemical function provide key information about the function of the protein. We
and others have developed computational methods for the prediction of functionally
important residues in proteins. The focus of this chapter is on protein function at the
atomic level, i.e. catalysis and recognition, and on methods that utilize computed
electrostatic properties.

Computed electrostatic properties bring special advantages to the quest for func-
tional information about a protein structure. First of all, they require only the
structure of the query protein as input. Thus they return predictions even for novel
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folds and engineered structures, as well as for proteins with orphan sequences or
with few sequence homologues. Furthermore, these predictions are just as reli-
able for these difficult cases as they are for the well-characterized proteins in the
benchmark sets used for the testing and verification of the methods. Second, these
properties are directly related to the chemistry of individual residues and thus
are well suited to the identification of residues with special catalytic or binding
properties. Finally, electrostatics-based methods are orthogonal to the more com-
mon sequence-based methods that rely on sequence alignments and phylogenetic
trees; thus, when information about sequence conservation or evolutionary history
is available, combination of the methods can, at least in principle, lead to significant
enhancement in the quality of the predictions. Indeed, electrostatics-based methods
have proved to be powerful tools for functional site prediction.

In the prediction of functionally important residues, there is always a trade-off
between sensitivity (the ability to predict the maximum number of truly important
residues) and selectivity (the ability to predict only the truly important residues and
not the unimportant residues). The goal is to maximize sensitivity while minimizing
false positives.

In order to test the performance of predictors of functionally important residues,
an annotated dataset is needed as a benchmark. Typically the Catalytic Site Atlas
(CSA) [3–4], a referenced compilation of catalytically active residues previously
identified in the literature for hundreds of enzymes, is used to obtain the validation
set for functional site prediction methods. While no listing of catalytically active
residues can possibly be complete, as not all residues have been tested experimen-
tally and reported, the CSA represents the best available compilation of known
catalytic residues.

Performance in catalytic residue prediction is defined in terms of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). Positives
and negatives are defined using the CSA as the reference set. The recall rate for
catalytic residue prediction is defined as:

Recall = Sensitivity = TP/(TP + FN) (1)

The false positive rate is defined as:

False positive rate = FP/(TN + FP) (2)

Finally the specificity is defined as:

Specificity = TN/(TN + FP) (3)

The specificity is related to the false positive rate (FPR) as:

Specificity = 1 − FPR (4)

Previously our group has reported on THEMATICS (for Theoretical Microscopic
Titration Curves), an electrostatics-based method for the prediction of functionally
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important residues in protein 3D structures [5–7]. THEMATICS has been shown to
predict functionally important residues with good sensitivity and a low false posi-
tive rate [7]. More recently, Partial Order Optimum Likelihood (POOL) [8] utilizes
THEMATICS and other input features in a new, monotonicity-constrained maxi-
mum likelihood machine learning method, for enhanced performance in prediction
of catalytic and binding residues.

Methods

THEMATICS

In the application of THEMATICS, the electrical potential function of the protein
structure is first computed using a finite difference Poisson-Boltzmann procedure.
Then a hybrid method [9] is used to compute theoretical titration curves for each
of the ionizable residues. These titration curves take the form of the proton occu-
pation for each residue as a function of the pH. The shapes of the titration curves
are evaluated by an automated procedure, using the curve shape metrics described
by Ko et al. [6] to quantify the degree of deviation from the typical Henderson-
Hasselbalch (H-H) titration behavior. These curve shape metrics are subjected to
statistical analysis in order to identify the residues that deviate most from the ideal
H-H curve shape. Note that THEMATICS predictions are based on the shapes
of the computed titration curves and not on the computed pKa shifts, although
THEMATICS has sometimes been described incorrectly as a pKa shift method
[10]. While pKa shifts are common in active sites, they also occur too frequently
in other parts of protein structures, e.g. salt bridges, to give precise active site
predictions.

THEMATICS has been established as a successful, top performing site predictor
across a wide range of enzymes from all functional classes [7]. In order to verify
its effectiveness in catalytic site prediction, THEMATICS was applied to the entire
original, manually curated set of 170 enzymes in the CSA [3–4]. THEMATICS
was shown to identify, with high selectivity, all or some of the residues in known
interaction sites in 93% of enzymes [7]. When performance in the prediction of
annotated catalytic residues was compared with that of other 3D-structure-based
methods, THEMATICS showed better sensitivity with much lower false positive
rates, as demonstrated by the ROC (Receiver Operator Characteristic – i.e. true pos-
itive rate versus false positive rate) curves [7]. A very important characteristic of
THEMATICS performance is its selectivity – it predicts precise, highly localized
sites [7].

A key feature of THEMATICS is that the query protein does not have to have
any similarity, in sequence or in structure, to any other protein. Originally function
prediction was based primarily on sequence analysis, although sequence similarity
does not always imply functional similarity [11–13]. Other methods use struc-
tural relationships in conjunction with sequence analysis [14–32] for improved
performance.
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There are presently a few approaches in addition to THEMATICS that are based
solely on the structure of the query protein and some of these also employ elec-
trostatic properties. Elcock [33] reported that likely functional residues could be
identified by their electrostatic folding free energies obtained from solution of the
Poisson-Boltzmann equations. Bate and Warwicker [34] later identified a point near
the active site using the peak of the electrostatic potential in the solvent space
above the protein structure. A graph theoretic approach predicts candidate active site
residues based on their closeness of interaction with the other residues in the struc-
ture [35]. Another method uses purely geometric features of the protein structure
[36]. More recently, ligand binding sites have been predicted through the compu-
tational identification of regions where interactions cause a large change in protein
conformation distribution [37]. Ligand binding sites can also be detected with the
mapping of small solvent-like molecules onto the protein surface, either experi-
mentally [38] or with the corresponding computational docking method [39]. The
method of Laurie and Jackson [40] is of this type, but uses only a single van der
Waals probe.

THEMATICS, which requires no sequence alignments, has been shown to match
performance, or even outperform, the best methods that predict functional sites
from sequence alignments and the 3D structure. However, it is important to note
that the performance of the methods that require a sequence alignment is expected
to degrade [24–25] when applied to Structural Genomics (SG) proteins that have
fewer, or less diverse, sequence homologues than the well studied proteins in the
verification sets. On the other hand, THEMATICS performance on SG proteins in
principle should match its performance on the verification set because it requires
only the 3D structure of the query protein and it treats all input structures in the
same fashion; it does not depend on any prior knowledge or relationships to other
proteins.

THEMATICS predictions are freely available via the pfweb server: http://pfweb.
chem.neu.edu/thematics/submit.html.

Users can either upload a protein structure file in pdb format, or alternatively give
the PDB ID for the structure of interest. THEMATICS calculations on the server
utilize the optimum statistical and distance cut-offs determined by Wei et al. [7];
these values return the highest Matthews Correlation Coefficient (MCC), as mea-
sured using the CSA annotations. The maximum MCC reflects a balance between
sensitivity and specificity. Results are returned to the user via e-mail. Results take
the form of one or more clusters.

For instance, for the dimer structure with PDB ID 2qe8, an uncharacterized struc-
tural genomics protein from Anabaena variabilis, THEMATICS returns two clusters
for each of the two subunits of the dimer, a seven-member cluster [D123, K246,
C249, D250, D293, D306, R342] and a one-member cluster [D202]. Only clusters
with two or more residues are considered predictive; thus the seven-member cluster
constitutes the functional site prediction and the single-member cluster [D202] is
not a part of the predicted active site.

http://pfweb.chem.neu.edu/thematics/submit.html
http://pfweb.chem.neu.edu/thematics/submit.html
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POOL

A new machine learning approach, called Partial Order Optimum Likelihood
(POOL) was designed [8] to make significant enhancements in site prediction capa-
bility. Originally POOL was applied using THEMATICS input features and later
was expanded to include other types of input features. In principle, POOL can use
any input feature, provided the probability of the functional importance of residues
depends monotonically on that feature.

POOL, a multidimensional, monotonicity-constrained maximum likelihood tech-
nique, starts with the hypothesis that the larger the THEMATICS metrics for a
given residue, the higher the probability that the residue is important for function.
These features consist of two computed properties, called μ3 and μ4 [6], of ioniz-
able residues that describe titration curve shape. Extension of the POOL method to
include predictions of non-ionizable residues is achieved through the introduction
of environment variables. While THEMATICS features apply only to the ionizable
residues (Arg, Asp, CysH, Glu, His, Lys, Tyr, and the N- and C- termini), the envi-
ronment variables μ3

env and μ4
env measure the magnitude of the THEMATICS

features of the ionizable residues that are spatially close to the residue in ques-
tion. Note that μ3

env and μ4
env are properties of all residues, not just ionizable

residues. Thus the THEMATICS input feature for POOL is the four-dimensional
vector (μ3, μ4, μ3

env, μ4
env) for the seven residue types that are ionizable and the

two-dimensional vector (μ3
env, μ4

env) for all of the non-ionizable residue types.
This extension to include non-ionizable residues results in even better performance
than with the original THEMATICS features alone and constitutes to date the best
functional site predictor based on 3D structure only, achieving performance that
is as good or nearly as good as methods that use both 3D structure and sequence
alignment data [8].

It is interesting to note that the THEMATICS features μ3 and μ4 are derived
from a function that is related to the binding capacity [41] for protons; μ3 and μ4
are also related to the coefficients in the proton binding polynomial [42].

These electrostatics features from THEMATICS are combined with multidimen-
sional isotonic regression to form maximum likelihood estimates of probabilities
that specific residues belong to an active site. This allows likelihood ranking of all
ionizable residues in a given protein based on THEMATICS features. The corre-
sponding ROC curves and statistical significance tests demonstrate that this method
outperforms prior THEMATICS based methods, which in turn have been shown pre-
viously [7] to outperform other 3D-structure based methods for identifying active
site residues.

POOL generates a value for each residue that is proportional to the probability
that the residue is functionally important. One of the advantages of POOL is that
it can incorporate any residue-based input feature upon which the probability of
functional importance depends monotonically.

One such feature is the cleft size rank, an integer that represents the ordinal
size of the surface cleft to which a given residue belongs. Previous studies have
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shown that active site residues tend to be located in one of the largest clefts in a
protein structure [43–45]. Indeed it has been reported that in 83% of single-chain
enzymes, the active site is located in the largest cleft [44]. Nearly all active sites
are principally located in one of the five largest clefts of a protein structure, with
the largest cleft containing the active site for the highest fraction of enzymes and
with the fractions decreasing as the size rank progresses to smaller clefts [46]. The
cleft size rank is a geometric feature that can be quickly computed for each residue
in any protein structure. Although the cleft size rank alone does not perform very
well for active residue prediction, its inclusion as input to POOL, as an addition
to the THEMATICS input features, does lead to small but statistically significant
improvement in site prediction performance [8].

Similarly, POOL easily incorporates sequence conservation scores, for those
cases where there are a sufficient number of homologues. When this information
is included, the resulting method has been shown to outperform the best methods
that use any combination of sequence alignments and 3D structures [8]. It is further
demonstrated that when THEMATICS features, cleft size rank, and alignment-based
conservation scores are used individually or in combination, THEMATICS features
represent the single most important component of such classifiers [8]. The POOL
method we have developed is general and is a viable machine learning approach to
any problem where a predicted outcome depends monotonically on each of the input
variables. Most importantly, POOL is a top-performing site predictor and it enables
THEMATICS to be used to predict all residues, not just the ionizable ones.

POOL output consists of a list of all residues, rank-ordered according to the
probability of functional importance. The top-ranking residues constitute the POOL
prediction. The cut-off point in the rank-ordered list may be set according to the
intended application. The cut-off value is generally set to select the top 5–8% of
all residues, as this returns good sensitivity with excellent specificity. A 5% false
positive rate, which corresponds to 95% specificity, returns a recall rate of 70%,
which is good enough to characterize a functional site. Full recall (100% sensitivity)
is achieved with only a 17% false positive rate. This performance compares quite
favorably with other methods, for instance INTREPID achieves 93% sensitivity with
a 20% false positive rate [28] on a similar test set. However, false positive rates in
the 17–20% range may be too high to be useful, as discussed below. We prefer to
work with a little lower sensitivity but much better specificity; this combination is
achievable with THEMATICS and POOL.

Discussion

What Is the Basis for the Success of THEMATICS?

As a standalone functional site predictor, THEMATICS has been shown to perform
very well [7]. Its performance was measured on the original, manually curated set
of 170 proteins in the Catalytic Site Atlas [3–4], where catalytic residues are labeled
based on experimental literature citations. The THEMATICS success rate was found



Electrostatic Properties for Protein Functional Site Prediction 189

to be equal to or better than that of other 3D-structure-based methods, but with better
precision and lower false positive rates [7]. This was all achieved with only one type
of input, namely the computed titration curve shape metrics.

We attribute the success of the method, in particular its ability to predict highly
localized, precise active sites, to its reliance on computed chemical properties.
Chemically active residues are predicted with information about their chemistry,
specifically their proton binding properties. While there is some error associated
with the titration curves computed by electrostatics methods, the statistical [6–7]
and machine learning [8] analyses on the curve shape metrics have proved to be
highly successful in selecting the outliers, i.e. those residues with titration curve
shapes that deviate most from typical Henderson-Hasselbalch behavior.

We have argued [47] that the anomalous titration behavior enables a residue,
in a large ensemble of protein molecules, to exist in both protonation states with
appreciable population over a wide pH range. This is in contrast to a typical
Henderson-Hasselbalch weak acid or base, which is protonated at pH values less
than the pKa and deprotonated at pH values greater than the pKa, with a very nar-
row pH range around the pKa where both protonation states are populated in an
ensemble of molecules. For the residues with anomalous titration behavior, this pH
range is expanded significantly. This type of non-Henderson-Hasselbalch titration
behavior is common for polyprotic acids and a protein is in fact a macromolecular
polyprotic system.

Furthermore, for an active site residue, this ability to have both protonation states
populated over a wider pH range is an advantage in catalysis [47]. First of all, by
definition of a catalyst, a catalytic Brønsted-Lowry acid or base must be able to
act as both acid and base because it must regenerate itself for the next turnover
cycle. Thus a residue that donates a proton as part of the catalytic mechanism must
also accept a proton before the end of each cycle. The anomalous titration behav-
ior also enables catalytic residues to have the correct mix of properties. Consider
for example one common first step in an enzyme-catalyzed reaction, the abstrac-
tion of a proton from an alpha carbon atom, a reaction that requires a strong base.
Suppose that the enzyme in question operates in vivo at pH 7. Suppose that the
conjugate acid of the catalytic base has a pKa of 13 and that it obeys the Henderson-
Hasselbalch equation. Such a base may not be strong enough to abstract a proton
from a carbon atom, but even if it were, it would not be able to react because at pH
7, it is essentially fully protonated. Only one in one million protein molecules in the
ensemble would have this residue deprotonated at pH 7. On the other hand, a base
with anomalous titration behavior can be a strong base and at the same time have
significant population of the deprotonated state at neutrality. Thus the anomalous
titration behavior helps to facilitate catalysis for active site residues.

It is our working hypothesis that nature builds enzyme active sites with clus-
ters of neighboring ionizable residues with similar pKa values, so that there is
strong interaction between their protonation events. This strong interaction gives
rise to anomalous titration curve shapes and promotes catalysis. The deviations in
the titration curve shape are measured by the features computed in a THEMATICS
analysis.
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The enhanced performance afforded by POOL using THEMATICS input features
only is attributed to the ability of POOL to extract more information from these fea-
tures than the earlier statistical and machine learning analyses; this leads to better
quality predictions of functionally important residues. First POOL was applied with
just THEMATICS features as input, using features similar to those used previously
by our Support Vector Machine (SVM) classifier [48] and by our statistical selec-
tion [6–7]. Tong et al. showed in 2009 [8] that the POOL analysis outperforms all
of these earlier THEMATICS analyses with no cleaning of the training data and no
clustering after the classification. This suggests that the underlying monotonicity
assumptions of POOL enable better use of the THEMATICS input metrics.

Another obvious reason for the success of POOL is its ability to predict all
residues, not just the ionizable residues. In the previous statistical versions of
THEMATICS, only seven types of residues are predicted: Arg, Asp, CysH, Glu, His,
Lys, and Tyr. The N- and C- termini are also included in the original THEMATICS
analysis, although these residues are only rarely involved in catalysis. Serine is
excluded from the original THEMATICS analysis because its pKa is generally too
high for its deprotonation equilibrium to have significant interactions with those
of other residues; attempts to include serine in the original THEMATICS analysis
lead to lower quality predictions and thus serine has not been considered an ioniz-
able residue for purposes of THEMATICS analyses. In spite of this, THEMATICS
has still performed well compared to other 3D-structure-based methods [7]. This
is in part because the seven residue types predicted by THEMATICS are the seven
most prevalent catalytic residues. Among the literature-annotated catalytic residues
analyzed by Bartlett et al. [3], the most common residue types, in order starting
with the most common, are: His, Asp, Arg, Glu, Lys, CysH, and Tyr. Together
these seven residue types constitute about 75% of all annotated catalytic residues
[3, 7]. However this means that THEMATICS has a maximum residue recall rate, or
sensitivity, of 75%, since by its nature it cannot predict the remaining 25% of cat-
alytic residues. POOL is advantageous because it can predict all residue types. For
instance, POOL predicts all three residues of the catalytic triad of serine proteases
such as subtilisin, including the serine, whereas THEMATICS only predicts the Asp
and His residues.

POOL is able to take advantage of a variety of input features, in addition to
THEMATICS features. Any property of the residues in a protein structure can
be a POOL input variable, provided the probability that a residue is catalytically
important is a monotonic function of that variable. The current version of POOL
incorporates a geometric feature, the cleft size rank, and the sequence conservation
scores.

Table 1 summarizes POOL performance with and without conservation scores.
The average specificities achieved at 90, 80, and 70% recall, together with the aver-
age recall rates achieved at 95, 90, and 80% specificity are shown. Specificity and
recall are reported using all three input features, THEMATICS, geometric, and con-
servation scores (T, G, and C) and using the 3D-structure-based features (T and
G) only, as measured on a 160 protein test set [8]. The figures of merit in Table 1
represent outstanding performance; see for example Table 1 of Sankararaman and
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Table 1 POOL performance with and without sequence conservation data

Input features T, G, and C T and G only

POOL performance

Specificity at 90% recall (%) 91 89
Specificity at 80% recall (%) 92 91
Specificity at 70% recall (%) 95 93
Recall at 95% specificity (%) 70 60
Recall at 90% specificity (%) 91 87
Recall at 80% specificity (%) 100 100

Input features: T = THEMATICS, G = geometry (cleft size rank),
C = conservation scores. Performance data are for a test set of 160
annotated proteins [8]

Sjölander [28]. Table 1 shows that, even in the absence of sequence conservation
information, POOL is able to make good predictions of catalytic residues with input
features computed solely from the 3D structure of the query protein.

Applications

Prediction of protein functional residues is a first step toward functional annota-
tion of a protein. One specific application has been to functional assignment within
superfamilies, which consist of sets of proteins with similar 3D structure but often
with significant functional diversity. Wei et al. have shown [49] that, for the small
DJ-1 superfamily, placement of the predicted functional residues onto a 3D struc-
tural alignment reveals patterns characteristic of biochemical function; this enables
one to sort the superfamily into subclasses according to their function.

Other applications of functional site prediction from electrostatic properties
include better understanding ligand binding [50–52] and inhibitor design. These
applications all require that the functional residues are predicted with both sensitiv-
ity and precision.

Precision

While many functional residue prediction methods boast high recall rates of anno-
tated catalytic residues, often these also correspond to high false positive rates. In
some cases, the measures of selectivity, such as precision, specificity, or false posi-
tive rates, are not reported at all [30]. Of course, the value of a high-recall prediction
is significantly diminished if the corresponding false positive rate is high. While not
all electrostatics based methods are capable of good selectivity, those that utilize
titration curve shapes are able to return very low false positive rates with good recall.

The CSA-100, a non-redundant subset of 100 enzymes from the CSA, is often
used for verification purposes [28]. This set of enzymes consists of a total of 36,230
residues, of which 314 are annotated as functionally important. Thus approximately
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Fig. 1 Predictions for the structural genomics protein Pfal009167. (a) 5% POOL cut-off value;
(b) 8% POOL cut-off value

1% of all residues currently are considered functionally important. While this rep-
resents a lower bound, as not all residues have been tested and thus some important
residues are not listed in the CSA, it gives a rough idea of the fraction of total
residues that should be returned by a site prediction method.

For application purposes, we have found that generally it is less important to
predict every single functional residue than it is to predict most of the functional
residues with few false positives. We have observed that the fraction of total residues
predicted should be in the range of about 5–8% or less. Predictions that return
higher fractions of residues are not particularly useful for application purposes, as
the predicted region of the protein surface is too large.

This is illustrated in Figs. 1 and 2. Figure 1 depicts typical POOL predictions
for the structural genomics protein Pfal00167 (PDB ID 1TQX) [53], a putative
D-ribulose 5-phosphate 3-epimerase from P. falciparum, a member of the ribulose
phosphate binding barrel superfamily [54]. The backbone is shown as a ribbon and
the side chains of the predicted residues are shown as dark sticks. The prediction
consisting of the top 5% of all residues is shown in Fig. 1a and that of the top
8% of all residues in Fig. 1b. The prediction of Fig. 1a is superimposable on the
known active sites of previously characterized D-ribulose 5-phosphate 3-epimerases
[54–55] and contains four known catalytic residues H36, D38, H70, and D179.
Although this prediction misses one known active site residue, Q177, the similarity
of the predicted site to the known binding sites of the well-studied structures with
PDB IDs 1RPX [55] and 2FLI [54] is sufficient to confirm the putative functional
annotation.

Figure 2 shows the POOL predictions for the same structural genomics protein if
higher cut-off values are used. Figure 2a depicts the top 15% of all residues and 2b
depicts the top 20% of all residues. These predictions constitute a large fraction of
the protein surface area and are less useful.
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Fig. 2 Predictions for the structural genomics protein Pfal009167. (a) 15% POOL cut-off value;
(b) 20% POOL cut-off value

Future Directions

While POOL in its present form shows excellent performance as a catalytic residue
predictor, there are some additional features that could be built in to enhance its
performance, including information about evolutionary history obtained from a
phylogenetic tree [28, 56].
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Function Prediction of Genes: From Molecular
Function to Cellular Function

Kengo Kinoshita and Takeshi Obayashi

Abstract The identification of gene function is a challenging task for molecular
biology, since it is quite difficult to assess all of the possible functions experi-
mentally. Therefore, some computational methods to predict or narrow-down the
possible functions of genes are needed. There are two different views of functions,
namely, molecular functions and cellular functions, and they require completely dif-
ferent approaches. The molecular functions of genes are considered to be tightly
coupled with the three-dimensional structures of proteins (i.e. gene products),
because molecular functions are archived by a set of chemical reactions, and
chemical reactions are realized through molecular interactions among proteins and
small molecules. Many methods have been developed based on docking approaches
and structural similarity searches; here, we introduce some recent methodologies,
including our methods. On the other hand, for cellular functions, the context of the
genes or its position in an interaction network should be considered to discern the
biological functions, because each biological function is determined by interactions
with other gene products. For this purpose, we focus on the co-existence of genes,
because co-existence is a necessary condition for the interactions. In this chapter,
we will introduce some gene coexpression databases and describe the use of gene
coexpression for the identification of cellular functions.

Introduction

According to the rapid progress in genome sequencing techniques, such as the next
generation sequencer, more than 1,000 genome sequences have been determined
and stored in the public sequence databases. However, many of the genes on the
genomes have not been characterized. To fully understand biological systems at the
molecular level, the functions of all of the genes must first be clarified. Although
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the functions of the genes should be verified experimentally in the final stage, it
is almost impossible to check all of the possible gene functions. Therefore, some
computational methods to refine the possibilities for experimental studies must be
developed. In this chapter, we refer to these methods as the function prediction of
genes.

In principle, we should be able to predict the functions of genes when we have
the genome sequence, because the genome sequence contains the entire informa-
tion of the living organism. However, this is not currently feasible. Therefore, the
usual practice is to search for genes with similar “features”, in some sense. The most
powerful and popular feature is the genome or amino acid sequence. Sequence sim-
ilarity implies an evolutional relationship, and an evolutional relationship will lead
to a functional relationship, and thus the genes with similar sequences will often
encode proteins with similar functions, although distantly related genes and paral-
ogous genes may have different functions [1]. Since the sequence-based approach
has been well described in the second section of this book, here we will focus on
two different features; namely, the three-dimensional (3D) structure of proteins, and
the expression pattern of genes measured by DNA microarray analysis.

Before going into the details, we should first clarify the functions of the genes. It
is now widely accepted that there are two extreme views of the function: the molec-
ular function and the cellular function. The molecular function is the function of a
single molecule, such as its enzymatic activity, and it is tightly coupled with the 3D
structure of the protein. On the other hand, the cellular function is determined by the
context of each protein in the interaction network. For example, MEK kinase, exist-
ing in the crosstalk point of the EGF and NGF signal transduction pathways (see
Fig. 1 in Sasagawa et al. [2]), phosphorylates ERK, and thus its molecular func-
tion is phosphorylation, while its cellular function or response to the external signal
is determined by the expression patterns of other genes [2]. These two views are
completely different, and thus the methods used to predict each of the functions are
also different. We will start by discussing the molecular function in the next section,
and will then proceed to the cellular function. The molecular function prediction
is related to the similarity search of 3D structures of proteins, while the cellular
function prediction described in this chapter is based on the similarity of expression
patterns.

Molecular Function

It was a very difficult task to determine protein 3D structures during the 1990s, but
now it has become one of the standard approaches to analyze protein functions. As
a result, more than 60,000 structures have been deposited in the Protein Data Bank
(PDB) as of 2010 [3]. According to the rapid increase in protein 3D structures, the
similarity of protein structures has become useful to detect the functional relation-
ships of proteins, in a similar manner as sequence similarity. However, in contrast
to the sequence similarity, the structural similarities have complicated meanings,
because there are several representations in protein structures (Fig. 1) and each rep-
resentation can have different meanings. In other words, sequence similarity implies
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Fig. 1 Several representations of a protein structure (PDB: 5p21, Ras protein, was used). (a)
Wireframe, (b) CPK, (c) ribbon, (d) molecular surface. Figures were prepared with jV [61]

functional similarity by way of protein evolution, but the relationship between the
3D structure and the function of a protein is sometimes supported by the evolutional
relationship, and other times is a result of biochemical principles. Global folds of
proteins (Fig. 1c) are considered to be more conserved than amino acid sequences,
and thus the fold level similarity often supports the evolutional relationship, except
when the fold is a superfold [4], while the similarity of local atomic configurations
will exhibit the same or related enzymatic activities, as in the case of the catalytic
triad of serine proteases [5]. Therefore, in the case of protein structures, we should
first determine the elements for comparison.

Global Fold Similarity

Many methods have been developed to detect global fold similarities. Some of them
search for the similar spatial arrangement of Cα or Cβ atoms (Dali [6], SSAP [7],
ASH [8], Matras [9]), and some detect similar backbone fragments (SURF [10], CE
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[11]), while others identify similar spatial arrangements of secondary structural ele-
ments (VAST [12], PROTEP [13], COSEC [14, 15]). Most of the methods introduce
restraints of the sequence order, and a few (SURF, VAST, PROTEP and COSEC)
can detect the similarity independently of the sequence order [16]. In the 1990s
and early 2000s, the similarities without the sequence-order constraints attracted
some attention, but recently they have been essentially ignored. This is possibly
because the similar global structures without sequence order were quite rare, except
for the superfolds due to their internal symmetry [15], and because the interpre-
tation of the kinds of similarities was usually difficult. As a consequence, modern
fold comparison methods assumed sequence order constraints and became one of
the sophisticated methods to detect remote homologues. This trend is clearly seen
in Matras by Kawabata [9], who employed a unique score tuned to detect the dis-
tant homologs, using a similar formulation to the Dayhoff substitution matrix for
sequence comparisons. Matras can evaluate the probability of an evolutional rela-
tionship for each pair of similar proteins, even when significant sequence similarity
is absent. In a similar way, Standley et al. developed a method called SeSAW [17],
where they introduced a new score, combining sequence conservation and structural
similarity, to identify the functional sites of proteins.

Local Atomic Configurations

As in the case of sequence motifs, local structural elements can provide some
clues to infer the functions of proteins. The most famous case of local similarity
is the catalytic triad of serine protease, where three catalytic residues (Ser, Asp,
His) have a very similar arrangement among proteins with completely different
folds. Another example can be found among DNA polymerases beta and DNA
polymerase I, where three catalytic residues with carboxyl groups (three Asp/Glu)
have a similar configuration to catalyze the polymerase reactions. In both cases, the
three residues have similar configurations for each catalytic activity. This observa-
tion seems to indicate that similarity searches of local atomic configurations will
enable us to identify the functions of uncharacterized proteins. To evaluate this pos-
sibility, the first systematic analyses of structural comparison were performed by
Kobayashi and Go, who found a few new structural elements, four residue frag-
ments, shared by proteins with different folds (ddligase and protein kinase) [18].
They performed a systematic comparison of local structures around the base parts
of ATP and GTP, by superimposing the common backbone structures of the adenine
and guanine rings. Similar analyses were performed around the phosphate bind-
ing sites of mono-nucleotides by Kinoshita et al. [19], and the ddligase and protein
kinase also share similar atomic configurations around the phosphate binding sites.
Denessiouk et al. further extended the analyses, and found that ddligase and pro-
tein kinase share other structural elements in addition to the nucleotide binding
site [20]. This example is also impressive, but the main message here is that the
structural elements shared with proteins with different functions are found only in
limited cases. In other words, a similarity search of local atomic configurations will
work well only for limited proteins, and it will often result in the similarity due to a
similar fold.



Function Prediction of Genes: From Molecular Function to Cellular Function 201

In principle, protein molecular functions are determined by the 3D structures of
proteins, especially the local atomic configurations of the catalytic residues, and
thus it seemed likely that proteins with similar enzymatic activities would have sim-
ilar local atomic configurations, but this was not true in natural proteins. This means
that the same function can be achieved by several or many different atomic config-
urations, and when one configuration was invented during the course of evolution,
it was retained carefully. This observation indicates that similarity searches of local
atomic configuration are not effective, because there are only a few cases with simi-
lar atomic configurations and similar functions, beyond the evolutional relationship.
However, it should be noted that this observation does not indicate that the pro-
teins with similar atomic configurations cannot have a similar function. A protein
can have one or more different functions that have not been experimentally iden-
tified. An interesting experiment by Ikura et al. [21] provides a good example that
a protein can have a function other than the known function. They used proline
isomerase to perform a similarity search of 32 atoms in the active site, and found
four proteins with similar atomic configurations and different folds: Chk1, EVEh-1,
alpha-amylase, and endopeptidase. The former two proteins are not commercially
available, and thus they checked the proline isomerase activity of the latter two pro-
teins. As a result, the two proteins actually had proline isomerase activities, although
the total activity measured by kcat/Km was only 0.5% for alpha-amylase and 5% for
endopeptidase, as compared with the wild type proline isomerase activities. These
activities are quite low as compared with the computationally designed proteins
[22, 23], but a discussion about the design, rather than the identification of functions
of proteins through the similarity of structures, is beyond the scope of this chapter.

Molecular Surface Similarity

As described above, analyses employing the similarity of atomic configurations
have limited effectiveness. To extend the possibility of similarity-based approaches,
some researchers have tried to use a different representation of proteins, that is, the
molecular surface of proteins. The molecular surface of a protein is the contact sur-
face between the atoms in a protein and a probe sphere with a certain radius (1.4 Å
is often used, considering the size of a water molecule), and is also referred to as the
Connolly surface [24]. Although the molecular surface itself is a smooth, continu-
ous surface, it is usually represented by a set of triangle meshes for computational
approaches, and thus the comparison was performed for a set of vertexes contained
in each molecular surface.

The first trial was done by Rosen et al. [25], who used a geometrical hash-
ing (GH) algorithm to find similar shapes of the molecular surfaces of proteins.
This approach was extended by Kinoshita et al. in 2002 [26], who incorporated the
electrostatic potential on the molecular surface of proteins by using Clique search
(CS) algorithms. The GH algorithm is sensitive to small differences in structures,
because it makes the superimposition by using three vertexes on a surface, while the
CS algorithm performs a superimposition with all of the corresponding vertexes.
However, from the viewpoint of calculation time, the GH algorithm is much better
than the CS algorithm. More recently, Sael et al. have developed a computationally
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Fig. 2 Flow chart of a structure-based approach

more efficient approach [27], in which a rotational invariant representation of the
molecular surface, called 3D Zernike descriptors, was introduced.

Among these methods, Kinoshita et al. have provided a web-based server, called
eF-seek (http://ef-site.hgc.jp/eF-seek). The users can upload a PDB formatted file
as a query, and they will receive a prediction. This method actually worked well for
some cases [28–31], but it will be one of the final options to predict the functions of
proteins (Fig. 2).

Beyond the Simple Similarity Search

We have described the similarity-based approaches, where we have shifted from
global similarities to local ones, and employed molecular surfaces to address the
point that there are small numbers of similar atomic configurations in natural pro-
teins with different folds. Proteins will follow physicochemical rules, even though
they are natural products of life, and thus each interaction between a ligand and a
protein should be reasonable from a physicochemical viewpoint. In other words,
almost all of the elemental interactions will be similar among proteins. Therefore,
if we can integrate such elemental interactions, then we will be able to predict the
ligand binding sites on proteins.

According to these considerations, Kasahara et al. have developed a method
called BUMBLE [32]. They considered “fragments” as the interactive units, and
regarded all possible three-successive atoms in ligands as the ligand fragments,

http://ef-site.hgc.jp/eF-seek
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and representative three atoms in every amino acid as protein fragments, and then
searched for similar fragment-fragment interactions on the query protein. After
the superimposition of protein fragments on the query protein, they identified the
sites around the query protein where the same types of ligand fragments frequently
appeared, which they called hotspots. Finally, their method created putative ligand
conformations according to the known fragment interactions and the spatial distri-
bution of the hotspots. They only considered the fragment interactions, and thus
their method can detect putative binding sites even when there are no proteins with
similar binding sites as a whole. In addition, they create the ligand conformation,
and thus their method can predict ligands with novel conformations. This method is
also available on the web (http://bumble.hgc.jp).

At first glance, their approach may look like a docking approach with statisti-
cal pair potential. However, docking approaches search for possible rotations and
translations, and BUMBLE searches for similar fragment interactions. The number
of possible freedoms in the former case is far larger than that in the latter case,
and thus their method can be more effective. In addition, a pair statistical potential
approximates many body interactions with two body interactions, and thus it cannot
explicitly consider the motifs, which are important elements of molecular interac-
tions. A comparison of BUMBLE and AutoDock [33] revealed that BUMBLE is
more effective to find the correct binding sites, while the latter is better at the pre-
diction of correct ligand conformations. This seems to indicate that the docking
approach is suitable for fine-tuning of the complex structure, while the similarity
search approach is better for a rough search of the possible binding sites.

Limitations of Structure Based Approaches: Protein Disorder

The fragment based method is very robust to structural changes of proteins, but the
so-called “disordered regions” are still a big problem for all structure-based func-
tion predictions, because disordered regions are usually invisible in the apo-forms of
protein structures, which are prevalent in the current PDB (Fig. 3). The disordered
regions are considered to be more abundant in higher organisms, such as eukaryotes
[34], and thus they pose a serious obstacle to clarifying the biological systems in
eukaryotes. The invisible loops hinder the prediction of complex structures with lig-
ands. However, we can reliably predict the disordered regions, and thus it is possible
to speculate about the functional sites of proteins, although we cannot identify the
specific roles of the sites.

Many prediction methods have been developed, and various web servers are
available [35]. Among them, Ishida and Kinoshita developed a method based on a
meta approach [36] (http://prdos.hgc.jp/meta), where they integrated the prediction
results from eight independent predictions, including the four best prediction meth-
ods in CASP6 [37]. On average, a meta predictor will outperform all of the
component predictors, but in each comparison, there are weak and strong cases.
For example, this meta predictor is good at short disorder prediction, but is not opti-
mized for long disordered regions. Therefore, for a user who is interested in long

http://bumble.hgc.jp
http://prdos.hgc.jp/meta
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Fig. 3 Length distribution of missing loops in the PDB, as of Dec 25, 2009. The redundancy in
the PDB was eliminated by using the PISCES server [62], with a 20% sequence identity and a
2.5 Å resolution threshold. The non-redundant set included 4,565 pdb chains. Missing loops were
identified by comparing the amino acid sequence in SEQRES and that in the ATOM record, and
1,590 missing loops other than N- and C-termini among 1,077 chains were found. The mean length
and the standard deviation of the length of the missing loops are 8.7 and 9.4, respectively

disordered regions, a method optimized for such regions would be more effective.
Noguchi and coworkers have developed a series of disorder prediction methods for
short-, long- and mostly disordered proteins [38–40] (http://mbs.cbrc.jp/poodle).

Cellular Function

As described in the previous section, a structural similarity search is a powerful
method to detect a functional molecular relationship. However, it is not very useful
to infer the relationship of cellular functions, because cellular functions are deter-
mined by the contexts of the proteins under consideration. For the cellular function,
we should first determine the interaction partners in the protein-protein interaction
networks.

Protein–Protein Interactions

Due to the progress in experimental techniques of proteome analyses, a vast amount
of information about possible protein interactions is available in public databases,

http://mbs.cbrc.jp/poodle
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such as IntAct [41], BioGrid [42] and HPRD [43]. These databases contain infor-
mation about many interactions, and include some interactions obtained by high
throughput (HTP) techniques, such as yeast two hybrid experiments. However, HTP
data still contain some false positives and false negatives, although they have been
improved recently. For example, although proteins with different localizations will
not interact with each other in a real biological situation, they may be detected as
interacting with each other (false positive cases), while proteins that interact only
under limited conditions, such as those with posttranslational modifications like
phosphorylation, will not be detected (false negative ones).

The former problem has been tackled by many researchers. One possible
approach is to gather different HTP experiments and use a consensus of the data,
to enhance the reliability [44]. In a more sophisticated approach, Jansen et al. used
mRNA coexpression and co-localization to find reliable interactions [45]. Patil and
Nakamura integrated information such as the Gene Ontology annotation, the homol-
ogous proteins’ interactions and the existence of known interacting Pfam domains
[46, 47], and their results are available in a web database at http://hintdb.hgc.jp/htp.

On the other hand, however, the latter problem, the false negative cases, is very
difficult to manage, because many possible modification patterns and/or biological
environments can affect the conditional interactions of proteins. For this problem,
the coexistence of proteins will provide some clues to infer the possible interaction
partners for each protein, because coexistence is a necessary condition for interac-
tions. Although we lack comprehensive protein expression level data, we have vast
amounts of data regarding mRNA expression measured by DNA microarray tech-
niques. The expression level of a protein can differ from that of the mRNA, but a
large amount of DNA microarray data can be useful.

Measuring Gene-Coexpression

Gene coexpression is the similarity of the expression pattern of genes over a number
of microarray samples, and it has diverse biological meanings. For example, all of
the subunits of a protein complex should be regulated in a coordinated manner to
realize the complex structure, and thus they are strictly coexpressed. Actually, new
subunits of the chloroplastic NAD(P)H dehydrogenase complex were predicted and
verified experimentally [48]. In a similar way, a series of enzymes in a metabolic
pathway are often coexpressed [49], and a regulatory relationship between a tran-
scription factor and its target genes can be detected by coexpression [50]. The
interaction partners of an Arabidopsis replisome factor, ETG1, were searched by
gene coexpression and confirmed by a co-purification experiment [51]. Therefore,
gene coexpression can potentially be useful for the identification of functionally
related genes.

Gene coexpression has actually been used in the field of plant biology [52],
but it has not been widely used in animals, especially in higher organisms such as
human and mouse. This is partly because post-transcriptional regulation in higher
organisms is more complicated than that in plants, and thus it is difficult to identify

http://hintdb.hgc.jp/htp
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coexpression reliably, and also because the tissue organization in animals is far more
complex than that in plants. For the former reasons, gene coexpression informa-
tion reflects transcriptional regulation, and thus the reliability of co-expression will
become weaker as the influence of post-transcriptional regulation becomes stronger.
One possible approach to overcome this difficulty is to combine PPI information
with gene coexpression data, to complement the lack of protein level regulation. The
latter reason is more serious, because complex tissue organization requires severe
regulatory coordination among tissues, and thus involves more complicated gene
regulation. This situation makes it more difficult to extract gene-to-gene functional
relationships from a simple similarity index of gene expression patterns between
two genes. This possible limitation of gene coexpression was also mentioned by
Yanai et al., who studied the expression data of several different mouse tissues [53].

To overcome these difficulties, we have developed a database of gene coexpres-
sion, COXPRESdb, for human, mouse and rat [54], and recently extended it with
four more species. Pearson’s correlation coefficients (PCC) were generally used as
the measure of similarity, and higher PCC values are considered to have stronger
functional relationships (Fig. 4). However, the distribution of PCC values is quite
different for each gene and for each dataset, and thus the PCC value itself is not suit-
able for a comparison of various genes. Therefore, we used the rank of the Pearson’s
correlation, rather than the PCC value. The idea of using the rank of a value is very
simple, but it was quite effective, as we demonstrated [54]. This is possibly because
the number of functionally related genes is not very much different for each gene,
while the strength of coexpression is quite divergent, reflecting the fact that gene
coexpression has various biological meanings. For example, the gene pairs in a pro-
tein complex tend to have higher PCC values than those in metabolic pathways.
Furthermore, we also developed a method to extend the single correlation values

Cor Gene

0.29 HIST1H2AI

0.27 HIST1H1D

0.27 HIST1H3D

0.27 TMEM132A

0.27 KIAA1652

0.27 CHRND

0.26 GRIN3B

0.26 TES

0.26 SSX5

0.26 442503

From HIST1H2BM

Cor Gene

0.36 HOXB4

0.31 HOXB6

0.28 HOXB7

0.25 HOXB5

0.18 SKAP1

0.18 CREB3L4

0.17 VTCN1

0.17 CRIP1

0.17 UCP2

0.17 PIAS3

From HOXB2

Cor Gene

0.54 PSMC2

0.51 PSMD1

0.51 PSMA1

0.5 PSMA5

0.5 RAN

0.49 PSMB7

0.49 PSMA6

0.49 PSMD12

0.48 MRPL47

0.48 PSMA3

From PSMD14

Fig. 4 Example of the relationship between correlation values and rank for three genes.
Functionally related genes to each query gene are shown in shaded boxes
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into a multidimensional correlation, to describe the complex regulation in higher
organisms [55]. The multidimensional correlation is based on the subtraction of
the principal components of expression patterns. Each subtracted data set virtually
corresponds to each biological situation [55].

Systematic analyses of the performance of gene function prediction by coex-
pression for Arabidopsis, human, mouse and rat were also performed [54]. As a
result, the prediction performance was slightly better for Arabidopsis than human
and mouse, but all of them were far better than the random prediction. The prediction
performance in rat was slightly worse than that for the other three organisms, pos-
sibly due to the small number of samples available in the NCBI/GEO. In addition,
MAS5 and RMA normalization were better than gcRMA and plier normalization,
but the difference in the prediction performance with the different normalizations
was smaller than that with the different measures of coexpression, i.e., correlation
ranks or values.

Two Approaches in Gene-Coexpression Analyses

There are two approaches for using gene-coexpression data according the different
stages of analyses, the “narrow-down” approach, and the “guide-gene approach”
[52]. In the early stage of analyses, we usually have little information about the
functional relationship, and many genes can become candidates for the analyses,
while in the later stage a few genes are specified as target genes, and new relation-
ships with the query genes are investigated. Therefore, in the former stage, the genes
under consideration should be “narrowed-down” from many candidate genes, and
in the later stage, the new genes are explored according to a “guide” of query genes.
Here we will describe the actual steps of these two approaches by using our gene
coexpression database, COXPRESdb (http://coxpresdb.jp) [56].

For the narrow-down approach, COXPRESdb provides a tool called
“NetworkDrawer” (http://coxpresdb.jp/top_draw.shtml#networkdrawer), where
gene networks for a set of genes (user input genes and related genes) are
drawn to inspect the internal structure of the coexpression relationships and the
known protein-protein interactions. Figure 5 shows an example of an output of
“NetworkDrawer”, where 10 genes related to a steroid biosynthetic process were
selected with the gene annotation of Gene Ontology (GO:0006694) and used
as input genes. As seen in the figure, visual inspections could reveal three gene
clusters in the networks. The first cluster is composed of the genes needed to
synthesize the steroid, and are marked with a small red dot, indicating the existence
of a KEGG annotation [57] for the gene. The second cluster is composed of the
genes for steroid hormone synthesis. The last cluster corresponds to the PPIs of
signaling genes to regulate both clusters. In this way, a large number of genes can
be classified based on the gene coexpression information, and each cluster can
correspond to some biological functions, although their biological meanings may
be diverse.

http://coxpresdb.jp
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Fig. 5 Gene coexpression network. Each oval corresponds to a single gene. Bright and dark ovals
indicate the input genes and the related genes, respectively. The related genes were automatically
detected according to the strength of gene coexpression and the existence of PPIs. Thick, thin, and
dotted lines represent strong coexpression, modest coexpression and PPI, respectively. The small
colored circles in some ovals indicate the existence of some annotations in the KEGG database

When the users can narrow down the genes being considered to a few genes,
they can use the guide gene approach. If the target gene is a single one, then the user
can quickly access the strongly coexpressed genes from the query gene, based on
the pre-calculations. Our database provides a gene list for all single genes based on
the rank of gene-to-gene correlation of the expression patterns, where the top 300
genes with stronger coexpression for the gene under consideration are available at
http://coxpresdb.jp/data/cor/(EntrezGeneID).html. Although several thousand coex-
pressed genes from a single gene can have statistically significant coexpression [52],
100 genes may be appropriate, from a practical point of view. However, the long
gene list will be useful, when the user combines it with other omics data. For this
kind of large-scale analysis, all of the coexpression data in COXPRESdb can be
downloaded. When the number of genes being considered is two or more, a tool
named “CoexSearch” can be used for guide gene analyses, and the user can com-
bine multiple gene lists from each of the genes of interest, based on the correlation
ranking.

Although an experimental validation of these approaches for human has not
been performed, very successful results are available for Arabidopsis [58, 59].
Experimental validation requires more time than computational evaluations, and
these two remarkable results were obtained in the 5 years since we provided the
gene coexpression database for plants. Only 2 years have passed since COXPRESdb
became available, and thus we believe that successful experimental results will be
obtained in the near future, because the computational validation shows comparable
performance among the gene coexpression databases for plant and human [54].

Some coexpressed gene databases are also available. They are summarized from
the viewpoint of the target species and the available approaches in Table 1. As shown

http://coxpresdb.jp/data/cor/(EntrezGeneID).html
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in Table 1, the number of databases available for plant biology is larger than that
for animal researchers, and each of the plant databases has unique features. For
example, CressExpress calculates gene coexpression data from the user’s specified
microarray samples. The gene coexpression strength measured by the PCC value is
usually sensitive to the samples, and thus selecting appropriate microarray sam-
ples is an important step, but it is not straightforward. Therefore, CressExpress
provides an excellent interface for users to select the appropriate microarray
samples. Another useful feature is the information about homologous relation-
ships. GeneCAT, ATTED-II and COXPRESdb provide combined coexpressed genes
among species, using homologous genes. Such inter-species comparisons will
reduce the noise of microarray experiments, especially for the genes with low inten-
sity probes, and also will provide some important clues to infer the evolutionary
aspects of the functional modules of genes.

Conclusion

In this chapter, we have described the two different approaches for the function iden-
tification of uncharacterized genes on genomes. In the first half of the chapter, we
focused on the molecular functions of proteins, which are tightly coupled with their
structural information, and also discussed the limitations due to the intrinsically dis-
ordered regions found in proteins. In the latter half of this chapter, we switched
to the cellular functions, and discussed the construction of interaction networks.
For this purpose, we emphasized the strength of gene coexpression, rather than the
usual protein interaction networks, due to its potential power. At the same time,
PPIs yield valuable information, and thus the combined network approaches, such
as the probabilistic functional network by Marcotte [60], will be promising. In addi-
tion, user-friendly interfaces for the network will be critically important, because the
interpretation of a large-scale network is quite difficult for an information scientist,
and thus the perspective of a biologist is indispensable.
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Predicting Gene Function Using Omics Data:
From Data Preparation to Data Integration

Weidong Tian, Xinran Dong, Yuanpeng Zhou, and Ren Ren

Abstract In the post-genomic era, the continuing development of high-throughput
technologies has led to the explosion of enormous amount of omics data, rang-
ing from genomics, transcriptomics, proteomics, metabolomics, to phenomics.
Integration of diverse omics data can help us to understand the complete functions
of genes in the cell. However, the complexity, heterogeneity, and large-scale of the
omics data have created significant challenges to the gene function prediction field.
Currently, the focus of this field is to develop efficient and accurate algorithms to
integrate omics data for predicting gene function. In this chapter, we first intro-
duce the various types of omics data, and how they relate to gene functions. Then,
we review current algorithms available for integrating omics data for gene function
predictions. Next, we use a combined algorithm named Funckenstein as an example
to further illustrate the integration process. In the final two sections, we discuss cur-
rent limitations and potential improvements of this field, and offer perspectives for
future directions.

Introduction

Understanding the function of genes, including the molecular function, the bio-
logical role it plays in the cell, and the impact of its malfunction on phenotypes
and diseases, is a central task in biology. Traditionally, experimentalists study the
function of genes by focusing on one or a few at a time. The advent of genomic
era has completely revolutionized our approach to study biology. Since the ini-
tiation of the Human Genome Project (HGP) in 1990 [1], the breakthrough of
modern high-throughput sequencing technologies has allowed for the decoding of
the complete genomic DNA sequences of more than a thousand cellular organisms
including human genome. Along with the accomplishment of complete genome
sequences have emerged a diverse range of high-throughput technologies such as
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oligonucleotide array, cDNA array, high-throughput two hybrid system, mass spec-
trometry, and so on. Thanks to the continuously reduced cost of the high-throughput
technologies, it is now a routine task for many laboratories to study the proper-
ties and relationships of thousands of genes in parallel, presenting biologists an
unprecedented opportunity to study the function of genes at a system level.

Given the sheer volume of the omics data, how to take advantage of the data
to generate biologically meaningful insights about gene functions presents a crit-
ical challenge to the field of biology. Computational biology or bioinformatics
is thus emerging as a new discipline, aiming to develop computational and sta-
tistical algorithms to effectively sort, analyze and interpret the omics data. Gene
function prediction is one of the most important goals of computational biology.
It can not only provide hypothesis about the function of a particular set of genes
of interest that can be verified experimentally, but also uncover important mech-
anisms of gene function through learning the rules of predicting gene function
accurately.

As the genomics era starts with the flood of genomics data, i.e., gene and protein
sequences, the computational approaches initially focus on inferring gene functions
by sequence comparison [2–6]. The underlying hypothesis of the sequence-based
methods is that homologous proteins evolving from the same ancestor are likely
to share the same function. The sequence-based methods play important roles in
annotation of the newly sequenced genomes, with the majority of genes function-
ally inferred on the basis of the sequence similarity to previously characterized
proteins. However, this approach can provide functional insights to only 50%
of the genes in the genome by detecting evolutionary relationship with known
proteins [7].

The sequence-based methods on gene function prediction are effective in assign-
ing the molecular function of genes, for instance, the catalytic activity of enzymes.
However, it often fails to answer what role a gene plays in a biological process, how
it interacts with other genes, and where it functions in the cell, which are fundamen-
tal questions in biology. This failure is mostly because those functional aspects of
the gene are determined not only by the gene sequence, but also by its relationships
with other genes that may not be evolutionarily related with the target. To answer
those questions, information beyond sequence alone is required. The rich trove of
omics data, ranging from genomic sequence, gene expression, protein–protein inter-
action, genetic interaction, phenotypic change, to epigenetic information, provide
information about the behaviors of a gene from various aspects. Therefore, a current
challenge in gene function prediction field is to design computational algorithms to
piece together information from various types of omics data, in order to obtain the
whole picture of the biological role of genes in the cell.

This chapter is organized as the following sections. In the first section, we focus
on omics data preparation by describing the latest high-throughput technologies to
generate the data and how each type of omics data is related to gene function. In the
second section, we review current algorithms available for integrating omics data to
predict gene functions. In the third section, we describe in detail a combined algo-
rithm named Funckenstein to illustrate the process of omics-based gene function
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prediction [8]. In the final two sections, we discuss current limitations and potential
improvements of the field, and offer perspective for future directions.

Omics Data Preparation

Before describing omics data and how they relate to gene functions, let’s first clarify
the meaning of function. The functions of a gene essentially are observations of its
behavior in the cell. For a protein kinase, from a biochemist’s point of view, its func-
tion can be the phosphorylation of a hydroxyl group of a specific substrate; while
in a geneticist’s opinion, its function can be the signaling transduction pathway in
which the gene is involved, or the disease phenotype appearing when the gene is
mutated or knocked out. In order to have a complete picture of the gene function,
we need to have an ontology system covering various aspects of gene functions.
Gene Ontology (GO) is such an ontology system [9]. It contains three ontologies:
molecular function, biological process, and cellular component. Molecular function
describes the biochemical activity of a gene product, “protein tyrosine kinase” for
example. Biological process refers to the biological role to which a set of genes
and gene products contribute, e.g. “DNA damage pathway”. Cellular component
tells where in the cell a gene operates its function, for instance, “nucleus”. The GO
terms are organized in a directed acyclic graph, and arranged in a manner from
general to specific, making it easy to be parsed by computers. GO has become
the most widely used functional annotation scheme, and the current goal of gene
function prediction is to predict the GO terms associated with each gene in the
genome. GO term annotation of genes in different genomes can be found in the GO
database.

Following the central pathway of biological information flow from the genome to
cellular phenotype, we classify the omics data into five main categories: genomics,
transcriptomics, proteomics, metabolomics, and phenomics (Fig. 1). Genomics rep-
resents the whole genome sequence information including gene, regulatory element,
and non-coding RNA, etc. Transcriptomics covers the whole RNA transcripts in
the cell, while proteomics characterizes all proteins in the cell. Metabolomics con-
sists of proteins, mostly enzymes, and metablotes that are catalyzed or produced by
enzymes in the cell. Phenomics is the combined result of genomics, transcriptomics,
proteomics, and metabolomics, representing all observable cellular or organism
characteristics.

Genomics

The first complete genome of a living organism was sequenced in 1995 [10]. In
2003 the complete sequence of the human genome was finished [11]. Today, there
are more than 1,000 completely sequenced genomes in the public domain, and
some estimates this number could reach to more than 10,000 by 2012. This owes
to the introduction of the next-generation sequencing technologies which employ
massively parallel sequencing strategy, capable of sequencing millions of sequence
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Fig. 1 Omics, database and gene function prediction. Omics data are classified into five main cat-
egories: genomics, transcriptomics, proteomics, metabolomics and phenomics. Sub-types of omics
data and the representative associated databases under each category are shown. The reference for
each database can be found in the main text. The link of each category of omics data to GO func-
tion is shown. Here, MF, BP, and CC are abbreviations of molecule function, biological process and
cellular component, respectively. The thickness of the line linking omics data to gene function rep-
resents their empirical relative strength in predicting the corresponding GO functions. For example,
among the three GO terms, genomics data are most effective in predicting MF, while phenomics
data predict BP better than the other two GO terms. In contrast, proteomics and transcriptomics
data predict BP and CC better than MF, while metabolomics data are effective in predicting MF
and BP

reads in a single run, such as the 454 [12], Illumina [13] and SOLid system [14].
Using the new technology, the full genome of James Watson, the well-known
DNA pioneer, was sequenced and assembled with 7.4 fold coverage in less than 2
months [15]. With such a development pace, the personalized-genomics era will be
coming soon.

Model organism databases curate, manage, and store detailed up-to-date informa-
tion about the gene mapping, annotation, protein domains and structures, expression
data, mutant phenotypes, physical and genetic interactions, etc, of the model
genomes, such as the Saccharomyces Genome Database (SGD) [16], the Mouse
Genome Informatics (MGI) [17], the Arabidopsis Information Resource (TAIR)
[18], the Fly Base [19], etc. Such databases are now the researcher′s starting
point for informed hypothesis generation. There are also databases that store
specific genomics data. According to the genome organization, we can classify
those databases into coding gene, functional unit such as regulatory sequence, and
non-coding RNA databases.
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The coding gene and protein sequence databases contain information from a wide
range of gene and protein sequence features. They have been the largest sources of
training data for gene function prediction. Detection of evolutionary relationships
is the first step of functional inference for sequence-based methods. Pfam is a
database of evolutionarily related protein sequences [4]. It currently contains more
than 10,000 protein families generated from the multiple sequence alignments
(MSAs) of evolutionarily related sequences using Hidden Markov Models (HMMs).
Those protein families cover more than 70% protein sequences in the protein uni-
verse. Evolutionary relationships between sequences can be further distinguished
as orthology, paralogy, and inparalogy [20]. Because orthologous sequences are
resulted from a speciation event, and likely retain the ancestral function, detection of
orthologous relationships can be effective in making gene function prediction [21].
Such databases include Cluster of Othologous Groups (COGs) [22] and InParanoid
[23], etc. Phylogenetic profile shows the pattern of the presence and absence of
the homolog of a given gene in different genomes. Two genes with similar phylo-
genetic profile tend to be functionally related, e.g., involved in the same pathway.
It provides a non-homology based way to infer functions. ProLinks is a databases
of phylogenetic profiles [24]. In addition, there are databases focusing on protein
sequence features and patterns related to protein functions, such as Prosite [25]
and PRINTS [26]. Direct functional inference can be made when a new sequence
matches a known protein feature or pattern.

Functional unit databases include those containing regulatory sequences (e.g.,
transcription factor (TF) binding sites), repeat elements, and other functional units,
such as enhancer, silencer, etc. Those functional units are not genes, but they are
located in the vicinity of gene, e.g., in the promoter region, and often evolution-
arily conserved. They play important roles in regulating, altering and determining
gene functions. Patterns of the functional units can provide important hints about
gene function [27]. Identification of genome-wide patterns of TF binding sites can
be done by high-throughput technologies including CHIP-chip [28] and CHIP-seq
[29]. TF binding sites can also be predicted by in silico methods, mostly based
on evolutionary conservation. TRANSFAC [30] and JASPAR [31] are two large
TF binding site databases, consisting of both experimentally validated and puta-
tive evolutionarily conserved TF binding sites in eukaryotic genomes. In addition,
though the functional role of repeat elements remains in speculation, a recent study
found that in human genome, functionally similar genes are overrepresented among
genes with similar repeat element profiles in the promoter region [32], suggesting
that repeat elements information is worth continuing exploration for gene func-
tion prediction. RepBase [33] is the database storing repeat element information.
The promoter region contains rich information responsible for regulatory role of
gene function, and DBTSS (DataBase of Transcription Start Sites (TSS)) [34],
which includes precise positional information for TSS and promoter region of the
eukaryotic mRNA, can be useful for predicting gene function as well.

More and more evidence have shown that the majority of transcriptome consist
of non-coding RNA transcripts [35]. Thus, RNomics, the study of the struc-
ture, function, and process of non-coding RNAs, is starting to attract more and



220 W. Tian et al.

more attention. Though the function of most non-coding RNAs remains myster-
ies, the discovery and extensive studies of microRNA or microRNomics have led
to a new paradigm of gene regulation which takes place post-transcriptionally
and pre-translationally [36]. MicroRNAs regulate the process of cell development,
differentiation, proliferation, mobility, and apoptosis through the regulation of its
target genes. Target genes regulated by the same microRNA may be involved in
the same biological process. miRGen is a database that provides information about
the miRNA target genes and their corresponding TF in human and mouse [37].
miR2Disease provides comprehensive information about human diseases associated
with miRNA deregulation from literatures [38].

Besides genomics data, epigenomics that study the epigenetic changes, including
DNA methylation and histone modifications, across the entire genome can provide
important insights about the function of genes as well [39]. Epigenetics changes
can lead to activation or inactivation of genes, and play important roles in cell
development, differentiation and tumorigenesis. The DNA Methylation Database
(MethDB) [40] and Human Histone Modification Database (HHMD) [41] contain
information about DNA methylation and histone modification in human genome,
while the ChromatinDB [42] database contains genome-wide ChIP data for histone
modifications in yeast genome. With more and more experimental data becoming
available, mining epigenomics data will provide a novel approach to predict gene
functions.

Transcriptomics

The transcriptome represents the complete set of RNA transcripts in the cell [43].
Both the expression and abundance of RNA transcripts can change in response
to cellular development, physiological and environmental condition changes. The
microarrays and serial analysis of gene expression (SAGE) represent the most well-
used technologies to study transcriptome [44]. Recently, deep sequencing RNA
transcripts using the next-generation sequencing technologies has detected RNA
transcripts at single base resolution, allowing for the discovery of novel transcripts
that cannot be detected with traditional technologies [45]. Transcriptomics data are
invaluable to understand gene functions. By focusing on differentially expressed
genes under different development stages, one may identify genes responsible for
the biological process governing cellular development. In addition, genes with cor-
related expression patterns under different conditions are likely functionally related
[46]. Gene Expression Omnibus (GEO) is the largest public repository of transcrip-
tomics data [47]. It currently contains more than 400 thousands samples submitted
from a wide range of platforms on many organisms, and this number is increasing
every day. In addition, there are species-specific expression databases, such as GXD
for mouse [48], FLIGHT for fly [49], and GeneVestigator [50] for Arabidopsis; tis-
sue specific expression databases, such as BGED for brain [51], and BloodExpress
for blood [52]; pathway specific expression databases, such as GermOnline for
germ line development [53] and Cyclebase for cell cycle process [54]. The vast
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amount of transcriptomics data under a wide range of conditions makes mining of
transcriptomics data an active field for gene function prediction.

Proteomics

Proteins are the main components of the metabolic pathway, and many pro-
teins interact with each other either in a complex or transiently to function in a
biological process. Proteome is the complete set of proteins encoded in the genome.
Proteomics is the large-scale study of proteome, focusing on the post-translational
modifications of proteins, protein abundance, protein variants, and protein-protein
interactions [55]. Depending on the environmental and cellular physiological condi-
tions, proteome may vary significantly from one cell or condition to another. Protein
abundance may not be inferable from RNA expression, due to post-transcriptional
regulation. Proteins are also subject to post-translational modifications, such as
phosphorylation, glycosylation, and acetylation, which are critical for some proteins
to be functional.

The most widely used proteomics techniques are two-dimensional gel elec-
trophoresis [56] and mass spectrometry [57]. Both can identify and quantify cellular
proteins. New technologies, such as shotgun proteomics, promise to significantly
improve the accuracy and coverage of proteome detection [58]. Latest technolo-
gies to determine post-translational modifications of proteins include PROTOMAP
which combines SDS-PAGE with shotgun proteomics [59]. Databases of post-
translational modifications include dbPTM [60], an integrated database containing
information about protein phosphorylation, glycosylation and sulfation, etc. Protein
subcellular localization is one of the three ontologies of gene functions in GO. There
are several species-specific databases of subcellular location, e.g., YPL.db for yeast
[61] and Flytrap for Drosophila.

Interactomics is the study of all protein physical interactions in the cell. In a broad
sense, the interaction can be extended to refer to the interaction between protein and
DNA or RNA, or the genetic interactions between proteins as well. High-throughput
interaction technologies include yeast two-hybrid system [62] and tandem Affinity
purification followed by mass spectrometry (TAP) [63], etc. Genome-wide protein-
protein interactomes have been reconstructed in several model organisms, including
yeast [64], worm [65], and human [66]. A number of interaction databases have
been established, including BIOGRID [67], MIPS [68], IntAct [69], MINT [70],
DIP [71] from published literatures, PIP [72] and OPHID [73] from computa-
tional predictions, and the integrated databases, such as BIND [74], HPRD and
STRING [75]. Technologies detecting protein-DNA and RNA interactions include
Protein-chip [76]. BIND [74] and ENCODE [77] databases contain information
about protein-DNA interactions. Genetic interactions can be captured by syn-
thetic genetic array (SGA) [78], diploid-based synthetic lethality analysis with
microarrays (dSLAM) [79], synthetic dosage-suppression and lethality and hap-
loinsufficiency [80]. BIOGRID [67] database contains genetic interactions from
literatures.
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Metabolomics

Metabolomics is the study of small chemical metabolite in the cell. Enzymes are the
major components of metabolism that catalyze to convert or give rise to metabolites.
In response to change of environmental and cellular condition, the gene expression,
translation, and catalytic activity of enzymes can change, which can lead to the
change of metabolite profiles. Small metabolites in turn can play important regula-
tory roles in gene expression, translation, and the biological processes. Therefore,
it is necessary to integrate transcriptomics, proteomics and metabolomics data in
the same context, in order to obtain a complete picture of gene functions. High-
throughput metabolomics technologies include gas chromatographic mass spec-
trometry (GC/MS) [81], liquid chromatographic mass spectrometry (LC/MS) [82],
as well as nuclear magnetic resonance (NMR) [83]. Examples of Enzyme databases
include BRENDA (BRaunschweig ENzyme DAtabase) [84] that contains infor-
mation about classification, nomenclature, reaction, specificity and many features
of enzymes. Metabolic pathway databases include KEGG (Kyoto Encyclopedia of
Genes and Genomes) [85], MetaCyc [86], and EcoCyc [87].

Phenomics

A phenotype is an observable characteristic of a cell or an organism. It is the conse-
quence of genome, transcriptome, proteome, and metabolome combined. It can be
the morphology, development state, biochemical property, physiological condition,
or reaction to the external environment. Phenomics, which associates the pheno-
type with the genotype, investigates genome-wide phenotypic manifestations at
cellular and organism level. High-throughput phenotyping (HTP) is critical to phe-
nomics. Current technologies include genome-scale RNAi screens for knock down
analysis and phenotype microarray for simple assessment of microbe growth capa-
bility. Further advances in experimental technologies and computational algorithms
are needed to speed up the phenomics studies. The Online Mendelian Inheritance
in Man (OMIM) database has the largest collection of human genotype-disease
information [88]. The online Mendelian Inheritance in Animals (OMIA) provides
genotype-disease information in animals [89]. PhenomicDB [90] and GeneCards
[91] databases provide heterogenous phenotypic information from a number of
different model organisms. Phenotype Ontology systems are being developed to
store, organize, and manage phenotype in a structured way, similar to that in GO.
Mouse Phenotype Ontology (MPO) [92] and PhenoGO [93] provide such frame-
work. Phenotype has been used for gene function prediction. Philip et al. cluster
genotype-phenotype data, and assign the overrepresented functions in the cluster to
the known gene [94].

In summary, omics data ranging from genomics, transcriptomics, proteomics,
metabolomics, to phenomics, are being generated at an unprecedented pace, provid-
ing us with tremendous opportunities to tackle the biologically important questions
at a whole new level. However, the complexity, heterogeneity, and scale of omics



Predicting Gene Function Using Omics Data 223

data present significant challenges to the biology community as well. Developing a
standard procedure to store, manage, and share omics data is being strongly advo-
cated [95, 96]. The establishment of a common standard will greatly facilitate the
process to design better strategies to mine and integrate the omics data.

Computational Algorithms to Integrate Omics Data
for Gene Function Prediction

Many computational algorithms have been developed to predict gene functions from
omics data. As the omics era starts with completely sequenced genomes, early
efforts on algorithm development focused on exploring genomics data for gene
function prediction. With diverse sets of omics data introduced by high-throughput
technologies continuously emerging, the current focus of the gene function predic-
tion field has switched to omics data integration. Because of the high complexity,
heterogeneity, and large-scale of the omics data, it is often difficult to design the
integration rules beforehand. Machine learning or statistical algorithms are fre-
quently used to learn from and integrate the complex data to make predictions.
Recently, interaction networks or broadly speaking, functional linkage networks,
have been used to integrate omics data. In this section, we first briefly summa-
rize sequence-based gene function prediction methods. Then, we introduce several
machine learning and statistical algorithms for omics data integration. Finally, we
describe in detail the network-based integration, by introducing the construction
of functional linkage network and the exploration of network topology for gene
function prediction.

Sequence-Based Algorithms for Gene Function Prediction

Most sequence-based gene function prediction methods are based on a sim-
ple assumption, i.e., function tends to be conserved among evolutionary related
sequences. Thus, detecting evolutionary relationships is a critical step, which is
often done by a database search for homologous sequences with powerful tools,
such as PSI-BLAST [2]. Function of an unknown gene can be predicted if it is
found to share a significant sequence similarity with a known gene. However, this
approach is often unreliable, especially for inference of specific functions [3, 6].
For example, systematic analysis of enzyme function inference using homology-
based methods reveals that on average, above 60% sequence identity is required for
accurate enzyme function inference [6]. With such a restrictive cut-off, however, a
significant amount of false negatives would be produced. Modifications of sequence-
based methods have been made and achieved significant improvement, including
those by distinguishing orthology from paralogy [22, 97], those by inspecting phylo-
genetic profile information [98], and those by focusing on the functionally important
residues in the sequences [5], etc. The sequence-based methods mostly focus on
predicting the molecular function aspect of genes. Recently, Hawkins and Kihara
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investigated the association relationships between different GO terms [99]. They
built a Function Association Matrix (FAM) between GO terms from different GO
categories. By considering the FAM and PSI-BLAST hit, their PFP algorithm can
make predictions of GO terms beyond the molecular function terms. In addition to
sequence information, three-dimensional structural information of proteins has also
been extensively explored for predicting gene functions [100–102].

Non-network Based Omics Data Integration
for Gene Function Prediction

The omics data type can be very different from each other. For example, gene
expression is represented by a real value, while a sequence pattern is a binary
value, either “present” or “absent” in a gene, and a phenotype can be a categori-
cal value, e.g., “normal”, “sick”, “very sick”. Some machine learning algorithms,
such as neural network and Support Vector Machine (SVM), are flexible to the for-
mat of the input data. For simplicity, however, the real value and the categorical
value can be transformed into binary values. For example, gene expression value
can be divided into several bins, with each bin considered as a new feature. After
the appropriate coding systems of the omics data are decided, gene function pre-
diction can then be considered as a binary classification problem, for which many
machine-learning algorithms are available. Popular machine-learning algorithms
include SVM, Bayesian Network (BN), Decision Tree (DT), Neural Network (NN),
and so on. Here, we briefly introduce these algorithms, and then focus on examples
of using them for omics data integration.

SVMs represent a family of statistical machine-learning methods that aim
to optimally separate data into two categories by drawing a hyperplane in an
N-dimensional vector space [103]. BN is a representation of a joint conditional prob-
abilistic distribution that encodes the probabilistic relationships among features of
interest [104]. DT is essentially a series of questions from which the classification or
probability of a gene having a given function can be inferred [105]. NN mimics the
human neuron perception system by consisting of a large number of highly inter-
connected elements to solve a problem [106]. Some of the algorithms can provide
the rules of how a prediction is made, making it easier for human to understand,
such as BN and DT, while others act like a “black box”, such as NN. Yet, all these
algorithms have been successfully applied in predicting gene functions.

Pavlidis and coworkers used a kernel-based SVM to combine gene expres-
sion profile and phylogenetic profile to infer yeast gene MIPS function categories
[107]. Rather than simply concatenating both expression and phylogenetic profiles
into a vector space, they used two kernel functions to transform the data into a
higher dimension space separately. The new kernels were trained by SVM, with the
results simply combined to make a final prediction. Lanckriet and coworkers fur-
ther improved the kernel-based SVM to combine protein complex, protein domain,
protein-protein interaction, genetic interaction, and gene expression information
[108]. Instead of simple addition, a weighted linear combination was implemented
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to combine the results from each kernel. Troyanskaya and coworkers developed a
BN-based algorithm named MAGIC to predict functional linked gene pairs from
genetic and physical interactions, microarray, and transcription factor binding sites
data [109]. Because learning the conditional probability in the BN structure is not
an easy task, the authors consulted experimental experts and designed an expert-BN
reflecting relationship between different evidence. The results from the BN inte-
gration were superior to unsupervised clustering algorithms significantly. Zhang
and coworkers used a probabilistic DT to predict co-complex protein pairs from
mRNA expression, transcription regulator, subcellular localization, phenotype and
some sequence features [110]. Unlike BN, the DT does not rely on any previous
assumption about conditional dependence; it automatically weights each data type
when building tree. King and coworkers used the DT to make prediction of gene
functions from patterns of annotation, and compare the result with that done by BN
[111]. The result showed that DT is comparable to BN and in some cases better. NN
has been widely used in biological data analysis. Jensen and coworkers developed
a NN to predict protein function from various types of predicted potein features,
including post-translational modification, sub-location and sorting [112]. Mateos
and coworkers used a NN to predict gene function from gene expression data [113].
In addition, they pointed out that the poor performance of machine learning can be
attributed to incomplete protein function annotations.

The algorithms introduced above employ a single model to integrate omics data.
Multiple models can also be applied. Then, a new model is used to combine the pre-
diction results. Hibbs and coworkers employed three different algorithms, bioPIXIE,
MEFIT and SPELL, to predict genes involved in the process of mitochondrion
organization and biogenesis [114]. bioPIXIE is a BN model aiming to integrate
diverse sets of omics data. MEFIT focuses on integration of only microarray data.
SPELL focuses on identifying coexpressed genes associated with the target bio-
logical process. The results of the three algorithms were combined with different
weights determined based on their association with functional relationships. The
combined algorithm achieved better performance than any single classifier did. Tian
and coworkers developed a combined algorithm named Funckenstein which has two
component classifiers [8]. The two classifies use different sets of omics data to pre-
dict gene function independently. A regression model is used to combine the results
from these two classifiers. We will describe this algorithm in detail in the third
section.

Network-Based Omics Data Integration
for Gene Function Prediction

The wide use of high-throughput interaction technologies has allowed for the recon-
struction of genome-scale protein physical interaction network in several organisms
[64–66]. Extensive studies have been conducted on the interaction network, includ-
ing using it to integrate omics data and for gene function prediction. In protein
interaction network, the nodes are genes, while the edges are protein physical
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interactions (PPI). The edge can be any sorts of functional relationships as well,
including genetic interaction, correlated gene expression, homologous relationship,
etc. Thus, the network can be conveniently used as a framework to integrate various
sources of omics data. The integrated network is often called functional linkage
network (FLN) to indicate the functional links between genes. In addition, the
network structure can be explored to obtain more information for gene function
prediction. Here, we first introduce the reconstruction of FLN for omics data inte-
gration and gene function prediction. Then, we review current algorithms available
to explore network structure, in particular the network module, for gene function
prediction.

The concept of FLN was first introduced by Marcotte et al. in 1999 [115]. In their
work, the functional links between proteins were constructed by combining protein-
protein links from various sources: experimentally derived PPI, correlated gene
expressions, related domain fusion, correlated phylogenetic profiles, and related
metabolic function. Different evidences were simply combined without weight.
High confidence protein links were defined as those with more than two evidences.
Marcotte group further extended the idea of functional linkage by introducing a
probabilistic FLN in yeast genome [116]. They computed a likelihood score of
whether a pair of genes has a functional linkage defined by a common KEGG
pathway given the evidence. The final FLN was a result of the integration of eight
types of omics data, including physical interactions, genetic interactions, mRNA
coexpression, functional linkages from literature mining, and computational link-
ages from gene-fusion and phylogenetic profiles. The resulted functional linkages
showed a comparable accuracy in predicting KEGG pathway relationships to that
by protein-protein interactions determined by small-scale experiments. Linghu and
coworkers employed machine-learning algorithms to automatically integrate five
types of omics data: PPI, genetic interaction, expression data, sequence similarity,
phylogenetic profile and domain fusion to generate a FLN in yeast genomes [117].
The functional linkage was defined as the presence in the same KEGG pathway.
Then, they designed a decision rule to infer protein pathway function from the FLN.
Karaoz and coworkers constructed a FLN by using protein-protein interactions as
the edges, with the weight determined by the correleated expression value of the
interacting genes. A GAIN (Gene Annotation using Integrated Network) algorithm
was then used to predict protein functions, by systematically propagating the labels
of genes with known GO terms to unlabelled genes across the FLN [118]. Tian and
coworkers applied a probabilistic decision tree (PDT) to construct FLN from vari-
ous sources of experimentally determined protein physical and genetics interactions,
and use this FLN to predict candidate gene with specific function annotations [8].
Reconstruction of FLN can also be found in other recent works [119, 120].

Besides integrating multiple sources of omics data into a single FLN, multiple
FLNs can also be constructed. The final results can be either from the integration
of the result from individual FLN, or from a new FLN integrated from multiple
FLNs. For example, GeneMANIA [121], an algorithm developed by Mostafavi and
coworkers, first builds multiple FLNs from various sources of omics data. Then,
it employs a fast heuristic algorithm derived from linear regression to integrate
multiple FLNs into a composite FLN. Finally, it applies a Gaussian field label prop-
agation algorithms to predict gene function from the composite FLN. This algorithm
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was ranked one of the best methods in predicting gene function in the first critical
assessment of mouse gene function based on the evaluation measurement of area
under the ROC [122].

Given an interaction network or a FLN, network information can be explored
to assist in the prediction of gene functions. The approaches exploring network
information can be generally classified into two categories: the direct approach and
the module-assisted approach. The direct approach utilizes the local or global net-
work information to predict function. The module-assisted approach is inspired by
the observation that interacting or functional linked genes tend to be localized in a
dense region in the network, i.e., module [123]. It involves two steps: the first step
is to identify the module, and the second step is to predict the function of unknown
genes based on the distribution of known genes present in the same module. Here,
we introduce the algorithms for both approaches.

The simplest method of the direct approach is the neighbor counting method.
For example, Schwikowski et al. counted the neighbor proteins of an unknown pro-
tein, and simply assigned the three most frequent functions of the known neighbor
proteins to the unknown protein [124]. Hishigaki et al. implemented a χ2 test for
the enrichment of known functions among the neighbor interacting proteins, and
assigned the statistically significant functions to the known [125]. Further opti-
mization was done by considering not only the direct interacting proteins, but also
the near-neighbor proteins and their distances in the network graph [126]. These
methods consider the local information and employ simple statistical test to make
predictions. More sophisticated models that consider the global network informa-
tion have also been developed, including the graph theory based methods. Graph
theorey-based methods take the global and full topology of the network into account
and employ either a cut- or flow-based algorithm to assign function, which can be
generalized as a minimum multi-way cut problem. Vazquez et al. applied this the-
ory to the yeast protein physical interaction network to predict functional class of
unknown proteins, by minimizing the number of protein interactions among differ-
ent functional categories with simulated annealing [127]. In contrast to Vazquez’s
approach that considers multiple functions at once, Karaoz et al. handled one func-
tion at a time, and employ a propagation algorithm to allow the flow of functional
information in the network, and assign a score to candidate genes of having the
function. Other attractive methods include the Markov Random Field (MRF) theory-
based method, which assumes the function of a protein is dependent only on its
neighbors and independent of all other proteins. Deng at el was the first group
to formalize the idea of MRF in predicting protein function from protein interac-
tion network [128]. Their approach was further generalized by allowing for the use
of multiple networks, such as protein physical interaction, genetic interaction and
coexpression network [129]. The MRF model is based on a sophisticated statistical
theory, and mathematically sound. However, a number of machine learning algo-
rithms have been reported to outperform the MRF model with the same benchmark
data used by Deng et al. [8, 130].

The module-assisted approaches involve the identification of modules or dense
local structure in the network, which was originally proposed by HartWell [123]. A
number of algorithms have been developed for module identification, which can
generally be classified as clustering based and non-clustering based. Clustering
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based methods include algorithms based on the pairwise distance of protein pairs
defined as the shortest path length in the network [131], or more sophisticated
ways, e.g., using the graph theory. Spirin and Mirny developed two algorithms,
SPC (superparamagnetic) and a Monte Carlo-base method, to maximize the density
of the obtained clusters [132]. Bader and Hogue developed a molecular complex
detection algorithm (MCODE) to isolate the dense regions into modules [133].
The MCODE consists of three steps: vertex weighting based on the core clustering
coefficient, prediction of complex memberships, and an optional post-processing
filtering or addition of proteins based on connectivity data. Sharan et al. developed
a NetworkBlast algorithm to assign a likelihood ration score for each candidate set
of proteins in the network [134]. This method uses a greedy network search algo-
rithm and can identify conserved region over several networks. The non-clustering
based methods involve the use of prior information about protein-protein interaction
or complex information. This information is used to seed a module, which is then
expanded based on network connectivity. The Complexpander software developed
by Asthana et al., first produces a rank of core proteins from complex data; then, it
assigns a probability to the involvement of each protein in the core, and then com-
putes a weighted score for each pair of proteins in the end [135]. Information other
than protein physical interactions can also be utilized to identify network modules.
For example, Segal et al. proposed a probabilistic model to identify modules not
only enriched for interactions, but also enriched for high sequence similarity [136].
Hanisch et al. used the expression information as a filtering process [137], while
Tanay et al. integrated the PPI data with gene expression, phenotypic sensitivity and
TF binding site, to identify modules [138]. Once the modules are identified, usually
statistical tests of the enrichment of known functions are conducted to infer function
of the unknown proteins.

Funckenstein, a Combined Algorithm for Omics-Based
Gene Function Prediction

Having described various types of omics data and a number of algorithms avail-
able for predicting gene function by integrating omics data, here we use a
combined algorithm named Funckenstein [8] as an example to further illustrate
the process of integrating omics data for gene function prediction. Most algo-
rithms described in the previous section can generally fall into two categories: the
“guilt-by-profiling” approach and the “guilt-by-association” approach. The “guilt-
by-profiling” approach focuses on mining the gene characteristics, e.g., a conserved
sequence motif. The “guilt-by-association” approach explores the relationships
between genes for functional association, e.g., orthologous relationship, corre-
lated expression profile, etc. Either approach has its own merit. Funckenstein is an
algorithm that combines both approaches to achieve a synergistic performance bet-
ter than either approach alone does. It has been applied for predicting gene functions
(GO) in both yeast and mouse genomes [8, 139].
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There are three steps in Funckenstein (see Fig. 2 for the flow chart). The first
step is to classify omics data. Following the definition of guilt-by-profiling and
guilt-by-association approaches, the collected diverse sources of omics data are
classified into two categories: one describing gene characteristics, and another

Fig. 2 Flowchart of the Funckenstein algorithm. There are three steps in Funckenstein: omics
data preparation, omics data integration, and results integration. RF and FL refer to the random
forest and functional linkage classifiers, respectively. The decision tree under the RF is an example
of many decision trees in the forest, while that under the FL is an example of 12 decision trees
specific for different GO categories
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describing gene-gene relationships. Take yeast gene function prediction for an
example, the gene characteristics include protein sequence patterns, gene pheno-
types, the common transcriptional regulators, protein sub-cellular localization, and
protein complex memberships. Some of those characteristics were collected from
databases, such as UniProt database, while others were obtained from the supple-
mentary materials of the published literatures. The gene-gene relationships include
various types of protein-protein interactions (both physical and genetics) determined
by different experimental technologies, which were downloaded from the BIOGRID
database directly. In the second step, two component classifiers of Funckenstein (the
random forest (RF) and the functional linkage (FL) classifier) are trained to make
predictions from the gene characteristics and gene-gene relationships, respectively.
The RF classifier employs a random forest algorithm [140] to build hundreds of
decision trees from the gene characteristics. Each decision tree outputs a probability
of a gene having a given function, which is then averaged across all decision trees.
The FL classifier first builds a FLN from gene-gene relationships using a decision
tree. Then, it computes the functional linkage score of a query gene with the genes
known to have the function, which are then averaged to output a probability of
the query gene having the function. In the final step of Funckenstein, a regression
model is implemented to combine the probability scores from both the RF and FL
classifiers and output the final probability.

There are several things about Funckenstein that need attention. First of all,
Funckenstein predicts each GO term independently, i.e., the parent-child GO term
relationships are not considered. Secondly, Funckenstein does not allow GO term
annotation to be used as a feature in the training to avoid the issue of circularity.
Third, rather than building one FLN, Funckenstein builds 12 FLNs by consider-
ing the type of ontology, i.e., Molecular Function, Biological Process and Cellular
Component, and the specificity of GO terms which is defined by the number of
genes annotated with the GO term and ranges from 3 to 10, 11 to 30, 31 to 100,
and 101 to 300, respectively. Fourth, when measuring the prediction performance,
the area under the precision-recall curve instead of the ROC curve is used. ROC
curve has been widely used as a measure of performance, which plots the true pos-
itive rate against the false positive rate [141]. In comparison, the precision-recall
curve is the plot of precision against the true positive rate. Suppose the number of
true positives, false positives, true negatives, and false negatives are TP, FP, TN and
FN, respectively, then the true positive rate = TP/(TP+FN), the false positive rate =
FP/(FP+TN), and the precision = TP/(TP+FP). When the number of real negatives,
(FP+TN), is far more than the number of real positives, (TP+FN), the false posi-
tive rate can be very small, even though FP is much larger than TP. In that case,
the predictions may not be useful to biologists. In fact, to most biologists, they may
be concerned more with the positive predictions the computational biologists made
than the negatives. In contrast, the precision-recall curve is independent of the num-
ber of real negatives, and is more intuitive to biologists. Accordingly, Funckenstein
is optimized based on the area under the precision-recall curve.

Funckenstein has been benchmarked with the same dataset used by a previous
integrated algorithm for yeast gene function prediction. That algorithm, developed
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by Deng et al., uses a Markov Random Field (MRF) to integrate protein-protein
interaction, coexpression, and genetic interaction networks, and estimates the prior
probability of a gene having a given function by a Naïve Bayes method from pro-
tein complex memberships [128]. Funckenstein outperformed this algorithm by a
significant margin in predicting yeast gene MIPS functions [8]. In the first critical
assessment of the mouse gene function prediction which was participated by nine
leading groups in the omics-based gene function prediction field, on average, for
most GO categories evaluated, Funckenstein outperformed all other groups in terms
of the precision at 20% recall [122]. In sum, Funckenstein achieves state-of-the-art
performance in integrating omics data for gene function prediction.

Here we’d like to describe several interesting points during the development of
Funckenstein. First of all, to achieve best synergistic effects in performance, it is
better to use as different omics data as possible to train the guilt-by-profiling and
the guilt-by-association methods separately. For example, a sequence pattern can be
considered as a gene characteristic, but it can also be used to link two genes that
have the same pattern. In yeast gene function prediction, we tested to code gene
characteristics as additional gene relationships to train the FL classifier. Although
we could improve the performance of the FL classifier greatly with the new addi-
tions, the combined results were worth than before. This suggests that the same
omics data should not be utilized more than once. Second, more interactions data
can substantially improve the performance of the FL classifier and consequently
that of Funckenstein. In the benchmark with Deng et al.’s dataset, there were only
a few thousands interactions available; while in the BIOGRID database, there are
nearly a hundred thousands interactions curated from various high-throughput stud-
ies. The relative contribution of the FL classifier to Funckenstein’s performance
is significantly increased in the latter benchmark. This suggests by adding more
gene-relationships from new omics data, we could further improve Funckenstein’s
performance. Third, building a FLN helps the FL classifier play a bigger role in
predicting specific gene functions. When a GO term is associated with only a few
known genes, it is difficult to train from the “positive” samples. In contrast, the
‘transfer rules’ are learned from the many GO terms within the specific GO cate-
gory in the FLN. This stresses the importance of reconstructing a FLN in predicting
gene functions.

Current Limitations and Potential Improvements

Omics Data Are Not Thoroughly Used

Figure 3 shows the frequency of different types of omics data used in the pub-
lished “gene function prediction” algorithms since 2001. It is apparent that protein
sequence, gene expression, and protein-protein interaction are the dominant omics
data for gene function prediction, with the rest of omics data seldom or not used.
For the three most used types of omic data, protein-protein interaction and gene
expression data are becoming the focus in current algorithm development, which is
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Fig. 3 Heat-map of the number of published gene function prediction algorithms using different
types of omics data from 2001 to 2010. A Pubmed search with the “eutils.pl” script obtained from
NCBI using different synonyms of “gene function prediction” from 2001 to 2010 results in over
800 literatures. Synonyms corresponding to different types of omics data are then used to count
the number of publications using the corresponding omics data each year. The number is plotted in
the heatmap. The blackness of each square in the heatmap represents the relative frequency of the
corresponding publications each year

consistent with the trend that microarray and two-hybrid high-throughput technolo-
gies are becoming widely used. The lack of use of other omics data by current
algorithms can be attributed to the fact that some omics data are not abundant
enough. For example, the phenomics data are still lacking because developing an
efficient high-throughput screen for phenotypic change is not an easy task. However,
even the genomics data are not fully used. For example, although some algorithms
integrate the TF binding site information, only the presence or absence information
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of the TF binding sites is used. In fact, the combination of TF binding sites, its
relative position and the number of occurrence of TF sites in the promoter region
all contribute to the target gene functions. In addition, the 5′ UTR and 3′ UTR of
the target gene may also contain important functional unit information necessary
for the function of the genes. Therefore, a more thorough use of omics data should
be done in order to make further improvements. On the other hand, the metabolite,
non-coding RNA, and epigenetics information are completely ignored by the cur-
rent algorithms, which also points out where a potential improvement of the current
algorithms can be made.

Omics Data Sharing Is Urgent and Needs to Be Standardized

Another reason why the omics data are not thoroughly used by current algorithms is
because of the problem of omics data sharing. Although we have listed a large num-
ber of databases storing specific omics data in the first section, these databases may
not be updated frequently enough to include the most recent high-throughput stud-
ies. In those cases, computational biologists often have to collect a large fraction
of omics data from the supplementary of the published literatures by themselves,
which is very time-consuming and laborious. In some cases, it may deter computa-
tional biologist from using the data. For example, the gene-naming system is often
inconsistent from one high-throughput study to another, making automatic cross
comparison almost impossible. With more and more omics data accumulated, this
issue has become so serious that a number of algorithms for gene name translation
have been published lately [142, 143]. In addition, the omics data are often lack
of appropriate annotation, making it difficult for computational biologists to use or
to interpret the results. With large amount of omics data being generated every day,
standardization of omics data for sharing has never been so urgent. The advocate for
a guideline like Minimum Information Requested In the Annotation of biochemical
Models (MIRIAM) for omics data sharing is becoming louder than ever [95, 144].
The establishment and enactment of such a common standard for omics data sharing
will greatly facilitate the improvement of current algorithms.

Omics data sharing is also an issue among computational biologists. A com-
mon benchmark omics dataset is important for computational biologists to test
their algorithms and compare with others, so that they can make proper improve-
ment. However, most times the benchmark omics dataset used by one algo-
rithm is not accessible to others. CASP (Critical Assessment of Techniques for
Protein Structure Prediction) has been successfully conducted for evaluating pro-
tein structure prediction methods [145]. A similar project can be extremely useful
to the gene function prediction community. The first critical assessment of mouse
gene function prediction project (MouseFunc) has been conducted [122], and more
such project should follow. However, unlike protein structure prediction which
can be compared with an experimentally determined structure, function is difficult
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to measure in an objective and timely manner, making effective benchmark for
function prediction comparison not an easy task.

Is a Complex Model Better than a Simple Model?

The network-based data integration for gene function prediction has attracted the
attention of many computational biologists. Various sophisticated algorithms have
been developed to explore global network information, including those based on
graph theory, and those based on identification of network modules. However,
Murali et al. found that a simple local guilt-by-association method outperforms
a graph-theory based global method to predict gene function from protein inter-
actions [146]. In addition, Song and Singh recently tested the efficacy of various
clustering algorithms in clustering protein interaction networks and predicting pro-
tein function [147]. They also compared the clustering algorithms with a simple
guilt-by-association algorithm based on neighbor counting. Surprisingly, the simple
guilt-by-association algorithm outperformed the sophisticated clustering algorithms
in predicting gene functions. This thus raises an interesting question: Is a complex
model better than a simple model?

The sophisticated algorithms are often backed by strong mathematics and statis-
tics theories, while a simple model is usually based on empirical observations.
However, the sophisticated algorithms often have to make an assumption that the
current knowledge about the protein interaction network is complete, which is usu-
ally not the case. Take protein interaction network for an example, the interaction
network is reconstructed by collecting interactions from various experiments and
literatures; i.e., it is an ensemble of protein interactions all kinds of cellular condi-
tions. However, in reality, it is unlikely that all protein interactions in the network
are present in the cell at the same time. For example, protein A interacts with both
B and C according to current knowledge. But it is possible that B and C may be
expressed at different developmental stages. In such case, the presumed informa-
tion flow from B→A→C or from C→A→B based on network structure is not be
true. Accordingly, the label propagations based on network structure would lead to
the wrong answer. Therefore, it is not that a simple model is better than a complex
model; instead, it is whether a complex model is applicable to the omics data.

Model Driven or Biology Driven?

We have described many machine-learning and statistical algorithms for omics
based gene function prediction. A beginner may be confused of which algorithm
to choose. Should he choose SVM, BN, DT, . . ., or RF? In fact, before any model
is applied, the raw omics data has to be pre-processed or selected. Different groups
may use different tricks to treat the raw omics data, which would lead to different
outcomes. Take Funckenstein for an example, it classify the omics data into gene
characteristics and gene-gene relationships categories before the application of the
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RF and FL classifiers. This classification is critical to Funckenstein’s success, as
can be shown in yeast gene function in which the performance is worse without
such classification. But how to process the raw omics data? The rational behind
Funckenstein’s classification is that the biological function of a gene is not only
determined by its sequence, but also by what other genes it “interacts” with. As we
can see from Funckenstein, perhaps a thorough understanding of the biology behind
omics data and make appropriate treatment of omics data may be more effective
than trying out a different model.

Prospective of Future Directions

Non-coding RNA Function Prediction

With more omics data emerging, the future of gene function prediction field will
be continually focused on integrating newly added the data. However, coding gene
sequence only accounts for a tiny fraction in the genome, while current results have
shown that more than 70% of the genome are transcribed, with most of the tran-
scripts being non-coding RNA [35]. The important biological role of non-coding
RNA in the cell needs to be investigated. Many algorithms have been dedicated to
coding gene function prediction. With the development of non-coding RNA exper-
imental technologies, the next wave of gene function prediction will be the omics
driven non-coding RNA function prediction.

Gene Function in a Dynamic Context

Gene Ontology provides an excellent system to describe the functions of a gene
at three aspects, i.e., molecular function, biological process, and cellular compo-
nent. However, these definitions do not take the dynamic cellular environment into
account. Take catching a terrorist as an example, it is important to know what and
where he is going to take actions. But it will be even more useful if we know
when he is going to take actions. Similarly, besides knowing that two proteins inter-
act with each other, it would be more interesting for biologists to know at what
developmental stage, or by what environmental stimuli, they will interact with each
other? Therefore, put gene functions in a dynamic context should be one of the most
important and challenging directions in the future.
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Protein Function Prediction
Using Protein–Protein Interaction Networks

Hon Nian Chua, Guimei Liu, and Limsoon Wong

Abstract Proteins perform biological functions by participating in a large number
of interactions, ranging from transient interactions in signaling pathways to perma-
nent interactions within stable complexes. Studies have shown that the immediate
interaction neighborhood of a protein can be used to infer its functions. While using
only such direct interactions limits prediction coverage, extending the interaction
neighborhood to include indirect interaction partners reduces precision significantly,
making functional inference unviable. In a series of studies, we find that the extent
of partner-sharing between two non-interacting proteins makes a good estimator for
their co-participation in similar function. This allows us to include indirect inter-
actions in network-based functional inference with little compromise in precision.
We also extend this idea to the related problems of protein complex prediction and
interaction data cleansing.

Introduction

Proteins are important building blocks that contribute to key processes within
cells. The elucidation of mechanisms underlying protein functionality is an active
and important pursuit in biology, and remains a challenging task. Unlike protein
sequences or protein-protein interactions, there is currently no systematic experi-
mental technique that can characterize the functions of proteins in a high-throughput
fashion. With various sources of biological data being made available at an unprece-
dented rate, efforts intensify for computational methods that can tap into this
growing pool of information for reliable functional characterization of proteins.
In this chapter, we summarize our efforts towards this area of research. We will
describe our work on the use of protein–protein interactions for computational pro-
tein function prediction, protein complex discovery, and improving the reliability of
protein–protein interactions.
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Protein–Protein Interactions

Protein–protein interactions generally refer to associations between protein
molecules, which include direct physical binding and genetic interactions, amongst
other definitions.

Physical Interactions

Physical binding between proteins can be detected in a high-throughput manner
using a variety of assays such as co-immunoprecipitation, tandem affinity purifica-
tion [1, 2], and two-hybrid systems [3–5]. In yeast two-hybrid assays, the GAL4
transcriptional activator is split into two fragments, one containing the binding
domain and the other containing the activating domain. To detect an interaction
(or lack thereof) between two proteins, one protein is fused to the fragment contain-
ing the binding domain (also referred to as the bait) while the other protein is fused
to the other fragment (the prey). An interaction between the bait and prey proteins
indirectly connects the two fragments of the transcription factor, bringing the acti-
vating domain close to the transcription start site, and results in the expression of
the downstream reporter gene. In co-immunoprecipitation experiments, proteins that
are suspected to interact directly or indirectly with a protein of interest are isolated
together with the protein using an antibody, and subsequently identified using west-
ern blot. Tandem affinity purification involves creating fusion proteins with one end
that can be bound to beads coated with a specific antibody. The modified proteins,
along with the unknown proteins that they bind, are isolated over two rounds of
purification and identified. The use of fusion proteins makes this technique suitable
for systematic genome-wide studies [2, 6]. Datasets of large numbers of physical
protein–protein interactions have been experimentally derived using two hybrid sys-
tems for a number of species, particularly for the model organisms Saccharomyces
cerevisiae (budding yeast), Drosophila melanogaster (fruit fly) and Caenorhabditis
elegans (nematode).

Genetic Interactions

Genetic interactions, on the other hand, capture functional dependency between
genes from observations of phenotypes exhibited upon two or more gene deletions.
The departure of observed phenotypes (usually cell viability) of double-deletion
mutants from that expected of the two independent genes (based on the phenotypes
of each single-deletion mutant) is used to identify such interactions. While there
have been attempts to reconcile such observations with biological models such as
parallel or serial pathways, these are insufficient to explain the complex relation-
ships between genes that are reflected in these experiments. Nonetheless, genetic
interactions provide great insight into the functional organization of gene products.
Positive genetic interactions are often associated with proteins within complexes,
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while negative genetic interactions often capture redundancy between pathways [7].
Several large-scale genetic interaction experiments have been conducted for yeast
[8–10] using the Synthetic Genetic Array technology [8], which allows systematic,
unbiased screening for genetic relationships of a large number of array genes against
a query gene in a high throughput fashion. Systematic screening for genetic interac-
tions between essential genes is also possible using hypomorphic alleles [10]. The
BioGRID database [11] is one of the largest collections of published protein–protein
interactions, both physical and genetic, making it a valuable resource for researchers
who are interested in studying protein–protein interactions.

Function Prediction Using Protein–Protein Interactions

A protein’s functional behavior is intuitively related to its physical interactions with
other proteins. Genetic interactions, on the other hand, capture functional depen-
dencies between genes (and the proteins they encode for), such as serial genes in
a biosynthesis pathway, or genes in parallel transport pathways. Hence protein–
protein interactions potentially enrich for information about functional relationships
between proteins that may not be obvious or detectable from other genomic data
such as primary or higher level sequence structure.

Many computational approaches have been developed to utilize protein interac-
tions for the functional characterization of proteins. One of the earliest approaches is
the neighbor counting method proposed by [12]. The simple method, which assigns
a protein with the function that is annotated most frequently to its interaction part-
ners, was applied to a large-scale physical interaction dataset generated from yeast
two-hybrid experiments, and performs reasonably well. The approach, however,
did not take into account the background frequency of different function annota-
tions. The mere observation of a very common functional annotation assigned to
the majority of a group of proteins does not necessary suggests enrichment unless
its prior probability is taken into account. Hishigaki and colleagues addressed this
limitation by using the Chi-square statistic to estimate the enrichment of functional
annotations in each protein’s interaction neighborhood [13].

An obvious limitation in both the Neighbor Counting and Chi-square approaches
is the inability to infer functional annotations to a protein that do not interact with
annotated proteins. These approaches will also be biased in making inference when
the majority of the proteins in the interaction neighborhood of a protein are not
annotated. To overcome these limitations, some methods cleverly made assump-
tions along the lines that the “correct” set of functional annotations to unannotated
proteins in an interacting network is the one in which functional association between
adjacent proteins is best upheld. While it is unfeasible to find such a best solution in
the vast space of possible configurations, many stochastic inference techniques can
be used to find a reasonably good solution. Such “global” inference methods also
have the advantage of being more resilient against errors in functional annotations
and in the interaction network.
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One such “global” inference approaches is the Markov Random Field method
described in [14], which proposes that the probability of a set of inferred anno-
tations to proteins in an interaction network is inversely related to the amount of
annotation inconsistencies between interacting proteins. This probability is formally
defined for each functional annotation to be a function of its prior probabilities,
the number of functionally associated interactions, and the number of functionally
unassociated interactions. A Gibbs sampler is then used to find a near optimal set
of annotation assignments that maximizes the probability. A similar approach is
used in [15]. Vazquez et al. also proposed another optimization method based on
Simulated Annealing [16].

Indirect Association of Protein Function

Functional Association Between Indirect Neighbors

In 2006, we proposed the hypothesis of indirect association of protein function [17].
The motivation behind the hypothesis is the observation that many proteins do not
share similar function with any of their interaction partners. In the study, we investi-
gated the functional relationships between interacting proteins in the Saccharomyces
cerevisiae (bakers’ yeast) genome using physical and genetic interactions deposited
in the BioGRID [11], as well as FunCat functional annotations from MIPS [18].
We observed that there are proteins that do not share any functional annotation with
their immediate interaction partners (i.e., level-1 neighbours) and yet share some
function similarity with the interaction partners of their immediate partners (i.e.,
level-2 neighbours). Two examples of such proteins are shown in Fig. 1. Among
4162 annotated yeast proteins in the dataset studied, only 48.0% share some func-
tion with its level-1 neighbours. 22.7% of the annotated proteins shared functional
annotations with their level-2 neighbours but not their level-1 neighbours. Less
than 2% of the annotated proteins share functions with level-1 neighbours without
sharing functions with their level-2 neighbours. This suggested that many existing
approaches to functional inference based on protein–protein interaction, whether in
a local or global fashion, may be somewhat limited by making only assumptions
of functional linkage between directly interacting proteins. Local inference meth-
ods will not be able annotate a protein with a function that is not observed in its
direct neighbors. Global inference methods may erroneously propagate function in
an indiscriminative way.

The observation left us pondering if it is possible to make predictions for
more proteins by explicitly taking into account the functional annotations of the
level-2 neighbors of proteins. Hishigaki et al. [13] studied the use of larger inter-
action neighborhoods (which they termed n-neighbouring proteins, analogous to
our definition of n-level neighbors) by using their Chi-square based method on the
functional classification used in the Yeast Proteome Database (YPD), and concluded
that the value of n for the best prediction performance is small (1 for cellular role
and subcellular localization, and 2 for biochemical function). Such observation is
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|20.1.10 
|20.1.21 
|20.9.1 

Fig. 1 Two examples of proteins that do not share functional annotations with their direct inter-
action neighbor, but share functional annotations with their indirect (level-2) neighbors (indirect
neighbors that share no annotation are not shown). Figure from [17]

expected as we expect functional relationship to diminish with the interaction dis-
tance. The number of neighboring proteins also often increases quickly with the size
of the neighborhood, and the predictive powers of the closer (and more functionally
related) neighbors tend to be diminished as a result. Moreover, errors in the lower
level interaction neighborhood will spill over and propagate to the higher levels,
resulting in more errors introduced in each level. Hence the number of function-
ally irrelevant interactions is expected to be higher when more levels of interactions
are used.

Estimating Function Similarity Between Interacting Proteins

To be able make use of the indirect neighbors for increasing prediction coverage
without severely affecting precision, some form of filtering has to be employed
to avoid including functionally unrelated neighbors in the prediction process. At
that time, there have already been some studies that observe functional similarity
between proteins with overlapping interaction neighborhood [19, 20]. These inde-
pendent observations motivated us to study the possibility of using the observation
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of common interaction partners as a way to identify functionally related protein
pairs from the large number of indirectly interacting proteins. We initially adopted
the Czekanowski-Dice distance (CD distance) used in [20] for this purpose. The
CD-Distance is defined as:

D (u, v) = |Nu�Nv|
|Nu ∪ Nv| + |Nu ∩ Nv| (1)

where Np refers to the set that contains p and proteins that interact with it, and X
� Y refers to the symmetric difference between two sets X and Y. D(u, v) < 1 if
proteins u and v interacts with each other, or with at least one common protein. If
Nu = Nv, D(u, v) will be 0. On the other extreme, if Nu ∩ Nv = Ø, D(u, v) will be
1. This distance function can be trivially converted into its corresponding similarity
function:

SCD (u, v) = |Nu ∩ Nv|
|Nu ∪ Nv| + |Nu ∩ Nv| (2)

The similarity function captures the overlap between two sets reasonably when
the sets Nu and Nv are not very different in size. However, when one set is greater
than the other, SCD(u, v) will be small even when Nu ∩ Nv is a large or complete
subset of the smaller set. Since the sets represent interaction neighbors in this case,
this means that the similarity score between a protein with low degree and one that
is well connected will always be low. As protein interactions are subjected to sys-
tematic biases due to experimental design and incomplete coverage, this similarity
function is likely to underestimate functional relationships in such cases. Hence we
proposed a variant of the similarity function, which we refer to as the Functional
Similarity weight (FS-weight) to place greater weight on the overlap between the
two sets:

SFS (u, v) = 2 |Nu ∩ Nv|
|Nu − Nv| + 2 |Nu ∩ Nv| + λu,v

× 2 |Nu ∩ Nv|
|Nv − Nu| + 2 |Nu ∩ Nv| + λv,u

(3)

λu,v = max
(

0, navg − (|Nu − Nv| + |Nu ∩ Nv|)
)

where navg is the average number
of interactions that a protein participates in.

Functional Association and Experimental Assays

As described earlier, protein-protein interactions can be observed in a variety of
experimental assays. While the different assays are capable of identifying interac-
tions between proteins (and genes), they often rely on very diverse mechanisms.
Consequently, each assay comes with its limitations. In yeast two-hybrid systems,
false positives (interactions observed that are non-existent) can arise due to a wide
number of factors such as background transcriptional activity of baits, mutation of
the host yeast strain, bait proteins that binds directly to the DNA upstream of the
reporter genes, and “sticky” bait or prey proteins that easily binds a large number of
proteins in a non-specific manner [21]. In tandem affinity purification experiments,
false negatives (interactions that exist but not observed) may arise due to the TAP
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tag interfering with interaction, and not all proteins within the complex may bind
tightly enough to be detected [22]. While there is no simple way to take into account
such differences in the nature and limitations of different experimental assays, we
can moderate the impact of such differences to the function prediction process by
estimating the confidence we have in each type of experiment with regard to their
ability to associate proteins with similar functions. For each type of experiment, this
can be a simple estimate of the prior probability that protein interactions observed
by such experiments involve protein pairs that share some function:

ri =

∑

(u,v)∈Ei

δ(u, v)

|Ei| (4)

Ei is the set of interactions observed in experiment i; δ(u,v) is 1 when protein u and
v share some function, 0 otherwise.

For interactions that are observed in multiple experiments, we would expect the
confidence to be much higher since it is reproducible and less likely to be a false
positive due to random experimental errors. Taking into account the confidence of
individual experimental types, as well as reproducibility over multiple experiments
of the same or different nature, we can naively combine the prior probabilities for
each experimental type to compute the probability that an observed interaction is
associated with sharing of function:

ru,v = 1 −
∏

i∈Eu,v

(1 − ri)
ni,u,v (5)

ri is the estimated reliability of experimental type i; Eu,v is the set of experiments in
which interaction between u and v is observed;
ni,u,v is the number of times interaction (u,v) is observed from experimental type i.

With a quantifiable estimate of the confidence of different experimental sources
of interaction data, we can incorporate this information into the FS-weight
formulation:

SFS (u, v) =
2
∑

w∈(Nu∩Nv)

ru,wrv,w

(

∑

w∈(Nu−Nv)

ru,w+ ∑

w∈(Nu∩Nv)

ru,w(1−rv,w)

)

+2
∑

w∈(Nu∩Nv)

ru,wrv,w+λu,v

×
2
∑

w∈(Nu∩Nv)

ru,wrv,w

(

∑

w∈(Nv−Nu)

rv,w+ ∑

w∈(Nu∩Nv)

rv,w(1−ru,w)

)

+2
∑

w∈(Nu∩Nv)

ru,wrv,w+λv,u

(6)

We find the FS-weight measure to correlate positively with function similarity
between interacting proteins (pearson’s correlation coefficient = 0.53). The measure
also exhibit a positive, abeit weaker correlation with function similarity between
level-2 interaction neigbors (correlation coefficient = 0.38).
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Function Prediction Using Indirect Association

With an appropriate function to estimate the strength of functional relationships
between directly and indirectly interacting proteins, it is now more plausible to
include the level-2 neighborhood for functional prediction. We proposed the FS-
weighted averaging function that uses the weighted frequency of a function x in
both the direct (Nu) and indirect (Nv) neighbors of a protein u to compute a nor-
malized score to estimate the likelihood of protein u to participate in function x:

fx(u) = 1

Z

[

λrintπx +
∑

v∈Nu

(

SFS(u, v)δ(v, x) +
∑

w∈Nv

SFS(u, w)δ(w, x)

)]

Z is the sum of all weights:

Z = 1 +
∑

v∈Nu

(

SFS (u, v) +
∑

w∈Nv

max(SFS(u, v)SFS(v, w), SFS(u, w))

)

(7)

Evaluation on Function Prediction

The FunCat annotation scheme is a tree-like structure with each child term being
a more specific form of its parent. Some fuctional aspects of proteins tend to be
better studied than others, and hence some annotation branches tend to be deeper
and annotated to a larger number of proteins. To minimize biases when evaluating
prediction performance, we want to avoid evaluating redundant annotations (e.g. a
functional term and its parent function, as well as more distant ancestor terms). A
simple way to achieve this would be to decide on an arbitary level of annotation
(e.g. all nodes with a depth of 5), but due to large variations in the depth of different
branches, we may end up evaluating very general functions of some branches and
very specific functions of others. To overcome this problem, we adopt the informa-
tive functional classes approach proposed in [23]. A functional term is designated
as informative if it is annotated to n or more proteins (we use n = 30), and does not
have a child term that is annotated to n or more proteins. In this way, an informative
term will be the only informative term among all its ancestors or descendants. By
using only informative terms, we can ensure that there is no redundancy between
the functions that are used for evaluation. Moreover, since these informative terms
are annotated to a sufficiently large number of proteins, we will avoid evaluating
functional terms that are too rare to be inferred practically. Using a 10-fold cross val-
idation procedure, we benchmarked our proposed method against several published
approaches at the time of the study on the prediction of informative FunCat terms
using protein-protein interactions from BioGRID and showed that it performed sig-
nificantly better (Fig. 2). We also benchmarked our method against other approaches
using a dataset compiled in an earlier study comprising YPD functional categories
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Fig. 2 Precision–recall
curves for prediction of
FunCat functions for proteins
from S. cerevesiae from
BioGRID interactions using
various approaches. Figure
from [17]

and protein–protein interactions from MIPS [14], and showed that the predictions
made using our method achieved a better precision at nearly all levels of recall for
the three YPD categories (Fig. 3).

Prediction of Gene Ontology Functional
Annotations on Multiple Species

While we had some success showing that indirect association of FunCat functional
annotations are abundant between non-interacting proteins, the annotation scheme
that was, and still is most widely adopted is the Gene Ontology (GO). Similar
to FunCat, this comprehensive functional annotation scheme organizes functional
annotations into a hierarchical structure that explicitly describes parent-child rela-
tionships between annotations, where the children of an annotation are more specific
annotations that fall under it. The hierarchy structure adopted by GO, however, is
a Directed Acyclic Graph (DAG), instead of the tree structure used by Funcat. The
main implication of this is that a GO term can have more than one parent term. The
GO annotation scheme constitute a DAG structure for each of the 3 namespaces
molecular_function, biological_process, and cellular_component, that provide dif-
ferent aspects of biological characterization of a gene and its protein product. To
study if the use of indirect functional association is general enough to be beneficial
for functional prediction based on the GO scheme, and for species other than S. cere-
visiae, we performed a follow-up computational study in 2007 on 7 species [24]. The
objective of the study was to answer 3 key questions about using protein-protein
interactions and indirect functional association for protein function prediction: (1)
Does the use of protein-protein interactions provide any additional coverage over the
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Fig. 3 Precision–recall
curves for prediction of YPD
functions for proteins from
S. cerevesiae from MIPS
protein–protein interactions
using various approaches.
Figure from [17]
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conventionally accepted use of sequence homology for protein function prediction;
(2) Does the use of indirect functional association provide any additional enhance-
ment in coverage over direct guilt by association; and (3) Are the conclusions made
for indirect functional association on FunCat terms applicable to function prediction
using GO terms over different species with differences in quantity and even quality
of data?

Data Availability

At the time of study, protein-protein interaction data was available for 7 species
in the BioGRID database: S. cerevisiae, D. melanogaster, A. thaliana, H. Sapiens,
M. Musculus, R. norvegicus and C. elegans. Gene Ontology annotations were also
available for these species. The amount of interaction data available to perform the
study is summarized in Table 1. As we can only evaluate prediction performance
on annotated proteins, we present the number of interactions that involve annotated
proteins as a proxy for data availability.

Table 1 Annotation and interaction data statistics for different species at time of study. Table
from [24]

Genome
Interactions involving
annotated proteins Annotated proteins

Avg. no. of annotated
neighbours per protein

S. cerevisiae 50, 434 4005 21.6654
D. melanogaster 24, 991 2763 4.2823
A. thaliana 909 382 1.8386
H. Sapiens 5784 5784 1.6761
M. Musculus 1892 1892 1.3595
R. norvegicus 590 590 0.9803
C. elegans 4349 382 0.7382

Protein–Protein Interactions vs. Sequence Homology

To answer our first question on the usefulness of protein–protein interaction data
as an additional source of data to complement conventional sequence homology
for protein function inference, we examine the number of known functional anno-
tations that can already be inferred using the top hits of a BLAST search against
all sequences from the Gene Ontology Database. The analysis is only done for
S.cerevisiae and D. melanogaster as the amount of protein–protein interaction data
is too little for meaningful analysis on the other species. The fraction of known
annotations that can be annotated in this way for each species is computed using
E-value cut-offs between 1 and 1e–10, and summarized as white bars in Fig. 4.
As one would expect, coverage decrease with more stringent E-value cut-offs, pos-
sibly in exchange for better precision (not shown). For each E-value cut-offs, we
next compile the number of additional functional annotations that can be transfer
in a guilt-by-association fashion based on protein–protein interactions as a frac-
tion of the total number of known annotations (light blue bars in Fig. 4). We find
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that protein–protein interactions provided some additional coverage (around 20%
for S.cerevisiae and 10% for D. melanogastor) even at relaxed BLAST E-value
cutoffs of >=0.01 for inferring biological_process and cellular_component anno-
tations. Finally, we also compute any further coverage that may be gleaned if we
also allow functional inference using indirect functional associations between level-
2 interaction neighbors. We found that there is substantial additional coverage that
may be gained in this way (dark blue bars in Fig. 4) for both species. This anal-
ysis addressed the first two questions we seek to answer, that is: (1) There are a
fair number of GO annotations that cannot be inferred through simple sequence
homology, but can potentially be predicted from protein-protein interactions; and
(2) Extending functional predictions to level-2 neighbors helps to further increase
coverage by including functional annotations that cannot be associated to a protein
via sequence homology or direct protein–protein interactions.

Function Prediction Performance

Finally, we investigate if the function prediction method that we proposed earlier
can be used to make better predictions for GO terms for the seven species by
using functional association with indirect interaction neighbours. Again, we used
the informative functional classes concept to identify informative GO terms to be
used for evaluation for each species. Comparing FS-weighted averaging with the
Neighbor-Counting and Chi-Square approaches, we found that FS-weighted aver-
aging achieved superior precision–recall performance in all seven species (Fig. 5).

Indirect Functional Association and Complex Discovery

Protein Complex Discovery

Proteins often perform function by aggregating into complexes to perform sophis-
ticated biological tasks. Many well-conserved protein complexes perform key
biological functions such as transcription, splicing, mRNA export and protein syn-
thesis. Through complex formation, the primary molecular functions of individual
proteins (such as the ability to bind DNA or RNA, shuttle between membranes,
transport certain materials and interact with particular proteins) are recruited in a
coordinated fashion to perform highly specialized functions. RNA polymerases,
ribosomes and spliceosomes are some examples of widely studied protein com-
plexes with well-understood functionalities. Therefore to better understand the
higher-level biological processes in which proteins participate, it is necessary to look
beyond individual protein features such as sequences and structures and observe
how proteins form larger functional units. While experimental assays such as tan-
dem affinity purification and co-immunoprecipitation can be used to identify protein
complexes, these are usually suitable for capturing stable complexes. Many weak or
transient complexes are likely to be missed.
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Fig. 5 Precision vs. recall graphs of the predictions of informative GO terms from the gene
ontology biological process category using (1) Neighbour Counting(NC); (2) Chi-Square; and (3)
FS-Weighted Averaging(WA), for seven genomes. Figure from [24]
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The importance of identifying protein complexes motivated many bioinformat-
ics approaches to identify protein complexes computationally from protein–protein
interactions. Several insightful studies contributed significantly in motivating
research in this area. Spirin and Mirny [25] investigated highly connected pro-
teins in a physical protein–protein interaction network, and found functionally
related proteins to be highly connected with each other, but sparsely connected
with the rest of the network. Some of these densely connected proteins coincide
with known stable protein complexes, while many others are found to be related to
dynamic functional units involved in activities such as signaling cascades and cell
cycle regulation. Bu and colleagues studied topological structures (quasi-cliques
and quasi-bicliques) in protein–protein interactions and found that many of these
structures involved functionally related proteins [26]. Bader and Hogue [27] pro-
posed a computational method of protein complex discovery from protein–protein
interaction networks by “growing” complexes from “seed proteins” with dense local
network. The algorithm, MCODE, was subsequently implemented as a plug-in for
the popular bioinformatics visualization software Cytoscape [28]. The recurring
theme among these studies is that function modularity in biological systems may
be encoded in protein–protein interactions, and identifying such functional modules
allows us to better understand how proteins function together.

Protein Complexes with Limited Interactions

From our earlier studies, we found that many indirectly interacting proteins share
functional annotations from different schemes including YPD, FunCat and GO.
These indirectly interacting proteins that perform similar biological functions could
in reality be forming protein complexes, with their common interacting proteins
acting as adaptors that bring them into close proximity. This is especially likely for
larger complexes since proteins have limited binding pockets and usually have rea-
sonably high binding specificity. Since these proteins do not interact, there may not
be sufficient overlap between their local interaction neighborhoods for conventional
clustering approaches based on network density to associate them. As the FS-weight
measure has been demonstrated to provide some estimation to functional similari-
ties between two indirectly interacting proteins, we are interested to see whether
including indirect interactions with high FS-weight scores into the protein interac-
tion network can help improve discovery of complexes that involve less physical
inter-connections. On the other hand, since the FS-weight can also provide some
estimation of functional similarity between proteins that interact, we may be able
to remove possibly spurious interactions that are likely to be functionally unrelated
from the interaction network. We explore these ideas in a subsequent work [29, 30]
that study how complex prediction performance is affected by (1) applying exist-
ing clustering methods on modified physical protein–protein interactions; and (2)
proposing a clustering algorithm that implicitly take FS-weight into account.

Approaches for Protein Complex Prediction

At the time of the study there are two general approaches to protein complex pre-
diction from protein-protein interactions. The first approach, which we refer to as
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clique finding, imposes a stringent requirement on what constitutes a protein com-
plex. A clique is a fully connected subgraph in which each node is connected to
all other nodes in the subgraph. Spirin and Mirny [25] explored two methods of
finding densely connected subgraphs in a protein interaction network, one of which
is to enumerate all cliques in the network. The strict constraint imposed by clique
finding keeps false positives low and makes the approach robust to noise in the
interaction network. However, sensitivity is likely to be severely limited. Bu and
colleagues used a more relaxed constraint for complex prediction by looking for
quasi-cliques, which are dense subgraphs that are almost complete [26]. The other
general approach to complex prediction, which we refer to as clustering, involves
the use of heuristic algorithms to find groups of densely connected proteins, usually
based on network properties such as network density. Brohee and colleagues [31]
evaluated some of these clustering methods, namely the Restricted Neighborhood
Cost-Based Clustering (RNSC) [32], MCODE, Markov Clustering (MCL) [33],
and Super Paramagnetic Clustering (SPC) [34] for protein complex prediction from
protein–protein interaction networks. Using 6 protein–protein interaction networks
from [2, 5, 35–38] and cataloged complexes from MIPS [39], the authors optimized
the parameters for each clustering algorithm and benchmarked them over several
performance metrics.

Modifying the Interaction Network with FS-Weight

Given a input interaction network, FS-weight is applied to assign a score to all
interactions as well as level-2 indirect interactions. By applying a threshold FS-
Weightmin, we include indirect interactions that surpass this threshold into the
original interaction network. On the other hand, direct interactions in the origi-
nal interaction network that does not meet this threshold are removed from the
interaction network. Since the FS-Weight measure exhibit positive correlation with
functional similarity, we expect connected proteins in the modified network to be
more functionally related than that of the original network. In the study we per-
formed experiments using the 6 protein–protein interaction networks studied in [31],
which comprises 2 datasets derived from large-scale yeast two-hybrid studies, and
4 datasets from affinity purification and mass spectrometry. We refer to this com-
bined network as the “combined” dataset. We also used a larger dataset comprising
all physical protein-protein interactions from BioGRID which is a superset of the
6 networks.

As a preliminary study of the feasibility of this approach, we compute the frac-
tion of all interactions that involve a pair of proteins that belong to some common
complex for the two interaction networks, as well as the modified versions of these
networks. We find that if we introduce level-2 indirect interactions indiscriminately,
the fraction of interactions that involve co-complex proteins decreases drastically
(Fig. 6, L1 & L2). However, if we only include level-2 interactions with high FS-
weight scores, we are able to maintain these fractions at similar levels (L1 & Filtered
L2) as that for the original interaction networks (L1). Finally, when we also remove
direct interactions with low FS-weight after including level-2 interactions with high
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Fig. 6 Fraction of intra-complex interactions with nodes sharing some complex membership for
different PPI networks. Figure from [30]

FS-weight, the fractions of the interactions that involve proteins from common com-
plex increased significantly (Filtered L1 & L2). These observations are encouraging
and suggest that we could possibly make the network more amenable to complex
discovery in this manner.

A New Complex Prediction Approach

Since the FS-weight can provide a decent estimate of the functional relatedness of
an interaction, we may be able to exploit this information in the complex prediction
process. Taking this idea into consideration, we proposed a novel complex predic-
tion approach and benchmark it alongside with the 4 existing clustering algorithms
evaluated in [31]. Our approach, PCP (Protein Complex Prediction), is a heuristic
algorithm that involves a three-step iterative process:

Maximal Clique Finding

The first step involves finding all maximal cliques of at least size 2 from the network.
This can be done efficiently on a sparse graph using the algorithm described in
[40]. For nodes that belong to multiple cliques, we assign them to only one clique
using a heuristic method to maximize the average FS-Weight scores of the edges
in each non-overlapping clique. Since this is also the performance bottleneck of
the algorithm, we also proposed an alternative heuristic method for finding non-
overlapping cliques as a replacement for this step which did not have any significant
impact on prediction performance.

Computing InterClusterDensity

The clique finding step will return very dense subgraphs that are completely con-
nected. A clique is unlikely to represent a complete real complex, but rather a
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densely-connected subset of it. To associate less densely connected parts of the
complex, we can merge cliques that are well-connected. To provide a quantitative
measure of interconnectedness between a pair of subgraphs (Sa, Sb), we define the
InterClusterDensity (ICD) as follows:

ICD(Sa, Sb) =
∑

SFS(i, j)|i ∈ Va, j ∈ Vb, (i, j) ∈ E

|Va| · |Vb| (8)

where Vx is the set of vertices of subgraph Sx. This is simply the weighted sum of
all edges between members of the two subgraphs, divided by the maximum number
of possible edges between them.

Subgraphs Merging

Using the ICD measure, we can now imagine each clique as a node in a new graph,
and insert an edge between two nodes that has a ICD score greater than an arbitary
threshold ICDmin. We can now perform the maximal clique finding step again on
the new graph. The nodes in the cliques found will no longer be proteins, but rather
groups of proteins. By reiterating this process, smaller groups of proteins will grad-
ually be merged into large groups in a hierarchical manner. To allow the better
connected nodes to be merged first, we start from a high ICDmin threshold, and
gradually reduce the threshold whenever no further merging can be made.

Performance Evaluation

Known protein complexes from MIPS is used as the gold standard against which
performance is evaluated. In order to see if novel predictions are indeed made, we
also used MIPS complexes released 2 years apart, in 2004 and 2006. Unlike func-
tion prediction, the practical usefulness of complex prediction lies in the ability to
predict a set instead of a pair. Therefore to make quantitative evaluation meaningful,
we must first define what constitute a correct prediction, that is, the critria for a pre-
dicted cluster to be considered as matching a known complex. We adopt the overlap
measure from [27]:

Overlap(S, C) = |Vs ∩ Vc|
|Vs| · |Vc| (9)

In [27], and overlap score of 0.2 or more is considered a match. We used a slightly
higher threshold of 0.25 in our study. Since there may be more than one cluster
matching a complex and vice versa, we used a slightly modified version of the con-
ventional precision and recall measure. We defined precision here as the number of
predicted clusters that matched a complex:

Precision = matchedclusters

predictedclusters
(10)
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Similarly, we defined recall as the number of known complex that matched a
cluster:

Recall = matchedcomplexes

knowncomplexes
(11)

Complex Prediction Performance

We performed protein complex prediction using RNSC, MCL, MCODE and PCP on
the original interaction networks as well as the modified networks. For the RNSC,
MCL and MCODE algorithms we used the optimal parameters that are derived
by the authors in [31]. We determined optimal parameters for PCP empircally.
Compared to predictions made on the orignal network (Fig. 7 top row), we found
that the precision–recall performance for MCL, MCODE and PCP improved sig-
nificantly after the networks are augmented and filtered using FS-weight (Fig. 7
middle row) for both the combined and BioGRID datasets. The performance of
RNSC, however, did not changed significantly. PCP performed the best among the
clustering algorithms studied for both interaction datasets. We also evaluated the
predictions made for the modified network against the newer 2006 MIPS complex
dataset (Fig. 7 bottom row), and found that precision–recall performance has gener-
ally improved for all the algorithms, which suggested that some of the predictions
made which are “novel” based on the 2004 complex dataset were indeed identified
to be real complexes a couple of years later.

Improving the Reliability of Interactions

Efforts in computational protein function prediction and protein complex discovery
are plagued by the common challenges of false positives, and perhaps more seri-
ously, false negatives in protein–protein interactions. Much work has been done to
assess the error rates of interaction data [41–44], and estimates based on overlaps
in datasets indicated yeast two-hybrid datasets to contain false positives as high as
50%. More recent work [45] suggested that such estimation are likely to be flawed,
and a more recent estimate [46] placed the false discovery rate of yeast two-hybrid
interactions at around 10% and false negative rate at around 50% for S.cerevisiae.
Nonetheless, false positives and false negatives is an important concern, and much
effort has been made to improve the quality of interaction data by computationally
assessing the confidence of individual interactions. Some of these methods involve
using independent, biologically relevant data such as gene expression and sequence
homology [43, 47], while others solely used topological properties inherent in the
network [48–51].

For methods that derive confidence for each interaction using a topological
measure, the weighted interactions can be seen as a being more representative of
the underlying “real” network. Hence intuitively it would make sense to use this
weighted network to re-compute the confidence for each interaction. We showed in
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Fig. 7 Precision–recall curves for complex predictions using MCL, RNSC, MCODE and PCP
for the combined (left column) and BioGRID (right column) datasets. Predictions are made
using the original networks (top row) and the modified networks (middle row) and evaluated
against complexes from the 2004 MIPS dataset. Predictions made using the modified net-
works are also evaluated against complexes from the 2006 MIPS dataset (bottom row). Figure
from [30]
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two recent studies that this concept can be used to improve upon local topological
measures such as the CD-Distance or FS-Weight in identifying functionally-related
interactions and improve complex prediction performance [52, 53].

Iterative Scoring

We define the iterative scoring function from a base topological score function. In
the study we used a variant of the CD-Distance as the base measure:

AdjustCD (u, v) = 2 |Nu ∩ Nv|
|Nu| + λu + |Nv| + λv

(12)

λu and λv are pseudo counts used to penalize proteins with few neighbors, and are
defined similarily as λu,v used in FS-weight. The iterative version of AdjustCD is
defined as:

wk(u, v) =
∑

x∈Nu∩Nv
(wk−1(x, u) + wk−1(x, v))

∑

x∈Nu
wk−1(x, u) + λk

u + ∑

x∈Nv
wk−1(x, v) + λk

v
(13)

where wk−1(u, v) is the weight of the edge (u,v) at the (k–1)-th iteration. At the
initial stage (k = 0), w0(u, v) = 1 if the edge (u,v) exists and w0(u, v) = 0
otherwise.

λk
u = max

⎧

⎨

⎩
0,

∑

x∈V
∑

y∈Nx
wk−1 (x, y)

|V| −
∑

x∈Nu

wk−1 (x, u)

⎫

⎬

⎭

λk
v = max

⎧

⎨

⎩
0,

∑

x∈V
∑

y∈Nx
wk−1(x, y)

|V| −
∑

x∈Nv

wk−1(x, v)

⎫

⎬

⎭
(14)

are the weighted variants of λu and λv at the k-th iteration and V is the set of all
nodes in the network. At iteration k = 1, wk(u, v) = AdjustCD(u, v). We refer to the
k-iteration version of this scoring function as AdjustCDk.

We showed in [52], that the use of this iterative scoring function reaches best
performance at k = 2. The weights assigned to interactions using the score func-
tion were significantly more predictive of functional similarity and co-localization
than FS-Weight and CD-Distance. The weights assigned to indirect level-2 inter-
actions with the iterative function are also more relevant to functional homogenity
and localization coherence. These observations suggested that the iterative weight-
ing function may be used to improve the protein complex prediction approach we
visited in the previous section.
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Complex Discovery Using AdjustCDk Weighted Interactions

In [53] we conducted a detailed analysis on protein complex finding using interac-
tions that are weighted using AdjustCDk. Two reference sets of protein complexes
are used. The first set is the set of hand-curated complexes from MIPS [39]. The
other set of complexes are modeled from three-dimensional structures that were
screened using electron microscopy by Aloy et al. [54]. Using the 6 physical protein-
protein interaction datasets used in [30, 31], we study how the performance of MCL,
MCODE, CFinder [55] and a new clustering algorithm, which we called CMC
(Clustering Based on Maximal Cliques), is affected when the input interaction is
weighted using AdjustCDk.

The CMC Algorithm

Like the PCP algorithm, the CMC algorithm starts by finding all maximal cliques
in the network using the algorithm described in [40]. However, unlike PCP, CMC
do not iteratively merge cliques through building higher-level abstract networks.
Instead, a heuristic procedure is used to quickly merge well overlapping cliques into
larger clusters. Each clique C is first scored based on its weighted network density:

score(C) =
∑

u∈C,v∈C w (u, v)

|C| · (|C| − 1)
(15)

where w(u,v) is the weight of edge (u,v) scored using AdjustCDk. The cliques are
then sorted into a list based on their score in a decreasing order. Each clique Ci is in
turn examined beginning from the top of the sorted list. For every other clique Cj in
the list which overlaps with Ci above a predefined threshold (i.e.

∣
∣Ci ∩ Cj

∣
∣ /

∣
∣Cj

∣
∣ ≥

overlap_thres) and score(Cj) < score(Ci), Cj is removed from the list. A weighted
inter-connectivity score is then computed between Ci and Cj to decide if Cj should
be merged with Ci:

inter−score (C1, C2) =
√
∑

u∈(C1−C2)

∑

v∈C2
w (u, v)

|C1 − C2| · |C2| ·
∑

u∈(C2−C1)

∑

v∈C1
w (u, v)

|C2 − C1| · |C1|
(16)

If inter−score(Ci, Cj) ≥ merge_thres, then Cj will be merged with Ci, otherwise it
is discarded. merge_thres is a pre-defined parameter. The parameters overlap_thres
and merge_thres are empirically determined.

Performance Evaluation

In this study we considered a predicted cluster to match a protein complex if the
Jaccard index between them is at least 0.5. To ensure that random matches are
unlikely, we randomly swapped complex members to see if the resulting random
complexes match with any predicted clusters from the CMC algorithm. We found no
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matches over 1000 such runs. Precision and recall are defined similarly as described
in the previous section of this chapter. We found that all 4 clustering methods
achieved significant improvement in precision when using weighted networks com-
pared to unweighted networks. Using k=2 in the AdjustCDk weighting function
result in the best performance among most of the clustering algorithms that are
evaluated, and further increase in k to 20 showed little change in performance for
CMC and Cfinder.

Robustness Against Noise in the Interaction Network

Perhaps the most interesting observation we made from this study is the robustness
of the weighted network to random additive noise. By randomly adding edges to the
original network, we examine the impact of additive noise on the prediction perfor-
mance of CMC using k=1, k=2 and k= 20 for AdjustCDk weighted versions of the
interaction network. Evaluating against the complex dataset from [54], we find that
when k=1, the performance of the CMC algorithm degrades significantly when ran-
dom interactions amounting to 50% of the original network are added, and continues
to degrade quickly with higher levels of noise (Fig. 8, top). When k=2, however, the
performance of CMC shows only a slight decrease when 50% random interactions
are added, and only exhibited significant degradation when the added random inter-
actions exceed 300% of the original network. At k=20, the performance of CMC
only shows signs of degradation when the number of added random interactions is 5
times that of the original network. These observations suggest that the iterative scor-
ing approach can potentially be used to benefit downstream analyses that make use
of protein-protein interaction data by accentuating the biologically relevant subset
of interactions within noisy datasets.

Conclusions

In this chapter, we briefly review some of the works we have done on using
protein-protein interactions for computational approaches related to protein function
discovery. The key concepts introduced here include indirect functional associa-
tion between proteins that do not interact directly, the use of topological weights
such as FS-weight to identify functionally relevant interactions so that such indirect
interactions can be feasible for practical use, and the impact of using topological
weighting techniques (such as FS-weight and the iterative AdjustCDk) to improve
interaction data quality on protein complex prediction. It is noteworthy that while
protein-protein interaction data is highly relevant to understanding and inferring
protein functions, it captures a limited aspect of protein functionality. Greater suc-
cess in computational function prediction is likely to be achievable through the use
of a multitude of biological data such as expression profiles, sequence homology
and more. Such holistic approaches are actively being researched on [56–59], and
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hold promise for the eventual goal of reliable characterization of protein function-
ality in a high-throughput fashion. Protein-protein interaction data is an important
source of data for these approaches, and research on the analysis and processing
of protein–protein interactions will continue be a key area of research in protein
function prediction.
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KEGG and GenomeNet Resources
for Predicting Protein Function from Omics
Data Including KEGG PLANT Resource

Toshiaki Tokimatsu, Masaaki Kotera, Susumu Goto, and Minoru Kanehisa

Abstract With the rise of experimental technologies for omics research in recent
years, considerable quantitative data related to transcription, protein and metabolism
are available for predicting protein functions. To predict protein functions from
large omics data, reference knowledge databases and bioinformatics tools play
considerable roles. KEGG (http://www.genome.jp/kegg/) database we have been
establishing is an integrated database of biological systems including genomic,
chemical and systemic functional information. Our group has also been develop-
ing the tools for genome or chemical analysis as GenomeNet Bioinformatics Tools
(http://www.genome.jp/en/gn_tools.html). In this chapter, we introduce the KEGG
database resources and the GenomeNet Bioinformatics Tools for predicting pro-
tein functions from the viewpoint of omics research, as well as some recent topics
(KEGG PLANT Resource and PathPred). KEGG PLANT Resource is one of the
contents in the KEGG EDRUG database, and contains links for plant secondary
metabolite biosynthesis pathways, plant genomes and EST sequences, chemical
information of plant natural products and the prediction tool for plant secondary
metabolism pathway. PathPred is a recently developed pathway prediction tool
based on the chemical structure transformation patterns of enzyme reactions found
in metabolic pathways.

Introduction

In recent years, high-throughput omics data such as transcriptome and metabolome
data is continuously increasing. Genomics, transcriptomics and proteomics pro-
vide the data of genes and proteins in individual organisms. On the other hand,
metabolomics, glycomics, and lipidomics provide information for endogenous
molecules, and chemical genomics provides information for exogenous molecules.
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For environmental studies, metagenomics and meta-metabolomics data are becom-
ing available as genomic and chemical information, respectively. One of the main
objectives of these high-throughput experiment projects is to uncover molecu-
lar building blocks of life. Integration and of high throughput genomics and
chemical spaces data and interpretation of high-order function is a powerful tech-
nique for understanding molecular building block of life such as protein function.
Bioinformatics approaches are required to predict protein function by analyzing
exclusively increasing omics data.

KEGG (http://www.kegg.jp/) [1] is a computer representation of biological sys-
tems, consisting of a number of sub-databases, such as those including genomic
and chemical information. Among these, systems information database is the most
unique feature in KEGG. They have been manually collected from review and
original articles, other publications, specialists’ website, and other resources. In
KEGG project, several useful bioinformatics tools have also been developed for
genome analysis and chemical analysis. These tools are released as GenomeNet
bioinformatics tools at GenomeNet website (http://www.genome.jp/).

Plants are known to produce vast and diverse secondary metabolites, and the
total number of plant metabolites are estimated to be over 200,000 [2]. Plant sec-
ondary metabolites support our life either directly or indirectly as foods, medicines,
and industrial materials. Notably, physiologically active natural products mainly
from plants are used as crude drugs and traditional medicine in our lives since
ancient times. Physiological active plant natural products have been main resources
for drug seed compounds. Thus, elucidating the biosynthetic pathways of plant
secondary metabolites is a valuable research area for plant biotechnology, agricul-
tural sciences and pharmaceutical sciences. In just the past decade, transcriptome
[3, 4] and metabolome [5, 6] analysis of model plant species such as Arabidopsis
(Arabidopsis thaliana) and rice (Oryza sativa) has become an active area of
research. Accordingly, the necessity of high-quality database resource of plants
gains the importance for predicting plant secondary metabolite biosynthesis path-
way and protein functions involved in the pathway. Therefore, we are currently
accumulating crude drugs and other plant natural product information as KEGG
EDRUG database.

In this chapter, we introduce the overview of the KEGG database and the recent
topics on the KEGG and GenomeNet resources from the viewpoint of protein func-
tion prediction, including KEGG EGENES, KEGG PLANT Resource and PathPred:
an enzyme-catalyzed metabolic pathway prediction server.

Outline of KEGG Resource

Overview of KEGG Database

Table 1 shows the list of KEGG main databases [1], and their contents. As of July
2010, KEGG comprises 19 main databases, categorized into systems information,
genomic information and chemical information as shown in Table 1. Genomic and

http://www.kegg.jp/
http://www.genome.jp/
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Table 1 KEGG databases

Category Database Contents

Systems information KEGG PATHWAY Pathway maps
KEGG BRITE Functional hierarchies
KEGG MODULE Pathway modules
KEGG DISEASE Human diseases
KEGG DRUG Drugs
KEGG EDRUG Crude drugs and other natural products

Genomic information KEGG ORTHOLOGY KEGG Orthology (KO) groups
KEGG GENOME KEGG organism
KEGG GENES Genes in completely sequenced genomes
KEGG SSDB Best hit relation within GENES
KEGG DGENES Genes in draft genomes
KEGG EGENES Genes as EST contigs
KEGG MGENES Genes in metagenomes

Chemical information KEGG COMPOUND Metabolite and other small molecules
(KEGG LIGAND) KEGG GLYCAN Glycans

KEGG REACTION Biochemical reactions
KEGG RPAIR Reactant pair chemical transformations
KEGG RCLASS Reaction classification
KEGG ENZYME Enzyme nomenclature

chemical information databases are collection of molecular building blocks of life in
the genomic and chemical spaces, respectively, and systems information represent
the molecular systems that are built from the molecular building blocks.

KEGG is a computer representation of biological systems. Systems information
is the most characteristic feature in KEGG database, and is manually collected
from review articles, other publications, specialists’ website, and other resources.
Six databases in KEGG describe systems information. They are classified into
two types. The former three databases (PATHWAY, BRITE, and MODULE) are
the databases for pathway and functional classification. The latter three databases
(DISEASE, DRUG, and EDRUG) are the databases for analysis of the molecu-
lar network-disease association. DISEASE, DRUG, and EDRUG contain data of
disease, drug and bioactive natural products, respectively. The following seven
databases (ORTHOLOGY, GENOME, GENES, SSDB, DGENES, EGENES, and
MGENES) are categorized as genomic information. They are gene catalogs in the
completely sequenced genomes, manually defined ortholog groups, computationally
calculated sequence similarity information, and supplementary gene catalog data
(for draft genomes, EST contigs, and metagenomes). The six databases in chemical
information category (COMPOUND, GLYCAN, REACTION, RPAIR, RCLASS,
and ENZYME) are collectively called as KEGG LIGAND. They contain the infor-
mation of small molecules, glycans, biochemical reaction of these molecules,
chemical structure transformation patterns derived from reaction data, reaction
classification according to the chemical structure transformation pattern, and sup-
plemental information of enzyme nomenclatures. SSDB, DGENES, EGENES, and
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MGENES in the genomic information category are computationally generated, but
all other 15 databases are manually curated.

KEGG Orthology (KO): Basis of Genome Annotation in KEGG

KEGG Orthology (KO) is the basis for the protein function annotation in KEGG.
KEGG ortholog annotation procedure is described as follows. Protein sequences
with experimental evidences in specific organisms are used as seeds, and the homo-
logous sequences from other organisms are automatically collected. Consequently,
these sequence groups are manually curated and defined as the KO groups in the
context of molecular networks; i.e., as the nodes in the KEGG PATHWAY and
BRITE. KO groups are given K numbers for identification. Next, cross-species
annotation is added as follows. Gene catalogs of all complete genomes are generated
from RefSeq database and other public resources. They are computationally pro-
cessed to generate what we refer to as the GFIT tables, containing the list of genes
in a genome with the data of the best-hit genes (i.e., the most homologous genes)
against the all other genomes. The automatic cross-species annotation is performed
for a set of the “safe” K numbers, representing clearly defined ortholog groups.
Manual curation of this automatic annotation is performed using the KOALA
and GFIT tools. As of July 2010, genes data taken from 1135 prokaryotes and
131 eukaryotes species are stored in the GENES database. We developed KEGG
Automatic Annotation Server (KAAS) as functional annotation tool of genes. This
system automatically assigned KO for query genes. Detailed information about
KAAS is described in section “KAAS – KEGG Automatic Annotation Server”.

PATHWAY and BRITE: Systems Representation in KEGG

KEGG PATHWAY maps describe the dual aspects of metabolic network. The
first aspect is genomic information network, i.e., the network of enzyme genes or
enzymes. In KEGG PATHWAY, genes and proteins are identified by the K numbers
as mentioned in the previous section. EC numbers are shown as the node names in
the pathway maps, but they are not used as the identifiers in KEGG. The second
aspect is chemical information network, the network of small molecules (chemi-
cal compounds) and chemical structure transformations. Chemical compounds are
identified by the C numbers and reactions are identified by the R numbers.

The KEGG reference pathway maps and BRITE reference hierarchies are cre-
ated as to be applicable to all organisms; the exceptions are those describing human
diseases. The organism-specific pathways and hierarchies can be generated by using
the K numbers as the gene identifiers in particular organisms. Genes in an organism,
take Arabidopsis thaliana as an example, are annotated with the K numbers, repre-
senting manually defined ortholog groups corresponding to the nodes in the KEGG
pathway maps.
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PATHWAY also provides the global metabolism maps, which are created by man-
ually combining about 120 existing traditional metabolic pathway maps. Circular
nodes represent chemical compounds, and the lines connecting two nodes are series
of reactions. These global pathway maps allow users to view and compare the entire
metabolism, by such means as mapping transcriptome data and/or metabolome data.

Color Objects in KEGG Pathways and BRITE Hierarchies

Integrating large-scale data of genomic (e.g., transcriptome) and/or chemical (e.g.,
metabolome) spaces onto the systems space (e.g., KEGG PATHWAY, BRITE) helps
our understanding for protein function prediction. This section explains the methods
for mapping molecular datasets to the KEGG pathway and BRITE hierarchies.

The first method is to use the options “Pathway Mapping” and “Brite Mapping”
available on the web pages (http://www.genome.jp/kegg/tool/color_pathway.html
and http://www.genome.jp/kegg/tool/color_brite.html), respectively. From the
Search Object page, the user can find the objects (genes, metabolites, etc.) of interest
in the PATHWAY maps or the BRITE hierarchies by coloring them. Consequently,
the user can obtain PATHWAY maps or BRITE hierarchies with these objects favor-
ably colored through the Color Object page. The objects of interest have to be
specified by the KEGG identifiers. The user can input the list of objects either
directly from the input box or by uploading the file including the list.

Another method for mapping dataset on pathway is accessing KEGG through
KEGG API (http://www.genome.jp/kegg/soap/). KEGG API is a web service to
use the KEGG system from your program via SOAP/WSDL. The service enables
users to develop software that accesses and manipulates vast amount of KEGG data
that are constantly updated. KEGG API provides function for coloring pathways.
For the general information on KEGG API, please refer to the KEGG API page at
GenomeNet (http://www.genome.jp/kegg/soap/).

KEGG REACTION: Chemical Structure Transformation
Information in KEGG

KEGG REACTION database contains enzyme reactions taken from KEGG
ENZYME database and from the metabolic pathway maps in KEGG PATHWAY
database. Each reaction is identified by the R number. KEGG RPAIR database is a
collection of reactant pair defined for each reaction in KEGG reaction, together with
the chemical structure transformation patterns characterized by the RDM patterns.
Each reaction pair is identified by the RP number. In general, a reaction consists
of multiple reactant pairs, and the one that appears on the KEGG metabolic path-
way maps is called as the main pair. The RDM pattern is defined as KEGG atom
type change at the reaction center “R”, the difference atom next to reaction cen-
ter “D”, and the matched atom next to reaction center “M”, respectively. KEGG
RCLASS database represents classification of reaction based on the RDM patterns

http://www.genome.jp/kegg/soap/
http://www.genome.jp/kegg/soap/
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of main reactant pairs. The transformation pattern may consist of multiple RDM
patterns. Each reaction class is identified as RC number. We developed PathPred
and E-zyme for predicting pathway and enzymatic functions. The RDM patterns
are the basis of these prediction tools. Detailed information about PathPred and
E-zyme are described in sections “PathPred: Pathway Prediction Server” and
“E-zyme for Prediction of Enzymatic Reactions”, respectively.

KEGG Resources and GenomeNet Bioinformatics Tools
for Predicting Protein Function

KEGG EDRUG and KEGG PLANT Resource

Overview of KEGG EDRUG and KEGG PLANT Resource

Natural resources including bioactive natural products, such as crude drugs and
foods, have been used usefully since ancient times. These natural resources are
mostly taken from plants. For this reason, we developed new database, KEGG
EDRUG (http://www.genome.jp/kegg/drug/edrug.html), which is a database of
crude drugs, essential oils and other useful natural product resources including plant
information resources.

Plants are known to produce diverse chemical compounds including those with
medicinal, nutritional and industrial values. These plant secondary metabolites
can be divided into groups that share the same core substructure, originated from
the same biosynthetic pathways and chemical building blocks. In this context,
KEGG EDRUG is also considered as a part of KEGG PLANT Resource, which
is an interface to the KEGG resource for plant research, especially for under-
standing relationships between genomic and chemical information of plant natural
products. KEGG PLANT Resource links to the biosynthetic pathway of plant sec-
ondary metabolites, sequences of plant genomes and ESTs, structural classification
of plant secondary metabolites, and pathway prediction tools for plant secondary
metabolites.

Pathway Maps of Plant Secondary Metabolite Biosynthesis

Plants produce vast and diverse secondary metabolites, but core structures of
these metabolites are synthesized from several important precursors. Biosynthesis
pathways of plant secondary metabolites are classifiable by precursors and their
biosynthesis pathways. Grouping secondary metabolite biosynthesis pathways by
their biosynthetic origins and mapping the core structures on overview pathway
maps will help our understanding about plant secondary metabolisms.

Therefore, the KEGG PLANT Resource provides the links to the pathway maps
for secondary metabolism. There are three types of pathway maps in KEGG PLANT
Resource, e.g., KEGG traditional pathway maps, a global map, and overview maps.

In recent years, the repertoire of the KEGG pathway maps for plant sec-
ondary metabolism is expanded, and some of the maps are renewed incorporating

http://www.genome.jp/kegg/drug/edrug.html


KEGG and GenomeNet Resources for Predicting Protein Function 277

recent information. As a result, the secondary metabolite biosynthesis subclass in
KEGG PATHWAY is divided to “Metabolism of Terpenoids and Polyketides” and
“Biosynthesis of Other Secondary Metabolites”.

Recently, we developed new global map of secondary metabolism pathways.
Figure 1a is a screenshot of the reference global maps of secondary metabolite

Fig. 1 Example PATHWAY maps of global pathway and overview pathway. (a) Reference
global pathway map of secondary metabolites. (b) Overview pathway map of Biosynthesis of
phenylpropanoids
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biosynthesis, which include secondary metabolite biosynthesis pathways and related
pathway maps. This map allows users to view and compare the omics data or map-
ping species-specific pathways on the secondary metabolite specific pathway. The
major part of this pathway is related to plant metabolism, intended for the useful-
ness for plant scientists. This new global map of secondary metabolism also allows
users to map the species-specific pathways by using K numbers, e.g. Arabidopsis
thaliana. Users can easily figure out the secondary metabolism of specific species
at a glance.

KEGG PLANT Resource also provides two levels of overview pathway maps for
plant secondary metabolite biosynthesis. First level map is general overview path-
way map for biosynthesis of secondary metabolites. This pathway map is based
on overview of biosynthetic pathways map in KEGG PATHWAY, and modification
includes plant-specific pathways such as biosynthesis of secondary metabolite core
structures. Core structures of major plant secondary metabolites are mapped on the
overview map. The second are the category maps of plant secondary metabolite
pathways starting from specific precursor biosynthesis pathway. The category maps
include the detailed information of the core structure biosynthesis pathway. The cat-
egory maps reflect the classification of plant secondary metabolites. Figure 1b is the
example screenshot of overview pathway map of secondary metabolite biosynthe-
sis. Different to standard KEGG pathway maps, these overview maps contain the
graphics of chemical structures and not for mapping species-specific information or
experimental data.

KEGG GENES and EGENES of Plants: Sequence Information
of Plant Species

Although some research groups have launched genome projects of model plants
for specific plant families and industrial important plants, the available complete
genomes for plants are still very limited in comparison to other organism groups
such as animals and bacteria. At the end of June 2010, only 13 plant species of
complete genomes have been published and stored in KEGG, including two draft
genomes (Table 2). Thus, massive EST dataset have been processed for a number of
plant species to generate the EGENES database where the EST contigs are treated
as genes and automatically annotated with the KO (K number) identifiers [7] by
KAAS automatic annotation (see section “KAAS – KEGG Automatic Annotation
Server”). Currently, 77 plant species of the EST datasets are stored in the EGENES
database. The EST dataset covers wider variety of plant families and species than
complete genomes, especially in asterids as shown in Table 2.

We also provide the BRITE hierarchical lists of plant phylogenetic classification.
The phylogenetic classification of angiosperm is based on the second Angiosperm
Phylogeny Group classification for the orders and families of flowering plants (APG
II 2003) [8]. APG II classification is based on molecular systematic of flowering
plants.
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Table 2 Number of plant families and species in complete genomes and EST datasets in KEGG

Classification Complete genomes (GENES, DGENES) EST datasets (EGENES)

Eudicots: asterids 0(0) 7(18)
Eudicots: resides 4(4) 8(31)
Eudicots: others 1(1) 4(4)
Monocots 1(3) 3(11)
Basal angiosperms 0(0) 1(1)
Gymnosperms 0(0) 2(5)
Ferns 0(0) 1(2)
Mosses 1(1) 2(2)
Green algae 2(3) 2(2)
Red algae 1(1) 0(0)
Glaucophytes 0(0) 1(1)

Total 10(13) 31(77)

Figures before parentheses are the number of families and figures in parenthesis are number of
species

Classification of Plant Secondary Metabolites

Based on the biosynthetic origin, major plant secondary metabolites are classi-
fied to polyketides (from acetate-malonate pathway), phenylprpoanoids and related
compounds (from shikimate pathway), terpenoids and steroids (from mevalonate
pathway or deoxyxylulose-phosphate pathway), and nitorogen-containing alkaloids
and sulfur-containing compounds (from amino-acids and related compounds). This
classification also reflects the core chemical structures of plant secondary metabo-
lites. We classified the plant secondary metabolites in the KEGG COMPOUND
database by their biosynthetic origins and the core chemical structures. Currently,
about 2600 plant secondary metabolites are collected in the BRITE classification
of phytochemical compounds (Table 3). The top seven metabolite classes contain
over 150 metabolites. All these metabolite classes are well studied, and contain
many bioactive metabolites such as components of crude drugs and essential oils.
This classification system is also used for categorizing drugs and other bioactive
compounds derived from plant metabolites. In a future, phytochemical compound
classification will be more refined and categorized into detail core structures, which
will help to link compound classification to biosynthetic pathways.

KEGG EDRUG Database

KEGG EDRUG database is a collection of bioactive natural products, which are
ingested in our bodies. These natural products, such as crude drugs, essential oils,
etc., are mostly supplied from plant. The E number is used for identifier of each
KEGG EDRUG entry, and is associated with the chemical components, efficacy
information, and source species information. At present, crude drugs and essential
oils are the two main components of the EDRUG entries.
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Table 3 Phytochemical compounds classification in KEGG BRITE as of July 2010

Classification # of compounds

Total phytochemical compounds 2617
Phenylpropanoids and related compounds 744
Monolignols 37
Lignans 71
Coumarins 61
Flavonoids 507
Stilbenoids 39
Hydrolysable tannins 24
Misc. Phenylpropanoids 5

Polyketides 97
Quinones 41
gamma-Pyrones 56

Terpenoids 965
Hemiterpenoids (C5) 3
Monoterpenoids (C10) 164
Sesquiterpenoids (C15) 298
Diterpenoids (C20) 170
Triterpenoids (C30), sterols and steroids 286
Tetraterpenoids (C40) (Carotenods) 36
Polyterpenoids 8

Alkaloids 720
Alkaloids derived from ornithine 103
Alkaloids derived from lysine 76
Alkaloids derived from nicotinic acid 18
Alkaloids derived from tyrosine 201
Alkaloids derived from tryptophan and anthranillic

acid
199

Alkaloids derived from histidine 3
Alkaloids derived by amination reactions 103
Misc. alkaloids 17

Amino acid derivatives other than alkaloids 91
Betalains 30
Cyanogenic glucosides 25
Glucosinolates 36

This table shows the first classes and second classes of the Phytochemical compounds
classification in KEGG BRITE

Pathway Prediction for Plant Secondary Metabolism

Predicting biosynthetic pathways of plant secondary metabolites and linking them
to the plant genomes are challenging problems. We recently developed a web-based
server named PathPred, which is designed to predict secondary metabolite biosyn-
thesis pathways for a given compound using the information of known enzyme
reactions (i.e., RDM patterns and chemical structure alignments of substrate-product
pairs). Detailed information about PathPred is described in the next section.
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PathPred: Pathway Prediction Server

PathPred (http://www.genome.jp/tools/pathpred/) [9] is a recently developed web-
based server for predicting metabolic pathway of a given compound. Current version
of PathPred provides a multi-step reaction prediction of xenobiotics biodegradation
pathways and secondary metabolite biosynthesis pathways, and we aim to improve
this toward more sophisticated prediction for metabolic pathway reconstruction.

Prediction procedure consists of the following three steps. The first step is a
global similarity search of a query compound against the KEGG COMPOUND
database by the SIMCOMP program [10, 11]. The second step is a local pattern
match against the RDM pattern library to select the matched patterns that are appli-
cable to the query compound. Specific category of the KEGG pathways, such as
xenobiotics biodegradation pathways or secondary metabolite biosynthesis path-
ways, have their specific subsets of the RDM patterns [9, 12, 13]. Thus, we extracted
and use the specific RDM patterns library for xenobiotics biodegradation and sec-
ondary metabolite biosynthesis, respectively. The third step is to apply the structure
transformation to the query compound based on the selected matched patterns.
PathPred has a function to assign plausible EC numbers to the suggested reaction
steps. This function is based on the E-zyme program. Further information about
E-zyme is described in section “E-zyme for Prediction of Enzymatic Reactions ”.

We have to mention that the meaning of the query compound is different depend-
ing on whether users would like to predict biodegradation pathways or biosynthesis
pathways. In the case of biodegradation, the query compound is the molecule that
will break down. In other words, it is located at the beginning of the pathway. On
the contrary, in the case of biosynthesis, the query compound is the molecule that
was synthesized. In other words, it is located at the end of the pathway. This makes
sense when we consider what we would like to do, but this is sometimes confusing
when we actually use this application. Users may optionally input the end product
in biodegradation or the start compound in the biosynthesis. If the users have an idea
what the origin of the query secondary metabolite might be, specifying them might
help better prediction. Users can use input query compound in the MDL mol for-
mat, the SMILES representation, or KEGG COMPOUND/DRUG identifier (C/D
numbers). We provide KegDraw for drawing chemical compound structures and
glycan structures. Compound structures drawn by KegDraw are also used as queries
for PathPred. KegDraw is java application and software for MacOSX, Microsoft
Windows, and Linux provided from KegTools download page (http://www.genome.
jp/download/).

Figure 2 shows an example of the prediction result for plant secondary metabo-
lite pathway (shown as a tree-like structure) by PathPred. This example includes
the biosynthetic pathway from umbelliferon (7-Hydroxycoumarin) to fraxidin (8-
Hydroxy-6,7-dimethoxycoumarin). Fraxidin is a major component of a crude drug
Saposhnikovia root [14] and chemically classified to coumarins. Figure 2a shows
a PathPred prediction pathway tree from umbelliferon to fraxidin. Red, blue, and
gray compound numbers indicate the query or final compounds, compounds in the
KEGG database, and hypothetical molecules that are also generated elsewhere in

http://www.genome.jp/tools/pathpred/
http://www.genome.jp/download/
http://www.genome.jp/download/
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Fig. 2 (continued)
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the tree, respectively. In the case of secondary metabolite biosynthesis pathway pre-
diction, “query” and “final” mean “end product” and “starting substrate” of the
synthetic pathway, respectively. Figure 2b shows one of the predicted paths from
query (fraxidin) to final (umbelliferon) compounds in the prediction pathway tree.
The identification numbers (which we refer to as the RP numbers) between two
chemical structures indicate the links to the template reaction pairs for predict-
ing the transformation. Figure 2c shows the total predicted pathway network from
umbelliferon to fraxidin and 7-hydroxycoumarin related components of crude drug
Saposhinicovia root. Black and gray arrows are the paths predicted by PathPred.
Three Saposhinicovia components, fraxidin, isofraxidin, and scopoletin [14], are
located on or linked to the predicted pathway. According to the components of
Saposhinicovia root, the predicted path indicated by the black arrows pathway is
highly likely to exist (black arrows pathway is same as Fig. 2b).

As PathPred is knowledge-based prediction system, the quality of the knowledge-
base is crucial for the prediction accuracy. We are continuously updating the
KEGG RPAIR, REACTION and PATHWAY databases. We also categorized the
plant secondary metabolite biosynthesis pathway into subclasses, such as phenyl-
propanoids, polyketides, terpenoids and alkaloids, to use only the frequent RDM
patterns depending on the compound subclasses and to improve the efficiency in
terms of specificity and computational time.

E-zyme for Prediction of Enzymatic Reactions

Enzyme Commission (EC) number [15, 16] is a hierarchical classification sys-
tem for enzyme reactions established by International Union of Biochemistry and
Molecular Biology (IUBMB). This EC number system is widely accepted as the
standard classification system in the field of biochemical and enzymatic studies.
The EC numbers also play key roles in linking the enzyme genes or proteins
to reactions and in the computational representations of enzymatic reactions in
metabolic pathways. E-zyme (http://www.genome.jp/tools/e-zyme/) [12, 17] is the
GenomeNet bioinformatics tool for prediction of enzyme reactions, i.e., to automat-
ically assign the EC numbers up to the sub-sub classes for a given enzyme reaction.
The prediction process is based on the relationships between the EC numbers and
the corresponding RDM patterns (See section “Color Objects in KEGG Pathways
and BRITE Hierarchies”).

�
Fig. 2 Prediction result of biosynthetic pathway from umbelliferon (7-Hydroxycoumarin) to
fraxidin (8-Hydroxy-6,7-dimethoxycoumarin) by PathPred. (a) Predicted pathway tree consist
compounds (node) and reactions (edge). (b) One of successfully predicted pathway from umbellif-
eron to fraxidin. (c) Possible predicted pathway from umbelliferon to fraxidin by PathPred (black
and gray arrows) and Saposinicovia coumarin components (in boxes). Brack arrowed pathway is
same pathway as shown in figure (b)

http://www.genome.jp/tools/e-zyme/
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Prediction of EC classes by E-zyme consists of the following steps. First, the
chemical structures of a substrate and a product are compared by the SIMCOMP
chemical structure alignment program [10, 11], and outputs the changes occurred
during the reaction in a form of the RDM patterns. Consequently, the possible EC
numbers are suggested based on the pre-computed correlations between the RDM
patterns and the EC numbers. Users can input query compounds in the MDL mol
format, or KEGG COMPOUND identifier (C number).

Figure 3 shows an example screenshot of the output by E-zyme. It includes the
chemical alignment of the two compound structures (i.e., a substrate and a product

Fig. 3 Example screenshot of E-zyme out put page of the prediction result
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of a possible reaction) and the list of the predicted EC numbers. The alignment of
the compounds and assigned RDM patterns are shown in the upper section of the
result page. In the lower section of the result page, EC number prediction results are
displayed.

For further information, we recommend to refer Yamanishi et al. [17] and
documents in E-zyme page (http://www.genome.jp/tools/e-zyme/).

KAAS – KEGG Automatic Annotation Server

In recent years, the number of complete and draft genomes, EST and metagenome
sequences are rapidly increasing. This makes it increasingly important to automati-
cally annotate functional properties and biological roles to genes. We provide KAAS
(http://www.genome.jp/tools/kaas/) [18] for this purpose as a GenomeNet bioin-
formatics tool. KAAS serves functional annotation of genes in genomes (or large
number of genes) by BLAST comparisons against the manually curated KEGG
GENES database. Genes in KEGG DGENES (draft genomes), KEGG EGENES
(EST contigs) and KEGG MGENES (metagenomes) are automatically annotated
by KAAS.

We also provide a web service for the general public users. Overall procedure
of the KAAS annotation is as follows. KAAS accepts three types of query sets,
i.e., complete or draft genome, partial genome, or EST sequences. Query sequence
data should be in multi-FASTA format of amino-acid or nucleotide sequences
with unique ids. The user can choose one or more species from the latest KEGG
GENES entries as the reference data set. We recommend to choose more closely
related species to the species of interest as possible, in order to obtain better
result.

KAAS provides three types of outputs as the results. “KO list” is the flat
list of the correspondence table with query genes and K numbers assigned by
the KAAS program. “BRITE hierarchies” is the hierarchical list of the anno-
tated genes, which is incorporated into the classification of the BRITE database.
“Pathway map” is the list of pathways that include the annotated query genes. The
list is linked to the graphical pathway maps, and the annotated query genes are
highlighted.

For further information, refer to Moriya et al. [18] and the documents in the
KAAS webpage (http://www.genome.jp/tools/kaas/).

KegArray

To predict protein function from omics data, one of the effective ways is the inte-
grated analysis of omics data by using systems information such as pathway network
diagram. KegArray is a standalone desktop application for analyzing both transcrip-
tome data (gene expression profiles) and metabolome data (compound profiles) in
conjunction with the KEGG databases (http://www.genome.jp/download/kegtools.
html). KegArray software is a Java application, and users can download the software

http://www.genome.jp/tools/e-zyme/
http://www.genome.jp/tools/kaas/
http://www.genome.jp/tools/kaas/
http://www.genome.jp/download/kegtools.html
http://www.genome.jp/download/kegtools.html
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Fig. 4 Example screenshot of (a) pathway mapping and (b) genome mapping by KegArray
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(for Mac OS X, Microsoft Windows, and Linux) from the download page (http://
www.genome.jp/download/).

Transcriptome data format for KegArray is KEGG EXPRESSION format or tab-
deliminated text similar to the KEGG EXPRESSION format. KEGG EXPRESSION
format is original data format for KEGG EXPRESSION database (http://www.
genome.jp/kegg/expression/). KEGG EXPRESSION database is a repository of
microarray gene expression profile data for Synechosystis, Bacillus subtilis and other
species. KegArray can convert external database IDs (e.g. NCBI GI) to the KEGG
GENES IDs. Only ratio values can be used for metabolome data. Main function of
KegArray is to map the transcriptome and metabolome data to the KEGG resources
including PATHWAY, BRITE and genome maps. Figure 4 shows example screen
shots of pathway mapping and genome mapping by KegArray tools. As shown in
the figure, users can visualize the up- or down-regulated genes on various KEGG
systems information. Users can also visualize increasing or decreasing metabolites
on various KEGG objects.

Detailed usage information for KegArray, refer to the ReadMe file provided in
the KegTools download page (http://www.genome.jp/download/).

Summary

In the post-genomic era, bioinformatics approach is necessary to analyze increas-
ing omics data. Also, high quality database and bioinformatics approach will play
important roles to predict protein function. KEGG is a manually curated integrated
database for computer representation of biological systems. KEGG and GenomeNet
also provide several useful tools to support protein function prediction from omics
data.

In this chapter, we briefly outlined a perspective of the KEGG database and
several tools for predicting protein functions from omics data, with introducing
some recent topics. KEGG EDRUG is the database for crude drugs, essential
oils, other natural products and related plant resources. KEGG EDRUG provides
useful information for protein function related to plant secondary metabolism path-
way. PathPred and E-zyme are tools for predicting enzyme reaction pathway from
metabolites. These tools help users to predict unknown pathway. KAAS is automatic
annotation and pathway prediction server for large set of sequences. KegArray is
desktop application for transcriptome and metabolome analysis. KegArray will help
mapping those data to the KEGG systems information such as KEGG PATHWAY,
KEGG BRITE etc.
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Towards Elucidation
of the Escherichia coli K-12 Unknowneome

Yukako Tohsato, Natsuko Yamamoto, Toru Nakayashiki,
Rikiya Takeuchi, Barry L. Wanner, and Hirotada Mori

Abstract Advances in genome sequencing have revolutionized biology by
providing the molecular blueprints for thousands of living organisms. Yet, the func-
tions of a large fraction, as much as one-half, of the component parts remain
unknown even for the best understood organisms, including Escherichia coli,
Bacillus subtilis, and Saccharomyces cerevisiae. Here, we describe our development
of comprehensive genomic resources (ORFeome clone sets and mutant libraries) for
systematic functional analysis of E. coli, summaries on our use of these resources,
the GenoBase information resource for handling high-throughput experimental data
obtained with them, and our creation of user workspaces at our Protein Function
Elucidation Team (www.PrFEcT.org) website.

Defining the Unknowneome

Understanding the functionality of the protein components of living cells demands
application of next-generation biology approaches. Not only are current annotations
of genes encoding proteins incomplete and often times inaccurate, but up to 30%
of the genes of newly sequenced bacteria cannot be annotated (or even recognized)
using our current knowledge about proteins [1].

The development of comprehensive genomic resources for Escherichia coli K-12
[2, 3] have not only made systematic functional analyses feasible [4] but also have
opened up new avenues for protein function elucidation, e.g., [5, 6], which oth-
erwise cannot even be considered. The ability to carry out systematic analyses
has even led biologists to re-consider the definition of biological function. E. coli
K-12, which is one the best studied model organisms, is not exceptional in this
regard. Similar genome-wide functional genomics approaches are underway in yeast
([7]; http://www.yeastgenome.org/), Acinetobacter species [8], Bacillus subtilis
([9]; http://www.genoscope.cns.fr/agc/microscope/home/index.php), Pseudomonas
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aeruginosa ([10]; http://www.pseudomonas.com/), and many others (e.g.,
http://pfgrc.jcvi.org/index.php/gateway_clones/about_libraries.html). As a proto-
type of what can now be achieved through the use of genomic resources, we describe
approaches that have already been proven to be useful in systematic functional
analyses of E. coli K-12 with the Keio single-gene deletion library [2, 4, 11].

The Need for Gene Ontologies

Gene functions have traditionally been defined with natural language terms much
like how humans speak. However, just like colloquialisms are specific to a region,
gene terminologies often relate only to specific species, which creates difficulties
when making comparisons between species. Biochemical, physiological, and phe-
notypic functions of proteins can differ dramatically even for seemingly similar
proteins. Clear examples exist for particular enzyme and crystalline protein families,
e.g., argininosuccinate lyase and δ-crystallin, enolase and τ-crystallin, glutathione
S-transferase and SIII-crystallin, and lactate dehydrogenase and ε-crystallin [12].
On the basis of DNA and amino acid sequence similarities, these enzyme and crys-
talline families are closely related, however their physiological functions are quite
different.

The rapid generation of new genome sequences has led to recognizing an
urgent need for consistent descriptions of proteins across different organisms. The
Gene Ontology (GO) Consortium (http://www.geneontology.org/) was launched to
consolidate efforts for development of systematic and standardized terminologies
[13]. The GO Consortium was initiated as a collaboration among three model
organism databases [14]: the Saccharomyces Genome Database (SGD; http://www.
yeastgenome.org/); a Database of Drosophila Genes and Genomes (FlyBase; http://
flybase.org/); and Mouse Genome Database/Informatics (MGD/MGI; http://www.
informatics.jax.org). GO uses a controlled ontology in which proteins are described
in a species-independent manner in terms of a biological process (es), cellular com-
ponent(s) and molecular function(s) (Table 1). The GO consortium has since been
expanded to include a wide range of eucaryotic organisms, as well as many bacteria
and Archaea [15] and E. coli K-12 among its twelve “reference genomes” [16].

Systematic Screening for Gene Functions Using the Keio
Collection Single-Gene Deletion Library

Our development of the Keio collection single-gene deletion library [2], in which
each of nearly 4000 of the ca. 4300 E. coli genes is individually deleted, has allowed
testing for mutant phenotypes on a genome-wide scale. Because all mutants are in
the same genetic background, genome-wide screening is expected to show effects
resulting from loss of the respective gene. Questions are how to detect the effect(s)
of a gene deletion and how to elucidate the function based on phenotypic changes.
Two issues require mention. First, most single-gene deletions showed no observable

http://www.yeastgenome.org/
http://www.yeastgenome.org/
http://flybase.org/
http://flybase.org/
http://www.informatics.jax.org
http://www.informatics.jax.org
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Table 1 Gene ontology termsa

Cellular component
The cellular component ontology describes locations, at the levels of subcellular structures and

macromolecular complexes. As is true for the other ontologies, not all terms are applicable to all
organisms; the set of terms is meant to be inclusive. Cellular component includes such terms as
ATP synthase, cell envelope, inner membrane, periplasm, and ribosome, where many gene
products are found.

Biological process
A biological process is series of events accomplished by one or more ordered assemblies of

molecular functions. Examples are metabolic processes, regulation, response to stimulus,
signaling, and transport and transporters.

Molecular function
The biochemical activity (including specific binding to ligands or structures) of a gene product.
This definition also applies to the capability that a gene product (or gene product complex)
carries as a potential. It describes only what is done without specifying where or when the event
actually occurs.

aGene Ontology (GO) Consortium, http://www.geneontology.org/

phenotype during growth on a rich (LB) medium. Second, many that did show an
effect on rich medium grew poorly, thus making it difficult to distinguish primary
and secondary mutational effects.

Many research groups have now used the Keio collection to study different bio-
logical processes, like osmolarity, salt stress, heat stress, DNA repair, antibiotic
sensitivity, etc. In general, these groups have used the Keio collection to perform
genome-wide screens in two ways: (i) by screening mutants for ones that display a
novel phenotype under a particular growth condition or (ii) by testing mutants for
ones that display an altered cellular behavior. In these ways, systematic and com-
prehensive screening of the Keio collection [4] have led to finding genes whose loss
affects antibiotic hypersensitivity [17, 18], swarming motility [19], biofilm forma-
tion [20], growth in human blood [21], recipient ability in conjugation [22], cysteine
tolerance and production [23], colicin import and cytotoxicity [24], deethylation
of 7-ethoxycoumarin [25], and glycogen metabolism [26]. In most cases, several
single-gene deletion mutants were identified that affected the biological process
of interest. For example, Samant et al. [21] discovered that purine and pyrimidine
biosynthesis is critical for growth of E. coli in human serum; they uncovered 17 of
the 22 Keio mutants that have deletions of pyrimidine or purine biosynthetic genes
among mutants to grow in human serum.

In many cases, mutants were recovered which had deletions of genes of
unknown function, which made interpretations difficult. In other cases, mutants
were found which had deletions of genes that appeared to be unrelated to the pro-
cess being investigated. For instance, a genome-wide screening for mutants altered
in swarming motility revealed mutants with deletions of unrelated functions, such as
translation or DNA replication as well as ones of unknown functions, which caused
strong repression of swarming [19]. These results show how strongly biological pro-
cesses are interconnected within the cell, as well as how complicated the link can be
between cause and effect. That is, in some cases, a deletion that directly affects one

http://www.geneontology.org/


292 Y. Tohsato et al.

process can in turn indirectly affect a second process that is coordinately regulated
with the first process. Such examples are well known in transcriptional regulatory
networks where a global regulator(s) can affect the expression of genes beyond those
that are directly controlled by the said regulator. Complex biochemical pathways are
arranged in hubs with many connectivities. Hence, mutants lacking a hub protein are
likely to display many more phenotypes than mutants lacking a protein with fewer
connectivities. Understanding how various cellular networks interact requires much
further studies in next-generation biology.

We recently screened the Keio collection for hydroxyurea (HU)-sensitive
mutants. HU is believed to interfere with DNA replication by inhibiting ribonu-
cleotide reductase (RNR, encoded by nrd), which is required for conversion of NTPs
to dNTPs [27]. High-throughput screening was done using robotics as illustrated in

ΔrpmF

ΔmnmA

ΔrpmI

Replicate

Destination Source

Image analysis

(A)

(B) (C)

Fig. 1 High-throughput screening of the Keio collection. A schematic view of our screening proto-
col is shown. (a) The Keio collection is maintained as frozen glycerol stocks in 96-well microplates
(Source). Portions are replicated in 384-spot format onto the surfaces of LB agar plates without or
with 10 mM HU (Destination) such that duplicate replicas are juxtaposed horizontally. (b) Growth
is measured by imaging plates at various times with a CCD camera. Red rectangles show candi-
date single-gene deletion mutants unable to grow on HU-containing agar for which both replicas
grew only in the absence of HU. (c) Stamping is done with a Singer RoToR (Singer Instruments,
UK) colony pinning robot (shown) or until recently with a Biomek FX robot (Beckman Coulter,
Brea, CA)
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Table 2 Hydroxyurea-sensitive mutants in the Keio collectiona

Gene Encoded protein GO biological process

ahpC alkyl hydroperoxide reductase, C22
subunit

6805 xenobiotic metabolic process

dnaT DNA biosynthesis protein 6261 DNA-dependent DNA replication
fis global DNA-binding transcriptional

dual regulator
6310 DNA recombination

hdab ATPase regulatory factor involved in
DnaA inactivation

6261 DNA-dependent DNA replication

holC DNA polymerase III, X subunit 6261 DNA-dependent DNA replication
iscS cysteine desulfurase 9451 RNA modification
mnmAb tRNA-methyltransferase 9451 RNA modification
nusB transcription antitermination protein transcription
priAb primosome factor n′ (replication

factor Y)
6261 DNA-dependent DNA replication

rplA 50S ribosomal subunit protein L1 6412 translation
rpmF 50S ribosomal subunit protein L32 6412 translation
rpmJ 50S ribosomal subunit protein L36 6412 translation
rrmJ 23S rRNA methyltransferase 6364 rRNA processing
sirA (tusA) 2-thiolation step of mnm5s2U34-tRNA

synthesis
6400 tRNA modification

yheL (tusB) 2-thiolation step of mnm5s2U34-tRNA
synthesis

6400 tRNA modification

yheM (tusC) 2-thiolation step of mnm5s2U34-tRNA
synthesis

6400 tRNA modification

yheN (tusD) 2-thiolation step of mnm5s2U34-tRNA
synthesis

6400 tRNA modification

yfaE ferredoxin involved with ribonucleotide
reductase cofactor

6124 ferredoxin metabolic process

aAnnotations were found by using the PrFEcT WebSearch (www.prfect.org) and include results
from the EcoGene (www.EcoGene.org), EcoliWiki (www.EcoliWiki.org) and PEC (http://www.
shigen.nig.ac.jp/ecoli/pec/index.jsp) databases
bhda, mnmA, and priA are annotated as essential in the PEC database, yet we isolated single-gene
hda, mnmA, and priA deletion mutants [2, 3]

Fig. 1. HU-sensitive mutants were identified as ones unable to form colonies on rich
(LB) agar containing 10 mM HU. We uncovered 18 different HU-sensitive mutants
(Table 2). Unexpectedly, ten HU-sensitive mutants (iscS, mnmA, rplA, rpmF, rpmJ,
rrmJ, sirA (tusA), yheL (tusB), yheM (tusC), and yheN (tusD) are deleted of genes
connected to translation, including six (iscS, mnmA, sirA (tusA), yheL (tusB), yheM
(tusC), and yheN (tusD)) in a specific tRNA modification, the thiolation step of
mnm5s2U34-tRNA synthesis. Further analysis revealed that these mutants showed
strongly reduced synthesis of Nrd (Fig. 2).

From the point of view of cellular function, tRNA modification and dNTP sup-
ply would seem to be quite distinct biological processes. Although it is well known
that DNA replication and protein synthesis are coordinated in bacteria [28], the pre-
cise mechanism is unknown. Conducting global analyses with the Keio collection
may shed new light on many undiscovered or poorly understood cellular networks.

www.prfect.org
www.EcoGene.org
www.EcoliWiki.org
http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp
http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp
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Fig. 2 Effect of HU on Nrd synthesis. Nrd synthesis was monitored by measuring fluorescence in
cells carrying a low-copy plasmid with an nrd-Venus fusion during growth in LB without (–HU)
or with 5 mM HU (+HU). Fluorescence was measured by flow cytometry (FACScan; BD, Franklin
Lakes NJ). E. coli K-12 BW25113, the parent of the Keio collection [2], was used as the “wild-type
(WT) control”

Screening the Keio collection for effects on many different biological processes is
expected to provide new insights into the elucidation of functions of proteins belong-
ing to uncharacterized or poorly characterized protein families – a critical challenge
in the post-genomics era.

In the case of HU-sensitive screening, mutants were categorized into several
groups. First, they are divided groups based on whether HU inhibited growth or
killed the cells. Second, the latter were tested for whether cell death resulted from
a membrane stress response or non-membrane stress response [29]. Classifying the
mutants by suitable methods should yield new clues regarding function.
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In addition to the Keio collection, the construction of a second single-gene dele-
tion library, the ASKA deletion collection, is underway. Among other new features
of the ASKA collection, mutants belonging to this library contain a 20-nt molecu-
lar barcode. This feature allows identification of individual mutants within a mixed
population of all single-gene deletion mutants. Studying mixed populations has sev-
eral benefits over studying individual cultures or stamping protocols. The selection
process is closer to natural environmental conditions. Because competition occurs
among the mutants, one can quantitatively assess growth advantage(s) and dis-
advantage(s) of all mutants simultaneously under various culture conditions. It is
also beneficial for examining effects of drugs and inhibitors because much smaller
amounts are required for mixed cultures, which is especially important when the
drug or inhibitor of interest is expensive or hard to purify. Depending upon the
purpose, one needs to choose the most appropriate procedure (simple screening,
stamping, or competition). Regardless of purpose, the availability of genome-wide
single-gene deletion mutants provides many advantages over traditional methods:
(1) by conducting systematic and comprehensive genome-wide screens, one can
quickly determine whether all (non-essential) genes for a biological process have
been identified; (2) genome-wide screening can provide clues of value for identifica-
tion of unknown gene functions; and (3) Genome-wide screening can help elucidate
complex intracellular networks. Due to the vast amount of detailed knowledge
already available for E. coli, developing deeper understanding of “intracellular net-
works” will be especially informative towards construction of a whole-cell model
of unicellular organisms.

Systematic Screening of Single-Gene Deletion Mutants
for Phenotypes Using Phenotype MicroArrayTM Technology

We employed Phenotype MicroArrayTM (PM) technology to perform systematic
phenotype screening of selected single-gene deletion mutants [30, 31] (Fig. 3).
PM technology was originally developed as a method for finding unique traits of
individual organisms and for recognizing traits common to groups of organisms,
such as species, and has been expanded as a high-throughput tool for global analy-
sis of cellular phenotypes in post-genomic era [32]. This system monitors cellular
respiration during growth in 96-well microplates under 1536 different chemical
environments over a period of 24 h. Growth in each well is detected colorimetri-
cally by quantifying the generation of purple colored formazan from tetrazolium
which corresponds to the intracellular reducing state by NADH simultaneously. The
effect of single-gene deletions on this screen provides information on the impor-
tance of the corresponding protein in response to diverse chemical stresses, as well
as its contribution to a wide variety of different metabolic pathways. This high-
throughput assay provides direct information on the contribution of the protein to
the environmental fitness of the organism.

We performed PM analysis on ca. 300 single-gene mutants from the Keio col-
lection and clustered them as reported in part previously deletion strains of E. coli
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Respiration

Formazan

Tetrazolium

NAD+

NADH

E. coli

Query mutant culture

Phenotype MicroarrayTM

Incubation & colorimating

PM-1 to 10 Metabolic tests

PM-11 to 20 Chemical sensitivity tests

Fig. 3 Schematic view of Phenotype MicroArrayTM analysis. Respiration is measured by quan-
tifying the generation of NAD+ by formation of purple-colored formazan from tetrazolium. A
culture of the query mutant is dispensed into BIOLOG Phenotype MicroArrayTM plate. Color
development is automatically quantified during incubation in an OmniLog R© instrument. PM-1 to
PM-10 include 1 blank culture well and PM-11-20 have different chemical concentrations, result-
ing in a total of 1536 different chemical environments (1920 conditions). More precise information
is available at http://www.biolog.com

and the clustering analysis using the part of the results was reported previously [30,
31]. Based on the entire PM results, we show here statistically the effectiveness of
systematic phenotype screening using PM technology. The precise method of sta-
tistical measurement of PM will be reported elsewhere [31]. As shown in Fig. 4,
709 (36.9%) of 1920 conditions showed no respiration in our control strain and 12
(0.6%) of the conditions are negative (water) and positive (LB medium) controls.
Only 8 of the remaining 1199 conditions had no significant phenotype change in
any of the 300 mutants tested.

Figure 5 shows the medium condition effects and environmental dependencies of
the ca. 300 mutants tested. On average, 45 mutants showed significant phenotypic
changes under each condition (Fig. 5a). Further, each mutant showed differences
under 183 conditions (Fig. 5b). It is worth mentioning that our PM tests were done
in duplicate and showed a high degree of reproducibility (94.5%).

Although PM technology is a powerful tool for functional screening, it alone
provides insufficient sensitivity to identify functions for proteins of unknown func-
tion. The most likely causes are robustness and the existence of unknown alternative
metabolic pathways. E. coli K-12 has 98 genes encoding isozymes, including 80
encoding pairs of isozymes based on annotations in EcoCyc version 13.5 [22]. In
some cases, expression patterns of these isozymes differ; integrating results from

http://www.biolog.com
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No respiration in WT
(709)

Control medium
(12)

Respiration changes
(1199)

No effects for all mutants tested
(8)

Fig. 4 Classification of 1920 medium conditions by color change. The number of conditions
showing no respiration in E. coli K-12 BW25113 (WT), respiration changes, and no effects for
all mutants tested are given in parentheses. Conditions included negative (water) and positive (LB)
control medium
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show number of single-gene deletions resulting in significant phenotype changes using 100 gene
deletions as the bin size. (b) Abscissa and ordinate axes show the number of phenotype changes
observed in the single-gene deletion mutants using 200 medium conditions as the bin size

transcriptome analysis from DNA microarrays, or preferably RNA-seq, with PM
analysis may provide deeper insight into physiological function.

Systematic Screening for Genetic Interactions

Synthetic lethal screens are an effective experimental approach for revealing
mechanisms of cellular robustness [33]. We have developed a strategy to screen
comprehensively for effects of double gene deletions in E. coli [34, 35] (Fig. 6).
Preliminary results using such strategies have been reported [5, 6]. Even though
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Fig. 6 Schematic view of genetic interaction analysis by double gene deletion. A schematic view
of the protocol for creating and examining double-gene deletion mutants in a high-throughput
manner by conjugation is shown. The query gene mutant, which serves as an Hfr donor, is evenly
spread on LB agar to form a donor lawn. Single-gene deletion library, which serves as recipient
culture and stored as frozen glycerol stocks or colonies on agar in high-density format, is replicated
onto the donor lawn by robotic pin stamping. Following growth to allow conjugation to occur, pin
stamping is used to replicate from the conjugation surface onto the 1st selection. These plates
are incubated for 6 h and then replicated by pin stamping on the 2nd selection plate, which is
necessary to eliminate background growth. The 2nd selection plate is imaged with a CCD camera
over time, and image analysis is done to identify double mutants growing poorer or better than
control matings. Details will be reported elsewhere

the genome sequencing and large-scale genetic analyses have revealed the enor-
mous amount of genetic information of the target organisms, our knowledge of
cellular system is still very limited. A major challenge is to understand physio-
logical networks of genes in a living cell. As described above, single-gene deletion
mutants generally show limited phenotype changes because of the redundancy or
compensatory pathways. This phenomenon is called robustness; there can be many
mechanisms that can lead to re-construction of physiological steps or gene prod-
uct networks. The structure of the cellular network may not be rigid but rather be
dynamically changing according to the environment, which can result not only from
the extracellular environment but also by genetic alterations (mutation or deletion).
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Wild type Viable lethal / sicknessViable

Fig. 7 Concept of synthetic lethality analysis by a double-gene deletion strategy. Normally organ-
isms may have multiple pathways to generate essential substrates. In such cases, elimination of
one pathway step by mutation is without effect because the other pathway can provide the missing
step. The cell is unable to survive only when both pathways are disrupted simultaneously. The
consequence of the corresponding double mutation leads to synthetic lethality (or sickness), which
reveals a genetic interaction

Robustness in a cellular network is similar to the operation of a transportation
network. Although a shortest path exists, an alternative longer detour pathway(s) is
often available if the shortest one is blocked. The concept of the synthetic lethality
analysis by a double-gene deletion strategy is shown in Fig. 7. When two genes
are found to interact such that loss of one is without (major) effect but loss of
both results in a new mutant phenotype, the genetic interaction is called epistasis.
Epistasis effects can cause many kinds of effects; only a subset cause cell lethal-
ity or sickness. However, those causing severe growth effects are easiest to score.
Large-scale genetic interaction studies have provided the basis for defining gene
function and gene networks. Recent results from comprehensive genetic interaction
analyses have greatly accelerated deeper insight into physiological gene functions
and networks from bacteria to humans [33].

Information Resources

GenoBase was originally developed for the E. coli genome project, which was
launched in Japan in 1989, to select phage clones from the ordered Kohara library
[36] for sequencing [37]. Because E. coli is one of the best studied organisms, many
gene sequences had already been accumulated at the time. To facilitate selection
of the target phage clone, we constructed the GenoBase database to help distin-
guish sequenced and non-sequenced regions of the chromosome. First, we collected
all of the E. coli sequence information from publicly available databases, such as
GenBank, EMBL and DDBJ, and made consensus sequence by assembling these
followed by mapping them onto the chromosome to identify sequenced regions.
Upon completion of genome sequencing [38–42], GenoBase was further developed
for supporting systematic functional genomics and systems analyses for E. coli.
The development of biological resources for systematic studies of E. coli K-12,
like the single-gene deletion Keio collection [2] and the ASKA ORFeome clone
library [43], has proven especially valuable worldwide. The advent of technologies
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for acquisition of high-throughput data types (series of comprehensive network anal-
yses, e.g., transcriptome, proteome, interactome and genetic interaction) has created
need to preserve and share information.

GenoBase originally displayed information only for the W3110 strain of E. coli
K-12, which was the target in the Japanese E. coli genome project [27, 28], whereas
the MG1655 strain was the target in the Wisconsin genome sequencing project in the
USA [29]. GenoBase version 7, which was developed in collaboration with Purdue
University (www.PrFEcT.org/GenoBase), has been enhanced to permit the user to
choose displaying information for E. coli K-12 MG1655 or W3110. GenoBase ver.
7 has also been enhanced to support image data and other high-throughput data.

GenoBase (Fig. 8) is especially rich in experimental resources (mutants and plas-
mids) and experimental data from a large E. coli functional genomics project in
Japan, which far exceeds all other resources combined. Information in GenoBase is
public or private (password accessible), depending upon whether the data have been
published. Current resources include (1) two types of ASKA ORFeome libraries
[30], including one with a C-terminal GFP tag and one without; and (2) the single-
gene deletion library known as the Keio collection [2]. Comprehensive experimental

Front page of GenoBase

Keio collection

Search results
Over expression 
from ASKA clone

ASKA clone

List of localization

Protein-protein interaction

Protein localization

http://ecoli.naist.jp
http://www.PrFEcT.org/GenoBase

Fig. 8 The GenoBase Information Resource. GenoBase version 6 is fully operational at http://
ecoli.naist.jp, while GenoBase version 7 is at www.PrFEcT.org/Genobase. Version 8 is now under
construction. Once development is completed, mirroring will be deployed to maintain synchrony
between these sites. Querying from home page gives search results in a table with links to pages
for resources and experimental results based on the use of these resources

www.PrFEcT.org/GenoBase
http://ecoli.naist.jp
http://ecoli.naist.jp
www.PrFEcT.org/Genobase
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resources and data generated by systematic analysis using those resources are con-
tinuously growing. To facilitate both systems and individual research approaches
using E. coli K-12 as a model system, integrative databases provide essential
information.

GenoBase activities have not only involved the collection of high-throughput
experimental data but also improvement in the quality of K-12 genome anno-
tation. One example was the re-confirmation of the E. coli genome sequence,
which resulted in correction of sequencing errors of previously published W3110
and MG1655 sequences [28]. Correction of the K-12 genome sequence provided
major stimulus for cooperative re-annotation of the K-12 genome at international
annotation workshops held in Woods Hole in 2003 and 2005 [31].

GenoBase is a searchable database devoted to systems biology of E. coli K-12.
Querying GenoBase is done from the home page (Fig. 8). Any term, such as an id,
gene name, product name, is accepted. Searching results are displayed in a tabular
format with links to gene pages, which show additional information about the target
gene. Contents show genome annotation information together with the biological
resources and systematic analysis data using those resources. GenoBase is based on
the predicted genes and all data are stored associated with the genes.

High-throughput systematic experimental data currently includes three large
data sets:

• Protein–protein interaction data are based on using His-tagged ASKA ORF clone
library without GFP [32]. All of the interaction data including data produced from
TOF-MAS analysis is stored and specific partner candidates as prey proteins are
available from each target protein as bait.

• DNA microarray data from analysis of single-gene deletion mutants were
generated using full length cDNA type arrays, which were made with PCR-
amplified fragments from ASKA clone library. Quantitative data were generated
by ImaGene for about 150 deletion mutants, mostly for ones lacking transcription
factors.

• Protein localization data are displayed for transformants carrying the GFP-tagged
ASKA ORFeome clones. Transformants were analyzed by confocal microscopy
of transformants expressing each protein at a low basal level in absence of an
inducer to avoid misfolding of the target protein that can accompany protein
overproduction. Images captured with a CCD camera are stored in our database.

Future Perspectives

(A) Quality control of resources
Our group continues to improve the quality of the biological resources created in
Japan. For example, one quality control issue for the Keio collection has been the
occasional discovery of partial duplications. Accordingly, the entire collection has
now been validated. Upon publication, these will be open to the public through
GenoBase.
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(B) New experimental resources
Continuous efforts are underway to improve current resources and to construct new
resources to expand systematic studying of E. coli. A new single gene deletion
library with a different antibiotic resistance marker has been created for construc-
tion of double mutants to test for genetic interactions. The same library is bar coded
to permit population studies. A second new resource near completion is a Gateway-
fitted ASKA clone entry. All precise information on these new resources will also
be stored in GenoBase.

(C) Systematic approaches using resources
As described above, systematic analyses, such as protein–protein interaction and
protein localization, were performed and the data stored in GenoBase. Recently, we
reported high-throughput systems for studying genetic interactions [5, 6] and the
results from these analyses will be stored in GenoBase or partner databases.
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