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Abstract Neurosteroids, including 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP),
mediate stress-responding, and the function and development of the central nervous
system. 3α,5α-THP can be produced in the brain or metabolized from peripheral
sources, including the adrenals, gonads, and placenta. 3α,5α-THP has actions to
dampen stress-responding and reinstate parasympathetic tone. There are sex differ-
ences in stress-responding, such that women are more stress-responsive than men.
Further, there are sex differences in 3α,5α-THP, such that women have greater
variations across the menstrual cycle and across the lifespan compared to men.
Similar differences and variations in 3α,5α-THP are observed among rodent species,
and elevated levels of 3α,5α-THP are associated with dampened stress-responding.
These sex differences in stress-responding and neurosteroids may be related to sex
differences in the incidence and/or expression of schizo-affective disorders. This
chapter reviews findings in support of the hypothesis that 3α,5α-THP has a role in
schizophrenia and/or affective disorders.
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Abbreviations

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
3α,5α-THP 3α-hydroxy-5α-pregnan-20-one
3α-HSOR 3α-hydroxysteroid oxidoreductase
3β-HSD 3β-hydroxysteroid dehydrogenase
5α-R 5α-reductase
5α-RKO 5α-R knockout mice
ADX Adrenalectomized
ACTH Adrenocorticotropin
apoER2 Apolipoprotein E2 receptor
ADHD Attention deficit hyperactivity disorder
CNS Central nervous system
B Corticosterone
CRH Cortico-tropin-releasing hormone
P450scc Cytochrome P450-dependent C27 side chain cleavage enzymes
DHP Dihydroprogesterone
DA Dopamine
D1 DA-like type 1 receptors
DAT DA transporters
DATKO DA transporter knockout mice
ER Endoplasmic reticulum
E Estrogen
FST Forced swim task
GBRs GABAA/benzodiazepine receptor complexes
GD Gestational day
GAD Glutamic acid decarboxylase
HPA Hypothalamic pituitary adrenal
IL-1β Interleukin-1β

METH Methamphetamine
NMDARs N-methyl-D-aspartate receptors
OVX Ovariectomized
PFC Prefrontal cortex
PMDD Premenstrual dysphoric disorder
PNS Prenatal stress
PPI Prepulse inhibition
P Progesterone
PR Progestin receptor
PND Post-natal days
RED Reproductive Endocrine Dysfunction
StAR Steroidogenic acute regulatory protein
TSPOs Translocator proteins
USV Ultrasonic vocalization
VTA Ventral tegmental area
VLDLR Very low-density lipoprotein receptor
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Introduction

Neurosteroids, steroid hormones produced in the brain, such as 3α-hydroxy-
5α-pregnan-20-one (3α,5α-THP), are important endogenous modulators of the
hypothalamic pituitary adrenal (HPA) axis, and the function and/or development
of the central nervous system (CNS). 3α,5α-THP can be produced in the brain
in response to stress to dampen HPA-responding and reinstate parasympathetic
tone (Diagram 17.1) [1, 2]. 3α,5α-THP can also be metabolized from proges-
terone (P) secreted by the adrenals, ovaries and/or placenta [3], where actions in the
brain can also mitigate stress-responding. Thus, production of 3α,5α-THP mediates
stress-responding.

Hippocampus/
Hypothalamus

 

LHRH CRF

Pituitary

LH FSH ACTH

Adrenal gland 

Kidney

Ovaries

CortisolProgesterone

Estrogen

Diagram 17.1 The influence of endogenous hormones on the hypothalamic-pituitary-adrenal and
the hypothalamic-pituitary-gonadal axes are depicted in this diagram

There are sex differences in stress-responding, such that women respond with
greater HPA-reactivity and have higher cortisol (stress hormone) levels when
presented with stressful stimuli, compared to men [4–6]. There are also sex dif-
ferences in basal levels of 3α,5α-THP, such that women in the luteal phase and
pregnancy have higher levels of 3α,5α-THP in plasma and hippocampus
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Fig. 17.1 There are sex
differences in basal levels of
3α,5α-THP, such that women
in the luteal phase and
pregnancy have higher levels
of 3α,5α-THP in plasma
compared to men and women
in the follicular phase

compared to men and women in the follicular phase (Fig. 17.1) [7, 8]. Sex
differences in 3α,5α-THP coincide with sex differences in stress-responding, par-
ticularly during perimenstrual or post-partum 3α,5α-THP withdrawal [9, 10]. Thus,
sex differences in stress-responding may be mediated by sex differences in 3α,
5α-THP.

Similar patterns of stress-responding and differences in 3α,5α-THP are observed
among female and male rodents. Basal and stress-induced corticosterone (B) levels
are higher among females during 3α,5α-THP decline compared to males [11– 13].
Further, stress-induced elevations in 3α,5α-THP are greater and occur more rapidly
among female rats, particularly when gonadal sources of 3α,5α-THP are low
[14, 15]. Administration of 3α,5α-THP to females and males attenuates the elevation
of plasma adrenocorticotropin (ACTH) or serum B secretion produced by emo-
tional and/or physical stress [2, 16]. Thus, enhanced levels of 3α,5α-THP dampens
stress-responding in female and male rodents.

Sex differences in stress-responding and 3α,5α-THP may be related to sex dif-
ferences in the incidence and/or expression of schizo-affective disorders among
women and men. Women suffer from mood disorders and are uniquely at risk for
affective disorders that are linked to hormonal status compared to men. Affective
disorders that are typically diagnosed in women and are associated with precipitous
decreases in 3α,5α-THP levels include premenstrual syndrome, post-partum depres-
sion, and associated psychoses [17–19]. This chapter reviews findings in support of
the hypothesis that 3α,5α-THP has a role in schizophrenia and/or affective disorders.
Basic research from our laboratory using various animal models of schizo-affective
disorders (prenatal stress, social isolation, perinatal hippocampal lesion, dopamine
transporter knockout mice, psychostimulants) will also be discussed to support
the potential role of 3α,5α-THP in the development, etiology, and/or treatment of
schizo-affective disorders.
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Biosynthesis and Metabolism of 3α,5α-THP

The source of 3α,5α-THP can be central and/or peripheral. Central production is
from biosynthesis, while peripheral production is from metabolism of hormones
released from the adrenals, gonads and/or placenta. The enzymes necessary for neu-
rosteroid biosynthesis and metabolism are expressed by the CNS, and are highest
in the midbrain, limbic regions, cerebellum, tectum, pons, medulla, spinal cord, and
pituitary. Further, this pattern of localization of these enzymes is conserved across
species [20]. Biosynthesis of 3α,5α-THP starts with the expression of translocator
proteins (TSPOs), which are high affinity cholesterol binding proteins that import
cholesterol into the mitochondria and are highly expressed in steroidogenic tissues.
The steroidogenic acute regulatory protein (StAR) and cytochrome P450-dependent
C27 side chain cleavage enzymes (P450scc) are proteins that initiate steroidoge-
nesis by oxidizing cholesterol to pregnenolone [21–23]. Following formation of
pregnenolone, it is converted to P by 3β-hydroxysteroid dehydrogenase (3β-HSD).
P, that is from biosynthesis previously described, or has been released from a
peripheral source, is metabolized to dihydroprogesterone (DHP) by 5α-reductase
(5α-R) and to 3α,5α-THP by 3α-hydroxysteroid oxidoreductase (3α-HSOR). Thus,
biosynthesis and/or metabolism leads to the formation and potential actions of
3α,5α-THP.

Genes Implicated in 3α,5α-THP Dysregulation

A null mutation in a candidate gene that regulates biosynthesis of 3α,5α-THP and
has been implicated in schizo-affective disorders disrupts the function of TSPO.
This is found to be higher among schizophrenics, than in a control population [24].
As well, there is evidence for deficits in metabolic signaling in those diagnosed with
schizo-affective disorders, mental retardation, Parkinson’s Disease, Alzheimer’s
Disease, depression, brain development and ischemic stroke [25]. Thus, genes which
regulate 3α,5α-THP biosynthesis may be important markers in the development,
etiology, pathophysiology and vulnerability to dysregulation in stress-responding
among schizo-affective patients.

Mechanisms of Action of 3α,5α-THP

3α,5α-THP has actions at several non-traditional steroid targets, including gluta-
mate, norepinephrine, dopamine, serotonin, acetylcholine, and oxytocin receptors
[26]. We will focus on actions of 3α,5α-THP through GABAA, dopamine (DA), and
N-methyl-D-aspartate receptors (NMDARs).

Actions of 3α,5α-THP at GABAA/benzodiazepine receptor complexes (GBRs)
have been investigated the most. At low concentrations, 3α,5α-THP alters the
duration of GABA current by enhancing GABA influx [27–32]. This can occur
through 3α,5α-THP enhancing GBR binding site number and/or affinity, and/or
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increasing GABA synthesis, in neurons through glutamic acid decarboxylase [33].
However, at high concentrations, 3α,5α-THP exerts an intrinsic agonistic activity at
GBRs in the absence of GABA [31]. In fact, 3α,5α-THP is the most potent naturally
occurring ligand for GBRs such that its effects are ∼600 times more potent than
the most effective barbiturate, and ∼60 times more potent than P itself [30]. Thus,
3α,5α-THP has actions involving GABAA.

Actions of 3α,5α-THP at DA-like type 1 receptors (D1) may be downstream
of GBRs [34–36]. GABA neuron migration to the cerebral cortex is promoted by
actions at D1 during development. GABA neuron migration from the basal forebrain
to the cerebral cortex can be altered by impairment of D1 [37]. Thus, 3α,5α-THP
can have actions at D1 and/or GBRs to influence brain development.

Actions of 3α,5α-THP at NMDARs can enhance glutamate and cognitive per-
formance in cortical tasks [33, 38, 39]. Enhancement in learning and memory is
associated with actions at glutamatergic substrates, particularly in limbic regions
[40, 41]. However, aberrant neural development can occur if there is glutamate
overactivity and subsequent excitotoxicity [42]. Thus, GABAergic, DA-like, or glu-
tamatergic targets that can be altered by 3α,5α-THP may influence the development
and/or expression of aberrant behaviors, such as those observed in schizo-affective
disorders.

Animal Models of Schizo-Affective Disorders and Alterations
in 3α,5α-THP

Animal models are important in the investigation of the mechanisms underlying
human disease and in designing new therapies. For example, these models may be
used to test the plausibility of theories about the origin of schizophrenia; explore
the mechanisms of schizophrenia-like phenomena; test the effects of confounding
factors, such as medication and postmortem interval, or time since death; investigate
therapeutic and adverse effects of the drugs used for the treatment of schizophrenia
and develop potential new treatments [43]. It is important to reveal 3α,5α-THP’s
effects and mechanisms due to its potential role in the etiology and/or treatment
of schizo-affective disorders and HPA responses. Few investigations to date have
examined 3α,5α-THP’s functional role; yet, those involving 3α,5α-THP and schizo-
affective disorders, have primarily utilized men, despite more women being affected.
Thus, understanding the role, source, and mechanisms of 3α,5α-THP in females is
required to fill gaps in the current knowledge.

Stress-Responding and 3α,5α-THP

3α,5α-THP modulates the HPA axis and may serve to buffer stress-responding.
P and 3α,5α-THP reduce levels of cortico-tropin-releasing hormone (CRH) in
response to an acute stressor [44]. Acute increases in 3α,5α-THP, due to stress,
enhances GABAA receptor function, and attenuates activation of HPA-responding,
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which may help individuals return to a state of homeostasis following chal-
lenge [2, 16, 45–47]. Blocking 3α,5α-THP’s actions at GABAA receptors prevents
stress-induced glucocorticoid secretion and anti-anxiety behavior.

3α,5α-THP is present early in prenatal development at embryonic day 17
[48, 49]. As early as post-natal day 6, brain 3α,5α-THP concentrations increase
in response to stressors, such as isolation from the nest, dam, and siblings [50,
51]. Neonatal stress also has more pervasive effects on females than males, such
as greater weight loss in neonatally-stressed females compared to males in response
to chronic restraint in adulthood [52]. Cold water-swim, and other stressors, increase
brain 3α,5α-THP levels of female, more so than male, gonadectomized (GDX) and
adrenalectomized (ADX) rats [3, 53, 54]. Increases in 3α,5α-THP produced by
such acute stress experiences are conserved across species, and produce anxioly-
sis among avian, amphibian, and mammalian species in response to “fight-or-flight”
stimuli [33, 55]. Thus, actions of 3α,5α-THP mediates stress-responding early in
development.

Schizo-Affective Disorders and Stress-Responding

Diagnosis of schizophrenia is based upon both positive (hallucinations, delusions)
and negative symptoms (avolution, alogia) [56]. There has been a recent emphasis
on negative symptoms, which correlate with loss of social function [57] and plasma
levels of stress hormones [58–60]. Notably, there is dysregulation of the HPA axis
among people with schizophrenia or affective disorders [61–66]. Plasma levels of
cortisol and/or ACTH of schizophrenics are higher than controls and correlate with
their negative symptoms [59, 67–71]. How dysfunction of the HPA axis contributes
to the pathophysiology of schizophrenia needs to be better-understood [72, 73].
Thus, the pathophysiology of stress-responding and other affective and cognitive
disruptions associated with schizo-affective disorders may be related to actions of
3α,5α-THP.

Prenatal Stress and 3α,5α-THP

Stress during critical periods in development may influence stress responding in
adulthood and vulnerability to psychiatric disorders. Women whose children were
exposed to inordinate stress during pregnancy have an increased incidence of schizo-
affective disorders [74–76]. Gestational stress activates the maternal HPA axis and
can cause increases in placental CRH [77] and fetal hypoxia [78]. CRH secretion,
as a result of prenatal and early life stress, may contribute to the development of
stress-related mood and anxiety disorders in adulthood. An animal model of prena-
tal stress (PNS) has been used by our lab and others as a model of schizo-affective
disorders. Methods of producing such a model using PNS vary, but common char-
acteristics result from most models, including neuroendocrine, neuroanatomical,
and behavioral sequelae similar to those observed in schizo-affective disorders. In



374 C.A. Frye and D.C. Llaneza

support, people or rodents respond to stressful stimuli in adulthood with higher
and/or more prolonged elevation of ACTH and/or corticosteroids if exposed to PNS
during development [79–83]. As well, rats exposed to PNS had adrenal hypertro-
phy, which may have resulted from chronic over-stimulation of the adrenal gland
by ACTH [84]. Further, PNS exposure is associated with abnormal development of
the hippocampus and the prefrontal cortex (PFC) in people and rodents [85–90].
Behavioral inhibitions, demonstrated by timidity and shyness in people [91], and
reduced exploration in social and novel situations in animal models [92–96], are
produced by PNS. Thus, PNS may be a useful model to examine the link between
developmental exposure to stress and the expression of characteristics relevant for
schizo-affective disorders.

Our laboratory has used several different models of PNS in rodents. The most
simplistic model involved restraining dams under bright lights for 20 min on gesta-
tional day (GD) 18, when the hippocampus, PFC, and midbrain are developing [97].
Offspring of these dams had lower levels of 3α,5α-THP in hippocampus, but not
plasma, when examined during adulthood [34]. Plasma B levels were significantly
higher among PNS rats exposed to an acute stressor during adulthood, compared
to basal levels of B and non-PNS controls [34]. The hippocampus of PNS rats had
significantly fewer granule cells compared to non-PNS controls [98]. Behavioral
inhibition was observed wherein PNS rats demonstrated more anxiety-like behav-
ior and less sociability compared to controls. Thus, this model of PNS is related
to changes in 3α,5α-THP and stress hormone levels, hippocampal integrity, and
behavioral inhibition.

PNS alters behaviors related to inhibition, including affect, depression and stress-
responding, suggesting that PNS may alter responses to gonadal hormones. For
example, estrogen (E) is a gonadal hormone that mediates expression of depressive
behavior in the forced swim task (FST) and enhances P metabolism to 3α,5α-
THP [99, 100]. Data indicate that non-PNS and PNS rats administered E show
less depressive behavior compared to non-PNS and PNS rats administered vehicle,
respectively [101]. Response to an acute stressor is also altered in PNS rats and may
be related to aberrant responding to gonadal hormones, such as E. Ovariectomized
(OVX), E-administered, PNS rats exposed to 20 min of restraint stress immediately
prior to exposure to a novel environment demonstrate more anxiety-like behavior
compared to OVX, E-administered, non-PNS and OVX, vehicle-administered, PNS
rats also given 20 min of restraint stress [102]. Together these data suggest that
PNS can induce behavioral changes and that an acute stressor can amplify these
effects on behavior and responsiveness to gonadal hormones. Thus, the effects of
PNS on behavioral and neuroendocrine outcomes are of interest, particularly when
examined across development and adulthood.

Effects of Prenatal Stress on Offspring Before Puberty

The effects of PNS on offspring before puberty is of interest, as this represents
critical time points in development, and may provide insight of how alterations of
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behavioral and neuroendocrine responses manifest in adulthood as a result of early
developmental stress and challenge. As well, these changes that occur across devel-
opment and into adulthood may predict vulnerability to etiology, expression and/or
prognosis of schizo-affective disorders.

One model involved dams that were chronically-exposed to restraint stress for
45 min under a bright light, three times a day, on GDs 17–21, or not. PNS and control
offspring were cross-fostered to non-manipulated dams in our colony and weaned
at post-natal days (PND) 20–21. Offspring were tested for cognitive performance
as juveniles at PND 28–30. Results indicate that PNS offspring showed reduced
5α-R of P and show decreased cognitive performance [103]. Further, although sex
differences in cognitive performance were not observed, there were sex differences
in anxiety-like responding such that PNS females demonstrated less anxiety-like
behavior compared to controls, and no differences were observed among males
(Fig. 17.2). Thus, sex differences in affective behavior are altered following chronic
restraint stress during gestation.

Another model our lab used was immune challenge during gestational develop-
ment by exposing dams to the cytokine interleukin-1β (IL-1β, 1 μg, IP) on GDs
17–20, and offspring were assessed for cognitive performance and affective behav-
ior. Juvenile rats exposed to IL-1β demonstrate decreased cognitive performance
compared to controls (Fig. 17.3). Further, anxiety-like behaviors of rats exposed to
IL-1β are similar to rats exposed to PNS in that females demonstrate less anxiety-
like behavior following gestational exposure to IL-1β (Fig. 17.3). These data imply
the important role that physiological immune response of the dam may play on fetal
development. However, the stress response to psychological aspects of these may
encompass only one aspect of these effects.

The stress response of the dam may also account for much of these effects on
offspring. When stressors are unpredictable, they can have even more salient effects
on HPA function. We investigated the effects chronic unpredictable stressors (com-
binations of forced swim for 15 min, restraint for 60 min, cold exposure for 6 h,
overnight fasting, lights on during the dark phase of the circadian light-cycle, social

Fig. 17.2 PNS females
demonstrate less anxiety-like
behavior in the open field
compared to controls, and no
differences were observed
among males
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Fig. 17.3 Juvenile offspring of dams exposed to IL-1β during gestation demonstrate decreased
cognitive performance in the object recognition task compared to controls. Offspring are similar to
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the open field

crowding) thrice daily to dams from GDs 17–21. Results indicate that variable
stress-exposure reduces cognitive performance among juvenile rats compared to rats
that were minimally handled [104]. Notably, females appeared more affected; how-
ever, significant sex differences were not observed as neither males, nor females,
that were stressed demonstrated significantly different affective behavior. Thus, sex
differences in behaviors are not observed among animals that experience variable
stress, such that females may become more male-like in their behavioral phenotype.

To begin to assess mechanisms that may underlie offspring performance, HPA
response to handling was examined in 28–30-day-old juvenile rats that were pre-
natally exposed to maternal injections of vehicle oil, finasteride (50 mg/kg, SC), or
3α,5α-THP (8 mg/kg, SC) on GDs 16–20. Plasma B levels in response to handling
was significantly elevated in the finasteride-exposed group compared to vehicle- or
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3α,5α-THP-administered offspring (Fig. 17.4). These data support the notion that
developmental changes in HPA-responding of offspring can result when maternal
3α,5α-THP is perturbed during late pregnancy. These data provide proof-of-concept
that exposure to psychological, physical, or immune stressors during late pregnancy
can reduce cognitive performance among offspring. Further, disruption of mater-
nal 3α,5α-THP alone can have commensurate negative impact of gestation and
offspring cognitive development. These observations may be related to HPA dys-
function that results in prenatally-stressed offspring as data show that perturbing
maternal 3α,5α-THP in late gestation can alter later neuroendocrine response to a
mild stressor.

Sex Differences in 3α,5α-THP and Incidence and Symptom
Manifestation of Schizophrenia

The incidence and/or expression of schizophrenia may be mediated by sex dif-
ferences in biosynthesis and/or metabolism of 3α,5α-THP. Women, compared to
men, typically have higher levels of 3α,5α-THP, are more likely to have schizophre-
nia with later onset, better prognosis, and therapeutic response to lower dosages
of antipsychotics [105, 106]. More women than men suffer from mood disorders
[107]. Women are uniquely at risk for affective disorders that are linked to hormonal
status. First onset, or recurrence of psychotic episodes, are more likely and more
negative symptoms are reported when 3α,5α-THP levels among women are low
perimenstrually or post-menopausally [108–111]. Sex differences that favor women
suggest that 3α,5α-THP may have a protective role in schizophrenia. Women with
schizophrenia experience later age of onset, less debilitating psychiatric symptoms,
fewer psychiatric hospitalizations, better pre- and post-functioning, and a more
rapid and greater response to drug treatments than do men [112, 113]. Women
who were diagnosed with schizo-affective disorder and were currently on a second-
generation anti-psychotic medication received adjunctive pregnenolone treatment.
These women had higher 3α,5α-THP levels and demonstrated improved perfor-
mance in cognitive tasks than those who were on adjuctive placebo [114]. It should
be noted that there is little evidence to suggest that women with psychopatholo-
gies, such as schizo-affective disorders, have different absolute levels of 3α,5α-THP,
rather they may be more sensitive to changes in 3α,5α-THP [105] or more vulner-
able to stress when levels change. Thus, 3α,5α-THP may play an important role in
schizo-affective disorders.

Interactions of Therapeutics and Neurosteroids in Schizophrenia

Affective disorders associated with the onset of psychiatric disturbances with
menstruation or parturition, when there are precipitous decreases in 3α,5α-THP,
include premenstrual syndrome, postpartum depression, and associated psychoses
[17, 107, 115]. 3α,5α-THP may underlie the pathophysiology and/or treatment of
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schizo-affective disorders, as some anti-depressant and anti-psychotic treatments
can increase 3α,5α-THP levels. Women who were diagnosed with severe premen-
strual syndrome, also known as premenstrual dysphoric disorder (PMDD), were
examined during the luteal phase for changes in severity of symptoms and changes
in levels of 3α,5α-THP while on an anti-depressant (sertraline, desipramine, or
placebo) for at least 2 months. Results indicate that women who demonstrated an
increase in 3α,5α-THP levels reported improvements in symptom severity. Other
women who had a decrease in serum 3α,5α-THP reported worsening of symptoms,
compared to those that did not show changes in 3α,5α-THP (Fig. 17.5) [17]. Further,
SSRI treatment with sertraline may be influenced by baseline levels of 3α,5α-THP in
that women who demonstrated low levels of 3α,5α-THP had a significant increase
in levels of 3α,5α-THP following SSRI treatment, while women with high base-
line levels demonstrated a decrease following SSRI treatment. Those with low and
mid baseline levels of 3α,5α-THP showed at least a 50% improvement in PMDD
symptoms, while those with high baseline levels showed no change in symptoms
(Fig. 17.6) [116]. Thus, changes in 3α,5α-THP levels following anti-depressant
treatment may mediate symptoms associated with PMDD such that a greater change
in levels are associated with a reduction in PMDD symptoms.

Men can also experience symptom improvement with changes in levels of 3α,5α-
THP following treatment. Depressed men treated with an SSRI, fluoxetine, had
increased 3α,5α-THP levels, but not P or DHP, similar to non-depressed controls
in their cerebral spinal fluid, and concomitant with alleviation of their depres-
sive symptomology [117, 118]. Due to this evidence that 3α,5α-THP may have
a role in schizo-affective disorders, its effects in multiple animal models has
been investigated. Findings from animal models suggest that 3α,5α-THP has anti-
depressant effects [119, 120]. Male mice administered fluoxetine, 3α,5α-THP, or
a drug that increases biosynthesis of 3α,5α-THP, show less depressive behavior

Fig. 17.5 Women diagnosed with PMDD were examined during the luteal phase for changes
in severity of symptoms and changes in levels of 3α,5α-THP while being treated with an anti-
depressant. Women that demonstrate an increase in 3α,5α-THP levels reported improvements in
symptom severity. Women that demonstrate a decrease in 3α,5α-THP levels reported worsening of
symptoms, compared to those that do not show changes in levels of 3α,5α-THP
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Fig. 17.6 Women diagnosed with PMDD treated with sertraline demonstrated an increase in
3α,5α-THP levels when levels prior to treatment were low, while women that had high baseline
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and mid baseline levels of 3α,5α-THP showed at least a 50% improvement in symptoms, while
those with high baseline levels of 3α,5α-THP showed no change in symptoms, following treatment

than vehicle-administered mice [121]. Thus, 3α,5α-THP may be involved in the
pathophysiology and/or treatment of depression associated with schizo-affective
disorders.

Anti-psychotics, Anti-depressants and 3α,5α-THP

Data from clinical reports suggest that olanzapine, a novel atypical anti-psychotic,
may be as efficacious as traditional anti-psychotics at treating schizo-affective
symptoms. Olanzapine reduces negative and positive symptoms, disorganized
thoughts, impulsivity/hostility, and anxiety/depression [122, 123]. Notably, in con-
trast to traditional anti-psychotics, such as haloperidol, olanzapine’s therapeutic
effects occur with negligible extrapyramidal side effects or akathisia. Olanzapine
can improve affect, cognition, interpersonal relationships, impulsivity, and agitation
[124, 125]. Olanzapine can also reduce behavioral inhibition in animal models by
attenuating fear and anxiety [126, 127]. As well, it increases positive affect and
social interactions [128]. Although the mechanisms by which olanzapine may have
its therapeutic effects are not known, administration of olanzapine to male or female
rats increases central 3α,5α-THP levels compared to vehicle [129, 130]. Further,
haloperidol, and the atypical anti-psychotic, clozapine (which alters biosynthesis of
3α,5α-THP), were administered to OVX, E-primed female rats. Haloperidol reduced
motor behavior and did not improve sociability. However, clozapine or haloperidol
enhanced affective behaviors (Fig. 17.7). Together, these data suggest that schizo-
affective disorders may involve a reduced capacity to synthesize 3α,5α-THP in
the brain, which may increase sensitivity to stress and expression of anxiety-like
behaviors.
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Fig. 17.7 OVX, E-primed female rats administered haloperidol demonstrated reduced motor
behavior in the open field and no change in sociability in the social interaction task. Rats adminis-
tered clozapine or haloperidol demonstrated enhanced affective behavior in the elevated plus maze

Another anti-depressant, mirtazapine, is an atypical anti-depressant that is a
5-HT2/alpha2-adrenoceptor antagonist devoid of affinity for 5-HT and NA reuptake
sites [131]. Acute administration of mirtazapine enhances copulatory performance
of male rats and strongly stimulates sexual motivation [132]. Chronic treatment
with mirtazapine increases 3α-reduced neuroactive steroids by influencing 3α-HSD
enzyme activity [133]. We investigated the effects mirtazapine may have on sexual
receptivity in OVX, E- and P-primed female rats when administered with vehicle or
3α,5α-THP. Rats were tested for baseline sexual receptivity, and immediately fol-
lowing baseline assessment, rats were administered mirtazapine and assessed for
sexual receptivity 20 min later. Results indicate that rats administered mirtazapine
demonstrated a significant decrease in lordosis and a significant increase in aggres-
sion compared to baseline assessment (Fig. 17.8). Following the second assessment,
rats were administered 3α,5α-THP or vehicle and tested for sexual behavior 20 min
later. At 40 min following mirtazapine administration, rats continued to demonstrate
a significant decrease in lordosis, propinquity and an increase in aggression com-
pared to baseline assessment (Fig. 17.8). Administration of 3α,5α-THP attenuated
the sexual side effects of mirtazapine, but this did not reach statistical signifi-
cance (Fig. 17.8). These data from suggest that further investigation of 3α,5α-THP’s
involvement in the therapeutic action of anti-psychotic and anti-depressant drugs is
warranted.

To begin to examine the mechanisms by which some anti-psychotic and anti-
depressant drugs may have their therapeutic actions, olanzapine and fluoxetine were
administered to the hippocampus of rats. Olanzapine administration to the hip-
pocampus of OVX, E-primed rats increases affective behaviors compared to OVX,
E-primed rats administered vehicle to the hippocampus (Fig. 17.9). Administration
of fluoxetine to the ventral tegmental area (VTA) of OVX, E-primed rats enhances
3α,5α-THP-dependent sex behavior and increases central 3α,5α-THP [134]. Thus,
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Fig. 17.9 OVX, E-primed
rats administered olanzapine
to the hippocampus
demonstrate increases in
affective behaviors in the
elevated plus maze, compared
to vehicle administered rats

administration of anti-psychotics and/or anti-depressants that increase levels of
3α,5α-THP, or co-administration of 3α,5α-THP, may mediate anxiety-like, repro-
ductive, and social approach behaviors that may or may not be associated with side
effects of treatment.
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3α,5α-THP Actions in the PFC, Hippocampus, and/or VTA
to Mediate Behaviors

In adulthood, 3α,5α-THP may influence the function of the PFC to mitigate neg-
ative symptoms of schizo-affective disorders. Schizo-affective disorders involve
PFC hypofunction, poor social function, and disrupted working memory, and
the PFC is integral to decisions made regarding social and cognitive function
[135–137]. Notably, the PFC is sensitive to progestins such that systemic adminis-
tration of precursors of 3α,5α-THP enhance working memory [138] and 3α,5α-THP
enhances DA secretion in the PFC in response to stress [139]. Whether these effects
are due to direct actions of progestins on the PFC or indirect actions of pro-
gestins on the hippocampus and/or VTA, which project to the PFC, has not been
established. Progestins mediate social behavior, in part, through actions in the VTA.
Administration of 3α,5α-THP to the VTA of rats increases sociability and blocking
3α,5α-THP formation in the VTA attenuates social behavior [140]. Progestins can
also influence affective and cognitive processes through actions in the hippocampus.
3α,5α-THP is increased in the hippocampus concomitant with reduced anxiety-like
behavior and enhanced cognitive performance [141, 142]. Blocking the formation
of 3α,5α-THP in the hippocampus increases anxiety behaviors and impairs cog-
nitive performance [142, 143]. Thus, 3α,5α-THP-enhanced social interactions and
cognitive performance may be initiated in the VTA and/or hippocampus and involve
projections to the PFC.

3α,5α-THP’s Biosynthesis and Social Approach

A hallmark of schizo-affective disorders is Reproductive Endocrine Dysfunction
(RED). In women with RED, differences in levels of progestogens may be absent,
but there is evidence for HPA axis and/or response dysfunction. There are nor-
mal changes in progestogens, and people diagnosed with schizo-affective disorders
experience these same changes, but they are different in their receptor medi-
ated responses to fluctutations, such that they exhibit a dysregulatory response.
Reproductive behaviors are linked to RED, as dysregulation in progestogens influ-
ences reproductive function and behaviors associated with reproductive success.
The behaviors that are implicated in predicting reproductive success are also impli-
cated in schizo-affective disorders, including stress responding, anxiety, depression,
and social approach.

Environmental/behavioral stimuli may include social interactions with stimulus
males and/or conspecifics, which may be particularly expressed during reproduc-
tive ventures when females are in proestrous. In the lab, we have used semi-natural
mating situations, including larger mating arenas and/or enabling females to pace
their sexual contacts with the male by escaping to a side of the chamber where the
male is unable to follow (“pacing” chamber). In natural or semi-natural laboratory
mating situations, female rats spontaneously exhibit social approach and avoidance
behaviors (pacing behaviors), and other social solicitation behaviors (e.g. hopping,
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darting, and ear-wiggling) toward males, which enable them to control the temporal
pattern of mating and optimize their fertility and fecundity. These social approach
and avoidance behaviors are readily observed and quantified in the lab using the pac-
ing paradigm. Thus the pacing paradigm is a useful laboratory tool in assessment of
the role of 3α,5α-THP in social approach and avoidance behaviors in a reproductive
context.

3α,5α-THP has been demonstrated to mediate feedback of female sexual behav-
iors, including lordosis, social approach/avoidance, cognition, and reward, through
actions in the VTA. The biosynthesis of, and metabolism to, 3α,5α-THP in the VTA
is important for mediating lordosis, sociability and cognition. In our model, we have
investigated how 3α,5α-THP mediates reproductive behaviors, social approach,
and how actions in the VTA are linked to the hippocampus and PFC. Systemic
administration of P or 3α,5α-THP to OVX E-primed rats similarly increases social
solicitation behaviors [99, 140]. Co-administration of biosynthesis or metabolism
inhibitors with P decreases P-facilitated solicitation behaviors and completely elim-
inates pacing behavior. Biosynthesis of 3α,5α-THP is enhanced by paced mating.
Female rats that pace their sexual contacts have significantly higher whole brain
and midbrain 3α,5α-THP levels than do females mated in standard arenas that can-
not pace their sexual contacts or rats that are not mated. Solicitation and approach
behaviors are attenuated in both standard and paced mating paradigms when biosyn-
thesis or metabolism of 3α,5α-THP is blocked [33, 144, 145]. Thus, 3α,5α-THP may
have an important role in mediating mating and solicitation behaviors.

Levels of P and 3α,5α-THP are increased coincidently with lordosis, and expres-
sion of lordosis is mediated by metabolism to 3α,5α-THP. Elucidating the source
of 3α,5α-THP in the VTA for its behavioral effects is necessary to distinguish
if such effects are via traditional endocrine/autocrine mechanisms (metabolism
from P) and/or via paracrine effects (biosynthesis in glial cells). 3α,5α-THP biosyn-
thesis occurs within seconds of environmental/behavioral events, whereas peripheral
progestins are not as rapidly induced. Thus, dissociating the sources of 3α,5α-THP
is important because central biosynthesis, and paracrine effects, may be an adaptive
mechanism for mediating reproductive behaviors and social approach.

P, 3α,5α-THP and Social Approach/Avoidance Behaviors

P and/or 3α,5α-THP have been demonstrated to influence social approach/avoidance
behaviors. Approach/avoidance behaviors are increased between sexual contacts in
the paced mating paradigm when P or 3α,5α-THP are administered [144–146].
The social behaviors observed may be primarily mediated by 3α,5α-THP actions
at GABAA and/or D1 receptors in the VTA. Solicitation and approach behaviors of
female rodents are significantly reduced when actions of progestins at GABAA or
D1 receptors in the VTA are blocked [33, 99, 145, 147, 148]. Thus, these behavioral
effects on social approach/avoidance involved in reproductive behaviors are likely
due to 3α,5α-THP’s actions at GABAA and/or D1 receptors in the VTA.
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3α,5α-THP may also mediate social interactions in non-mating paradigms and is
also of interest for schizo-affective disorders given that a hallmark of schizophre-
nia is that engaging in social interactions is less rewarding and willingness to
approach novel conspecific stimuli may be attenuated. Two behavioral paradigms
which assess this type of approach behavior, independent of mating, are the open
field and elevated plus maze. Approach responses of female rodents in the open field
are significantly decreased when formation of 3α,5α-THP is blocked systemically
or in the hippocampus or amygdala [119, 120, 142]. Further, approach behaviors of
5α-R knockout mice (5α-RKO) are not increased following P administration com-
pared to their wildtype counterparts [149]. Progestin receptor (PR) knockout mice
administered P demonstrate increased approach behaviors in the open field similar
to controls, which may be indicative of 3α,5α-THP’s actions independent of intra-
cellular PRs [147]. Our lab has also examined sex differences in rats in response to
P in the open field, and results show that vehicle males demonstrate more approach
behaviors than females. However, this is attenuated when males are administered P
compared to males administered vehicle (Fig. 17.10). Thus, P and/or 3α,5α-THP’s
actions may mediate approach behaviors of rodents in an open arena.

The elevated plus maze consists of a dichotomous choice to approach, as indi-
cated by increased open arm time, or avoid, as indicated by decreased open arm
time. Results are similar to those of open field in that OVX decreases approach
behaviors, but administration of P or 3α,5α-THP systemically or to the hippocampus
or amygdala of rodents increases approach behaviors, independent of motor behav-
ior [120, 145]. Approach behaviors are attenuated when metabolism of 3α,5α-THP
is blocked pharmacologically or genetically [45, 149, 150]. As well, PR knockout
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mice administered P demonstrate approach behaviors similar to controls with PRs
[151]. Thus, P or 3α,5α-THP may mediate approach behaviors of female rodents in
the elevated plus maze task such that approach is more likely to be demonstrated
when 3α,5α-THP can metabolize and have actions.

Social interactions also require approach behaviors to be expressed, and 3α,5α-
THP may mediate social behaviors that involve conspecifics. When P and 3α,5α-
THP levels are elevated, female rodents demonstrate more sociability with a
conspecific, including sniffing, grooming, crawling over or under, and following. If
metabolism of 3α,5α-THP is blocked, social approach and interaction is attenuated.
There is a sex difference in sociability such that females typically demonstrate more
pro-social behaviors, while males typically demonstrate more aggressive behaviors.
Female mice administered P show decreased aggressive acts towards an intruder,
but these behaviors are not altered by P administration in 5α-RKO mice. As well,
administration of 3α,5α-THP to the VTA decreases aggressive behaviors of male
hamsters in response to intruders [152]. Males administered P show less pro-social
behaviors than males administered vehicle. As well, increased levels of P and 3α,5α-
THP in plasma and hippocampus are associated with decreased sociability in male
rats (Fig. 17.10). Thus, actions of P and/or 3α,5α-THP may play a role in mediating
social interaction behaviors of female and male rodents.

P, 3α,5α-THP and Socially-Relevant Cognitive Performance

Social experiences may influence biosynthesis of 3α,5α-THP and, in turn, mediate
cognitive processing. Biosynthesis of 3α,5α-THP is enhanced in response to social
experience in the hippocampus and PFC. Cognitive processing is an important fac-
tor in socialization, and deficits in cognition may be related to deficits in sociability.
In support, administration of P or 3α,5α-THP to OVX rodents increases cognitive
processing and performance, similar to increases in sociability associated with P and
3α,5α-THP. Blocking metabolism of 3α,5α-THP attenuates these effects, also simi-
lar to changes in sociability. There are also sex differences in cognitive processing,
such that women perform better in verbal tasks and men perform better in spatial
tasks. Our lab has examined sex differences in response to P in cognitive processing,
and there is a clear sex difference at baseline performance such that intact male rats
outperform intact female rats. However, the performance of males is significantly
decreased, while the performance of females is increased, following P administra-
tion. Further, increased hippocampal P and 3α,5α-THP levels are associated with
increased cognitive performance of females, and decreased cognitive performance
of males (Fig. 17.10). In another cognitive task wherein rodents must differenti-
ate between a familiar and a novel scent, males outperform females at baseline,
but P administration attenuates this effect in males (Fig. 17.10). Thus, actions of
P and 3α,5α-THP may mediate sex differences in cognitive performance such that
females outperform males when progestogen levels are elevated in both females and
males.
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Social Isolation and 3α,5α-THP

Separate reports indicate that social isolation, another animal model of schizo-
affective disorders, produces differences in 3α,5α-THP concentrations, B levels,
and behavioral inhibition. Social support minimizes stress and improves social func-
tioning [153] and is used to manage schizo-affective disorders. Male mice that are
socially-isolated have less 3α,5α-THP biosynthesis in the PFC and higher plasma B
levels compared to group-housed control mice [154]. Social isolation is detrimental
to social functioning in adult rats [155] and lack of social support can lead to marked
behavioral changes, such as an increase in locomotor activity, anxiety, depression,
and aggression, suggesting that lack of social support may be a stressor and these
behaviors manifest as a result when it becomes chronic. As well, social isolation of
male rats at weaning is associated with decreased levels of 3α,5α-THP in brain and
increased anxiety-like behaviors during adulthood [156]. Social isolation can lead
to reduced investigation of social odors when compared to group housed animals
[157]. Together these data suggest that 3α,5α-THP may have an important role in
schizo-affective disorders.

Data from our laboratory indicates that the presence of social isolation versus
social support influences neuroendocrine responding, but not affective behaviors,
following exposure to an unpredictable auditory stressor and environmental enrich-
ment. These animals were exposed to an unpredictable stressor over 20 generations
intermittently and were acutely exposed in either single- or group-housed conditions
for the experiment conducted. During exposure to stressor, there were no significant
sex differences or single- versus group-housed differences in corticosterone levels
among rats. However, post-environmental enrichment results indicate that corticos-
terone levels were lower among female rats that were group-housed in comparison
to male group-housed and female and male single-housed rats (Fig. 17.11). This
may indicate that females may be more reliant on social support when experiencing
an acute stressor, compared to males. Thus, these data suggest that social support in
females can have beneficial effects on HPA responding, but males may not benefit
from social support.

Maternal Separation Stress and 3α,5α-THP

Maternal separation is considered the ultimate social isolation as it occurs during
a time when offspring are most dependent and can alter progestogen production.
Perturbations during early post-natal development can have long last effects on off-
spring. In fact, those who are diagnosed with schizo-affective disorders commonly
have a history of physical or psychological abuse beginning from an early age.
Among offspring, stress-induced perturbations in progestogen-HPA homeostasis
can be pervasive and persist throughout life [158]. In support, we have observed that
acute perinatal stress via maternal separation and lithium chloride injection can alter
3α,5α-THP formation in circulation, whole brain and/or hippocampus, an impor-
tant brain region for normative affective, cognitive, and ictal behavior, immediately
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following isolation [50] and well into adulthood [47]. Neurodevelopmental and
seizure disorders are commonly noted among premature children. Further, stud-
ies conducted in rhesus monkeys have demonstrated that infants who are subjected
to maternal separation and social isolation develop behavioral and neurobiological
profiles in which they are more likely to engage in drug and alcohol abuse [159].
Anxiety behaviors are altered in female and male rodents in adolescence after expo-
sure to postnatal maternal separation, such that anxiety behavior is increased in the
elevated plus maze in females and males, and in approach to a novel object latency
is increased in females [160]. As well, female and male rats that were selectively
bred to be low or high rates of ultrasonic vocalization (USV) following mater-
nal separation were behaviorally tested. Results indicate that low responders show
lower anxiety and depression behaviors compared to high responders. Further, lev-
els of 3α,5α-THP were elevated among high responders compared to low responders
(Table 17.1). Thus, early stress-exposure may underlie neurodevelopmental aberra-
tions that persist throughout life and dysregulation in 3α,5α-THP formation may
influence some of these observations.

Hippocampal Lesions and Schizo-Affective Behaviors

The hippocampus influences downstream HPA and HPG responding. Progestin
receptors have been localized to the hippocampus [161, 162]. Excitability of
hippocampal neurons is altered by P [161], and learning tasks involving the
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hippocampus can be mediated by P [142, 163, 164]. The hippocampus is also vul-
nerable to stress [165, 166]. Glucocorticoid receptors have been localized to the
hippocampus [167, 168] and neuronal firing in the hippocampus is altered by B, as
is learning [169, 170]. Thus, the hippocampus may be altered following prolonged
periods of stress, and this may be mediated by P.

There is evidence for an interaction between adrenal and gonadal hormones to
influence hippocampal morphology. Extreme (low or high) levels of adrenal hor-
mones produce cell death in the hippocampus [98, 171]. We examined if there are
interactions between gonadal and stress hormones in the hippocampus to exam-
ine how 3α,5α-THP production mediates effects on behaviors. Previous data from
our lab indicate that increasing biosynthesis of 3α,5α-THP in the hippocampus
of male rats increases 3α,5α-THP levels in the hippocampus and concomitantly
enhances affective behaviors [172]. Pre-treatment with PK 11195 to the hippocam-
pus attenuated the effects of enhancement of 3α,5α-THP biosynthesis on behavioral
inhibition and neurosteroidogenesis [172]. Although these data suggest that manip-
ulating 3α,5α-THP production in the hippocampus of males can have salient effects
on behavior, there has not yet been a systematic investigation of manipulating
neurosteroidogenesis in the hippocampus of females to mediate behaviors related
to schizo-affective disorders. Thus, gonadal hormones in the hippocampus may
influence stress responding and expression of schizo-affective behaviors.

An animal model of schizo-affective disorders can be produced to examine
the role of 3α,5α-THP in expression of symptoms associated with hippocam-
pal function. A neonatal excitotoxic lesion of the ventral hippocampus during
early development produces symptoms that parallel schizo-affective disorders, and
indicate that early damage to the hippocampus may contribute to the prevalence
[173]. Symptoms that indicate schizophrenic-like behaviors include: cognitive and

Table 17.1 Activity and 3α,5α-THP levels in Low versus High responding ultra-sonic vocaliza-
tion rats

Activity Low responders High responders

Saline 3,000 3,000
Cocaine 8,000 6,000

Hippocampus levels of 3α,5α-THP Low Responders High Responders
Saline 6.5 4
Cocaine 2.5 7

Midbrain levels of 3α,5α-THP Low Responders High Responders
Saline 4.5 2.7
Cocaine 2.5 3.7

Cortex levels of 3α,5α-THP Low Responders High Responders
Saline 6 3.7
Cocaine 7 9.8

Amygdala levels of 3α,5α-THP Low Responders High Responders
Saline 4.7 3.5
Cocaine 3.7 6
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social deficits, hyper-locomotion, enhanced sensitization to psycho-stimulants, and
increased aggression [174]. Our lab conducted a study to determine the effects
that neonatal ibotenic acid lesions to the ventral hippocampus of female rats on
PND 7 would have on behavior and levels of 3α,5α-THP in adulthood. Results
indicate that 40% of rats in the ibotenic acid group demonstrated abnormal cyclic-
ity and proestrous rats showed decreased reproductive behaviors and increased
aggressive behaviors compared to controls. Anxiety-like behavior of lesioned proe-
strous and diestrous animals was similar. However, there were differences in some
cognitive performance due to cycle condition, but no differences due to cycle or
lesion in working memory, spatial memory, or depressive tasks (Fig. 17.12). Thus,
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Fig. 17.12 Forty percent of female rats exposed to ibotenic acid demonstrated abnormal cyclicity
and proestrous rats demonstrated decreased reproductive behaviors and increased aggressive
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not demonstrate differences in anxiety-like behavior. There were no differences due to cycle or
lesion in working memory, spatial memory, or depressive behavior
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neonatal manipulations of the hippocampus can produce behavioral effects that
persist into adulthood, and produce abnormal behaviors that appear to be related
to changes in 3α,5α-THP due to abnormal cyclicity and changes in reproductive
behaviors.

Another point of interest is whether insults in adulthood may produce similar
long term effects in rodent models. Rats administered P then administered kainic
acid or vehicle indicates that rats administered kainic acid show mild behavioral
symptoms, such as low activity followed by periods of hyperactivity, head nod-
ding, myoclonic jerks of forelimbs and jaws, wet dog shaking, and/or modest
salivation [175]. Kainic acid administration produces neural insult in the hippocam-
pus, increases plasma B levels, and decreases cognitive performance [175, 176].
Administration of P prior to kainic acid enhances cognitive performance in com-
parison to rats that were administered P following kainic acid [7]. Thus, these data
suggest that P and/or 3α,5α-THP may be protective against a kainic acid-induced
seizure model behavioral effects.

Dopamine in Schizo-Affective Disorders

Motivation and executive function can be mediated not only by 3α,5α-THP’s
actions, as evidence by its role in reward associated with social approach and repro-
duction. The DA and serotonin systems have been implicated in striatal dysfunction
associated with schizophrenia and may also play a role in drug reward and abuse
[177, 178]. As well, 3α,5α-THP has actions at D2 receptors, in addition to actions
at GABAA and NMDARs. DA initiates and maintains responses to salient stimuli
such as drugs [179]. Changes in DA levels are of interest given how it may influ-
ence short- or long-term behavioral outcomes. Blockade of gluccocorticoids reduces
release of DA. As we grow older we lose DA transporters (DAT) in our brain. As
well, persons with attention deficit hyperactivity disorder (ADHD) have lower D2
and D3 receptors in the hypothalamus, ventral striatum, and mesencephalon. DA
also regulates serotonin release in the forebrain, and there is a sex difference in DAT
such that females have more than males. Social isolation just after birth alters lev-
els of DA, B and 3α,5α-THP when examined during adolescence under stressful
conditions [51]. Thus, DA and actions at D2 receptors play a role in reward, moti-
vation and executive functions, and this may be related to levels and/or actions of
3α,5α-THP in behaviors relevant for schizo-affective disorders.

Dopamine Transporter Knock-Out Mouse Model

Evidence that P may influence mood and/or arousal among some people with
schizo-affective disorders led us to examine the effects of P on DA transporter
knockout mice (DATKO), an animal model of schizo-affective disorders. The DAT
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is a plasma membrane transport protein thought to control extracellular DA concen-
trations and is an important target for a variety of therapeutic agents [180]. DATKOs
exhibit elevated interstitial levels of dopamine or serotonin and a range of behav-
ioral alterations, including poor cognitive function [181], hyperactivity, and some
stereotyped and/or preservative behavior [182] in the cliff avoidance reaction task.
DATKO mice also have impaired prepulse inhibition (PPI), a model of sensorimotor
gating in schizo-affective disorders [183]. As such, DATKO mice are known to be
one of the animal models of schizo-affective disorders.

Our lab examined behavioral effects of P administration in DATKO mice and
wildtype counterparts. Young adult, male and female DATKO and wildtype mice
were subcutaneously administered P or vehicle 1 h prior to testing in the PPI, activ-
ity monitor, or open field. DATKO mice had impaired PPI compared to wildtype,
but there was no effect of P. In the activity monitor, DATKO mice showed sig-
nificantly greater distance traveled during the 60 min test compared to wildtype,
and P decreased activity of DATKO mice. In the open field, DATKO mice made
a significantly greater number of total, but fewer central, entries than did wild-
type mice, and P decreased total entries of DATKO mice. P increased the number
of central entries made by DATKO and wildtype mice [184]. Thus, P partially
attenuated the hyper-active phenotype of DATKO mice, indicating that P and/or
3α,5α-THP may play a role in the behavioral phenotype of an animal model of
schizophrenia.

Cocaine, Schizo-Affective Disorders and 3α,5α-THP

One drug of abuse that has been implicated for behaviors similar to schizo-affective
disorders is cocaine, as it involves the DA reward system and influences levels of
3α,5α-THP. Cocaine can have developmental effects and activational effects when
administered in adulthood. Rat strains have been bred to emit low versus high rates
of USVs in response to maternal separation at 10 days of age. The High line demon-
strates an “anxiety-like and depressive” behavioral phenotype. Notably, 3α,5α-THP
levels in midbrain and plasma were significantly greater in High line compared to
Low line rats. Further, these levels of 3α,5α-THP in the midbrain were found to cor-
respond with differences in reproductive behaviors between the High and Low line
females. Male High line rats had shorter latencies to initial intromission and shorter
intervals between intromissions, but longer latencies to ejaculation and longer post-
ejaculatory intervals than Low line rats. Female High line rats had higher lordosis
quotients and lordosis ratings, were more likely to pace their sexual contacts, and
typically stayed away from the male-associated side of the mating chamber longer
than Low line rats. These data indicate that endogenous levels of 3α,5α-THP in
the midbrain may be associated with individual differences in sexual behavior of
rodents.

Low line and High line rats may demonstrate differences in activity when admin-
istered cocaine versus saline in adulthood, and this may be related to differences in
levels of 3α,5α-THP. Activity levels differ such that Low line rats are more active



392 C.A. Frye and D.C. Llaneza

following saline administration and less active following cocaine administration,
compared to High line rats (Table 17.1). A similar pattern is observed for levels of
3α,5α-THP in hippocampus, cortex, midbrain, and amygdala, such that Low line rats
have higher 3α,5α-THP levels compared to High line rats when administered saline.
As well, cocaine increases levels of 3α,5α-THP in High line rats, but not in Low
line rats (Table 17.1). These data demonstrate that levels of 3α,5α-THP at baseline
may predict activity and/or stress reactivity in response to cocaine administration.
Thus, 3α,5α-THP levels may influence HPA-responding dependent on vulnerability
to expression of stress responses.

Cocaine disrupts not only activity, but also normative reproductive function
among all rats. This effect is such that reproductively active (proestrous) rats,
exhibit significant decreases in reproductive function, concomitant with brain pro-
gestin levels. Of interest, males administered a high dose of cocaine (the dose at
which we observed a motor response), show significant increases in brain progesto-
gens (Fig. 17.13). These data indicate that levels of 3α,5α-THP and reproductive
behaviors of female and male rats may be influenced by administration of cocaine,
such that higher doses of cocaine negatively influence reproductive function. Thus,
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cocaine can impact reproductive behaviors through altering levels of 3α,5α-THP
biosynthesis in females and males.

Methamphetamine, Endoplasmic Reticulum,
and Schizo-Affective Disorders

Methamphetamine (METH), another drug of abuse, may be related to schizo-
affective disorders, as it can negatively impact the endoplasmic reticulum (ER).
The ER is an intracellular organelle which is involved in diverse arrays of cel-
lular functions, is mediated by cholesterol signaling, and is affected by METH.
The ER is very densely packed with enzymes that are involved in quality control
of protein synthesis and post-translational modification including folding of pro-
teins. Malfunctions in these processes result in misfolded and/or unfolded proteins
that can accumulate in the ER, with consequent activation of compensatory reac-
tions such as the unfolded protein response. If these compensatory mechanisms fail
to restore cellular homeostasis, cell death ensues via activation of ER-dependent
apoptosis [185]. The accumulated evidence supports the involvement of ER stress
and related molecular events in neurodegenerative events including METH-induced
neuronal apoptosis. METH addicts often use large quantities of the drug and can suf-
fer from drug-induced psychosis similar to symptoms of schizo-affective disorders.
Neuroimaging studies have also revealed a number of abnormalities in the brains of
these patients, including loss of striatal DAT and of serotonin transporters and evi-
dence of reactive microgliosis. Previous postmortem studies are in agreement with
some of those results. Moreover, METH can cause degeneration of monoaminergic
systems and neuronal apoptosis in various brain regions including the rodent stria-
tum. METH-induced cell death is dependent, in part, on activation of ER-dependent
death pathways. With protracted absence of METH, there can be partial recovery
of brain DAT. Thus, ER activation is important for cellular functions that may
be disrupted in schizo-affective disorders and/or as a result of drugs that induce
schizo-affective-like behaviors.

There exists a clear sex difference in E, which clearly plays an important role in
modulating the nigrostriatal dopaminergic system in response to neurotoxins. For
example, male mice display greater function in response to neurotoxins. Moreover,
administration of high doses of METH produces more severe striatal DA depletions
in male compared to female Swiss-Webster mice without E treatment following
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. In adoles-
cence, socially stressed females show greater stereotypy to amphetamines than do
males. Amphetamine has been demonstrated to be rewarding in that socially stressed
females show greater conditioned place preference compared to males. Socially
stressed females and males demonstrate long lasting deficits in object spatial loca-
tion, but not object memory compared to controls. Socially stressed males show long
lasting deficits in contextual, conditioned, and generalized fear compared to con-
trols. Females demonstrate long lasting deficits in neurogenesis, and these deficits
take a long period of time to emerge and lead to hippocampal deficits. Socially
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stressed males demonstrate increased neurogenesis compared to controls. Thus,
amphetamines can influence expression of psychosis-like phenotype as indicated
by changes in stress reactivity, cognition, fear behaviors and levels of progesto-
gens, and these changes may be related to differences in resilience, relationships
and resources that mediate manifestation of this phenotype.

Other Genetic Mutations in Schizo-Affective Disorders

There are several candidate genes which have been implicated in schizo-affective
disorders, including those which regulate 3α,5α-THP biosynthesis, neuronal migra-
tion in development, and influence plasticity. Mutations that have been identified
are in RELN and DISC1 genes. RELN encodes reelin, which is an evolutionarily-
conserved nonabundant extracellular glycoprotein that can exist in multiple iso-
forms. Reelin is important in the organization of the developing fetal brain and
neuroplasticity in the adult brain [186]. If there are disruptions in reelin-signal
transduction, this can lead to disruption of the cytoskeletal structure of neurons
[187]. In relation to reelin-signaling is the very low-density lipoprotein receptor
(VLDLR), and reelin-signal transduction is interfered with in a VLDLR-deficient
knockout mouse [188]. There are functional impairments of reelin signaling as indi-
cated by attenuated levels of VLDLR mRNA in those diagnosed with schizophrenia
[189]. Further, expression of the apolipoprotein E2 receptor (apoER2) is important
for reelin binding. Mice with mutations of both VLDLR and apoER2 demonstrate
a phenotype similar to the reelin phenotype, with disruptions in reelin protein
[188]. Thus, mutations which alter receptor expression may disrupt reelin-signal
transduction, an important mediator of neuronal migration and subsequent brain
structure.

DISC1 has also been implicated in schizophrenia, as it is related to functional
anatomic and cognitive consequences due to alterations in the cortex and hippocam-
pus of those diagnosed with schizophrenia [190]. Several genetic studies have found
that the DISC locus is related to many psychiatric disorders and cognitive dis-
ruptions [191, 192]. Further, mouse models of mutations in DISC1 demonstrate
impairments in neurite outgrowth in vitro, and disrupted development of the cere-
bral cortex and behavioral impairments in vivo [193–198]. As a result, DISC1 may
be important for effects on the organization of brain structures which may lead to
vulnerability to the development of schizophrenia. Further, DISC1 is implicated
in neurogenesis, neural migration, and synaptogenesis, which may be related to
early development of schizophrenia [199]. Thus, there are genetic implications for
schizo-affective disorders, some of which may be in involved in development and/or
3α,5α-THP biosynthesis.

Conclusions and Future Directions

The neurobiology and pathology of schizoaffective disorders will not be under-
stood by considering these disorders as they are defined in the DSM-IV-TR. Many
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of the disorders classified as “schizo-affective” overlap with neurodevelopmental
disorders such as autism, and this review will not be constrained to the DSM cri-
teria because this is not a useful approach to understanding the mechanisms that
may drive disorders with similarities. There are slightly different manifestations of
common neurobiological factors that manifest in schizoaffective, as well as neu-
rodevelopmental disorders. Due to the prevalence of schizophrenia and affective
disorders in the population today and the aging population that may be more vul-
nerable to schizo-affective disorders due to hormonal changes, it is critical that all
avenues of treatment, particularly hormones, are considered. While there has been
interest in the ability of steroid hormones to mediate affective and depressive dis-
orders, there has been little basic research done to characterize these effects and
determine the mechanisms by which hormones may act to mediate these behaviors.
Further understanding of neurosteroids is relevant for etiology, manifestation, and
treatment options for people with affective and depressive disorders.
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