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Abstract In this paper, the accuracy of the derivative approximation of the particle
methods is discussed. Especially, we show that the issue of decreasing accuracy
on a boundary area in the SPH method is due to the lack of the boundary integra-
tion. Through some numerical examples, the convergence of error norm of energy
obtained by the SPH and the MPS methods is studied.

1 Introduction

The advantage of the particle methods lies in the fact that no cost is needed in mesh
generation contrary to the usual finite element methods [1], although there have
been several studies to remove this bottleneck of the finite element methods. It is
well known that the particle or the node based methods [2–6] have the following
merits [7]:

(a) Simulations of very large deformations can be easily handled.
(b) The data structure of particle or node discretization can be linked easily with the

CAD database.
(c) The adaptive refinement procedure can be easily controlled.
(d) The mesh-free discretization provides accurate representation of the geometry

of the objects to be solved.
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Lucy [8] and Gingold and Monaghan [9] originated the smoothed particle hy-
drodynamics (SPH) for astrophysical computations, which is a purely Lagrangian
description and has been extended to solve a wide range of issues in physics or
engineering fields. Today, SPH is being extensively applied to simulations of super-
novas, collapse as well as formation of galaxies [7], also SPH has been extended to
treat the incompressive flow problems or the solid mechanics [11]. Concerning the
accuracy improvements of SPH, Belytschko et al. [12] examined corrected first de-
rivative approximations, where the proposed approximations restored the accuracy
in various benchmark problems, but establishment of the complete approximation
was not reached because of the lack of integrability. On the other hand, Libersky et
al. [13,14] introduced ghost particles to reflect a symmetrical surface boundary con-
dition. Recently, Chen et al. [15–17] proposed a simple corrective kernel approxim-
ation by applying the kernel estimate to the Taylor series expansion. By using these
modified numerical techniques, the derivative approximation of SPH is improved
dramatically. However, the problem of the accuracy issue on the boundary or the
edge of the object is not completely solved even if we use the above techniques.

A similar particle approach is called the moving particle semi-implicit (MPS)
method [18–21], which is based on the Lagrangian description. In this method, the
differential operators such as the gradient and Laplacian in the governing equations
are previously-prepared in an intuitive manner. The general accuracy in this method
remains to be clarified.

As discussed in the above, the accuracy of the derivative approximation of the
particle methods is one of the most important issues, and the accuracy on the bound-
ary or the edge remains to be solved in particular. One of the reasons might be due
to the fact that we cannot calculate boundary integrals precisely because there is no
definite or exact boundary in the particle methods.

In this study, we study the accuracy of the derivative approximation for SPH and
MPS methods. Particularly, concerning the accuracy at the boundary or the edge of
the body to be solved, we theoretically examine the discretization formulation espe-
cially for SPH. Then, the present paper aims to discuss the influence of number of
particles or particle distributions on the accuracy of SPH and MPS method through
some numerical examples.

2 Formulation and Some Remarks on Particle Methods

In the so-called Smoothed Particle Hydrodynamics or SPH method, the continuum
is assumed to be a collection of particles, and its density, velocity, stresses etc. are
evaluated through the particle-wise manner. Its interpolation is based on the follow-
ing concept of kernel estimate:

f (x) ∼=
∫
#
f (x′)w(x − x′)d�x′, x ∈ # (1)
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where f (x) is an a vector function of the three-dimentional position vector x and
w(x− x′) is the kernel function selected to be zero beyond the interaction area. The
approximation for spatial derivatives is obtained by substituting ∇ · f (x) for f (x)
in Equation (1) as follows:

∇ · f (x) ∼=
∫
#
∇ · f (x′)w(x− x′)d�x′ (2)

The divergence of the above equation is given as [22]

∇ · f (x) ∼=
∫
#
∇ (f (x′)w(x− x′)

)
d�x′ −

∫
#
f (x′)∇ · w(x− x′)d�x′ (3)

The first term of the right-hand side of Equation (3) can be converted by means of
the divergence theorem into an integral over the surface of the domain of integration
as follows: ∫

#
∇ (f (x′)w(x− x′)

)
d�x′ =

∫
s

f (x′)w(x − x′)ds (4)

The surface integral becomes zero because the kernel function w(x − x′) is zero
on the boundaries. Therefore, the approximation for spatial derivatives of f (x) is
defined as

∇ · f (x) ∼= −
∫
#
f (x′)∇ · w(x− x′)d�x′ (5)

Based on the above-mentioned theoretical background, we can obtain the follow-
ing equations as the SPH discretization:

f (x) =
N∑
j=1

mj

ρj
f (xj )w(x− xj ) (6)

∇ · f (x) = −
N∑
j=1

mj

ρj
f (xj )∇ · w(x− xj ) (7)

where N is the number of particles in an interaction area, mj is the mass of particle
j and ρj is defined as

ρj =
N∑
k=1

mkw(x − xk) (8)

On the other hand, a modified kernel [15–17], which is resulted by dividing Equa-
tions (6) and (7) by the sum total of kernel function, has been proposed in order to
improve the accuracy of discretization as shown in the following equations:
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Fig. 1 Interaction area around particle i (h: radius of interaction area)

f (x) =

N∑
j=1

mj
ρj
f (xj )w(x− xj )

N∑
j=1

mj
ρj
w(x− xj )

(9)

∇ · f (x) = −

N∑
j=1

mj
ρj
f (xj )∇ ·w(x − xj )

N∑
j=1

mj
ρj
∇ ·w(x− xj )

(10)

In the SPH method, Equations (6), (7), (9) and (10) are directly employed for cal-
culations. It is here noted that these equations can be used only when the conversion
from Equation (3) to Equation (5) is valid. In other words, we should be careful if
these are applied to the continuum with a boundary. Or this conversion is valid only
in cases where there are no physical boundaries in the interaction area as shown in
Figure 1a, and we cannot apply this conversion to the interaction area with physical
boundaries as shown in Figure 1b. There will be some effects on the accuracy of
results in the continuum with physical boundaries, although the effects are not an
issue in such applications as the astro-dynamics, which treat unbounded body.

Thus, in the interaction area with physical boundary as shown in Figure 1b, we
must employ the following equation:

∇ · f (x) ∼=
∫
s

f (x′)w(x− x′)ds −
∫
#
f (x′)∇ · w(x− x′)d�x′ (11)

As shown in the above equation, the boundary integration is an indispensable term
in the interaction area with physical boundary, and we need the boundary mesh in
order to perform this integration.

In the Moving Particle Semi-implicit or MPS method [18], the gradient vector of
an arbitrary particle i is defined as the weighted averaging “gradient model” between
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Fig. 2 Evaluation of gradient at particle i in MPS method (h: radius of interaction area)

the particles in the interaction area. Let us assume that particle i and particle j has
positional vectors ri and rj , and physical value φi and φj , respectively. φj can be
approximated by the Taylor expansion around the particle i as follows:

φj = φi + ∇φ|ij ·
(
rj − ri

)
(12)

∇φ|ij ·
(
rj − ri

) = φj − φi (13)

Dividing both sides of Equation (12) by the absolute value of a relative positional
vector between particles i and j , the following equation is obtained:

∇φ|ij ·
(
rj − ri

)
∣∣rj − ri

∣∣ =
φj − φi∣∣rj − ri

∣∣ (14)

By multiplying the unit vector in the direction of a relative positional vector of
particles i and j by both sides of Equation (14), we obtain

〈∇φ〉ij =
[
∇φ|ij ·

(
rj − ri

)
∣∣rj − ri

∣∣
] (

rj − ri
)

∣∣rj − ri
∣∣ =

(
φj − φi

) (
rj − ri

)
∣∣rj − ri

∣∣2 (15)

The right-hand side of Equation (15) is an element of relative positional vector in
the “gradient model” as shown in Figure 2, and the gradient vector of particle i is
modeled as the following equation by using the particles, which are in interaction
area,

〈∇φ〉i =
d

n0

∑
j �=i

[(
φj − φi

) (
rj − ri

)
∣∣rj − ri

∣∣2 w
(∣∣rj − ri

∣∣)
]

(16)

where d is the number of dimension, n0 the density of particle number and
w(
∣∣rj − ri

∣∣) the weighting function. It is considered in this method that the accur-
acy will be deteriorated when the distribution of particles is arranged in an irregular
pattern. We need to study this issue theoretically and numerically as well.
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Fig. 3 Timoshenko beam model; particles are regularly located as 8 × 2, 16 × 4, 24 × 6, 32 × 8,
40× 10, 48× 12 and 56× 14

3 Numerical Examples

3.1 Energy Norm in Elasticity Field

Both SPH and MPS are applied to the bending problem of the Timoshenko’s can-
tilever beam in elasticity [23], where the length is 8, the height 2 and the width
1 as shown in Figure 3. This model includes parabolic variation of applied shear
traction at x = L with essential boundary condition at x = 0 to match the exact
solution [24]. In this example, the theoretical displacement fields are given by the
following equations:

u = − Py
6EI

·
(
(6L− 3x) x + (2+ ν)

(
y2 − D

2

4

))
(17)

v = P

6EI
·
(

3νy2 (L− x)+ D
2x

4
· (4+ 5ν)+ (3L− x) x2

)
(18)

We assume the plane stress condition with the Poisson’s ratio ν of 0.3 and the
Young’s modulus E of 1.0e + 3 as the material constants. As shown in Figure 3,
we prepare 7 symmetrically arranged nodal patterns: 8× 2, 16× 4, 24× 6, 32× 8,
40× 10, 48× 12, and 56× 14.

Here, enforcing the theoretical values given by Equations (17) and (18) on the
particles, the strain energy values are calculated. In order to study the convergence,
the standard deviation of the error norm in energy or SE is defined as follows:

SE =
√√√√1

n

n∑
i=1

(|ei | − |ēi |)2 (19)

with

|ei | =
√(
εi − εexact

i

)T (
σi − σ exact

i

)
(20)
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Fig. 4 Standard deviation of energy norm versus numbers of particles, where “SPH1” means the
results with Equations (6) and (7), “SPH2” Equations (9) and (10), and “Moving Least Squares
method” based on 1st order polynomial approximation

where εi and σi are the numerical results of strain and stress on particle i, respect-
ively, and εexact

i and σ exact
i the theoretical values of the same, respectively. The latter

is given as

εx = −Py
EI

(L− x) (21)

εy = νPy
EI
· (L− x) (22)

εxy = P

EI
(1+ ν)

(
D2

4
− y2

)
(23)

It is noted here that the stresses of Equation (20) are calculated by using the stress-
strain relationship in elasticity, σ = Dε (D: stress-strain matrix), as usual.

In this chapter we employ the biquadratic B-Spline function as the weighting
function for the SPH method, which is given as

w(rj ) = 5

πh2

⎡
⎣1− 6

(∣∣rj ∣∣
h

)2

+ 8

(∣∣rj ∣∣
h

)3

− 3

(∣∣rj ∣∣
h

)4
⎤
⎦ (0 ≤ ∣∣rj ∣∣ ≤ h)

(24)
where h is the radius of the support of the weighting function, and |rj | the distance
between two points x and xj . Regarding the MPS method, the following inverse
power weighting functions is chosen:

w(rj ) =
∣∣rj ∣∣−α (α = 1) (25)

Figure 4 shows the analytical results of the standard deviation of the norm in
energy versus the numbers of particles, where “SPH1” means the case employing
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Fig. 5 Comparisons of strain distributions; 56× 14 particles with regular arrangement (the figures
in the right-hand side are the zoomed ones)

Equations (6) and (7) as the SPH discretization, whereas “SPH2” means the case of
Equations (9) and (10). The results of moving least squares method [25] based on the
1st order polynomial approximation are also shown in this figure. From this figure,
we can see that, although the accuracy of SPH2 is better than that of SPH1, the
convergence characteristic of these methods is not satisfactory even if the numbers
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Fig. 6 Two kinds of particle distributions in case of 3721 particles

of particles increase. We consider that this result is due to the fact that the boundary
integration is neglected as discussed in Section 2.

On the other hand, the accuracy and convergence of MPS is better than those of
SPH1 and SPH2, but worse than those of the Moving least squares method. Then,
we examine the distribution of εxy in the SPH and MPS method in case of 56× 14
particles arrangement as shown in Figure 5. It is seen from this figure that, as for
the results by all the method except SPH1, some error is observed on the boundaries
x = 8.0 and 0.0. Particularly, the results of SPH2 methods diverge around these
points and those of SPH1 are not agreeable with the exact solution at the whole
domain.

3.2 Strain Distributions in Complicated Displacement Field

Let us apply the SPH and the MPS methods to the complex displacement field de-
scribed as

u = sin
√
x2 + y2 (26)

v = cos
√
x2 + y2 (27)

In this example, Equations (26) and (27) are employed as the given displacement
vector at the particles, and the calculated strains on the particles are compared with
theoretical ones given as follows:

εxx = x · cos
√
x2 + y2√

x2 + y2
(28)
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Fig. 7 Comparison of strain distributions; 3721 particles with regular arrangement

εyy = −y · sin
√
x2 + y2√

x2 + y2
(29)

εxy = y · cos
√
x2 + y2√

x2 + y2
− x · sin

√
x2 + y2√

x2 + y2
(30)

In this chapter, the SPH and the MPS methods based on the regular particle pattern
and the random one are compared as shown in Figure 6.

Figure 7 shows the calculated distributions of strains (εxx, εyy, εxy) by the SPH
and the MPS methods in case of the regular particle pattern. From this figure, the
distributions of strains are in good agreement with the exact results in the inner area
x = 9.67 or 1.0 except for SPH1, whereas the results of SPH1 shows deviations
from the theoretical ones over the whole domain and the results of SPH2 show
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Fig. 8 Comparisons of shear strain distributions; 3721 particles with random arrangement

some deviations from the theoretical ones on the boundary area x = 10.0. On the
other hand, the results of the MPS method are generally in good agreement with the
exact ones even on the boundary area.

Figure 8 shows the calculated distributions of strain εxy by the SPH and the MPS
methods in case of random particle pattern. From this figure, it is seen that the SPH1
gives deviated solutions from the theoretical ones in general, while the SPH2 does
large errors only on the boundaries. On the other hand, the results of the MPS are
relatively in good agreement with the theoretical ones, but there are also some errors
on the boundaries.

4 Conclusion

Discussed in the present paper is the accuracy of the derivative approximation of
the particle methods. Especially shown is that the lack of accuracy on the boundary
area in the SPH method is due to the lack of the proper boundary integration.

In the numerical examples, we show that, although the accuracy of the SPH2
(modified version of the original SPH) is better than that of the SPH1 (original
SPH), the accuracy of both methods is not converged even if the number of particles
increases. Furthermore, in the examples of complicated strain fields, we show that,
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in case of the random particle pattern, the distributions of strains by the SPH and
the MPS methods, especially those of εxy , are not corresponding to the exact ones.

From the above, it is concluded that more study is needed to re-examine the
discretization procedure of the SPH and the MPS methods, especially concerning
the discretization of boundaries of the analysis domain.
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