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Abstract The contribution gives an overview on a discrete element model with po-
lygonal particles in a two-dimensional setting allowing the simulation of granular
as well as quasi-brittle material response. It briefly describes the basic formula-
tion for geometry and applied contact models in normal and tangential direction,
supplemented by friction on a background plate. Special emphasis is put on mod-
eling of cohesion; three different models with an increasing complexity are intro-
duced, namely an overlay brittle beam lattice, a beam with damage and an interface
model. Homogenization of the discrete particle response is utilized deriving vari-
ables like stresses and strains for an interpretation in the context of classical and
micropolar continua. Several numerical examples for different loading scenarios are
added, among them the simulation of a quasi-brittle material sample with a hetero-
geneous microstructure. In addition conceptual small scale experiments with regular
particles of steel nuts have been performed; results from tests and simulations for
samples with and without cohesion are compared.

1 Introduction

The notion of “particle method” is not unique and might even cause confusion, for
example when it is used for special discretization concepts of continuum mechanics
problems like the Smoothed Particle Hydrodynamic Method (SPH) or the Particle

sense of the Discrete Element Method (DEM), an area becoming a very successful
discipline of its own with applications in many different fields, see the reviews [2–
5, 20].
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Fig. 1 Geometry of contact

The present discrete element model describes the mechanical response of mater-
ials consisting of separable solid particles on a mesoscopic scale. These materials
maybe granular like sand, soil or powder. However the particles can also be initially
glued together like in concrete or ceramics and may disintegrate during loading.
These materials are sometimes denoted as cohesive-frictional or quasi-brittle. In
case the cohesion either initially does not exist or disappears during loading the
particles interact only by contact.

The geometry of particles can be modeled by smooth contours like circles
(2D)/spheres (3D), ellipses/ellipsoids and superellipses/superellipsoids or with
sharp corners as polygons/polyhedrons, with triangles/tetrahedrons being a special
case. They also may be composed of several elementary geometrical solids. It is
obvious that the complexity of the geometrical description varies depending on the
number of parameters involved; it comes without saying that the simplest model ap-
plying circles/spheres with the radius as the only parameter is by far the most often
version in particle simulations.

2 Basic Discrete Element Method

In the present study we concentrate on the two-dimensional case applying polygonal
particles; although the 2D-model is a coarse simplification of a real material sample
it allows to study the mechanical complexity of polygons since particles often ex-
hibit shapes with sharp corners. The applied DEM model with convex polygonal
particles is based on the original work of Tillemans and Herrmann [21]. It utilizes a
special form of Voronoi tessellation denoted as vectorizable random lattice for mesh
generation developed in [19].

The modified version applied in this study has already been described in detail
in [7–10], so that the model is only briefly outlined in the sequel. The particles are
assumed to be rigid and unbreakable and can interact by contact as well as cohesive
forces. The three degrees of freedom of each particle – two translations of the center
of mass and one rotation around it – are summarized in the generalized displacement
ug = [uT, φ]T = [u1, u2, φ3]T, see Figure 1. The balance of linear and angular
momentum of each individual particle yield the equations of motion
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Mgẍg = fg + f̂g . (1)

Mg and ẍg are the generalized diagonal mass matrix and particle acceleration

Mg =
⎡
⎣M 0 0

0 M 0
0 0 �

⎤
⎦ ; ẍg =

⎡
⎣ ẍ1
ẍ2
ϕ̈

⎤
⎦ . (2)

M and� express the particle mass and mass moment of inertia, respectively. ẍ1 and
ẍ2 are the accelerations in e1- and e2-direction and ϕ̈ is the angular acceleration.
The right hand side comprises the forces and torques from particle interaction fg =
[fT,m]T and from external loads f̂g = [f̂T, m̂]T, for example gravity. fg is composed
of a contribution from contact fg,ct with nct contacting particles and a contribution
from cohesion fg,ch with nch bonded particles

fg = fg,ct + fg,ch =
nct∑
j=1

fg,ct
j +

nch∑
j=1

fg,ch
j . (3)

Contact and cohesive forces are introduced in the subsequent sections.
For all particles of a sample the equations of motion (1) result in a coupled system

of ordinary differential equations; they are numerically integrated by a predictor-
corrector scheme introduced in [14] and used also in [1]. We use an explicit version
with a predictor and one corrector step which takes into account time derivatives of
the displacement up to fifth order; for details of the implemented version of the time
integration, see [7].

3 Models for Contact

The contact search is in general the most time consuming part in particle dynamics
and needs special attention from efficiency point of view, for reviews on various
algorithms confer [1, 25]. In general these schemes can be classified into body- and
spatial-based categories. In the present study a multilevel approach on the basis of
a spatial-based linked cell algorithm is adopted for the preparation of neighborhood
lists, compare [1]. This process is described in detail in [7, 21].

When two particles contact each other a small overlap Ao of the rigid bodies is
allowed resulting in repulsing contact forces as indicated in Figure 1. The contact
force is split into a normal and a tangential component in n- and t-direction

fct = fct
n + fct

t = f ct
n n+ f ct

t t . (4)

They are applied at the midpoint of the contact line bo, denoted the contact point.
Due to the lever lct they also give rise to a torquemct around the center of mass.
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3.1 Normal Direction

For the normal force two alternative models are investigated both consisting of an
elastic and a viscous part.

The first one was introduced in [21] as

fct
n = −

(
E
(1)
n Ao

dc
+Meffγnvn

)
n . (5)

E
(1)
n is the elastic “contact stiffness” which plays the role of a penalty parameter.
Ao is the overlapping area, see Figure 1. γn denotes the viscous damping coefficient
and vn is the relative velocity in normal direction. dc describes a characteristic length
andMeff is the effective mass of two contacting particles i and j

1

dc
= 1

dc,i
+ 1

dc,j
; Meff = MiMj

Mi +Mj . (6)

dc,i and dc,j are the diameters of equivalent circles having the same area as the two
particles.

The second model combines an elastic force proposed in [13] with a viscous
force

fct
n = −

(
E(2)n Aobo +Meffγnvn

)
n . (7)

The elastic part can be derived from a potential and is therefore energy conserving.
bo is length of the contact line as indicated in Figure 1.

3.2 Tangential Direction

Again two different models have been used for the tangential force. The first one
[21] selects the minimum of a frictional and a viscous force

fct
t = −sgn(vt)min

(
µt‖fct

n ‖,Meffγt|vt|
)

t . (8)

µt is the friction coefficient and γt the viscous parameter. vt denotes the relative
velocity in tangential direction.

For the second version an elasto-plastic model with Coulomb frictional yield
limit similar to the one in [6] has been chosen

fct
t = −Etu

el
t t ; F = ‖fct

t ‖ − µt‖fct
n ‖ ≤ 0 . (9)

uel
t describes the relative elastic displacement component in tangential direction. F

is the yield function again governed by the frictional parameter µt. This model is
able to reproduce sticking as well as sliding friction.
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Fig. 2 Overlay of beam lattice
and beam deformations by
particle movements

3.3 Contact with Background Plate

In view of model tests described in Section 6 we also discuss the movement of a
particle ensemble on a background plate. For this the force between each particle
and the background medium has to be modeled in addition to the interaction
between particles. Analogous to the tangential contact model (9) an elasto-plastic
model with Coulomb friction is applied at each point on the particle surface con-
tacting the background plate

ττττττττττττττ ct
b = −Ebuel

b ; F = ‖ττττττττττττττ ct
b ‖ − µb|σ ct

b | ≤ 0 . (10)

σ ct
b is the normal stress between the particle surface and the background plate,

for example resulting through gravity loads of the particles. The distributed shear
stresses ττττττττττττττ ct

b are integrated numerically to a resulting force and torque acting at the
center of the particle.

4 Models for Cohesion

In the next step, in addition to the contact forces, cohesive or adhesive forces are
introduced if the particles initially stick together or are bonded in their initial state.
Cohesion is a complex phenomenon on a fine scale; in the present study we concen-
trate on models on a coarse scale as a compromise between sufficient realism and
efficiency. We will discuss three different models with increasing complexity and
expense.

4.1 Brittle Beam

In this most simplistic representation cohesion is modeled on the structural level. A
beam lattice consisting of small strain shear beams (Timoshenko beams) as an over-
lay model [16–18, 21] is introduced connecting the centers of mass of all neighbored
particles as sketched in Figure 2. The beams are rigidly connected to the particles
on both ends and do not possess any mass. Their stiffness can be derived from the
elastic potential for beams representing cohesive forces
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�ch =
∫ L

0

1

2

⎡
⎣ εax
κ

γ

⎤
⎦

T⎡
⎣EA

ch 0 0
0 EI ch 0
0 0 GAch

Q

⎤
⎦

︸ ︷︷ ︸
Cel

⎡
⎣ εax
κ

γ

⎤
⎦ dL , (11)

where εax, κ , γ are the axial strain, curvature and transverse shear strain, respect-
ively. The elastic material matrix Cel contains the axial stiffness EAch, bending
stiffness EI ch and shear stiffness GAch

Q with Young’s modulus E, cross sectional
area A, moment of inertia I and shear area AQ. From Eq. (11) the usual stiffness
expression for a Timoshenko beam element can be derived

[
fg,ch
i

fg,ch
j

]
= Kch

ij

[
ug
i

ug
j

]
. (12)

It yields the generalized forces fg,ch derived from the generalized displacements ug

of the particles. Each beam deforms with the six degrees of freedom of the particles
as shown in Figure 2 (right) leading to additional forces and torques on both particles
i and j caused by vectors containing the generalized beam end forces.

The individual beam behaves initially elastic until a cracking criterion is satisfied

(
εax

εmax

)2

+ max(|φi |, |φj |)
φmax

= 1 . (13)

Cracking is allowed only if the axial strain εax is positive and therefore only applied
under tension. Concerning the bending, only the maximum value of the end rotations
φi or φj is monitored. εmax and φmax are given threshold values for breaking com-
bined to the interaction or failure criterion (13). The beam connections representing
cohesion are checked after each time step considering the updated coordinates of the
centers of mass of the particles. Overstressed beams break and are removed from the
calculation.

The present beam model represents an extremely brittle failure and sudden loss of
cohesion in the sense of a “tension cut-off” criterion. It might however be extended
by a softening type of gradual failure. It has to be kept in mind that the location for
monitoring the cohesion is transferred from the contact zone to the centers of the
particles. Despite of the mentioned limitations it can be stated that it is a very simple,
inexpensive and easy to implement model. It is also well known that pure lattice
models have been successfully applied for the simulation of quasi-brittle materials.

4.2 Beam with Damage

In order to reproduce less brittle, i.e. more ductile failure behavior, a second still
efficient model is introduced. It keeps the shear beam as structural model which de-
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Fig. 3 (a) Damage evolution and (b) damage surface

forms with the degrees of freedom of the particles; however in this case the failure
of the beam is transferred to the cross section at the middle between two particles.
The material model accounts for a successive degradation of the cohesive connec-
tion in the sense of a strain resultant criterion. For this purpose the elastic beam
element with zero mass is enhanced by a damage model with softening instead of
using the above introduced brittle failure criterion. The degradation of E is repres-
ented by the usual factor (1−d)where d is the isotropic damage parameter yielding
the elasto-damage material matrix

Ced =
⎡
⎣ (1−Hd)EA

ch 0 0
0 (1− d)EI ch 0
0 0 (1− d)GAch

Q

⎤
⎦ ; H =

{
0 for εax ≤ 0
1 for εax > 0

.

(14)
The Heaviside function H is inserted in order to represent the unilateral character
for the axial stiffness, only present in tension but not in compression.

The evolution of damage is defined by linear softening exemplarily depicted in
Figure 3a for axial elongation

d =

⎧⎪⎪⎨
⎪⎪⎩

0 : ε∗ ≤ ε0
εm

ε∗
ε∗ − ε0

εm − ε0
: ε0 < ε

∗ < εm

1 : ε∗ ≥ εm

; ε∗(t) = max
0≤τ≤t

ε̃(τ ) . (15)

ε∗ is the largest strain level reached at each time. The maximum strain level is
denoted by εm when the beam section is completely damaged (d = 1) and fails.
The damage mode is characterized by a combined axial strain-bending-shear failure
at the middle between two particles, defined by the equivalent strain

ε̃ =< εax + |κmid|h
2
> +|γmid| . (16)

The damage surface is displayed in Figure 3b. The measure combines the strains
from axial elongation εax, curvature κmid and shear deformation γmid at the middle
cross section; h is the height of the beam. As indicated by the Macaulay bracket
for the first part only tensional strains are considered. They are evaluated at the
outermost fiber (marked by a cross in Figure 4) where the material is stretched most;
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Fig. 4 Strains of beam

Fig. 5 Numerical integration
with reference edge

the strain distribution following beam theory is displayed in Figure 4. According to
the assumed kinematics the shear strain γ is constant across the height so that only
its absolute value enters the equivalent strain; it is the only variable which defines
the failure under compression.

This damage model exploiting the kinematics of a beam at the middle between
two particles is able to reproduce a more ductile failure behavior for cohesion being
still numerically inexpensive.

4.3 Softening Interface

The third and most advanced model refines the previous version. A continuous con-
nection between two particles in a sense of a zero-thickness interface element is
assumed. The model adopts again the kinematics with a linear displacement field
across the contact line as in the previous beam model (“plane sections remain
plane”) however allows a complex stress distribution after successive debonding
of the interface. This material degradation at each point of the interface is described
by small strain, non-associated plasticity coupled in normal and tangential direction
by a two-surface Mohr–Coulomb yield function [24].

The evolving stress distribution is numerically integrated at a finite number of
points along the interface height h, computing the resulting force and torque on the
particle similar to stress resultants in a beam, see Figure 5. The particle i has been
chosen as master; its bond has been selected as reference edge. The local coordinate
system n-t defining the components of the displacement field as well as the normal-
ized coordinate ξ for integration is fixed along this edge. Having this discretization
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Fig. 6 Idealization of interface by springs in (a) undeformed and (b) deformed stage

Fig. 7 (a) Yield surface and (b) plastic potential for interface in biaxial stress plane

in mind one could idealize the model as a series of non-linear springs coupled in
normal and tangential direction as depicted for an undeformed (with zero thickness)
and deformed stage in Figure 6. In the elastic regime uncoupled stiffnesses kn and
kt are assumed for the springs in both directions.

This interface model has been documented in detail in [7, 8, 11]; here only some
basic ingredients are mentioned. Figure 7 displays the yield surface and the plastic
potential in the biaxial σt-σn plane, defined by the functions f1/f2 and g1/g2, re-
spectively. Besides the limit values for the stresses σmax

n/t the angles γ and ϕ as well
as ψ �= ϕ control the shape of failure envelopes. In these diagrams κ denotes the
softening variable; three stages are marked from the initial undamaged state 1©, an
intermediate partially damaged situation 2© to the completely softened state 3©. The
distinction between yield function and plastic potential is necessary because certain
geomaterials do not obey the normality condition.

The softening driven by the plastic displacements up
n and up

t at the integration
points (“springs”) is controlled by predefined fracture energies Gf,n and Gf,t. Two
different softening evolutions for tension and shear are introduced, see Figures 8a
and b. The linear softening functions describe the uncoupled cases when either a
pure tension or a pure shear failure mode governs the degradation of the interface.
A simultaneous coupled tensile and shear softening is treated as linear combination
of both modes as depicted in Figure 8c for the extreme case of κ = 1.
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Fig. 8 Evolution of softening for (a) tension, (b) shear and (c) a combination thereof

The explicit mathematical model for the interface material is described in [7, 8],
where also the numerical realization is explained. It follows the usual small strain
plasticity concept, applying return algorithms for the time integration with an elastic
predictor and a plastic corrector.

When all integration points have reached complete softening the bond is de-
tached. The standard contact as described in Section 3 comes into play once two
initially bonded particles with broken bond again contact each other.

5 Homogenization

5.1 Motivation

Homogenization is a common procedure in order to determine the response of het-
erogeneous materials on a macroscale. It is well known that these concepts are based
on the existence of a clear scale separation, also known as Hashin’s MMM (Micro-
Meso-Macro) principle of homogenization [15]. In the present context it means that
there is a distinct scale difference between the particles (microscale) and the en-
tire structure (macroscale) allowing establishing a Representative Volume Element
(RVE) on an intermediate mesoscale; this is expressed by the conditionD � d � δ

as indicated in Figure 9 for an arbitrary particle ensemble. In contrast to the usual
application of RVEs determining constitutive relations and material parameters for a
macroscopic analysis we concentrate on homogenization of the fluctuating response
during the non-linear discrete element analysis. The resulting mechanical quantities
such as stresses and strains allow a better interpretation of the overall response in
terms of continuum mechanics and in particular of the influence of distinct material
parameters.

A key question is related to the definition and size of an RVE. On the one hand
it should not be too large being still able capturing local effects like evolving shear
bands. On the other hand it should be big enough avoiding small scale fluctuations,
see Section 5.5.
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Fig. 9 Structure consisting of particle ensembles (RVE)

Fig. 10 Representative Volume Element (RVE): (a) definition and (b) base particles

5.2 Representative Volume Element (RVE)

A particle ensemble with N particles in diameter, denoted as RVEN , is cut out
around each so-called base particle in the center of the RVE for which the homo-
genized variables are determined, see Figure 10a. These are all particles inside the
structure leaving out the particles close to its edge (Figure 10b) because the RVEs
are not complete and not representative anymore. The size of the RVE defined at the
beginning is not changed during the non-linear analysis. The variables are plotted
on the base particle for which they are calculated.
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Fig. 11 Boundary of RVE
with force f

5.3 Averaging Procedure

5.3.1 Stresses

According to the scale separation argument d/D is sufficiently small so that the
volumetric contributions to the balance equations may be neglected compared to
the surface contributions. It means that only the forces f of the boundary particles
will enter the averaged balance equation, see Figure 11. Based on this assumption
the balance of momentum reads

divT = 0 ; 0 =
∫

R
divT dv =

∫
∂R

t da =
n∂R∑
i=1

fi . (17)

T is the Cauchy stress tensor within the RVE volume R; t is the traction vector on
the RVE boundary ∂R. The integral is discretized and replaced by the sum of forces
f at the RVE boundary acting from outside the RVE on the individual particles. n∂R
is the number of particles on the entire boundary.

The volume average of the stresses 〈T〉 taken over the RVE yields

〈T〉 = 1

V

∫
R

T dv (18)

where
TT = div(xM ⊗ T)− xM ⊗ divT︸ ︷︷ ︸

= 0

. (19)

xM is the position vector from the RVE center to the boundary particle center. Fol-
lowing Eq. (17) the last term in Eq. (19) vanishes. Inserting (19) into (18) leads
to

〈TT〉 = 1

V

∫
∂R
(xM⊗T)n da− 1

V

∫
R

xM ⊗ divT dv
︸ ︷︷ ︸

= 0

= 1

V

∫
∂R

xM⊗ Tn︸︷︷︸
t

da = 〈T〉T .

(20)
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Fig. 12 Displacement field at
RVE boundary

Using Eq. (17) this yields

〈T〉 = 1

V

∫
∂R

t⊗ xM da = 1

V

n∂R∑
i=1

fi ⊗ xM
i . (21)

Again the integral has been replaced by the sum over all boundary particles in the
sense of the discrete element concept.

5.3.2 Strains

The same concept of homogenization can be applied to kinematic variables. For the
average strain we start from the discrete displacements of boundary particles from
which a continuous polygonal displacement field can be developed, see Figure 12.
This linear displacement field is integrated along the RVE boundary and inserted
into the averaged strain expression

〈εεεεεεεεεεεεεεsym〉 = 1

V

∫
R
εεεεεεεεεεεεεεsym dV

= 1

V

∫
∂R

1

2
(u⊗ n+ n⊗ u) dA

= 1

V

n∂R∑
i=1

1

4
∆wi [(ui + ui+1)⊗ ni + ni ⊗ (ui + ui+1)] .

(22)

The procedure ends in a summation along all boundary particles leading to the strain
field projected on the base particle.

In a similar way other variables can be obtained, for example the spatial velo-
city gradient. It is also mentioned that this consistent homogenization satisfies the
balance of energy, known as the Hill condition.
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Fig. 13 Boundary of RVE
with force f and moment m

5.4 Extension to Higher Order Continua

In order to capture the microstructure of a material in the neighborhood of a material
point higher order continua have been introduced in the past. If these neighborhood
influences are taken into account the homogenization of the response for the particle
ensemble can be extended to these theories allowing deriving higher order dynamic
and kinematic variables. Here we concentrate on a micropolar (Cosserat) continuum
and briefly mention the possibilities for a gradient continuum.

5.4.1 Micropolar Continuum

The key assumption in this case is that the forces on the outer surfaces of the bound-
ary particles are transferred to the center of the elements producing extra moments
in addition to the forces already seen above, see Figure 13 compared to Figure 11.
The extra moments m are due to the contact forces fct as well as the contributions
mch from beams or interfaces representing cohesion with the ñct and ñch particles
outside the RVE, respectively

m = mct +mch =
ñct∑
j=1

lct
j × fct

j +
ñch∑
j=1

mch
j . (23)

lct is the so-called branch vector, see Figure 1.
In the averaging process two moments can be identified, namely the continuum

moment or moment of the stress distribution M and the couple stress tensor M̄ of
the Cosserat theory

〈M + M̄〉 = 1

V

∫
∂R

(
M+ M̄

)
n⊗ xM da

= 1

V

n∂R∑
i=1

(xM
i × fi +mi )⊗ xM

i

(24)

with
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Fig. 14 Particle ensemble in reference and actual configuration

〈M̄〉 = 1

V

n∂R∑
i=1

mi ⊗ xM
i . (25)

It is worth mentioning that moments on a mesoscale are necessary transferring
the particle concept through the homogenization procedure into an enhanced con-
tinuum theory, in the present case a macroscopic Cosserat method. If the moments
are not taken into account, the couple stresses vanish and the stress tensor becomes
symmetric.

In a similar process average values for kinematic variables like rotations and
curvatures or additional quantities like energies can be derived. Further details for
the homogenization process are given in [7, 12].

5.4.2 Gradient Continuum

In this case the key idea is an enhanced kinematic description of an RVE via a Taylor
series approximation for the difference vector of two particles, see Figure 14. In
other words higher gradients of deformations are taken into account in the homo-
genization procedure. In this way the intrinsic statistical feature of the heterogen-
eous material is automatically included. For the homogenization of the kinematics
the position vector of a target particle N is expanded in a vector Taylor series around
the base particle M

xN
t =

1

0!x
M
t +

1

1!
∂xM
t

∂(xM
0 )
·∆x0 + 1

2!
∂2xM

t

∂(xM
0 )

2
: ∆x0 ⊗∆x0

+ 1

3!
∂3xM

t

∂(xM
0 )

3

... ∆x0 ⊗∆x0 ⊗∆x0 + w̃

= xM
t + F ·∆x0 +G : ∆x0 ⊗∆x0 +K

... ∆x0 ⊗∆x0 ⊗∆x0︸ ︷︷ ︸
∆xapprox

t

+w̃ .

(26)



174 B. Schneider et al.

Fig. 15 Biaxial test: (a) initial and (b) deformed structure

In the present equation the series is truncated after terms of third order leaving the
higher order terms in the residual vector w̃. Equation (26) intrinsically contains the
deformation gradient F and the second and third deformation gradient tensors G
and K. All deformation tensors are evaluated in the sense of an RVE and represent
average quantities.

For the sake of brevity, the reader is referred to [7] where further details of the
homogenization procedure are given.

5.5 Size of RVE

With the following example we want to discuss the above mentioned dilemma
between a too big and a too small RVE size. It is a biaxial test with about 2500
polygonal particles under constant side pressure q = 1 kN/cm2 and a constant in-
crease of velocity of the top and bottom plate (Figure 15). The size of the sample is
64 cm × 40 cm. The contact models (5) and (8) were used with the material data:
Young’s modulus E(1)n = 100 kN/cm2, density � = 5 g/cm3, γn = 105, µt = 0,
γt = 0; the time increment is∆t = 1 ·10−6 s. No cohesion is assumed. In the initial
and the deformed structure the vertical center line is marked easing the identifica-
tion of the particles after deformation. In the right picture two evolving shear zones
are indicated clearly visualized by the two offsets of the marked particles.

Figure 16 shows the overall response in form of a normalized load-displacement
relation. After a certain load is reached shear bands evolve resulting in a sudden
brittle failure. This part is zoomed out in the figure indicating three stages, marked
by 1© to 3©. In Figure 17 the vertical stress normalized to the average stress (“load”)
obtained by averaging via RVEs is shown. The vertical stresses are evaluated by
homogenization along the marked vertical center line from the bottom to the top.
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Fig. 16 Biaxial compression test: normalized load-displacement diagram

Fig. 17 Influence of size of RVE: three stages 1© to 3© for RVE3, RVE7, RVE13 and RVE39 (at
each stage from left to right)

Four different sizes of RVE ranging from a very small RVE3 to an extremely
large one RVE39 are investigated for the three loading stages 1© to 3©. It can be
clearly recognized that the small RVE shows distinct fluctuations even anticipating
shear banding with diminishing stresses in stage 2©. The bigger the RVE the more
the stresses are smoothed out along the line, so no local effects can be seen anymore.
Evaluating other samples it turned out that the size RVE5 represents a sufficient
compromise between too small (undesired fluctuations) and too large (too much
smoothing) RVEs.

6 Examples

6.1 Samples without Cohesion

6.1.1 Biaxial Compression Test of Granular Material

In contrast to the example discussed in Section 5.5 with a dense material, a porous
granular material is investigated first followed by a wide biaxial compression test.
The mesh generation follows the principles producing a random lattice via Voro-
noi tessellation from which a dense particle sample without pores is derived [19],
see Figure 18 (stage 1©). In the next step all particles are randomly scaled down by
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Fig. 18 Construction of porous packing with random scaling by 30–60%

Fig. 19 (a) Initial and (b) deformed state of porous biaxial test

a given value (stage 2©); they also may be rotated by a statistically measure. All
particles are positioned into a box applying gravity load through the DEM method-
ology. When all particles come to rest (stage 3©) the top of the sample is cut getting
a smooth boundary (stage 4©).

The concept is applied to the porous sample shown in Figure 19 with the same
data as the previous example in Section 5.5. In the deformed state no clear shear
band could be observed, however a zoom indicates a distinct thickness change of
the zone marked in dark grey. A comparison of both zoomed details reveals the
clear densification of the sample.

Next the height to width ratio of dense specimen, investigated in Section 5.5, is
changed from 1 : 1.6 to 1 : 0.37 without modifying the test set-up. Now the rectan-
gular block with 38 cm× 102 cm consists of 3800 particles. After vertical loading
distinct zig-zag shear bands evolve (Figure 20) which are also clearly indicated by
the horizontal strains 〈ε11〉 in Figure 21.
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Fig. 20 Wide biaxial compression test: deformation at late stage of the simulation

Fig. 21 Wide biaxial compression test: horizontal strains at early (left) and late (right) stage of the
simulation

Fig. 22 Experiment with steel
nuts

6.1.2 Uniaxial Compression of Model Material

The following conceptual test has been chosen in order to investigate the quality
of the present DEM on regular particles without a geometrical bias. A rectangu-
lar sample of 217 hexagonal steel nuts (17 cm × 19 cm) lying on a background
steel plate has been tested under uniaxial compression, see experimental setup in
Figure 22. One loading platen is moved to the front by a constant low velocity
v̂2 = −6.2 · 10−4 m/s whereas the other one is fixed. For the simulation the geo-
metry of the nuts with a hole and slightly round corners has been approximated by
sharp edged solid hexagons. Contact in normal (7) and tangential (9) direction as
well as with the background plate (10) is modeled. The data for the model without
cohesion are experimentally verified: � = 3.3 g/cm3, µt = 0.29 and µb = 0.26;
the stiffnesses are chosen as E(2)n = 1.0 · 102 N/cm4, Et = 2.9 · 102 N/cm2,
Eb = 8.4 · 102 N/cm3 and the time increment as ∆t = 1 · 10−5 s. In order to
break symmetry of the sample the normal contact stiffness of the particle besides
the center at the upper row is reduced by 10%.
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Fig. 23 Comparison of experiment and simulation

In Figure 23 results from experiment and simulation are compared at different
time instants. The grey scale constitutes the velocity in e2-direction. Both cases
initially show a diffuse lateral expansion followed by the evolution of distinct shear
bands. The mode shown at t = 22.4 s is considerably changed until t = 41.2 s. This
change is inherent in both, the experiment as well as the DEM simulation.

6.2 Samples with Cohesion

6.2.1 L-shape Test

The L-shape specimen is mimicked after a concrete benchmark experimentally
tested in [26]. The data of the model material are taken from Section 5.5 using
the contact models (5) and (8), however in this case cohesion is modeled by a
brittle beam lattice described in Section 4.1; the beams have a Young’s modulus
of E = 1000 kN/cm2; the threshold values for cracking are εmax = 0.03 and
φmax = 3◦. The specimen is loaded by a uniform displacement of the boundary
particles at the right edge (Figure 24a). The load-displacement diagram is shown
in Figure 24b demonstrating that the failure initiated at the reentrant corner is ex-
tremely brittle. Although the data have not been fitted to the tests the crack patterns
shown in Figure 25 fit the experimental results qualitatively very well.
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Fig. 24 (a) L-shape specimen and (b) load-displacement diagram

Fig. 25 L-shape specimen: crack evolution 1©– 4©

6.2.2 Uniaxial Compression of Cohesive Model Material

We use the same hexagonal steel nuts as in Section 6.1.2 however bond them to-
gether by standard glue. In this case the sample stands between two glass panes in
the testing device, see Figure 26a. The friction between particles and panes is so
low that it could be neglected. Again a prescribed velocity v̂2 = −3.3 · 10−5 m/s
is applied to the upper row of particles leaving the other degrees of freedom free
to move. For the present study the cohesion between particles (adhesion through
glue) is modeled by the beam with damage, confer to Section 4.2. The data are
� = 3.3 g/cm3, E = 28 N/cm2, ε0 = 1.1 · 10−3, εm = 2.3 · 10−1; the time incre-
ment is chosen as ∆t = 1 · 10−4 s. Figure 26b compares the particle samples with
22 particles for experiment and simulation in the undeformed configuration 1© and
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Fig. 26 (a) Experiment with glued steel nuts and (b) comparison of experiment and simulation at
undeformed 1© and deformed 2© stage

deformed stage 2©; the figure also shows the detached glue connections in stage 2©
where the respected beams of the overlay lattice have already reached the descend-
ing softening branch and are damaged. The horizontal beams are mainly elongated
whereas the diagonal ones are essentially sheared. The pattern of localization is
identical to that of the simulation.

For three experiments the load-displacement diagrams are displayed in Figure 27
and supplemented by the smooth curve from simulation applying the beam with
damage. Although geometry and material of the nuts do not differ very much from
each other the scatter of the results for all three experiments is clear; the deviation
is caused by the rather primitive gluing process. On the other hand the simulation
represents a kind of overall mean response having a lower failure load though. The
rather smooth transfer into the post-critical regime in the experiments is due to the
more ductile failure of the glue under shear compared to the material model applied
in the analysis. Increasing the strains ε0 and εm at beginning and end of softening
(see Figure 3a) leads to the expected results, namely an increase of failure load with
a steeper descend for ε0 and increased energy dissipation for higher values of εm
without a change of the peak load.

6.2.3 Modeling of Microstructure for Concrete under Uniaxial Compression

For a detailed investigation of concrete the microstructure has to be modeled dif-
ferentiating between stiffness and strength of aggregates, matrix and their bond
layer, see Figure 28a. According to van Mier et al. [22] the ratios for stiffnesses
and strengths for all three phases are
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Fig. 27 Load-displacement diagram: three experiments with glued particles (thin lines) and simu-
lation (thick line)
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The cohesive connections between grains are stiffer and have higher strength than
those between matrix particles. The connections at the bond layers between grain
and matrix particles are in turn even less stiff and fail at lower loading. The elasto-
plastic interface described in Section 4.3 is adopted modeling the cohesion for all
three materials. The lattice shown in Figure 28b is only added for visualization of
the respective bond condition during loading.

For the matrix following properties are chosen: normal and tangential stiffnesses
k
(m)
n = 2000 kN/cm2, k(m)t = 600 kN/cm2; fracture energies G(m)f,n = 4.996 ·

10−4 kN/cm2, G(m)f,t = 5.988 · 10−3 kN/cm2. The yield stresses are statistically dis-

tributed for each interface about±10% the average values σmax,(m)
n = 0.04 kN/cm2,

σ
max,(m)
t = 0.12 kN/cm2. The shape parameters are ϕ = 26.6◦, γ = 10◦, ψ = 0◦

and the density is � = 2.5 g/cm3. The contact models (5) and (8) have been used
with the contact stiffness E(1)n = 100 kN/cm2. Viscous damping as well as friction
are set to zero (γn = γt = 0; µt = 0) and the time step is chosen as ∆t = 5 · 10−7 s.
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Fig. 28 Microstructure with matrix, bond and aggregate

Fig. 29 Failure evolution during simulation sim∗1

Applying this microstructure enhanced discrete element model uniaxial displace-
ment driven compression tests are simulated, see the evolution of simulation sim∗1
in Figure 29.

In Figure 30b the black lines mark the locations where the cohesive interfaces
are completely eliminated, i.e. κ = 1. The cracks run primarily along the aggregate
boundaries as it is typical for concrete. In Figure 30a the nominal stresses are plotted
versus the nominal strain representing a load-displacement diagram. Besides sim-
ulation sim∗1 the average 〈sim∗i〉 of seven simulations with different statistically
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Fig. 30 (a) Load-displacement diagram and (b) eliminated interfaces of sim∗1 at stage 4©

varied samples are shown and compared to three experimental results performed
with different loading platens by Vonk [23]. The ascending branches as well as peak
loads are very well reproduced by the simulation; there is some deviation in the
post-critical regime though.

7 Conclusions

The response of quasi-brittle materials using polygonal particles is characterized by
more realism but also larger complexity and effort compared to circular particles.
Besides contact search modeling of cohesion is a further parameter increasing the
expense of the simulation. We have discussed three models for cohesion with an in-
creasing effort. The lattice model of brittle beams is extremely efficient but results in
a sudden failure mechanism. On the other side of the spectrum the interface model
is the most realistic version; however it is also the most time consuming model.
The beam with damage is a compromise between the two other models. Its quality
has been checked also in relation to experimental results obtained from conceptual
tests using conventional steel nuts as particles; by this the geometrical bias usu-
ally inherent in a sample of particles is diminishing. The tests have been performed
for ensembles of particles which are loosely connected or glued together represent-
ing cohesion (adhesion). It turned out that the agreement between experiments and
simulations are qualitatively excellent and quantitatively sufficient considering the
substantial scatter of the material parameters.
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