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Abstract This contribution presents a strategy for programming mechanics simula-
tions including particle methods on multi-core shared memory machines.

1 Introduction

1.1 Oil Reservoir Characterization

Estimation of porous media properties such as absolute and relative permeability are
key to managing oil and gas recovery. Understanding the behavior of fluids as they
flow through porous media is important to a variety of contemporary problems in
earth science and engineering. To complement traditional displacement type exper-
iments on rock core samples [2–6], numerical techniques are used widely for both
explicit parameter determination, and as research tools to probe complex physical

tion and validation tests, which can model multi-phase fluid flow through the rock
matrix at the pore scale.

Early work into reservoir simulation involved numerical tests on idealized and
statistical reconstructions of reservoir rock [7–13], but later, application of X-ray
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micro-tomography on core samples [14–17] has provided researchers with voxel-
ized representations of actual rock geometries on which to base more highly accur-
ate and case specific models. Examples of numerical techniques used to determine
properties from X-ray CT images include the random walk method (determining
permeability from its relationship to diffusion [18–22]), the finite difference method
(both fluid flow and electrical diffusion [23]), the finite element method (both fluid
flow and electrical diffusion [24–26]) pore network models developed with realistic
dimensions and connectivity (single-phase [22–27], two-phase [28, 29]), and the
lattice-Boltzmann method (single-phase [19–20, 26, 30, 31], multi-phase [30, 32–
34]). Due to its ability to explicitly represent multi-phase wettability and capillary
forces, the lattice-Boltzmann method [35, 36] provides the most detail on grain scale
flow of conventional numerical methods. There are, however, limitations to lattice-
Boltzmann regarding solution robustness (related to statistical ‘tuning’ parameters)
and the method’s inability to account for electrical and chemical phenomena that
can have important cross-relationships with flow. Instead, we favor an alternative
particle based method.

Smooth particle hydrodynamics (SPH) is a mesh-free Lagrangian particle
method first proposed for astrophysical problems by Lucy [37] and Gingold and
Monaghan [38] and now widely applied to fluid mechanics problems [39–44]
and continuum problems involving large deformation [44, 45] or brittle frac-
ture [46]. As a Lagrangian particle method (see also dissipative particle dynamics
(DPD) [47, 48]), fluid mass in SPH is advected with each particle. In multi-phase
problems, phase interfaces are addressed intrinsically by this mass advection and
properties like surface tension, wettability and capillary forces can be included us-
ing pair-wise inter-particle forces, analogous to the molecular forces driving such
phenomena in reality [43, 49–52]. In our experience, SPH is less sensitive to small
corrections in model parameters than lattice-Boltzmann, in-part due to the inherent
robustness of a method with direct analogy to molecular physics. Additionally, it
has been shown that the generality of the SPH formulation accommodates the inclu-
sion of a variety of physical phenomena with a minimum of effort (miscible flows,
chemical transport and precipitation [43, 52–54], thermal problems [39, 42, 55–59]
and electrical/magnetic fields [39, 60, 61]).

There is a computational price for managing free particles when compared to grid
based alternatives. However, in many circumstances this expense can be justified
by the versatility with which such a variety of multi-physics phenomena can be
included. Additionally, new parallel hardware architectures such as multi-core [62]
are removing many of the barriers which have traditionally limited the practicality
of high resolution numerical techniques like SPH.

1.2 Multi-Core Parallel Computing

Multi-core machines can increase the speed at which applications execute. In par-
ticular, on board data access is more than 10,000 times faster than cross machine



Parallel Computation Particle Methods for Multi-Phase Fluid Flow 115

access. However, new parallel programming challenges are introduced because each
core can address all of the main memory, leading to potential memory access con-
flicts, such as race conditions and deadlock. Some software architects address this
by using a process on each core leveraging the operating system which guarantees
each process runs in its own isolated memory space. The penalty for this isolation
is the time consuming task of cross process communication, which requires object
marshalling and then re-instantiation of the object in the new memory space.

Here we show that a large class of computational physics problems, including
“particle” simulations, can be decomposed into orthogonal compute tasks that can
be executed safely in parallel threads within a single process on multi-core ma-
chines. A new task management algorithm called H-Dispatch [62] is developed that
allows optimal use of memory by matching the task size to the available L3 cache,
while optimizing the CPU usage by employing a “hungry” task pull strategy rather
than the common push strategy.

The technique is demonstrated on SPH problems and it is shown that an optimal
task size exists. If the task size is too small adding more cores can actually slow
down execution because the problem becomes dominated by messaging latency.
However, when the task size is increased an optimal speedup is attained. It is shown
that a near linear speedup is attained on a 24-core machine. It is noted that the
algorithm is quite general and can be a applied to a wide class of computational
tasks on heterogeneous architectures involving multi-core and GPGPU hardware.
One solution that ensures memory isolation is to run a separate MPI [63] process
on each core. The operating system then ensures an isolated memory space for each
process. Data is then shared across processes(cores) by sending MPI message re-
quiring object marshalling and un-marshalling. The problem of memory conflicts is
avoided but the cross-core/cross-process communication overhead is significant, on
the order of 10,000 machine cycles. So if the time to access a variable in memory is
say A cycles then we will now incur A + 10,000 cycles to access that same variable
in another process. We note that not all data needs to be communicated in this way,
and in computational mechanics problems only “ghost region data” is shared across
process boundaries. However, in 3D calculations the ghost regions can be roughly
50% of the unknowns. In essence, the MPI strategy turns each core into an informa-
tion island, with information transfer being limited by the speed at which MPI mes-
sages can be marshaled and delivered across processes. While this is around 100
times faster than cross-machine MPI messages, this is still relatively slow compared
to sharing main memory between the cores.

An alternative strategy, which allows memory sharing across cores, is to share a
single process across all cores, but use separate threads of execution on each core. In
order to avoid memory contention “thread safety” must now be managed explicitly
by the programmer. “Thread safe” programming can be complex even for the best
programmers and the non-deterministic nature of running multiple threads makes
detection of race conditions difficult. However, there are specific classes of problem
where thread safety can be guaranteed. Indeed, this is the basis of OpenMP [64] and
Cilk++ [65] that break “for loops” into parallel execution.
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We show below that in a large class of computational physics problems, including
“particle” simulations, we can decompose the problem into orthogonal compute task
that share memory but execute “safely” in parallel on multi-core machines.

In the next sections we detail an SPH formulation for fluid flow, its validation
and testing and its implementation on a multi-core architecture. The problem of
managing 3D space to ensure orthogonal compute tasks and the problem of Ghost
Regions are addressed.

2 Computational Physics Using Particle Methods

2.1 Overview

Mesh based numerical methods have been the cornerstone of computational phys-
ics for decades. Here, integration points are positioned according to some topolo-
gical connectivity or mesh to ensure compatibility of the numerical interpolation.
Examples of Eulerian mesh based methods include finite difference (FD) [66] and
the lattice Boltzmann method (LBM) [30, 34–36, 67], while Lagrangian examples
include the finite element method (FEM) [68]. While powerful for a wide range
of problems, mesh limitations for problems involving large deformation and com-
plex material interfaces has led to significant developments in meshless and particle
based methodologies [44–62, 69]. For such methods, integration points are posi-
tioned freely in space, capable of advection with material in a Lagrangian sense.
For methods like molecular dynamics (MD) [70] and the discrete element method
(DEM), such points represent literal particles, atoms and molecules for MD and dis-
crete grains for DEM [71–73], while for methods like dissipative particle dynamics
(DPD) [74] and smooth particle hydrodynamics the particle analogy is largely fig-
urative. For such methods, particles provide positions at which to enforce a partition
of unity (Figure 1). By partitioning unity across the particles, continuity can be im-
posed without a defined mesh, allowing such methods to represent a continuum in a
generalized way.

In Eulerian mesh based methods like FD and LBM, continuity is inherently
provided by the static mesh, while for Lagrangian mesh based approaches like FEM,
continuity is enforced through the use of element shape functions. The partition of
unity imposed on mesh-free particle methods can be seen to be a generalization of
shape functions for arbitrary integration point arrangements. From Li and Liu [44]:

. . . meshfree methods are the natural extension of finite element methods, they provide
a perfect habitat for a more general and more appealing computational paradigm – the
partition of unity.

The advantage of partition of unity methods is that any expression related to a field
quantity can be imposed on the continuum. Where for a bounded domain – in Eu-
clidean space, a set of nonnegative compactly supported functions, φ(xj ), sums to
unity (Figure 1), i.e.
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Fig. 1 Partition of unity constructed from basis functions

n∑
j=0

φ(xj ) ≡ 1 on � (1)

Correspondingly, the value of some field function, f (xi), at the point xi in space
can be determined from its value at all other points via

f (xi) =
n∑
j=0

φ(xj )f (xj ) (2)

The function f (xi), can be related to any physical field expression; hydro-
dynamic, mechanical, electrical, chemical, magnetic etc. Such versatility is a key
advantage of meshfree particle methods.

We shall now derive the equations for fluid flow.

2.2 SPH for Fluid Flow

By discretizing the fluid volume into a finite number of disordered integration points
or ‘particles’, any function, such as density or velocity, can be approximated by the
summation interpolant

fi =
n∑
j=0

mj

ρj
fjφ(ri − rj , h) (3)

where smoothing length h is generally set as the initial particle spacing, mj and
ρj are the mass and density of particle j at position rj , and the fraction mj/ρj ac-
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Fig. 2 The support domain and smoothing function in 2 dimension for some particle a

counts for the approximate volume of space each particle represents so as to main-
tain consistency between the discrete expression (5), and the continuous field that it
represents. Correspondingly, the gradient of f is given

∇fi =
n∑
j=0

mj

ρj
fj∇iφ(ri − rj , h) (4)

Figure 2 illustrates a smoothing function for a single integration point in space, a.
Authors such as Tartakovsky and Meakin [43, 50] and Hu and Adams [51] have

suggested a variation to (5) and (6) where a particle number density term, ni is used
where ni = ρi/mi and then

fi =
n∑
j=0

fj

nj
φ(ri − rj , h) (5)

∇fi =
n∑
j=0

fj

nj
∇iφ(ri − rj , h) (6)

Applying this to the particle number density itself

ni =
n∑
j=0

φ(ri − rj , h) (7)

and similarly, mass density of each particle is given by
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ρi = mini = mi
n∑
j=0

φ(ri − rj , h) (8)

This expression conserves mass exactly, much like the summation density approach
of conventional SPH [19]. Use of a particle number density variant of the SPH
formulation is typically motivated by the need to accommodate multiple fluid phases
of significantly differing densities. Use of (7) and (8) eliminates the artificial surface
tension effects observed by Hoover [40] and removes density discrepancies which
would otherwise manifest at phase interfaces. The multi-phase formulation used in
this chapter follows that presented by Tartakovsky and Meakin [43, 50].

Determination of particle velocity is achieved through discretization of the
Navier–Stokes conservation of linear momentum equation. In this work, a modified
version of the expression provided by Morris et al. [41] and used by Tartakovsky
and Meakin [43] has been used, where

dvαi

dt
= − 1

mi

n∑
j=0

(
Pi

n2
i

+ Pj
n2
j

)
∂φij

∂rαi

+ 1

mi

n∑
j=0

(
µi + µj
ninj

)
(vαi − vαj )

r
β
i − rβj
|rβi − rβj |2

.
∂ϕij

∂r
β
i

+ Fαi (9)

where Pi is the pressure, µi is the dynamic viscosity, vi is the particle velocity and
Fi is the body force applied on particle i. Indices α and β refer to vector compon-
ents and, corresponds to an Einstein’s summation on the right of the expression. An
equation of state proposed by Morris and co-workers [41] has been used to determ-
ine particle pressure at each time step via

Pi = c2(ρi − ρ0) (10)

where ρ0 is the fluid reference density while c is the artificial sound speed. Follow-
ing Morris et al. [41], the artificial sound speed term, c, should be chosen according
to

c2 ≈ Max

(
ρ0V

2
0

�ρ
,
ρ0νV0

L0�ρ
,
ρ0L0 |F |
�ρ

)
(11)

where ν is the kinematic viscosity ν = µ/ρ0, V0 and L0 are the velocity and length
scales and |F | is the magnitude of body force per unit mass, and �ρ is the max-
imum allowed amount of density fluctuation (generally chosen as being around 1%)
meaning that c will scale with the degree of incompressibility of the system.

In this work, we integrate the differential rate equation (9) using a conventional
Leapfrog [35] numerical integration scheme. A stable solution can be achieved by
enforcing the following conditions on the time step length [19, 16, 36]

�t ≤ 0.125
h2

ν
, �t ≤ 0.25

h

3c
, �t ≤ 0.25 min(h/(3|Fi |))1/2 (12)
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where |Fi | is the magnitude of the force on a particle.
We use a quintic spline kernel function following Morris [41] such that, given

R = |ri − rj |/h, then

W(R, h) = αd ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3− R)5 − 6(2− R)5 + 15(1− R)5
(3− R)5 − 6(2− R)5
(3− R)5
0

for

0 ≤ R < 1

1 ≤ R < 2

2 ≤ R < 3

3 ≤ R
(13)

where αd = 120/h, αd = 7/478πh2, αd = 3/359πh3 in 1, 2 and 3 dimensions
respectively.

2.3 Testing and Verification

To verify the accuracy of the developed SPH code, simulations of several well
defined one, two and three-dimensional flow problems were carried out. Results
from these simulations are detailed in Holmes et al. [62]. As an example we briefly
describe a three dimensional test that has direct application to fluid flow through
rock cores.

Ordered sphere packings have been used extensively within the literature as an
idealized three-dimensional porous medium. Authors such as Hasimoto [75], Zick
and Homsy [76] and Sangani and Acrivos [77] have each presented well verified res-
ults for flows through simple cubic, body- and face-centered cubic arrays of spheres
with porosities ranging up to the close-touching limits of the spheres. In the case
of spheres fluid flow will continue in sphere packs well past the point where sphere
radii exceed the close touching limit (Figure 3). Authors such as Larson and Hig-
don [78] and Roberts and Schwartz [79] have used such model geometries to rep-
resent consolidated porous media. In this work, we have tested the performance of
the developed SPH code for three-dimensional flow using a simple cubic array of
spheres with sphere radii up to, and past, the sphere close touching limits as per Lar-
son and Higdon [78] (Figure 3). Again, symmetry of the periodic system facilitated
the reduction of the model to the representative three-dimensional unit cell shown
in the right part of Figure 3. Periodic boundaries were enforced in all three model
dimensions and a center-to-center sphere distance, d , of 1 × 10−3 m was chosen.
The fluid was assigned the properties of water (ρ = 103 kgm3, ν = 10−6 m2 s−1).

A variety of solid volume fractions, φ, were used in the simulations following
the work of Larson and Higdon [78], where

φ = Vsolid

Vcell
(14)

In all simulations, flow was driven from rest by a constant body force of F =
0.049 ms−2 and an artificial sound speed of c = 0.07 ms−1 was chosen. During
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Fig. 3 Cubic packing of overlapping spheres.

model definition, SPH particles were initially arranged on a uniform hexagonal close
packed grid and particles positioned inside the bounds of solid spherical grains were
designated as being boundary particles.

2.4 Characterization of Flow

Flow through the cubic array of consolidated spheres has been characterized in
terms of a friction coefficient, K , and the permeability, k. For the case of a spher-
ical grain in infinite dilution, the drag force, Fd , can be expressed via the Stokes–
Einstein form, Fd = 6πµrU . Using this term to non-dimensionalize the sphere
pack drag, we establish the friction coefficient used by authors such as Zick and
Homsy [76] and Larson and Higdon [78] as

K = Fd

6πµrU
(15)

The force and velocity terms were determined from simulation results and per-
meability was determined through Darcy’s law with the dimensionless form,

k

d2
= 1

K

(
Vcell

6πrd2

)
(16)

Tests of the mesh sensitivity are reported by Holmes et al. [62] and it was found that
approximately 30 particles should span a circular pore throat. The results for dimen-
sionless permeability are plotted below and show good agreement with Sangani and
Acrivos.
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Table 1 Friction coefficient for various values of solid volume fraction for flow through a cubic
array of consolidated spheres

Table 1 shows the results for the friction coefficient for various volume fractions
and shows excellent agreement with those predicted by Larson and Higdon even up
to high solid volume fractions, where the pore throats to pore volume ratio is large.
Friction coefficient results are plotted in Figure 4, while results for dimensionless
permeability are plotted in Figure 5.

3 Application of SPH to Pore Scale Physics

Oil reservoirs are extremely difficult to characterize because in a reservoir extending
kilometers only a tiny volume of the rock can be sampled. Furthermore, if the rock is
sampled directly by taking a core it is very difficult to maintain the in-situ conditions
when the sample is retrieved. Re-creation of in-situ conditions in the laboratory is
both time consuming and expensive. Indirect sampling of the rock, using seismic,
electromagnetic, acoustic and other means can complement the laboratory tests but
often they too are inconclusive. Thus, many researchers believe numerical modeling
is an essential tool to give us a better understanding of rock physics. The goal is to
predict from digital rock images macroscopic properties such as porosity, absolute
permeability, relative permeability, electrical conductivity and elastic properties.
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Fig. 4 Friction coefficient

Fig. 5 Dimensionless permeability
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Given micro-CT scans of a rock sample, the digital image data is first segmented
to detect the boundaries between the rock matrix and the pore space as shown in
Figure 5. We note that we can use our partition of unity approach to segment the
image. Since the digital image data gives us a voxelized sample of the rock we can
directly use the same SPH code to interpolate the data and determine the boundary
between rock and pore space.

f (x) =
n∑
k=0

akφ(x − k) (17)

where ak is the voxel value at x = k. This process is illustrated in Figure 6 and the
workflow for generating a numerical model in Figure 7.

Fluid flow in the range of low Reynolds numbers experiences a no-slip flow con-
dition at solid boundary surfaces. For the permeable rock applications of interest
in this paper, flow will occur in this low Reynolds number range and so no-slip
boundary conditions must be enforced to accurately reproduce the appropriate flow
profiles. The method developed in our previous work by Holmes et al. [80] uses im-
posed artificial velocities at boundary particles to create antisymmetry in the velo-
city field at boundary surfaces. This allows complex pore geometries to be simulated
as shown below.

The developed SPH simulator has been used to analyze flow though model geo-
metries derived from X-ray CT images of 23.6% porosity Berea sandstone as shown
in Figure 6.

Figures 8 and 9 show typical results of multi-phase flow applied to pore scale
analysis of an idealized oil reservoir; tests that can be repeated on the digital rock
geometries.

4 Parallel Computation on Multi-Core

4.1 Parallel Algorithms and the Ghost Region Issue

In computational mechanics problems involving parallel processing we divide the
problem into a number of tasks which can be “scattered” out to the various pro-
cessors and executed simultaneously. In cross machine computing we divide the
unknowns into non-overlapping domains. However, there is spatial coupling of un-
knowns across domains so each domain must keep a copy of the “ghost region”
belonging to its neighboring domains (Figure 10). Updating unknowns from time
step N to step N + 1 within a domain then proceeds in parallel. Only unknowns
“belonging” to the domain are updated at this stage. Once the time step is complete
the “ghost regions” are then updated by sending MPI messages from one machine
to the other. We note that there needs to be a synchronization point that ensures all
machines have finished the update on their own domains before messages updating
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Fig. 6 Digital image segmentation using particles as interpolation functions to directly generate
SPH particles

Fig. 7 Workflow for numerical model generation

the “ghost regions” are sent. Such synchronizations generally mean that computa-
tions on every machine must halt. Synchronization points in coordinating parallel
computing tasks are critical as we shall see below.

If an MPI process is launched on each core then the computational process is
almost identical to that described above for cross machine computation. The only
difference is that the MPI messages can be optimized for in-machine communic-
ation. In the Microsoft.NET, environment marshalling and un-marshalling objects
across AppDomain boundaries (somewhat equivalent to Linux process boundaries)
allows approximately 100,000 messages per second, so that each message takes
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Fig. 8 SPH simulation of flushing of oil from rock pores

Fig. 9 SPH multi-phase fluid simulation (a) water-rock non-wetting, (b) water-rock wetting

roughly 10,000 machine cycles. Additionally, problem size must be very large to re-
duce the fraction of ghost points needing to be communicated to manageable levels
(Figure 11).

In the case of shared memory there are no “ghost regions” since any unknowns
from neighboring domains may be read directly from memory. However, we must
now devise a strategy for ensuring that writing does not corrupt data being read.
One method is to provide two memory slots for each variable, one for vn and one
for vn+1. Using this strategy only one synchronization point is necessary at the end
of the time step.

Typically, the domain boundaries are minimized so that the “ghost regions” are as
small as possible and message passing is minimized (see relationship in Figure 11).
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Fig. 10 Illustration of ghost regions in numerical simulation

Fig. 11 Data communication fraction in typical cluster computing problem

However, using our shared memory strategy there is no penalty involved in dividing
the problem up into smaller domains (Figure 12). Indeed, there is a benefit in doing
this because we can now optimize the task size to match the underlying hardware,
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Fig. 12 Contrast of domain decompositon in cluster and multcore computing

Fig. 13 (a) Speed-up versus number of cores, (b) efficiency versus number of cores

particularly the L3 cache size. On a 24 core machine we have shown that we get
better efficiency in breaking the problem into hundreds of smaller domains (see
Figure 12). Figure 13 shows the performance of the H-Dispatch strategy compared
to MPI and traditional scatter-gather.

When using modern languages such as Java and C#, we need also to minimize
garbage collection because all cores must be stopped while the heap is re-mapped.
We achieve this by essentially managing memory on each core explicitly. We alloc-
ate a block of memory for each core at the start of the computation and hold it until
the end of the computation. This is achieved by allocating a master thread on each
core. The thread “pulls” tasks from a single dispatcher queue as fast as it can. The
task size is such that it can be mapped into the memory allocated. Furthermore, load
balancing across cores is ensured no matter if one core runs slower than another.
Indeed, even if a core “fails” by not responding within some given period of time,
we can resubmit the task to the queue and it will execute on another core. The end
of the time-step occurs when there are no more tasks in the queue.
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4.2 Spatial Hashing in Particle Methods

The central idea behind spatial hashing is to overlay some regular spatial structure
over the randomly positioned particles e.g. an array of equally sized cells. We can
then perform spatial reasoning on the cells rather than on the particles themselves.
Spatial hashing assigns particles to cells or ‘bins’ based on a hash of particle co-
ordinates. The numerical expense of such an algorithm isO(N) whereN is particle
number [15, 16]. A variety of programmatic implementations of hash cell methods
have been used (for example linked list). In this work a dictionary hash table is used
where a generic list of particles is stored for each cell and indexed based on an in-
teger key unique to that cell, i.e. key = (k × ny + j)× nx + i where nx an ny are
the total number of cells in the x and y dimensions and i, j and k are the integer cell
coordinates in the x, y and z dimensions.

The cells also provide a means for defining task packages to the cores. By as-
signing a number of cells to each core we assure “task orthogonality” in that each
core is operating on different set of particles. Traditional software applications for
shared memory parallel architectures have utilized locks to avoid thread contention.
We note that a core may “read” the memory of particles belonging to surrounding
cells but may not update them. We execute a single loop in which global memory
for both previous and current field values (νtn and vtn+1 ) is stored for each particle.
Gradient terms can then be calculated as functions of values in previous memory,
while updates are written to the current value memory, in the same loop. In parallel,
minimizing the frequency of so called synchronization points has advantages for
performance and we utilize a “rolling memory algorithm” that allows such previous
and updated terms to be maintained without needing to replace the former with the
latter at the end of each step and thus, ensuring a single synchronization per step.

In a typical SPH simulator, two operations must be done on particles in each cell
per step, separated by a synchronization, the first to determine the particle number
density of each particle, and the second to perform the field variable updates. In-
teracting particles must be known for each of these two stages. Using a standard
SPH formulation, the performance of two structure variations can be compared in
a case study. In structure A, interacting particles are determined in the first stage
for all cells and stored in a global list for use in the second. In structure B, inter-
acting particles are determined as needed in each stage for each cell, i.e. twice per
cell per time step. Recalculation of interacting particles means they need only be
kept in a local thread list that is overwritten with each newly dispatched cell. While
differences in execution memory are to be expected of the two code versions, the
differences in execution time are more surprising. For low core counts (< 10 cores),
as would be expected, the single search variant (A) solves more quickly than the
double (B) due to less computations. After this point, however, the double search
(B) is shown to provide marked improvements in speed over (A) (up to 50%). This
can be attributed to better cache blocking of the second approach and the signific-
antly smaller amount of data experiencing latency when being loaded from RAM to
cache. The fact that such performance gains only manifest when more than 10 cores
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Fig. 14 (a) Memory vs. number of particles, (b) speed-up vs. number of cores

are used, suggests that for less than 10 cores, RAM pipeline bandwidth is sufficient
to handle a global interaction list.

5 Conclusions

The verification of SPH as an accurate analysis tool for single-phase flows has
been detailed and its extension to multi-phase flows and complex pore geometries
demonstrated. The ability of SPH to simulate multiple fluid phases with accurate
expression of surface tension and interfacial properties such as wettability and con-
tact angle, make the method a powerful numerical tool for geo-numerics problems.
Since flow in reservoir rock typically occurs in the range of low Reynolds number,
the enforcement of no-slip boundary conditions is an important factor in simulation.
Using the no-slip boundary conditions we show that SPH can handle the degree of
complexity of boundary surfaces characteristic of an actual permeable rock sample.

We present a parallel numerical simulation framework, which allows parallel im-
plementation of a wide range of numerical methods in a multi-core, shared memory,
environment. We use a novel domain decomposition methodology that takes optimal
advantage of the shared memory architecture and allows for dynamic load balancing
of the cores.
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