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Abstract This paper presents numerical modelling of rock cutting processes. The
model consists of a tool-rock system. 3D geometry is considered in the model. The
rock is modelled using the discrete element method, which is suitable to study prob-
lems of multiple material fracturing like that of rock cutting. The paper presents
brief overview of the theoretical formulation and calibration of the discrete element
model by simulation of the unconfined compressive strength (UCS) and indirect
tension (Brazilian) tests. Numerical examples illustrate the paper. Rock cutting pro-
cesses typical for underground excavation using both roadheader and TBM cutting
tools are simulated. Numerical results are compared with the available experimental
data.

1 Introduction

A variety of rock-cutting technologies is used in civil as well as in mining engin-
eering. Figures 1a and 2a show machines performing rock cutting in underground
excavation, a roadheader and a tunnel boring machine (TBM), respectively. Road-
headers excavate the rock by means of conical point attack picks (Figure 1b) moun-
ted on a rotating cutterhead supported by a boom which is independently movable
in the vertical and horizontal direction. In the excavation with TBMs, the rock is
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(a)

(b)

Fig. 1 Roadheader: (a) rock excavation with a roadheader, (b) typical design of a point attack pick

cut by means of cutter discs (Figure 2b) installed on a rotating cutter head, which is
pressed against the tunnel face.

The basic physical phenomenon occurring during rock cutting is desintegration
of the rock under mechanical action of a cutting tool. Design of cutting tools and set-
ting parameters of cutting operations requires knowledge about the cutting process.
Cutting force is one of the main factors characterizing a cutting process. Theoretical
evaluation of the cutting force is not an easy task. Simple analytical models, like
those developed by Evans [3] or by Nishimatsu [8], can provide an approximate
estimation of cutting forces only.

Numerical simulation can provide valuable information about the cutting phe-
nomenon. Numerical methods based on the continuum models, like finite element
methods, have serious problems in modelling discontinuities of the material occur-
ring during rock cutting [5]. The discrete element method takes into account all
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(a)

(b)

Fig. 2 TBM: (a) general view of a TBM cutterhead, (b) TBM disc cutters

kinds of discontinuities and material failure characterized with fracture and there-
fore is a suitable tool to study rock cutting [4, 11, 12].

2 Numerical Model of Rock Cutting

A system consisting of a tool and rock sample is considered in the model (Figure 3).
The rock material is represented as a collection of spherical (in 3D) or cylindrical
(in 2D) discrete elements interacting among themselves with contact forces. The
tool is considered a rigid body with a surface discretised with triangular facets. The
tool-rock interaction is modelled assuming Coulomb friction model. A numerical
model of rock cutting has been developed within the authors’ own implementation
of the discrete element method (DEM) in the computer program DEMPack [9,10].
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Fig. 3 Geometrical scheme of a rock cutting model

Fig. 4 Motion of a discrete element

3 Discrete Element Method Formulation

The translational and rotational motion of rigid spherical or cylindrical elements
(particles) is governed by the standard equations of rigid body dynamics. For the
i-th element (Figure 4) we have

mi üi = Fi , (1)

Ji ω̇i = Ti , (2)

where ui is the element centroid displacement in a fixed (inertial) coordinate frame
X, ωi – the angular velocity,mi – the element mass, Ji – the moment of inertia, Fi –
the resultant force, and Ti – the resultant moment about the central axes. The form of
the rotational equation (2) is valid for spheres and cylinders (in 2D) and is simplified
with respect to a general form for an arbitrary rigid body with the rotational inertial
properties represented by a second order tensor. Vectors Fi and Ti are sums of:
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Fig. 5 Contact interaction between two discrete elements

• all forces and moments applied to the i-th element due to external load, F ext
i

and T ext
i , respectively,

• contact interactions with neighbouring spheres F cont
ij , j = 1, . . . , nc

i , where nc
i

are the number of elements being in contact with the i-th discrete element,
• forces and moments resulting from external damping, F damp

i and T damp
i , re-

spectively

Fi = F ext
i +

nc
i∑

j=1

F cont
ij + F damp

i , (3)

Ti = T ext
i +

nc
i∑

j=1

sc
ij × F cont

ij + T damp
i , (4)

where sc
ij is the vector connecting the centre of mass of the i-th element with

the contact point with the j -th element (Figure 5).

Equations of motion (1) and (2) are integrated in time using the central difference
scheme. The time integration operator for the translational motion at the n-th time
step is as follows:

üni =
Fni
mi
, (5)

u̇n+1/2
i = u̇n−1/2

i + üni �t , (6)

un+1
i = uni + u̇n+1/2

i �t . (7)

The first two steps in the integration scheme for the rotational motion are identical
to those given by Eqs. (5) and (6):

ω̇ni =
Tni
Ji
, (8)

ω
n+1/2
i = ω

n−1/2
i + ω̇ni �t . (9)

The vector of incremental rotation�θ i is calculated as
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�θ i = ω
n+1/2
i �t , (10)

If necessary it is also possible to track the total change of rotational position of
particles [1].

Explicit integration in time yields high computational efficiency of the solution
for a single step. The disadvantage of the explicit integration scheme is its condi-
tional numerical stability imposing the limitation on the time step�t . The time step
�t must not be larger than a critical time step �tcr

�t ≤ �tcr (11)

determined by the highest natural frequency of the system νmax

�tcr = 2

νmax
. (12)

Exact determination of the highest frequency νmax would require solution of the
eigenvalue problem defined for the whole system of connected rigid particles. The
maximum frequency of the whole system can be estimated as the maximum of nat-
ural frequencies νei of subsets of connected particles surrounding each particle e,
cf. [2]:

νmax ≤ νDmax , where νDmax = max
i,e
νei (13)

The contact force between two elements1 F cont can be decomposed into normal
and tangential components, F cont

n and F cont
t , respectively

F cont = Fcont
n + F cont

t = F cont
n n+ F cont

t , (14)

where n is the unit vector normal to the particle surface at the contact point.
The contact forces F cont

n and F cont
t are obtained using a constitutive model for-

mulated for the contact between two rigid spheres. In the present work rock mater-
ials are modelled using elastic perfectly brittle model of contact interaction, where
we assume initial bonding for the neighbouring particles. These bonds can be broken
under load allowing us to simulate initiation and propagation of material fracture.
Contact laws for the normal and tangential direction for the elastic perfectly brittle
model are shown in Figure 6. When two particles are bonded the contact forces
in both normal and tangential directions are calculated from the linear constitutive
relationships:

F cont
n = knun , (15)

‖F cont
t ‖ = kt ‖ut‖ , (16)

where F cont
n – normal contact force, F cont

t – tangential contact force, kn – interface
stiffness in the normal direction, kt – interface stiffness in the tangential direction,
un – normal relative displacement, ut – tangential relative displacement.

1 In the next part of this section indices denoting the elements will be omitted.
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(a)

(b)

Fig. 6 Force-displacement relationships for the elastic perfectly brittle model: (a) in the normal
direction, (b) in the tangential direction

Cohesive bonds are broken instantaneously when the interface strength is ex-
ceeded in the tangential direction by the tangential contact force or in the normal
direction by the tensile contact force. The failure (decohesion) criterion can be writ-
ten as

F cont
n ≤ Rn , (17)

‖F cont
t ‖ ≤ Rt , (18)

where Rn – interface strength in the normal direction, Rt – interface strength in the
tangential direction.

In the absence of cohesion the normal contact force can be compressive only
(Rn ≤ 0) and tangential contact force can be nonzero due to friction

‖F cont
t ‖ = µ|F cont

n | (19)
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if Rn < 0 or zero otherwise. The friction force is given by Eq. (19) expressing the
Coulomb friction law, with µ being the Coulomb friction coefficient.

A quasi-static state of equilibrium of the assembly of particles can be achieved by
application of adequate damping. Damping is necessary to dissipate kinetic energy.
Damping terms F damp

i and T damp
i in equations (3) and (4) in the present work are

of non-viscous type and are given by

F damp
i = −αt‖F ext

i + F cont
i ‖ u̇i

‖u̇i‖ , (20)

T damp
i = −αr‖Ti‖ ωi‖ωi‖ , (21)

where αt and αr , are respective damping constants for translational and rotational
motion.

4 Determination of Rock Model Parameters

The discrete element model can be regarded as a micromechanical material model,
the contact model parameters being micromechanical parameters. Assumption of
adequate micromechanical parameters yield required macroscopic rock properties,
the most important being the Young modulusE, Poisson’s coefficient µ, compress-
ive strength σc and tensile strength σt. For the elastic-brittle model of interaction
between discrete elements described in Section 3 we have the following set of
constitutive parameters:

kn – contact stiffness in the normal direction,
kt – contact stiffness in the tangential direction,
Rn – interface strength in the normal direction,
Rt – interface strength in the tangential direction,
µ – Coulomb friction coefficient,
αt – damping coefficient for translational motion,
αr – damping coefficient for rotational motion.

Determination of the model parameters is the key issue in the use of the discrete
element method.

4.1 Dimensionless Micro-Macro Relationships

In the present work the micromechanical parameters have been determined using
the methodology developed by Huang [4] based on the combination of the dimen-
sional analysis with numerical simulation of the standard laboratory tests for rocks,
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unconfined compression test and Brazilian test. Dimensional analysis is based on
the Buckingham π theorem, which states that any physically meaningful functional
relationship of N variables  (Q1,Q2, . . . ,QN) can be expressed equivalently by
a function of N − r dimensionless parameters �(π1, π2, . . . , πN−r ), where r is
the number of primary dimensions (minimum independent dimensions required to
specify the dimensions of all the relevant parameters), and N − r is the maximum
number of independent parameters [7].

Here we will search functions defining the macroscopic material parameters:
Young’s modulus E, Poisson’s ratio ν, compressive strength σc and tensile strength
σt in terms of microscopic parameters: kn, kt, Rn, Rt, µ, αt , αr . Macroscopic prop-
erties can also depend on other parameters, like particle size characterized by the
average radius r , material density ρ, porosity of the particle assembly n. The set
of the parameters can be completed with geometrical parameters represented by
the specimen size L (due to possible scale effect) and loading velocity V . Thus, the
number of relevant parametersN is 12. We have three primary dimensions involved:
mass, length, time (r = 3). We can assume there are nine independent parameters.

The set of parameters is not unique and can be modified by taking into account
some other parameters that can influence macroscopic properties. In [13] the min-
imum and maximum element radii, rmin and rmax, respectively, have been included
to the relevant parameters, in order to better consider the influence of the element
size distribution on macroscopic properties. To some extent, this influence is taken in
our formulation by the porosity n which depends on the size distribution, the wider
size distribution the lower porosity in the discrete element model can be achieved.

Having in mind there are alternative approaches, our procedure is based on the
following set of nine independent parameters: {knr/Rn, Rt/Rn, kt/kn, n, r/L, µ,
αt, αr, V/

√
kn/ρ}. Since the material properties will be studied under quasi-static

conditions, the set of parameters can be reduced by removing V/
√
kn/ρ, αt and

αr. Further on, assuming that the element size r is small compared to macroscopic
dimension L (r � L), we can neglect the influence of the parameter r/L. The
friction coefficient µ has influence mainly on the post-failure material behaviour,
so we can omit it in the relationships for elastic constants and strength paramet-
ers. The set of relevant dimensionless parameters is reduced to the following one:
{knr/Rn, Rt/Rn, kt/kn, n}. Assuming that the elastic constants are determined in the
range in which the failure is not initiated yet, in the relationships for elastic constants
we can consider only two dimensionless parameters: {kt/kn, n}. Since constitutive
relationships for 2D are given for the depth (the third dimension) of 1 m, the para-
meters for 2D have different meaning and dimensions from those for 3D. Therefore
we have to consider separately the cases of 2D and 3D. The behaviour of the dis-
crete element model in 2D and 3D is also different – this is another reason why the
dimensionless relationships for 2D and 3D are different.
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4.1.1 Dimensionless Micro-Macro Relationships for 2D Problems

Following [4] the following dimensionless functional relationships linking macro-
scopic and microscopic parameters have been postulated for the 2D discrete element
model:

E

kn
= �2D

E

(
kT

kn
, n

)
, (22)

ν = �2D
ν

(
kT

kn
, n

)
, (23)

σcr

Rn
= �2D

c

(
RT

Rn
,
kT

kn
, n

)
, (24)

σtr

Rn
= �2D

t

(
RT

Rn
,
kT

kn
, n

)
. (25)

The specific form of the dimensionless relationships (22)–(25) have been ob-
tained from the results of numerical simulations of the unconfined compression test
(UCS) and Brazilian tests. The results of a simulation of the UCS test are presented
in Figure 7 in the form of failure evolution with distribution of stresses in the dir-
ection of loading. The material sample of 50× 50 mm represented by an assembly
of randomly compacted 4979 discs of radii 0.262–0.653 mm (average radius 0.465
mm) has been generated using the high density sphere packing algorithm developed
in [6]. Compaction of the particle assembly has been characterized by a porosity
n of 13%. The stress-strain curve obtained in the analysis (Figure 8) can be used
to determine the Young modulus E and compressive strength σc. The simulation
provides the value of the Poisson ratio ν, as well.

The cylindrical specimen of the diameter 50 mm for the simulation of the
Brazilian test has been obtained by trimming adequately the specimen used in the
UCS modelling. The failure mode with distributions of averaged stresses in the dir-
ection normal to the loading is shown in Figure 9. The failure in the form of splitting
along the diameter parallel to the loading predicted in simulation agrees very well
with the experimental observations. The stress distribution is in a very good agree-
ment with theoretical solutions [14].

The force-time curve obtained in the simulation is plotted in Figure 10. Taking
the maximum force Pmax we find the tensile strength as:

σt = 2Pmax

πLD
(26)

Simulations of both the UCS and Brazilian test have been performed for the
dimensionless parameter kt/kn in the range from 0 to 2, assuming Rt/Rn = 1.
The curves representing the dimensionless relationships (22) and (23) are plotted in
Figure 11, the curves corresponding to the relationships (24) and (25) are shown in
Figure 12.
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(a) = 0.0014 s (b) = 0.0016 s

(c) = 0.0018 s (d) = 0.0020 s

Fig. 7 Simulation of unconfined compression test – failure evolution with distribution of stress
along the loading direction

Fig. 8 Simulation of unconfined compression test – stress-strain curve

4.1.2 Dimensionless Micro-Macro Relationships for 3D Problems

The methodology developed for 2D models has been extended in this work on the
three-dimensional discrete element modelling. Analogically to Eqs. (22)–(25) the
following dimensionless functional relationships for 3D discrete element models
have been postulated:
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(a) = 0.0010 s (b) = 0.0014 s

(c) = 0.0016 s (d) = 0.0018 s

Fig. 9 Simulation of Brazilian test – failure of the rock sample with distribution of stress in the
direction normal to the loading

Fig. 10 Simulation of the Brazilian test – load-time curve

Er

kn

= �3D
E

(
kT

kn

, n

)
, (27)

ν = �3D
ν

(
kT

kn

, n

)
, (28)
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Fig. 11 Dimensionless relationships between the microscopic parameters and macroscopic elastic
constants: (a) relationship for Young’s modulus, (b) relationship for Poisson’s ratio

Fig. 12 Dimensionless relationships between the microscopic parameters and (a) compressive
strength, (b) tensile strength.

σcr
2

Rn

= �3D
c

(
RT

Rn

,
kT

kn

, n

)
, (29)

σtr
2

Rn

= �3D
t

(
RT

Rn

,
kT

kn

, n

)
. (30)

The specific form of the dimensionless relationships have been obtained from
the results of numerical simulations of the laboratory tests. Results of the numerical
simulation of the UCS and Brazilian tests are shown in Figure 13. The failure ob-
tained in simulation is similar to the failure observed in the experiments. The sim-
ulations have been performed for the dimensionless parameter kt/kn in the range
from 0 to 1, assuming Rt/Rn = 1. The relationships (27), (28) and (29) obtained
from the simulations of the UCS test are plotted in Figures 14 and 15a. The rela-
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(a) (b)
Fig. 13 Results of the numerical simulation of the laboratory tests for rocks: (a) unconfined com-
pression test, (b) Brazilian test

Fig. 14 Elastic dimensionless parameters as functions of kt/kn

tionship (30) obtained from the numerical simulations of the Brazilian test is given
in Figure 15b.

5 Simulation of Rock Cutting

The discrete element model presented above has been applied to simulation of rock
cutting. Two laboratory tests of rock cutting have been analysed, the first one con-
sists of rock cutting with a single roadheader pick and the other one is the linear
cutting test with a TBM disc cutter.
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Fig. 15 Dimensionless compressive strength parameters as a function of kt/kn: (a) for compres-
sion, (b) for tension

(a) (b)

Fig. 16 Laboratory rock cutting test: (a) the cutting test rig, (b) rock cutting process (laboratory of
Sandvik Mining and Construction GmbH, Zeltweg, Austria)

5.1 Simulation of Rock Cutting with a Single Roadheader Pick

Scale-one cutting tests with a single roadheader pick are performed on the cutting
testrig (Figure 16) built in the laboratory of SANDVIK Mining and Construction
(Zeltweg, Austria) to study cuttability of specific rocks and performance of cutting
tools.

Cutting of a sandstone block by a rotating roadheader pick was chosen for nu-
merical analysis. Mechanical properties of the rock have been determined exper-
imentally and are the following: Young modulus E = 18690 MPa, compressive
strength σc = 127 MPa and tensile strength σt = 12 MPa.
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(a) (b)

Fig. 17 2D numerical simulation of rock cutting: (a) numerical model, (b) failure mode during
rock cutting

5.1.1 2D Simulation of the Rock Cutting Test

A numerical model developed for simulation of the rock cutting test is shown in
Figure 17a. The rock specimen is discretized using 30,750 cylindrical elements of
radii r = 1–1.5 mm. Using the dimensionless relationships (22)–(24) the following
set of microscopic parameters has been determined for the rock under consideration:
kn = 1.61129·1010 Pa, contact stiffness in the tangential direction kt = 0.3222·1010

Pa, Coulomb friction coefficient µ = 0.839 and cohesive bond strengths in the nor-
mal and tangential direction, Rn = Rt = 0.29 · 105 N/m. The model parameters
were verified by simulations of the UCS and Brazilian tests using specimens of sim-
ilar characteristics as those of the rock specimen. The values of 118 MPa and 16.8
MPa were obtained for the compressive and tensile strengths, respectively. These
values were accepted as satisfactorily agreeing with the experimental results.

The model of rock cutting was supplemented with the parameters of the rock-
tool interaction and global damping. For the rock-tool interaction the following set
of parameters has been assumed: kn = ks = 5 · 1010 MPa, µ = 0.5. Non-viscous
damping has been assumed taking the damping factors αnvt = αnvr = 0.2.

Figure 17b shows the rock failure mode obtained in the simulation. A satisfying
accordance with the failure observed in the labratory test can be watched. Figure 18
shows variation of the cutting force obtained in the numerical simulation. The nu-
merical cutting force is compared with the average experimental value. As it can be
seen in Figure 18 the mean cutting force from the numerical analysis agrees quite
well with the average experimental force (about 7000 kN).
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Fig. 18 2D numerical simulation of rock cutting – cutting force variation

Fig. 19 3D numerical model of rock cutting

5.1.2 3D Simulation of the Rock Cutting Test

All the three components of a cutting force can be calculated using a three-
dimensional model of the rock cutting test. The geometrical model created is shown
in Figure 19. The material sample has been discretized using 71,200 spherical
particles with average radius of 1.02 mm. The discrete element assembly has been
generated using the high density sphere packing algorithm [6]. The tool was as-
sumed rigid and its surface was discretized with a fine mesh of triangular facets
representing accurately a complex tool tip geometry.

The micromechanical parameters for the rock considered were found with help
of dimensionless relationships given in Figures 14a and 15a. First, the ratio between
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Fig. 20 Numerical simulation of the laboratory rock cutting test

the contact stiffness in the tangential and normal direction has been assumed 0.4,
since for this value the brittle failure of rock in 3D simulations of the UCS and
Brazilian test has been correctly reproduced. From the curve given in Figures 14a
the contact stiffness in the normal direction kn = 2.6 · 107 N/m has been obtained,
then we have the contact stiffness in the tangential direction kT = 1.04 · 107. The
value of cohesive bond strengths in the normal Rn can be calculated from the plots in
Figures 15a or 15b. The results obtained from these two plots are slightly different,
Rn = 117 N from the plot in Figure 15a vs. Rn = 90 N from Figure 15b. Since the
failure in cutting of sandstone is of brittle character and splitting of chips is mainly
due to tensile stresses, the value Rn = 90 N according to the indirect tensile test
simulation results has been adopted. Similar value for the shear bond strength has
been taken, RT = 86 N.

The results of numerical simulation are shown in Figure 20. Splitting of chips
typical for brittle rock cutting can be seen. The three components of cutting forces
obtained in simulation are plotted in Figure 21. Numerical forces are compared with
experimental average measurements. Quite a good agreement can be observed.

5.2 Simulation of the Linear Cutting Test

The linear cutting test has been simulated. Figure 22 shows the model geometry,
consisting of the disc cutter and a rock sample. Only the area of the cutter ring in-
teracting directly with the rock is considered. A rock sample with dimensions of
400 × 150 × 50 mm is represented by an assembly of randomly generated and
densely compacted 40449 spherical elements of radii ranging from 0.8 to 6.0 mm.
The granite properties are assumed in the simulation, appropriate DEM paramet-
ers being evaluated. The disc cutter is treated as a rigid body and discretized with
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Fig. 21 Rock cutting forces – comparison of numerical results with experimental average values

Fig. 22 Model geometry of the linear cutting test – model geometry

triangular facets. The parameters describing the disc interaction with the rock are
as follows: contact stiffness modulus kn = 10 GPa, Coulomb friction coefficient
µ = 0.8. The velocity of the disc cutter is assumed to be 10 m/s.

Figure 23 shows the cutter disc during cutting. Normal contact force history is
shown in Figure 24. Numerical results have been compared with experimental ones
provided by Herrenknecht AG. A good agreement between the numerical and aver-
age experimental values is clearly seen.
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(a) (b)

(c) (d)

Fig. 23 Simulation of the linear cutting test – rock failure with distribution of macroscopic stresses
(lowest principal stress – maximum compressive stress)
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Fig. 24 Normal force history

6 Concluding Remarks

The three-dimensional discrete element model of rock cutting is capable to represent
correctly complexity of a rock cutting process. A good qualitative and quantitative
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agreement of numerical results with experimental measurements has been found out
in the validation of the model developed in the present work. The discrete element
model developed can be employed in the design of rock cutting tools and processes.
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