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Abstract: This chapter provides an overview of different hierarchical levels of molecular
dynamics (MD) simulations spanning a wide range of time and length scales – from first prin-
ciples approaches via classical atomisticmethods to coarse graining techniques.The theoretical
background of the most widely used methods and algorithms is briefly reviewed and practi-
cal instructions are given on the choice of input parameters for an actual computer simulation.
In addition, important postprocessing procedures such as data analysis and visualization are
discussed.

Introduction

Molecular dynamics (MD) simulations in their different flavors are widely used in a large
variety of research areas of Computational Physics and Chemistry. They represent a power-
ful tool to study the motion of atoms in molecules, liquids, and solids. The term MD typically
refers to the propagation of point particles – atomic nuclei or effective particles combining sev-
eral nuclei – according to the laws of classical mechanics. In particular, the forces acting on
the particles are calculated “on the fly” only at discrete points along the trajectory. Following
this definition, we discuss in this chapter Ab Initio MD (AIMD), i.e., the atomic forces are
calculated from first principles, classical atomistic MD using analytical empirical interaction
potentials (force-fields), which sometimes is referred to as force-field molecular dynamics, and
coarse grain MD using analytical empirical potentials between effective particles representing
groups of atoms. We exclude methods which go beyond classical nuclei, such as path integral
MD (Tuckerman ; Tuckerman and Hughes ; Tuckerman et al. ) and wavepacket
dynamics (Balint-Kurti ; Worth et al. ), or beyond the Born–Oppenheimer approxi-
mation (Doltsinis and Marx a, b). This overview, furthermore, leaves out the vast area of
semi-empirical methods (see for instance Bredow and Jug [] for a recent review) includ-
ing self-consistent charge density functional tight-binding (SCC-DFTB) (Elstner et al. )
and empirical valence-bond (EVB) theory (Aqvist andWarshel ; Shurki andWarshel ;
Warshel , ).

The aim of this chapter is to offer practical guidance on how to choose the appropriate
technique for a particular physical problem, how to set up a simulation, and how to analyze
and visualize the output. In addition it should provide the theoretical background required to
become a competent user of the available simulation software packages.

Choosing the Right Method

When choosing which type of molecular dynamics simulations to perform, it is important
to understand the capabilities of each technique. The differences in the various methods are
basically dependent on the detail with which each one models a physical system.

The most detailed molecular dynamics simulation technique is the ab-initio (quantum)
molecular dynamics simulation approach that explicitly models the electrons of the particles
within the system. Whereas, force-field molecular dynamics simulations model the nuclear
interactions of the particles within the system, and therefore do not explicitly model each
electron. Then the method that incorporates the least amount of detail is that of coarse
grain molecular dynamics models where multiple particles are grouped together before being
represented by a single interaction “bead.”
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Therefore, quantum molecular dynamics simulations will generate the most detailed mod-
eling of interatomic interactions as electrons are the basis of all such interactions. Quantum
simulations allow for certain phenomena like electron transport within a system to be mod-
eled, which cannot be modeled in force-field or coarse grain molecular dynamics simulations
because they do not explicitly model electrons. Also, in order to model chemical reactions,
quantum simulations are the most accurate approach (Note: there have been force-field and
coarse-grain molecular dynamics simulations that have modeled the formation and breaking
of bonds, but some a priori knowledge must then be included in the model to allow for the
reaction to take place). The major limitations of quantum simulations is that the simulations
are very computationally intensive, which results in the capability to model only small system
sizes (∼ particles) and time (∼− s). Thus the systems that can be modeled are limited to
small molecules or portions of larger molecules (i.e., specific amino acids within a protein).

Force-field molecular dynamics simulations offer the ability to model molecules at the
particle level. Often, information from quantum simulations is used to develop the empiri-
cal equations (force-field) that are used to govern the interactions between particles. Because
force-field molecular dynamics simulations use less detail than the quantum simulations, they
are able to model systems that are significantly larger in size (∼ particles) for a longer period
of time (<− s).Therefore, measuring the structural, mechanical, and/or transport properties
of medium to large sized systems (i.e., proteins, functionalized nanoparticles, . . .) is possible.

Finally, coarse grain molecular dynamics simulations reduce the number of degrees of free-
dom within the simulated system even further by grouping several atoms into one interaction
bead.Therefore, even larger system sizes and times (on the order of seconds) are accessible via
these simulations. Several of the same properties measured via force-field molecular dynamics
simulations can bemeasuredwith coarse grainmolecular dynamics simulations (i.e., structural,
mechanical, and transport properties). However, due to the reduced detail in the models of the
molecules, it is not possible to investigate specific chemical interactions within a system, such
as hydrogen bonding.

Once you have chosen the appropriate method for the particular system and prop-
erty to be investigated, the next choice is what simulation package to use. For clas-
sical MD simulations, there are several free molecular dynamics packages that can be
found on the web including DL_POLY (Smith et al. ; Todorov and Smith ),
GROMACS (van der Spoel et al. a, b), HOOMD (Anderson et al. ; HOOMD ),
LAMMPS (LAMMPS ; Plimpton ), MOLDY (Refson , ), and NAMD (Bhandarkar
et al. ; Phillips et al. b), and there are also commercial packages including AMBER
(Case et al. , ), CHARMM (Brooks et al. ; CHARMM ), and GROMOS (GROMOS
; Scott et al. ). Generally, these codes can be divided into those that aremostly used for
simulations of biological systems (AMBER, CHARMM, GROMACS, GROMOS, NAMD) and
those that aremore general simulation packages (HOOMD, LAMMPS, MOLDY). When choos-
ing between these options, an important criterion is to choose a code that you feel comfortable
using. Outside of comfort, another aspect to take into consideration is that packages will differ
in the features they offer and the additional tools to perform analysis (usually lists of analysis
tools can be found in the packages’ documentation).

For AIMD simulations, the user may choose from a large number of codes, for instance,
ABINIT (; Aulbur et al. ), CASTEP (; Clark et al. ; Segall et al. ),
CONQUEST (; Bowler et al. ), CP2K (Hutter et al. ; VandeVondele et al. ,
), CPMD (Marx and Hutter , ; Parrinello et al. ), CP-PAW (; Blochl
; Blochl et al. ), DACAPO (), FHI98md (; Bockstedte et al. ), NWChem
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(; Kendall et al. ), ONETEP (; Skylaris et al. ), PINY (), PWscf (;
Giannozzi et al. ), QuantumEspresso (; Giannozzi et al. ), SIESTA (;
Artacho et al. ; Soler et al. ), S/PHI/nX (; Boeck ), or VASP (; Kresse
and Furthmüller ).

Theoretical Background

Born–Oppenheimer Approximation

Let us begin by introducing our nomenclature and by reviewing some well-known basic rela-
tions within the Schrödinger formulation of quantum mechanics. A complete, nonrelativistic,
description of a dynamic system of N atoms having the positions R = {R,R, . . . ,RI , . . . ,RN}

with n electrons located at r = {r, r, . . . , ri , . . . , rn}would involve solving the time-dependent
Schrödinger equation

HΦ(r,R; t) = iħ
∂
∂t

Φ(r,R; t), (.)

with the total Hamiltonian

H(r,R) = T (R) + T (r) + Vnn(R) + Vne(r,R) + Vee(r), (.)

being the sum of kinetic energy of the atomic nuclei,

T (R) = −
ħ



N
∑

I=

∇

I

MI
, (.)

kinetic energy of the electrons,

T (r) = −
ħ

me

n
∑

i=
∇


i , (.)

internuclear repulsion,

Vnn(R) =
e

πє

N−
∑

I=

N
∑

J>I

ZIZJ

∣RI − RJ ∣
, (.)

electronic–nuclear attraction,

Vne(r,R) = −
e

πє

N
∑

I=

n
∑

i=

ZI

∣ri −RI ∣
, (.)

and interelectronic repulsion,

Vee(r) =
e

πє

n−

∑

i=

n

∑

j>i


∣ri − r j ∣

. (.)

Here, MI and ZI denote the mass and atomic number of nucleus I; me and e are the elec-
tronic mass and elementary charge, and є is the permittivity of vacuum. The nabla operators
∇I and∇i act on the coordinates of nucleus I and electron i, respectively.The totalwavefunction
Φ(r,R; t) simultaneously describes the motion of both electrons and nuclei.

The Born–Oppenheimer approximation (Doltsinis and Marx b; Kołos ; Kutzel-
nigg ) separates nuclear and electronic motion based on the assumption that the much
faster electrons adjust their positions instantaneously to the comparatively slow changes in
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nuclear positions. The electronic problem is then reduced to the time-independent (electronic)
Schrödinger equation for clamped nuclei,

Hel(r;R)Ψk(r;R) = Ek(R)Ψk(r;R), (.)

whereHel(r;R) is the electronic hamiltonian,

Hel(r,R) = T (r) + Vnn(R) + Vne(r,R) + Vee(r), (.)

and Ψk(r;R) is the electronic wavefunction of state k. Meanwhile, nuclear motion is
described by

[T (R) + Ek(R)] χk = iħ
∂
∂t

χk (.)

with the nuclear wavefunction χk(R, t) evolving on the potential energy surface Ek(R) of the
electronic state k. The total wavefunction is then the direct product of the electronic and the
nuclear wavefunction,

Φ(r,R; t) = Ψk(r,R)χk(R, t) (.)

In the classical limit (Doltsinis and Marx b), the nuclear wave equation (> .) is
replaced by Newton’s equation of motion

MIR̈I = −∇IEk (.)

For a great number of physical situations, the Born–Oppenheimer approximation can be
safely applied. On the other hand, there are many important chemical phenomena such as
charge transfer and photoisomerization reactions, whose very existence is due to the insepa-
rability of electronic and nuclear motion. Inclusion of nonadiabatic effects is beyond the scope
of this chapter and the reader is referred to the literature (e.g., Doltsinis ; Doltsinis and
Marx b) for more details.

The above approximations form the basis of conventional molecular dynamics, > Eqs. .
together with > . being the working equations. Thus, in principle, a classical trajectory cal-
culation merely amounts to integrating Newton’s equations of motion (> .). In practice,
however, this deceptively simple task is complicated by the fact that the stationary Schrödinger
equation (> .) cannot be solved exactly for any many-electron system. The potential energy
surface therefore has to be approximated using ab initio electronic structuremethods or empir-
ical interaction potentials (so-called force-field molecular dynamics Sutmann [] and Allen
and Tildesley []).The former approach, usually referred to as ab initio molecular dynamics
(AIMD), will be the subject of section “Ab Initio Molecular Dynamics,” while the latter –
force-field molecular dynamics – will be discussed in section “Classical Molecular Dynamics.”

Ab Initio Molecular Dynamics

In the following, we shall focus on first principlesmolecular dynamicsmethods. Due to the high
computational cost associatedwith ab initio electronic structure calculations of largemolecules,
computation of the entire potential energy surface prior to the molecular dynamics simulation
is best avoided. A more efficient alternative is the evaluation of electronic energy and nuclear
forces “on the fly” at each step along the trajectory.
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Born–OppenheimerMolecular Dynamics

In the so-called Born–Oppenheimer implementation of such a scheme (Marx andHutter ),
the nuclei are propagated by integration of > Eq. ., where the exact energy Ek is replaced
with the eigenvalue, Ẽk , of some approximate electronic Hamiltonian, H̃el , which is calculated
at each time step. For the electronic ground state, i.e., k = , the use of Kohn–Sham (KS) den-
sity functional theory (Dreizler and Gross ; Parr and Yang ) has become increasingly
popular.

Car–Parrinello Molecular Dynamics

In order to further increase computational efficiency, Car and Parrinello have introduced a
technique to bypass the need for wavefunction optimization at each molecular dynamics step
(Car and Parrinello ; Marx and Hutter ). Instead, the molecular wavefunction is
dynamically propagated along with the atomic nuclei according to the equations of motion

MIR̈I = −∇I⟨Ψk∣H̃el ∣Ψk⟩ (.)

μi ψ̈i = −
δ

δψ⋆i
⟨Ψk ∣H̃el∣Ψk⟩ +∑

j
λi jψ j, (.)

where the KS one-electron orbitals ψi are kept orthonormal by the Lagrange multipliers λi j.
These are the Euler–Lagrange equations

d
dt

∂L
∂q̇

=

∂L
∂q

, (q = RI , ψ
⋆

i ) (.)

for the Car–Parrinello Lagrangian (Car and Parrinello )

L = ∑

I



MIṘ

I +∑
i



μi⟨ψ̇i ∣ψ̇i⟩ − ⟨Ψk∣H̃el ∣Ψk⟩ +∑

i j
λi j(⟨ψi ∣ψj⟩ − δi j) (.)

that is formulated here for an arbitrary electronic state Ψk , an arbitrary electronic Hamiltonian
H̃el, and an arbitrary basis (i.e., without invoking the Hellmann–Feynman theorem).

Classical Molecular Dynamics

While first-principles molecular dynamics simulations deal with the electrons in a system,
this results in a large number of particles that must be considered and therefore the calculations
become significantly time-consuming. Classical molecular dynamics ignore electronic motions
and calculate the energy of a system as a function of the nuclear positions only, and therefore
are used to simulate larger, less detailed systems for larger timescales.The successive configura-
tions of the system are generated by solving the differential equations that constitute Newton’s
second law (> Eq. .):

dXI

dt
=

FXI

MI
(.)

This equation describes the motion of a particle of mass MI along one dimension (XI), where
FXI is the force on the particle in that dimension. The solution of these differential equations
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results in a trajectory that specifies how the positions and velocities of the particles in the system
vary with time.

In realistic models of intermolecular interactions, the force on particle I changes whenever
particle I changes its position or whenever another atomwith which particle I interacts changes
its position. Therefore the motions of all the particles are coupled together, which results in a
many-body problem that cannot be solved analytically. Therefore finite difference methods are
used to integrate the equations of motion.

Generally, the integration of > Eq. . is broken into consecutive steps that are conducted
at different times t that are separated by increments of δt, which is generally referred to as the
time step. First, the total force on each particle in the system at time t is calculated as the vector
sum of its interactions with other particles.

Then, assuming the force is constant over the course of the time step, the accelerations of the
particles are calculated,which are then combined with positions and velocities of the particles at
time t to determine the positions and velocities at time t+ δt. Finally, the forces on the particles
in their new positions are determined, and then new accelerations, positions, and velocities are
determined at t + δt and so on.

A common approach in the various finite differencemethods used to integrate the equations
of motions for classical molecular dynamics simulations is that it is assumed that the positions,
velocities, and accelerations (as well as all other dynamic properties) can be approximated using
Taylor series expansions:

R(t + δt) = R(t) + δtV(t)+


δtA(t) +



δtB(t) +




δtC(t) + . . . (.)

V(t + δt) = V(t) + δtA(t)+


δtB(t) +



δtC(t) + . . . (.)

A(t + δt) = A(t) + δtB(t)+


δtC(t) + . . . (.)

where R is the position, V is the velocity, A is the acceleration, and B and C are the third and
fourth derivatives of the positions with respect to time, respectively.

Verlet Algorithm

One of the most widely used finite difference methods in classical molecular dynamics sim-
ulations is the Verlet algorithm (Verlet ). In the Verlet algorithm, the positions and
accelerations at time t and the positions from the previous time step R(t − δt) are used to
calculate the updated positions R(t + δt) using the equation:

R(t + δt) = R(t) −R(t − δt) + δtA(t). (.)

While the velocities do not explicitly appear in > Eq. ., they can be calculated from the
difference in position over the entire time step:

V(t) =
∣R(t + δt) − R(t − δt)∣

δt
(.)

or the difference in position over a half time step (t + 
 δt):

V(t +


δt) =

∣R(t + δt) − R(t)∣
δt

(.)
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The fact that the velocities are not explicitly represented in the Verlet algorithm is one of
the drawbacks to this method in that no velocities are available until the positions have been
determined at the next time step. Also, in order to calculate the position of particles at t = δt, it
is necessary to determine the positions at t = −δt since the algorithm requires the position at
time t − δt to calculate the position at time t + δt. Often, this drawback is overcome by using
the Taylor series to calculate R(−δt) = R() − δtV() + 

 δt
A(t)∣ + . . .. A final drawback

of the Verlet algorithm is that there may be a loss of precision in the resulting trajectories that
result from the fact that the positions are calculated by adding a small term (δtA(t), to the
difference of two larger terms (R(t) and R(t − δt)) in > Eq. ..

“Leap-Frog”Algorithm

In an attempt to improve upon the original Verlet algorithm, several variations have been devel-
oped. The leap-frog algorithm (Hockney ) is one of the variations that uses the following
equations to update the positions:

R(t + δt) = R(t) + δtV(t +


δt), (.)

and the velocities:

V(t +


δt) = V(t −



δt) + δtA(t). (.)

In the leap-frog algorithm, the velocities V(t + 
 δt) are first calculated from the velocities at

time t − 
 δt and the accelerations at time t using > Eq. .. Then the positions R(t + δt) are

calculated from the velocitiesV(t+ 
 δt) and the positionsR(t) using > Eq. ..The algorithm

gets its name from the fact that the velocities are calculated inmanner such that they “leap-frog”
over the positions to give their values t − 

 δt. Then the positions are calculated such that they
“leap-frog” over the velocities, and then the algorithm continues.

The “leap-frog” algorithm improves upon the standard Verlet algorithm in that the velocity
is explicitly included in the calculations and also the “leap-frog” algorithm does not require
the calculation of the differences of large numbers so the precision of the calculation should be
improved. However, the fact that the calculated velocities and positions are not synchronized
in time results in the fact that the kinetic energy contribution to the total energy cannot be
calculated for the time at which the positions are defined. In response to this shortcoming in
the “leap-frog” algorithm, a formalism to calculate the velocities at time t has been developed
that follows

V(t) =
[V(t + δt

 ) +V(t − δt
 )]


(.)

Velocity Verlet Algorithm

The velocity Verlet method (Swope et al. ), which is a variation of the standard Verlet
method, calculates the positions, velocities, and accelerations at the same time by using the
following equations:

R(t + δt) = R(t) + δtV(t)+


δtA(t) (.)
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V(t + δt) = V(t) +


δt[A(t)+A(t + δt)]. (.)

The velocity Verlet method is a three-stage algorithm because the calculation of the new veloc-
ities (> Eq. .) requires both the acceleration at time t and at time t + δt.Therefore, first, the
positions at t + δt are calculated using > Eq. . and the velocities and accelerations at time t.
The velocities at time t + 

 δt are then calculated using

V(t +


δt) = V(t) +



δtA(t). (.)

Then the forces are computed from the current positions, which results in being able to calculate
A(t + δt).Then the final step consists of calculating the velocities at time t + δt using

V(t + δt) = V(t +


δt) +



δtA(t + δt). (.)

Therefore, the velocity Verlet allows for the velocities and positions to be calculated in a
time-synchronized manner, and thus allows for the kinetic energy contribution of the total
energy. Also, the precision of the results will be improved upon those from the standard Verlet
algorithm as there are no differences of large numbers within the formalism of the method.

The selection of the best time integration method for a given problem and the size of the
time step to use will be discussed in section “Setting the Time Step.”

Hybrid Quantum/Classical (QM/MM) Molecular Dynamics

The ab initio and classical simulation techniques discussed in the previous sections can be
viewed as complementary. While AIMD is capable of dealing with electronic processes such
as chemical reactions, charge transfer, and electronic excitations, its applicability is limited to
systems ofmodest size, precluding its use in complex, large-scale biochemical simulations. Clas-
sical MD, on the other hand, can describemuch larger systems on longer timescales, but misses
any of the above-mentioned electronic effects, e.g., bond breaking and formation. The basic
idea of the QM/MM approach is to combine the strengths of the twomethods treating a chemi-
cally active region at the quantum level and the environment usingmolecular mechanics (i.e., a
force-field).There are several excellent review articles on the QM/MMmethod in the literature
(Senn andThiel ; Thiel ).

Partitioning Schemes

The entire system, S, is partitioned into a chemically active inner region, I, and a chemically
inert outer region, O. If the border between these regions cuts through chemical bonds, so-
called link atoms, L, are usually introduced to cap the inner region (see section “Bonds Across
the QM/MM Boundary”).

Subtractive Scheme

In a subtractive scheme, the total energy, ES
QM/MM, of the entire system,

ES
QM/MM = ES

MM + EI,L
QM − EI,L

MM (.)
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is calculated from three separate energy contributions: () the MM energy of the entire system,
ES
MM, () the QM energy of the active region (including any link atoms), EI,L

QM, () the MM
energy of the active region EI,L

MM.
The role of the third term in > Eq. . is to avoid double counting and to correct for any

artifacts caused by the link atoms. For the latter to be effective, the force-field has to reproduce
the quantum mechanical forces reasonably well in the link region.

Additive Scheme
In an additive scheme, the total energy of the system is given by

ES
QM/MM = EO

MM + EI,L
QM + EI,O

QM−MM (.)

The difference to the subtractive scheme is that here a pure MM calculation is performed for
only the outer region and the interaction betweenQMandMMregions is achieved by an explicit
coupling term,

EI,O
QM−MM = Ebond

QM−MM + EvdW
QM−MM + Eel

QM−MM (.)

where Ebond
QM−MM, E

vdW
QM−MM, E

el
QM−MM, are bonded, van der Waals, and electrostatic interaction

energies, respectively.
The simplest way to treat electrostatic interactions between the I and O subsystems is to

assign fixed electric charges to all I atoms (mechanical embedding). In this case the QMproblem
is solved for the isolated subsystem Iwithout taking into account the effects of the surrounding
atomic charges inO. Themajority of implementations use an electrostatic embedding scheme in
which the MM point charges of region O are incorporated in the QM Hamiltonian through a
QM-MM coupling term,

Ĥel
QM−MM = −

n
∑

i
∑

α∈O

qα
∣ri −Rα ∣

+ ∑

I∈I+L
∑

α∈O

qαZI

∣RI − Rα ∣
(.)

where qα are the MM point charges at positions Rα (all other symbols as defined in section
“Born–Oppenheimer Approximation”). In this way, the electronic structure of the QM region
adjusts to themovingMMcharge distribution. A problem that arises when anMMpoint charge
is in close proximity to the QM electron cloud is overpolarization of the latter, sometimes
referred to as “spill-out” effect. This can be avoided by modifying the Coulomb potential in
the first term of > Eq. . at short range (see for instance Laio et al. ).

At present, in all commonly used partitioning schemes, the partitions remain fixed over
time, i.e., an MM atom cannot turn into a QM atom and vice versa. This can present a serious
limitation, for instance, in the case of solvent diffusion through the chemically active region.
A number of adaptive partitioning methods have been proposed to remedy this problem (Bulo
et al. ; Heyden et al. ; Hofer et al. ; Kerdcharoen et al. ; Kerdcharoen and
Morokuma ); however the computational overhead is enormous.

Bonds Across the QM/MMBoundary

Partitioning the total system into QM and MM regions in such a way that cuts chemical bonds
is best avoided. However, in many cases this is inevitable. Then one has to make sure that
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any atoms participating in chemical reactions are at least three bonds away from boundary.
Furthermore it is preferable to cut a bond that is unpolar and not part of a conjugated chain.

Link Atoms

Cutting a single covalent bond will create a dangling bond which must be capped by a so-called
link atom; in most applications a hydrogen atom is chosen. In the QM calculation, the atoms
of region I together with the link atoms L are treated as an isolated molecule in the presence of
the point charges of the environmentO. The original QM–MM bond, cut by the partitioning,
is only treated at the MM level.

Boundary Atoms

Boundary atom schemes have been developed to avoid the artifacts introduced by a link atom.
The boundary atom appears as a normal MM atom in the MM calculation, while carrying QM
features to saturate the QM–MM bond and to mimic the electronic properties of the MM side.
The QM interactions are achieved by placing a pseudopotential at the position of the boundary
atom, parameterized to reproduce electronic properties of certain chemical end group, e.g., a
methyl group in the case of a cut C–Cbond. Among the various flavors that have been proposed,
the pseudobond method for first principles QM calculations (Zhang , ; Zhang et al.
) and the pseudopotential approach for plane-wave DFT (Laio et al. ) are the most
relevant in the present context.

Frozen Localized Orbitals
The basic idea behind the various frozen orbital methods (Amara et al. ; Assfeld and Rivail
; Assfeld et al. ; Day et al. ; Ferré et al. ; Fornili et al. , a, b; Gao et al.
; Garcia-Viloca and Gao ; Gordon et al. ; Grigorenko et al. ; Jensen et al. ;
Jung et al. ; Kairys and Jensen ; Loos and Assfeld ; Monard et al. ; Murphy
et al. ;Nemukhin et al. , ; Philipp and Friesner ; Pu et al. a, b, ; Sironi
et al. ; Théry et al. ; Warshel and Levitt ) is to saturate the cut QM–MM bond by
placing on either the MM or the QM atom at the boundary localized orbitals that have been
determined in a prior quantum-mechanical SCF calculation on a model molecule containing
the bond under consideration. To preserve the properties of the bond, the localized orbitals
are then kept fixed in the subsequent QM/MM calculation. Different flavors are the Local SCF
(LSCF) method (Assfeld and Rivail ; Assfeld et al. ; Ferré et al. ; Monard et al.
; Théry et al. ), extremely localized molecular orbitals (ELMOs) (Fornili et al. ,
b; Sironi et al. ), frozen core orbitals (Fornili et al. a), optimized LSCF (Loos
and Assfeld ), frozen orbitals (Murphy et al. ; Philipp and Friesner ), generalized
hybrid orbitals (Amara et al. ; Gao et al. ; Garcia-Viloca andGao ; Jung et al. ;
Pu et al. a, b, ), and effective fragment potentials (EFP) (Day et al. ; Gordon et al.
; Grigorenko et al. ; Jensen et al. ; Kairys and Jensen ; Nemukhin et al. ,
).

Of the three types of boundary treatment, the link atommethod is the simplest both concep-
tually and in practice, and is hence the most widely used.The boundary atom and in particular
the frozen orbital methods can potentially achieve higher accuracy but require careful a priori
parametrization and bear limitations on transferability (Senn andThiel ).
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Coarse GrainMolecular Dynamics

A large number of important problems in fields that are often studied using molecular dynam-
ics simulations (i.e. soft condensed matter physics, structural biology, chemistry and materials
science) take place over a time span of microseconds to seconds and distances of few hun-
dred nanometers to a few microns. However, these time and length scales are still unattainable
via quantum or force-field molecular dynamics methods despite significant computational
hardware advances (Mervis ; Reed ; Shirts and Pande ) and the development of
increasingly powerful software (Lindahl et al. ; MacKerell et al. ; Phillips et al. a;
Wang et al. ). Therefore one approach that has been utilized in order to be able to study
these complex problems is to reduce the computational demand of the simulation by reducing
the number of atoms represented and therefore the degrees of freedom of the simulated system.
This procedure of reducing the number of atoms represented in a system is done by grouping
atoms together and representing them as a single interaction site and is generally referred to as
“coarse graining” of the system. > Figure - shows a comparison of the atomistic, united-atom
and coarse grain representation.

The “bead-spring” coarse grain model of polymer chains that was created by Kremer and
Grest in  has served as the foundation for many of the coarse grain models that have been
developed for a wide range of phenomena (at the current date this paper has been cited over
 times) including various studies of polymers and biomolecules including DNA solutions.
Many of the more recent coarse grain models have been developed for biological macro-
molecules since there are many examples of interesting biophysical phenomena that occur at
large length and timescales. The most widely used coarse grain models for biological systems
include the generic model of Lipowsky et al. (Goetz et al. ; Shillcock and Lipowsky ),
the solvent-free model of Deserno et al. (Cooke et al. ), and the specific models of the
Klein group (Shelley et al. ), the Voth group (which is called the Multi-Scale Coarse Grain
model) (Izvekov and Voth , ), and the Marrink group (called the MARTINI force-
field) (Marrink et al. ). The above coarse grain models have generally been developed for
lipid membranes, however there are also coarse grain force-fields for proteins (as reviewed in
Tozzini [] and somemore recent examples Betancourt andOmovie [] and Bereau and
Deserno []) and DNA (Khalid et al. ; Tepper and Voth ).

All-atom representation United-atom representation

Coarse-grain representation

⊡ Fig. -
Atomistic, united-atom, and coarse grain representations of organic molecules
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Whendeveloping a coarse grainmodel for a system, there are two important decisions to be
made: () how many atoms to combine (coarse grain) into a single interaction site and () how
to parameterize the coarse grain force-field. In deciding the number of atoms to combine into
a single interaction site, one must consider the obvious trade-off of how much detail are you
able to sacrifice in order to simulate larger length and/or timescale phenomena and still be able
to actually accurately model the phenomena of interest. The least amount of coarse graining
that has been used is represented by what is called a “united-atom” representation of amolecule
where all “heavy” atoms (generally all non-hydrogen elements in a molecule) are represented
and the “light” (i.e., hydrogen) atoms are groupedwith the heavy atom towhich they are bonded
into one interaction site.United atomversions ofmanyof the popular all-atom force-fields listed
in section “Classical Force Fields” exist and have been successfully used in several studies. In
addition to united-atom models, there are several existing coarse graining methods that will
combine different number of atoms together into one interaction site.

In general, coarse grain systems are governed by similar potential terms as are found in
atomistic models such as nonbond terms (both pair-wise interactions and electrostatic interac-
tions), bond stretching terms, and then in more sophisticated models even angle and dihedral
terms will be included as well. Generally, all specific models are parameterized based on com-
parison to atomistic simulations and/or detailed experimental data. Effective coarse grain
potentials have been extracted from atomistic simulations using inverse Monte Carlo schemes
(Elezgaray and Laguerre ; Lyubartsev ) or force matching approaches (Izvekov and
Voth , ). Another approach is to develop standard potential functions that are cal-
ibrated using thermodynamic data (Marrink et al. ). The advantage of the using either
the inverse Monte Carlo or force matching schemes is that the resulting force-field will pro-
duce a higher level of accuracy and closer resemblance to atomistic simulations. However, these
schemes produce force-fields that are useful for a given statepoint and therefore are not trans-
ferable. Whereas the advantages of the thermodynamic approach include that it produces a
potential that has a broader range of applicability and also the thermodynamic approach does
not require atomistic simulations to be done in the first place.

Interaction Potentials/Force Fields

Classical Force Fields

Classical, or empirical, force-fields are generally used to calculate the energy of a system as a
function of the nuclear positions of the particles within the system, while ignoring the behav-
ior of the individual electrons. As stated in the section “Born–Oppenheimer Approximation,”
the Born–Oppenheimer approximation makes it possible to write the energy as a function of
the nuclear coordinates. Another approximation that is key to the implementation of classical
force-fields is that it is possible to model the relatively complex motion of particles within the
systemwith fairly simple analytical models of inter and intra-molecular interactions. Generally,
an empirical force-field consists of terms that model the nonbonded interactions (Enonbond),
which include both the van der Waals and Coulombic interactions, the bonded interactions
(Ebond), the angle bending interactions (Eangle), and the dihedral (bond rotations) interactions
(Edihedral ):

E(R) = Enonbond + Ebond + Eangle + Edihedral . (.)
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⊡ Fig. -
Intramolecular terms of classical force-fields: bond, angle, and dihedral interactions

> Figure - presents representative cartoons of the bond, angle, and dihedral interactions from
amolecular perspective.The form that each of these individual terms takes is dependent on the
force-field that you are using. There are several different force-field options available for vari-
ous systems. The best way to find the most suitable force-field for your specific problem is to
conduct a literature and/or internet search in order to find which force-field has the capabil-
ity to model the molecules you are interested in studying. However, if you are interested in
modeling organic/biological molecules, there are several large force-fields that may be a good
place to start, including Charmm (MacKerell et al. ), OPLS (Jørgensen et al. ), Amber
(Cornell et al. ), and COMPASS (Sun et al. ). Likewise, there are several well-known
large force-fields that can be used for solids like the BKS potential (van Beest et al. ) for
oxides and the Embedded Atom Method (EAM) (Daw and Baskes , ; Finnis and Sin-
clair ) and Modified Embedded Atom Method (MEAM) (Baskes ) force-fields, which
are primarily used to model metals. In addition to defining the functional forms used for the
various terms in the general potential formulation, a force-field will also define the variables
used in the potential which are derived from a combination of quantum simulation results and
experimental observations.

In the following sections, each of the terms in > Eq. . will be discussed further and
typical functional forms that are used in the previously mentioned force-fields and others to
represent each term will be shown.

We limit the discussion to simple non-polarizable force fields in which the individual atoms
carry fixed charges. They capture many-body-effects such as electronic polarization only in an
effective way. More sophisticated polarizable force fields have been developed over the past
two decades (see for instance Ponder et al. [] and references therein) however they are
computationally substantially more demanding.

Nonbonded Interactions

There are two general forms of nonbonded interactions that need to be accounted for by a clas-
sical force-field: () the van der Waals (vdw) interactions and () the electrostatic interactions.
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van der Waals Interactions
In order to model the van derWaals interactions, we need a simple empirical expression that is
not computationally intensive and that models both the dispersion and repulsive interactions
that are known to act upon atoms and molecules. The most commonly used functional form
of van der Waals energy (EvdW) in classical force-fields is the Lennard-Jones - function that
has the form:

EvdW(R) = ∑
I>J

єIJ
⎡

⎢

⎢

⎢

⎣

(

σIJ
RIJ

)



− (

σIJ
RIJ

)


⎤

⎥

⎥

⎥

⎦

, (.)

where σIJ is the collision diameter and єIJ is the well depth of the interaction between
atoms I and J. Both σIJ and єIJ are adjustable parameters that will have different values
to describe the interactions between different pairs of particles (i.e., the values of σ and є used to
describe the interaction between two carbon atoms are different than the values of σ and є used
to describe the interaction between a carbon and an oxygen).

> Equation . models both the attractive part (the R− term) and the repulsive part (the
R− term) of the nonbonded interaction. Other formulations of the Lennard-Jones nonbond
potential commonly have the same power law description of the attractive part of the potential,
but will have different power law dependence for the repulsive part of the interaction, such as
the Lennard-Jones - function:

EvdW(R) = ∑
I>J

єIJ
⎡

⎢

⎢

⎢

⎣

(

σIJ
RIJ

)



− (

σIJ
RIJ

)


⎤

⎥

⎥

⎥

⎦

. (.)

When the nonbond interactions of a system that contains multiple particle types andmulti-
ple molecules are modeled using a Lennard-Jones type nonbond potential, it is necessary to be
able to define the values of σ and є that apply to the interaction between particles of type I and J.
The parameters for these cross interactions are generally found using one of the two following
mixing rules. One common mixing rule is the Lorentz-Berthelot rule where the value of σIJ is
found from the arithmetic mean of the two pure values and the value of єIJ is the geometric
mean of the two pure values:

σIJ =
(σI + σJ)


(.)

єIJ =
√

єIєJ (.)

The other commonly used mixing rule is the one that defines both σIJ and єIJ as the geometric
mean of the values for the pure species:

σIJ =
√

σIσJ (.)
єIJ =

√

єIєJ (.)

Most force-fields use the Lorentz-Berthelot mixing rule, however the OPLS force-field is one
force-field that utilizes the geometric mixing rule.

In other nonbond pairwise potentials, the repulsive portion of the interaction is modeled
with an exponential term, which is in better agreementwith the functional form of the repulsive
term determined fromquantummechanics. One example of such a potential is the Buckingham
potential (Buckingham ):

EvdW(R) = ∑
I<J

AIJ exp(−BIJRIJ) − (
CIJ

R
I J
)] , (.)
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whereAIJ , BIJ , andCIJ are adjustable parameters that will have unique values for different types
of particles. Another form of the nonbond interaction is the Born–Mayer–Huggins potential
(Fumi and Tosi ; Tosi and Fumi ):

EvdW(R) = ∑
I<J

AIJ exp(BIJ(σIJ − RIJ)) −
CIJ

R
I J
+

DIJ

R
I J
, (.)

where AIJ , BIJ , CIJ , DIJ and σIJ are adjustable parameters that will have unique values for dif-
ferent types of particles. The Born–Mayer–Huggins potential (> Eq. .) is identical to the
Buckingham potential (> Eq. .) when σ = D = .

All of the nonbond potential functional forms that have been presented to this point take
into account the effect that one particle has on another particle based solely on the distance
between the two particles. However, in some systems like metals and alloys as well as some
covalently bonded materials like silicon and carbon, the nonbonded potential is a function
of more than just the distance between two particles. In order to model these systems, the
embedded-atom method (EAM) (Daw and Baskes , ; Finnis and Sinclair ) and
modified embedded-atom method (MEAM) (Baskes ) utilize an embedding energy, FI ,
which is a function of the atomic electronic density ρI of the embedded atom I and a pair
potential interaction ϕIJ such that

EI(R) = FI
⎛

⎝

∑

J≠I
ρI(RIJ)

⎞

⎠

+


 ∑J≠I

ϕIJ(RIJ). (.)

The multi-body nature of the EAM potential is a result of the embedding energy term.
Sowhile the EAMandMEAMpotentials have a term to account formulti-body interactions

they are still only pair-wise potential, as are all the other nonbond potentials presented to this
point. However, there aremulti-body potentials that will explicitly account for how the presence
of a third, fourth, …atom affects the nonbond energy felt by any given atom. One example of a
three-body potential is the Stillinger-Weber potential (Stillinger andWeber ):

E(R) = ∑
I
∑

J>I
ϕ(RIJ) +∑

I
∑

J≠I
∑

K>J
ϕ(RIJ ,RIK , θIJK), (.)

where there is a two-body term ϕ:

ϕ(RIJ) = AIJєIJ[BIJ(
σIJ
RIJ

)

pIJ

− (

σIJ
RIJ

)

qIJ

] exp(
σIJ

RIJ − aIJσIJ
) (.)

and a three-body term ϕ:

ϕ(RIJ ,RIK , θIJK) = λIJKєIJK[ cos θIJK − cos θ,IJK]


× exp(
γIJ σIJ

RIJ − aIJσIJ
)

× exp(
γIK σIK

RIK − aIKσIK
). (.)

The Stillinger-Weber potential has generally been used for modeling crystalline silicon; how-
ever, more recently it has also been used for organic molecules as well. Another example of a
three-body interatomic potential is the Tersoff potential (Tersoff , ), which also was
created initially in an attempt to accurately model silicon solids.
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Electrostatic Interactions
Due to the fact that not all particles in a molecule have the same electronegativity, different
particles will have stronger attractions to electrons than others. However, since classical force-
fields do not model the flow of electrons, the different particles within a molecule are assigned
a partial charge that remains constant during the course of a simulation. Generally these par-
tial charges qi are assigned to the nuclear centers of the particles. The electrostatic interaction
between particles in different molecules or particles that are separated by at least two other
atoms in a given molecule is calculated as the sum of the contributions between pairs of these
partial charges using Coulomb’s law:

Ecoul =∑
I
∑

J

qIqJ

πєRIJ
(.)

where the charges of each particle are qI and qJ and є is the dielectric constant.
In practice, an Ewald sum (Ewald ) is generally used to evaluate the electrostatic inter-

actions within a classical MD simulation. However, this is a very computationally expensive
algorithm to implement and it results in a computational cost of N /, where N is the number
of particles in the system. In order to obtain better computational scaling, fast Fourier trans-
forms (FFTs) have been used to calculate the reciprocal space summation required within the
Ewald sum. By using the FFT algorithm, one can reduce the cost of the electrostatic algorithm
to N logN .Themost popular FFT algorithm that has been adopted for use in classicalMD sim-
ulations is the particle-particle particle-mesh (pppm) approach (Hockney and Eastwood ;
Luty et al. , ).

Bonded Interactions

The bonded interactions are needed to model the energetic penalty that will result from two
covalently bonded atomsmoving too close or too far away fromone another.Themost common
functional form that is used tomodel the bond bending interactions is that of a harmonic term:

Ebond = ∑

bonds
kb(ℓb − ℓ()b )

 (.)

where kb is commonly referred to as the bond constant and is a measure of the bond stiffness
and ℓ()b is the reference length or often referred to the equilibrium bond length. Each of these
parameters will vary depending on the types of particles that the bond is joining.

Angle Bending Interactions

Theangle bending interactions are alsomodeled in order to determine the energetic penalties of
angles containing three different particles compressing or overextending such that they distort
the geometry of a portion of a molecule away from its desired structure.

Again, the most common functional form to model the angle interactions is a harmonic
expression:

Eangle = ∑

angles
ka(θa − θ()a )

 (.)

where ka is the angle constant and is a measure of the rigidity of the angle, and θ()a is the
equilibrium or reference angle.
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Torsional Interactions

The torsional interactions are generally modeled using some form of a cosine series. The OPLS
force-field uses the following expression for its torsional term:

Edihed = ∑

dihedrals



K()d [ + cos(ϕ)] +



K()d [ − cos(ϕ)] +



K()d [ + cos(ϕ)]

+



K()d [ − cos(ϕ)] (.)

where K(i)d are the force constants for each cosine term and ϕ is the measured dihedral angle.
The Charmm force-field uses the following expression:

Edihed = ∑

dihedrals
Kd[ + cos(nϕ − dd)], (.)

where Kd is the force constant, n is the multiplicity of the dihedral angle ϕ, and dd is the shift
of the cosine that allows one to more easily move the minimum of the dihedral energy.

First Principles Electronic StructureMethods

For the electronic ground state, i.e., k = , Kohn–Sham (KS) density functional theory is
commonly used. In this case, the energy is given by

E ≈ EKS
[ρ] = Ts[ρ] +

∫

drvext(r)ρ(r) +

 ∫

drvH(r)ρ(r) + Exc (.)

with the kinetic energy of noninteracting electrons, i.e., using a Slater determinant as a wave-
function ansatz,
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
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Ts[ρ] = −



n
∑

i
fi
∫

drψi(r)∇ψi(r) (.)

where fi is the number of electrons occupying orbital ψi , the external potential including
nucleus–nucleus repulsion and electron–nucleus attraction,

vext(r) =
N−

∑

I=

N

∑

J>I

ZIZJ

∣RI − RJ ∣
−

N

∑

I=

ZI

∣r − RI ∣
(.)

the Hartree potential (electron–electron interaction)

vH(r) =
∫

dr′
ρ(r′)
∣r − r′∣

(.)

the exchange-correlation energy, Exc, and the electron density

ρ(r) =
n
∑

i
fi ∣ψi(r)∣ (.)
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The orbitals which minimize the total, many-electron energy (> Eq. .) are obtained by
solving self-consistently the one-electron Kohn–Sham equations,

[−



∇


+ vext(r) + vH(r) +

δExc[ρ]
δρ(r)

]ψi(r) = єiψi(r) (.)

DFT is exact in principle, provided that Exc[ρ] is known, in which case EKS (see > Eq. .)
is an exact representation of the ground state energy E (see > Eq. .). In practice, how-
ever, Exc[ρ] is not – and presumably never will be – known exactly; therefore (semiempirical)
approximations are used.

The starting point for most density functionals is the local density approximation (LDA),
which is based on the assumption that one deals with a homogeneous electron gas. Exc is split
into an exchange term Ex and a correlation term Ec . Within the LDA, the exchange functional
is given exactly by Dirac ():

ELDA
x [ρ] =

∫

ρ(r)єLDAx (ρ(r))dr (.)

where

єLDAx (ρ) = −


(


π
)



ρ(r)


 (.)

The LDA correlation functional, on the other hand, can only be approximated.We give here
themost commonly used expression byVosko et al. [], derived fromQuantumMonte Carlo
calculations:

ELDA
c [ρ] =

∫

ρ(r)єLDAc (ρ(r))dr (.)

where

єLDAc (ρ) = A{ln(
x

X
) +

b
Q

tan− (
Q

x + b
) −

bx
X(x)

[ln(
(x − x)

X
)

+

(bx)
Q

tan− (
Q

x + b
)]} (.)

with X = x + bx + c, x =
√

rs , rs = 
√


πρ(r) , Q =

√

c − b, x = −., A = .,
b = ., c = ..

This simplest approximation, LDA, is often too inaccurate for chemically relevant problems.
Anotable improvement is usually offered by so-called semilocal or gradient corrected functionals
(generalized gradient approximation (GGA)), in which Ex and Ec are expressed as functionals
of ρ and the first variation of the density, ∇ρ:

EGGA
x [ρ,∇ρ] =

∫

ρ(r)єGGAx (ρ(r),∇ρ)dr (.)

EGGA
c [ρ,∇ρ] =

∫

ρ(r)єGGAc (ρ(r),∇ρ)dr (.)

Popular examples are the BLYP (Becke ; Lee et al. ), BP (Becke ; Polák ),
and BPW (Becke ; Perdew et al. ) functionals. The expressions for єGGAx ,c (ρ(r),∇ρ)
are complex and shall not be discussed here.
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In many cases, accuracy can be further increased by using so-called hybrid functionals,
which contain an admixture of Hartree–Fock exchange to KS exchange. Probably the most
widely used hybrid functional is the three-parameter BLYP functional (Becke ),

EBLYP
xc = aELDA

x + ( − a)EHF
x + bΔEB

x + ( − c)ELDA
c + cELYP

c (.)

where a = ., b = ., c = ., and EHF
x is the Hartree-Fock exchange energy evaluated

using KS orbitals.
New functionals are constantly proposed in search of better approximations to the exact Exc .

Often functionals are designed to remedy a particular shortcoming of previous functionals, for
instance, for dispersion interactions.

Building the System/Collecting the Ingredients

Setting Up an AIMD Simulation

Building aMolecule

In many cases, the coordinates of a molecular structure are available for download on the web,
from crystallographic databases (CCDC ; ICSD ; PDB ; Reciprocal Net ; Toth
) or journal supplements. For relatively small molecules, an initial guess structure can be
built using molecular graphics software packages such as molden ().

PlaneWaves and Pseudopotentials

The most common form of AIMD simulation employs DFT (see section “First Principles
Electronic StructureMethods”) to calculate atomic forces, in conjunction with periodic bound-
ary conditions and a plane wave basis set. Using a plane wave basis has two major advantages
over atom-centered basis functions: () there is no basis set superposition error (Boys and
Bernardi ; Marx and Hutter ) and () the Pulay correction (Pulay , ) to the
Hellmann–Feynman force, due to basis set incompleteness, vanishes (Marx and Hutter ,
).

Plane Wave Basis Set
As a consequence of Bloch’s theorem, in a periodic lattice, the Kohn–Sham orbitals (see
> Eq. .) can be expanded in a set of plane waves (Ashcroft and Mermin ; Meyer ),

ψk, j(r) = ∑
G

ck, jG ei(k+G)r (.)

where k is a wavevector within the Brillouin zone, satisfying Bloch’s theorem,

ψ(r+ T) = eikTψ(r) (.)

for any lattice vector T,
T = Na + Na + Na (.)

N,N,N being integer numbers, and a, a, a the vectors defining the periodically repeated
simulation box.
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In > Eq. ., the summation is over all reciprocal lattice vectors G which fulfill the con-
dition G ⋅ T = πM, M being an integer number. In practice, this plane-wave expansion of the
Kohn-Sham orbitals is truncated such that the individual terms all yield kinetic energies lower
than a specified cutoff value, Ecut ,

ħ

m
∣k +G∣ ≤ Ecut (.)

The plane-wave basis set thus has the advantage over other basis sets that convergence can be
controlled by a single parameter, namely Ecut .

In this periodic setup, the electron density (see > Eq. .) can be approximated by a sum
over amesh ofNkpt k-points in the Brillouin zone (Chadi andCohen ;Monkhorst and Pack
; Moreno and Soler ),

ρ(r) ≈


Nkpt
∑

k
fk, j ∣ψk, j(r)∣

 (.)

Since the volume of the Brillouin zone, VBZ = (π)/Vbox, decreases with increasing volume of
the simulation supercell, Vbox , only a small number of k-points need to be sampled for large
supercells. For insulating materials (i.e., large bandgap), a single k-point is often sufficient,
typically taken to be k =  (Γ-point approximation).

Pseudopotentials

While plane waves are a good representation of delocalized Kohn–Sham orbitals in metals, a
huge number of themwould be required in the expansion (> Eq. .) to obtain a good approx-
imation of atomic orbitals, in particular near the nucleuswhere they oscillate rapidly.Therefore,
in order to reduce the size of the basis set, only the valence electrons are treated explicitly, while
the core electrons (i.e., the inner shells) are taken into account implicitly through pseudopo-
tentials combining their effect on the valence electrons with the nuclear Coulomb potential.
This frozen core approximation is justified as typically only the valence electrons participate
in chemical interactions. To minimize the number of basis functions the pseudopotentials are
constructed in such away as to produce nodeless atomic valencewavefunctions. Beyond a spec-
ified cutoff distance from the nucleus, Rcut the nodeless pseudo-wavefunctions are required to
be identical to the reference all-electron wavefunctions.

Normconserving Pseudopotentials
Normconserving pseudopotentials are generated subject to the condition that the pseudo-
wavefunctionhas the samenormas the all-electronwavefunction and thus gives rise to the same
electron density. Although normconserving pseudopotentials have to fulfill a (small) number
of mathematical conditions, there remains considerable freedom in how to create them. Hence
several different recipes exist (Bachelet et al. ; Goedecker et al. ; Hamann et al. ;
Hartwigsen et al. ; Kerker ; Troullier and Martins , ; Vanderbilt ).

Since pseudopotentials are generated using atomic orbitals as a reference, it is not guaran-
teed that they are transferable to any chemical environment. Generally, transferability is the
better the smaller the cutoff radius Rcut is chosen. However, the reduction in the number of
plane waves required to represent a particular pseudo-wavefunction – i.e., the softness of the
corresponding pseudopotential – increases as Rcut gets larger. So Rcut has to be chosen care-
fully and there is always a trade-off between transferability and softness. An upper limit for
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Rcut is given by the shortest interatomic distances in the molecule or crystal the pseudopoten-
tial will be used for: one needs to make sure that the sum of the two cutoff radii of any two
neighboring atoms is smaller than their actual spatial separation.

For each angular momentum l , a separate pseudopotentialV PS
l (r) is constructed.The total

pseudopotential operator is written as

V̂ PS
= VPS

loc(r) +∑
l
VPS
nl, l(r)P̂l (.)

where the nonlocal part is defined as

V PS
nl, l(r) = VPS

l (r) − VPS
loc(r) (.)

and the local part VPS
loc(r) is taken to be the pseudopotential VPS

l (r) for one specific value
of l , typically the highest one for which a pseudopotential was created. The pseudopotential
(> Eq. .) is called semi-local, since the projector P̂l only acts on the l-th angular momen-
tum component of the wavefunction, but not on the radius r. (Note: a pseudopotential is called
nonlocal if it is l-dependent.)

To achieve higher numerical efficiency, it is common practice to transform the semi-local
pseudopotential (> Eq. .) to a fully nonlocal form,

V̂ PS
= VPS

loc(r) +∑
i j
∣βi > Bi j < β j∣ (.)

using the Kleinman-Bylander prescription (Kleinman and Bylander ).

Vanderbilt Ultrasoft Pseudopotentials
An ultrasoft type of pseudopotential was introduced by Vanderbilt () and Laasonen et al.
[] to deal with nodeless valence states which are strongly localized in the core region.
In this scheme the normconserving condition is lifted and only a small portion of the electron
density inside the cutoff radius is recovered by the pseudo-wavefunction, the remainder is
added in the form of so-called augmentation charges. Complications arising from this scheme
are the nonorthogonality of Kohn–Sham orbitals, the density dependence of the nonlocal
pseudopotential, and need to evaluate additional terms in atomic force calculations.

How to Obtain Pseudopotentials?
There are extensive pseudopotential libraries available for download with the simulation pack-
ages CPMD (Parrinello et al. ), CPK (Hutter et al. ) or online (Vanderbilt Ultra-Soft
Pseudopotential Site ). However, before applying any pseudopotentials, they should
always be tested against all-electron calculations. Pseudopotentials used in conjunction with
a particular density functional should have been generated using the same functional.

In many cases, the required pseudopotential will not be available in any accessible library;
in this case it may be generated using freely downloadable programs (Vanderbilt Ultra-Soft
Pseudopotential Site ).

Setting Up a Classical MD Simulation

There are two general stages that make up the preparation to conduct force-field molecular
dynamics simulations: () gathering preliminary information and () building the actual system.
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Gathering Preliminary Information

Gathering the preliminary information before conducting the simulation is mostly focussed
on making sure that the simulation is possible. First, it is important to identify the type and
number of molecules that you wish to model. Then, it is necessary to find the force-field that
will allow you to most accurately model the molecules and physical system that you want to
simulate. A brief synopsis of some of the larger classical force-field parameter sets is given in
section “Classical Force Fields”.These force-fields and referencesmay be good starting points in
searching for the correct classical force-field to use for a given system, but the best way to find a
specific force-field is to just conduct a search for research articles thatmay have been conducted
on the same system. If no force-field parameters exist for the system of interest, then you can
use configurations and energies from quantum simulations to parameterize a given force-field
for your system.Amethodology for how a force-field was parameterized originally is presented
in the relevant paper; however, this is a complicated exercise and is probably best left to the
experts.

Building the System

After identifying that a force-field exists for the system you wish to model, the next step is to
build the initial configuration of the molecules within the system.The initial configuration will
consist of initial spatial coordinates of each atom in each givenmolecule.When building a large
system consisting of several molecules of various types, it is easiest to write a computer code
that contain the molecular structure and coordinates of each molecule present in the system,
and then have the code replicate each molecule how ever many times is necessary in order
to build the entire system. Alternatively, most of the molecular dynamics simulation packages
previouslymentioned have capabilities to build systems from a pdb file; however, these tools are
often useful for only certain systems and force-fields. There is unfortunately no one tool which
can be used to build any system with any force-field.

These initial configurations can represent a minimum energy structure either from another
simulation (i.e., a final structure from a energy minimization in a quantum or classical Monte
Carlo simulation can be used as the starting state for classical simulations), from experimental
observation (i.e., the pdb database for crystallographic structures of proteins) or building the
initial coordinates based upon the equilibrium bond distances and bond angles from the force-
field.

The placement of the molecules within the simulation box can be done in a number of
different ways as well. The molecules can be placed on the vertices of a regular lattice, or in any
other regularly defined geometry that may be useful for conducting your simulation (i.e., in
simulating the structural properties ofmicelles often times the surfactantmoleculeswill initially
be placed on the vertices of a buckey ball such that they are in a spherical configuration). Also,
molecules can be placed at random positions within the simulation box. The one advantage
of placing molecules at regularly spaced positions is that it is easier to insure that there is no
overlapping of molecules, whereas with the randomly placed molecules it can be quite difficult
to ensure that a placedmolecule does not overlapwith anothermolecule in the box (particularly
for large or highly branched molecules).

In addition to containing the initial spatial coordinates of all of the molecules in the system,
the initial configuration must also contain some additional information about the atoms and
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molecules in the systems. Each atom in the configuration must contain a label of what atomic
species (i.e., carbon, nitrogen, …) it represents. This label will be different for each simulation
code used but all of themwill have some type of label as it will inform the simulation code what
force-field values to use to represent the interactions of that atom. A list of all of the covalent
bonds, the bond angles, and the dihedrals in the system will also need to be included in the
initial configuration. The lists of the bonds, angles, and dihedrals contain an identifier for each
atom that make up the bond, angle, or dihedral and then an identifier for the type that informs
the simulation package which parameters to use in calculating the energy of the bond, angle,
or dihedral. The final component of the initial configuration of a classical simulation is a list
of all of the various types of atoms, bonds, angles, and dihedrals in the system along with their
corresponding force-field parameters (i.e., є and σ for atom types to describe their nonbond
interactions, force constants, and equilibrium values for bond, angle, and dihedral types).

Finally, after building the initial configuration, the simulation is about ready to be per-
formed.The last step is to choose the simulation variables and set up the input to the simulation
package in order to convey these selections.

These options and the decision process behind choosing from the various options will be
presented in the following sections.

Preparing an Input File

Optimization Algorithms

Optimization algorithms are often used to find stationary points on a potential energy surface,
i.e., local and global minima and saddle points. The only place where they directly enter MD is
in the case of Born–Oppenheimer AIMD, in order to converge the SCF wavefunction for each
MD step. It is immediately obvious that the choice of optimization algorithm crucially affects
the speed of the simulation.

Steepest Descent

TheSteepest Descentmethod is the simplest optimization algorithm.The initial energy E[Ψ] =

E(c), which depends on the plane wave expansion coefficients c (see > Eq. .), is lowered
by altering c in the direction of the negative gradient,

dn = −
∂E(cn)

∂c
≡ −gn (.)

cn+ = cn + Δndn (.)

where Δn >  is a variable step size chosen such that the energy always decreases, and n is the
optimization step index.The steepest descentmethod is very robust; it is guaranteed to approach
the minimum. However, the rate of convergence ever decreases as the energy gets closer to the
minimum, making this algorithm rather slow.
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Conjugate Gradient Methods

The Conjugate Gradient method generally converges faster than the steepest descent method
due to the fact that it avoids moving in a previous search direction. This is achieved by linearly
combining the gradient vector and the last search vector,

cn+ = cn + Δndn (.)

where
dn = −gn + βndn− (.)

Different recipes exist to determine the coefficient βn (Jensen ) among which the Polak–
Ribière formula usually performs best for non-quadratic functions,

βn =
gn(gn − gn−)

gn−gn−
(.)

In the case of a general non-quadratic function, such as theDFT energy, conjugacy is not strictly
fulfilled and the optimizer may search in completely inefficient directions after a few steps. It is
then recommended to restart the optimizer (setting β = ). Convergence can be improved
by multiplying gn with a preconditioner matrix, e.g., an approximate inverse of the second
derivatives matrix (Hessian in the case of geometry optimization) H̃. Themethod is then called
Preconditioned Conjugate Gradient (PCG). In theCPMD code, thematrix H̃ is approximated by

H̃ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

HKS
GG′ for G ≥ Gcut

HKS
GcutGcut

for G < Gcut

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(.)

where HKS
GG′ is the Kohn–Sham matrix is the plane-wave basis and Gcut is a cutoff value for the

reciprocal lattice vectorG (set to a default value of . a.u.).

Direct Inversion of the Iterative Subspace

Having generated a sequence of optimization steps ci , the Direct Inversion of the Iterative Sub-
space (DIIS) method (Császár and Pulay ; Hutter et al. ; Pulay , ) is designed
to accelerate convergence by finding the best linear combination of stored ci vectors,

cn+ =
n
∑

i=
aici (.)

Ideally, of course, cn+ is equal to the optimum vector copt . Defining the error vector ei for each
iteration as

ei = ci − copt (.)

> Eq. . becomes
n
∑

i=
aicopt +

n
∑

i=
aiei = copt (.)

> Equation . is satisfied if
n
∑

i=
ai =  (.)
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and
n

∑

i=
aiei =  (.)

Instead of the ideal case > Eq. ., in practice one minimizes the quantity

⟨

n
∑

i=
aiei ∣

n
∑

j=
a je j⟩ (.)

subject to the constraint (> Eq. .), which is equivalent to solving the system of linear
equations
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where

bi j = ⟨ei ∣e j⟩ (.)

and the error vectors are approximated by

ei = −H̃−(copt)gi (.)

using an approximate Hessian matrix H̃, e.g., > Eq. ..

Controlling Temperature: Thermostats

If understanding the behavior of the system as a function of temperature is the aim of your
study, then it is important to be able to control the temperature of your system. The tempera-
ture of the system is related to the time average of the kinetic energy, which generally can be
calculated by

< H >NVT=


NkBT . (.)

Below we introduce specific thermostatting techniques for MD simulations at thermody-
namic equilibrium, e.g., for calculating equilibrium spatial distribution and time-correlation
functions. However, when MD simulations are performed on a system undergoing some non-
equilibrium process involving exchange of energy between different parts of the system, e.g.,
when an energetic particle, such as an atom or a molecule, hits a crystal surface, or there is a
temperature gradient across the system, one has to resort to specially developed techniques, see
for example Kantorovich [], Kantorovich and Rompotis []and Toton et al. []. In
these methods, based on the so-called Generalized Langevin Equation, the actual system on
which MD simulations are performed is considered in contact with one (or more) heat bath(s)
kept at constant temperature(s), and the dynamics of the system of interest reflects the fact that
there is an interaction and energy transfer between the system and the surrounding heat bath(s).
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Rescale Thermostat

One obvious way to control the temperature of a system is to rescale the velocities of the atoms
within the system (Woodcock ). The rescaling factor λ is determined from λ

√

Ttarget/T,
where Ttarget and T are the target and initial temperatures, respectively. Then, the velocity of
each atom is rescaled such that Vf = λVi . In practice, the inputs generally required to use a
rescale thermostat include:

• T – Initial temperature
• Ttarget – Target temperature
• τ – Damping constant (i.e., frequency with which to apply the thermostat)
• δT – Maximum allowable temperature difference from Ttarget before thermostat is applied
• frescale – Fraction of temperature difference between current temperature and Ttarget is

corrected during each application of thermostat

If it is desired to have a strict thermostat (i.e., when first starting a simulation that might have
particles very near one another), then δT and τ should have values of ∼.Ttarget and  time
step, respectively, and frescale should be near .. However, if you wish to allow a more lenient
thermostat, then the value of δT should be of the same order of magnitude as Ttarget, τ should
be ∼– time steps, and frescale ∼ .–..

Berendsen Thermostat

Another way to control the temperature is to couple the system to an external heat bath, which
is fixed at a desired temperature.This is referred to as a Berendsen thermostat (Berendsen et al.
). In this thermostat, the heat bath acts as a reservoir of thermal energy that supplies or
removes temperature as necessary. The velocities are rescaled each time step, where the rate of
change in temperature is proportional to the difference in the temperature in the system T(t)
and the temperature of the external bath Tbath:

dT(t)
dt

=


τ
(Tbath − T(t)) (.)

which when integrated results in the change in temperature each time step:

ΔT =

δt
τ
(Tbath − T(t)). (.)

In > Eqs. . and > ., τ is the damping constant for the thermostat. In practice, the
necessary inputs when using the Berendsen thermostat include:

• Tbath – temperature of the external heat bath
• τ – damping constant for the thermostat

Obviously the amount of control that the thermostat imposes on the simulation is controlled
by the value of τ. If τ is large, then the coupling will be weak and the temperature will fluctuate
significantly during the course of the simulation. While if τ is small, then the coupling will be
strong and the thermal fluctuations will be small. If τ = δt, then the result will be the same as
the rescale thermostat, in general.
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Nosé–Hoover Thermostat

While the Berendsen thermostat is efficient for achieving a target temperature within your sys-
tem, the use of a thermostat that represents a canonical ensemble once the system has reached
a thermal equilibrium. The extended systemmethod, which was originally introduced by Nosé
[a, b] and then further developed by Hoover (), introduces additional degrees of free-
dom into the Hamiltonian that describes the system, from which equations of motion can be
determined.

The extended system method considers the external heat bath as an integral part of the
system by including an additional degree of freedom in the Hamiltonian of the system that is
represented by the variable s. As a result, the potential energy of the reservoir is

Epot = ( f + )kBT ln s, (.)

where f is the number of degrees of freedom in the physical system and T is the target
temperature.The kinetic energy of the reservoir is calculated by

Ekin =
Q

(

ds
dt
)



, (.)

where Q is a parameter with dimensions of energy × (time) and is generally referred to as the
“virtual” mass of the extra degree of freedom s. The magnitude of Q determines the coupling
between the heat bath and the real system, thus influencing the temperature fluctuations.

Utilizing > Eqs. . and > ., and substituting the real variables for the corresponding
Nosé variables, the equations of motion are found to be as follows:

R̈I =
FI

MI
− γRI , (.)

γ̇ = −


τNH
(

f + 
f

Ttarget

T
− ), (.)

where γ = ṡ
s and τNH =

Q
f kBTtarget

The variable τNH is an effective relaxation time, or damping
constant.

In practice, the inputs that are necessarywhenutilizing theNosé–Hoover thermostat during
a molecular dynamics simulation include

• Ttarget – Target temperature
• τNH – Damping constant
• Q – Fictitious mass of the additional degree of freedom s

The most significant variable in the above list is Q. Large values of Q may cause poor temper-
ature control, with the infinite limit resulting in no energy exchange between the temperature
bath and the real system, which is the case of conventional molecular dynamics simulations
resulting in the microcanonical ensemble. However, if Q is too small then the energy oscillates
and the system will take longer in order to reach a thermal equilibrium.

Controlling Pressure: Barostats

It may be desired to study the behavior of the simulated system while the pressure is held con-
stant (i.e., pressure-induced phase transitions). Many experimental measurements are made
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in conditions where the pressure and temperature are held constant and so it is of utmost
importance to be able to accurately replicate these conditions in simulations.

One thing of note is that the pressure often fluctuates more than other quantities such as
the temperature in an NVT molecular dynamics simulation or the energy in a NVEmolecular
dynamics simulation.This is due to the fact that the pressure is related to the virial term, which
is the product of the positions of the particles in the system and the derivative of the potential
energy function. These fluctuations will be observed in the instantaneous values of the sys-
tem pressure during the course of the simulation, but the average pressure should approach
the desired pressure. Since generally the temperature and number of atoms will also be held
constant during constant pressure simulations, and the volume of the system will be allowed to
change in order to arrive at the desired pressure, therefore, less compressible systems will show
larger fluctuations in the pressure than the systems that are more easily compressed.

Berendsen Barostat

Many of the approaches used for controlling the pressure are similar to those that are used for
controlling the temperature.One approach is tomaintain constant pressure by coupling the sys-
tem to a constant pressure reservoir as is done in the Berendsen barostat (Berendsen et al. ),
which is analogous to the way temperature is controlled in the Berendsen thermostat. The
pressure change in the system is determined by

dP(t)
dt

=


τP
(P − P(t)), (.)

where τP is time constant of the barostat, P is the desired pressure and P(t) is the system
pressure at any time t. In order to accommodate this change in pressure, the volume of the box
is scaled by a factor of μ each time step, therefore the coordinates of each particle in the system
are scaled by a factor of μ (i.e., RI(t + δt) = μ/RI(t), where

μ = [ −
δt
τP
(P − P)]




. (.)

In practice, the inputs for the Berendsen barostat will include:

• P – Desired pressure
• τP – Time constant of the barostat

One other input that may be included in the use of the Berendsen barostat is to define which
dimensions are coupled during the pressure relaxation. For example, you could define that the
pressure is relaxed in a way that the changes in all three dimensions are coupled and therefore
all of the dimensions change at the same rate. On the other hand, the pressure relaxation can
be handled in an anisotropic manner, such that none of the dimensions are coupled and each
dimensionwill have its own scaling factor that results from the individual pressure components.

Nosé–Hoover Barostat

Similar to theNosé–Hoover thermostat, the extended systemmethodhas been applied to create
a barostat (Hoover ) that is coupled with a Nosé–Hoover thermostat. In this case, the extra
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degree freedom η corresponds to a “piston,” and it is added to the Hamiltonian of the system,
which results in the following equations of motion:

dR(t)
dt

= V(t) + η(t)(R(t) −RCOM), (.)

dV(t)
dt

=

F(t)
M

− [χ(t) + η(t)]V(t), (.)

d χ(t)
dt

=


τT
(

T
T

− ), (.)

dη(t)
dt

=


NkBTτP

V(t)(P − P), (.)

dV(t)
dt

= η(t)V(t) (.)

where RCOM are the coordinates of the center of mass of the system, η is the thermostat extra
degree of freedom and can be thought of as a friction coefficient, τT is the thermostat time
constant, χ is barostat extra degree of freedom and is considered a volume scaling factor and τP
is the barostat time constant. > Equations . and > . explicitly contain the volume of
the simulation box, V(t). Generally, this barostat is implementedusing the approach described
in Melchionna et al. [].

In addition to the variables that are a part of the equations of motion, there is a variable
Q that represents the “mass” of the “piston.” This is analogous to the “mass” variable in the
Nosé–Hoover thermostat. In practice, the required input for the Nosé–Hoover barostat will
include:

• P – Desired pressure
• T – Desired temperature
• τP – Time constant of the barostat
• τT – Time constant of the thermostat
• Q –The “mass” of the piston

Like in the case of the Nosé–Hoover thermostat, care must be taken when selecting the value
of the variable Q. A small value of Q is representative of a piston with small mass, and thus will
have rapid oscillations of the box size and pressure, whereas a large value of Q will have the
opposite effect. The infinite limit of Q results in normal molecular dynamics behavior.

Setting the Time Step

Born–OppenheimerMD

Since BO-MD is classical MD in the sense that the nuclei are classical particles, the same rules
concerning the choice of time step apply to both BO-MD and atomistic force-field MD. The
largest possible time step, δt, is determined by the fastest oscillation in the system – in many
molecules this would be a bond stretching vibration involving hydrogen, e.g., CH,NH, orOH. It
is immediately plausible that δtmust be smaller than the shortest vibrational period in order to
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resolve that motion and for the numerical integrator (see section “Classical Molecular Dynam-
ics”) to be stable. Let us assume a particular molecule has an OH vibration at , cm−,
corresponding to a period of about  fs. Then the time step has to be chosen smaller than
 fs. Using a harmonic approximation it can be shown that the Verlet algorithm is stable for
ωδt <  (Sutmann ). In the present example this would dictate a maximum time step of
 fs.However, although such a choice guarantees numerical stability, it results in deviations from
the exact answer.Therefore, in practice smaller time steps – typically around  fs – are oftenused.

Car–Parrinello MD

Although in CP-MD the nuclei are still treated as classical particles, the choice of time step can
no longer be based solely on the highest nuclear frequency ωmax

n . We also need to consider the
fictitious dynamics of the electronic degrees of freedom. In fact, the optimum simulation time
step is closely linked to the value of the fictitious electron mass μ as we will see in the following.

The fictitious mass μ has to be chosen small enough to guarantee adiabatic separation
of electronic and nuclear motion. This means that the frequency spectrum of the electronic
degrees of freedom (Marx and Hutter ; Pastore et al. )

ωph =

4

5

56

(єp − єh)
μ

(.)

must not overlap with the vibrational spectrum of the nuclear system. The lowest electronic
frequency according to > Eq. . is

ωmin
=

4

5

56

(єLUMO − єHOMO)

μ
(.)

The highest electronic frequency is determined by the plane-wave cutoff energy Ecut ,

ωmax
≈

√

Ecut

μ
(.)

Thus the maximum simulation time step, which is inversely proportional to ωmax, thus obeys
the relation

Δtmax
∝

√

μ
Ecut

(.)

According to > Eq. . the maximum time step can be increased by simply increasing μ.
However, this would also result in a lowering of ωmin

e (see > Eq. .) and therefore in a smaller
separation ωmin

e − ωmax
n between the nuclear and electronic spectra.

Let us discuss the above using some realistic numbers. In the case of the HOmolecule, for
example, the HOMO-LUMO gap with the BLYP functional is about . eV. Assuming a typi-
cal value of  a.u. for μ, the minimum electronic frequency (> Eq. .) is ca. , cm−.
The highest energy molecular vibrational mode in a CP-MD simulation using these parameter
values is the asymmetric stretch at about , cm−. This means that electronic and nuclear
spectra are well separated. A basis set cutoff of Ecut = Ry (=  a.u.) leads to a maximum
electronic frequency (> Eq. .) of ≈, cm− corresponding to a vibrational period of
 a.u.. Hence the CP-MD time step has to be smaller than this number. For water, a time
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step/fictitious mass combination of  a.u./ a.u. has been shown to be a good compromise
between efficiency and accuracy (Kuo et al. ).

If we were to increase μ to , a.u., we could afford a larger time step of about  a.u.
(according to > Eq. .). However, ωmin

e (> Eq. .) would become ca. , cm−, dan-
gerously close to ωmax

n . A simple trick that is often used to be able to afford larger time steps is
to replace all hydrogen atoms by deuterium atoms thus downshifting ωmax

n . For systems with a
small or even vanishing (e.g., metals) bandgap it is increasingly difficult or impossible to achieve
adiabatic separation of electronic and nuclear degrees of freedom following the above consid-
erations. A solution to this problem is the use of separate thermostats for the two subsystems
(Marx and Hutter ; Sprik )

Postprocessing

Data Analysis

Spatial Distribution Functions

For a system of N particles in a volume V at temperature T , the probability of molecule  being
in the volume element dR around the position R, molecule  being in dR, …, molecule N
being in dRN is given by McQuarrie []

P(N)(R)dR = P(N)(R, . . . ,RN)dR, . . . , dRN =

e−E(R)/kT

ZN
(.)

with the configuration integral
ZN =

∫

V
e−E(R)/kTdR (.)

where E(R) is the potential energy of the system at configuration R (cf. > Eqs. . and > .).
For a subset of nmolecules, the probability of molecule  being in dR,…,molecule n being

in dRn is

P(n)(R, . . . ,Rn) =
∫

⋯

∫

e−E(R)/kTdRn+ . . . dRN

ZN
(.)

The probability of anymolecule being in dR, …, anymolecule n being in dRn is

ρ(n)(R, . . . ,Rn) =
N !

(N − n)!
P(n)(R, . . . ,Rn) (.)

In a liquid the probability of finding any one molecule in dR, ρ()(R)dR, is independent of
R. Therefore


V ∫

ρ()(R)dR = ρ() =
N
V
= ρ (.)

The dependence of the molecules of a liquid on all the other molecules, in other words, their
correlation, is captured by the correlation function g(n)(R, . . . ,Rn), which is defined by

ρ(n)(R, . . . ,Rn) = ρng(n)(R, . . . ,Rn) (.)

Using > Eq. . we can thus write

g(n)(R, . . . ,Rn) =
VnN !

Nn
(N − n)!

∫

⋯

∫

e−E(R)/kTdRn+ . . . dRN

ZN
(.)
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The two-body correlation function g()(R,R) is of particular interest as it can be deter-
mined in X-ray diffraction experiments. In the following we shall only consider the dependence
of g() on the interparticle distance R = R = ∣R −R∣, i.e., we have averaged over any angular
dependence, and call g()(R) = g(R) the radial distribution function.The quantity ρg(R)dRI
is proportional to the probability of finding another particle, I, in dRI if the reference particle
is at the origin. Spherical integration yields

∫

ρg(R)πRdR = N −  ≈ N (.)

showing that ρg(R)πR dR is the number of particles in the spherical volume element
between R and R + dR about the central particle. The radial distribution function g(R) is pro-
portional to the local density ρ(R) = ρg(R) about a certain molecule. In a fluid, g(R) →  as
R →∞, i.e., there is no long-range order and we “see” only the average particle density. At very
short range, i.e., R → , g(R) → , due to the repulsiveness of the molecules. Examples from a
CP-MD simulation of liquid water are shown in > Fig. -.

The radial distribution function g(R) provides a useful measure of the quality of a simula-
tion as it can be compared to experimental – X-ray or neutron diffraction – data obtained by
Fourier transform of the structure factor

h(k) = ρ
∫

[g(R) − ]eikRdR (.)

where k is the wave vector.
In addition to characterizing the structure of a liquid, the radial distribution function may

also be used to calculate thermodynamic properties such as the total energy,

E =


NkT + πNρ

∫

∞


u(R)g(R)RdR (.)
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⊡ Fig. -
Radial distribution functionof liquidwater fromCP-MDsimulations at  and ,K, respectively
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the pressure,

p = ρkT −


πρ

∫

∞



du(R)
dR

g(R)RdR (.)

and the chemical potential,

μ = kT ln(ρΛ
) + πρ

∫




dξ

∫

∞


u(R)g(R, ξ)RdR (.)

where

Λ =

√

h

πmkT
(.)

is the thermal de Broglie wavelength. By varying the coupling parameter ξ between  and , one
can effectively take a molecule in and out of the system. It should be stressed that > Eqs. .–
. have been derived assuming a pairwise additive intermolecular potential u(R).

We now define the potential of mean force, i.e., the interaction between n fixed molecules
averaged over the configurations of the remaining molecules n + , . . . ,N , as

w(n)(R, . . . ,Rn) = −kT ln g(n)(R, . . . ,Rn) (.)

The mean force acting on molecule J is then obtained from

f (n)J = −∇Jw(n) (.)

Time Correlation Functions

The classical time autocorrelation function of some vectorial function

A(t) = A(P(t),Q(t)) = A(P,Q; t) (.)

where Q(t) and P(t) are the generalized coordinate and momentum, respectively, is defined
as

C(t) =< A()A(t) >=
∫

⋯

∫

dP dQA(P,Q; )A(P,Q; t) f (P,Q) (.)

where f (P,Q) is the equilibrium phase space distribution function.
From the velocity autocorrelation function, for example, one can calculate the diffusion

coefficient as
D =


 ∫

∞


< VI()VI(t) > dt (.)

where VI is the velocity of particle I. Alternatively, one can obtain the diffusion coefficient for
long times from the associated Einstein relation,

tD =< ∣RI(t) − RI()∣ > (.)

In practice, D is then determined from a linear fit to the mean square displacement (rhs of
> Eq. .) as one sixth of the slope. An example is shown in > Fig. -.

Another common application of correlation functions is the calculation of IR absorption
spectra. The lineshape function, I(ω), is given by the Fourier transform of the autocorrelation
function of the electric dipole momentM,

I(ω) =

π ∫

∞

−∞

<M()M(t) > e−iωt dt (.)
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⊡ Fig. -
Mean square displacement of liquid water from CP-MD simulations at K and linear fit to
determine the diffusion constant D using > Eq. .

⊡ Fig. -
A snapshot of a micelle formed from DDAO molecules and oil molecules formed using the VMD
software package (VMD )

Visualization

Due to the nature of MD simulations, one of the most productive forms of analysis of a simula-
tion is to be able to visualize the trajectory of themolecules of interest.This is particularly useful
since experimental techniques are not able to produce visual pictures of atomistic interactions
and therefore it is something that only simulations (at this point) are able to provide. In order
to visualize a simulation trajectory there are several different very powerful computer packages
that are commonly used.These software packages include VMD (), PyMol (), RasMol
(), and several others (Free Molecular Visualization Software ). > Figure - shows
an example of the type of pictures that can be made using the visualization software.
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Each of these codes will generally accept the trajectory in any number of standard inputs
(i.e., pdb, xyz,…) and then will generate snapshots which can be rendered individually or as a
movie. In addition to providing the visualization, these codes have become progressively power-
ful analysis codes in their own right.They now have the ability to measure bond lengths, angles,
and dihedrals as a function of time, determine the solvent accessible surface area, hydrogen
bond network, and many other useful structural related properties of the system.

References

ABINIT. (). http://www.abinit.org. Accessed 
July .

Allen, M. P., & Tildesley, D. J. (). Com-
puter simulation of liquids. Oxford: Clarendon
Press.

Amara, P., Field, M. J., Alhambra, C., & Gao, J.
(). The generalized hybrid orbital method
for combined quantum mechanical/molecular
mechanical calculations: Formulation and tests
of the analytical derivatives. Theoretical Chem-
istry Accounts, , .

Anderson, J. A., Lorenz, C. D., & Travesset, A.
(). General purpose molecular dynamics
simulations fully implemented on graphics pro-
cessing units. Journal of Computational Physics,
, .

Aqvist, J., & Warshel, A. (). Simulation of
enzyme reactions using valence bond force fields
and other hybrid quantum/classical approaches.
Chemical Reviews, , .

Artacho, E., Anglada, E., Dieguez, O., Gale, J. D.,
Garcia, A., Junquera, J., Martin, R. M., Ordejón,
P., Pruneda, J. M., Sánchez-Portal, D., & Soler,
J. M. (). The SIESTA method; developments
and applicability. Journal of Physics: Condensed
Matter, , .

Ashcroft, N. W., & Mermin, N. D. (). Solid
state physics. Philadelphia: Saunders College
Publishing.

Assfeld, X., & Rivail, J. L. (). Quantum chem-
ical computations on parts of large molecules:
The ab initio local self consistent field method.
Chemical Physics Letters, , .

Assfeld, X., Ferré, N., & Rivail, J. L. (). In J. Gao
& M. A. Thompson (Eds.), Combined quantum
mechanical and molecular mechanical methods,
ACS Symp. Ser. (Vol. , p. ). Washington:
American Chemical Society.

Aulbur, W. G., Jonsson, L., & Wilkins, J. W. ().
Quasiparticle calculations in solids. Solid State
Physics, , .

Bachelet, G. B., Hamann, D. R., Schlüter, M. ().
Pseudopotentials that work: From H to Pu. Phys-
ical Review B, , .

Balint-Kurti, G. G. (). Time-dependent and
time-independent wavepacket approaches
to reactive scattering and photodissociation
dynamics. International Reviews in Physical
Chemistry, , .

Baskes, M. I. (). Modified embedded-atom
potentials for cubic materials and impurities.
Physical Review B, , .

Becke, A. D. (). Density-functional exchange-
energy approximation with correct asymptotic
behavior. Physical Review A, , .

Becke, A. D. (). Density-functional thermo-
chemistry. III. The role of exact exchange. Jour-
nal of Chemical Physics, , .

Bereau, T., & Deserno, M. (). Generic
coarse-grained model for protein folding
and aggregation. Journal of Chemical Physics,
, .

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren,
W. F., Nola, A. D., & Haak, J. R. (). Molecu-
lar dynamics with coupling to an external bath.
Journal of Chemical Physics, , .

Betancourt, M. R., & Omovie, S. J. (). Pairwise
energies for polypeptide coarse-grained mod-
els derived from atomic force fields. Journal of
Chemical Physics, , .

Bhandarkar, M., Bhatele, A., Bohm, E., Brun-
ner, R., Buelens, F., Chipot, C., Dalke, A.,
Dixit, S., Fiorin, G., Freddolino, P., Grayson,
P., Gullingsrud, J., Gursoy, A., Hardy, D.,
Harrison, C., Hénin, J., Humphrey, W., Hur-
witz, D., Krawetz, N., Kumar, S., Kunzman,
D., Lee, C., Mei, C., Nelson, M., Phillips,
J., Sarood, O., Shinozaki, A., Zheng, G., &
Zhu, F. (). NAMD User’s Guide. Theo-
retical Biophysics Group, University of Illinois
and Beckman Institute. http://www.ks.uiuc.edu/
Research/namd/. Accessed  July .

Blochl, P. E. (). Projector augmented-wave
method. Physical Review B, , .

Blochl, P. E., Forst, C. J., & Schimpl, J. (). Projec-
tor augmented wave method: Ab initio molecular
dynamics with full wave functions. Bulletin of
Material Science, , .

http://www.abinit.org
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/


  Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”

Bockstedte, M., Kley, A., Neugebauer, J., &
Scheffler, M. (). Density-functional theory
calculations for poly-atomic systems: Electronic
structure, static and elastic properties and ab
initio molecular dynamics. Computer Physics
Communications, , .

Boeck, S. (). Development and application of
the S/PHI/nX library. Saarbrücken: Südwest-
deutscher Verlag für Hochschulschriften.

Bowler, D. R., Choudhury, R., Gillan, M. J., &
Miyazaki, T. (). Recent progress with large-
scale ab initio calculations: The CONQUEST
code. Physica Status Solidi B, , .

Boys, S. F., & Bernardi, F. (). The calculation of
small molecular interactions by the differences
of separate total energies. Some procedures with
reduced errors. Molecular Physics, , .

Bredow, T., & Jug, K. (). Theory and range of
modern semiempirical molecular orbital meth-
ods. Theoretical Chemistry Accounts, , .

Brooks, B. R., Brooks, C. L., III, Mackerell, A. D., Nils-
son,L.,Petrella, R. J., Roux,B.,Won,Y.,Archontis,
G., Bartels, C., Boresch, S., Caflisch, A., Caves, L.,
Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao,
J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis,
T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.
W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B.,
Venable, R. M., Woodcock, H. L., Wu, X., Yang,
W.,York,D.M., &Karplus,M. (). CHARMM:
The biomolecular simulation program. Journal of
Computational Chemistry, , .

Buckingham, R. A. (). The classical equation
of state of gaseous helium, neon and argon.
Proceedings of the Royal Society of London A,
, .

Bulo, R. E., Ensing, B., Sikkema, J., & Visscher, L.
(). Toward a practical method for adaptive
QM/MM simulations. Journal of Chemical
Theory and Computation, , .

Car, R., & Parrinello, M. (). Unified approach
for molecular dynamics and density-functional
theory. Physical Review Letters, , .

Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke,
H., Luo, R., Jr., K. M. M., Onufriev, A., Sim-
merling, C., Wang, B., & Woods, R. ().
The Amber biomolecular simulation programs.
Journal of Computational Chemistry, , .

Case, D. A., Darden, T. A., Cheatham, T. E., III,
Simmerling, C. L., Wang, J., Duke, R. E., Luo, R.,
Crowley, M., Walker, R. C., Zhang, W., Merz, K.
M., Wang, B., Hayik, S., Roitberg, A., Seabra, G.,
KolossvÃ¡ry, I., Wong, F. K., Paesani, F., Vanicek,
J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke,
H., Yang, L., Tan, C., Mongan, J., Hornak, V.,
Cui, G., Mathews, D. H., Seetin, M. G., Sagui,
C., Babin, V., & Kollman, P. (). AMBER 10.

San Francisco: University of California. http://
ambermd.org/. Accessed  July .

CASTEP. (). http://www.tcm.phy.cam.ac.uk/
castep/. Accessed  July .

CCDC. (). Cambridge crystallographic data
centre. http://www.ccdc.cam.ac.uk. Accessed 
July .

Chadi, D. J., & Cohen, M. L. (). Special points in
the brillouin zone. Physical Review B, , .

CHARMM. (). http://www.charmm.org/. Accessed
 July .

Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P.
J., Probert, M. J., Refson, K., & Payne, M. C.
(). First principles methods using CASTEP.
Zeitschrift für Kristallographie, , .

CONQUEST. (). http://hamlin.phys.ucl.ac.uk/
NewCQWeb/bin/view. Accessed  July .

Cooke, I. R., Kremer, K., & Deserno, M. (). Tun-
able generic model for fluid bilayer membranes.
Physical Review E, , .

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R.,
Merz, K. M., Jr., Ferguson, D. M., Spellmeyer,
D. C., Fox, T., Caldwell, J. W., & Kollman,
P. A. (). A second generation force field
for the simulation of proteins, nucleic acids,
and organic molecules. Journal of American
Chemical Society, , .

CP-PAW. (). http://orion.pt.tu-clausthal.de/
paw/. Accessed  July .

Császár, P., & Pulay, P. (). Geometry optimiza-
tion by direct inversion in the iterative subspace.
Journal of Molecular Structure, , .

DACAPO. (). https://wiki.fysik.dtu.dk/dacapo.
Accessed  July .

Daw, M. S., & Baskes, M. I. (). Semiempirical,
quantum mechanical calculation of hydrogen
embrittlement in metals. Physical Review Letters,
, .

Daw, M. S., & Baskes, M. I. (). Embedded-atom
method: Derivation and application to impu-
rities, surfaces, and other defects in metals.
Physical Review B, , .

Day, P. N., Jensen, J. H., Gordon, M. S., Webb,
S. P., Stevens, W. J., Krauss, M., Garmer, D.,
Basch, H., & Cohen, D. (). An effective
fragment method for modeling solvent effects
in quantum mechanical calculations. Journal of
Chemical Physics, , .

Dirac, P. A. M. (). Note on exchange phenom-
ena in the Thomas atom. Proceedings of the
Cambridge Philosophical Society, , .

Doltsinis, N. L. (). In J. Grotendorst, S. Blügel,
& D. Marx (Eds.), Computational nanoscience:
Do it yourself! Jülich: NIC. http://www.
fz-juelich.de/nic-series/volume/doltsinis.
pdf. Accessed  July .

http://ambermd.org/
http://ambermd.org/
http://www.tcm.phy.cam.ac.uk/castep/
http://www.tcm.phy.cam.ac.uk/castep/
http://www.ccdc.cam.ac.uk
http://www.charmm.org/
http://hamlin.phys.ucl.ac.uk/NewCQWeb/bin/view
http://hamlin.phys.ucl.ac.uk/NewCQWeb/bin/view
http://orion.pt.tu-clausthal.de/paw/
http://orion.pt.tu-clausthal.de/paw/
https://wiki.fysik.dtu.dk/dacapo
http://www2.fz-juelich.de/nic-series/volume31/doltsinis3.pdf
http://www2.fz-juelich.de/nic-series/volume31/doltsinis3.pdf
http://www2.fz-juelich.de/nic-series/volume31/doltsinis3.pdf


Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”  

Doltsinis, N. L., & Marx, D. (a). Nonadiabatic
car-parrinello molecular dynamics. Physical
Review Letters, , .

Doltsinis, N. L., & Marx, D. (b). First-principles
molecular dynamics involving excited states
and nonadiabatic transitions. Journal of The-
oretical and Computational Chemistry, ,
–.

Dreizler, R. M., & Gross, E. K. U. ().
Density–functional theory. Berlin: Springer.

Elezgaray, J., & Laguerre, M. (). A systematic
method to derive force fields for coarse-grained
simulations of phospholipids. Computer Physics
Communications, , .

Elstner, M., Porezag, D., Jungnickel, G., Elsner,
J., Haugk, M., Frauenheim, T., Suhai, S.,
& Seifert, G. (). Self-consistent-charge
density-functional tight-binding method for
simulations of complex materials properties.
Physical Review B, , .

Ewald, P. P. (). Die Berechnung optischer und
elektrostatischer Gitterpotentiale. Annals of
Physics, , .

Ferré, N., Assfeld, X., & Rivail, J. L. (). Specific
force field parameters determination for the
hybrid ab initio QM/MM LSCF method. Journal
of Computational Chemistry, , .

FHI98md. (). http://www.fhi-berlin.mpg.de/th/
fhimd/. Accessed  July .

Finnis, M. W., & Sinclair, J. E. (). A sim-
ple empirical n-body potential for transition
metals. Philosophical Magazine A, , .

Fornili, A., Sironi, M., & Raimondi, M. ().
Determination of extremely localized molec-
ular orbitals and their application to quantum
mechanics/molecular mechanics methods and to
the study of intramolecular hydrogen bonding.
Journal of Molecular Structure (THEOCHEM),
, .

Fornili, A., Loos, P.-F., Sironi, M., & Assfeld, X.
(a). Frozen core orbitals as an alternative
to specific frontier bond potential in hybrid
Quantum Mechanics/Molecular Mechanics
methods. Chemical Physics Letters, , .

Fornili, A., Moreau, Y., Sironi, M., & Assfeld, X.
(b). On the suitability of strictly local-
ized orbitals for hybrid QM/MM calculations.
Journal of Computational Chemistry, , .

Free Molecular Visualization Software. ().
http://www.umass.edu/microbio/rasmol/othersof.
htm. Accessed  July .

Fumi, F. G., & Tosi, M. P. (). Ionic sizes and born
repulsive parameters in the NaCl-type alkali
halides I : The Huggins-Mayer and Pauling
forms. Journal of Physics and Chemitry of Solids,
, .

Gao, J., Amara, P., Alhambra, C., & Field, M. J.
(). A Generalized Hybrid Orbital (GHO)
method for the treatment of boundary atoms
in combined QM/MM calculations. Journal of
Physics Chemistry A, , .

Garcia-Viloca, M., & Gao, J. (). Generalized
hybrid orbital for the treatment of boundary
atoms in combined quantum mechanical and
molecular mechanical calculations using the
semiempirical parameterized model  method.
Theoretical Chemistry Accounts, , .

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M.,
Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti,
G. L., Cococcioni, M., Dabo, I., Corso, A.
D., Fabris, S., Fratesi, G., de Gironcoli, S.,
Gebauer, R., Gerstmann, U., Gougoussis, C.,
Kokalj, A., Lazzeri, M., Martin-Samos, L.,
Marzari, N., Mauri, F., Mazzarello, R., Paolini,
S., Pasquarello, A., Paulatto, L., Sbraccia, C.,
Scandolo, S., Sclauzero, G., Seitsonen, A. P.,
Smogunov, A., Umari, P., & Wentzcovitch, R.
M. (). QUANTUM ESPRESSO: A modular
and open-source software project for quantum
simulations of materials. Journal of Physics:
Condensed Matter, , .

Goedecker, S., Teter, M., & Hutter, J. (). Sep-
arable dual-space Gaussian pseudopotentials.
Physical Review B, , .

Goetz, R., Compper, G., & Lipowsky, R. ().
Mobility and elasticity of self-assembled
membranes. Physical Review Letters, , .

Gordon, M. S., Freitag, M. A., Bandyopadhyay, P.,
Jensen, J. H., Kairys, V., & Stevens, W. J. ().
The effective fragment potential method: A
QM-based MM approach to modeling envi-
ronmental effects in chemistry. The Journal of
Physical Chemistry A, , .

Grigorenko, B. L., Nemukhin, A. V., Topol, I. A., &
Burt, S. K. (). Modeling of biomolecular
systems with the quantum mechanical and
molecular mechanical method based on the
effective fragment potential technique: Proposal
of flexible fragments. The Journal of Physical
Chemistry A, , .

GROMOS. (). BIOMOS b.v, laboratory of physical
chemistry ETH Hnggerberg, HCI. http://www.
gromos.net/. Accessed  July .

Hamann, D. R., Schlüter, M., Chiang, C. ().
Norm-conserving pseudopotentials. Physical
Review Letters, , .

Hartwigsen, C., Goedecker, S., & Hutter, J. ().
Relativistic separable dual-space Gaussian
pseudopotentials from H to Rn. Physical Review
B, , .

Heyden, A., Lin, H., & Truhlar, D. G. (). Adaptive
partitioning in combined quantum mechanical

http://www.fhi-berlin.mpg.de/th/fhimd/
http://www.fhi-berlin.mpg.de/th/fhimd/
http://www.umass.edu/microbio/rasmol/othersof.htm.
htm
http://www.umass.edu/microbio/rasmol/othersof.htm.
http://www.gromos.net/
http://www.gromos.net/


  Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”

and molecular mechanical calculations of poten-
tial energy functions for multiscale simulations.
The Journal of Physical Chemistry B, , .

Hockney, R. W. (). The potential calculation and
some applications. Methods in Computational
Physics, , .

Hockney, R., & Eastwood, J. (). Computer simu-
lation using particles. New York: McGraw-Hill.

Hofer, T. S., Pribil, A. B., Randolf, B. R., & Rode, B. M.
(). Structure and dynamics of solvated
Sn(II) in aqueous solution: An ab initio
QM/MM MD approach. Journal of American
Chemical Society, , .

HOOMD. (). http://codeblue.umich.edu/hoomd-
blue. Accessed  July .

Hoover, W. G. (). Canonical dynamics: Equilib-
rium phase-space distributions. Physical Review
A, , .

Hoover, W. G. (). Constant-pressure equations
of motion. Physical Review A, , .

Hutter, J., Lüthi, H. P., & Parrinello, M. ().
Electronic structure optimization in plane-
wave-based density functional calculations
by direct inversion in the iterative subspace.
Computational Materials Science, , .

Hutter, J., Kohlmeyer, A., Mundy, C. J., Mohamed,
F., Schiffmann, F., Tabacchi, G., Forbert, H.,
Bethune, I., Kuo, W., Krack, M., Iannuzzi, M.,
Guidon, M., McGrath, M., Kuehne, T. D.,
Laino, T., Borstnik, U., VandeVondele, J., &
Weber, V. (). CP2K – a general program
to perform molecular dynamics simulations.
http://cpk.berlios.de. Accessed  July .

ICSD. (). Inorganic crystal structure database.
http://www.fiz-karlsruhe.de/icsd.html. Acces-
sed  July .

Izvekov, S., & Voth, G. A. (). Amultiscale coarse-
graining method for biomolecular systems. The
Journal of Physical Chemistry B, , .

Izvekov, S., & Voth, G. A. (). Multiscale coarse-
graining of mixed phospholipid/cholesterol
bilayers. Journal of Chemical Theory and
Computation, , .

Jensen, F. (). Introduction to computational
chemistry. Chichester: Wiley.

Jensen, J. H., Day, P. N., Gordon, M. S., Basch, H.,
Cohen, D., Garmer, D. R., Krauss, M., & Stevens,
W. J. (). In D. A. Smith (Ed.), Modeling the
hydrogen bond, ACS Symp. Ser. (Vol. , p. ).
Washington, DC: American Chemical Society.

Jørgensen, W. L., Madura, J. D., & Swenson, C. J.
(). Optimized intermolecular potential
functions for liquid hydrocarbons. Journal of
American Chemical Society, , .

Jung, J., Choi, C. H., Sugita, Y., & Ten-no, S. ().
New implementation of a combined quantum
mechanical and molecular mechanical method

using modified generalized hybrid orbitals.
Journal of Chemical Physics, , .

Kairys, V., & Jensen, J. H. (). QM/MM bound-
aries across covalent bonds: A frozen localized
molecular orbital-based approach for the effec-
tive fragment potential method. The Journal of
Physical Chemistry A, , .

Kantorovich, L. (). Generalized Langevin equa-
tion for solids. I. Rigorous derivation and main
properties. Physical Review B, , .

Kantorovich, L., & Rompotis, N. (). Generalized
Langevin equation for solids. II. Stochastic
boundary conditions for nonequilibrium molec-
ular dynamics simulations. Physical Review B,
, .

Kendall, R. A., Apra, E., Bernholdt, D. E., Bylaska,
E. J., Dupuis, M., Fann, G. I., Harrison, R. J.,
Ju, J., Nichols, J. A., Nieplocha, J., Straatsma,
T. P., Windus, T. L., & Wong, A. T. ().
High performance computational chemistry:
An overview of NWChem a distributed parallel
application. Computer Physics Communications,
, .

Kerdcharoen, T., Liedl, K. R., & Rode, B. M. ().
A QM/MM simulation method applied to the
solution of Li+ in liquid ammonia. Chemical
Physics, , .

Kerdcharoen, T., & Morokuma, K. (). ONIOM-
XS: An extension of the ONIOM method for
molecular simulation in condensed phase.
Chemical Physics Letters, , .

Kerker, G. (). Non-singular atomic pseudopo-
tentials for solid state applications. The Journal
of Physical Chemistry C, , L.

Khalid, S., Bond, P. J., Holyoake, J., Hawtin, R. W., &
Sansom, M. S. P. (). DNA and lipid bilayers:
Self-assembly and insertion. Journal of the Royal
Society Interface, , S.

Kleinman, L., & Bylander, D. M. (). Physical
Review Letters, , .

Kołos, W. (). Adiabatic approximation and its
accuracy. Advances in Quantum Chemistry, , .

Kremer, K., & Grest, G. (). Dynamics of
entangled linear polymer melts: A molecular-
dynamics simulation. Journal of Chemical
Physics, , .

Kresse, G., & Furthmüller, J. (). Efficient
iterative schemes for ab initio total-energy cal-
culations using a plane-wave basis set. Physical
Review B, , .

Kuo, I.-F. W., Mundy, C. J., McGrath, M. J., Siepmann,
J. I., VandeVondele, J., Sprik, M., Hutter, J.,
Chen, B., Klein, M. L., Mohamed, F., Krack, M.,
& Parrinello, M. (). Liquid water from first
principles: Investigation of different sampling
approaches. The Journal of Physical Chemistry
B, , .

http://codeblue.umich.edu/hoomd-
http://codeblue.umich.edu/hoomd-blue
blue
http://codeblue.umich.edu/hoomd-blue
http://cp2k.berlios.de
http://www.fiz-karlsruhe.de/icsd.html


Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”  

Kutzelnigg, W. (). The adiabatic approximation
I. The physical background of the Born-Handy
ansatz. Molecular Physics, , .

Laasonen, K., Pasquarello, A., Car, R., Lee, C.,
& Vanderbilt, D. (). Car-Parrinello
molecular dynamics with Vanderbilt ultrasoft
pseudopotentials. Physical Review B, , .

Laio, A., VandeVondele, J., & Rothlisberger, U. ().
A Hamiltonian electrostatic coupling scheme for
hybrid Car-Parrinello molecular dynamics sim-
ulations. Journal of Chemical Physics, , .

LAMMPS. (). http://lammps.sandia.gov/.
Accessed  July .

Lee, C., Yang, W., & Parr, R. C. (). Development
of the Colle-Salvetti correlation-energy formula
into a functional of the electron density. Physical
Review B, , .

Lindahl, E., Hess, B., & van der Spoel, D. ().
GROMACS .: A package for molecular simula-
tion and trajectory analysis. Journal of Molecular
Modeling, , .

Loos, P.-F., & Assfeld, X. (). Self-consistent
strictly localized orbitals. Journal of Chemical
Theory and Computation, , .

Luty, B. A., Davis, M. E., Tironi, I. G., & van
Gunsteren, W. F. (). A comparison of
particle-particle, particle-mesh and Ewald
methods for calculating electrostatic interac-
tions in periodic molecular systems. Molecular
Simulation, , .

Luty, B. A., Tironi, I. G., & van Gunsteren, W. F.
(). Lattice-summethods for calculating elec-
trostatic interactions in molecular simulations.
Journal of Chemical Physics, , .

Lyubartsev, A. P. (). Multiscale modeling of
lipids and lipid bilayers. European Biophysics
Journal, , .

MacKerell, A. D., Bashford, D., Bellott, M., Dun-
brack, R. L., Evanseck, J. D., Field, M. J., Fischer,
S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D.,
Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C.,
Michnick, S., Ngo, T., Nguyen, D. T., Prodham,
B., Reihar, W. E., III, Raux, B., Schlenjrich, M.,
Smith, J. C., Store, R., Straub, J., Watanabe, M.,
Wiorkiewicz-Kuczera, J., Yin, D., & Karplus, M.
(). All-atom empirical potential for molec-
ular modeling and dynamics studies of proteins.
The Journal of Physical Chemistry B, , .

Marrink, S. J., de Vries, A. H., & Mark, A. E. ().
Coarse grained model for semiquantitative lipid
simulations. The Journal of Physical Chemistry
B, , .

Marrink, S. J., Risselada, H. J., Yefimov, S., Tiele-
man, D. P., & de Vries, A. H. (). The
MARTINI force field: Coarse grained model
for biomolecular simulations. The Journal of
Physical Chemistry B, , .

Marx, D., & Hutter, J. (). Ab initio molecular
dynamics: Theory and implementation. In J.
Grotendorst (Ed.), Modern methods and algo-
rithms of quantum chemistry. Jülich: NIC. http://
www.theochem.ruhr-uni-bochum.de/research/
marx/marx.pdf. Accessed  July .

Marx, D., & Hutter, J. (). Ab initio molecular
dynamics: Basic theory and advanced methods.
Cambridge: Cambridge University Press.

McQuarrie, D. A. (). Statistical mechanics.
London: Academic.

Melchionna, S., Ciccotti, G., & Holian, B. L. ().
Hoover NPT dynamics for systems varying in
shape and size. Molecular Physics, , .

Mervis, J. (). NSF launches TeraGrid for
academic research. Science, , .

Meyer, B. (). The pseudopotential plane wave
approach. In J. Grotendorst, S. Blügel, & D.
Marx (Eds.), Computational nanoscience: Do it
yourself! Jülich: NIC. http://www.fz- juelich.de/
nic-series/volume/meyer.pdf. Accessed 
July .

Molden. (). A pre- and post processing pro-
gram of molecular and electronic structure.
http://www.cmbi.ru.nl/molden/. Accessed 
July .

Monard, G., Loos, M., Théry, V., Baka, K., & Rivail,
J. L. (). Hybrid classical quantum force field
for modeling very large molecules. International
Journal of Quantum Chemistry, , .

Monkhorst, H. J., & Pack, J. D. (). Special points
for Brillouin-zone integrations. Physical Review
B, , .

Moreno, J., & Soler, J. M. (). Optimal meshes for
integrals in real- and reciprocal-space unit cells.
Physical Review B, , .

Murphy, R. B., Philipp, D. M., & Friesner, R. A.
(). Frozen orbital QM/MM methods for
density functional theory. Chemical Physics
Letters, , .

Nemukhin, A. V., Grigorenko, B. L., Bochenkova, A.
V., Topol, I. A., & Burt, S. K. (). A QM/MM
approach with effective fragment potentials
applied to the dipeptideâŁ“water structures.
Journal of Molecular Structure (THEOCHEM),
, .

Nemukhin, A. V., Grigorenko, B. L., Topol, I. A.,
& Burt, S. K. (). Journal of Computational
Chemistry, , .

Nosé, S. (a). A unified formulation of the con-
stant temperature molecular dynamics methods.
Journal of Chemical Physics, , .

Nosé, S. (b). A molecular dynamics method
for simulations in the canonical ensemble.
Molecular Physics, , .

NWChem. (). http://www.nwchem-sw.org/index.
php/Main_Page. Accessed  July .

http://lammps.sandia.gov/
http://www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf
http://www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf
http://www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf
http://www2.fz-juelich.de/nic-series/volume31/meyer1.pdf
http://www2.fz-juelich.de/nic-series/volume31/meyer1.pdf
http://www.cmbi.ru.nl/molden/
http://www.nwchem-sw.org/index.php/Main_Page
http://www.nwchem-sw.org/index.php/Main_Page


  Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”

ONETEP. (). http://www.tcm.phy.cam.ac.uk/
onetep/. Accessed  July .

Parr, R. G., & Yang, W. (). Density functional
theory of atoms and molecules. Oxford: Oxford
University Press.

Parrinello, M., Hutter, J., Marx, D., Focher, P.,
Tuckerman, M., Andreoni, W., Curioni, A., Fois,
E., Roetlisberger, U., Giannozzi, P., Deutsch,
T., Alavi, A., Sebastiani, D., Laio, A., Vande-
Vondele, J., Seitsonen, A., & Billeter, S. ().
Car–Parrinello molecular dynamics: An ab ini-
tio electronic structure and molecular dynamics
program. http://www.cpmd.org. Accessed 
July .

Pastore, G., Smargiassi, E., & Buda, F. (). Theory
of ab initio molecular-dynamics calculations.
Physical Review A, .

PDB. (). RCSB protein data bank. http://www.
rcsb.org/pdb. Accessed  July .

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K.
A., Pederson, M. R., Singh, D. J., & Fiolhais, C.
(). Atoms, molecules, solids, and surfaces:
Applications of the generalized gradient approx-
imation for exchange and correlation. Physical
Review B, , .

Philipp, D. M., & Friesner, R. A. (). Mixed ab ini-
tio QM/MM modeling using frozen orbitals and
tests with alanine dipeptide and tetrapeptide.
Journal of Computational Chemistry, , .

Phillips, J. C., Braun, R., Wang, W., Cumbart, J.,
Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.
D., Kale, L., & Schulten, K. (a). Scalable
molecular dynamics with NAMD. Journal of
Computational Chemistry, , .

Phillips, J. C., Braun, R., Wang, W., Gumbart, J.,
Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.
D., Kale, L., & Schulten, K. (b). Journal of
Computational Chemistry, , .

PINY. (). http://homepages.nyu.edu/~mt/
PINY_MD/PINY.html. Accessed  July .

Plimpton, S. J. (). Fast parallel algorithms for
short-range molecular dynamics. Journal of
Computational Physics, , .

Polák, R. (). An investigation of the importance
of many-centre effects in the diatomics-
in-molecules approach. Chemical Physics,
, .

Ponder, J. W., Wu, C., Ren, P., Pande, V. S., Chodera,
J. D., Schnieders, M. J., Haque, I., Mobley,
D. L., Lambrecht, D. S., DiStasio, R. A., Jr.,
Head-Gordon, M., Clark, G. N. I., Johnson, M.
E., & Head-Gordon, T. (). Current status
of the AMOEBA polarizable force field. The
Journal of Physical Chemistry B, , .

Pu, J., Gao, J., & Truhlar, D. G. (a). Combining
Self-Consistent-Charge Density-Functional

Tight-Binding (SCC-DFTB) with molecu-
lar mechanics by the Generalized Hybrid
Orbital (GHO) method. The Journal of Physical
Chemistry A, , .

Pu, J., Gao, J., & Truhlar, D. G. (b). Generalized
Hybrid Orbital (GHO) method for combining
ab initio Hartree-Fock wave functions with
molecular mechanics. The Journal of Physical
Chemistry A, , .

Pu, J., Gao, J., & Truhlar, D. G. (). Generalized
Hybrid-Orbital method for combining density
functional theory with molecular mechanicals.
ChemPhysChem, , .

Pulay, P. (). Ab initio calculation of force con-
stants and equilibrium geometries in polyatomic
molecules I. Theory. Molecular Physics, , .

Pulay, P. (). Convergence acceleration of iter-
ative sequences. The case of SCF iteration.
Chemical Physics Letters, , .

Pulay, P. (). Improved SCF convergence accelera-
tion. Journal of Computational Chemistry, , .

Pulay, P. (). Analytical derivative methods
in quantum chemistry. Advances in Chemical
Physics, , .

PWscf. (). http://www.pwscf.org/home.htm.
Accessed  July .

PyMOL. (). http://www.pymol.org. Accessed 
July .

QuantumEspresso. (). http://www.quantum-
espresso.org. Accessed  July .

RasMol. (). http://rasmol.org/. Accessed 
July .

Reciprocal Net. (). A distributed crystallogra-
phy network for researchers, students and the
general public. http://www.reciprocalnet.org.
Accessed  July .

Reed, D. A. (). Grids, the TeraGrid, and beyond.
Computer, , .

Refson, K. (). Moldy: A portable molecu-
lar dynamics simulation program for serial
and parallel computers. Computer Physics
Communications, , .

Refson, K. (). Moldy user’s manual. http://www.
ccp.ac.uk/moldy/moldy.html/. Accessed 
July .

Scott, W. R. P., Hünenberger, P. H., Tironi, I. G.,
Mark, A. E., Billeter, S. R., Fennen, J., Torda, A.
E., Huber, T., Krüger, P., & van Gunsteren, W. F.
(). The GROMOS biomolecular simulation
program package. The Journal of Physical
Chemistry A, , .

Segall, M. D., Lindan, P. L. D., Probert, M. J., Pickard,
C. J., Hasnip, P. J., Clark, S. J., & Payne,
M. C. (). First-principles simulation: Ideas,
illustrations and the CASTEP code. Journal of
Physics: Condensed Matter, , .

http://www2.tcm.phy.cam.ac.uk/onetep/
http://www2.tcm.phy.cam.ac.uk/onetep/
http://www.cpmd.org
http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
http://homepages.nyu.edu/~mt33/PINY_MD/PINY.html
http://homepages.nyu.edu/~mt33/PINY_MD/PINY.html
http://www.pwscf.org/home.htm
http://www.pymol.org
http://www.quantum-
http://www.quantum-espresso.org
espresso.org
http://www.quantum-espresso.org
http://rasmol.org/
http://www.reciprocalnet.org
http://www.ccp5.ac.uk/moldy/moldy.html/
http://www.ccp5.ac.uk/moldy/moldy.html/


Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”  

Senn, H. M., & Thiel, W. (). QM/MM methods
for biomolecular systems. Angewandte Chemie
International Edition, , .

Shelley, J. C., Shelley, M. Y., Reeder, R. C., Bandy-
opadhyay, S., Moore, P. B., & Klein, M. L. ().
Simulations of phospholipids using a coarse
grain model. The Journal of Physical Chemistry
B, , .

Shillcock, J. C., & Lipowsky, R. (). Equilibrium
structure and lateral stress distribution of
amphiphilic bilayers from dissipative particle
dynamics simulations. Journal of Chemical
Physics, , .

Shirts, M., & Pande, V. S. (). Screen savers of
the world unite! Science, , .

Shurki, A., & Warshel, A. (). Structure/function
correlations of enzymes using MM, QM/MM
and related approaches; methods, con-
cepts, Pitfalls and current progress. In V.
Dagett (Ed.), Protein simulations, Adv. Pro-
tein Chem. (Vol. , p. ). San Diego:
Academic.

SIESTA. (). http://www.icmab.es/siesta/.
Accessed  July .

Sironi, M., Genoni, A., Civera, M., Pieraccini, S., &
Ghitti, M. (). Extremely localized molecular
orbitals: Theory and applications. Theoretical
Chemistry Accounts, , .

Skylaris, C.-K., Haynes, P. D., Mostofi, A. A., &
Payne, M. C. (). Introducing ONETEP:
Linear-scaling density functional simulations
on parallel computers. Journal of Chemical
Physics, , .

Smith, W., Yong, C. W., & Rodger, P. M. ().
DL_POLY: Application to molecular simulation.
Molecular Simulation, , .

Soler, J. M., Artacho, E., Gale, J. D.,
Garcia, A., Junquera, J., Ordejón, P., & Sánchez-
Portal, D. (). The SIESTA method for ab
initio order-N materials simulation. Journal of
Physics: Condensed Matter, , .

S/PHI/nX. (). http://www.mpie.de/index.php?
id=sxlib. Accessed  July .

Sprik, M. (). Computer simulation of the dynam-
ics of induced polarization fluctuations in
water. The Journal of Physical Chemistry, ,
.

Stillinger, F., & Weber, T. A. (). Computer
simulation of local order in condensed phases
of silicon. Physical Review B, , .

Sun, H., Ren, P., & Fried, J. R. (). The COMPASS
force field: Parameterization and validation for
phosphazenes. Computational and Theoretical
Polymer Science, , .

Sutmann, G. (). Classical molecular dynamics.
In J. Grotendorst, D. Marx, & A. Muramatsu

(Eds.), Quantum simulations of complex many-
body systems: From theory to algorithms. Jülich:
NIC. http://www.fz- juelich.de/nic-series/
volume/sutmann.pdf. Accessed  July .

Sutmann, G. (). Molecular dynamics – vision
and reality. In J. Grotendorst, S., Blügel, & D.
Marx (Eds.), Computational nanoscience: Do it
yourself! Jülich: NIC. http://www.fz- juelich.de/
nic-series/volume/sutmann.pdf. Accessed 
July .

Swope, W. C., Anderson, H. C., Berens, P. H.,
& Wilson, K. R. (). Journal of Chemical
Physics, , .

Tepper, H. L., & Voth, G. A. (). A coarse-grained
model for double-helix molecules in solution:
Spontaneous helix formation and equilibrium
properties. Journal of Chemical Physics, ,
.

Tersoff, J. (). New empirical approach for
the structure and energy of covalent systems.
Physical Review B, , .

Tersoff, J. (). Modeling solid-state chemistry:
Interatomic potentials for multicomponent
systems. Physical Review B, , .

Théry, V., Rinaldi, D., Rivail, J. L., Maigret, B.,
& Ferenczy, G. G. (). Quantum mechan-
ical computations on very large molecular
systems: The local self-consistent field
method. Journal of Computational Chemistry,
, .

Thiel, W. (). QM/MM methodology: Fundamen-
tals, scope, and limitations. In J. Grotendorst, N.
Attig, S. Blgel, & D. Marx (Eds.), Multiscale
simulation methods in molecular sciences. Jülich:
NIC. http://www.fz- juelich.de/nic-series/
volume/thiel.pdf. Accessed  July .

Todorov, I. T., & Smith, W. (). The DL_POLY_3
user manual. http://www.cse.scitech.ac.uk/ccg/
software/DL_POLY/. Accessed  July .

Tosi, M. P., & Fumi, F. G. (). Ionic sizes and born
repulsive parameters in the NaCl-type alkali
halides II : The generalized Huggins-Mayer
form. Journal of Physics and Chemitry of Solids,
, .

Toth (). Information systems. http://www.
tothcanada.com. Accessed  July .

Toton, D., Lorenz, C. D., Rompotis, N., Martsinovich,
N., & Kantorovich, L. (). Temperature
control in molecular dynamic simulations of
non-equilibrium processes. Journal of Physics
Condensed Matter, , .

Tozzini, V. (). Coarse-grained models for pro-
teins.Current Opinion in Structural Biology,
, .

Troullier, N., & Martins, J. L. (). A straightfor-
ward method for generating soft transferable

http://www.icmab.es/siesta/
http://www.mpie.de/index.php?id=sxlib
http://www.mpie.de/index.php?id=sxlib
http://www2.fz-juelich.de/nic-series/volume10/sutmann.pdf
http://www2.fz-juelich.de/nic-series/volume10/sutmann.pdf
http://www2.fz-juelich.de/nic-series/volume31/sutmann.pdf
http://www2.fz-juelich.de/nic-series/volume31/sutmann.pdf
http://www2.fz-juelich.de/nic-series/volume42/thiel.pdf
http://www2.fz-juelich.de/nic-series/volume42/thiel.pdf
http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/
http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/
http://www.tothcanada.com
http://www.tothcanada.com


  Molecular Dynamics Simulation: From “Ab Initio” to “Coarse Grained”

pseudopotentials. Solid State Communications,
, .

Troullier, N., & Martins, J. L. (). Efficient
pseudopotentials for plane-wave calculations.
Physical Review B, , .

Tuckerman, M. E. (). Path integration via
molecular dynamics. In J. Grotendorst, D. Marx,
& A. Muramatsu (Eds.), Quantum simulations of
complex many-body systems: From theory to algo-
rithms, Jülich: NIC. http://www.fz- juelich.de/
nic-series/volume/tuckerman.pdf. Accessed
 July .

Tuckerman, M. E., & Hughes, A. (). Path integral
molecular dynamics. In B. J. Berne, G. Ciccotti,
& D. F. Coker (Eds.), Classical and quantum
dynamics in condensed phase simulations (p.
). Singapore: World Scientific.

Tuckerman, M. E., Berne, B. J., Martyna, G. J., &
Klein, M. L. (). Efficient molecular dynam-
ics and hybrid Monte Carlo algorithms for path
integrals. Journal of Chemical Physics, , .

van Beest, B. W. H., Kramer, G. J., & van Santen,
R. A. (). Force fields for silicas and alu-
minophosphates based on ab initio calculations.
Physical Review Letters, , .

van der Spoel, D., Lindahl, E., Hess, B., Groenhof,
G., Mark, A. E., & Berendsen, H. J. C. (a).
GROMACS: Fast, flexible, and free. Journal of
Computational Chemistry, , .

van der Spoel, D., Lindahl, E., Hess, B., van Buuren,
A. R., Apol, E., Meulenhoff, P. J., Tieleman, D. P.,
Sijbers, A. L. T. M., Feenstra, K. A., van Drunen,
R., & Berendsen, H. J. C. (b). Gromacs user
manual version .. http://www.gromacs.org/.
Accessed  July .

Vanderbilt, D. (). Optimally smooth norm-
conserving pseudopotentials. Physical Review B,
, .

Vanderbilt, D. (). Soft self-consistent pseudopo-
tentials in a generalized eigenvalue formalism.
Physical Review B, , .

Vanderbilt Ultra-Soft Pseudopotential Site. ().
http://www.physics.rutgers.edu/~dhv/uspp/.
Accessed  July .

VandeVondele, J., Krack, M., Mohamed, F., Par-
rinello, M., Chassaing, T., & Hutter, J. ().
Quickstep: Fast and accurate density func-
tional calculations using a mixed Gaussian
and plane waves approach. Computer Physics
Communications, , .

VandeVondele, J., Iannuzzi, M., & Hutter, J. ().
Large scale condensed matter calculations
using the Gaussian and augmented plane waves
method. In Computer simulations in condensed
matter systems: From materials to chemical

biology, Volume . Lecture notes in physics (Vol.
, p. ). Berlin/Heidelberg: Springer.

VASP. (). http://cms.mpi.univie.ac.at/vasp/.
Accessed  July .

Verlet, L. (). Computer “Experiments” on clas-
sical fluids. I. Thermodynamical properties
of Lennard-Jones molecules. Physical Review,
, .

VMD. (). http://www.ks.uiuc.edu/Research/
vmd/. Accessed  July .

Vosko, S. H., Wilk, L., & Nusair, M. (). Accurate
spin-dependent electron liquid correlation
energies for local spin-density calculations – A
critical analysis. Canadian Journal of Physics,
, .

Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman,
P. A., & Case, D. A. (). Toward direct
determination of conformations of protein
building units from multidimensional NMR
experiments. V. NMR chemical shielding anal-
ysis of N-formyl-serinamide, a model for polar
side-chain containing peptides. Journal of
Computational Chemistry, , .

Warshel, A. (). Computer modeling of chemical
reactions in enzymes and solutions. New York:
Wiley.

Warshel, A. (). Computer simulations of enzyme
catalysis: Methods, progress, and insights.
Annual Review of Biophysics and Biomolecular
Structure, , .

Warshel, A., & Levitt, M. (). Theoretical studies
of enzymic reactions: Dielectric, electrostatic
and steric stabilization of the carbonium ion in
the reaction of lysozyme. Journal of Molecular
Biology, , .

Woodcock, L. V. (). Isothermal molecular
dynamics calculations for liquid salts. Chemical
Physics Letters, , .

Worth, G. A., Meyer, H. D., Koeppel, H., Ceder-
baum, L. S., & Burghardt, I. (). Using the
MCTDH wavepacket propagation method to
describe multimode non-adiabatic dynamics.
International Reviews in Physical Chemistry,
, .

Zhang, Y. (). A pseudobond approach to com-
bining quantum mechanical and molecular
mechanical methods. Journal of Chemical
Physics, , .

Zhang, Y. (). Pseudobond ab initio QM/MM
approach and its applications to enzyme reac-
tions. Theoretical Chemistry Accounts, , .

Zhang, Y., Lee, T.-S., & Yang, W. (). A pseu-
dobond approach to combining quantum
mechanical and molecular mechanical methods.
Journal of Chemical Physics, , .

http://www.fz-juelich.de/nic-series/volume10/tuckerman1.pdf
http://www.fz-juelich.de/nic-series/volume10/tuckerman1.pdf
http://www.gromacs.org/
http://www.physics.rutgers.edu/~dhv/uspp/
http://cms.mpi.univie.ac.at/vasp/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/

	7 Molecular Dynamics Simulation: From ``Ab Initio'' to ``Coarse Grained''
	Introduction
	Choosing the Right Method
	Theoretical Background
	Born–Oppenheimer Approximation

	Ab Initio Molecular Dynamics
	Born–Oppenheimer Molecular Dynamics
	Car–Parrinello Molecular Dynamics

	Classical Molecular Dynamics
	Verlet Algorithm
	``Leap-Frog'' Algorithm
	Velocity Verlet Algorithm

	Hybrid Quantum/Classical (QM/MM) Molecular Dynamics
	Partitioning Schemes
	Subtractive Scheme
	Additive Scheme

	Bonds Across the QM/MM Boundary
	Link Atoms
	Boundary Atoms
	Frozen Localized Orbitals


	Coarse Grain Molecular Dynamics

	Interaction Potentials/Force Fields
	Classical Force Fields
	Nonbonded Interactions
	van der Waals Interactions
	Electrostatic Interactions

	Bonded Interactions
	Angle Bending Interactions
	Torsional Interactions

	First Principles Electronic Structure Methods

	Building the System/Collecting the Ingredients
	Setting Up an AIMD Simulation
	Building a Molecule
	Plane Waves and Pseudopotentials
	Plane Wave Basis Set
	Pseudopotentials
	Normconserving Pseudopotentials
	Vanderbilt Ultrasoft Pseudopotentials
	How to Obtain Pseudopotentials?



	Setting Up a Classical MD Simulation
	Gathering Preliminary Information
	Building the System


	Preparing an Input File
	Optimization Algorithms
	Steepest Descent
	Conjugate Gradient Methods
	Direct Inversion of the Iterative Subspace

	Controlling Temperature: Thermostats
	Rescale Thermostat
	Berendsen Thermostat
	Nosé–Hoover Thermostat

	Controlling Pressure: Barostats
	Berendsen Barostat
	Nosé–Hoover Barostat

	Setting the Time Step
	Born–Oppenheimer MD
	Car–Parrinello MD


	Postprocessing
	Data Analysis
	Spatial Distribution Functions
	Time Correlation Functions

	Visualization

	References


