
Chapter 7
Multiple Mapping Conditioning: A New
Modelling Framework for Turbulent
Combustion

M.J. Cleary and A.Y. Klimenko

Abstract Multiple mapping conditioning (MMC) is a relatively new addition to
the list of models for turbulent combustion that unifies the features of the proba-
bility density function, conditional moment closure and mapping closure models.
This chapter presents the major concepts and theory of MMC without the detailed
derivations which can be found in the cited literature. While the fundamental basis
remains the same, MMC ideas have undergone considerable evolution since they
were first proposed and the result is a generalised combustion modelling framework
which can more transparently and simply incorporate the major turbulence models
which have been developed over the past decades including LES. A significant part
of this chapter is devoted to a review of the published MMC applications comparing
model predictions with DNS and experimental flame databases. Finally, the chapter
concludes with a list of some of the advances in MMC methodology that we can
expect to see in the coming years.

7.1 Introduction

Multiple Mapping Conditioning (MMC), introduced by Klimenko and Pope in
2003 [21], is a theoretically rigorous combination of the Probability Density Func-
tion (PDF) [17, 40] and Conditional Moment Closure (CMC) [20] models incor-
porating a generalisation of mapping closure [7, 41]. The mapping closure is gen-
eralised in the sense that assumptions are not made about the type of flow being
modelled, whereas conventional mapping closures for combustion (e.g. amplitude
mapping closure [7]) are formally valid in homogeneous turbulence only. Rather
than being a specific turbulent combustion model, MMC can be viewed more as
a framework for turbulent combustion modelling. This framework contains a gen-
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eral set of principles and equations from which specific MMC based models can be
formulated to suit a particular turbulent combustion problem.

Of all the models available, the PDF models (reviewed in Chapter 6) provide
the most detailed information about the stochastic characteristics of all species in-
volved in a combustion process, and, most importantly, they permit an exact evalu-
ation of the reaction rates. However, realistic chemical processes involve hundreds
of species, ns, and the differential equations which describe those realistic kinetics
are always stiff. Therefore a direct evaluation of the joint composition PDF is ex-
pensive as it requires the solution of equations in that ns-dimensional composition
space. While the complete composition space in a turbulent flow is indeed highly
dimensional, it is not necessary in a practical model to allow all species to fluctuate
in all ways. There are constraints due to conservation of elements and other conser-
vation principles, there are fast reactions of some species forcing them to be close
to their partial equilibrium states, and (simply stated) fluctuations of some species
are unimportant to the major combustion processes [21]. This concept has lead to
the notion of an nm-dimensional reduced manifold (nm < ns) onto which the full ns-
dimensional composition space is projected. The dimension of the manifold should
be commensurate with the effective dimension of the accessed region in composition
space for the flow under consideration and this can be expected to increase with flow
complexity [45]. From this manifold notion alternative modelling approaches have
evolved. One approach, of which the intrinsic low-dimensional manifold (ILDM)
method [32] is the prime example, involves dimension reduction by systematically
reducing the number of species in the chemical kinetics scheme. This reduced num-
ber of species then defines the low-dimensional manifold to which the eliminated
species have a functional relationship. In a numerical implementation the source
terms for the manifold species are determined from the reduced kinetics and the
eliminated species may be tabulated. While a deficiency of ILDM is that it neglects
turbulent mixing effects in obtaining the low-dimensional manifold, related kinet-
ics reduction methods such as the reaction-diffusion manifold method (REDIM) [5]
explicitly address chemistry-transport coupling. Ren and Pope [46] review ILDM,
REDIM and related methods.

A second modelling approach to evolve from the notion of reduced manifolds is
to retain arbitrarily detailed chemical kinetics schemes (i.e. with ns species) but de-
rive transport equations which effectively restrict the compositions to a certain man-
ifold. The primary example of such models in the recent literature is CMC [20] (re-
viewed in Chapter 5) which is founded on the hypothesis that, in non-premixed
combustion, there is a strong correlation between turbulent fluctuations of reactive
scalars and the fluctuations of the mixture fraction. Flamelet models [39] (reviewed
in Chapter 3) exploit this correlation also and often include parameterisation by
the scalar dissipation effectively creating a two-dimensional manifold. In CMC,
the mass fractions of the reactive scalars are conditionally averaged on the mix-
ture fraction leaving an equation which has only a single composition dimension
(i.e. mixture fraction space) in addition to the dimensions of time and space. Simple
first-order closures can be found for the conditional chemical reaction rates by mak-
ing the assumption that the conditional fluctuations (i.e. the fluctuations of reactive
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species concentrations relative to mean concentrations conditioned on the mixture
fraction) are negligibly small. As a result of its low dimensionality and the simplicity
of the source term closure, the cost of first-order CMC computations is much lower
than the cost of PDF computations. In partially- or fully-premixed combustion, or in
non-premixed combustion with strong local extinction, the first-order CMC closure
of chemical source terms is less accurate and CMC models with higher order reac-
tion rate closures [26, 33] and CMC models with an additional temperature related
conditioning variable [27] have proven successful in some of these cases but they
also introduce additional terms which are difficult to model.

MMC effectively unifies the PDF and CMC approaches and allows for all of
the generality of PDF methods while also exploiting some of the advantages of
CMC. Both deterministic and stochastic MMC formulations exist. Deterministic
MMC is the natural extension of CMC and the stochastic MMC is in fact a com-
plete joint PDF method with MMC playing the role of a mixing model which en-
forces localness within a defined manifold. Since the basic MMC framework was
first proposed [21] a number of specific MMC models have been developed and
tested [8, 10, 11, 29, 54–57]. The key feature common to all is the use of ref-
erence variables which are related to the physical quantities in turbulent combus-
tion (e.g. mixture fraction, sensible enthalpy, velocity and scalar dissipation). In the
original form of MMC [21] the reference variables are used as conditioning vari-
ables which form a manifold constraining the computed compositions. Fluctuations
around quantities conditionally averaged on that reference space are considered to
be small and in the basic form of MMC they are neglected for the purposes of
calculating reaction rates. These fluctuations are specific to MMC and are called
minor fluctuations. Later a more generalised interpretation of reference variables
in stochastic MMC emerged [23], whereby reference variables can take other roles
in addition to conditioning such as emulating scalar dissipation fluctuations. This
generalised interpretation allows fluctuations relative to the reference manifold to
be exploited (rather than minimised) so as to better model the physical conditional
fluctuations while keeping computational cost small.

The remainder of this review chapter is organised as follows. Section 7.2 presents
the basic MMC as it was first proposed [21]. It includes a description of the context
and concepts of MMC, a brief explanation of mapping closures, a presentation of the
deterministic and stochastic model equations, a discussion of the qualitative prop-
erties of the model and a brief discussion on the replacement of reference variables
resulting in equivalent MMC models with alternatively distributed and physically
meaningful reference spaces. Section 7.3 deals with the generalised interpretations
of MMC. Here we discuss MMC with conditioning and non-conditioning reference
variables and in the context of large eddy simulations. Section 7.4 reviews the pub-
lished MMC applications for a range of homogeneous and inhomogeneous reacting
flows. Finally in Section 7.5 we summarise the major features of MMC and the
different forms the model can take and suggest areas of research which we believe
could dominate the coming decade of research in the field.
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7.2 The Basic MMC Framework

7.2.1 Context and Concepts

The multidimensional reacting scalar space YYY (xxx, t) = (Y1, . . . ,YI , . . . ,Yns) is governed
by the well known transport equation

∂ρYI

∂ t
+∇∇∇ · (ρvYI)−∇∇∇ · (ρD∇∇∇YI) = wI . (7.1)

Here v = v(xxx, t) is the fluid velocity, D is the diffusivity which is assumed to
be the same for all species, ρ is the density, and wI is the rate of creation of
species I due to chemical reactions. In turbulent flows the stochastic distribution
of compositions can be represented by the Favre one-time, one-point joint PDF,
˜PY (yyy;xxx, t) = ∏ns

I=1 ρ(yyy)δ (yI −YI)/ρ where the lower case yyy denotes the sample
space for YYY , and the tilde and overline denote Favre and conventional averages,
respectively. In high Reynolds number flows the transport equation for ˜PY derived
from (7.1) is given by [40]

∂ρ ˜PY

∂ t
+∇∇∇ · (ρu˜PY )+

∂ρWI ˜PY

∂yI
+

∂ 2ρNIJ ˜PY

∂yI∂yJ
= 0 (7.2)

where

u(yyy;xxx, t) ≡ 〈ρv|YYY = yyy〉/ρY (7.3)

WI(yyy;xxx, t) ≡ 〈ρwI |YYY = yyy〉/ρY . (7.4)

NIJ(yyy;xxx, t) ≡ 〈ρD
∂YI

∂xk

∂YJ

∂xl
|YYY = yyy〉/ρY (7.5)

ρY (yyy;xxx, t) ≡ 〈ρ|YYY = yyy〉. (7.6)

The fundamental assumption of MMC is that the compositions which occur in
the different realisations of the flow are confined to an nm-dimensional manifold
within the ns-dimensional composition space where nm < ns. The nm species in
this manifold are called “major species” and their turbulent fluctuations are called
“major fluctuations” while the term “minor species” refers to the remaining set of
nα = ns −nm species. The word “species” is interpreted to include chemical species
and also other quantities related to the composition such as mixture fraction and
enthalpy. Furthermore, our terminology of major and minor species does not imply
that those species are present in large and small concentrations. A major species is
denoted by Yi (lower case Roman subscript) and Yα (lower case Greek subscript) is
used to denote a minor species. The set of all major species is denoted as YYY m and
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the set of minor species is YYY α . As will be seen when the transport equations are
presented, MMC does not discriminate in its treatment of major and minor species
and this demarcation has been introduced as a conceptual aid only. Major species
are those which are permitted in the model to fluctuate in any physically realisable
way whereas minor species are restricted to fluctuate only jointly with the major
species and can be fully characterised by mean values conditionally averaged on
the major species. Provided that the major species are properly selected then the
joint PDF of all species can be effectively replaced by the marginal PDF of major
species, ˜PY m(yyym;xxx, t), supplemented by the conditional means of the minor species
Qα(yyym;xxx, t) = 〈Yα |YYY m = yyym〉 such that

˜PY = ˜PY m ·δ (QQQ− yyyα). (7.7)

The reduced PDF of major species and conditional expectations of minor species
are governed by

∂ρ ˜PY m

∂ t
+∇∇∇ · (ρu˜PY m)+

∂ρWi ˜PY m

∂yi
+

∂ 2ρNi j ˜PY m

∂yi∂y j
= 0 (7.8)

and
∂Qα
∂ t

+u∇∇∇Qα +Wi
∂Qα
∂yi

−Ni j
∂ 2Qα
∂yi∂y j

= Wα . (7.9)

From the assumption that the nm-dimensional major species manifold effectively
describes the accessed region in the ns-dimensional composition space, terms of the
form of ˜P−1

Y m ∇∇∇ · (〈u′′Y ′′
α |YYY m = yyym〉˜PY m), which would normally appear in CMC, have

been omitted from (7.9). The double prime denotes conditional fluctuations.
Like any model for the joint scalar PDF, (7.8) and (7.9) contain two unclosed

terms – the conditional velocity, u, and the conditional scalar dissipation, Ni j. The
development of good closure models, particularly models for Ni j, is an ongoing area
of research in both the joint PDF and CMC communities [17, 50]. As described in
the next section MMC employs an indirect approach based on a generalisation of
mapping closure to solve the above equations consistently and in a numerically
stable manner.

7.2.2 Mapping Functions

The mapping closure concept was first introduced by Chen et al. [7] and a detailed
description of mapping closures for turbulent combustion is provided by Pope [41].
Only the main concepts are repeated here. We introduce the nr-dimensional set of
random variables ξξξ = (ξ1, . . . ,ξi, . . . ,ξnr) called the reference space whose distribu-
tion is prescribed and represented by the joint reference PDF, ˜Pξ (ξξξ ;xxx, t). The aim
is to find a set of mapping functions XXX(ξξξ ;xxx, t) = (X1, . . . ,XI , . . . ,Xns) such that XXX is
statistically equivalent to YYY . In basic MMC a reference variable is assigned to em-
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ulate the turbulence of each of the major species and therefore nr = nm. The word
“emulate” implies that reference variables do not model the physical scalars directly,
but that there is statistical equivalence between the mapping functions in that ref-
erence space and the physical scalar field. Statistical information about YYY is then
obtained simply from the modelled mapping functions and the prescribed reference
space joint PDF:

˜YI(xxx, t) =
∫

ξξξ
XI ˜Pξ dξξξ

˜Y ′
I 2(xxx, t) =

∫

ξξξ
(XI − ˜YI)2

˜Pξ dξξξ (7.10)

...

˜PY (yyy;xxx, t) =
∫

ξξξ
δ (XXX − yyy)˜Pξ dξξξ .

The concept of mapping functions may be more readily understood by examining
the case of a single inert major scalar YZ(t) (the mixture fraction) whose mapping
XZ(ξ , t) is the function of a single standard Gaussian distributed reference variable
with mean 〈ξ 〉 = 0 and variance 〈ξ ′2〉 = 1. Figure 7.1 shows the time evolution of
the mixture fraction PDF, ˜PZ(η ; t) (where η is the sample space variable for YZ)
and the corresponding mapping function XZ in a homogeneous field with decaying
turbulence [8]. The field is initialised at t∗ = 0 (t∗ is a normalised time) so that
fuel (YZ = 1) and air (YZ = 0) are mostly segregated with only a small amount of
smoothing between the two components. This corresponds to ˜PZ being close to two
delta functions and XZ is close to a Heaviside function in reference space with XZ =
0 for ξ < 0 and XZ = 1 for = ξ > 0. As time evolves ˜PZ approaches a Gaussian
distribution with a mean of ˜YZ = 0.5 and with decaying variance. As there is always a
linear mapping between any two Gaussian distributed fields XZ approaches a straight
line with a decreasing gradient.

7.2.3 The Deterministic MMC Model

The MMC model equation governing the evolution of mapping functions in time,
and physical and reference spaces is [21]

∂XI

∂ t
+U ·∇∇∇XI +Ak

∂XI

∂ξk
−Bkl

∂ 2XI

∂ξk∂ξl
= WI . (7.11)

This equation is valid for general inhomogeneous flows. From the assumption that
minor fluctuations are negligibly small a first-order closure of the conditional re-
action rate is applied such that WI = WI(XXX). Equation (7.11) introduces the condi-



Multiple Mapping Conditioning 149

Fig. 7.1: Mixture fraction PDF, PZ(η) (left) and mixture fraction mapping function,
XZ(ξ ) (right) in homogeneous decaying turbulence at various normalised times.
Symbols are DNS data and lines are MMC model results. Figures adapted from [8].

tional velocity, drift and diffusion coefficients U(ξξξ ;xxx, t), Ak(ξξξ ;xxx, t), and Bkl(ξξξ ;xxx, t),
respectively, whose closures are discussed below. We remind readers that the upper
case Roman subscript I represents all scalars (both major and minor) while the lower
case Roman subscripts k and l are for the major scalars only. An elegant aspect of
MMC is that, despite the conceptual division into major and minor species, a sin-
gle equation governs the transport of all species without discrimination. Mapping
functions which satisfy the deterministic model equation (7.11) are themselves de-
terministic functions and the stochasticity of the modelled scalar field results from
the stochasticity of the reference field, ξξξ , whose one-point, one-time joint PDF must
satisfy the equation [21]

∂ρ ˜Pξ

∂ t
+∇∇∇ · (ρU˜Pξ )+

∂ρAk ˜Pξ

∂ξk
+

∂ 2ρBkl ˜Pξ

∂ξk∂ξl
= 0. (7.12)

There is not space in this review to demonstrate the compliance of the MMC
model equations (7.11) and (7.12) with equations (7.8) and (7.9) for ˜PY m and Qα .
However it is explicitly demonstrated by Klimenko and Pope [21]. We note that
this compliance is not restrictive on the dimensions involved except the trivial re-
quirement that nr ≤ ns. If nr = ns is selected then MMC is a full joint PDF model
with a generalised mapping closure for the conditional scalar dissipation. Note that
solution of (7.11) for nr >> 1 via finite difference methods is likely to be com-
putationally intractable and the efficient stochastic form of the equations presented
in Section 7.2.4 is recommended. MMC reference variables can be selected to em-
ulate fluctuations induced by variations of the mixture fraction and other scalars,
dissipation, velocity and, in principle, any other useful quantity [21]. Although a
poor selection of reference variables does not render MMC invalid it brings addi-
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tional complexity without improving the quality of the modelling. From its roots
in CMC, practical MMC tends to focus on mixture fraction conditioning and then
on conditioning by other quantities. The CMC limit of MMC is achieved when a
single reference variable (nr = 1) is chosen to emulate the mixture fraction. Under
these conditions MMC is effectively first-order CMC plus a consistent closure of
the mixture fraction PDF and conditional mean scalar dissipation.

The MMC velocity, drift and diffusion coefficients are selected so that (7.12)
is satisfied for a prescribed (or independently determined) distribution of the joint
reference PDF, Pξ . It is possible to determine the coefficients for any reasonable
distribution, however, following the mapping closure convention the reference vari-
ables are given standard Gaussian distributions (i.e. zero mean and unit variance):

˜Pξ (ξξξ ;xxx, t) = ˜Pξ (ξξξ ) = G(ξ1)G(ξ2) . . .G(ξnr)

(7.13)

G(ξk) =
1√
2π

exp

(

−ξ 2
k

2

)

.

For this reference PDF distribution, it can be shown [21] that (7.12) is satisfied when
the velocity and drift coefficients are selected to take the following forms:

U(ξξξ ;xxx, t) = U(0) +U(1)
k ξk (7.14)

Ak(ξξξ ;xxx, t) = −∂Bkl

∂ξl
+Bklξl +

1
ρ

∇∇∇ · (ρUUU (1)
k ). (7.15)

A linear conditional velocity model is commonly used in CMC models [20] and is
also suggested for MMC. There is further discussion on this matter below. The last
term in (7.15) is particular to MMC and does not appear in conventional mapping
closures [41]. Because of that term, MMC as a PDF model is a generalised mapping
closure method that makes no assumption about the homogeneity of the flow. In
addition, of course, MMC is a CMC model for the minor species.

The velocity terms U(0) and U(1)
k depend on the model employed for the drift

coefficient, Bkl . Selecting Bkl to be independent of ξ gives

U(0)(xxx, t) = ṽ (7.16)

U(1)
k (xxx, t)〈ξkXi〉 = ˜v′Y

′
i (7.17)

Bkl(xxx, t)
〈

∂Xi

∂ξk

∂Xj

∂ξl

〉

= ˜Ni j. (7.18)

In the above the averages in angular brackets are determined by integration weighted
by the reference PDF and ˜Ni j is the unconditional Favre-averaged scalar dissipa-
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tion. Note that these relations are the interactions between the turbulence and re-
acting scalar fields. The great advantage of employing mapping closure is that the
turbulence-chemistry interactions are closed using the unconditional Favre-averaged
velocity, turbulent scalar flux and scalar dissipation rather than the more difficult to
model conditional averages required to close joint PDF and CMC equations (7.8)
and (7.9).

Compliance with the reference PDF does not imply that the MMC coefficients are
unique and multiple different forms are possible. The velocity UUU , expressed in (7.14)
in terms of ξξξ , xxx and t, represents a model for conditional velocity 〈v|YYY 〉, which can
conventionally be approximated by 〈v|YZ〉 where YZ is the mixture fraction. The
simplest, linear approximation of the conditional velocity 〈v|YZ〉 = ṽ +βYZ , where
the coefficient β is linked to the turbulent scalar flux as in (7.17), is commonly
used in CMC [20]. Kuznetsov and Sabelnikov [30] introduced this approximation
and found that the joint Gaussian distribution of the velocity-scalar fluctuations im-
plied by the linear model may be too strong an assumption at the tails of the mix-
ture fraction PDF and may cause convergence difficulties. A clipped version whose
shape is an “erf-like” function is more stable and agrees with experiments since
larger scalar and velocity fluctuations tend to be less correlated than smaller fluc-
tuations. The same authors [30] note that the linear approximation does not yield
the same turbulent diffusivity for the first and the second moment of the mixture
fraction (Dt2 	= Dt1). While Kuznetsov and Sabelnikov [30] believed that the dif-
ferent moments should have different turbulent diffusivities, the most common ap-
proach in RANS involves assuming the same diffusivities for both moments (i.e.
Dt2 = Dt1). Mortensen [37] correctly pointed out that using the linear approxima-
tion of the conditional velocity in CMC simulations is inconsistent with using the
assumption Dt2 = Dt1 in the scalar variance equation. This, of course, should not
be interpreted as a general inconsistency of the PDF and second moment equations
since a consistent equation for any scalar moment is a consequence of, and can be
derived from, the PDF equation. The problem of consistency in the common as-
sumption Dt2 = Dt1 can be resolved by using Pope’s gradient approximation [40]
which, as was repeatedly noted [30, 37], yields the same turbulent diffusivities for
all moments. This approximation, however, tends to have a shape which is a “tan-
like” function and may overestimate velocity-scalar correlations at the tails. On one
hand, linear dependence between velocity, whose distribution is close to Gaussian,
and the reference variables, which is also Gaussian, can be expected. On the other
hand, Gaussian distributions of each of the stochastic variables does not guarantee
a joint distribution, which is needed for linear dependence of the conditional ex-
pectations. Due to boundedness of the mixture fraction and unboundedness of the
Gaussian reference variable, the dependence of 〈v|YZ〉 on YZ determined by (7.14)
tends to be ”tan”-like. This overestimates dependence at the tails and may cause
difficulties in MMC simulations. Recently, Vaishnavi and Kronenburg [53] have
suggested a method that can make MMC consistent with any adopted approxima-
tion for 〈v|YZ〉. It seems that this method may become important for inhomogeneous
MMC simulations.
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7.2.4 The Stochastic MMC Model

Following the methods described by Pope [40] a stochastic form of MMC can be
derived which is equivalent to the deterministic model given by Eqs. 7.11 and 7.12.
The stochastic formulation is based on the use of Lagrangian particles. In addition
to conventional scalar properties, stochastic MMC assigns reference values to those
stochastic particles. The equivalent stochastic formulation of MMC is given by [21]

dxxx∗(p) = U(ξξξ ∗(p);xxx∗(p), t)dt (7.19)

dξ ∗(p)
k = A0

k(ξξξ
∗(p);xxx∗(p), t)dt +bkl(ξξξ

∗(p);xxx∗(p), t)dω∗(p)
l (7.20)

dX∗(p)
I = (W ∗(p)

I +S∗(p)
I )dt (7.21)

〈S∗I |ξξξ
∗ = ξξξ ,xxx∗ = xxx〉 = 0 (7.22)

where

A0
k = Ak +

2
˜Pξ

∂Bkl ˜Pξ

∂ξl
(7.23)

bkibli = 2Bkl . (7.24)

In the above asterisks indicate stochastic quantities, the bracket index (p) indicates
a value associated with an individual particle and ω∗

I are Wiener processes. As for
the deterministic model, the reference PDF, ˜Pξ , is prescribed and (7.20) is solved to
model the turbulent diffusion of scalars in the reference space.

Equation (7.21) governs transport in scalar space due to chemical reaction, WI ,
and a mixing operation, SI . The latter is not specified beyond the requirement in
(7.22) that it not alter the conditional expectations. The treatment of WI and SI de-
pends on one’s interpretation of stochastic MMC. The first interpretation is that
equations (7.19) through (7.22) are an efficient stochastic numerical scheme for
solving the deterministic mapping equation (7.11). For nr 
 1 the stochastic form
will be cheaper to compute than a finite difference method applied to the determin-
istic equations. The goal is to find X

∗
I = 〈X∗

I |ξξξ
∗ = ξξξ ,xxx∗ = xxx〉 which can be shown to

satisfy (7.11) [21] and we therefore refer to this approach as the conditional inter-

pretation of MMC. We set W ∗(p)
I = WI(XXX

∗) and the job of the mixing operator is to

keep the minor fluctuations X ′′′(p)
I = X∗(p)

I −X
∗
I small. Inevitably there will be some

scattering around X
∗
I and this is treated as stochastic error to be minimised by using

a large number of particles.
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The alternative, probabilistic interpretation of MMC, is to consider the stochastic

values X∗(p)
I as models for the turbulent realisations of the composition; that is the

PDF ˜PX = P(XXX∗|xxx∗ = xxx) is the model for P̃Y . Practically, stochastic MMC is almost
always used as a probabilistic (PDF) model and the recent trend is to imply “proba-
bilistic” when the term “stochastic MMC” is used. In general, the minor fluctuations
are still expected to be small when MMC conditioning is effective but deviations

from the reference space manifold are now permitted. We set W ∗(p)
I =WI(XXX∗(p)) and

SI is used to dissipate the usually small but not-negligible minor fluctuations. Note
that in conventional joint PDF methods the surrogate mixing models account for
the dissipation of all fluctuations, whereas in MMC the mixing operator dissipates
only the minor fluctuations and the dissipation of major fluctuations is modelled by
diffusion in reference space (see Eq. 7.20). Therefore MMC results are expected to
have a lower sensitivity than conventional PDF models to the form of the surrogate
mixing model.

In practice, the dissipation of minor fluctuations can occur only if mixing is be-
tween particles which are close in ξ -space as demanded by (7.22) and this gives
MMC its localness. This localness effectively enforces a CMC-type closure on the
mixing model. Here the term CMC is quite general and refers to any method for ob-
taining conditional means according to (7.9). The probabilistic MMC is a full joint
PDF method which, through the mixing model, incorporates the ideas of CMC. Spe-
cific surrogate mixing models to dissipate the minor fluctuations can be formulated
in a variety of ways but the simplest models are those based on the conventional PDF
mixing models such as IEM (interaction by exchange with the mean) [15], IECM
(interaction by exchange with the conditional mean) [42] and Curl’s model [13] and
its modifications [19]. The IECM model can be seen as a special version of MMC-
IEM that involves conditioning only on velocity. Traditional MMC pays more at-
tention to conditioning on scalars than to conditioning on velocity and it is not clear
whether the true MMC regime can be achieved by IECM [23].

Here we present two alternatives, MMC-IEM and MMC-Curls. MMC-IEM is
represented by the mixing operator

S∗(p)
I =

X
∗
I −X∗(p)

I

τs
. (7.25)

Minor fluctuations are dissipated through adjustments of the relaxation timescale,
τs, and X

∗
I is calculated within narrow (i.e. local) ξ bins. This model requires that

the number of particles is large so that X
∗
I can be calculated accurately. In MMC-

Curl’s model particles p and q are paired on the basis that they are close to each other
in ξ -space. During each interaction they have their values reset to the two-particle

average X∗(p)new
I = X∗(q)new

I = (X∗(p)
I +X∗(q)

I )/2. As particles move randomly in ξ -
space new particle pairs are formed as needed to maintain localness in that space.
Other two-particle interaction schemes, more sophisticated than the scheme shown
above, are possible and practical implementations (e.g. Refs [11, 56] tend to use
modified versions of Curl’s model [19].
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7.2.5 Qualitative Properties of MMC

Being both joint PDF and CMC compliant, MMC inherits the qualitative proper-
ties of both. The reaction rates can be modelled by conditional means or by in-
stantaneous stochastic quantities. In the PDF limit convective transport is treated
exactly [40] while the convective transport of conditional quantities is modelled by
the local properties of the flow (see the ξ dependence of the velocity in (7.14)). An
important outcome of MMC is that the PDF of the major scalars and the conditional
scalar dissipation are modelled consistently. Lists of desirable properties of condi-
tional scalar dissipation and surrogate mixing models have been suggested and ex-
panded by various authors [16, 44, 51]. MMC adheres to the most essential of these
properties [21, 22]: conservation of means, boundedness of scalars and their linear
combinations, linearity and independence, localness, equal treatment of all scalars,
decay of variances and relaxation to a Gaussian PDF distribution in homogeneous
turbulence. Additionally, as MMC in its stochastic form does not specify the form of
the surrogate mixing model, the option remains to develop mixing schemes which
also include, among other phenomena, the effects of Reynolds number, turbulence
length scales and reactions.

A key reason for the observed quality of MMC is the independence of the ref-
erence variables and the composition variables ensuring linearity of MMC mixing.
This independence does not, of course, imply that ξξξ and YYY are uncorrelated. In
fact, correlation is necessary for localisation in reference variables to be a useful
constraint. The independence does, however, imply that ξξξ should be able to fluctu-
ate without taking the local and instantaneous value of YYY into account. Practically,
a reasonable degree of independence of reference and composition scalar fields is
achieved when those fields are modelled by different processes or equations (e.g. ξξξ
can be modelled by the Markov process (7.20) which is independent of the transport
of YYY ). Note that this interpretation of independence allows for some quantities, such
as density, to be common to both equations.

7.2.6 Replacement of Reference Variables

The velocity, drift and diffusion coefficient closures in Sections 7.2.3 and 7.2.4 are
consistent with the reference PDF transport equation when that PDF is a joint stan-
dard Gaussian. This is convenient from a mathematical perspective but a better
physical understanding of MMC can be gained by replacement of these standard
Gaussian reference variables with random variables which more closely resemble
the physical major scalars that they emulate.

A reference space transformation from ξξξ to ξ̂ξξ = ξ̂ξξ (ξξξ ;xxx, t) is achieved by replac-
ing the velocity, drift and diffusion coefficients by [22]
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Âi =
∂ ξ̂i

∂ t
+UUU ·∇ξ̂i +Ak

∂ ξ̂i

∂ξk
−Bkl

∂ 2ξ̂i

∂ξk∂ξl
(7.26)

B̂i j = Bkl
∂ ξ̂i

∂ξk

∂ ξ̂ j

∂ξl
(7.27)

ÛUU = UUU . (7.28)

Although the transformed velocity coefficient in (7.28) is unchanged this does not
imply the linear functional form in ξξξ -space corresponds to a linear form in ξ̂ξξ -space.
The new reference space PDF is given by

˜Pξ̂ = ˜Pξ det

(

∂ ξ̂i

∂ξk

)−1

. (7.29)

Note that the replacement of variables is simply a mathematically equivalent trans-
formation that does not alter the physical nature of the MMC closures.

An obvious case is the replacement of a single standard Gaussian variable that
emulates mixture fraction, ξ , with a new random variable ξ̂ = η that has the same
distribution as the actual mixture fraction (i.e. ˜Pη = ˜PZ). It is important to remem-
ber that the mixture fraction reference variable is not the actual mixture fraction,
YZ , which is modelled by the mapping XZ . To preserve the independence of the
reference variables, η is a mixture-fraction-like variable with equivalent (or topo-
logically similar) statistics to YZ . For this special case the transformed coefficients
Âi and B̂i j are

Â = 0 (7.30)

B̂ = B

(

∂XZ

∂ξ

)2

. (7.31)

It can be readily seen that replacement of ξ by η and substitution of the new co-
efficients into the mapping equation (7.11) yields the conditional moment equation
(7.9) with conditioning on the mixture fraction. The coefficient B̂ appears in the
place of, and is therefore a model for, the conditional scalar dissipation

〈N|η〉 = B̂ = B

(

∂XZ

∂ξ

)2

. (7.32)

Generally speaking, a higher quality emulation of the mixture fraction by the refer-
ence variable η makes modelling of the mixture fraction YZ easier.

A detailed application of the replacement of reference variables for a multidimen-
sional reference space emulating mixture fraction and sensible enthalpy is contained
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in Refs [9, 29]. With such transformations the similarities and differences between
the MMC and EMST [51] models are quite obvious. Both models treat conditional
scalar dissipation locally in composition space and use mapping closures to achieve
this. Where they differ is that EMST uses the stochastic compositions to determine
localness, but in so doing violates principles of independence and linearity. MMC,
on the other hand, uses reference variables which are formally independent of the
stochastic compositions to determine localness and thus it adheres to those prin-
ciples. However, MMC requires a model for the reference variables and finding a
suitable model may not be trivial, especially for reacting quantities.

7.3 Generalised MMC

The basic MMC framework presented in the preceding section is a rather formal
model. It assumes that the major species manifold is known and that minor fluctua-
tions are negligibly small. (The probabilistic MMC allows minor fluctuations but un-
til now they have been assumed to be small). The use of standard Gaussian reference
variables is conventional and mathematically convenient, but it also removes some
physical transparency from the model equations. In this section we present a gen-
eralised MMC which, as the name suggests, generalises the concepts of MMC and
makes them more amenable to practical implementation. Generalised MMC con-
cepts were first proposed in Ref. [23] to expand the purpose of reference variables
beyond conditioning or localisation. A series of subsequent papers [10, 11, 24, 25]
developed generalised MMC for the DNS/LES regime and replaced Markov refer-
ence variables with Lagrangian variables traced within an Eulerian field. Although
the main generalised MMC concepts are presented below, readers interested in a
detailed analysis should consult the published articles cited above.

7.3.1 Reference Variables in Generalised MMC

The basic MMC model uses nr = nm independent reference variables to emulate
each of the major species. In the stochastic form of the model mixing is localised in
the reference space effectively linking the modelled composition with the species
concentrations conditionally averaged on that space. In the conditional interpre-
tation of MMC minor fluctuations are neglected and therefore the composition is
modelled as the conditional mean. In probabilistic MMC, in which minor fluctua-
tions are permitted, the fluctuations are dissipated towards the conditional means by
the minor dissipation operator, SI . The probabilistic MMC interpretation is assumed
for the remainder of this section. Reference variables which perform a localisation
role (this is the only role we have considered until now) are now called conditioning
reference variables to distinguish them from other sorts of reference variables to be
discussed below. As before the total number of reference variables is labelled as nr
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and the number of conditioning reference variables is nc with nc ≤ nr. The set of
conditioning variables ηηη = (η1,η2, . . . ,ηnc) forms a subset of ξξξ .

From a practical perspective it may not always be possible or desirable to have
a conditioning reference variable to emulate each of the major species. Limiting
computational cost is the major reason for this – a greater number of conditioning
reference variables requires a larger number of particles to ensure adequate locali-
sation in the space of each of those reference variables. If nc < nm then, in general,
minor fluctuations are not negligibly small and their variances should be controlled
to so that the model predicts the physical conditional variances accurately.

By accepting minor fluctuations in the model we also create the possibility of
including reference variables which assist the modelling but which are not used
for conditioning purposes. Practically this means that mixing is localised only in
the space of the nc conditioning reference variables, while the non-conditioning
reference variables complement the conditioning reference variables and improve
the emulation of the physical quantities.

Until now we have only considered reference variables modelled by Markov pro-
cesses as in (7.20). However, once we allow for the possibility that nc < nr or even
for nc � nr, any physically relevant process can be used. For example, reference
variables can be Lagrangian quantities obtained with the use of DNS or LES. In-
deed a non-Markov process can be approximated well by a Markov process of much
higher dimension. Motions of Brownian or fluid particles in a turbulent flow are
deemed to be non-Markovian while DNS simulations tracing these particles repre-
sent a Markov process of a large dimension.

7.3.2 Features of Generalised MMC Models

The generalised MMC model equations were initially proposed in Ref. [23] in the
same form as the basic stochastic MMC equations (7.19) through (7.21) and with
(7.22) replaced by

〈S∗I |ηηη∗ = ηηη ,xxx∗ = xxx〉 = 0. (7.33)

while 〈S∗I |ξξξ
∗ = ξξξ ,xxx∗ = xxx〉 may be non-zero. It is possible to demonstrate that a

failure to satisfy condition (7.22) under the conditional interpretation of MMC will
generate a spurious term in the modelled PDF transport equation (the effect of mix-
ing in the direction of non-conditioning reference variables can be interpreted as a
mixing-generated diffusion). Hence, using a conditional interpretation of general-
ized MMC is not recommended. Note that generalized MMC is a stochastic model
and it does not generally have a deterministic version. However, with a probabilistic
interpretation, generalised MMC remains compliant with the PDF transport equa-
tion. Indeed, complying with the PDF equation requires that 〈S∗I |xxx∗ = xxx〉= 0 to allow
for representation of the mixing operator in terms of the divergence of dissipation,
N◦

IJ :
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˜PX 〈S∗I |XXX∗ = XXX ,xxx∗ = xxx〉 =
∂N◦

IJ
˜PX

∂XJ
. (7.34)

In Ref. [21], this was shown using with the use of (7.22), which represents a suf-
ficient but not necessary condition. A weaker condition, 〈S∗I |xxx∗ = xxx〉 = 0, which
can be obtained from (7.33), is sufficient for compliance with the PDF equa-
tion. Due condition (7.33) generalised MMC mixing does not alter the values of
XI = 〈X∗

I |ηηη∗ = ηηη ,xxx∗ = xxx〉 and hence, in the absence of non-linear reacting terms,
X
∗
I is determined by the properties of the stochastic trajectories of ηηη∗ and not by

the form or quality of the surrogate mixing operator. In other words, MMC enforces
the desired conditional properties, through the stochastic properties of the reference
variables, on any reasonable surrogate mixing operator. This, however, does not ap-
ply to higher conditional moments which are determined by the form and quality of
that mixing.

Since stochastic models aim to produce statistically equivalent fields their model
equations are not unique and alternative forms can be derived. MMC with Gaussian
reference variables is mathematically convenient but some physical transparency
of the model is lost. It is, of course, possible to transform the equations for al-
ternatively distributed reference variables according the methods described in Sec-
tion 7.2.6 and although this improves the physical transparency of the model the
transformed drift and diffusion coefficients are complex. An alternative option is
to apply the generalised MMC principles within other existing models for turbu-
lent combustion (e.g. any of the various formulations and closures of the joint PDF
models). In the broadest sense, then, generalised MMC can be interpreted as the
application of the conditioning/localisation condition (7.33) within an existing (or
maybe yet to be developed) stochastic combustion model. This interpretation has
been taken in practical hybrid binomial Langevin-MMC [57] and MMC-LES appli-
cations [10, 11].

The following three points summarise the essential features of a good generalised
MMC model [23]:

• The conditioning reference variables should emulate as closely as possible the
Lagrangian properties of the key major species to ensure accurate evaluation of
conditional species expectations without compromising the independence of the
reference space. This can be done with the assistance of non-conditioning refer-
ence variables.

• The surrogate mixing operator, SI , should set the dissipation of minor fluctuations
to correspond to the dissipation of physical conditional fluctuations. (Due to the
independence of reference and composition scalar fields, minor fluctuations and
conditional fluctuations are not the same thing but they are linked).

• The conditioning reference variables should be selected so that minor fluctu-
ations are not too large. This ensures that scalar dissipation is predominantly
modelled by diffusion in reference space (e.g. Eq. 7.20) rather than by the surro-
gate mixing operator, SI .
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7.3.3 MMC with Dissipation-like Reference Variables

We consider an MMC model governed by (7.19) through (7.21) and (7.33) with
a single conditioning reference variable η emulating the physical mixture frac-
tion, YZ , via the mapping function XZ . If η does not have a standard Gaussian
PDF then the coefficients are modified as described in Section 7.2.6. Conditional
fluctuations Y ′′

I = YI − 〈Y ′′
I |YZ〉 are modelled indirectly via the minor fluctuations

X ′′′(p)
I = X∗(p)

I −X
∗
I . As it is, the model does not explicitly generate minor fluc-

tuations and they are present only if they appear in the boundary conditions or if
generated by the surrogate mixing model [23]. Although generation of minor fluc-
tuations by the mixing model can in principle be used to model the conditional
fluctuations [10] it may be difficult to control. An alternative model is to intro-
duce additional non-conditioning reference variables to emulate the scalar dissipa-
tion fluctuations which are physically responsible for the appearance of conditional
fluctuations. The reference space is defined as ξξξ = (η ,ξd1 ,ξd2 , . . .) where ξdi are
called dissipation-like reference variables. The MMC model with dissipation-like
variables has the modified diffusion coefficients [23]

Bηη = Bηη Φ , Bηdi = Bdiη = 0, Bdid j =
δdid j

τdi

(7.35)

Φ(ξdi ;xxx, t) = exp(cdiξdi −
cdi cdi

2
) (7.36)

cdicdi = ln

(

〈N ′2
ηη |YZ〉

〈Nηη |YZ〉
+1

)

(7.37)

In the above, Bηη is the value of the diffusion coefficient without inclusion of the
dissipation fluctuations. Each dissipation-like reference variable emulates scalar dis-
sipation fluctuations of a certain frequency, 1/τdi , where τdi spans between the Kol-
mogorov and macro time scales of the flow. Giving each ξdi a standard Gaussian
distribution ensures that the conditional scalar dissipation 〈Nηη |η〉 has a lognormal
distribution. For modelling where the ratio τdi−1/τdi is selected to be the same for all
dissipation-like variables it can be shown that the constants cdi are also equal [23].
In basic MMC, all reference variables ξξξ must be used for conditioning while gen-
eralised MMC may involve conditioning only on η , or η and Φ , which seems to be
more practical.
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7.3.4 DNS/LES Simulated Reference Variables

The computational tractability of Markov processes such as the random walk given
by (7.20) have led to them being widely used in stochastic turbulence models [43].
However, the great advances in computing power mean that LES and maybe even
DNS are becoming more viable means of modelling non-reacting stochastic dif-
fusion processes and velocity fields. The cost of performing reacting DNS is still
prohibitive while LES does not resolve the thin reaction zones. Therefore hybrid
methods such as the LES/joint scalar FDF (filtered density function) model [12, 18]
have been developed whereby velocity and passive scalar fields are simulated by
conventional Eulerian LES and the reactive scalar field is simulated by a stochastic
particle scheme.

As noted in Section 7.3.1, the Markov reference variables can be replaced in gen-
eralised MMC by traced Lagrangian values within an Eulerian DNS or LES simu-
lated field (i.e. particle reference variable values are the Eulerian values observed at
the particle locations). One can note that the highest quality reference variable is the
actual physical variable simulated by a fully resolved DNS. The Eulerian reference
field is simulated according to

∂ρξi

∂ t
+∇∇∇ · (ρvξi)−∇∇∇ · (ρD∇∇∇ξi) = wξi

. (7.38)

For passive scalars the source term wξi
= 0. The mixture fraction is the most ob-

vious reference variable to be modelled in this way for non-premixed combustion
but, in principle, other passive or reactive reference variables could also be selected.
In the LES version, the filtered form of (7.38) is solved and a closure is required
for the source term of any reactive reference variables. If LES subgrid fluctuations
are filtered out a Markov process similar to (7.20) can be used to emulate the sub-
grid distribution such that ξi = ξ LES

i + ξ ′RW
i ; (RW = random walk) [23]. Practical

applications [10, 11] of MMC in LES tend to have far fewer Lagrangian particles
for the stochastic reacting species field than there are Eulerian LES grid cells (see
Section 7.4.4). Therefore the explicit inclusion of subgrid fluctuations in the formu-
lation of the reference variables is unlikely to have a significant effect on the de-
termination of localness in reference space. Of course the subgrid component of ξi

may have a significant effect on conditional velocity (according to the linear closure
given by (7.14)) or if some of the reference variables represent velocity components.
If the random walk component of ξi is neglected (as has been done in practical ap-
plications) the subgrid conditional velocity can instead be closed by the alternative
gradient model [12, 40] which manifests in the stochastic equation for the spatial
transport:

dxxx∗(p) =
(

U(0) +
1
ρ

∇(ρDeff)
)

dt +
√

2Deff dωωω∗(p) (7.39)

where Deff is the sum of subgrid and (if needed) molecular diffusivities.
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7.4 Examples

In the past five years an impressive list of publications have proposed and tested
specific deterministic and stochastic MMC (including generalised MMC) mod-
els in a range of idealised, homogeneous combustion conditions [8, 9, 29, 56]
and inhomogeneous, laboratory non-premixed and partially premixed flame con-
ditions [10, 11, 54, 55, 57]. Each of these specific MMC models has a refer-
ence variable to emulate mixture fraction while a few of the deterministic models
have additional reference variables to emulate scalar dissipation and/or sensible en-
thalpy [8, 9, 29]. In the inhomogeneous cases MMC has been coupled with RANS
based turbulence models [54, 55], with the binomial Langevin model to model the
joint velocity-scalar PDF [57] and LES to simulate the joint scalar FDF [10, 11].
The key features of these applications are summarised below.

7.4.1 MMC in Homogeneous Turbulence

7.4.1.1 Stochastic MMC

The first application of MMC to reacting flow conditions was the stochastic MMC
reported by Wandel and Klimenko [56]. Results are compared against DNS data [35]
in homogeneous turbulence with finite-rate, one-step chemistry and significant lo-
cal extinction. A single reference variable emulates the mixture fraction and, as
the probabilistic MMC interpretation is used, minor fluctuations of the single reac-
tive scalar, normalised temperature, are present. An MMC-Curl’s surrogate mixing
model dissipates the minor fluctuations and the mixing timescale, τmin, is set pro-
portional to the macro-mixing timescale, denoted by τmaj. Despite the simplicity of
the flow and chemistry this modelling demonstrates the ability of stochastic MMC
to capture heavy local extinction and subsequent reignition events more accurately
than other commonly used models such as CMC, fast chemistry, Curl’s, IEM and
EMST. The performance of IEM, Curl’s and EMST models is investigated in detail
in Mitarai et al. [36] for the same test conditions. It is instructive to compare the
scatter plots of temperature versus mixture fraction for those models and DNS in
Ref. [36] with the MMC scatter plots in Ref. [56]. IEM fails to produce the correct
physical behaviour as it cannot change the shape of the joint PDF from its initial
conditions and nor can it generate conditional fluctuations of temperature with re-
spect to mixture fraction. Curl’s model produces physically plausible compositions
for this case but as mixing is not local in composition space it significantly over-
predicts conditional fluctuations and the reignition is very slow compared to the
DNS. While EMST is local in composition space it violates the principles of inde-
pendence and linearity and in its basic form EMST can lead to “stranding” [51] or
mixing along certain preferential lines leading to non-physical behaviour. For the
test case described MMC produces physically realistic and accurate results.
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Fig. 7.2: Mean (left) and conditional mean at stoichiometry (right) of temperature.
MMC (lowest to highest: τmin/τmaj = 1/1.04, 1/8 and 1/100), �; DNS data, −;
EMST, ∗; CMC, · · ·; Curl’s model, ◦; IEM •; fast chemistry, −−−. Figures adapted
from [56].

Figure 7.2 below shows the mean temperature (left) and the conditional mean
temperature at stoichiometry (right) as a functions of time for the DNS and the vari-
ous models. It can be seen that both EMST and MMC with τmin/τmaj = 1/8 predict
mean temperature very well while the other models either significantly overpredict
the rate of temperature rise (CMC and fast-chemistry) or significantly under predict
it (IEM and Curl’s). For the conditional temperature MMC with τmin/τmaj = 1/8 is
the most accurate model. The MMC results are, however, qualitatively and quantita-
tively sensitive to the parameter τmin/τmaj. By setting τmin/τmaj = 1/100 the model
rapidly dissipates any minor fluctuations, and hence conditional fluctuations, of tem-
perature which may be generated. Thus this MMC result closely resembles those
for first-order CMC. Alternatively by setting τmin/τmaj = 1/1.05 the model does not
dissipate minor fluctuations, and hence conditional fluctuations, fast enough and
produces results similar to Curl’s model. Although more research is required to de-
termine the best values τmin/τmaj for a range of practical combustion conditions,
the timescale ratio parameter appears to provide a useful mechanism for controlling
the level of conditional fluctuations which is not available in many other mixing
models. The authors [56] caution that the correct value of τmin/τmaj is unlikely to
be universal or constant with time. The variability with time is illustrated in the
results for τmin/τmaj = 1/8 which slightly underpredicts the rate of reignition (see
conditional temperature rise in Fig. 7.2). Attempts to reduce that timescale ratio
(for all time steps) in order to more rapidly dissipate conditional fluctuations in the
later stages of the evolution inadvertently leads to inaccuracy during the initial ex-
tinction phase. The creation of a model for τmin/τmaj would be advantageous but is
not trivial. Any such model would need to account for the rate of dissipation and
generation of conditional variance by the surrogate mixing model as analysed in
Ref. [23].
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7.4.1.2 Deterministic MMC

The first application of deterministic MMC is, in fact, contained alongside the orig-
inal MMC derivation [21]. A three-stream, non-reactive, homogeneous mixing field
is modelled with the use of two reference variables emulating two independent mix-
ture fractions. It is shown that the joint PDF of the two mixture fractions is modelled
in a very realistic manner and results are in excellent agreement with the analytical
solution.

The first applications of deterministic MMC for reactive fields are found in a
series of three papers by Cleary and Kronenburg [8, 9, 29]. They propose and test
various deterministic MMC models against DNS [28] of homogeneous, decaying
turbulence with varying levels of local extinction (up to global extinction). It had
previously been established [28] that CMC with conditioning on the mixture frac-
tion alone was inappropriate for these flame conditions due to the importance of
conditional fluctuations which are neglected in first-order CMC. A number of pre-
vious CMC studies [6, 27, 28] identified scalar dissipation and normalised sensible
enthalpy as possible choices for a second conditioning variable for flames with sig-
nificant local extinction. In fact both quantities have an important role in the physics
of local extinction and subsequent reignition. While fluctuating scalar dissipation is
the primary instability which causes conditional fluctuations, those conditional fluc-
tuations tend to correlate better with temperature related quantities such as sensible
enthalpy, than with scalar dissipation.

The three MMC papers progress incrementally. The first [8] has reference vari-
ables emulating mixture fraction and multiple scalar dissipation-like quantities each
of which is associated with a certain dissipation timescale (see (7.35) through
(7.37)). As expected from the earlier CMC results [6], while conditioning on mixture
fraction and a single scalar dissipation variable is able to model the extinction phase
well, it cannot accurately predict the subsequent reignition phase which occurs after
the turbulence has sufficiently decayed. Any deterministic MMC inevitably forces
reference variables to be conditioning variables but at low temperatures there is
decorrelation of reactive species and scalar dissipation fluctuations [27] and hence
the assumption of negligible conditional/minor fluctuations and first-order reaction
rate closures are inappropriate. Although the MMC results improve modestly with
additional dissipation-like reference variables the model is illustrated to be unsuit-
able for a deterministic formulation. Note that dissipation-like reference variables
were initially suggested as non-conditioning reference variables in the stochastic
formulation of MMC (see Section 7.3).

The second paper [9] proposes an MMC model with reference variables emu-
lating mixture fraction and normalised sensible enthalpy. Like previous CMC cal-
culations with the same conditioning variables [28] results for reactive species are
impressive. This is because the manifold comprising of only mixture fraction and
sensible enthalpy adequately describes the accessed region in composition space.
However, the model does not have a mechanism for introducing the physical insta-
bilities (i.e. fluctuations in scalar dissipation) that cause extinctions to occur in the
first place. To overcome this deficiency the fluctuations are imposed on the model
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using DNS data for the conditional PDF of normalised sensible enthalpy. The result
is a hybrid MMC / presumed PDF model which accurately describes the evolution
of minor scalars but which does not predict the joint PDF of the major scalars.

The third paper [29] describes an MMC model which is a novel combination
of the previous two. There is a reference variable emulating mixture fraction and a
second reference variable which emulates normalised sensible enthalpy but that is
also a dissipation-like variable which can generate the fluctuations leading to local
extinctions. It is explained that any reference variable may adopt the character of
a dissipation-like variable and that the physical quantity it emulates is irrelevant.
Through the dual-nature of the second reference variable the model exploits the
strong negative correlation between sensible enthalpy fluctuations and fluctuations
in scalar dissipation during the extinction process. Specifically (7.37) is replaced by

cd1 = fcorr ln

(

〈N ′2
ηη |η〉

〈Nηη |η〉 +1

)1/2

(7.40)

where the correlation function is simply the conditional normalised sensible en-
thalpy at stoichiometry fcorr = −〈ĥs|η = YZst〉. While this third model is complete
and follows the physics of the problem better than the previous two models on which
it is based, the quality of the results is mixed. For the flame case with heavy local ex-
tinction followed by reignition and another case with global extinction, predictions
of major and minor species are in very good agreement with DNS data. A particu-
larly impressive outcome is the model’s ability to accurately predict the bimodal dis-
tribution of sensible enthalpy in near stoichiometric mixtures as shown in Fig. 7.3.
This is in contrast to an assumed β -PDF which cannot give a bimodal distribution
between arbitrary minimum and maximum sample space limits. Interestingly, for a
third test case exhibiting only moderate local extinction the model performs poorly
and noticeably underpredicts the extent of that mild extinction. This is blamed on a
realizability constraint which artificially restricts some of the diffusion coefficients
to positive values to ensure numerical stability.

7.4.2 MMC with RANS

Two papers by Vogiatzaki et al. document the implementation of deterministic
MMC into a RANS computer code and report on model performance for two lab-
oratory jet diffusion flames with complex hydrocarbon chemistry. The first pa-
per [54] reports on modelling of the DLR A and B CH4/H2/N2 flames [2, 34]
and the second paper [55] presents results and an expanded analysis for the San-
dia CH4/O2/N2 Flame D [1, 49]. In each case a single Gaussian reference vari-
able emulates the mixture fraction. As the flame cases exhibit low levels of lo-
cal extinction, conditioning on mixture fraction alone is appropriate as is estab-
lished by many past accurate CMC and flamelet computations. Figure 7.4 (from
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Fig. 7.3: Conditional PDF of normalised sensible enthalpy at stoichiometry at two
different times. Figures adapted from [29].

Ref. [55]) shows that MMC predictions of the mixture fraction PDF for San-
dia Flame D closely resemble a β -PDF. Close to the nozzle agreement with ex-
perimental data is excellent while the downstream discrepancies are linked to
the commonly observed underprediction of the mixture fraction variance by the
k − ε turbulence closure. Conditional scalar dissipation does not appear explic-
itly in MMC but can be determined by (7.32) following a replacement of refer-
ence variables from ξ to η . Figure 7.5 shows conditional scalar dissipation pro-
files for Sandia Flame D conditions by MMC and two alternative closures based
on integration of the mixture fraction PDF transport equation [14] and amplitude
mapping closure (AMC) [7]. MMC reproduces the profile shapes and the loca-
tion of the peak value better than the integrated PDF method and is an improve-
ment over AMC which always gives the peak conditional scalar dissipation at
mixture fraction equal to 0.5. MMC compares quite well to the 1D experimen-
tal data but is unable to capture the slightly bimodal shape which is even more
apparent in the more accurate 3D experimental data. Although the obvious qual-
ities of MMC do not make a significant difference to reactive scalar predictions
in these simple flames (results are of similar good accuracy to those for CMC
with standard PDF and conditional scalar dissipation closures) the MMC com-
putations represent an important first step prior to application to more difficult
flame cases which require additional conditioning variables and for which simple
PDF shape presumptions and conditional scalar dissipation closures are not avail-
able.

7.4.3 MMC with the Binomial Langevin Model

A novel, hybrid model combining the binomial Langevin model [52] and stochastic
MMC was introduced by Wandel and Lindstedt [57] to model the joint velocity-
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Fig. 7.4: Mixture fraction PDF at various locations for Sandia Flame D. Squares are
experimental data, solid lines are MMC predictions, and dashed lines are β -PDFs.
Figure adapted from [55].

scalar statistics in an inhomogeneous, reacting scalar mixing layer that was investi-
gated experimentally by Saetran et al. [48] and Bilger and co-workers [3, 31]. The
hybrid approach overcomes implementation difficulties associated with producing
a bounded scalar field in the binomial Langevin context, while providing a simple
and accurate means for obtaining the MMC coefficients (calculation of terms in-
volving the gradient ∂X/∂ξ can be difficult in stochastic MMC when there is a lot
of scatter). The hybrid model employs the principles of a generalised MMC closure.
In the MMC part of the hybrid model, rather than solving (7.20), the single condi-
tioning reference variable is instead modelled by inverting (7.14) and some other
manipulation to give

η∗(p) =
u∗(p)

2 − ũ2
√

˜u
′2
2

. (7.41)

Here u2 is the dominant velocity component (in this case the transverse component)
and it is modelled by the binomial Langevin model. Note that (7.41) has the advan-
tage that it does not contain the diffusion coefficient B and thus it is not necessary
to calculate the gradients ∂X/∂ξ . The model also has an additional pseudo mix-
ture fraction that is solved according to the binomial Langevin model. The pseudo
mixture fraction is a non-conditioning reference variable used only to calculate the
extent of mixing between particle pairs while mixing localisation is in η-space
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Fig. 7.5: Profiles of local conditional scalar dissipation in mixture fraction space for
Sandia Flame D. Squares are 1D experimental data, solid lines are the MMC model,
dotted lines are the integrated PDF model, and dashed lines are the AMC model.
Figure adapted from [55].

only. (We caution that the notation used in this chapter for conditioning and non-
conditioning reference variables is different to that used by Wandel and Lindstedt.)

The paper contains a detailed analysis of the model and makes extensive compar-
isons with experimental data. These indicate that the model is robust and provides a
similar level of accuracy to the binomial Langevin model by itself. While results for
mean quantities are in very good agreement with experimental data, the second mo-
ments are generally underpredicted signifying a need for future improvements such
as better control of the dissipation of minor fluctuations by the surrogate mixing
model. Due to the aforementioned elimination of implementation difficulties asso-
ciated with the binomial Langevin and stochastic MMC models the hybrid model is
reported to have a relatively modest computational cost. Application of this model
to inhomogeneous flows is underway and preliminary results are encouraging.

7.4.4 MMC with LES

Two recent papers have documented the application of MMC with LES [10, 11] for
the Sandia CH4/O2/N2 Flame D [1, 49]. The model is a generalised MMC with the
reference variable given by the LES filtered mixture fraction. The most compelling
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aspect is the demonstration of a new very low-cost, sparse-Lagrangian scheme for
simulation of the joint scalar FDF, made possible due to the high quality of the MMC
mixing closure. Conventional FDF simulations employ an “intensive-Lagrangian”
particle scheme with many particles per Eulerian LES grid cell, and the terminol-
ogy of “sparse-Lagrangian” is introduced to refer to simulations with significantly
fewer Lagrangian particles for the joint scalar FDF than there are Eulerian grid cells.
The simulations of Flame D are performed for (on average) one particle for every
10 to 12 LES cells culminating in as few as 35,000 particles over the 70 jet-nozzle
diameter flow domain. This represents a two or three order of magnitude reduc-
tion in particle numbers and computational cost relative to conventional intensive-
Lagrangian FDF simulations of the same or similar flame conditions. As a result of
the very low cost the sparse-Lagrangian simulations are able to use detailed 219-step
chemistry, whereas previous FDF simulations of hydrocarbon flames have required
reduced or tabulated chemistry. (A list of recent FDF computations is compiled by
Haworth [17].)

The theoretical basis for sparse-Lagrangian simulations is established in two pa-
pers [24, 25] while Ref. [10] elaborates on the physical reasoning in support of
sparse methods and the reasons for the success of generalised MMC under such
conditions. Modelling aside, if it is assumed that a particle within the ensemble
representing the one-point, one-time FDF is statistically independent of all other
particles, then all those other particles can be removed while the one remaining par-
ticle continues to represent that FDF. That probability distribution exists whether
we have sufficient numbers of particles to determine it locally or not. From a mod-
elling perspective the problem of using very few particles is that numerical diffu-
sion (i.e. numerical bias in the Lagrangian fields) can become larger than is justi-
fied or needed if that diffusion performs a modelling role. Therefore modelling the
FDF with very few particles requires a high quality mixing model which specifi-
cally minimises numerical diffusion. MMC does this by enforcing localness in the
reference space. Whereas non-local mixing models such as IEM are successful in
intensive-Lagrangian FDF simulations by virtue of the high spatial resolution of
LES, it seems that only models (such as MMC), which enforce localness and ad-
here to the other desirable qualities of mixing models, are capable when particle
numbers are significantly reduced. It should be stressed that the finest details of the
fields are not available with so few particles but the published works [10, 11] demon-
strate that the major stationary statistics of the reacting scalar fields (i.e. conditional
and unconditional means and variances) are in good agreement with experimen-
tal data. Figure 7.6 (taken from Ref. [11]) shows radial profiles of unconditional
means and variances of temperature and mass fraction of carbon monoxide and the
hydroxyl radical. Results are in good agreement with the experimental data and
furthermore have a low sensitivity to a five-fold increase in the number of parti-
cles.

The model contains two tuneable parameters: a mixing timescale constant and a
localness parameter which determines the relative degree of localisation in reference
(filtered mixture fraction) and physical spaces. These parameters are adjusted to
control the small but not insignificant conditional fluctuations. More work is neces-
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Fig. 7.6: Unconditional mean and rms for temperature, CO and OH at two down-
stream locations. Open symbols - experimental data, solid lines - MMC with nomi-
nally 35,000 particles, broken lines - MMC with nominally 175,000 particles. Figure
adapted from [11].

sary to determine the selection of such parameters for a wide range of conditions in-
cluding those with significant local extinction phenomena. For some complex flame
regimes, where conditional fluctuations relative to mean values conditioned on the
mixture fraction are very large, additional reference variables (e.g. to emulate sensi-
ble enthalpy or other related quantities) may be necessary. However, the need for a
filtered source term closure for reacting reference variables could pose a significant
challenge if this is attempted.
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A principal problem of sparse-Lagrangian methods is related to the evaluation
of density which must be obtained from a small number of particles and coupled
to the more highly resolved LES flow field. The existing MMC publications do
not address this but rather have a tabulated density. Thus there is no coupling or
consistency between the Eulerian LES and Lagrangian FDF fields. Ongoing but as
yet unpublished research at The University of Queensland has successfully treated
the density coupling issue through a conditionally averaged form of the equivalent
enthalpy method of Muradoglu et al. [38] which ensures numerical stability and
consistency.

7.5 Summary and Future Directions

This chapter has reviewed the MMC concepts and theory, and their evolution, along
with the key specific MMC model applications since it was first proposed in 2003.
In its most basic deterministic form MMC represents a closed and consistent com-
bination of joint PDF modelling for a set of major species which describe the ac-
cessed region in composition space and conditional moment closure for the set of
minor species which fluctuate jointly with the major scalars. The closure and con-
sistency is facilitated by mapping closure which is generalised for inhomogeneous
flows. MMC has evolved from a deterministic to a stochastic method. Although an
equivalent stochastic formulation was introduced initially as a computationally ef-
ficient form of the deterministic model it also allows a generalised interpretation
where fluctuations of minor species relative to the major species manifold may be
exploited and where the reference variables are used to enforce desired properties by
conditioning/localisation in mixture fraction space (i.e. a CMC-type mixing model
closure) and emulation of scalar dissipation fluctuations. Further evolution of gen-
eralised MMC has occurred with the replacement of Markov reference variables by
traced Lagrangian quantities in Eulerian DNS or LES. The possibility also exists to
obtain reference variables by other simulation or modelling methods.

From the perspective of MMC the use of LES to provide reference variables is
expensive but this is more than compensated for through the demonstrated possibil-
ity of using a sparse distribution of particles to model the Lagrangian FDF. While
a PDF must describe the distributions of all turbulent scales an FDF need only de-
scribe the subgrid distributions while the large scale turbulence is resolved by the
LES. Therefore from the perspective of LES simulations, generalised MMC allows
high-quality, efficient simulations that are dramatically less expensive than conven-
tional intensive-Lagrangian FDF simulations or even LES with chemical source
terms modelled using the resolved quantities at the Eulerian grid centres. The con-
cept of sparse-Lagrangian simulations is associated with the FDF method and is
not coincident with the concepts of MMC, per se. Sparse simulations with closures
other than generalised MMC are certainly possible, however only generalised MMC
closures are currently known to work for sparse simulations.
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The advances and challenges of MMC research in the coming years will include
(but are certainly not restricted to):

• the application of various specific MMC models to a wide range of laboratory
combustion conditions and flame regimes to establish the best choice of model
parameters;

• the application in inhomogeneous flows of MMC with multiple reference vari-
ables emulating more complex accessed composition spaces;

• the expanded testing and development of hybrid MMC methods which borrow
ideas from other established models;

• the establishment of criteria for assessing the optimal compromise between qual-
ity and economy in current and new sparse-Lagrangian MMC closures;

• the establishment of consistent and stable density coupling methods in sparse-
Lagrangian simulations; and

• the application of MMC to conditions of greater engineering and practical inter-
est.

Acknowledgements

The authors would like to thank Dr Andrew Wandel of the University of Southern
Queensland and Dr Konstantina Vogiatzaki of Imperial College for their thoughtful,
probing and critical comments on the original manuscript. This work was supported
by funding from the Australian Research Council.

References

1. Barlow, R.S., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet
flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

2. Bergmann, W., Meier, W., Wolff, D., Stricker, W.: Application of spontaneous Raman and
Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion
flame. Appl. Phys. B 66, 489–502 (1998)

3. Bilger, R.W., Saetran, L.R., Krishnamoorthy, L.V.: Reaction in a scalar mixing layer. J. Fluid
Mech. 233, 211–242 (1991)

4. Bilger, R.W.: Advanced laser diagnostics: implications of recent results for advanced com-
bustor models. In R.S.L. Lee, J.H. Whitelaw, and T.S. Wung, editors, Aerothermodynamics in
Combustors. Springer-Verlag, Berlin (1993)

5. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds.
Combust. Theory Model. 11, 839–862 (2007)

6. Cha, C.M., Kosaly, G., Pitsch, H.: Modeling extinction and reignition in turbulent non-
premixed combustion using a doubly-conditional moment closure approach. Phys. Fluids 13,
3824–3834 (2001)

7. Chen, H., Chen, S., Kraichnan, R.H.: Probability distribution of a stochastically advected
scalar field. Phys. Rev. Lett. 63, 2657–2660 (1989)

8. Cleary, M.J., Kronenburg, A.: Multiple mapping conditioning for extinction and reignition in
turbulent diffusion flames. Proc. Combust. Inst. 31, 1497–1505 (2007)



172 M.J. Cleary and A.Y. Klimenko

9. Cleary, M.J., Kronenburg, A.: Hybrid multiple mapping conditioning on passive and reactive
scalars. Combust. Flame 151, 623–638 (2007)

10. Cleary, M.J., Klimenko, A.Y.: A generalised multiple mapping conditioning approach for tur-
bulent combustion. Flow Turbul. Combust. 82, 477–491 (2009)

11. Cleary, M.J., Klimenko, A.Y., Janicka, J., Pfitzner, M.: A sparse-Lagrangian multiple mapping
conditioning model for turbulent diffusion flames. Proc. Combust. Inst. 32, 1499–1507 (2009)

12. Colluci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simula-
tion of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

13. Curl, R.L.: Dispersed phase mixing: I. Theory and effects of simple reactors. AIChE J. 9,
175–181 (1963)

14. Devaud, C.B., Bilger, R.W., Liu, T.: A new method for modeling the conditional scalar dissi-
pation rate. Phys. Fluids 16, 2004–2011 (2004)

15. Dopazo, C., O’Brien, E.E.: An approach to the autoignition of a turbulent mixture. Acta As-
tronaut. 1, 1239–1266 (1974).

16. Fox, R.O.: Computational Models for Turbulent Reacting Flows. Cambridge University Press,
Cambridge, United Kingdom (2003)

17. Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows.
Prog. Energy Combust. Sci. 36, 168–259 (2009)

18. Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for
large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

19. Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability
density function of turbulent scalar field. J. Nonequil. Thermodyn. 4, 47–66 (1979)

20. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog.
Energy Combust. Sci. 25, 595–687 (1999)

21. Klimenko, A.Y., Pope, S.B.: A model for turbulent reactive flows based on multiple mapping
conditioning. Phys. Fluids 15, 1907–1925 (2003)

22. Klimenko, A.Y.: Matching the conditional variance as a criterion for selecting parameters in
the simplest multiple mapping conditioning models. Phys. Fluids 16, 4754–4757 (2004)

23. Klimenko, A.Y.: Matching conditional moments in PDF modelling of nonpremixed combus-
tion. Combust. Flame 143, 369–385 (2005)

24. Klimenko, A.Y.: On simulating scalar transport by mixing between Lagrangian particles. Phys.
Fluids 19, 031702 (2007)

25. Klimenko, A.Y.: Lagrangian particles with mixing. Part 2: sparse-Lagrangian methods in ap-
plication for turbulent reacting flows. Phys. Fluids 21, 065102 (2009)

26. Kronenburg, A., Bilger, Kent, J.H.: Second order conditional moment closure for turbulent jet
diffusion flames. Proc. Combust. Inst. 27, 1097–1104 (1998)

27. Kronenburg, A.: Double conditioning of reactive scalar transport equations in turbulent non-
premixed flames. Phys. Fluids 16, 2640–2648 (2004)

28. Kronenburg, A., Kostka, M.: Modeling extinction and reignition in turbulent flames. Combust.
Flame 143, 342–356 (2005)

29. Kronenburg, A., Cleary, M.J.: Multiple mapping conditioning for flames with partial premix-
ing. Combust. Flame 155, 215–231 (2008)

30. Kuznetsov, V.R., Sabelnikov, V.A.: Turbulence and Combustion. Hemisphere, New York
(1989)

31. Li, J.D., Bilger, R.W.: Measurement and prediction of the conditional variance in a turbulent
reactive-scalar mixing layer. Phys. Fluids A 5, 3255–3266 (1993)

32. Maas, U., Pope, S.B.: Simplifying chemical-kinetics: intrinsic low-dimensional manifolds in
composition space. Combust. Flame 88, 239–264 (1992)

33. Mastorakos, E., Bilger, R.W.: Second-order conditional moment closure for the autoignition
of flows. Phys. Fluids 10, 1246–1248 (1998)

34. Meier, W., Prucker, S., Cao, M.-H., Stricker, W.: Characterization of turbulent H2-N2 air jet
diffusion flames by single-pulse spontaneous Raman scattering. Combust. Sci. Technol. 118,
293–312 (1996)



Multiple Mapping Conditioning 173
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36. Mitarai, S., Riley, J.J., Kosály, G.: Testing of mixing models for Monte Carlo probability
density function simulations. Phys. Fluids 17, 047101 (2005)

37. Mortensen, M.: Consistent modeling of scalar mixing for presumed, multiple parameter prob-
ability density functions. Phys. Fluids 17, 018106 (2005)

38. Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of
turbulent reactive flows: consistency conditions and correction algorithms. J. Comput. Phys.
172, 841–878 (2001)

39. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog.
Energy Combust. Sci. 10, 319–339 (1984)

40. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–
192 (1985)

41. Pope, S.B.: Mapping closures for turbulent mixing and reaction. Theoret. Comput. Fluid Dy-
namics 2, 255–270 (1991)

42. Pope, S.B.: On the relationship between stochastic Lagrangian models of turbulence and
second-moment closures. Phys. Fluids 6, 973–985 (1994)

43. Pope, S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63
(1994)

44. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, United Kingdom
(2000)

45. Pope, S.B.: Accessed compositions in turbulent reactive flows. Flow Turbul. Combust. 72,
219–243 (2004)

46. Pope, S.B., Ren, Z.: Efficient implementation of chemistry in computational combustion. Flow
Turbul. Combust. 82, 437–453 (2009)

47. Repp, S., Sadiki, A., Schneider, C., Hinz, A., Landenfeld, T., Janicka, J.: Prediction of swirling
confined diffusion flame with a Monte Carlo and a presumed-PDF model. Int. J. Heat Mass
Trans. 45, 1271–1285 (2002)

48. Saetran, L.R., Honnery, D.R., Stårner, S.H., Bilger, R.W.: Turbulent Shear Flows 6. Springer-
Verlag, Berlin (1989)

49. Schneider, Ch., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and
locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135, 185–190 (2003)

50. Sreedhara, S., Huh, K.Y., Ahn, D.H.: Comparison of submodels for conditional velocity and
scalar dissipation in CMC simulation of piloted jet and bluff body flames. Combust. Flame
152, 282–286 (2008)

51. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean
minimum spanning trees. Combust. Flame 115, 487–514 (1998)

52. Valiño, L., Dopazo, C.: A binomial Langevin model for turbulent mixing. Phys. Fluids A 3,
3034–3037 (1991)

53. Vaishnavi, P., Kronenburg, A.: Multiple mapping conditioning of velocity in turbulent jet
flames. Combust. Flame, to be published 2010.

54. Vogiatzaki, K., Kronenburg, A., Cleary, M.J., Kent, J.H.: Multiple mapping conditioning of
turbulent jet diffusion flames. Proc. Combust. Inst. 32, 1679–1685 (2009)

55. Vogiatzaki, K., Cleary, M.J., Kronenburg, A., Kent, J.H.: Modeling of scalar mixing in turbu-
lent jet flames by multiple mapping conditioning. Phys. Fluids, 21, 025105 (2009)

56. Wandel, A.P., Klimenko, A.Y.: Testing multiple mapping conditioning mixing for Monte Carlo
probability density function simulations. Phys. Fluids, 17, 128105 (2005)

57. Wandel, A.P., Lindstedt, R.P.: Hybrid binomial Langevin-multiple mapping conditioning mod-
eling of a reacting mixing layer. Phys. Fluids, 21, 015103 (2009)


	Multiple Mapping Conditioning: A New Modelling Framework for Turbulent Combustion
	Introduction
	The Basic MMC Framework
	Context and Concepts
	Mapping Functions
	The Deterministic MMC Model
	The Stochastic MMC Model
	Qualitative Properties of MMC
	Replacement of Reference Variables

	Generalised MMC
	Reference Variables in Generalised MMC
	Features of Generalised MMC Models
	MMC with Dissipation-like Reference Variables
	DNS/LES Simulated Reference Variables

	Examples
	MMC in Homogeneous Turbulence
	MMC with RANS
	MMC with the Binomial Langevin Model
	MMC with LES

	Summary and Future Directions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


