
Chapter 14
Wavelet Methods in Computational Combustion

Robert Prosser and R. Stewart Cant

Abstract Discretisation schemes based on the use of wavelet methods offer many
potential advantages for the numerical simulation of combustion. In many cases of
interest, flame structures are thin relative to the largest length scales of the prob-
lem and most length scales of the flow field, and so lend themselves to simulation
using adaptive-mesh methods. Wavelet methods are naturally adaptive, in that the
coefficients of the wavelet transform are non-zero only in regions where there is
significant variation present in the solution. Hence, simple thresholding can be em-
ployed to make valuable savings in storage and in execution time. In this chapter,
the basic principles of wavelet methods are established. Orthogonal and biorthogo-
nal wavelet formulations are described and their advantages and disadvantages are
discussed. An illustration of a wavelet-based discretisation scheme is provided using
the Navier-Stokes momentum equation as an example. The same wavelet approach
is applied to the simulation of a one-dimensional laminar premixed flame for which
an asymptotic solution exists. Comparisons are made between the computational
and analytical results and the accuracy of the wavelet approach is assessed. Exten-
sions to higher dimensions are discussed. Finally, the current state of development
of wavelet methods is outlined and conclusions are drawn.

14.1 Introduction

High-fidelity numerical simulation of turbulent combustion is a very demanding
task. Techniques such as Direct Numerical Simulation (DNS) and Large Eddy Sim-
ulation (LES) require the flow field to be represented in three spatial dimensions
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and cannot make use of statistical symmetries of the problem in the same manner as
the traditional Reynolds-Averaged Navier Stokes (RANS) approach. Moreover, the
flow field is evolving in time, and hence it is essential to use time-accurate solution
methods in order to capture the flow, the flame and the full complexity of their inter-
actions. All of this is computationally expensive, especially when the requirement
is for full spatial and temporal resolution of all relevant phenomena, as is the case
in DNS.

In turbulent flow, the computational expense follows directly from the range of
length and time scales that must be represented. In combustion problems, it is most
often the case that there are further length and time scales even shorter than those of
the turbulent flow field. The very smallest scales are associated with the diffusion-
reaction layers deep within the flame structure, and these tend to be highly localised
in space, at least on an instantaneous basis. Here the computational expense arises
mainly from the tendency of the flame structure to move around within the domain
due to the effects of advection by the flow field and propagation due to heat conduc-
tion and molecular diffusion. This means that sufficient computational mesh support
must be provided to ensure proper spatial resolution everywhere in the domain. The
time-advancement algorithm must be applied at every spatial mesh point, and hence
the computational cost is set.

There have been many attempts to exploit the localised nature of the flame struc-
ture using adaptive mesh refinement (AMR) techniques [9, 28]. Here, the compu-
tational mesh is refined locally in order to provide high resolution only in regions
of the domain (such as within the flame) where there are steep spatial gradients.
Conversely, the mesh can be made less dense in regions where there is little activ-
ity in the solution. Since the flame structure typically occupies only a small part
of the total volume of the domain, considerable computational cost savings can be
made without a net loss of resolution. Considerable progress has been made and
the utility of the approach has been demonstrated. Nevertheless it is difficult to ap-
ply such techniques while retaining high-order accuracy, and there are major issues
concerning their efficient implementation on massively-parallel computers.

Ideally, an adaptive spectral method is required which would allow for very high
spatial accuracy coupled with a capability for dynamic local mesh refinement. Meth-
ods based on Fourier transforms have been used for many years in simulations of
turbulence, offering excellent accuracy but lacking the flexibility and spatial local-
isation necessary for use in an adaptive manner. More recently, wavelet transforms
have emerged as a possible framework in which to build a class of numerical meth-
ods offering high accuracy combined with solution adaption. Wavelets, unlike the
more familiar Fourier basis functions, are localised in both the spatial and spectral
domains, and have many other interesting properties which make them an attractive
prospect for use in future combustion simulations.

This article introduces wavelet analysis in the context of combustion DNS, out-
lines the relevant mathematical background and describes the application of wavelet
techniques within a suitable numerical solution method. Results are presented which
indicate the power of the approach, and conclusions are drawn.
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14.2 Wavelet Transforms

14.2.1 Orthogonal Wavelets

A wavelet transform can be interpreted in much the same way as a Fourier transform.
Where the two differ is in the choice of the basis function employed. In the Fourier
setting, the basis is chosen to be the complex exponential. In the wavelet transform,
there are actually two basis functions: the scaling function and the wavelet. The
scaling function can be interpreted as a low resolution band pass filter, while the
wavelet represents the complementary high resolution band pass filter [21].

The wavelet decomposition is based on the repeated application of a two-scale
relationship. In particular, we have [8]

∞⊕

i=−∞
Wi = L2 (R)

VJ = VJ−1 ⊕WJ−1

Vi ⊥ Wi (14.1)

where
⊕

represents the direct sum. Equation 14.1(a) indicates that L2 (R) can de-
composed into a family of wavelet spaces Wi. Each wavelet space forms half of
a partnership with a scaling function space Vi. i characterizes the resolution of
the spaces with i → ∞ as the resolution is refined. The basis for the scaling func-
tion space is denoted φi,k (x) ≡ φ

(
2ix− k

)
, and the basis for the wavelet space is

ψi,k ≡ ψ
(
2ix− k

)
. Factors of

√
2 can appear in these definitions, depending on the

choice of normalization. On the real line, both the wavelet and scaling function ex-
hibit scale and translation invariance.

The projection of f (x)∈ L2 (R) is accomplished by taking the inner product with
respect to the basis, i.e.

f (x) =
∞

∑
i=−∞

Qi ( f )(x) ,

where Qi is the projector onto Wi which, in the case of orthogonal basis functions
can be written as

Qi ( f )(x) = ∑
k∈Z

< f (u) ,ψi,k (u) > ψi,k (x) . (14.2)

The two scale relation defined by Eq. 14.1 allows the wavelet projection to be writ-
ten in terms of scaling function projections;

Qi ( f )(x) = (Pi+1 ( f )−Pi ( f ))(x)

where
Pi ( f )(x) = ∑

k∈Z

< f (u) ,φi,k (u) > φi,k (x) . (14.3)
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Equation 14.1(b) provides the basis for the practical implementation of a wavelet
decomposition for finite domains. Assume for simplicity that we have a finite di-
mensional representation of some periodic function f (x) ∈ [0,1), which is sampled
on 2J grid points xJ,k = k2−J, 0 ≤ k < 2J . If f (x) is approximated by PJ ( f )(x) then
an application of the two scale relation allows us to write

PJ ( f ) = (PJ−1 +QJ−1)( f )(x) . (14.4)

The orthogonality of Vi and Wi implies that the two projectors PJ−1 and QJ−1 lead
to complementary representations of PJ ( f ) on reduced dimensional spaces (in this
case, each representation is defined on grids of resolution 2J−1). In the first pass of
the transform then, a vector of length 2J is replaced with 2 vectors of length 2J−1, but
the key observation here is that the wavelet projection QJ−1 ( f ) is sparse, by which
we mean that many of the 2J−1 coefficients arising from the wavelet projection are
close to zero. The defining property of the wavelet transform is that the resulting
coefficients are only non-trivial when the analyzing wavelets are close to regions of
rapid change. Such a feature makes wavelets a natural tool with which to explore
flame structures, wherein two relatively static regions (reactants and products, or
fuel and oxidiser) are separated by a region of rapid change (the flame). The sparsity
of the wavelet representation is exploited via thresholding, in which those wavelet
coefficients with a magnitude less than a user specified threshold ε are discarded
with a minimal loss of accuracy (in a sense that can be made precise, i.e. see [12]).
Hence, the two scale representation with thresholding allows us to replace a vec-
tor of dimension 2J , with one comprising O

(
2J−1

)
components—PJ−1 ( f ) contains

2J−1 non-zero components, and QJ−1 typically contains a much reduced number of
‘large’ wavelet coefficients. The actual number of retained coefficients depends on
the smoothness of the analyzed function f (x) .

Equation 14.4 can be repeatedly applied to PJ−1 ( f ) to obtain

PJ ( f )(x) = (PJ−2 +QJ−2 +QJ−1)( f )(x)
...

= P0 ( f )(x)+
J−1

∑
i=0

Qi ( f )(x) (14.5)

Equation 14.5 is the finite dimensional equivalent of Eq. 14.1(a). In practical cal-
culations involving wavelets on the interval, the lower limit appearing in the sum
of Eq. 14.5 is larger than zero. This reflects the need to keep the support of the
wavelets smaller than the discretized interval. One final point to note is that the
mapping f (x) → PJ ( f )(x) requires an initial projection quadrature. This quadra-
ture is usually approximate—many authors choose instead to use the sample values
of the initial discretisation as the set of scaling function coefficients.

The implementation of the wavelet transform can take a number of forms. For
some basis functions, the transform can be accomplished by a modified FFT [23].
In the most common approach (which makes use of Daubechies compact wavelet
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[8]), the transform takes the form of a repeated finite difference-like operation (once
for each space on each resolution). The weights associated with these operations
are the quadrature mirror filter coefficients defining the wavelet. Examples of the
implementation of wavelet transforms can be found in e.g. [24].

14.2.2 Biorthogonal Wavelet Transforms

Much of the utility of the wavelet transform emerges from the unique properties of
the chosen wavelet, but there are also a number of problems with the orthogonal
representations described in the previous section. In the orthogonal setting, many
different choices of wavelet exist, some of which are more suitable for CFD appli-
cations than others. From a purely practical point of view many choices of wavelets
do not have compact support (i.e. [23])—this implies that the inner products in Eqs.
14.2 and 14.3 effectively contain infinitely many quadrature filter coefficients and
become difficult to evaluate. Such wavelets can be approximated as having compact
support, but the resulting approximations lose their exact (to machine precision) or-
thogonality. Families of orthonormal wavelets with compact support do exist—the
most famous examples being those of Daubechies [8]—but the orthogonal restraint
leads to wavelets which are asymmetric.

For the simulation of fluid mechanics problems, asymmetric bases are undesir-
able as they introduce chirality into the numerical approximations for the govern-
ing equations [19, 20]. In addition the initial projection quadrature, which maps
f (x) → PJ ( f (x)) , is non-trivial and usually irreversible (to machine precision). In
the setting of a collocation numerical scheme (or indeed any approach to the ap-
proximation of non-linear PDEs) the continual mapping to and from transformed
representations leads to strong chirality and—eventually—instability in the numer-
ical solution [25].

One approach to bypass the problems associated with chirality is to modify
the wavelets by relaxing the constraint on orthogonality, to produce biorthogonal
wavelet systems. Most of the relations described in the previous section hold for
biorthogonal systems, but two sets of basis functions are required—the so-called
primal and dual bases [6]. The scaling function and wavelet projectors are then
written as

PJ ( f ) = ∑
k∈Z

< f (u) , φ̃J,k (u) > φJ,k (x)

QJ ( f ) = ∑
k∈Z

< f (u) , ψ̃J,k (u) > ψJ,k (x) ,

where the tildes refer to the dual quantities. Biorthogonal wavelets contain sufficient
flexibility to provide compact bases with symmetry—such considerations are par-
ticularly important in the construction of edge wavelets for bounded intervals [7].
The problem of the initial projection quadrature remains.
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14.2.3 Second Generation Wavelets

A variant of the biorthogonal wavelet can be obtained via so-called second gen-
eration wavelets, pioneered by Sweldens and Donoho [12, 14, 27, 29, 30]. These
wavelets are derived without recourse to Fourier transforms, and provide a simpler
framework in which to define wavelets for more general settings than the real line.
In addition, the classical biorthogonal wavelets of Cohen et al. [7] can be derived us-
ing the second generation approach. Finally, second generation wavelets circumvent
the problems associated with an inexact initial projection quadrature.

There are two classes of wavelets proposed in the second generation frame-
work: interpolating wavelets and average interpolating wavelets (i.e. see [27]) In
this work, we choose the family of interpolating wavelets derived from the funda-
mental solutions discussed by Deslauriers and Dubuc [11]. In the second generation
interpolating wavelet approach, the dual scaling function is defined by

φ̃J,k = δ
(
x− k2−J) ,

where δ (·) is the Dirac delta function. The scaling functions and wavelets have
compact support and are symmetric in the interior of a domain, in particular

support
(
φ j,k

)
=

[
2− j (m− (N −1)) ,2− j (m+(N −1))

]
,

support
(
ψ j,k

)
= [2−( j+1) ((2k +1)− (N −1)) ,2−( j+1) ((2k +1)+(N −1))].

In this sense, we say that the coefficients s j,k and d j,k are respectively associated with
the grid point k2−1 and (2k +1)2−( j+1). Similar arguments can be made for the near
boundary constructions, but the definitions become more algebraically complicated.

The dual scaling function (and indeed, the dual wavelet) are not members of
L2 (R) , and the resulting transforms are limited in their range of application to
smooth functions [12]. An alternative way of saying this is that the resultant wavelets
do not strictly qualify as wavelets, since they do not satisfy the admissibility condi-
tion [8] ∫

ψ (x)dx 	= 0.

The result of this inequality is that the wavelets are prone to aliasing, and do not
conserve the integral of the original function:

∫
Pi ( f )dx 	=

∫
Pm ( f )dx i 	= m. (14.6)

For classes of smooth function, this problem does not appear to be especially sig-
nificant [12]; such conditions are typically encountered in the DNS of reacting flow
wherein the smoothness of the resolved profiles—coupled with the limited number
of allowable subspace decompositions—appears to minimize the effect of aliasing.

The projection of f (x) onto the scaling function space leads to scaling function
coefficients that are samples of the original function;
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PJ ( f )(x) = ∑
k∈Z

< f (u) ,δ
(
u− k2−J) > φJ,k (x)

= ∑
k∈Z

f
(
k2−J)φJ,k (x) = ∑

k∈Z

fJ,kφJ,k (x) .

It follows that fJ−1,k = fJ,2k and hence successive scaling function approximations
are subsamples of the original discretisation. The wavelet transform is given by

Qi ( f )(x) = ∑
k∈Z

di,α ψi,α (x)

= (Pi+1 ( f )−Pi ( f ))(x)
= ∑

k∈Z

fi+1,kφi+1,k (x)− ∑
m∈Z

fi,mφi,m (x)

di,α = Qi ( f )|x=(2α+1)2−(i+1)

= fi+1,2a+1 − ∑
m∈Z

φ
(

α +
1
2
−m

)
fi,m. (14.7)

Clearly, the sparsity of the representation is governed by the properties of φ (·). Fur-
thermore, if the scaling function has compact support, it follows that φ (α +1/2−m)
comprises only finitely many non-zero entries, and Eq. 14.7 can be implemented as
a finite difference-like operation.

14.3 Wavelets as a Method for DNS

We describe a collocation approach to the integration of the governing equations.
The collocation strategy—where the wavelets are used merely to calculate deriva-
tives [5]—provides a natural approach, since solution algorithms couched in terms
of the transformed variables face formidable difficulties in evaluating the nonlinear
terms associated with both convection and chemical reaction. For a 1-D flow domain
Ω , we initially discretize the governing equations on to a regular mesh G ⊂ Ω . As
the solution evolves, we want to solve the equations only on those parts of the do-
main Gε ⊂ G where strong variations in the flow behaviour occur. Such behaviour
might be found in, say, turbulent shear layers, or rapid temperature changes associ-
ated with chemical reaction. Wavelets are very good at picking up these regions of
change, so a natural choice for the unstructured grid might be

Gε = {xi,α : |di,α | > ε}

where di,α is the wavelet coefficient associated with the point xi,α . If we try to cal-
culate the derivatives on this mesh using traditional means, then we are left with the
classical hanging node problem—those points at the outskirts of the unstructured
mesh do not have sufficient neighbours to calculate their associated derivatives ac-
curately. In the multiresolution approach however, we first calculate the wavelet ex-
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pansion of the solution on Gε . By construction, the coefficients on G\Gε are small
in magnitude (defined here as |di,α | < ε) and may be omitted when calculating the
approximate derivative. The resulting derivative can then be inverted on to the un-
structured grid, and the solution time advanced as normal. The difficulty in this
approach lies now in calculating the wavelet transform on the unstructured mesh.
Methods for achieving this are available (i.e. [26]), but are too involved to describe
here.

For ease of discussion, we will describe a wavelet collocation discretization of the
momentum equation in what follows. The principles remain quite general however,
and can be applied to the entire coupled reacting Navier-Stokes system. In one-
dimensional problems and neglecting density variations, the momentum equation
can be written as

∂u
∂ t

+u
∂u
∂x

+ρ−1 ∂ p
∂x

= ρ−1 ∂τxx

∂x
.

Our goal is to express this equation in terms of projected variables PJ (ρ) and PJ (u) .
Projecting the entire equation directly onto VJ leads to

∂PJ(u)
∂ t

+PJ

(
u

∂u
∂x

)
+ρ−1PJ

(
∂ p
∂x

)
= ρ−1PJ

(
∂τxx

∂x

)
. (14.8)

The unsteady term does not provide any difficulties, since the time derivative com-
mutes with the projector. Problems arise with the convective terms because: (a) we
require an approximation for the derivative itself and (b) there is a non-linear prod-
uct to incorporate.

As a model for the effect of non-linearities, consider a one dimensional velocity
field u(x) projected onto VJ :

PJ (u) = ∑
m∈Z

uJ,mφJ,m (x) .

Consider further the non-linear term PJ (u)PJ (u) , which can be obtained as part of
the convective term in Eq. 14.8. The explicit representation of this term is

PJ (u)PJ (u) = ∑
m∈Z

∑
n∈Z

uJ,muJ,nφJ,m (x)φJ,n (x) /∈ VJ. (14.9)

In order to be consistent with the time derivative term, we must re-project Eq. 14.9
to obtain

PJ (PJ (u)PJ (u)) = ∑
α∈Z

∑
m∈Z

∑
n∈Z

uJ,muJ,n < φJ,m (x̃)φJ,n (x̃) , φ̃J,α (x̃) > φJ,α (x) ,

= ∑
α∈Z

uJ,α uJ,α φJ,α (x) . (14.10)

More important is the effect of this non-linearity on spaces other than VJ. For ex-
ample, projecting Eq. 14.9 on to WJ , we find
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QJ (PJ (u)PJ (u)) = ∑
α∈Z

∑
m∈Z

∑
n∈Z

uJ,muJ,n < φJ,m (x̃)φJ,n (x̃) , ψ̃J,α (x̃) > ψJ,α (x) .

(14.11)

The normal consequence of the biorthogonality between VJ and WJ (i.e. the relation
QJ (PJ (·)) = 0) does not hold here, since we have two scaling functions. Hence

< φJ,m (x̃)φJ,n (x̃) , ψ̃J,α (x̃) >	= 0 (14.12)

in general, even without explicitly evaluating Eq. 14.11, we see that the nonlinearity
has extended the representation of u(x) from VJ to VJ+1 by populating WJ . Similar
arguments can be made for other wavelet spaces. This behaviour is the wavelet ana-
logue of the spectral spreading caused by the convection driven convolution arising
in Fourier based pseudo-spectral methods [5], and has been studied in some detail
by Beylkin [3].

If u(x) is sufficiently smooth, then the high resolution wavelet coefficients will
be small in magnitude. Furthermore, their interactions (governed by the coupling
matrix in Eq. 14.12) will also produce only small effects. It is natural then for a DNS
exploiting wavelet thresholding to assume VJ is of a sufficiently high resolution that
the additional components arising from the non-linearity are small with reference to
the size of the non-trivial coefficients. We can then replace each of the terms in Eq.
14.8 by their projected counterparts i.e.

PJ

(
u

∂u
∂x

)
� PJ (u)PJ

(
∂u
∂x

)

� PJ (u)PJ

(
∂
∂x

P−1
J PJ (u)

)
(14.13)

where the identity operator has been decomposed as I = PJP−1
J . As before, this

expression will contain terms in both VJ and WJ . To express the resulting term
consistently, then, we write equation 14.13(b) as

PJ

(
PJ (u)

(
PJ

(
∂
∂x

)
P−1

J PJ (u)
))

.

Using the interpolating properties of the basis, this becomes

PJ

(
PJ (u)

(
PJ

(
∂
∂x

)
P−1

J PJ (u)
))

= PJ (u)
(

PJ

(
∂
∂x

)
P−1

J PJ (u)
)

,

and we acknowledge that some information transmitted by this operation to WJ is
lost. Similar expressions can be derived for the simpler, linear viscous and pressure
terms.
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14.3.1 The Wavelet Representation of the Derivative

The term

PJ

(
∂
∂x

)
P−1

J (14.14)

provides the representation of the differential operator on VJ ; Fig. 14.1 shows the
O

(
2J

)
non-zero elements for this operator.

Fig. 14.1: Structure of D approximating d
dx on VJ . Reprinted from [26] wither per-

mission from the Institution of Mechanical Engineers.

The derivative itself can be calculated as
(

PJ
∂
∂x

P−1
J

)
PJ ( f )|xJ,α

= < φ̃J,α ,
∂
∂x

φJ,β > PJ ( f )|xJ,β
,

= Dα,β PJ ( f )|xJ,β
.

In practice, the band diagonal structure of Dα,β lends itself to a finite difference like
implementation.

In order to take advantage of the sparsity in the wavelet representation of the flow
field, the representations of both the operator and the flow field need to be expressed
in terms of a multi-scale decomposition. Repeatedly applying Eq. 14.1 to Eq. 14.14
leads to the so-called standard decomposition of ∂/∂x [2, 4]:

D
w =

(
Pj +

J

∑
i= j

Qi

)(
∂
∂x

)(
Pj +

J

∑
i= j

Qi

)−1

.

This operator comprises a family of band diagonal sub-matrices which are ordered
as in Fig. 14.2.

In terms of implementation, we have
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Fig. 14.2: Structure of D
w approximating (PJ−2 + ∑J−1

i=J−2 Qi) d
dx (PJ−2 +

∑J−1
i=J−2 Qi)−1. Reprinted from [26] with permission from the Institution of

Mechanical Engineers.

(
Pj +

J

∑
i= j

Qi

)
∂ f
∂x

∣∣∣∣
xJ,α

� D
w
α,β

{
Pj +

J

∑
i= j

Qi

}
( f )|xJ,β

.

D
w
α,β is referred to as the standard decomposition of ∂

∂x [4] and typically comprises

O
(
2J log2

(
2J

)
= J log2J

)
non-zero elements.

14.3.2 Higher Dimensional Discretizations

A natural generalisation to the one dimensional wavelets explored in this paper is
achieved by deriving multidimensional analogues from first principles (i.e. [22]).
For most practical purposes, however, multidimensional generalisations are derived
via tensor products of one dimensional transforms, i.e. for a two dimensional dis-

cretisation, we define V(2)
J using

V(2)
J = V(2)

J−1 ⊕W(2)
J−1

V(2)
J = V(x)

J ⊗V(y)
J . (14.15)

By applying a two scale decomposition in each spatial direction to Eq. 14.15(b), we
obtain

V(2)
J =

(
V(x)

J−1 ⊕W(x)
J−1

)
⊗

(
V(y)

J−1 ⊕W(y)
J−1

)
(14.16)

which when expanded, leads to the multidimensional wavelet space
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W(2)
J−1 =

(
W(x)

J−1 ⊗V(y)
J−1

)
⊕

(
V(x)

J−1 ⊗V(y)
J−1

)
⊕

(
W(x)

J−1 ⊗W(y)
J−1

)
. (14.17)

Clearly, the wavelet space actually contains three contributions; the ‘pure’ wavelet

space
(
W(x)

J−1⊗W(y)
J−1

)
, and two ‘cross’ spaces:

(
W(x)

J−1⊗V(y)
J−1

)
and

(
V(x)

J−1 ⊗W(y)
J−1

)
.

Equation 14.16 may be further decomposed by splitting V(x)
J−1 and V(y)

J−1 into their
respective scaling function and wavelet spaces of resolution J −2. The appearance
of the two dimensional decomposition shares many similarities to the standard de-
composition of d

dx . An example is provided in Figs. 14.3 and 14.4, which show an
instantaneous realisation of the kinetic energy from a two dimensional ‘turbulent’
flow, and its associated multiresolution decomposition. In this case, J = 8, and there
are 4 subspaces in each of the x− and y− directions. The lower left corner of Fig.

14.4 depicts an approximation to the original signal on V(2)
4 . Each of the subsequent

subblocks growing out to the top right of the figure are associated with W(x)
i ⊗W(y)

i .

The blocks above this diagonal correspond to spaces of the form V(x)
i ⊗W(y)

m while

those below correspond to W(x)
i ⊗V(y)

m . The particular point to note is the sparsity in
the wavelet representation: away from the coarsest representations, the magnitudes
of the wavelet coefficients are close to zero.

Fig. 14.3: Kinetic energy contours for 2D turbulence.

The practical application of wavelets to the Direct Numerical Simulation of re-
acting flows faces a number of difficulties. The non-linear terms associated with
the chemical reaction rate (and, to a lesser extent, the convective term) effectively
preclude the evolution of the simulation in the transform domain. Consequently, the
transport equations must be time advanced in physical space. The wavelets are then
used as part of a collocation strategy: (a) to inform the grid tracking algorithm of
where points are required, and; (b) to calculate the derivatives on this reduced grid.
The algorithmic difficulty is then one of correctly calculating the wavelet transform
on a generally sparse grid.
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Fig. 14.4: 2D Wavelet transform of turbulent kinetic energy.

Most wavelet transforms are ‘top-down’ algorithms; the wavelet transform is
obtained by the repeated application of quadrature mirror filters in a finite differ-
ence like algorithm. Each application of the filters to a high resolution signal pro-
duce two complementary low resolution signals (the scaling function coefficients
and the wavelet coefficients). On a sparse grid, the so-called hanging node problem
appears—grid points retained at the edge of a region of rapid change do not contain
sufficient neighbour nodes to calculate their wavelet coefficients. The hanging node
problem can be circumvented by a number of methods in 1-D (i.e. [31]), but the
extension to 2-D is difficult. In the latter case, there is no unique way in which to
order the wavelet coefficients, and multidimensional transforms lose their commu-
tivity in the presence of a hard non linear threshold (i.e. a 2-D transform comprising
x− followed by y− transforms will yield different coefficients to a 2-D transform
comprising y− followed by x− transforms). Practical experience has shown that—
particularly in low Mach number flows—the error induced by the hanging node
problem manifests itself as a small perturbation in the dependent variables. These
perturbations are picked up by the grid tracking algorithm as physical entities, and
subsequently allowed to evolve. On the new hanging nodes thus formed, new pertur-
bations are introduced and the grid grows again to accommodate these new features.
The process repeats until the full grid is retained. Circumventing this problem forms
part of ongoing research efforts.

14.4 An Application of Wavelets to Reacting Flows

14.4.1 Governing Equations

The equations governing a chemically reacting flow in one dimension are given by
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∂ρ
∂ t

+
∂
∂x

(ρu) = 0

∂ρu
∂ t

+
∂
∂x
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∂
∂x

(τxx)

∂ρE
∂ t

+
∂
∂x

(u(ρE + p)) = −∂q
∂x

+
∂
∂x

(uτxx)

ρ
∂ρYl

∂ t
+

∂
∂x

(ρuYl) = ωl +
∂
∂x

(
ρD

∂Yl

∂x

)
l = 1,2, . . . ,Ns −1. (14.18)

where Ns > 1 is the number of species, τxx is the viscous stress and the heat flux
vector q is defined as

q = −λ
∂T
∂x

−
Ns

∑
l=1

hlρD
∂Yl

∂x
. (14.19)

For simplicity, the chemical reaction is assumed to comprise the single step

Reactants → Products

in which case, Ns = 2 and the thermochemical state of the gas is characterized by a
progress variable. The progress variable is interpreted as a normalized product mass
fraction, and takes a value of 0 in the reactants and 1 in the products. c = Y1 here
and Y2 = 1−Y1. The reaction rate controlling the production of c is given by [32]

ω1 = ρB∗ (1− c)exp

⎛

⎝
−β

(
1− T̂

)

1−α
(

1− T̂
)

⎞

⎠ ,

with ω2 =−ω1. B∗ is the pre-exponential factor (taken to be 285.1×10−3s−1 here),
β (= 6) is the Zeldovich number and T̂ is the reduced temperature;

T̂ =
T −T0

Tad −T0
.

T0 and Tad are the unburned reactant and adiabatic product temperature, respectively.
α is related to the heat release of the fuel, and is set here to 0.8. This corresponds
to an adiabatic flame temperature of 1500 K for an inlet temperature of 300 K.
The reaction rate has been adjusted to give a laminar flame speed of ∼ 30 cm/s, a
value typical of many hydrocarbon-air flames. The inlet velocity is set equal to the
laminar flame speed, so that a stationary flame profile is obtained. This specification
gives a simulation Mach number of O

(
10−3

)
based on the laminar flame speed. The

thermal conductivity is a modified form of the equation proposed by Echekki et al.
[13]:

λ = λ0cp

(
T
T0

)
,

where λ0 = 2.58× 10−5 kg/(ms). The temperature dependence of the conductivity
has been chosen such that the resulting temperature and species profiles can be de-
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rived analytically using asymptotic methods [32]. The viscosity and mass diffusion
are calculated via the joint assumptions of constant Prandtl number (= 0.75) and
constant unit Lewis number. The other thermodynamic quantities are assumed to be
constant and are set equal to the values given for air. The stagnation internal energy
is obtained using

E =
Ns

∑
l=1

elYl +
u2

2
,

where el is the species internal energy, comprising the internal energy of formation
e0

l , and a sensible component:

el = e0
l +

∫ T

T0

cv
(
T ′)dT ′.

The specific heats and the molecular weights of the components are assumed to be
constant, with cp = 1005 J/(kg K), γ = 1.4 and W = 28.96 kg/kmol. The pressure is
calculated from the thermal equation of state

p = ρR0T
Ns

∑
l=1

Yl

Wl
, (14.20)

where R0 (=8314.5 J/(kmol K)) is the universal gas constant.
The governing equations retain full compressibility, and hence acoustic waves

will need to be accurately captured by the wavelets. This has been done deliberately,
since the accurate resolution of the pressure profile provides a stringent challenge
for the discretization.

14.5 Results

Figures 14.5(a)-(d) show a benchmark solution for a 1-D laminar flame. The so-
lution has been calculated using N = 4 interpolating wavelets and initially with
wavelet thresholding switched off (i.e. using a full grid). The discretization com-
prises initially 28 +1 (i.e. VJ = V8) grid points; the extra grid point comes from end
effects introduced via discretizing an interval.

Figure 14.6 shows a comparison between the benchmark solution and an analytic
profile obtained by high activation energy asymptotics [32]; the agreement between
the two is excellent, and thereby establishes the credibility of wavelets as a means
of DNS.

Figure 14.7 shows the reaction rate profile and the retained grid points, the latter
being obtained by thresholding the wavelet series based on the magnitudes of the
respective dependent (conservative) variables. The automatic clustering of the grid
points in the region of the flame are the principal driver for the development of
wavelet methods.
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Fig. 14.5: Benchmark laminar flame profile.

Fig. 14.6: Progress variable profile obtained analytically and numerically with ε = 0.
Reprinted from [26] wither permission from the Institution of Mechanical Engi-
neers.
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Fig. 14.7: Reaction rate. ◦ denotes location of retained grid points.

The effects of increasing threshold ε on the temperature profile have been found
to be essentially invisible. Of more interest is the effect of thresholding on the reso-
lution of the pressure profile. It is well known that low Mach number systems exhibit
stiffness (i.e. see Klein [18]); this stiffness manifests itself here as a pressure profile
that is extremely sensitive to numerical noise. Figures 14.8, 14.9 and 14.10 show the
pressure profile obtained with increasing thresholds. The dynamic pressure change
is itself very small, and so consequently is quite sensitive to any perturbation.

Fig. 14.8: Dynamic pressure profile for thresholded solution, with ε = 10−6.
Reprinted from [26] wither permission from the Institution of Mechanical Engi-
neers.

An estimate for the effect of wavelet thresholding on pressure can be established
for low Mach number systems by examining the thermodynamic relationship be-
tween the conserved variables and the pressure. Using standard thermodynamic re-
lations, the change in pressure for a mixture of Ns ideal gases can be related to
changes in the conserved variables by
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Fig. 14.9: Dynamic pressure profile for thresholded solution, with ε = 10−5.
Reprinted from [26] wither permission from the Institution of Mechanical Engi-
neers.

Fig. 14.10: Dynamic pressure profile for thresholded solution, with ε = 10−4.
Reprinted from [26] wither permission from the Institution of Mechanical Engi-
neers.

d p = (γ −1)
[

d (ρE)−ud (ρu)+
1
2

u2dρ
]
−

Ns

∑
α=1

((γ −1)eα −Rα T )d (ρYα) .

(14.21)
A better understanding of the relative effects can be obtained by non-dimensionalising
Eq. 14.21 to obtain

d p = (γ −1)
[

d (ρE)− (γ −1)M2
(

ud (ρu)− 1
2

u2dρ
)]

−
Ns

∑
α=1

(
ẽα − Rα T

(γ −1)

)
d (ρYα) , (14.22)
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where the pressure has been non-dimensionalized with respect to γρ0RT0; the re-
maining quantities have been non-dimensionalized with respect to u0, (cp)0 and T0.
Consider a discretization which decomposes VJ onto VJ−1 and WJ−1 for clarity. At
some point during the integration, the solution is transformed onto VJ−1 and WJ−1,
and then a threshold is applied. The resultant reduced series is then used to recon-
struct the dependent variables. This procedure is a model for an adaptive solution
algorithm where in this case, the missing coefficients are replaced with a zero in the
transform domain.

By construction in this simple example, errors of O(ε) are incurred in the energy,
the momentum, the density and the species mass fraction profiles. Using equation
14.22, we write

Δ p = (γ −1)
[

Δ (ρE)− (γ −1)M2
(

uΔ (ρu)− 1
2

u2Δρ
)]

−
Ns

∑
α=1

(
ẽα − Rα T

(γ −1)

)
Δ (ρYα) (14.23)

where the Δ symbol is used to denote the departure from the benchmark solution as
a result of thresholding:

Δ p = p− pε

Δ (ρE) = (ρE)− (ρE)ε

Δ (ρ) = ρ −ρε

Δ (ρYα) = (ρYα)− (ρYα)ε .

It is clear that both the momentum and density driven effects will be very small(
O

(
M2

)
∼ 10−6ε

)
in comparison to those effects induced by errors in the energy

and species mass fraction, which are both of O(ε) . Consequently, in any adaptive
numerical strategy it is important to use at least ρE and (ρYα) as the key variables
upon which the unstructured grid is built. If the previous analysis is extended to a
multiresolution decomposition, essentially the same argument holds, but with the
magnitudes of the errors Δ (·) increased by a factor of approximately O(J) where J
refers to the index of the original discretisation.

Interestingly, a similar problem is observed if asynchronous time evolution meth-
ods are employed (i.e. the schemes proposed by Bacry et al. [1]). It appears that the
coupling engendered by the pressure (through the energy equation) links phenom-
ena across many different scales, all of which interact with equal importance.

14.6 Conclusions

Wavelets have enjoyed considerable popularity in recent years. Their utility stems
from the scale and position dependent decompositions they provide, which in turn
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furnishes flow descriptions with a level of fidelity beyond that offered by Fourier
transforms (which are spatially delocalized). Considerable effort has gone into the
exploitation of wavelets for reacting flow simulation. They provide a natural frame-
work to produce adaptive computations, although some technical challenges remain
regarding inertial and chemistry driven non-linearity (this problem however is preva-
lent to some extent with any numerical scheme). We have discussed in some detail
one possible line of attack for reacting flows involving interpolating wavelets. Oth-
ers are available (i.e. the vaguelettes of Schneider et al. [15–17]). We have chosen to
describe the interpolating wavelet approach because of the closeness of the discreti-
sation to existing engineering calculation methods (i.e. it needs no initial projection
quadrature, nor operator modified vaguelettes, etc.)

In addition, the discussions presented here regarding non-linearities and differen-
tial operators are not restricted to the arena of DNS. We have seen how new wavelet
spaces may be populated during a nonlinear interaction. Furthermore, there is a clear
path from this emergent population to all other scales through the medium of the dif-
ferential operator. We may interpret mappings of the form Wi → Wk k > i within
the operator as being akin to an inertial cascade processes, while the converse rep-
resents backscatter. Hence, wavelets provide a scale and position dependent method
of identifying and predicting the emergent phenomena in a turbulent flow and of es-
timating how that phenomena affects the resolved field. A modelling strategy may
exploit this by estimating the magnitudes of the wavelet coefficients emerging from
the non-linearity, and using the (known) values of the operator to estimate the effects
on the resolved scales. Such studies have been undertaken by a number of workers
(i.e. [10]), but further work is yet required.
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