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Abstract In this contribution GPTIPS, a free, open source MATLAB toolbox for
performing symbolic regression by genetic programming (GP) is introduced. GP-
TIPS is specifically designed to evolve mathematical models of predictor response
data that are “multigene” in nature, i.e. linear combinations of low order non-linear
transformations of the input variables. The functionality of GPTIPS is demonstrated
by using it to generate an accurate, compact QSAR (quantitative structure activ-
ity relationship) model of existing toxicity data in order to predict the toxicity of
chemical compounds. It is shown that the low-order “multigene” GP methods im-
plemented by GPTIPS can provide a useful alternative, as well as a complemen-
tary approach, to currently accepted empirical modelling and data analysis tech-
niques. GPTIPS and documentation is available for download at http://sites.google.
com/site/gptips4matlab/.
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1 Introduction

Genetic programming [6] is a biologically inspired machine learning method that
evolves computer programs to perform a task. It does this by randomly generating a
population of computer programs (represented by tree structures) and then mutating
and crossing over the best performing trees to create a new population. This process
is iterated until the population contains programs that (hopefully) solve the task
well.

When the task is building an empirical mathematical model of data acquired
from a process or system, the GP is often known as symbolic regression. Unlike
traditional regression analysis (in which the user must specify the structure of the
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Table 1 Selected chemical engineering applications of GP

Authors Application area Model/application

Greeff and Aldrich [2] Acid pressure leaching Extent of dissolution model

McKay et al. [9] Distillation column Inferential Sensor

Grosman and Lewin [3] Catalytic reaction Reaction rate model

Hinchliffe and Willis [4] Cooking extruder Dynamic process model

Madar et al. [8] Polymerisation Dynamic process model

Wang and Li [17] Distillation column Optimise sequence

Seavy et al. [14] Vapour liquid equilibrium Hybrid model

model), GP automatically evolves both the structure and the parameters of the math-
ematical model. Symbolic regression has had both successful academic [1] and in-
dustrial applications in a variety of disciplines. For instance, in the discipline of
Chemical Engineering, an overview of selected applications of GP is given in the
table above.

In all the applications cited in Table 1 there is a common theme; GP is used for
symbolic regression and, when using industrial data, the evolved models are shown
to have better or comparable accuracy to alternative nonlinear modeling approaches
such as neural networks.

The purpose of this chapter is to introduce a free open source MATLAB tool-
box called GPTIPS [12, 13] that was written for the specific purpose of performing
symbolic regression. GPTIPS employs a unique type of symbolic regression called
“multigene” symbolic regression [5] that evolves linear combinations of non-linear
transformations of the input variables. When the transformations are forced to be
low order (by restricting the GP tree depth) this, in contrast to “standard” sym-
bolic regression, allows the evolution of accurate, relatively compact mathematical
models of predictor – response (input – output) data sets, even when there are a
large number of input variables. Hence, the authors believe that GPTIPS provides a
useful, free and complementary alternative to current data analysis techniques and
has a broad spectrum of applicability across many scientific and engineering disci-
plines.

This chapter is structured as follows. Section 2 provides a brief overview of GP.
Next, Sect. 3 discusses the multigene low order GP approach that GPTIPS imple-
ments. In Sect. 4, some of the features of GPTIPS are described. In Sects. 5–8,
the capabilities of GPTIPS are demonstrated by using it to evolve an accurate,
relatively compact mathematical model to predict the toxicity of chemical com-
pounds using a data set from the literature containing over 1000 compounds along
with measured toxicity values. Finally, in Sect. 9 we provide some concluding re-
marks.



Predicting the Toxicity of Chemical Compounds Using GPTIPS 85

2 Genetic Programming

The evolutionary computational (EC) method of GP evolves populations of sym-
bolic tree expressions to perform a user specified task. A comprehensive, free to
download introduction to GP and review of the literature is provided by Poli et al.
[10] but a brief description of GP is provided here.

In GP, each tree expression can be thought of as being analogous to the DNA of
an individual in natural evolution. The evolution of the expressions occurs over a
number of generations (iterations) and each new generation of individuals is created
from the existing population by direct copying as well as performing operations on
the individuals analogous to the alterations to DNA sequences that naturally occur
during sexual reproduction and mutation. This is accomplished by evaluating each
individual in the current population to determine its ‘fitness’ (i.e. its performance
on the user specified objective function or functions) and performing probabilistic
selection and recombination of individuals biased towards those that are relatively
fit compared to the other individuals in the population.

At the beginning of each run, a population of symbolic expressions is randomly
generated. This is accomplished using a simple tree building algorithm that ran-
domly selects nodes, with replacement, from a pool comprising primitive func-
tions (e.g. addition, subtraction, the hyperbolic tangent, natural logarithm, expo-
nential, etc.), the input variables as well as randomly generated constants. These
nodes are randomly assembled into tree structured symbolic expressions, subject
to user-defined tree size and/or depth constraints. After evolving the population for
a number of generations by copying, mutation and recombination operations, the
tree expression with the best fitness is usually selected as the best solution to the
problem.

Two principal genetic recombination operators are used in GP: sub-tree crossover
and sub-tree mutation. Sub-tree crossover is an operation performed on two parent
trees that generates two offspring. For each expression, a sub-tree is randomly se-
lected. These sub-trees are then exchanged to create two new expressions to go into
the next generation. Sub-tree mutation operates on a single parent expression and
generates a single offspring expression. First, a randomly selected sub-tree of the
parent is deleted. Then, a new sub-tree is randomly generated using the same tree
building algorithm that was used to build the initial population of expressions. The
resulting offspring expression is then inserted into the new population. The mutation
operation is used relatively infrequently compared to the crossover operation and its
purpose is to maintain genetic diversity over the course of the run and to prevent
premature convergence to unsatisfactory solutions.

In GP, the choice of the primitive functions is domain dependent and in symbolic
regression, where there is little or no prior knowledge of the underlying relation-
ships, mathematical operators such as those described above are typically employed
with a high degree of success [9, 13]. In practice, it is often best to perform some
initial runs with a few simple primitives (e.g. addition, multiplication and subtrac-
tion) and then incrementally add other non-linear primitives – such as the hyperbolic
tangent function – to evaluate whether more accurate and compact symbolic expres-
sions may be evolved.
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Fig. 1 Example of a multigene symbolic model

3 Multigene Symbolic Regression

Typically, symbolic regression is performed by using GP to evolve a population
of trees, each of which encodes a mathematical equation that predicts a (N × 1)

vector of outputs y using a corresponding (N × M) matrix of inputs X where N is
the number of observations of the response variable and M is the number of input
(predictor) variables. I.e. the ith column of X comprises the N input values for the
ith input variable and may be designated as the input variable xi .

In contrast, in multigene symbolic regression each symbolic model (and each
member of the GP population) is a weighted linear combination of the outputs from
a number of GP trees, where each tree may be considered to be a “gene”. For exam-
ple, the multigene model shown in Fig. 1 predicts an output variable y using input
variables X1,X2 and X3.

This model structure contains non-linear terms (e.g. the hyperbolic tangent) but is
linear in the parameters with respect to the coefficients d0, d1 and d2. In practice, the
user specifies the maximum number of genes Gmax a model is allowed to have and
the maximum tree depth Dmax any gene may have and therefore can exert control
over the maximum complexity of the evolved models. In particular, we have found
that enforcing stringent tree depth restrictions (i.e. maximum depths of 4 or 5 nodes)
often allows the evolution of relatively compact models that are linear combinations
of low order non-linear transformations of the input variables.

For each model, the linear coefficients are estimated from the training data us-
ing ordinary least squares techniques. Hence, multigene GP combines the power of
classical linear regression with the ability to capture non-linear behaviour without
needing to pre-specify the structure of the non-linear model. In Hinchliffe et al. [5]
it was shown that multigene symbolic regression can be more accurate and com-
putationally efficient than the standard GP approach for symbolic regression and
Searson et al. [13] demonstrated that the multigene approach could be successfully
embedded within a non-linear partial least squares algorithm.

In GPTIPS, the initial population is constructed by creating individuals that con-
tain randomly generated GP trees with between 1 and Gmax genes. During a GPTIPS
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run, genes are acquired and deleted using a tree crossover operator called two point
high level crossover. This allows the exchange of genes between individuals and it is
used in addition to the “standard” GP recombination operators. If the ith gene in an
individual is labelled Gi then a two point high level crossover is performed as in the
following example. Here, the first parent individual contains the genes (G1G2G3)

and the second contains the genes (G4G5G6G7) where Gmax = 5. Two randomly
selected crossover points are created for each individual. The genes enclosed by the
crossover points are denoted by < . . . >.

(G1 < G2 > G3) (G4 < G5G6G7 >)

The genes enclosed by the crossover points are then exchanged resulting in the two
new individuals below.

(G1G5G6G7G3) (G4G2)

Two point high level crossover allows the acquisition of new genes for both indi-
viduals but also allows genes to be removed. If an exchange of genes results in an
individual containing more genes than Gmax then genes are randomly selected and
deleted until the individual contains Gmax genes.

In GPTIPS, standard GP subtree crossover is referred to as low level crossover.
In this case, a gene is selected randomly from each parent individual, standard sub-
tree crossover is performed and the resulting trees replace the parent trees in the
otherwise unaltered individual in the next generation. GPTIPS also provides several
methods of mutating trees.

The user can set the relative probabilities of each of these recombinative pro-
cesses. These processes are grouped into categories called events. The user can then
specify the probability of crossover events, direct reproduction events and mutation
events. These must sum to one. The user can also specify the probabilities of event
subtypes, e.g. the probability of a two point high level crossover taking place once
a crossover event has been selected, or the probability of a subtree mutation once
a mutation event has been selected. However, GPTIPS provides default values for
each of these probabilities so the user does not need to explicitly set them.

4 GPTIPS Features

GPTIPS is a predominantly command line driven open source toolbox that requires
only a basic working knowledge of MATLAB. A run is configured by a simple con-
figuration M file and there are a number of command line functions to facilitate post-
run analyses of the results. Whilst not an exhaustive list, GPTIPS currently contains
the following configurable GP features: tournament selection & plain lexicographic
tournament selection [7], elitism, three different tree building methods (full, grow
and ramped half and half) and six different mutation operators: (1) subtree mutation
(2) mutation of constants using an additive Gaussian perturbation (3) substitution of
a randomly selected input node with another randomly selected input node (4) set a
randomly selected constant to zero (5) substitute a randomly selected constant with
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another randomly generated constant (6) set a randomly selected constant to one.
In addition, GPTIPS can, without modification in the majority of cases, use nearly
any built in MATLAB function as part of the function set for a run. The user can
also write bespoke function node M files and fitness functions; hence GPTIPS can
be used to solve problems other than non-linear modeling/symbolic regression.

In addition, GPTIPS has a number of features that are specifically aimed at
the creation, analysis and simplification of multigene symbolic regression mod-
els. These include: (1) use of a ‘holdout’ validation set during training to mitigate
the effects of overfitting (2) graphical display of the results of symbolic regression
for any multigene model in the final population (3) mathematical simplification of
any model (4) conversion to LaTeX format of any model (5) conversion to PNG
(portable network graphics) file of the simplified equation of any model (6) con-
version of any model to standalone M file for use outside GPTIPS (7) graphical
display of the statistical significance of each gene in a model (8) functions to re-
duce the complexity of any model using “gene knockouts” to explore the trade off
of model accuracy against complexity (9) graphical population browser to explore
the trade off surface of complexity/accuracy (10) graphical input frequency analysis
of individual models or of a user specified fraction of the population to facilitate the
identification of input variables that are relevant to the output.

The Symbolic Math toolbox (a commercial toolbox available from the vendors
of MATLAB) is required for the majority of the post run simplification and model
conversion features and the Statistics Toolbox is required for the display of gene
statistical significance. The core functionality of GPTIPS and the ability to evolve
multigene models does not, however, require any specific toolboxes.

4.1 Using GPTIPS for Symbolic Regression

An example of a simple configuration file for multiple gene symbolic regression is
shown in Fig. 2. It is assumed that data is located in the current directory in the file
mydata.mat and comprises the training input data variable (xtrain), the training out-
put variable (ytrain) as well as a testing data set (xtest and ytest). The data should be
arranged by columns, e.g. the nth column of xtrain should contain the observations
of the nth input variable.

In this example, only a few GPTIPS settings are specified. Any user parameters
not explicitly set automatically use the default values. However, the user must at
least specify the fitness function, the input and output data and the function nodes
to be used in their configuration file. This configuration file first sets population size
= 100 and number of generations = 100. The fitness function is then specified (i.e.
the name of the M file) as is the fact that this is an error minimisation problem.

Next, the user data file mydata.mat is loaded and the variables within this file
(here called xtrain, ytrain, xtest and ytest but they could be called anything) are as-
signed. After this is the number of input variables is set as the number of columns in
the inputs training data matrix. Next, multigene mode is enabled and the maximum
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function gp = my_config(gp);

gp.runcontrol.pop_size = 100;
gp.runcontrol.num_gen = 100;
gp.fitness.fitfun = @regressmulti_fitfun;
gp.fitness.minimisation = true;

load mydata
gp.userdata.xtrain = xtrain;
gp.userdata.ytrain = ytrain;
gp.userdata.xtest = xtest;
gp.userdata.ytest = ytest;

gp.nodes.inputs.num_inp = size(gp.userdata.xtrain,2);

gp.genes.multigene = true;
gp.genes.max_genes = 4;
gp.treedef.max_depth = 5;
gp.nodes.functions.name = {’times’,’minus’,’plus’};

Fig. 2 Example GPTIPS configuration file for multigene symbolic regression

number of genes per individual is set to 4. The maximum tree depth is then set to 5.
Finally, the function nodes times, minus and plus are specified.

5 Evolution of a Predictive Model of Aqueous Chemical Toxicity
Using GPTIPS

In the remainder of this article we will demonstrate how we have used GPTIPS to
evolve a predictive QSAR model of aquatic toxicity for chemical compounds, based
on their molecular structure.

QSAR (Quantitative Structure Activity Relationships) is a well established tech-
nique for deriving structure property relationships for chemical compounds that can
be used to predict the properties of novel chemical structures. Chemical compounds
can be represented by a large number of computed numerical values, called “de-
scriptors”, each of which in some way characterises the structure or behaviour of
the compound. The idea of QSAR is to build empirical or semi-empirical models
that relate the descriptors of a compound to some physical, chemical or biologi-
cal property. A number of software packages are available to compute descriptor
values for compounds with a known structure. Many of these are commercial prod-
ucts (e.g. DRAGON) but there are also free/open source packages e.g. the Chemical
Development Kit [15].

A QSAR modelling scenario involves a data set of known chemical compounds
and a measured endpoint for each compound. The measured endpoint is the prop-
erty of interest. Typical properties of interest are those related to pharmaceutical
drug development. These include biological activities representing the ability of
a drug candidate to perform its desired function (e.g. IC50, the concentration of
a compound required to inhibit a particular biological or biochemical function by
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half) and the ADME properties (adsorption, distribution, metabolism and excretion)
which characterise the behaviour of a of a pharmaceutical drug compound within
the organism.

The prediction of chemical toxicity is another chemical property that is of vital
importance in both pharmaceutical drug development and managing the environ-
mental risk of chemical compounds. In the latter case there are legal regulatory
structures (e.g. the REACH regulations in the European Union – EC 1907/2006)
that specify that QSAR models should play a part in managing this risk in order
to reduce the costs of experimental toxicity measurement. Hence, the development
of effective QSAR modelling methods continues to present a very real and relevant
challenge.

There are a number of strategies & protocols for experimentally evaluating chem-
ical toxicity. One commonly accepted method is the measurement of the growth in-
hibition of ciliated protozoan T. pyriformis [18]. There are freely available aquatic
toxicity data for more than 1000 compounds, due to the efforts of Schultz and col-
leagues [11]. Zhu et al. [18] have used this to compile a data set of 1093 unique
compounds and have developed a number of predictive QSAR models using vari-
ous descriptor packages and modelling methodologies. Here, the use of GPTIPS to
evolve a predictive model of chemical toxicity using this data set is demonstrated
(using the descriptors from the commercial DRAGON package) and the results com-
pared with those published in Zhu et al. [18].

6 Data

The T. pyriformis toxicity values (i.e. the response y data) are measured as the loga-
rithm of the 50% growth inhibition concentration log(IGC50−1). The data available
for training QSAR models contains 644 compounds and another 449 compounds
are used an external test/validation data set to verify the predictive ability of the
models. For each compound 1664 DRAGON descriptor values are used as the pre-
dictor data (i.e. the input X data contains 1664 input variables) – compound struc-
tures, toxicity and descriptor values are available from the EU CADASTER website
at http://www.cadaster.eu/node/65. To mitigate against the effects of overfitting, 128
compounds (approximately 20%) in the training data set were randomly selected for
use as a holdout validation data set leaving the training data containing 516 com-
pounds. In GPTIPS, holdout validation is performed as follows: at the end of each
generation, the “best” individual (as evaluated on the training data) is then evaluated
on the holdout validation set. The individual that performs best on the holdout set
(over the course of the run) is stored and may be accessed after the run.

7 GPTIPS Run Settings

A GPTIPS run with the following settings was performed: Population size = 500,
Number of generations = 500, Tournament size = 12 (with lexicographic selection

http://www.cadaster.eu/node/65
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pressure), Dmax = 4, Gmax = 8, Elitism = 0.01% of population, function node set
= {plus, minus, times, tanh, sin}, terminal node set = {1664 DRAGON descriptors
x1 −x1664, ephemeral random constants in the range [−1010]}. The default GPTIPS
multigene symbolic regression function was used in order to minimise the root mean
squared prediction error on the training data.

The following (default) recombination operator event probabilities were used:
crossover events = 0.85, mutation events = 0.1, direct reproduction = 0.05. The
following sub-event probabilities were used: high level crossover = 0.2, low level
crossover = 0.8, subtree mutation = 0.9, replace input terminal with another random
terminal = 0.05, Gaussian perturbation of randomly selected constant = 0.05 (with
standard deviation of Gaussian = 0.1). These settings are not considered ‘optimal’
in any sense but were based on experience with modelling other data sets of similar
size. The run took approximately 15 minutes on a PC with a dual core processor
running at 2.2 GHz with 3.5 GB of RAM.

8 Results

The model that performed best on the holdout validation data was chosen. This
model has coefficients of determination (i.e. proportion of the variation in the re-
sponse explained by the model) of R2 (training) = 0.83, R2 (holdout) = 0.78 and
R2 (test) = 0.78. In Zhu et al. [18] the results are reported in terms of MAE (mean
absolute error) for two test tests referred to in the paper as Validation set 1 (339 com-
pounds) and Validation set 2 (110 compounds) that comprise the whole test set used
here. In terms of MAE, the evolved GPTIPS model has MAE(training) = 0.3292,
MAE(holdout) = 0.3573 and MAE(test) = 0.3518.

Zhu et al. [18] report the results of a number of individual models, built using var-
ious descriptor packages and modelling techniques. Some of these models consider
the “applicability domain” (AD) of the compounds (i.e. whether the compounds lie
in the region of descriptor space deemed to be suitable for generating a prediction)
whereas others do not employ AD considerations. In general, models that consider
AD give more accurate predictions but only the results of the non AD models using
the DRAGON descriptors are repeated here. The first DRAGON descriptor based
model is a support vector machine [16] regression that yields MAE(Validation set
1) = 0.37 and MAE(Validation set 2) = 0.42. This corresponds to an MAE(test)
= 0.38. The second DRAGON based model is a k-nearest neighbour (k-NN) ap-
proach that achieves MAE(Validation set 1) = 0.29, MAE(Validation set 2) = 0.43
corresponding to MAE(test) = 0.32. Hence it can be seen that the evolved GPTIPS
model lies between the SVM and the k-NN approaches, i.e. GPTIPS can achieve
predictive performance of the order of the current state of the art empirical mod-
elling methodologies.

GPTIPS was used to mathematically simplify and export the evolved model as a
PNG graphics file. This is shown in Fig. 3.

It can be seen that the evolved model is reasonably compact, consists of both
linear terms and low order non-linear transformations of the inputs and has selected
a small number of descriptors from the 1664 available.
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y = −2.092 − 0.7548x911 + 0.7548x1558 − 0.8997 tanh(tanh(x1426))

+ 0.09443(x911 − x1558)x654 − 0.1481x1552
+ 0.1481x391 − 0.2489x1429 − 0.2489 sin(x967 − x709)

+ 0.7143x1245 − 0.5978x1662 − 0.5978 tanh(x1429 + x525)

+ 0.7802x1426 + 0.7802x1563

Fig. 3 Graphical rendering of evolved symbolic T. pyriformis toxicity model

9 Conclusions

In this article we have introduced the multigene symbolic regression capabilities
of GPTIPS and demonstrated it with an application in which a predictive symbolic
QSAR model of T. pyriformis aqueous toxicity was evolved. It was demonstrated
that the evolved model is compact and offers similar high performance to recently
published QSAR models of the same data. The point of this article is not to assert
that multigene symbolic regression (using low order non-linear transforms of the
inputs) is better or worse than other methods, but that it is an alternative and com-
plementary approach to existing empirical modelling and data analysis techniques.
It is also an approach that is facilitated by the free GPTIPS toolbox for MATLAB,
a program that is used widely in academia and industry.
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