
Chapter 23
The TRPC Ion Channels: Association with
Orai1 and STIM1 Proteins and Participation
in Capacitative and Non-capacitative
Calcium Entry

Gines M. Salido, Isaac Jardín, and Juan A. Rosado

Abstract Transient receptor potential (TRP) proteins are involved in a large
number of non-selective cation channels that are permeable to both monovalent
and divalent cations. Two general classes of receptor-mediated Ca2+ entry has been
proposed: one of then is conduced by receptor-operated Ca2+ channels (ROC), the
second is mediated by channels activated by the emptying of intracellular Ca2+

stores (store-operated channels or SOC). TRP channels have been presented as sub-
units of both ROC and SOC, although the precise mechanism that regulates the
participation of TRP proteins in these Ca2+ entry mechanisms remains unclear.
Recently, TRPC proteins have been shown to associate with Orai1 and STIM1 in
a dynamic ternary complex regulated by the occupation of membrane receptors in
several cell models, which might play an important role in the function of TRPC
proteins. The present review summarizes the current knowledge concerning the
association of TRP proteins with Orai and STIM proteins and how this affects the
participation of TRP proteins in store-operated or receptor-operated Ca2+ entry.
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[Ca2+]c cytosolic free Ca2+ concentration
ARC arachidonic acid-activated
CAD CRAC-activating domain
CMD CRAC modulatory domain
CRAC Ca2+ release-activated Ca2+ channel
DAG diacylglycerol
ER endoplasmic reticulum
FRET Forster resonance energy transfer
IP3 inositol 3,4,5-trisphosphate
IP4 inositol 1,3,4,5-tetrakisphosphate
MBCD methyl-β-cyclodextrin
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OASF Orai-activating small fragment
PIP2 phosphatidilinositol 4,5-bisphosphate
PLC phospholipase C
RACK1 receptor for activated C-kinase-1
ROCE receptor-operated Ca2+ entry
SCID severe combined immune deficiency
SERCA sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase
SOC store-operated channel
SOAR STIM1 Orai-activating region
SOCE store-operated calcium entry
STIM1 stromal interaction molecule 1
TRP transient receptor potential
TG thapsigargin.

23.1 Introduction

Regulation of the changes in cytosolic Ca2+ concentration is a point of convergence
of many signal transduction pathways and modulates a variety of cellular functions
ranging from fertilization to cell death. Changes in cytosolic free Ca2+ concentration
([Ca2+]c), also known as Ca2+ signals, are characterized by sudden and transitory
increases in the concentration of free calcium ions [1]. Cell-generated Ca2+ signals
require both internal and external Ca2+ sources. In most cell types, the major internal
Ca2+ store is the endoplasmic reticulum (ER)/sarcoplasmic reticulum, where Ca2+

is stored by SERCA (sarco/endoplasmic reticulum Ca2+-ATPase). Due to the finite
amount of Ca2+ accumulated in the ER the entry of extracellular Ca2+ is necessary to
achieve full activation of a number of cellular functions. Store-operated Ca2+ entry
(SOCE), also known as capacitative Ca2+ entry, a process regulated by the filling
state of the intracellular Ca2+ stores, is a major mechanism for Ca2+ entry in non-
electrically excitable cells [2]. There is a body of evidence supporting an important
role for SOCE in Ca2+ signalling and intracellular homeostasis under physiological
conditions, such as supporting Ca2+ oscillations [3]. In addition, SOCE has been
reported to be required for a number of cellular processes, including cell prolifer-
ation, muscle contraction, platelet aggregation and secretion [4, 5]. Finally, SOCE
serves as a mechanism to allow ER Ca2+ refilling, necessary for protein synthesis
and post-translational modifications [6].

The nature of the channels that conduct SOCE has been a matter of intense inves-
tigation and debate. Two types of store operated Ca2+ channels have been described
so far, which, although show distinct biophysical properties, are activated by deple-
tion of intracellular Ca2+ stores with agonists, inhibitors of SERCA and/or strong
Ca2+ chelators. First of all, Ca2+ release-activated Ca2+-selective (CRAC) channels
have been found and extensively described on the level of whole-cell current in a
variety of non-excitable cells, including mast cells, Jurkat T-lymphocytes and RBL
cells [7–9]. The current through CRAC channels (ICRAC) is non-voltage activated,
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inwardly rectifying, and selective for Ca2+ [10, 11]. While ICRAC was the first store-
operated Ca2+ current identified, it is not the only store-operated current, and SOCE
has also been reported to include a family of Ca2+-permeable channels, with dif-
ferent properties in different cell types known as SOC channels, which conduct the
non-voltage activated, non-selective ISOC current of small, but resolvable 0.7-11 pS
conductance [12]. SOC channels have been found and described on single channel
and whole-cell current levels in different cell types [13–16]. The mammalian homo-
logues of the Drosophila Transient Receptor Potential (TRP) channels were initially
presented as candidates for the conduction of SOCE and, more recently, the protein
Orai1 has been proposed to form the pore of the channel mediating ICRAC.

Despite intense investigations over the last two decades, the mechanisms of acti-
vation and the identity of the key molecular players conducting Ca2+ entry during
SOCE have long remained elusive. However, in the last few years, the improve-
ments of gene silencing protocols combined with high throughput platforms have
provided important breakthroughs, especially with the identification of STIM1 (stro-
mal interaction molecule 1) as the ER Ca2+ sensor and Orai1 as the pore-forming
subunit of the archetypical capacitative channel, CRAC. STIM1 is a Ca2+-binding
protein located both in intracellular membranes, including the ER, and the plasma
membrane with a single transmembrane region and an EF-hand domain in the
N-terminus. STIM1 located in the ER shows the EF-hand domain in the lumen of
the ER, which, by following different experimental manoeuvres, has been suggested
to function as a Ca2+ sensor that communicates the filling state of the Ca2+ stores
to the plasma membrane Ca2+ permeable channels [17, 18]. In addition, plasma
membrane-resident STIM1, which shows the EF-hand domain facing the extracellu-
lar medium, has been reported to modulate the function of the capacitative channels
[19, 20], probably acting as an extracellular Ca2+ sensor.

The involvement of Orai1 in ICRAC has been identified by gene mapping in
patients showing an inherited disorder called severe combined immune deficiency
(SCID) syndrome attributed to loss of ICRAC, which results in extreme vulnerabil-
ity to infectious diseases. The ORAI1 gene located on chromosome 12 has been
found to be mutated in SCID patients, and ICRAC has been shown to be restored by
expression of wild type Orai1 in T cells [21]. The role of Orai1 in ICRAC was con-
firmed in a whole-genome screen of Drosophila S2 cells by Feske and coworkers
[21], with other groups reporting similar results at the same time [22, 23]. Orai1 is
a small protein with four transmembrane domains and both N- and C-terminal tails
located in the cytosol. The Orai1 protein has been demonstrated to form multimeric
ion channel complexes in the plasma membrane [24–29].

In addition to their involvement in receptor-operated Ca2+ entry (ROCE), there
is now considerable evidence supporting a role for TRP proteins in the conduc-
tion of Ca2+ entry during SOCE. Particular attention has been paid to members of
the TRPC subfamily. Using different approaches, from overexpression of specific
TRP proteins to knockdown of endogenous TRPs and pharmacological studies,
it has been suggested that most of the TRPC proteins can be activated by Ca2+

store depletion [12, 30, 31]. Among TRP proteins, the role of TRPC1 in SOCE has
been extensively investigated in different cell types. TRPC1 has been reported to
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be involved in SOCE by antisense experiments in human salivary glands [32] and
vascular endothelial cells [33]. In support of this, antibodies directed to the pore-
forming region of TRPC1 have been shown to reduce SOCE in vascular smooth
muscle cells and human platelets [34, 35] and TRPC1-depleted myoblasts present
a largely reduced SOCE [36]. Different TRPC associations appear to give rise to
channels with distinct biophysical properties. In addition, association of TRPC pro-
teins with STIM1 and Orai1 seems to play an important role in the participation of
TRPCs in different mechanisms for Ca2+ entry in a number of cell types, although
the association between these proteins still remains controversial and further studies
are required to fully understand the process.

23.2 Transient Receptor Potential (TRP) Proteins: TRPCs

TRP proteins are ion channel subunits non-selective for monovalent and divalent
cations, including Na+ and Ca2+ that were initially identified in the trp mutant
of Drosophila. The light-sensitive current in Drosophila photoreceptors is con-
ducted by two Ca2+-permeable channels encoded by the trp and trpl genes [37, 38].
The trp mutant is characterized by transient, rather than sustained, light-sensitive
depolarization due to Na+ and Ca2+ influx [39]. Later on, Drosophila TRP chan-
nels were shown to be gated by diacylglycerol (DAG) or a metabolic byproduct,
synergistically with phosphatidylinositol 4,5-bisphosphate (PIP2) depletion [40].

The identification of mammalian homologues of Drosophila TRP channels raised
interest in TRP proteins as candidates for Ca2+ entry channels. The first mam-
malian TRP protein, TRPC1, was identified in 1995 in human [41, 42] and mouse
[43]. Since their identification, a number of TRP proteins have been found, which
are grouped into seven major subfamilies: four are closely related to Drosophila
TRP (TRPC, TRPV, TRPA and TRPM), two more distantly related subfamilies
(TRPP and TRPML), and finally the TRPN group expressed so far only in fish,
flies and worms [44]. The canonical TRP (TRPC) subfamily comprises seven mem-
bers (TRPC1–TRPC7, which, in turn, can be divided into four groups: TRPC1,
TRPC2, TRPC3/6/7 and TRPC4/5), the vanilloid TRP subfamily (TRPV) consists
of six members (TRPV1–TRPV6), the TRPA (ankyrin) subfamily includes only one
mammalian member, TRPA1, and the melastatin TRP subfamily (TRPM) groups
eight different channels (TRPM1–TRPM8). The TRPP (polycystin) and the TRPML
(mucolipin) subfamilies include three channel members each, and finally, the TRPN
has no mammalian members [45].

All members of the TRP family share a common architecture: they are pro-
teins that contain six transmembrane domains, with different cytoplasmic N- and
C-termini depending on the subfamily, and a pore loop region between the trans-
membrane domains 5 and 6 [46]. Many TRP proteins possess long N-terminal
regions with several protein–protein interaction domains known as ankyrin repeats,
a coiled coil region, and a putative caveolin-binding domain. On the other hand, the
C-terminus includes the TRP signature motif (EWKFAR), a proline-rich motif and
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different functional regions that facilitate their interaction with calmodulin or inos-
itol 1,4,5-trisphosphate (IP3) receptor [47–49]. For further information concerning
the structure of TRP proteins the reader is referred to Chapter 1.

As reported above, most TRP channels are nonselective for monovalent and
divalent cations with Ca2+:Na+ permeability ratios <10 [50]. There are a number
of exceptions, such as TRPM4 and TRPM5, which are selective for monovalent
cations, and TRPV5 and TRPV6, which have a Ca2+:Na+ permeability ratio > 100.
Among the TRP channels expressed in mammals, the role of the TRPC subfamily
members on agonist-evoked Ca2+ entry has focused much attention, and, therefore,
this review present an overview of the mechanisms involved in the participation of
TRPC in Ca2+ entry.

The TRPC members form Ca2+-permeable cation channels and have been pre-
sented as candidate subunits for the channels conducting both SOCE and ROCE [30,
35, 51–53]. By means of different experimental manoeuvres, from gene inactivation
to gene expression silencing using siRNA or shRNA and the use of neutralizing anti-
bodies, all the members of the TRPC family have been reported to be activated by
store depletion or to be involved in SOCE both in excitable and non-excitable cells,
including TRPC1 [32, 34, 35, 54], TRPC2 [55], TRPC3 [56, 57], TRPC4 [58, 59],
TRPC5 [59, 60], TRPC6 [61–63] and TRPC7 [64]. However, the participation of
TRPCs in SOCE depends on special circumstances, such as the expression level.
Thus, at low expression levels TRPCs are activated by depletion of the intracellu-
lar Ca2+ stores, while at relatively high levels of expression TRPCs are not longer
sensitive to store depletion but activated by phospholipase C (PLC) or its metabo-
lites [56]. Furthermore, it has been reported that TRPC channels might participate
in SOCE or ROCE in the same cell type depending on their mode of expression. In
HEK-293 cells, TRPC7 is activated by PLC-stimulating agonists and not by Ca2+

store discharge when transiently expressed; in contrast, stably expressed TRPC7
gating can be regulated by either Ca2+ stores or PLC activation [64]. Although the
reason for this phenomenon has not been determined it might be attributed to the
association of TRPC proteins with regulatory subunits that confer store depletion
or receptor sensitivity and then participation in SOCE or ROCE. The identification
of STIM1 and Orai1 as essential components of SOCE may uncover the mecha-
nism underlying the participation of TRPC subunits in SOCE or ROCE, as reported
below.

23.3 STIM and Orai Proteins

Probably one of the most significant advances occurred in the last 5 years on
the intracellular Ca2+ homeostasis has been, together with the determination of
the structure of Orai, demonstrating that STIM1 is the ER sensor that report its
Ca2+ filling state, essential for Ca2+ store depletion-triggered Ca2+ influx across de
plasma membrane. Although two single transmembrane-spanning domain stromal
interaction molecules with no known catalytic activity (human STIM1 and STIM2
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containing 685 and 833 amino acids, respectively, and differing primarily in the
lengths of their N- and C-terminal tails) have been described, STIM1 is the most
interesting for the purposes of this chapter as it was found to act not only as a sen-
sor within the stores [17, 18, 65] but also to play a role in the plasma membrane
[17, 20] to activate ICRAC.

From a structural point of view, STIM1 is a Ca2+-binding protein (within either
the ER lumen or extracellular space) that includes a number of functional domains
described in Table 23.1. Both STIM1 and STIM2 can be phosphorylated predomi-
nantly on serine and threonine residues. In addition, STIM1 contains an additional
N-linked glycosylation site within the SAM domain itself [66]. STIM1 has been
reported to be expressed at the cell surface, as well as in the ER membrane, while
STIM2 is expressed only intracellularly, likely reflecting an ER-retention signal
(KKXX) present in STIM2 but not in STIM1 [67].

Knockdown of STIM1 by siRNA or functional knockdown of STIM1 by electro-
transjection of neutralizing antibodies reduces SOCE in different cell types [20, 68]
and ICRAC in Jurkat T cells [20]. Evidence supporting the role of STIM1 in SOCE
reports that mutation of the Ca2+-binding EF-hand domain of STIM1 leads to con-
stitutive SOC channel activation, and subsequent entry of Ca2+ into the cytoplasm,
even without any detectable change in the content of the Ca2+ stores [17].

It is noteworthy to mention that, in addition to its role as an ER Ca2+ sensor,
STIM1 has been found in the plasma membrane in a number of cells, expressing
the EF-hand domain in the cell surface and acting as an extracellular Ca2+ sensor,
where it has been demonstrated to modulate the operation of CRAC and SOC chan-
nels. External application of an antibody addressed towards the STIM1 N-terminal
EF-hand region has been reported to block both CRAC channels in hematopoietic
cells and SOC channels in HEK293 cells [20]. In addition, external application
of the anti-STIM1 antibody blocks the inhibition of SOCE induced by increasing
extracellular Ca2+ concentrations in human platelets, revealing a role for plasma
membrane-resident STIM1 in the modulation of SOCE by extracellular Ca2+, prob-
ably through its interaction with Ca2+ channel subunits such as Orai1 [19]. The
pool of STIM1 that resides in the plasma membrane has also been reported to
play a key role in other mechanisms of Ca2+ entry different from SOCE, such as
the store-independent, arachidonic acid-activated, ARC channels, which show high
Ca2+-selectivity and low conductance and co-exist with CRAC channels [69].

In the 2006, Vig and co-workers demonstrated that the Ca2+ release-activated
Ca2+ channel protein 1 (CRACM1) is a plasma membrane protein essential for
SOCE. Although overexpression of the CRACM1 did not affect CRAC cur-
rents, RNAi-mediated knockdown disrupted its activation. Also, they reported that
CRACM1 could be the CRAC channel itself, a subunit of it, or a component of the
CRAC signalling machinery [22]. Few months later, the same group demonstrated
that STIM1 and CRACM1 interact functionally; the overexpression of both proteins
greatly potentiated ICRAC, suggesting that STIM1 and CRACM1 mutually limit
store-operated currents and that CRACM1 may be the long-sought CRAC channel
[70]. Today, CRACM1 is best known for the romantic name of Orai1 (in Greek
mythology, the “Orai” are the keepers of the gates of heaven). The mammalian
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Table 23.2 Predicted functional domains of Orai1

Region Location Function References

Arginine/proline-rich
region

aa 3–8
aa 28–33
aa 39–47

Orai1 assembly [130, 136]

Arginine/lysin-rich
region

aa 77–88 Orai1 assembly [130, 136]

Transmembrane
regions:
TM1
TM2
TM3
TM4

aa 88–105
aa 118–140
aa 175–197
aa 236–258

Four transmembrane
segments

[130]

Selectivity filter aa 106–114
E190

Pore-forming domain [22, 23, 73]

Coiled-coil region aa 265–294 Involved in
protein-protein
interactions
(STIM1-Orai1
interaction)

[79]

Orai family has two additional homologs, Orai2 and Orai3. Orai proteins share no
homology with any other known ion channel family or cellular proteins.

Orai1, a Ca2+ selective ion channel, is a 301 amino acids protein with four trans-
membrane domains and a number of functional regions depicted in Table 23.2.
Maruyama et al. [71] have purified Orai1 in its tetrameric form and have recon-
structed the three-dimensional structure from electron microscopic images, provid-
ing the first depiction of an Orai family member. According to these authors, Orai1
is a teardrop-shaped molecule 150 Å in height, 95 Å in side length, and 105 Å
diagonally at the widest transmembrane region.

The structure of Orai2 and Orai3 is similar to that of their homolog Orai 1 [72,
73]. All three Orai isoforms constitute Ca2+ selective plasma membrane channels,
whose currents have been shown to be inhibited by extracellular Ca2+ [74]. The three
Orai isoforms can be activated by store depletion when co-expressed with STIM1
although the amplitude of the currents generated are smaller for Orai2 and Orai3,
which might reflect that they interact with STIM1 with less efficiency [75, 76]. Orai
isoforms show slightly different selectivity for Na+ (being Orai3 more permeable for
Na+) and distinct sensitivity to the pharmacological agent 2-aminoethoxydiphenyl
borate (2-APB) [75]. While Orai1 currents are stimulated by low concentra-
tions of 2-APB and abolished by high 2-APB concentrations, Orai2 currents
are only partially sensitive to this inhibitor and Orai3 is stimulated by 2-APB
[75, 77, 78].
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23.4 STIM1-Orai1-TRPC Communication

The nature of the interaction between STIM1 and the plasma membrane Ca2+ chan-
nel subunits is currently under intense investigation by a number of research teams in
order to determine the mechanism underlying the activation of capacitative channels
by STIM1. In 2008, Romanin’s group demonstrated a dynamic interaction between
STIM1 and Orai1 involving the C-termini of both proteins using Forster resonance
energy transfer (FRET) microscopy. Interestingly, the Orai1 R91W mutant associ-
ated to SCID syndrome did not impair the interaction with STIM1 but altered the
activation of Ca2+ currents [79]. The coiled-coil C-terminal domain of STIM1 has
been reported to trigger dimerization of Orai dimers resulting in the formation of
tetrameric Orai1 channels to activate ICRAC [80].

Four research groups have identified in parallel that a cytoplasmic STIM1 region
composed of an ezrin-radixin-moesin domain is essential for the activation of Orai1.
This region has been named SOAR (STIM1 Orai-activating region) [81], OASF
(Orai-activating small fragment) [82], CAD (CRAC-activating domain) [83] and
CCb9 [84]. The four regions, SOAR (including the STIM1 amino acid residues
344–442), OASF (amino acids 233–450/474), CAD (amino acids 342–448) and
CCb9 (amino acids 339–444), are located within STIM1 C-terminus and comprise
two coiled-coil domains and an amino acid sequence that enhances interaction with
Orai1, resulting in increased Ca2+ currents. These studies have reported several fea-
tures of the Orai1-STIM1 interacting region: OASF has been reported to be able to
homomerize by a novel assembly domain that occurred subsequent to the coiled-
coil domains. In addition, STIM1 oligomerization has been shown to be required
for CAD exposure. Furthermore, the SOAR region is able to activate all known
Orai isoforms although with different conductances being greater for Orai1 than for
Orai2 or Orai3 [81, 82].

In addition, a regulatory domain at aminoacids 474–485 of the cytosolic STIM1
region, containing 7 negatively charged residues, known as CMD (CRAC modula-
tory domain)/CDI (Ca2+-dependent inactivation, reported as residues 470–491), has
recently been described. This domain generates a signal that promotes Orai/CRAC
channel closure in a Ca2+ concentration-dependent manner, a process known as fast,
Ca2+-dependent inactivation of the Orai channels [85–87].

The interaction of STIM1 with Orai1, following depletion of the intracellu-
lar Ca2+ stores, results in a conformational change in Orai1, as determined by
FRET, that might be important for CRAC channel activity [88]. FRET analysis
between STIM1-YFP and Orai1-CFP has revealed that STIM1 and Orai1 approach
within 100 Å or less after treatment with thapsigargin to induce store depletion.
Simultaneously, the interaction Orai1-Orai1 is reversibly reduced upon depletion of
the stores or application of extracellular Ca2+, both inducing CRAC channel activa-
tion, thus suggesting that Orai1 is subjected to a conformational rearrangement that
is relevant, although not sufficient, for CRAC channel function [88].

In 2006, Huang and coworkers reported that STIM1 is able to gate TRPC1
[89]. The association of STIM1 with the TRPC proteins has been shown to be
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mediated by the STIM1 ERM domain [89]. More recently, the SOAR region,
which has been shown to interact with Orai1 (see above), has been presented as
the domain that binds to the TRPC channels [90]. The initial studies by Huang
and coworkers reported that the STIM1 K-domain plays an important role in
TRPC1 channel gating, although is not necessary for the interaction between
STIM1 and TRPC1 [89]. Muallem’s team has recently reported that STIM1 gates
TRPC1 through the interaction between two conserved, negatively charged, aspar-
tates in TRPC1 ((639)DD(640)) with the positively charged lysine residues in
STIM1((684)KK(685)) located in the C-terminal polybasic region. Different charge
swapping experiments confirm that STIM1 gates TRPC1 by intermolecular electro-
static interaction [91]. A similar activation mechanism has been reported for TRPC3
mediated by the negatively charged 697 and 698 aspartate residues [91]. However,
STIM1 operates Orai1 by a different mechanism since the C-terminal polybasic and
serine-proline rich region of STIM1 are not required for activation of Orai1 [91].
Functional association between STIM1 and TRPC1 has been reported in a num-
ber of endogenously expressing and transfected cell types, including HEK-293 cells
[89, 92–95], Jurkat T cells [89], human platelets [68], salivary gland cells [96],
mesangial cells [97], mouse pulmonary arterial smooth muscle cells [98], the hep-
atic cell line HL-7702 cells [99] and human parathyroid cells [100]. It is noteworthy
to mention that association of STIM1 with TRPC1 has not been found in HEK-
293 cells co-transfected with both proteins, where STIM1 overexpression has not
reported an increase in the activity of different TRPCs in these cells [101], and vas-
cular smooth muscle cells [102]. The reason of this discrepancy, which might reside
on the different transfection levels or the idiosyncrasy of the cell type, is still unclear
and requires further studies to fully understand.

23.5 Calcium Entry Pathways Mediated by STIM1-Orai1-TRPC
Complexes

The nature of the capacitative channels, as well as the mechanisms that gate them
after Ca2+ stores have been depleted, have been a matter of intense investigation
since the identification of SOCE. One of the earliest hypotheses was formulated
in sea urchin eggs, where inositol 1,3,4,5-tetrakisphosphate (IP4) was suggested to
modulate Ca2+ entry into the IP3-sensitive pool by physical interaction between IP3
and IP4 receptors located in the plasma membrane and the ER membrane, respec-
tively [103, 104]. The role of IP3 receptors in SOCE has been widely investigated
and a relationship between TRP proteins and IP3 receptors has been demonstrated in
different cell types, including HEK 293 cells, where exogenously expressed TRPC3
can be activated by an IP3 receptor-dependent physical coupling mechanism [105],
T3 cells stably expressing epitope-tagged TRPC3 or TRPC6, where IP3 receptor
is detected in TRP immunoprecipitates [106], and human platelets, where endoge-
nously expressed type II IP3 receptor has been found in TRPC1 immunoprecipitates
only after depletion of the intracellular Ca2+ stores and independently of rises in
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[Ca2+]c, which indicates that this interaction is capacitative in nature [107–110].
IP3 receptors, such as the type I IP3 receptor, have also been reported to partici-
pate in agonist-induced, probably non-capacitative, Ca2+ entry by interaction with
TRPC3, the scaffold protein RACK1 (receptor for activated C-kinase-1), STIM1
and Orai1 [111, 112]. However, although the IP3 receptors might play an important
role in agonist-induced Ca2+ entry, they lack Ca2+ sensing capability.

With the identification of STIM1 as the ER Ca2+ sensor, studies concerning the
communication between the ER and the plasma membrane channels focused on this
protein. It is widely accepted that a functional protein-protein interaction between
STIM1 and Orai1 results in the activation of SOCE. STIM1 enhances SOCE when
co-expressed with Orai1 [70, 113, 114], as well as with Orai2 [113] and Orai3
[75, 78], which suggests that these combinations of proteins are sufficient to mediate
the process of SOCE, although with distinct inactivation profiles and permeabil-
ity properties. Special attention has been focused on the study of the interaction
between STIM1 and Orai1. In HEK-293 cells, which show significant SOCE while
the level of endogenous CRAC is extremely low, expression of Orai1 alone clearly
reduced SOCE; however, when co-expressed with STIM1, Orai1 induces a dramatic
gain in the amount of SOCE [114]. The inhibition of SOCE by Orai1 overexpres-
sion suggests that an adequate stoichiometrical relationship between STIM1 and
Orai1 is necessary for this process [114]. Consistent with this, store depletion has
been reported to lead to aggregation and translocation of STIM1 in close apposition
to the plasma membrane in order to recruit Orai1 and assemble functional units of
CRAC channels in a stoichiometric manner [115]. Studies based on electrophysiol-
ogy, single-molecule fluorescence bleaching methods and FRET have demonstrated
that the CRAC channels are formed by four Orai1 monomers assembled to form
a tetrameric structure, which is associated to two STIM1 molecules [24, 80, 116]
(Fig. 23.1). However, it remains unclear whether this is the only configuration that
results in CRAC channel activation. In fact, studies in cells expressing Orai1 and
STIM1 at different ratios (from 4:1 to 1:4) have reported that low Orai1:STIM1
ratios results in ICRAC with strong fast Ca2+-dependent inactivation, while high
Orai1:STIM1 ratios produce ICRAC with strong activation at negative potentials. In
addition, the Orai1:STIM1 expression ratio affects Ca2+, Ba2+ and Sr2+ conduc-
tance; thus suggesting that the biophysical properties of the channels formed by
Orai1 depend on the stoichiometry of its interaction with STIM1 [117].

Soon after the identification of STIM1, Huang and coworkers reported that the
cytosolic C-terminus of STIM1 is sufficient to activate TRPC1 channels and SOCE
[89]. The association of STIM1 and TRPC1 has been reported in a number of cell
types and models including human platelets endogenously expressing TRPC1 and
STIM1 [68, 118, 119], rat basophilic leukemia cells [96] or HEK293 cells [120]. In
addition, STIM1 has been reported to associate with other members of the TRPC
family including TRPC2 [93], TRPC4, TRPC5 [92] and TRPC6 [63], although the
interaction with TRPC6 has been challenged by Yuan and coworkers, suggesting
that STIM1 regulates its function indirectly by promoting the heteromultimerization
of TRPC6 with TRPC4 [92]. The direct or indirect association between STIM1 and
TRPC6 observed in human platelets [63] and HEK293 cells [92] might be due to
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Fig. 23.1 Calcium entry into cells across the plasma membrane might occur through a variety of
TRPC-dependent and – independent mechanisms. The Ca2+ selective capacitative current ICRAC
involves the activation of Orai1 forming channels by STIM1. The non-selective capacitative current
ISOC requires the interaction of STIM1 with either TRPC-Orai1 complexes or TRPC containing
channels. Lipid raft domains have been shown to be important for capacitative channel activation.
In the case of ROCE (including second messenger-operated Ca2+ entry) PLC metabolites activates
TRPC containing channels independently of STIM1 and the plasma membrane lipid raft domains.
ROCE, receptor-operated Ca2+ entry, TRPC, canonical transient potential receptor protein; PLC,
phospholipase C; IP3, inositol 1,4,5-trisphosphate; STIM1, stromal interaction molecule 1

the idiosyncrasy of the cells or the different expression of the proteins investigated,
endogenous in human platelets, although whether the interaction between TRPC6
and STIM1 is mediated by TRPC4, or other TRPC family members, has not been
investigated in these cells yet.

Interestingly, the association of STIM1 to TRPC1 has been reported to recruit
TRPC1 into lipid rafts, where TRPC1 functions as a SOC channel, while in the
absence of STIM1, TRPC1 interacts with other TRPC family members resulting
in the formation of receptor-operated Ca2+ (ROC) channels (Fig. 23.1); thus pro-
viding evidence for a role of STIM1 in the regulation of TRPC1 participation
in SOCE or ROCE and highlighting the role of lipid rafts in the modulation of
TRPC1 channel function [121]. Lipid rafts are plasma membrane domains that
contain high concentrations of cholesterol and sphingolipids. Lipid rafts recruit cer-
tain signalling molecules while excluding others. For instance, in human platelets,
only TRPC1, 4 and 5 were found to associate with plasma membrane lipid rafts,
while TRPC3 or TRPC6 were not found in these domains [59]. A number of stud-
ies based on the use of methyl-β-cyclodextrin (MBCD), a compound that forms
soluble complexes with cholesterol and thus deplete membrane cholesterol [122],
have reported that lipid raft domains are essential for the assembly of signalling
complexes, although it should be taken into account that cells might restore the
cholesterol level in the plasma membrane by mobilising cholesterol from intracellu-
lar cholesterol stores [123]. Therefore, MBCD might reduce intracellular cholesterol
levels, and sphingolipids also participate in lipid rafts and might maintain certain
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raft structure [124, 125]. Lipid rafts provide a favourable environment necessary
for clustering of STIM1 at ER-plasma membrane junctions upon store depletion,
facilitating the Ca2+ store-dependent interaction between STIM1 and TRPC1 and
subsequent SOCE [126]. Lipid rafts have also been reported to play a crucial role in
the association between STIM1 and the plasma membrane channel subunits TRPC1
and Orai1 after depletion of the intracellular Ca2+ stores and is also necessary for
thapsigargin-induced Ca2+ entry in human platelets [119].

Recent studies have presented evidence for the existence of functional interac-
tions between Orai1 and TRPCs under the influence of STIM1, and propose that
SOC channels are composed of heteromeric complexes that include TRPCs and Orai
proteins [25, 26, 96] (Fig. 23.1). Knockdown of Orai1 significantly reduces ISOC in
human salivary gland cells [96], where TRPC1 has been demonstrated to be a major
SOC channel subunit [127]. Consistent with this, Orai proteins have been reported
to confer STIM1-mediated store depletion sensitivity to TRPC channels recruiting
TRPC channels for the conduction of SOCE. In HEK293 cells overexpressing store-
depletion insensitive TRPC3 or TRPC6, these TRPCs become sensitive to store
depletion upon expression of exogenous Orai [26]. These observations suggest that
the involvement of Orai proteins in SOCE might be well explained either by a model
in which Orai1 are self-contained ion channels activated by STIM1, the proposed
CRAC channel hypothesis [23, 70, 73, 128], or a model in which the SOC channels
are formed by a combination of TRPCs and Orai proteins [26]. In the latter model,
Orai proteins would communicate the information concerning the filling state of the
intracellular Ca2+ stores from STIM, located in the ER, to TRPC proteins located
in the plasma membrane. In support of a role for Orai conferring store-depletion
sensitivity to TRPCs, these complexes have been found in non-transfected cells. In
human platelets endogenously expressing STIM1, Orai1 and TRPC1, where elec-
trotransjection with anti-STIM1 antibody, specific for the EF-hand domain, both
prevented the interaction of STIM1 with hTRPC1 and reduced thapsigargin-evoked
SOCE [68], a functional interaction between STIM1, Orai1 and TRPC1 in the acti-
vation of SOCE has been demonstrated [118]. In these cells, impairment of the
interaction between STIM1 and Orai1, results in disruption of the association of
STIM1 and TRPC1, and subsequently alters the behaviour of TRPC1 being no
longer involved in SOCE but in ROCE mediated by DAG [118]. Similar results
have been observed for TRPC6, in human platelets naturally expressing TRPC6 we
have found that the participation of TRPC6 in SOCE or ROCE is regulated through
its interaction with the Orai1-STIM1 complex or hTRPC3, respectively, in human
platelets [63]; thus STIM1 located in the ER functions as a switch that commu-
nicates the filling state of the stores to SOC channels, involving TRPC proteins,
through Orai1.

Interestingly, a number of reports have strongly suggested that Orai and TRPC
proteins might form complexes that participate both in SOCE and ROCE. A study
has reported that expression of Orai1, under experimental conditions that enhance
SOCE, leads to the activation of ROCE. In addition, the R91W Orai1 mutant,
responsible for SCID, has been shown to block both SOCE and DAG-activated
ROCE into cells that, stably or transiently, express TRPC3 proteins [27]. To
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integrate these results with current data concerning Orai, TRPCs and STIM, it has
been postulated that Orai-TRPC complexes recruited to lipid rafts mediate SOCE,
whereas the same complexes mediate ROCE when they are outside of lipid rafts
[27], which is consistent with previous studies reporting a role for lipid rafts in
the modulation of TRPC function by STIM1 [121]. Therefore, there is a body of
evidence supporting that TRPCs might be involved in the formation of ion chan-
nels responsible for ROCE or SOCE by receiving information from either PLC
or STIM1-Orai, respectively [25–27, 63, 118, 120]. The activation of TRPCs by
STIM1 has been challenged in a recent study, although, as reported by the authors,
more complex combinations of STIM1, Orai1 and TRPCs, as described in Cheng
et al. [120], Jardin et al. [63, 118] and Liao et al. [25–27] have not been addressed
in that study [101]. Despite the current knowledge concerning Orai-TRPCs-STIM
interactions, further studies are required to describe more accurately the molecular
composition of the channels mediating SOCE and ROCE and to clarify whether the
channel components are the same when Orai-TRPC complexes mediate ROCE or
SOCE.
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