Chapter 3

Balancing-Related Model Reduction

of Circuit Equations Using Topological
Structure

Tatjana Stykel

Abstract In recent years, model order reduction has been recognized to be a
powerful tool in analysis and simulation of integrated circuits. We consider
balancing-related model reduction methods for differential-algebraic equations
arising in circuit simulation. We show how positive real and bounded real bal-
anced truncation can be used for passivity-preserving model reduction of circuit
equations. These methods are based on balancing the solutions of projected Lur’e
or Riccati matrix equations and admit computable error bounds. We also discuss
efficient algorithms for solving such matrix equations that exploit the topological
structure of circuit equations. Numerical experiments demonstrate the perfor-
mance of the presented model reduction methods.

Keywords Model reduction - Balanced truncation - Circiut equations - Passivity -
Matrix equations

3.1 Introduction

Modern integrated circuits have hundreds of millions of semiconductor devices
whose feature size is nowadays reaching the nanometer range. These devices are
placed on several layers and interconnected to each other by wires. Due to
increased packing density and interconnect length, modelling of thermal and
electromagnetic effects is highly required in order to verify that the heat con-
duction and internal electromagnetic field do not disturb signal propagation.
Design of VLSI circuits with distributed elements is no longer possible without
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computer simulations that involve numerical solution of coupled systems of partial
differential equations and differential-algebraic equations (DAEs). After spatial
discretization, such systems have very large state space dimension that makes the
analysis and simulations unacceptably time consuming and expensive. In this
context, model order reduction is of great importance.

A general idea of model order reduction is to approximate the large-scale system
by a much smaller model that captures the input—output behavior of the original
system to a required accuracy and also preserves essential physical properties such
as stability and passivity. Many different model reduction approaches have been
developed in computational fluid dynamics, control design and electrical and
mechanical engineering, see [2, 15, 70] for recent books on this topic. One of the
most used model reduction techniques in circuit simulation is moment matching
approximation based on Krylov subspace methods, e.g., [4, 30, 38]. Although these
methods are efficient for very large sparse problems, the resulting reduced-order
systems have only locally good approximation properties. Another drawback of
the moment matching methods is that stability and passivity are not necessarily
preserved in the reduced-order models, so that usually post-processing is needed
to realize these properties. Recently, passivity-preserving model reduction
methods based on Krylov subspaces have been developed for structured systems
arising in circuit simulation [31, 33, 45, 56] and also for general systems [3, 28,
41, 72]. However, none of these methods provides computable global error
bounds.

Balanced truncation is another model reduction approach commonly used in
control design. In order to capture specific system properties, different balancing
techniques have been developed in the last thirty years for standard state space
systems [26, 39, 53, 55, 60, 77] and also for DAEs [7, 14, 59, 63, 74]. In particular,
passivity-preserving balanced truncation has been considered in [9, 13, 60, 63-65, §83].
An important property of balancing-related model reduction methods is the exis-
tence of computable error bounds. Unfortunately, these methods have a reputation
for being very expensive since they involve solving (projected) Lyapunov and/or
Riccati matrix equations. However, recent developments on iterative methods for
such equations [16, 49, 57, 71, 75] show that balanced truncation methods can also
be applied to large-scale problems.

In this paper, we give a brief survey on model reduction of circuit equations
using balanced truncation and its relatives. In Sect. 3.2, we present some basic
foundations from graph theory and network analysis required in the following.
In Sect. 3.3, the balanced truncation model reduction approach for DAEs is
described. Passivity-preserving model reduction methods for circuit equations
based on positive real and bounded real balanced truncation are also considered. In
Sect. 3.4, we discuss numerical solution of projected Lyapunov and Riccati
equations with large-scale matrix coefficients. Section 3.5 contains some results of
numerical experiments demonstrating the efficiency of the balancing-related
model reduction techniques.

Throughout the paper, R™" and C"" denote the spaces of n x m real and
complex matrices, respectively. The open left and right half-planes are denoted by
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C_ and C,, respectively, and i = v/—1. The matrices A” and A™ denote, respec-
tively, the transpose and the conjugate transpose of A € C*™, and A~T = (A~1)".
An identity matrix of order n is denoted by I, or simply by I. We use rank(A) and
ker(A) for the rank and the kernel of A, respectively. A matrix A € C"" is positive
definite (semidefinite), if v'Av > 0 (v*Av >0) for all non-zero v € C". Note that
positive (semi)definiteness of A does not require A to be Hermitian. For
A,B € C"", we write A > B (A>B) if A — B is positive definite (semidefinite).

3.2 Circuit Equations

In this section, we briefly describe the formulation of linear RLC circuits via DAEs
and discuss their properties. For more details on graph theory and network anal-
ysis, we refer to [1, 22, 44, 79].

A general electrical circuit can be modelled as a directed graph & = (9t,B)
whose vertices 1, € N correspond to the nodes of the circuit and whose edges
(branches) by, 4, = (1, k,) € B correspond to the circuit elements like capacitors,
inductors and resistors. For the ordered pair by, x, = (M, , M, ), We say that by, 1
leaves 1y, and enters 1y,. An alternating sequence (1 , by, ey, -, br 1)
of vertices and edges in ® is called a path connecting 1y, and 1y if bk/. = (nkj., nk/H>
and 1y, # ny, for 2 <i<j<s. Apathis closed if 1, and 1y are the same, and open if
they are different. A closed path is called a loop. A graph ® is called connected if for
every two vertices there exists an open path connecting them. A cutset is a set of
edges of a connected graph whose removal disconnects the graph, and this set is
minimal with this property. A subgraph of the graph ® is called a tree if it has all
nodes of ®, is connected and does not contain loops.

Any directed graph ® = (9, B) with N = {ny,...,n, 41} and B = {by,...,b,,}
can be described by an incidence matrix Ag = [ay] € R+ defined as

1 if edge b; leaves vertex 1,
ay =< —1 if edge b, enters vertex 1y,
0 otherwise.

In a connected graph, any n, rows of A are linearly independent. Thus, deleting
any row from A, yields a full rank matrix A € R™" known as reduced incidence
matrix. For circuits, the deleted row corresponds to a reference (or grounding)
node.

We now consider a general linear RLC circuit that contains linear resistors,
inductors, capacitors, independent voltage sources and independent current sour-
ces only. Such circuits are often used to model the interconnects, transmission
lines and pin packages in VLSI networks. They arise also in the linearization of
nonlinear circuit equations around DC operating points. RLC circuits are com-
pletely described by the graph-theoretic relations like Kirchhoff’s current and
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voltage laws together with the branch constitutive relations that characterize the
circuit elements. Kirchhoff’s current law states that the sum of the currents along
all edges leaving and entering any circuit node is zero. Kirchhoff’s voltage law
states that the sum of the voltages along the branches of any loop is zero. Let
J= Rt 01" € R™ and v = [vh,vE v WD vITT € R™ denote the vectors
of branch currents and branch voltages, respectively, and let the reduced incidence
matrix A = [Ag,Ac,AL,Ay,A[] be partitioned accordingly, where the subscripts
R, C, L,V and I stand for resistors, capacitors, inductors, voltage sources and
current sources, respectively. Then Kirchhoff’s current and voltage laws can be

expressed in the compact form as
Aj=0, ATp=v, (3.1)

respectively, where n € R™ denotes the vector of potentials of all nodes excepting
the reference node.

The branch constitutive relations for the linear capacitors, inductors and
resistors are given by

C%vc(t) e, i) = adijL(t), () = Rjx(t),  (3.2)
where C € R"" £ € R™™ and R € R"" are the capacitance, inductance and
resistance matrices, respectively. These matrices are often diagonal and their
diagonal entries are the capacitances, inductances and resistances of the capacitors,
resistors and inductors, respectively. However, the diagonal structure gets lost in
case of mutually coupled elements. If R and £ are nonsingular, then G = R ! and
S = £ are the conductance and susceptance matrices, respectively.

Using relations (3.1) and (3.2), the behaviour of a linear RLC circuit can be
described via modified nodal analysis (MNA) [79] by the following system of
DAEs

33
¥(t) = Cx(t) + Du(t), (3:3)
where
AcCAL 0 0 —ARGAY —A;, —Ay
E= 0 L 0|, A= AT 0 0 |,

0 0 0 AT 0 0 (3.4)

-AT 0 0

:[ ! }:BT, D=0,
0o 0 —-I



3 Balancing-Related Model Reduction of Circuit Equations 57

The number of state variables n = n,, + n; + ny is called the order of system (3.3),
and m = n; + ny is the number of inputs and outputs. In the following we will
assume that the circuit is well-posed in the sense that it has neither V-loops nor
I-cutsets. These assumptions can be written in terms of the incidence matrices as
follows:

(A1) The matrix Ay has full column rank, i.e., rank(Ay) = ny.

(A2) Thematrix Acigry = [Ac,Ar,Ar,Av]hasfullrowrank,i.e., rank(Acrryv) = ny.
We will also assume that

(A3) C, G and L are positive definite.

Assumptions (A1)—(A3) together guarantee that the matrix pencil AE — A is
regular, i.e., det(AE — A) # 0 for some A € C, see [32]. In this case, we can
define a transfer matrix G(s) = C(sE — A)le + D that describes the input—
output relation of (3.3) in the frequency domain. The transfer function G is called
proper if lim,_,», G(s) <oo, and improper, otherwise. If lim,_.., G(s) = 0, then
G is called strictly proper.

Any regular pencil AE — A can be reduced into the Weierstrass canonical form

E:Tl[lg EO }T,, A=T, {f(‘)f IO }T,, (3.5)

Neo

where T; and T, are the left and right nonsingular transformation matrices, and £,
is nilpotent with index of nilpotency u, see [34]. The eigenvalues of A, are the
finite eigenvalues of AE — A, and E, corresponds to an eigenvalue at infinity. The
number y is called the index of AE — A and also of the DAE system (3.3). Index
concept plays an important role in the analysis and numerical solution of DAEs,
e.g., [19, 20, 37, 46, 67]. The following proposition characterizes the index of the
MNA equations (3.3), (3.4).

Proposition 1 [27] Let E and A be as in (3.4) and let (A1)—(A3) be fulfilled.

1. The index of the pencil AE — A is at most two.
2. The index of AE — A is equal to zero if and only if

ny =0, rank(A¢c) =n,. (3.6)
3. The index of AE — A is equal to one if and only if
rank(QLAy) = ny, rank[Ac,Ag,Ay] = n,, (3.7)
where Qc is a projector onto ker(AL).

Considering the topological structure of the circuit, the conditions (3.6) imply
that the circuit does not contain voltage sources and the circuit graph contains a
capacitive tree. Furthermore, the first condition in (3.7) implies that the circuit



58 T. Stykel

does not contain CV-loops except for C-loops, whereas the second condition in
(3.7) means that the circuit does not contain LI-cutsets.

Using the Weierstrass canonical form (3.5), the MNA system (3.3), (3.4) can be
decoupled into the slow subsystem

k1 (1) = Apxy (1) + Brul(t), (3.8a)
yi(1) = G (1), (3.8b)
and the fast subsystem
Esoia(t) = x3(t) + Boou(2), (3.92)
y2(t) = Cooxa(1), (3.9b)

where Tx(t) = [(x1(1))", (x2(1))"]", ¥(1) = y1(£) +2(r) and

By

-1
T7'B= [Boc

], CT, ' =[Gy, Cul- (3.10)
Equation 3.8a with the initial condition x;(0) = x{ has a unique solution
t
xi(t) = e + / e Bu(t)dt
0

for any integrable input u and any initial vector x! € R". Since the index u of
system (3.3), (3.4) does not exceed two, a unique solution of Eq. (3.9a) is given by

X(t) = —Boot(t) — EcoBoolit(1).

This representation shows that for the existence of a continuously differentiable
solution x of (3.3), (3.4), it is necessary that the input function u is u times
continuously differentiable. Moreover, the initial condition x(0) = xy has to be

consistent, i.e., xo = T '[(x9)", (x9)]" must satisfy
X3 = —Boou(0) — EoByoit(0).

If the initial vector x is inconsistent or the input « is not sufficiently smooth, then
the solution of the MNA system (3.3), (3.4) may have impulsive modes [20].

3.2.1 Stability

Stability is a qualitative property of dynamical systems which describes the
behaviour of their solutions under small perturbations in the initial data. For the
linear time-invariant DAE system (3.3), stability can be characterized in terms of
the finite eigenvalues of the pencil AE — A, e.g., [24]. System (3.3) is stable if all
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the finite eigenvalues of AE — A lie in the closed left half-plane and the eigen-
values on the imaginary axis are semi-simple, i.e., they have the same algebraic
and geometric multiplicity. System (3.3) is asymptotically stable if the pencil
AE — A'is c-stable, i.e., all its finite eigenvalues lie in the open left half-plane. The
following proposition gives the topological conditions for the asymptotic stability
of the MNA equations (3.3), (3.4).

Proposition 2 [66] Let the matrices E and A be as in (3.4) and let (A1)—(A3) be
fulfilled. Assume that C and L are symmetric and one of the following two pairs of
topological conditions holds:

1. rank[A;, Ay| = ny +ny, rank[Ag,Ay] =n,, (3.11)

2. rank[Ac, AL, Av] = nc +np +ny, rank[A;,Ag,Ay] = n,. (3.12)
Then the MNA system (3.3), (3.4) is asymptotically stable.

Conditions (3.11) are equivalent to the absence of LV-loops and CLI-cutsets
(except maybe for LI-cutsets), whereas (3.12) implies that the circuit does not
contain CLV-loops (except maybe for CV-loops) and Cl-cutsets.

If system (3.3) is asymptotically stable, then the H,-norm of its transfer
function G is defined as [|G|ly_ = sup,cg [|G(iw)||, where ||| denotes the
spectral matrix norm.

3.2.2 Passivity and Positive Realness

Passivity is a most basic property of circuit equations. Generally speaking, pas-
sivity means that the system does not produce energy. More precisely, system (3.3)
is passive if

t
/u(r)Ty(r)dTZO (3.13)
0
for all >0 and all admissible u such that uy is locally integrable. For a circuit

element with a voltage v and a current j, condition (3.13) implies that the storage
energy of this element defined as

is always nonnegative. Thus, capacitors, resistors and inductors with nonnegative
element values are passive. Furthermore, interconnection of a finite number of
passive circuit components yields a passive network [1].
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It is well known in network theory [1] that the DAE system (3.3) is passive if
and only if its transfer function G(s) = C(sE — A)_IB + D is positive real, i.e.,
G is analytic in C; and G(s) + G(s)" >0 for all s € C,. Using the Weierstrass
canonical form (3.5) and (3.10), the transfer function of (3.3) can be additively
decomposed as

G(s) = Gy(s) + Mo +sMy +--- + Sﬂian—la

where Gy, (s) = Cy(sI — Af)lef is the strictly proper part of G, My = D — Cy B,
and M, = —COOE’;OBoo for k > 1. One can show that G is positive real if and only if
its proper part G, (s) = Gy, (s) + M is positive real, M; = M; >0 and M, = 0 for
k> 1, see [1].

The following proposition gives sufficient conditions for system (3.3), (3.4) to
be stable and passive.

Proposition 3 If Assumptions (A1)—(A3) are fulfilled and the matrices C and L
are symmetric, then the MNA system (3.3), (3.4) is stable and passive.

Proof The facts that the pencil AE — A in (3.4) has no finite eigenvalues in C
and the transfer function G(s) = C(sE — A)"'B of (3.3), (3.4) is positive real have
been proved in [61, 66], respectively. Analogously, we can show that (sE — A)™"
is also positive real. Hence, the purely imaginary eigenvalues of AE — A are semi-
simple [1, Theorem 2.7.2]. Thus, the MNA system (3.3), (3.4) is stable and
passive. O

3.2.3 Contractivity and Bounded Realness

An important class of dynamical systems are contractive systems. System (3.3) is
called contractive if

/ot(lu(f)l2 — Iy@)|*)dz =0 (3.14)

for all £ >0 and all admissible u such that # and y are both square integrable. The
integral in (3.14) expresses the difference between the input and output energy of
the system. One can show that (3.3) is contractive if and only if its transfer
function G is bounded real, i.e., G is analytic in C; and I — G(s)"G(s) > 0 for all
s € C,, see [1]. For the asymptotically stable system (3.3), contractivity is
equivalent to the condition ||G||y_ <1 that justifies the name ‘contractive’. Note
that the bounded real transfer function is necessarily proper.

Positive real and bounded real square transfer functions are related to each other
via a Moebius transformation defined as

M(G)(s) = (I — G(s))(I + G(s)) .
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The transfer function G is positive real if and only if the Moebius-transformed
function G(s) = .#(G)(s) is bounded real [1]. For system (3.3) with nonsingular
I + D, the function G(s) can be represented as G(s) = C(sE — A)™'B + D, where

E=E, A=A-B(I+D)'C, B=-V2B(I+D)",
C=V2(+D)'c, D=(I-D)I+D)".

For the MNA matrices as in (3.4), we have

AcCAL 0 0 —ARGAL — A AT —A, —Ay
E= 0 L 0|, A= AT 0 0 |,
0 0 0 AT 0 I (3.15)
A 0
B=v2|0 0o|==-C", D=1
0 I

It has been shown in [64] that under Assumptions (A1)—(A3) the pencil JE—Ain
(3.15) is of index at most two. It is equal to one if and only if
rank[Ac,Ag,A;,Ay] = n,,. This condition means that the circuit does not contain
L-cutsets.

3.2.4 Reciprocity

Another relevant property of circuit equations is reciprocity. We call a matrix
S € R™™ a signature if S is diagonal and % = I,,. System (3.3) is reciprocal with
an external signature S € R™™ if its transfer function satisfies G(s) =

SextG(s)TSext for all s € C. The following proposition shows that the symmetry of
C, £ and G guarantees the reciprocity of system (3.3), (3.4).

Proposition 4 [62] Let Assumptions (A1)—(A3) be fulfilled and let the matrices C,
L and G be symmetric. Then the MNA system (3.3), (3.4) is reciprocal with the
external signature Sex, = diag(Ly,, —I,).

3.3 Balancing-Related Model Reduction

The aim of model order reduction for circuit equations is to approximate the DAE
system (3.3), (3.4) with a reduced-order model

Uic(r) = Zfif(t) + ffu(t)» (3.16)
y(t) = Cx(1) + Du(t),
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where E,A e R, Be RY, C e R™, D € R™" and ¢ < n. It is required for the
approximate system (3.16) to preserve physical properties like stability, passivity
and reciprocity. Such a system can then be synthesized as an electrical circuit in an
standard netlist format, e.g., [62, 84] and Chap. 12 of this volume, that is often
required in the industrial circuit simulators. It is also important to have a small
approximation error j —y or G — G, where G(s) = C(sE —A) 'B+D. In the
ideal case, we would like to have a computable error bound that allows us to
approximate (3.3) to a given accuracy and makes model reduction fully automatic.

Most of the model reduction methods for linear dynamical systems are based on
the projection of the system onto lower dimensional subspaces. In this case, the
system matrices of the reduced-order model (3.16) have the form

E=WTET, A=WTAT, B=W'B, C=CT, (3.17)

where the projection matrices W, T € R™ determine the subspaces of interest. For
example, in modal model reduction the columns of W and T span, respectively, the
left and right deflating subspaces of the pencil AE — A corresponding to the
dominant eigenvalues, e.g., [25, 50]. In the moment matching approximation, one
chooses the projection matrices W and T whose columns form the bases of certain
Krylov subspaces associated with (3.3), e.g., [4, 30].

3.3.1 Balanced Truncation Model Reduction

Balanced truncation also belongs to the projection-based model reduction tech-
niques. This method consists in transforming the dynamical system into a balanced
form whose controllability and observability Gramians are both equal to a diagonal
matrix. Then a reduced-order model (3.16), (3.17) is obtained by projecting (3.3)
onto the subspaces corresponding to the dominant diagonal elements of the bal-
anced Gramians. This idea goes back to [54] and has been extended over the years
in different directions by many authors, e.g., [11, 14, 26, 35, 39, 52, 53, 55, 58, 60,
74, 77].

For standard state space systems with E = [, the balanced truncation model
reduction method makes use of the dual Lyapunov equations

AG, +GA" = -BB", A'G,+G,A=-C"C.

If all eigenvalues of the matrix A have negative real part, then these equations have
unique symmetric, positive semidefinite solutions G. and G, known as the con-
trollability and observability Gramians, respectively. One can show that all
eigenvalues of the product G.G, are real and nonnegative. The square roots of
these eigenvalues, denoted by o;, are called the Hankel singular values of system
(3.3) with E = I. Such a system is balanced if G. = G, = diag(o1, . ..,a,). If the
system is controllable and observable, then the Gramians G. and G, are both
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positive definite. In this case, there exists a balancing state space transformation
such that the Gramians of the transformed system become equal and diagonal with
the Hankel singular values on the diagonal. Then the reduced-order model is
obtained by truncating the states corresponding to the small Hankel singular
values. Such states are simultaneously difficult to reach and to observe, since they
have a small impact on the energy transfer from input to output, see [35, 53] for
details.

The balanced truncation model reduction approach can be extended to system
(3.3) with E # I If E is nonsingular, then the Gramians are defined as unique
symmetric, positive semidefinite solutions of the generalized Lyapunov equations

AG.ET + EGAT = —-BB", A'G,E+E'G,A=-C"C, (3.18)

provided the pencil AE — A is c-stable. However, for singular E, these equations
cannot be used any more to determine the Gramians for the DAE system (3.3). As
the following example shows, the generalized Lyapunov equations (3.18) with
singular £ may not have solutions even if AE — A is c-stable. Moreover, if the
solutions of (3.18) exist, they are always nonunique, see [73] for detailed
discussions.

Example 1 Consider the simple RL circuit shown in Fig. 3.1. This circuit is
described by the DAE system (3.3) with

00 0 O 0 0 -1 1
00 0 O 0 —-I/R 1 0
E: 3 A: )
00 £ 0 1 -1 0 0
00 0 O -1 0 0 O

B" =10, 0, 0, —1]=C.

The pencil AE — A has only one finite eigenvalue A = —R /L <0. However, the
generalized Lyapunov equations (3.18) are not solvable.

An extension of the balanced truncation method to DAEs based on projected
Lyapunov equations has been presented in [52, 74]. Unlike the standard state space
case, the DAE system (3.3) has two pairs of the Gramians, one pair for the slow
subsystem (3.8a, b) and the other pair for the fast subsystem (3.9a, b). If (3.3) is

Fig. 3.1 A simple RL circuit L

vy
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asymptotically stable, then the proper controllability and observability Gramians
G, and G, of (3.3) are defined as unique symmetric, positive semidefinite

P

solutions of the projected generalized continuous-time Lyapunov equations
EG, A" + AG,.E" = —PBB"P], G, = P,G,.P!, (3.19)
E'G,,A+A'G,,E = —P'C'CP,, G,, =P|G,P, (3.20)

where P, and P, are the spectral projectors onto the left and right deflating sub-
spaces of the pencil AE — A corresponding to the finite eigenvalues along the left
and right deflating subspaces corresponding to the eigenvalue at infinity. Using the
Weierstrass canonical form (3.5), these projectors can be represented as

1o 1 0],
P =T {o O}T,, P,_T,[O O]T,.

Furthermore, the improper controllability and observability Gramians G;. and G,,
of system (3.3) are defined as unique symmetric, positive semidefinite solutions of
the projected generalized discrete-time Lyapunov equations

AG; A" — EG,.E" = QBB"Q], G, =0,G.0, (3.21)
A"G,A — E'G,,E = 0/ C'CQ,, Gi =0]G,0, (3.22)

where Q; =1 — P; and Q, =1 — P, are the complementary projectors. Note that
unlike generalized Lyapunov equations considered in [42, 48, 76], the existence
and uniqueness results for the projected Lyapunov equations (3.19)—(3.22) can be
stated independently of the index of the pencil AE — A, see [73].

Using the proper and improper Gramians, we can define the proper and improper
Hankel singular values that characterize the importance of state variables in the
slow and fast subsystems (3.8), and (3.9), respectively. Let ns be the dimension of
the deflating subspaces of AE — A corresponding to the finite eigenvalues. Then
the proper Hankel singular values ¢; of system (3.3) are defined as the square roots
of the largest n ;eigenvalues of the matrix GycE"G,,E, and the improper Hankel
singular values 0; are defined as the square roots of the largest n,, =n—ny
eigenvalues of the matrix G;.A”G;,A. We assume that the proper and improper
Hankel singular values are ordered decreasingly. System (3.3) is balanced if the
Gramians satisfy

Gpe = Gy, = diag(Z,0) with X = diag(oy,...,q,),
Gic = G;, = diag(0,0) with O =diag(6,,...,0..).

States of the balanced system corresponding to the small proper Hankel singular
values are less involved in the energy transfer from inputs to outputs, and,
therefore, they can be truncated without changing the system properties
significantly. Furthermore, we can remove the states of the balanced system
corresponding to the zero improper Hankel singular values. Such states are
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uncontrollable and unobservable at infinity and do not influence the input—output
relation. However, if we truncate the states that correspond to the non-zero
improper Hankel singular values, even if they are small, then the approximation
may be inaccurate. These states are subject to constraints, and their elimination
may lead to undesirable disturbances in the approximate system and physically
meaningless results.

Example 2 Consider the DAE system (3.3) with

010 10 0.04
E=1|0 0 1|, A=L, B=|01|, c'=| 30 |. (3.23)
0 00 0 1

Since E is nilpotent, this system has only the improper Hankel singular values
given by 0; =34, 0, =4.7 x 1079, 05 = 0. The truncation of the state corre-
sponding to the Hankel singular value 63 = O results in the reduced-order model

[ 1.18 1.18};0) {103 0 ]N([)Jr{ 1.84 x 10° } 1)
x(t) = X u(t),
—1.18 —1.18 0 10° 2.25 x 1073

$(r) = [1.84 x 10°, —2.25 x 1073]5(z).

(3.24)

Figure 3.2a shows the output functions of the original and the reduced-order
systems with the input u(¢) = sin(¢). They coincide since both systems have the
same transfer function. However, if we truncate one more state corresponding to
the second Hankel singular value, which is relatively small, we obtain the standard
state space system

X(t) = 850%(t) + 1567u(t), 3(t) = 1.84%(r). (3.25)

This system is unstable, and, as Fig. 3.2b demonstrates, its output has nothing in
common with the output of the original system.

We summarize the balanced truncation model reduction method for DAEs in
Algorithm 1. For this method, we have the following a priori error bound.

1y =le, <G = Glls, [lu

L, < Z(G/f“ +--+ Jr_t,r)HuH]Lz

that allows an adaptive choice of the order of the approximate model. Furthermore,
the resulting reduced-order system (3.16) is asymptotically stable and its index
does not exceed the index of (3.3). If C, £ and G in (3.4) are symmetric, i.e., (3.3),
(3.4) is reciprocal with the external signature Sex as in Proposition 4, then the
reduced-order model computed by Algorithm 1 is also reciprocal with the same
signature. Unfortunately, the Lyapunov-based balanced truncation method does
not, in general, ensure the preservation of passivity. However, for special reci-
procal circuits such as RC and RL networks, Algorithm 1 can be modified for
computing a passive reduced-order model, see [65] for details.
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Fig. 3.2 a The output functions of the original system (3.3), (3.23) and the reduced-order system
(3.24); b the output of the reduced-order system (3.25). In both cases, the input is u(r) = sin(z)

Algorithm 1 Balanced truncation model reduction for DAE:s.
Given G = (E, A, B, C, D), compute a reduced-order model G = (E,A, B, C, D).

1.

Compute the Cholesky factors R, and L,, of the proper Gramians G,. = RpR; and
Gpo = LpL; that satisfy the projected Lyapunov equations (3.19) and (3.20),
respectively.
Compute the Cholesky factors R; and L; of the improper Gramians G,. = R,-RiT
and G;, = L;L! that satisfy the projected Lyapunov equations (3.21) and (3.22),
respectively.

. Compute the singular value decomposition LTER, = [U}, Us]diag(Z, Z,)[V1, V)"

where the matrices [Uj,U,| and [Vy,V,] have orthonormal columns, X, =
diag(oy,...,04) and X, = diag(oy 11, ..., 0, ).

. Compute the singular value decomposition LTAR; = U;®V!, where U; and V3

have orthonormal columns and ® = diag(6y, ..., 60, ) is nonsingular.

~1/2

with W = [, U2, LUs@ '] and T = [R,ViZ; ', RV;0 7).

3.3.2 Positive Real Balanced Truncation

In this section, we describe passivity-preserving model reduction for general RCL
circuits based on positive real balancing.

Passivity of the DAE system (3.3) can be characterized via the projected

positive real Lur’e equations
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AXE" + EXAT = —-K.K', X =PXP'>0,

3.26
EXC" —PB=—KJ', My+M, =JJ" (3.26)

and

A"YE +E"YA = —K'K,, Y =P/YP;>0,

E'YB - P'CT = —K'J,, My+M}=J"J, (3.27)
with unknowns X € R"", K. R"", J. e R™ and Y e R", K, e R™,
J, € R™™ respectively. Such equations are known in the literature also as
Kalman—Yakubovich—Popov equations [40]. Similarly to [64, Theorem 4.1], one
can show that if the MNA system (3.3), (3.4) is passive, then (3.26) and (3.27) are
solvable. Conversely, solvability of the projected Lur’e equations (3.26) and (3.27)
together with the conditions M| = M IT >0 and M; = 0 for k > 1 implies that (3.3)
is passive.

Remark 1 Note that for a general DAE system, passivity alone does not guarantee
the existence of the solution of the projected Lur’e equations. For such a system, in
addition, R-minimality conditions

rank[AE — A, B] =n, rank[AE" — A" C']=n forall 1€ C
(or other weaker conditions) have to be assumed [23, 29, 47, 62].

The projected Lur’e equations (3.26) and (3.27) have, in general, many sym-
metric solutions X and Y that can be ordered with respect to the Loewner ordering
in the set of symmetric matrices. The minimal solutions X,,, and Y,, that satisfy
0<X, <X and 0<Y,, <Y for all symmetric solutions X and Y of (3.26) and
(3.27), respectively, are called the positive real controllability and observability
Gramians of (3.3). System (3.3) is called positive real balanced if X, = Y,, =
diag(E,0) with E = diag(¢y, ..., &y, ). The values ¢ ordered decreasingly are
called the positive real characteristic values of (3.3). Similarly to Lyapunov-based
balanced truncation, the reduced-order system (3.16) can be computed by pro-
jecting onto the subspaces corresponding to the dominant positive real charac-
teristic values and non-zero improper Hankel singular values. Note that if system
(3.3) has a proper transfer function, then solving the projected discrete-time
Lyapunov equations (3.21) and (3.22) can be avoided. The positive real balanced
truncation method for such a system is summarized in Algorithm 2. It can be
shown that the resulting reduced-order system is passive, and we have the error
bound

16 ~ Gl <2/|(Mo + M)~ [1Goll [Golly (Egs +-+ &) (3:28)

with Gy = G +Mg and Go =G + M, see [9, 63]. Note that this error bound
requires the computation of the H,-norm of G, which is expensive for large-scale
systems. If /;is chosen in Algorithm 2 such that
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4H(M0 +Mg)71H HGOHHx(é@JrI +ee éi@r) < 17

then bound (3.28) can be simplified to

IG — Gllgz, < 4[|(Mo +M5) " [[IGollzz, (Ega + -+ &), (3.29)

where only the evaluation of the H,-norm of the reduced-order system Co is
required.

Algorithm 2 Positive real balanced truncation for DAEs with a proper transfer
function.

1. Compute the matrix My = C(soE — A)lelB + D sy € (0,00).

2. Compute the Cholesky factors R and L of the positive real Gramians X,,, = RR”
and Y, = LL" that are the minimal solutions of the projected positive real
Lur’e equations (3.26) and (3.27).

3. Compute the singular value decomposition LTER = [U;, U,]diag(E;, E,)[V1, V2],
where the matrices [Uj, U,] and [Vy, V,] have orthonormal columns, E; =
diag(&y, ..., &) and Ey = diag(&gi1,- -5 Sny)-

4. Compute the reduced-order system

~ e T B T C D

T

0 0 0 I, B

where W, = LUIEfl/Z, T, = RVlEfl/z, and B, and C, are chosen such that
D — My = C,B,.

If Dy = My + M{ is nonsingular, then the projected Lur’e equations (3.26) and
(3.27) can be written as the projected positive real Riccati equations

AXET + EXAT + (EXCT — PB)D; ' (EXCT — PB)" =0, X =P.XP, (3.30)
ATYE + E"YA + (B"YE — CP,)" Dy (B"YE — CP,) =0, Y =PlyP. (3.31)

The numerical solution of these equations will be discussed in Sect. 3.4.2. The
major difficulty in solving these equations is that the spectral projectors P, and
P, are required. They can be computed by the matrix chain approach from [51].
In the large-scale setting, however, it would be beneficial to have an explicit
representation for P, and P; as it has been done in [75] for some other
structured DAEs arising in computational fluid dynamics and multibody sys-
tems. Such a representation in terms of the incidence matrices is currently
under investigation.
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3.3.3 Passivity-Preserving Model Reduction Via Bounded Real
Balanced Truncation

Another passivity-preserving model reduction approach presented first in [63] is
based on the bounded real balanced truncation model reduction method applied to
the Moebius-transformed system G = M(G) = (E,A,B,C, D) as in (3.15). For
the MNA equations (3.3), (3.4), where G is positive definite and both £ and C are
symmetric and positive definite, it has been shown in [64] that the projected
bounded real Lur’e equations

AXE" + EXA" + PBB' P = ~K.KT, X =PXP >0,

e o e (3.32)
EXC" — PiBMy = ~KJT, 1— Moy = JJ"

and

A'YE+E'YA+ P ¢ CP, = —KTK,, Y =P YP,>0,

ormT v (3.33)
—E'YB+ P C My = —KTJ,, 1— MMy =JT1,

are solvable for X € R* K. e R", J. e R™ and Y € R", K, € R™",
J, € R™™ respectively. Here, P, and P, are the spectral projectors onto the right
and left deflating subspaces of AE —A corresponding to the finite eigenvalues
along the right and left deflating subspaces corresponding to the eigenvalue at
infinity, and M = lim,_ C (sE - A)AB + D. The minimal solutions X, and Y,
satisfying 0 <X, <X and 0<Y,, <Y for all symmetric solutions X and Y of
(3.32) and (3.33), respectively, are called the bounded real controllability and
observability Gramians of system G. This system is bounded real balanced
if Xy =Y, = diag(I',0) with I' = diag(y,,...,7,). The values y; ordered
decreasingly are called the bounded real characteristic values of G. Truncating the
states of G corresponding to small y; and applying the Moebius transformation to
the obtained contractive reduced-order model, we get a passive reduced-order
system G. The resulting passivity-preserving model reduction method for circuit
equations is presented in Algorithm 3. For this method, we have the following a
priori error bound

2
11+ Gllig, (g1 +--+7y)

IG = Gl < ,
He =T —|IT+ Gl (g1 + - +74)

provided || 4+ Glly_ (7441 + -~ +7,) <1, see [63]. Furthermore, if we choose {;
in Algorithm 3 such that 2|7 + GHHw (V441 + -+ +7,) <1, then we obtain the a
posteriori error bound
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IG — Gl <2017 + Gl (v 41+ +7y) (3.34)

that is inexpensive to compute.

Algorithm 3 Passivity-preserving model reduction based on bounded real bal-
anced truncation.
Given passive G = (E, A, B, C,0), compute a reduced-order model

G = (E,A,B,C,0).

1. Compute the Moebius-transformed system G= (E,A,B, C',D) as in (3.15).
2. Compute the matrix My = D + C'(SOE — A)AQ,B for some s¢ € (0,00).
3. Compute the Cholesky factors R and L of the bounded real Gramians

Xy = IAQIA?T and Y, :I:I:T that are the minimal solutions of the projected
bounded real Lur’e equations (3.32) and (3.33).

4. Compute the singular value decomposition L'ER = [U1, Uy)diag(Ty, T2)[Va, VZ]T,
where the matrices [Uy,U,] and [Vi,V,] have orthonormal columns, T’} =
diag(yy, ..., 7,) and I'y = diag(yy 41, -, 7))

5. Compute the reduced-order system

AT A AT A
E:{I 0} Azll DWIAT,  :v2W|BCy

O 0 2 _\/EBZCTI ,21 — Bzéz 7
- WiB _r [T’
B = ~ ) = | .7 )

where W, :I:Ull"l_]/z7 T :RVIFI_W, and B, and C, are chosen such that
I — M() = Csz.
It should be noted that for DAE systems with a proper transfer function,

Algorithms 2 and 3 are equivalent in the sense that they provide reduced-order
models with the same transfer function.

Using the topological structure of circuit equations, the matrix M, and the
projector P, can be computed in explicit form

- | 1-24TQcH;'QRA;  2ATQcH,'QLAy
Mo = T 1T T 1T d (3.35)
—2ATQOcH;'QFA;  —1+2ATQcH, QLAY
Hs(H,H, — 1)  HsH,AHs 0
P, = 0 Hs 0], (3.36)
—Al(H4H, — 1) —ATH4ALHs O
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where

Ho = QF(ArGAL + AjA] + AvAY)Oc + Ok cQriv—c,

Hy = PlgpyPcriv + OrivALSA] Ocriv,

Hy, = ARGA} + AJA] + AvAY, + ALSA] QcrivHy ' Qb gy ALSAT,

Hy = AcCA{ + QCH)Qc,  Hy = QcHy' O,

Hs = QCRIVHlegRIVALSAZ —1, He=1- SA{QCRIVHfIQERIVALa
Ocriv is a projector ontoker([Ac, Az, A1, Av]"),  Periv =1 — Qcriv,

Oriv—_c is a projector onto ker([AR,AI,AV]TQC),

see [64] for details. Furthermore, the left projector is given by i’l = Simf’:tSim, where
Sint = diag(lnﬂ, —1I,,,—I,,) and f’,,, is as P, with G, S and C replaced by G" ST and

cr, respectively. The projectors Qc, Ocry and Qg;v.c can easily be computed in
sparse form using graph search algorithms like breadth-first-search [44]. Although

M and P, look very complex, their computation is inexpensive if the sparsity of the
incidence matrices and Q-projectors is exploited. Due to the space limitation, we
omit detailed discussions.

If the circuit contains neither CVI-loops except for C-loops nor LVI-cutsets
except for L-cutsets, i.e., if rank(QL[A;,Av]) =n;+ny and Qk.[A;,Av] =0,

where Qgc is a projector onto ker([Ag,Ac]"), then both D. =1 —MOMS and

D,=1— MgMO are nonsingular [64], and the projected Lur’e equations (3.32)
and (3.33) can be written as the projected bounded real Riccati equations

AXE" + EXA" +2P,BBTP] + 2(EXC" — P\BI,))D, (EXCT — PBM)" =0,
X = P,XP.,
(3.37)
and
A"YE + E"YA + 2P CTCP, + 2(BYE — M, CP,)"D, " (B'YE — M, CP,) = 0,
Y =P YP,.
(3.38)

The numerical solution of these equations will be considered in Sect. 3.4.2.

3.3.4 Balanced Truncation for Reciprocal Circuit Equations

For reciprocal circuits with symmetric C, £ and G, we can further exploit the
structure of the system matrices in (3.4) in order to reduce the computational



72 T. Stykel

complexity of Algorithms 2 and 3. In the sequel, we consider Algorithm 3 only.
The other one can be modified analogously.

Consider the reciprocal system (3.3), (3.4), where C, £ and G are symmetric.
Then

ET = SintESinta AT = SintASinU BT = SextCSint

with S = diag(l,,, —In,, —In,) and Sex = diag(l,,, —1I,,). Therefore, we have

. T
P; = SintP, Sints (3.39)

- AT

Yo = SiuXorSine = SRR L, = LL'
Since 1" ER = kTSintER and (I — J\A/IO)Sext are both symmetric, the characteristic
values y; and the matrices B, and C, can be determined from the eigenvalue
decompositions of IAQTSimER and (I — MO)Sext instead of a more expensive singular
value decomposition. We summarize the resulting passivity-preserving balanced

truncation method for reciprocal electrical circuits (PABTEC) in Algorithm 4.

Note that this method also preserves reciprocity in the reduced-order model, see
[64].

Algorithm 4 Passivity-preserving balanced truncation for electrical circuits
(PABTECQ).
Given passive G = (E, A, B, C, 0) with the system matrices as in (3.4), com-

pute a reduced-order model G = (E,A,B,C,0).

1. Compute the Cholesky factor R of the bounded real Gramian X, = RR" that is
the minimal solution of the prOJected Lur’e equatlon (3.32), where E, A, B and
C are as in (3.15), the projectors P and Pl are given in (3.36) and (3.39),
respectively, and MO is as in (3.35).

2. Compute the eigenvalue decomposition RIS ER = (U}, Us)diag(Ay, A)[UL, Us)T,
where [U}, Uy] is orthogonal, Ay = diag(/i, ..., 44 ) and Ay =diag(g 11, - - -, Ay)-

3. Compute the eigenvalue decomposition (I — M)Sexe = UgAoUL, where Uy has

orthonormal columns and Ay = diag(il, e im) is nonsingular.
4. Compute the reduced-order system

E_[IO} G _ 1| 2WiaTi V2W(BC,
0 0] —V2B,CT, 21— B,C,y

7 l(chT]
c =\, ,
G, /V2

LT
B: ‘A}VIB )
—By/V2

where
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Wi = SuRUA 2, Ty = RUSIHAT,
By = Sol Ao Ul Ses €2 = Up|Ao|'?,
with
|A1| = diag(|41],- .., |44]), Si = diag(sign(41), ..., sign(2)),
o] = diag([i, - o [im]),  So = diag(sign(ir), - .-, sign(im)).

3.4 Numerical Methods for Matrix Equations

In this section, we consider numerical algorithms for the projected Lyapunov
equations (3.19) and (3.20) and the projected Riccati equations (3.30), (3.31) and
(3.37), (3.38) developed in [10, 75]. In practice, the numerical rank of the solutions
of these equations is often much smaller than the dimension of the problem. Then
such solutions can be well approximated by low-rank matrices. Moreover, these
low-rank approximations can be determined directly in factored form. Replacing
the Cholesky factors of the Gramians in Algorithms 14 by their low-rank factors
reduces significantly the computational complexity and storage requirements in the
balancing-related model reduction methods and makes these methods very suitable
for large-scale DAE systems.

3.4.1 ADI Method for Projected Lyapunov Equations

First, we focus on solving the projected Lyapunov equation
EXA" + AXE" = —-PBB'P], X =P,XP!, (3.40)

using the alternating direction implicit (ADI) method. The dual equation can be
treated analogously. The ADI method has been first proposed for standard
Lyapunov equations [16, 49, 57, 80] and then extended in [75] to projected
Lyapunov equations. The generalized ADI iteration for the projected Lyapunov
equation (3.40) is given by

(E + tA)Xi_1pA” + AXi 1 (E — wA)" = —PBB" P},

(E+TA)X{AT + AX[_, ,(E—%A)" = —PBB"P| (341)
with an initial matrix X, = 0 and shift parameters 7y, ...,7 € C_. If the pencil
AE — A is c-stable, then X; converges towards the solution of the projected
Lyapunov equation (3.40). The rate of convergence depends strongly on the choice
of the shift parameters. The optimal shift parameters providing the superlinear
convergence satisfy the generalized ADI minimax problem
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1—7it) - (1 =74t
{T],.. .7Tq} = argmin max |( 2! ) ( Tq )|’
{t1,0nr7g}EC_ 1ESPAEA) [(14+118) -+ (14 740

where Spq(E, A) denotes the finite spectrum of the pencil AE — A. Similarly to
[57], the suboptimal ADI parameters can be obtained from a set of largest and
smallest in modulus approximate finite eigenvalues of AE — A computed by an
Arnoldi procedure. Other parameter selection techniques developed for standard
Lyapunov equations [17, 69, 81] can also be used for the projected Lyapunov
equation (3.40).

A low-rank approximation to the solution of the projected Lyapunov equation
(3.40) can be computed in factored form X ~ Z,Z] using a low-rank version of the
ADI method (LR-ADI) as presented in Algorithm 5.

Algorithm 5 The generalized LR-ADI for the projected Lyapunov equation.
Given E,A € R"", B € R"", projector P, and shift parameters ti,...,7, € C_,
compute a low-rank approximation X ~ ZZ! to the solution of the projected
Lyapunov equation (3.40).

1. Z0 = \/=2Re(t))(E+1,A)"'PB, Z =z,
2. FOR k =2,3,...
Re(t _
AR ﬂ@ — (To1 + ) (E+ 1A) 1A)Z(’H>, 7 = 24—, 2™
Re(rk,l)

END FOR

In order to guarantee for the factors Z; to be real in case of complex shift
parameters, we take these parameters in complex conjugate pairs {tg, Txr1 = T }-
At each iteration we have 7 = [Zz(V, ..., Z®] € R To keep the low-rank
structure in Z; for large mk, we can compress the columns of Z; using the rank-
revealing QR factorization [21] as described in [8].

Finally, note that the matrices (E + 1 A)f1 in Algorithm 5 do not have to be
computed explicitly. Instead, we solve linear systems of the form (E + t7;,A)x = P;b
either by computing (sparse) LU factorizations and forward/backward substitutions
or by using iterative Krylov subspace methods [68].

3.4.2 Newton—-Kleinman Method for Projected Riccati Equations

In this section, we consider the numerical solution of the projected Riccati
equation
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A(X) = EXF" + FXE" + EXH"HXE" + T1,0Q0"TI] =0, X = I1,XI1’,
(3.42)

where

F=A-PBMy+M))'cp,, H=J'CP,, Q=BJT,

3.43
Mo+M! =JJ7, T,=P, T, =P, (343)

in the positive real case and

F =A—BC—2PBM,(I — MM,)~'CP,,
H=+v2J'cP,, 0=—-V2BJ;, (3.44)
JTI,=1— MMy, JJT =1—MeM,, T, =P, TI,=P,

in the bounded real case. The minimal solution X,;, of (3.42) is at least semi-
stabilizing in the sense that all the finite eigenvalues of AE — F — EX,i,H H are
in the closed left half-plane. Such a solution can be computed via the Newton—
Kleinman method [10] as presented in Algorithm 6.

Algorithm 6 The generalized Newton—Kleinman method for the projected
Riccati equation.

Given E, F e R™ H € R™" Q € R"™", projectors Il,,II; and a stabilizing
initial guess X, compute an approximate solution of the projected Riccati equation
(3.42).

FOR;j=1,2,...,

1. Compute K; = EX; 1H" and F; = F + K;H.
2. Solve the projected Lyapunov equation

EX;F + FXE" = —T1(QQ" — KK/}, X; = TLX;II].
END FOR

Similarly to the standard state space case [6, 78], one can show that if AE — Fis
c-stable, then for X, = 0, all AE — F; are also c-stable and lim;_.o. Xj = Xmin. The
convergence is quadratic if the pencil AE — F — EXpinH H is c-stable. Some
difficulties may occur if the pencil AE — F has eigenvalues on the imaginary axis.
For circuit equations, these eigenvalues are uncontrollable and unobservable [64].
In that case, similarly to [12], one could choose a special stabilizing initial guess
X, that ensures the convergence of the Newton—Kleinman iteration. However, the
computation of such a guess for large-scale problems remains an open problem.

A low-rank approximation to the minimal solution of the projected Riccati

equation (3.42) can be computed in factored form X, ~ RR" with R eR™ k<
n using the same approach as in [11]. Starting with K| = EXoH' and F; =
F + K1 H, in each Newton iteration we solve two projected Lyapunov equations
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EX, ;F] + F;X\ ;E" = -I,QQ"II], X, ;= P.X, P, (3.45)
EXy jF] + FXp ;" = -ILKKTI], X, ; = T1X, ;107 (3.46)

for the low-rank approximations X, ; ~ Ry ;R| ; and X, j =~ Ry jR] , respectively,
and then compute Kj | = E(Rl_,jR{j — szjRg’j)HT and Fj; = F + Kj; (H. If the
convergence is observed after j.. iterations, then an approximate solution

Xmin ~ RR" of the projected Riccati equation (3.42) can be computed in factored
form by solving the projected Lyapunov equation

EXF" + FXE" = —T1,00Q0T1;, X = I1,XT1" (3.47)

with Qg = [Q,E (X1, — X2, jmax)HT] provided AE — F is c-stable. For computing
low-rank factors of the solutions of the projected Lyapunov equations (3.45)—(3.47),
we can use the generalized LR-ADI method. Note that in this method we need to
compute the products (E + t F j)flw with t € C_ and w € R". For example, in the
bounded real case we have E + 1F; = E + t(A — BC) — tK;H with the low-rank
matrices H € R™" and K; = v2P;BM}J." — K; € R™. Then one can use the
Sherman—Morrison—Woodbury formula [36, Section 2.1.3] to compute these prod-
ucts as

—1 -1
(E +tF) 'w = wy +Mkj((1,,, — HM,) le),

where w; = (E + (A — BC)) " 'w and My = 7(E 4+ t(A —BC))_IIA(j can be
determined by solving linear systems with the sparse matrix E 4+ 1(A — BC) either
by computing sparse LU factorization or by using Krylov subspace methods [68].

3.5 Numerical Examples

In this section, we present some results of numerical experiments to demonstrate
the efficiency of the passivity-preserving balancing-related model reduction
methods for circuit equations described in Sect. 3.3.

Example 3 The first example is a three-port RC circuit provided by NEC
Laboratories Europe. The passive reciprocal system of order n = 2007 was
approximated by two models of order ¢ = 42 computed by the positive real
balanced truncation (PRBT) method and the bounded real balanced truncation
(BRBT-M) method applied to the Moebius-transformed system. The minimal
solutions of the projected Riccati equations (3.30) and (3.37) were approxi-

. = =T L~ ~ T
mated by the low rank matrices X, ~ R,;er, with R, € R™!23 and Xpr = Ry Ry,

with Ry, € R™'? respectively. Figure 3.3a shows the normalized residuals
p(X;) = | 2(X;)||lr/ IITLEQ O] ||z, where ||| denotes the Frobenius matrix
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Fig. 3.3 RC circuit: (a) the convergence history of the low-rank Newton—Kleinman-ADI
method; (b) the number of ADI iterations required for solving the projected Lyapunov equations
at each Newton iteration

norm, X; = Ry jR{ ; — Ry ;R ;, TI; and Q are given in (3.43) and (3.44) for (3.30)
and (3.37), respectively. Figure 3.3b displays the number of ADI iterations
required for solving the projected Lyapunov equations at each Newton iteration.

The spectral norms of the frequency responses ||G(iw)|| and ||G(iw)| for a
frequency range w € [1, 10'"°] are presented in Fig. 3.4a. In Fig. 3.4b, we display
the absolute errors ||G (i) — G(iw)| for both reduced-order systems and also the
error bounds (3.29) and (3.34). As expected, due to the properness of G, the PRBT
and BRBT-M methods are equivalent and provide similar results.

Example 4 The second example is a transmission line model [5] that consists of
20,000 RLC ladders. We approximate the DAE system of order n = 60,000 by a
model of order ¢ = 32 computed by the PABTEC method (Algorithm 4). The

. . . S=T
bounded real Gramian X,,. was approximated by a low-rank matrix X,, ~ RR" with
R € R™**_ Figure 3.5a presents the bounded real characteristic values of the
Moebius-transformed system computed as the absolute values of the eigenvalues

of kTSintER. One can see that the characteristic values decay rapidly, so we can
expect a good approximation by a reduced-order model. The frequency responses
of the full-order and the reduced-order models are not presented, since they were
impossible to distinguish. Figure 3.5b shows the absolute error |G (iw) — G(io)||
for € [1, 10*] and the error bound (3.34).

3.6 Conclusions and Open Problems

In this paper, we have discussed balancing-related model reduction methods for
linear DAES arising in circuit simulation. The important property of these methods
is the existence of computable error bounds that essentially distinguishes the
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Fig. 3.4 RC circuit: (a) the frequency responses of the original and the reduced-order systems;
(b) the absolute errors and error bounds
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Fig. 3.5 Transmission line: (a) the bounded real characteristic values; (b) the absolute error and
the error bound (3.34)

balanced truncation technique from other model reduction approaches. Moreover,
positive real balanced truncation and bounded real balanced truncation applied to a
Moebius-transformed system guarantee the preservation of passivity in a reduced-
order model that makes these methods very suitable for circuit equations.

Balancing-related model reduction methods for DAEs involve solving projected
Lyapunov, Lur’e and Riccati matrix equations. We have presented the efficient
numerical algorithms for large-scale projected Lyapunov and Riccati equations
based on the LR-ADI iteration and the Newton—Kleinman method, respectively.
We have also shown that exploiting the topological structure of circuit equations
reduces substantially the numerical complexity of balanced truncation.

Although considerable progress has recently been achieved in developing of
balanced truncation methods for large-scale DAEs, some problems still remain

open. For example, if My + M} (or I — MOM(f ) is singular, then to compute the
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positive real (bounded real) Gramians we have to solve the projected Lur’e
equations. Similarly to the standard state space case [82], for small to medium-
sized DAE systems, these equations can be transformed to projected Riccati
equations of smaller dimension. This approach becomes, however, prohibitive for
large-scale problems due to the explicit use of state space transformations. Another
problem, already mentioned in Sect. 3.4.2, is the computation of an appropriate
stabilizing initial matrix in the Newton—Kleinman iteration in case when the pencil
has pure imaginary eigenvalues. This problem could probably be solved for circuit
equations by exploiting their special structure.

Finally, in some numerical experiments we observed a very slow convergence
of the LR-ADI iteration caused by a poor choice of the shift parameters. The
combination of the LR-ADI iteration with the Galerkin projection as proposed in
[18, 43] for standard state space systems may improve the performance of the ADI
method. Also, a generalization of an extended Krylov subspace method [71] to the
projected Lyapunov equations remains for future work.

Acknowledgements This work was supported by the Research Network SyreNe—System
Reduction for Nanoscale IC Design funded by the German Federal Ministry of Education and
Science (BMBF), Grant No. 03STPAE3. Responsibility for the contents of this publication rests
with the author. The author would like to thank Achim Basermann and Carsten Neff from NEC
Laboratories Europe, IT Research Division for providing the circuit examples.

References

1. Anderson, B., Vongpanitlerd, S.: Network Analysis and Synthesis. Prentice Hall, Englewood
Cliffs (1973)

2. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

3. Antoulas, A.: A new result on passivity preserving model reduction. Syst. Control Lett. 54(4),
361-374 (2005)

4. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical
systems. Appl. Numer. Math. 43, 9-44 (2002)

5. Bechtold, T., Verhoeven, A., ter Maten, E., Voss, T.: Model order reduction: an advanced,
efficient and automated computational tool for microsystems. In: Cutello, V., Fotia, G.,
Puccio, L. (eds) Applied and Industrial Mathematics in Italy II, Selected contributions from
the 8th SIMAI Conference, Series on Advances in Mathematics for Applied Sciences, vol.
75, pp. 113-124. World Scientific Publishing Co. Pte. Ltd, Singapore (2007)

6. Benner, P: Numerical solution of special algebraic Riccati equations via exact line search
method. In: Proceedings of the European Control Conference (ECC97), Paper 786.
BELWARE Information Technology, Waterloo, Belgium (1997)

7. Benner, P.: Advances in balancing-related model reduction for circuit simulation. In: Roos, J.,
Costa, L. (eds) Scientific Computing in Electrical Engineering SCEE 2008, Mathematics in
Industry, vol. 14, pp. 469-482. Springer, Berlin (2010)

8. Benner, P., Quintana-Ortf, E.: Solving stable generalized Lyapunov equations with the matrix
sign function. Numer. Algorithms 20(1), 75-100 (1999)

9. Benner, P., FaBbender, H.: Numerische Methoden zur passivitdtserhaltenden
Modellreduktion (Numerical methods for passivity preserving model reduction).
at-Automatisierungstechnik 54(4), 153-160 (2006) (In German)



80

10.

11.

12.

13

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28

29.

30.

31.

T. Stykel

Benner, P., Stykel, T.: Numerical algorithms for projected generalized Riccati equations (in
preparation)

Benner, P., Quintana-Orti, E., Quintana-Orti, G.: Efficient numerical algorithms for balanced
stochastic truncation. Int. J. Appl. Math. Comput. Sci. 11(5), 1123-1150 (2001)

Benner, P., Hernandez, V., Pastor, A.: The Kleinman iteration for nonstabilizable systems.
Math. Control Signals Syst. 16, 76-93 (2003)

. Benner, P., Quintana-Orti, E., Quintana-Orti, G.: Computing passive reduced-order models

for circuit simulation. In: Proceedings of the International Conference on Parallel Computing
in Electrical Engineering PARELEC 2004, pp. 146-151. IEEE Computer Society, Los
Alamitos (2004)

. Benner, P., Quintana-Orti, E., Quintana-Orti, G.: Parallel model reduction of large-scale

linear descriptor systems via balanced truncation. In: Daydé, M., Dongarra, J., Hernandez, V.,
Palma, J. (eds) High Performance Computing for Computational Science—VECPAR 2004.
Lecture Notes in Computer Science, vol. 3402, pp. 340-353. Springer, Berlin (2004)
Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale
Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin
(2005)

Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati
equations, and linear-quadratic control problems. Numer. Linear Algebra Appl. 15, 755-777
(2008)

Benner, P., Mena, H., Saak, J.: On the parameter selection problem in the Newton-ADI
iteration for large-scale Riccati equations. Electron. Trans. Numer. Anal. 29, 136-149 (2008)
Benner, P., Li, R.C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput.
Appl. Math. 233(4), 1035-1045 (2009)

Brenan, K., Campbell, S., Petzold, L.: The Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations Classics in Applied Mathematics. SIAM, Philadelphia
(1996)

Campbell, S.: Singular Systems of Differential Equation I II. Pitman, San Francisco (1980)
Chan, T.: Rank revealing QR factorizations. Linear Algebra Appl. 88/89, 67-82 (1987)
Chua, L., Desoer, C., Kuh, E.: Linear and Nonlinear Circuits. McGraw-Hill, New York
(1987)

Clements, D., Anderson, B., Laub, A., Matson, L.: Spectral factorization with imaginary-axis
zeros. Linear Algebra Appl. 250, 225-252 (1997)

Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol.
118. Springer, Berlin (1989)

Davison, E.: A method for simplifying linear dynamical systems. IEEE Trans. Automat.
Contr. 11, 93-101 (1966)

Enns, D.: Model reduction with balanced realization: an error bound and a frequency
weighted generalization. In: Proceedings of the 23rd IEEE Conference on Decision and
Control (Las Vegas, 1984), pp. 127-132. IEEE, New York (1984)

Estévez Schwarz, D., Tischendorf, C.: Structural analysis for electric circuits and
consequences for MNA. Int. J. Circuit Theory Appl. 28, 131-162 (2000)

. Fabender, H., Benner, P.: Passivity preserving model reduction via a structured Lanczos

method. In: Proceedings of the IEEE International Symposium on Computer-Aided Control
Systems Design (Munich, Germany, October 4-6, 2006), pp. 8—13. IEEE (2006)

Ferrante, A.: Positive real lemma: necessary and sufficient conditions for the existence of
solutions under virtually no assumptions. IEEE Trans. Automat. Contr. 50(5), 720-724
(2005)

Freund, R.: Model reduction methods based on Krylov subspaces. Acta Numerica 12, 267—
319 (2003)

Freund, R.: SPRIM: structure-preserving reduced-order interconnect macromodeling. In:
Technical Digest of the 2004 IEEE/ACM International Conference on Computer-Aided
Design, pp. 80-87. IEEE Computer Society Press, Los Alamos (2004)



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

Balancing-Related Model Reduction of Circuit Equations 81

Freund, R.: Structure-preserving model order reduction of RCL circuit equations. In:
Schilders, W., van der Vorst, H., Rommes, (J. (eds) Model Order Reduction: Theory,
Research Aspects and Applications. Mathematics in Industry, vol. 13, pp. 49-73. Springer,
Berlin (2008)

Freund, R., Feldmann, P.: The SyMPVL algorithm and its applications in interconnect
simulation. In: Proceedings of the 1997 International Conference on Simulation of
Semiconductor Processes and Devices, pp. 113-116. IEEE, New York (1997)

Gantmacher, F.: Theory of Matrices. Chelsea Publishing Company, New York (1959)
Glover, K.: All optimal Hankel-norm aproximations of linear multivariable systems and their
L% -error bounds. Int. J. Control 39(6), 1115-1193 (1984)

Golub, G., Van Loan, C.: Matrix Computations. 3rd edn. The Johns Hopkins University
Press, Baltimore (1996)

Griepentrog, E., Mirz, R.: Differential-Algebraic Equations and Their Numerical Treatment.
Teubner-Texte zur Mathematik, vol. 88. B.G. Teubner, Leipzig (1986)

Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, University of
Illinois, Urbana-Champaign (1997)

Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some
new results. Int. J. Control 77(8), 748-766 (2004)

Ionescu, V., Oard, C., Weiss, M.: Generalized Riccati Theory and Robust Control: A Popov
Function Approach. Wiley, Chichester (1999)

Tonutiu, R., Rommes, J., Antoulas, A.: Passivity-preserving model reduction using dominant
spectral-zero interpolation. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 27(12),
2250-2263 (2008)

Ishihara, J., Terra, M.: On the Lyapunov theorem for singular systems. IEEE Trans. Automat.
Contr. 47(11), 1926-1930 (2002)

Jbilou, K.: ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear
Algebra Appl. 432(10), 2473-2485 (2010)

Jungnickel, D.: Graphs, Network and Algorithms. Springer, Berlin (2005)

Knockaert, L., De Zutter, D.: Laguerre-SVD reduced-order modeling. IEEE Trans. Microw.
Theory Tech. 48(9), 1469-1475 (2000)

Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical
Solution. EMS Publishing House, Ziirich (2006)

Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford
(1995)

Lewis, F.: A survey of linear singular systems. Circuits Syst. Signal Process 5(1), 3-36
(1986)

Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl.
24(1), 260-280 (2002)

Marschall, S.: An approximate method for reducing the order of a linear system. Contr. Eng.
10, 642648 (1966)

Mirz, R.: Canonical projectors for linear differential algebraic equations. Comput. Math.
Appl. 31(4/5), 121-135 (1996)

Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in
descripter form. Chapter 3 (pp. 83-115) of [12]

Moore, B.: Principal component analysis in linear systems: controllability, observability, and
model reduction. IEEE Trans. Automat. Contr. 26(1), 17-32 (1981)

Mullis, T., Roberts, R.: Synthesis of minimum roundoff noise fixed point digital filters. IEEE
Trans. Circuits Syst. CAS-23(9), 551-562 (1976)

Ober, R.: Balanced parametrization of classes of linear systems. SIAM J. Control Optim.
29(6), 1251-1287 (1991)

Odabasioglu, A., Celik, M., Pileggi, L.: PRIMA: passive reduced-order interconnect
macromodeling algorithm. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 17(8),
645-654 (1998)



82

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

T. Stykel

Penzl, T.: A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J.
Sci. Comput. 21(4), 1401-1418 (1999/2000)

Penzl, T.: Algorithms for model reduction of large dynamical systems. Linear Algebra Appl.
415(2-3), 322-343 (2006)

Perev, K., Shafai, B.: Balanced realization and model reduction of singular systems. Int.
J. Syst. Sci. 25(6), 1039-1052 (1994)

Phillips, J., Daniel, L., Silveira, L.: Guaranteed passive balancing transformations for model
order reduction. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 22(8), 1027-1041
(2003)

Reis, T.: Circuit synthesis of passive descriptor systems—a modified nodal approach. Int.
J. Circuit Theory Appl. 38(1), 4468 (2010). doi:10.1002/cta.532

Reis, T.: Lur’e equations and even matrix pencils. Linear Algebra Appl. 434(4),152-173
(2011)

Reis, T., Stykel, T.: Positive real and bounded real balancing for model reduction of
descriptor systems. Int. J. Control 83(1), 74— 88 (2009) doi:10.1016/j.1a0.2010.09.005

Reis, T., Stykel, T.: Passivity-preserving balanced truncation for electrical circuits. IEEE
Trans. Comput. Aided Design Integr. Circuits Syst. 29(9), 1354-1367 (2010)

Reis, T., Stykel, T.: Lyapunov balancing for passivity-preserving model reduction of RC
circuits. SIAM J. Appl. Dyn. Syst. 10(1),1-34 (2011)

Riaza, R., Tischendorf, C.: Qualitative features of matrix pencils and DAEs arising in circuit
dynamics. Dyn. Syst. 22, 107-131 (2007)

Riaza, R.: Differential-Algebraic Systems: Analytical Aspects and Circuit Applications.
World Scientific Publishing Co. Pte. Ltd, Hackensack (2008)

Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston
(1996)

Sabino, J.: Solution of large-scale Lyapunov equations via the block modified Smith method.
Ph.D. thesis, Rice University, Houston (2006)

Schilders, W., van der Vorst, H., Rommes, J. (eds.): Model Order Reduction: Theory,
Research Aspects and Applications. Mathematics in Industry, vol. 13. Springer, Berlin (2008)
Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations.
SIAM J. Sci. Comput. 29(3), 1268-1288 (2007)

Sorensen, D.: Passivity preserving model reduction via interpolation of spectral zeros. Syst.
Control Lett. 54(4), 347-360 (2005)

Stykel, T.: Stability and inertia theorems for generalized Lyapunov equations. Linear Algebra
Appl. 355, 297-314 (2002)

Stykel, T.: Gramian-based model reduction for descriptor systems. Math. Control Signals
Syst. 16, 297-319 (2004)

Stykel, T.: Low-rank iterative methods for projected generalized Lyapunov equations.
Electron. Trans. Numer. Anal. 30, 187-202 (2008)

Takaba, K., Morihira, N., Katayama, T.: A generalized Lyapunov theorem for descriptor
system. Syst. Control Lett. 24, 49-51 (1995)

Varga, A.: Efficient minimal realization procedure based on balancing. In: Moudni, A.E.,
Borne, P., Tzafestas, S. (eds.) Proceedings of IMACS/IFAC Symposium on Modelling and
Control of Technological Systems (Lille, France, May 7-10, 1991), vol. 2, pp. 42-47 (1991)
Varga, A.: On computing high accuracy solutions of a class of Riccati equations. Control
Theory Adv. Technol. 10, 2005-2016 (1995)

Vlach, J., Singhal, K.: Computer Methods for Circuit Analysis and Design. Van Nostrand
Reinhold, New York (1994)

Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 1,
87-90 (1988)

Wachspress, E.: The ADI minimax problem for complex spectra. In: Kincaid, D., Hayes, L.
(eds.) Iterative Methods for Large Linear Systems, pp. 251-271. Academic Press, San Diego
(1990)


http://dx.doi.org/10.1002/cta.532

3 Balancing-Related Model Reduction of Circuit Equations 83

82. Weiss, H., Wang, Q., Speyer, J.: System characterization of positive real conditions. IEEE
Trans. Automat. Contr. 39(3), 540-544 (1994)

83. Yan, B., Tan, S.D., McGaughy, B.: Second-order balanced truncation for passive order
reduction of RLCK circuits. IEEE Trans. Circuits Syst. II 55(9), 942-946 (2008)

84. Yang, F., Zeng, X., Su, Y., Zhou, D.: RLC equivalent circuit synthesis method for structure-
preserved reduced-order model of interconnect in VLSI. Commun. Comput. Phys. 3(2),
376-396 (2008)



	3 Balancing-Related Model Reduction of Circuit Equations Using Topological Structure
	Abstract
	3.1…Introduction
	3.2…Circuit Equations
	3.2.1 Stability
	3.2.2 Passivity and Positive Realness
	3.2.3 Contractivity and Bounded Realness
	3.2.4 Reciprocity

	3.3…Balancing-Related Model Reduction
	3.3.1 Balanced Truncation Model Reduction
	3.3.2 Positive Real Balanced Truncation
	3.3.3 Passivity-Preserving Model Reduction Via Bounded Real Balanced Truncation
	3.3.4 Balanced Truncation for Reciprocal Circuit Equations

	3.4…Numerical Methods for Matrix Equations
	3.4.1 ADI Method for Projected Lyapunov Equations
	3.4.2 Newton--Kleinman Method for Projected Riccati Equations

	3.5…Numerical Examples
	3.6…Conclusions and Open Problems
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>


    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


