Chapter 16
Dual Tableaux for Temporal Logics

16.1 Introduction

The first attempts to create a tense logic are the investigations of A. N. Prior pub-
lished in [Pri57, Pri67]. Temporal logics are modal logics whose modal operations
are determined by two relations on a set of time points expressing earlier-later or
past-future relationships between instants of time. The relations are ordering re-
lations possibly satisfying various axioms such as strict ordering, linear ordering,
branching time, ordering with or without endpoints, discrete, etc. If P is a relation
such that holding of ¢tP?’ is interpreted as ¢ precedes t’, then the modal operator (P)
means ‘it will at some time be the case that’ and [P] is interpreted as ‘it will always
be the case that’. Similarly, if F' is a relation such that 7F¢’ means ¢ follows ¢’, then
(F') says ‘it has at some time been the case that’ and [ F] is intuitively interpreted as
‘it has always been the case that’. Often some other temporal operations are included
in languages of temporal logics. The binary operations Since and Until introduced in
[Kam68] and the unary operation Next, introduced in [vW65], are among the most
popular. If ¢ and v are formulas, then the formula ‘g Since ¥’ says that ¥ has been
true since a time point when ¢ was true. The formula ‘¢ Until {’ means that there
is a future time point at which v is true, with ¢ true at all time points between now
and then. The formula ‘Next ¢’ is meaningful whenever the ordering of time points
is discrete. Then it says that ¢ is true at the immediate successor of a present time
moment.

The problem of representing time-varying information and reasoning with such
information arises in a wide range of disciplines including logic, computer science,
psychology, linguistics, and philosophy. Applications of temporal logic in computer
science have been initiated by J. Bubenko in [Bub77] for applications in the theory
of databases and by A. Pnueli in [Pnu77] for applications in the theory of programs.
Since then temporal logics have become an important issue in artificial intelligence,
in the specification and verification of programs, and in reasoning about actions and
events. In Chap. 19 we discuss, among others, a temporal logic for the specifica-
tion and verification of concurrent programs. Surveys of temporal logics and their
applications can be found in [Bur79, vB83, vB95, Gol87, AHKO02, HR06]. There
are many results on decidability of temporal logics. It was proved that the temporal
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theories of arbitrary linear orders, of every elementary class of linear orders, of well
orders, and of complete orders are decidable. A comprehensive survey of decidabil-
ity of temporal logics can be found in [BG85].

In this chapter we present relational dual tableaux for a number of point-based
temporal structures.

16.2 Basic Temporal Logic

Temporal logics belong to the family of modal logics. In their models the elements
of the universes are interpreted as moments of time and the accessibility relation
reflects earlier-later relationship. To get access to both past and future moments,
in temporal frames we usually include the accessibility relation and its converse,
denoted by P and F', respectively. Modal operations determined by these relational
constants refer to past and future moments of time, respectively. The logics with
these operations as the only modal operations are referred to as the standard tem-
poral logics. We obtain various classes of standard temporal logics by assuming
specific properties of the accessibility relations.

The common language of standard temporal logics is a modal language as
defined in Sect.7.3 with relational constants F' and P. In this chapter we con-
sider the basic temporal logic TL whose models are structures of the form M =
(U, F, P, m) as defined in Sect. 7.3 (see p. 146) such that F' and P are transitive re-
lations on U satisfying F = P~!. Relations F and P may satisfy some additional
conditions, for example linearity or density, as presented in the next section.

The language of temporal logics with operations determined by relations F and
P is more expressive than the ordinary modal language with operations determined
by one of these relations, for example, continuity of a strict linear ordering is ex-
pressible only in the presence of both past and future operations.

In order to obtain a relational representation of the logic TL, we follow the
method presented in Sect.7.4. We define logic RLy_ whose language is appro-
priate for expressing formulas of TL as relations. It is an RL(1, 1’)-language
such that RCpi;, ={1,1’, F, P} and OCpi;, =@. An RLy -model is a struc-
ture M = (U, F, P, m) such that (U, m) is an RL(1, 1’)-model, F and P are binary
relations on U that provide the interpretation of relational constants F and P,
respectively, and satisfy all the properties of relations F' and P that are assumed
in TL-models. The translation of TL-formulas into relational terms is defined as in
Sect. 7.4 (see p. 147). Due to Theorem 7.4.1, we have:

Theorem 16.2.1. For every TL-formula ¢ and for all object variables x and y, the
following conditions are equivalent:

1. ¢ is TL-valid;
2. xt(p)y is RLyL-valid.
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RLt_-dual tableau is an extension of RL(1, 1’)-dual tableau with the specific rules
that reflect properties of the relations F and P. The rule reflecting transitivity
is presented in Sect. 6.6 (see also Sect. 7.4). We recall that this rule has the following
form:

For all object variables x and y and for every R € {F, P},

R
(tran R) ek

Z is any object variable
xRz, xRy |zRy, xRy

The rules that reflect the conditions P~! € F and F € P! have the following
forms, respectively:
For all object variables x and y,

xFy xPy

(F) (P)

yPx,xFy yFx,xPy

Alternative forms of rules (F) and (P) are discussed in Sect. 25.9.

The notions of an RLy_-set and correctness of a rule are defined as in Sect. 2.4.
Following the proof of correspondence for the RLggi-rules (S) and (R) in
Theorem 13.3.2, it can be shown that the rules (F) and (P) are correct if and
only if the conditions P~! € F and F € P™!, respectively, hold in all RLy-
structures. Thus, based on correctness of RL(1, 1’)-rules and on correctness of the
rule (tran R) proved in Sect. 6.6, we get:

Proposition 16.2.1.

1. The RLy-rules are RLt_-correct;
2. The RLy_-axiomatic sets are RLyL-sets.

The notions of an RLy_-proof tree, a closed branch of such a tree, a closed RLt_-
proof tree, and RLt -provability are defined as in Sect. 2.4.

A branch b of an RLy_-proof tree is complete whenever it is closed or it satisfies
the completion conditions of RL(1, 1’)-dual tableau adjusted to RLy -language and
the following conditions specific for the RLy -dual tableau:

For all object variables x and y and for every R € {F, P},

Cpl(tran R) If xRy € b, then for every object variable z, either xRz € borzRy € b,
obtained by an application of the rule (tran R);

Cpl(F) If xFy € b, then yPx € b, obtained by an application of the rule (F');

Cpl(P) If xPy € b, then yF x € b, obtained by an application of the rule (P).

The rules of RLy-dual tableau, in particular the specific rules listed above, guar-
antee that for every branch b of an RLy_-proof tree, if xTy € b and x—T'y € b, for
some atomic relational term 7', then there is a node in the branch which contains
both of these formulas, which implies that branch b is closed. Therefore, the closed
branch property holds.

The notions of a complete RLy_-proof tree and an open branch of an RLy -proof
tree are defined as in RL-logic (see Sect. 2.5).
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Let b be an open branch of an RLy_-proof tree. The branch structure M? =
(U?, F?, PP mb) is defined in a standard way (see Sect.2.6), i.e., (U2, m?) is an
RL(1, 1’)-branch model and m?(R) = {(x,y) e U? x U? : xRy ¢ b}, for every
R € {F, P}. Following the proof of the branch model property in the completeness
proof of RLgq-dual tableau and RLgg -dual tableau (see Sects.6.6 and 13.3,
respectively), the branch model property for RLt -dual tableau can be proved. Since
the branch model M? is defined in a standard way and the closed branch property
holds, the satisfaction in branch model property can be proved as in RL(1, 1)-logic
(see Sects. 2.5 and 2.7). Hence, completeness of RLy -dual tableau follows.

Theorem 16.2.2 (Soundness and Completeness of RLt.). Let ¢ be an RlLy_-
formula. Then the following conditions are equivalent:

1. ¢ is RLy_-valid;
2. @ is true in all standard RLt_-models;
3. ¢ is RLy_-provable.

The above theorem and Theorem 16.2.1 imply:

Theorem 16.2.3 (Relational Soundness and Completeness of TL). Let ¢ be a
TL-formula. Then for all object variables x and y, the following conditions are
equivalent:

1. ¢ is TL-valid;
2. xt(p)y is RLy_-provable.

16.3 Semantic Restrictions on Basic Temporal Logic

Various temporal logics are obtained from TL by assuming some properties of the
time ordering F and P. Let R € {F, P}. The following conditions on R are among
the most typical:

For all x, y, and z,

R is irreflexive: (x, x) € R;
R is serial: there exists y such that (x, y) € R;
R is unbound from below: R~! is serial;
R is discrete: (x, y) € R implies (1) there exists z such that (x, z) € R and for all
t if (x,7) € R, then (z,t) € R, and (2) there exists z such that (z, y) € R and for
all ¢ if (¢, y) € R, then (¢,z) € R;
e R is weakly connected: (x, y) € R and (x,z) € R imply (y,z) € Ror (z,y) € R
ory =z
R is connected: either (x,y)€ Ror (y,x)€ Rorx = y;
R is dense: (x, y) € R implies there exists z such that (x,z) € R and (z, y) € R;
e R is weakly directed: (x,y) <€ R and (x,z) € R imply there exists ¢ such that
(y,t)eRand (z,1) € R;
e Ris Euclidean: (x, y) € R and (x,z) € R imply (y,z) € R;
R is partially functional: (x, y) € R and (x,z) € R imply y = z;
R is functional: there exists exactly one y such that (x, y) € R.



16.3 Semantic Restrictions on Basic Temporal Logic 295

These properties of temporal ordering are of great importance in temporal reasoning.
The adequate modelling of time scale should guarantee that any time moment does
not precede itself. It seems that the most appropriate model for linear time scales
is a strict total order which is irreflexive and connected. In several applications we
need to distinguish between discrete and dense time scales, for example to model
execution of computer programs, a discrete time is appropriate.

In what follows, any logic whose models are TL-models such that the relation
R possibly satisfies some constraints from the above list is referred to as a standard
temporal logic and is denoted by Lt . It is always specified semantically in terms of
a class of models.

The relational logic for an Lt -logic is defined as in the previous section with
the minor change of notation. We will write R and R~! instead of F and P (or P
and F), respectively, both in the language, in the structures, and in the models. An
RLy,, -structure is an RLt -model M = (U, R, R~ m). An RLL,, -model is an
RL_,, -structure such that the relation R satisfies all the conditions assumed in the
Lt -models.

As usual, we can prove the following:

Theorem 16.3.1. Let Lt be a standard temporal logic. Then for every Lt -formula
¢ and for all object variables x and y, the following conditions are equivalent:

1. ¢ is Ly -valid;
2. xt(p)y is RLi; -valid.

RL_,, -dual tableaux are extensions of RLy_-dual tableau with the specific rules
and/or axiomatic sets that reflect properties of the relation R. Below we present
the rules and axiomatic sets that reflect the properties of relations from the above
list.

Connectivity of R leads to the following axiomatic set:

(Ax) {xRy, yRx,x1'y}.

Alternatively, connectivity can be expressed with a rule (see Sect. 25.9).
The rule that reflects irreflexivity can be found in Sect. 12.6. We recall that this
rule has the following form:

(irref R) ——  x is any object variable
xXRx

The rules for the remaining properties have the following forms:

(ser R) m X is any object variable

(un R) X is any object variable

x—(R71;1)x

(dis; R) X, y are any object variables

XRy | x—(=(R;=R~1); R~1)x
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(dis2 R) — X, y are any object variables
xRy |y—=(=(R7';=R):R)y
YRz,zRy, yl'z
(wcon R)
XRy,yRz,zRy, yl'z| xRz, yRz,zRy, yl'z
X is any object variable
(den R) YRy |x—(R: R)y X,y are any object variables
wdir R X, Y,z are any object variables
( ) XRy |xRz|y—(R;R™ 1)z ' ¥ o
YRz . . .
(Euc R) X is any object variable
xRy, yRz| xRz, yRz
1/
(pfun R) Iz X is any object variable
xRy, yl'z| xRz, yl'z
(fun R)

xRy, x—(R; x| xRz, x—(R; )x | y—1"z, x—(R; 1)x

X, Y, z are any object variables

Many of these rules have the form of a specialized cut rule. Some of them could
be replaced by rules with a non-empty premise, and then an ordinary cut rule must
be introduced to the dual tableau in question. This issue is discussed in detail in
Sect.25.9.

The rules (ser R), (dis; R), (dis; R), (wcon R), (den R), (wdir R), (Euc R),
(pfun R), (fun R), and (un R) reflect that the relation R is serial, discrete, weakly
connected, dense, weakly directed, Euclidean, partially functional, functional, and
unbound from below, respectively. Introduction of any of these rules to the RLy, -
dual tableau does not violate the closed branch property which can be proved as in
Proposition 2.5.3.

Let Lt be a standard temporal logic and let IC be a class of Ly -structures. The
notion of a /C-set and the notion of C-correctness are defined as in Sect. 2.4.

Theorem 16.3.2 (Correspondence). Let Ly be a standard temporal logic and let
IC be a class of RLy, -structures. A condition (c) is true in the class K iff its corres-
ponding rule(s) is(are) K-correct.

Proof. By way of example, we prove the statement for a logic where relation R is
dense and for a logic where R is discrete.

(den R) Let Lt be a logic where relation R is dense. Assume that R is dense in
every KC-structure. Let X be a finite set of RLy; -formulas. Preservation of validity
from the upper set to the lower sets is obvious. Now, assume that X U {xRy} and
X U{x—(R; R)y} are K-sets and suppose X is not a KC-set. Then, by the assump-
tion, there exist a /C-structure M and a valuation v in M such that (v(x),v(y)) € R
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and for every z € U either (v(x),z) & R or (z,v(y)) € R, a contradiction with den-
sity of R. Hence, the rule (den R) is K-correct. Now, assume the rule (den R) is
K-correct. Let X £ {x—Ry,x(R;R)y}. Then X U{xRy}and X U{x—(R;R)y}
are KC-sets. Thus, by the assumption, {x—Ry, x(R; R)y} is a K-set, which means
that for every K-structure M and for all x, y € U if (x, y) € R, then there exists
z€ U such that (x,z) € R and (z, y) € R. Hence, R is dense.

(dis R) Let Lt be alogic where relation R is discrete. Assume that R is discrete
in every KC-structure. Let X be a finite set of RL; -formulas. Assume that X U
{xRy}and XU{x—(—(R:—R™1); R™!)x} are K-sets and suppose X is not a KC-set.
Then, by the assumption, there exist a JC-structure M and a valuation v in M such
that (v(x),v(y)) € R and for all z € U either (v(x), z) € R or there exists t € U such
that (v(x),7) € R and (z,¢) & R, which contradicts discreteness of R. Preservation
of validity from the upper set to the lower sets is obvious. Therefore, the rule (dis;
R) is K-correct. Correctness of the rule (dis, R) can be proved in a similar way.
Now, assume that the rules (dis; R) and (dis, R) are IC-correct. We show that R
is discrete in every K-structure. Let X & {x—Ry,x(—(R:—R~1); R~1)x}. Then,
in every KC-structure the sets X U {xRy} and X U {x—(—(R;—R™!); R™1)x} are
K-sets. Thus, by IC-correctness of the rule (dis; R), X is a K-set, that is for all
x,y eU,if (x,y) € R, then there exists z € U such that (x,z) € R and forallt e U,
if (x, 1) € R, then (z,¢) € R. Therefore, the part (1) of discreteness holds. In a similar
way, correctness of the rule (dis, R) implies part (2) of discreteness. |

The above theorem leads to the following:

Proposition 16.3.1. Let L1 be a standard temporal logic. Then:

1. The RLy,, -rules are RL; -correct;
2. The RLy,, -axiomatic sets are RL -sets.

Abranch b of an RL, -proof tree is complete whenever it is closed or it satisfies the
completion conditions of RL;, -dual tableau and the following conditions specific
for the RL,, -dual tableau:

For all object variables x, y, z,

Cpl(irref R) xRx € b, obtained by an application of the rule (irref R);

Cpl(ser R) x—(R; 1)x € b, obtained by an application of the rule (ser R);

Cpl(un R) x—(R~!;1)x € b, obtained by an application of the rule (un R);

Cpl(dis; R) Either xRy € b or x—(—(R;—R™'); R™1)x € b, obtained by an appli-
cation of the rule (dis; R);

Cpl(dis, R) Either xRy € b or y—(—(R™'; —R) ; R)y € b, obtained by an applica-
tion of the rule (dis, R);

Cpl(wcon R) If yRzeb, zRy € b, and yl'z€ b, then either xRy €b or xRz € b,
obtained by an application of the rule (wcon R);

Cpl(den R) Either xRy €b or x—(R; R)y € b, obtained by an application of the
rule (den R);
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Cpl(wdir R) Either xRy €b or xRzebh or y—(R:; R ')z€b, obtained by an
application of the rule (wdir R);

Cpl(Euc R) If yRz € b, then either xRy € b or xRz € b, obtained by an application
of the rule (Euc R);

Cpl(pfun R) If y1’z € b, then for every object variable x, either xRy € b or xRz € b,
obtained by an application of the rule (pfun R);

Cpl(fun R) x—(R;1)x € b and either xRy €b or xRz € b or y—1'z€ b, obtained
by an application of the rule (fun R).

The notions of a complete RL_,, -proof tree and an open branch of an RLy, -proof
tree are defined as in RL-logic (see Sect.2.5).

Let b be an open branch of an RL,, -proof tree. The branch structure M? =
u b Rb. (R_l)b  mb ) is defined as in the completeness proof of RLy -dual tableau,
in particular R> = mb®(R) a4 {(x,y)eU? x U® : xRy & b} and (R™)? &
(R~

Proposition 16.3.2 (Branch Model Property). Let Lt be a standard tempo-
ral logic. For every open branch b of an RLy, -proof tree, the branch structure

MbP = (U, R, (R™Y2, mP) is an RLy,, -model.

Proof. 1t suffices to show that if a condition is true in all models of a logic RL(,,
then it is true in MP.

By way of example, we show that this holds for a logic Lt whose mod-
els have a discrete relation R. Then, the dual tableau for RL.,, contains rules
(dis; R) and (dis; R). By the completion condition Cpl(dis; R), for all x,y € Ub,
either xRy €b or x—(—(R;—R~'); R~)x € b. Thus, by the completion condi-
tions Cpl(—;), Cpl(—), and Cpl(—_l), forall x,y € U?, either xRy € b or for some
zeUb, Xx(R;—R™Y)zeband x—Rzeb. Thus, by the completion conditions Cpl(;)
and Cpl(—"), if (x, y) € R?, then there exists z€ U? such that (x,z) € R® and
if (x,1)¢€ R? , then (z,t) € R%. On the other hand, by the completion condition
Cpl(dis, R), it can be proved that if (x, y) € R?, then there exists z € U? such that
(z.y) € RP and if (¢, y) € R?, then (¢, z) € R?. Therefore, R? is discrete. O

The satisfaction in branch model property can be proved as in RLy -logic. There-
fore, we get:

Theorem 16.3.3 (Soundness and Completeness of RL, ). Let L1 be a standard
temporal logic and let ¢ be an RL -formula. Then the following conditions are
equivalent:

1. ¢ is Rl -valid;
2. @ is true in all standard RL; -models;
3. ¢ is RLy -provable.
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The above theorem and Theorem 16.3.1 imply:

Theorem 16.3.4 (Relational Soundness and Completeness of Lt ). Let L1 be a
standard temporal logic and let ¢ be an Lt -formula. Then for all object variables
x and y, the following conditions are equivalent:

1. ¢ is Ly_-valid;
2. xt(@)y is Rl -provable.

Example. Let L}L be a standard temporal logic whose models have an Euclidean
relation R. Figure 16.1 presents an RLL%L-proof of the formula:

¢ =(R)p — [RI(R) p,

which reflects this property.
Let L%L be a standard temporal logic whose models have a dense relation R.
Figure 16.2 presents an RLL%_ -proof of the formula

¥ = [R][R]p — [R]p.

For simplicity, we write P instead of t(p). The relational translation of ¢ and ¥
are:
t(¢) = —(R: P)U—(R;—=(R: P)),

(¢¥) =——(R;—(R;—P)) U—(R;—P).

In the following sections we present some signature extensions of the basic
temporal logic.

X(=(R; P)U—=(R;=(R; P)))y
l L)
X—(R;P)y, x—(R; —(R; P))y

(—;) twice with new variables z, v and (—)

x—Rz,z—Py,x—Rv,v(R; P)y

/ (;) with z \

x—Rz,x—Rv,vRz, ... z—Py,zPy, ...
losed
‘Auc R) with x\ close
XRv,x—Rv, ... xRz, x—Rz, ...
closed closed

Fig. 16.1 An RL_; -proof of the formula (R)p = [RI{R)p
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X(——(R;——(R;—=P) U—=(R;—P))y
(V) and (-)
X(R;——(R;—P))y,x—(R;—P)y

(—;) with a new variable z and (—)

x(R;—(R;—P))y,x—Rz,zPy

/(den R) with x, 2 \

xRz, x—Rz, ... x—(R;R)z,x(R;——(R;—=P))y,zPy,...

losed
close (—;) with a new variable #

x—Rt,t—Rz,x(R;——(R;—P))y,zPy,...

ﬁ) with ¢, (=) \

x—Rt,xRt, ... t—Rz,t(R;—P)y,zPy,...
closed % ) with 2 \
t—Rz,tRz, ... z—Py,zPy, ...
closed closed

Fig. 16.2 An RLL%L-proof of the formula [R][R]p — [R]p

16.4 Temporal Logics with Since and Until

In languages of temporal logics we often admit binary operations Since and Until
with the following semantics. Let R be a temporal ordering, then:

o M,s | ¢ Sincey iff there exists s’ € U such that (s’,s) € R and M,s’ E
and forallu e U, if (s, u) € R and (u, s) € R, then M, u | ¢;

e M., s = @ Until i iff there exists s’ € U such that (s,s") € Rand M, s’ | ¥ and
forallue U, if (s,u) € R and (u,s’) € R, then M, u = ¢.

A formula ¢ Since ¥ means that there is a past moment s” at which v is satisfied
and at all moments between s’ and now ¢ is satisfied. Similarly, ¢ Until ¥ says
that there is a future moment s’ at which ¥ is satisfied and ¢ is satisfied at all
moments between now and s’. In the presence of Until the next-state operation,
Next, is definable in the modal language:

o M, s = Next g iff M, s = (¢ A —p)Until ¢.

Let TLsy denote a temporal logic with a time ordering R and operations Since,
Until, and Next. To define a relational representation of TLgy-formulas, we extend
the set of relational terms of TL by admitting relational counterparts of logical
operations Since, Until, and Next among the relational operations. For the sake
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of simplicity, they are denoted in the same way as the respective propositional
operations. Namely, the vocabulary of the language of logic RLtg, is the
RL(1, 1)-language such that:

e OCriyy, =9

e RC Rlrg, = {1, 1, R}, where R is the relational constant representing the time
ordering;

e {Since, Until, Next} is included in the set of relational operations.

The set of relational terms is obtained from RV Rlrig, U {1,1’, R} by making its
closure with respect to the standard relational operations and the operations Since,
Until, and Next.

RLrig,-structures are of the form M = (U, R, R, m), where (U, m) is an
RL(1, 1")-model, R = m(R) is a binary relation on U satisfying all the conditions
assumed in TLgy-logic, and the relational operations Since, Until, and Next are inter-
preted as operations on binary relations on U. RLy.g,-models are RLy| o, -structures
M = (U, R, R™', m) such that the relational operations Since, Until, and Next are
interpreted as follows. Let 7, Q be relational terms, then:

o m(T Since Q) £ {(x.y) : H[(t.x)eR A (t.y)em(Q) A Yu((t,u)eR A
(u,x) € R — (u,u) em(T)]};

o m(TUnQ) £ {(x,y) : H[(x.0)eR A (t,y)em(Q) A Yu((x,u)e R A
(u,t) € R — (u,u) em(T)]};

o m(NextT) £ {(x,y) : A[(x.t) eR A (t.y)em(T) A —u((x.u)eR A
(u.t) € R)]}.

This interpretation of the operations Since, Until, and Next is motivated with the role
that they play in the representation of TLgy-formulas which are interpreted as right
ideal relations (see translation function defined on p. 302 and Theorem 16.4.1).

The next proposition shows that operations Since, Until, and Next are definable in
the logic RL(1, 1’). It is due to the fact that their relational definitions involve implic-
itly the information that the relations to which they apply are meant to be right ideal
relations. For the reasons of readability, we will identify symbols of the language
with the corresponding entities in the models, if it does not lead to a confusion. In
particular, we will omit the symbol of a meaning function.

Proposition 16.4.1. For every RLyig,-model M = (U, R,R™',m) and for all
relations T and Q on U the following hold:

1. T SinceQ = (RN—(R;(-TN1);R)"';0;
2.TUntilQ =(RN—(R;(-TN1);R"H™);0;
3. NextT =(RN—(R;R));T.

Proof. Let M = (U, R, R™!, m) be an RLyLg,-model, let T and Q be relations on
U, andlet x, y € U. First, note that the following holds: (x) (#,x) € R;(=TN1"); R
iff there exists u € U such that (#,u) € R and (u,x) € R and (u,u) ¢ T. Indeed,
(t,x)€ R; (=T N 1'); R iff there exist u,v € U such that (t,v)€R, (v,u) € T,
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(v,u) €1’, and (u, x) € R. Therefore, if the left side of (%) holds, then it can be
easily proved, by the extensionality property of RL(1, 1’)-models (see Sect.2.7),
that the right side of (x) also holds. Conversely, if the right side of (x) holds, then
taking v := u the left side also holds.

To prove 1., note that (x, y) € (RN —(R: (=T N 1'); R))™!; Q) iff there exists
t €U such that (f,x) € R and (¢, y) € Q and (t,x) € R;(—T N 1'); R. By (%),
the latter is equivalent to: there exists t € U such that (¢,x) € R and (¢,y) € Q
and for all ue U if (z,u) € R and (u, x) € R, then (u,u) € T, which is equivalent
to (x,y) e T Since Q.

2. and 3. can be proved in a similar way. O

The translation of TLgy-formulas into relational terms is defined by an extension of
the function t defined in Sect. 7.4 with the following clauses:

o (@ Sincey) = t(p) Since t(¥);
o (¢ Untily) = t(p) Until t(Y);
o 1(Nextp) = Next t(p).

In view of Proposition 7.4.1, it is easy to check that the relational terms, obtained
from temporal formulas built with operations Since, Until, and Next, represent
right ideal relations. Therefore, the following can be proved in a similar way as
Theorem 7.4.1:

Theorem 16.4.1. For every TLsy-formula ¢ and for all object variables x and y,
the following conditions are equivalent:

1. ¢ is TLgy-valid;
2. xt(p)y is RLyLg,-valid.

Proof. 1t suffices to show that Propositions 7.4.2 and 7.4.3 are true for all
TLgy-formulas. For that purpose, we need to show:

(1) For every TLsy-model M = (U, R, R™!,m) there exists an RLtg,-model
M' = (U,R, R m ) with the same universe and the same relation R as those
in M, and such that for all s, s’ € U and for every TLgy-formula ¢ of the form
Y Since ¥, ¥ Until ¥, and Next , the following holds:

(%) M, s = @ iff (s, 5") e m'(t());

(2) For every standard RLri,-model M’ = (U, R, R~!,m’) there exists a TLgy-
model M = (U, R, R, m) with the same universe and the same relation R as
those in M’, and such that for all s, s" € U and for every TLgy-formula ¢ of the
form y Since ¥, Y Until ¥}, and Next , (*) holds.

Then, the rest of the proof is similar to the proof of Theorem 7.4.1.

By way of example, we prove (1). Let M = (U,R,R™',m) be a
TLsy-model. Then we define RLrg,-model M’ = (U, R, R™',m’) as in the
proof of Proposition 7.4.2, namely:

e m'(l)=U xU,
e m/(1’) is the identity on U;
o m'(t(p)) = {(x,y) €U x U : x e m(p)}, for every propositional variable p;
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e m'(R) =R,
e m’ extends to all the compound terms as in RLtLg,-models.
Let ¢ = v Since? and let 5,5’ € U. Assume that M,s | ¢, that is there ex-
ists t € U such that (¢,s) € R, M,t = ¥, and for all u€ U, if (t,u) € R and
(u,s) € R, then M,u = . Then, by the induction hypothesis, this is equiva-
lent to: there exists £ € U such that (¢,s) € R and (¢,s") € m'(z(¥)) and for all
ueU, if (t,u) € R and (u,s) € R, then (u,s") e m'(z(¥)). Since t(y¥) is a right
ideal relation, by Proposition 7.4.1, (u, s") € m’(z (y)) iff (u, u) € m’(z(¥)). Hence,
(s,s") e m’ (r(¥)Since t(1)).

In a similar way we can prove that (x) holds for the formulas of the form
Y Until ¥ and Next . O

RLy4,-dual tableau is an extension of RL(1, 1’)-dual tableau with the rules and the
axiomatic sets reflecting properties of the relation R and with the rules correspond-
ing to the new relational operations Since, Until, and Next. These rules have the
following forms:

For all object variables x, y and for all relational terms 7" and Q,

x(T Since Q)y
tIRx,K|tQy,K|t—(R;(-T N1);R)x, K

(Since)

K = x(T Since Q)y, t is any object variable

x—(T Since Q)y

(=Since) =0y 1(R(—T N 1) R)x

¢ is a new object variable

x(T Until Q)y

Until
(Until) R K110y K i—(R (T A 1) R-x. K

K = x(T Until Q)y, t is any object variable
x—(T Until Q)y

—Until

Rt R =0y (R (=T N 1) : R 1)x
t is a new object variable

(Nexr) X(NextT)y

xRt,x(NextT)y |tTy,x(NextT)y | x—(R; R)t,x(NextT)y
t is any object variable

x—(NextT)y
x—Rt,t—Ty,x(R;R)t

(—Next)

t is a new object variable
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Theorem 16.4.2 (Correspondence). Let K be a class of RLyLg,-structures. Then
K is a class of RLyLg,-models iff the rules (#) and (—#) are K-correct for every
# € {Since, Until, Next}.

Proof. (—) Assume that K is a class of RLy.g,-models. We need to show that
for every # € {Since, Until, Next}, the rules (#) and (—#) are K-correct. By way of
example, we show it for the operation Since.

Let X be a finite set of RLyig,-formulas. Clearly, if the upper set of for-
mulas in the rule (Since) is a /C-set, then all the lower sets of formulas
in the rule are also K-sets. Now, assume that X U {tRx, x(T Since Q)y},
X U {tQy,x(T Since Q)y}, and X U {t—(R;(—T N 1'); R)x, x(T Since Q)y}
are C-sets and suppose that X U {x (T Since Q)y} is not a K-set. Then there exist
an Rl g,-model M = (U, R, R~!,m) in K and a valuation v in M such that
(v(x),v(y)) & m(T Since Q). By the assumption, there exists € U such that
(v(1),v(x)) € R and (v(1),v(y)) € m(Q) and (v(1).v(x)) & m(R: (=T N 1); R).
By Proposition 16.4.1, (v(x), v(y)) € m(T Since Q), a contradiction.

Now, we prove that the rule (—Since) is K-correct. Let X be a finite set of
RLtLg,-formulas. Let ¢ be a variable that does not occur in X and let x,y # .
Assume that X U{t—Rx,t—Qy,t(R; (=T N1'); R)x} is a K-set and suppose that
X U {x—(T Since Q)y} is not a K-set. Then there exist an RLy_g,-model M =
(U,R,R™ ', m) in K and a valuation v in M such that (v(x), v(y)) € m(T Since Q).
By the assumption and since ¢ does not occur in X U {x—(T Since Q)y}, for all
t €U either (¢,v(x)) € Ror (t,v(y)) € m(Q) or (t,v(x))em(R;(—-T N1); R).
By Proposition 16.4.1, (v(x),v(y)) & m(T Since Q), a contradiction.

(<) Let IC be a class of RLyLg,-structures. Assume that for every # € {Since,
Until, Next} the rules (#) and (—#) are K-correct. We show that /C is a class of
RLtLg,-models, that is that the meaning of the operations Since, Until, and Next is
as in RLyg,-models defined on p. 301. By way of example, we show it for Until.
By Proposition 16.4.1, we need to show that /C-correctness of the rules (Until) and
(= Until) implies m(T Until Q) = m((RN —(R™'; (=T N1"); R71)71: Q).

(2) Let X £ (x—Rt,t—Qy,t(R™':(=T N 1'); R"V)x}. Then, clearly
all the sets X U {xRt,x(T Until Q)y}, X U {tQy,x(T UntilQ)y}, and X U
{t—(R7Y; (=T N 1); R YHx,x(T Until Q)y} are K-sets. By K-correctness
of the rule (Until), X U {x(T UntilQ)y} is a K-set, which means that if
(x,y)em((RN—=(R™'; (=T N1);R™Y)7;0), then (x, y) e m(T Until Q).

() Let X L (x(RN—(R™ ;=T N 1);R"))"1; 0y} and let x,y # 1.
Then, X U {x—Rt,t—Qy,t(R™'; (=T N 1"); R7)x} is a K-set. Thus, by K-
correctness of the rule (—Until), X U{x—(T Until Q)y} is a KC-set, which means that
if (x,y) €em(T Until Q), then (x,y) em(RN—=(R7; (=T N1);R")~1;0).

O

By the above theorem and since correctness of the remaining rules can be proved as
in RL_;, -logics (see Proposition 16.2.1 and Theorem 16.3.2), we have:

Proposition 16.4.2.

1. The RLyyg,-rules are RLy g, -correct;
2. The RLyg,-axiomatic sets are RLyLg,-sets.
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The completion conditions determined by the rules for operations Since, Until, and
Next are:
For all object variables x, y and for all relational terms 7" and Q,

Cpl(Since) If x (T Since Q)y € b, then for every object variable ¢, either tRx € b or
tQyebort—(R;(—=T N 1'); R)x €b, obtained by an application of the rule
(Since);

Cpl(—Since) If x—(T Since Q)y € b, then for some object variable ¢, t—Rx € b and
t—Qyeband t(R;(—T N1'); R)x € b, obtained by an application of the rule
(—Since);

Cpl(Until) If x(T Until Q)y € b, then for every object variable ¢, either xRt € b or
tQye€bort—(R™'; (=T N1); R~Y)x €b, obtained by an application of the
rule (Until);

Cpl(—Until) If x—(T Until Q)y € b, then for some object variable ¢, x— Rt € b and
t—Qyebandt(R7'; (=T N 1'); R~')x € b, obtained by an application of the
rule (—Until);

Cpl(Next)If x(Next T)y € b, then for every object variable ¢, either xRt € b or
tTyeborx—(R; R)t € b, obtained by an application of the rule (Next);

Cpl(—Next) If x—(Next T')y € b, then for some variable t, x—Rt € b andt—Ty b
and x (R ; R)t € b, obtained by an application of the rule (—Next).

As in RL, -logics, every branch that contains formulas x7'y and x—Ty, for some
atomic relational term T, is closed. Thus, the closed branch property holds.

Let b be an open branch of an RLyg,-proof tree. The branch structure MP =
(Ub, RY, (R_l)b, mb) is defined in a standard way, namely:

o U’ =0Vai;

e R =mbP(R)and (R71)? = (RP)™!;

o mP(P)={(x,y)eUb xUP: xPy ¢ b}, for every atomic relational term P;
o m" extends to all the compound relational terms as in RLy|g,-models.

It follows from this definition that MP® is an RLrig,-model, so the branch model
property is satisfied. Actually, we only need to prove that the time ordering R?
satisfies all the conditions assumed in RLy_g,-models. This can be done as in the
completeness proof of RLt, -dual tableaux presented in the previous section.

Proposition 16.4.3 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLyLg,-proof tree. Then for every RlLyg,-formula ¢, MPAP = o
implies ¢ & b.

Proof. Let b be an open branch of an RLy,-proof tree. The proof is by induction
on the complexity of formulas. If ¢ is of the form x7'y or x—Ty for some atomic
relational term 7', we prove the above condition as in RL-logic (see the proof of
Proposition 2.5.5). Then, we show that the condition holds for the compound rela-
tional terms. By way of example, we show it for Next.

Assume M? VP |= x(Next T)y, Then, by Proposition 16.4.1, (x, y) e m®*((R N
—(R;R)):;T). Suppose x(NextT)y € b. Then, by the completion condition
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Cpl(Next), for every t € U, either xRt €b or tTyeb or x—(R; R)t €b. By the
completion condition Cpl(—;), for every ¢t € U?, either xRt €b or tTy €b or for
some u € U? both x—Ru € b and u— Rt € b. By the induction hypothesis, for every
t e Ub, either (x,t) & R? or (1, y) & m®(T) or for some u € U both (x,u) € R?
and (i, 1) € R?. Therefore, (x, y) € m?((R N —(R; R)): T), a contradiction.
Assume M? VP |= x—(Next T)y, Then, (x,y) € m?((R N —(R; R));T). Sup-
pose x—(Next T)y € b. Then, by the completion condition Cpl(—Next), for some
t € U® the following hold: xRt ¢ b, tTy ¢ b, and x(R; R)t €b. By the com-
pletion condition Cpl(;), there exists ¢ € U? such that xRt ¢ b and tTy ¢ b and
for all ue U?, either xRu € b or uRt € b. Thus, by the induction hypothesis, there
exists £ € U such that (x,7) € R? and (¢, y) e m®(T) and for all uc U, either
(x,u) & RP or (u,t) ¢ R®. Therefore, (x,y) em?((R N —(R:R));T), a contra-
diction. O

Therefore, we have:

Theorem 16.4.3 (Soundness and Completeness of RLy.,). For every RLyig,-
formula @, the following conditions are equivalent:

1. @ is RLyrg,-valid;
2. @ is true in all standard Rl g, -models;
3. ¢ is RLyLg,-provable.

The theorem above and Theorem 16.4.1 imply:

Theorem 16.4.4 (Relational Soundness and Completeness of TLgy). For every
TLsy-formula ¢ and for all object variables x and y, the following conditions are
equivalent:

1. ¢ is TLsy-valid;
2. xt(@)y is RLyLg,-provable.

Example. Let ¢ be the following formula:
¢ = (p A (R)(p A [RTY)=q)] = —q Uniil p.
Its relational translation is:
(@) = =((P;DN(R; (P )N=(R™':==(Q: DN) U(=(Q ;s DUniil(P ; 1)),

where t(p) = P ;1 and t(q) = Q ;1. TLgy-validity of ¢ is equivalent to RLy,-
provability of the formula x7(¢)y. Figure 16.3 presents an RLy,-proof of ¢.

16.5 Standard Temporal Logics with Nominals

Temporal logics with nominals were considered by Arthur Prior [Pri67] and Robert
Bull [Bul70] in the late 1960s. Nominals are propositional constants interpreted as
singleton sets. In computer science nominals were introduced to the dynamic logic
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x(=((P3DNR;(P;HN=(R™" 5 ==(2 ;D)) U (=(Q; YUniil(P ;1)))y
L)
x=((P;DNR;((P; DN =(R™"5==(Q; D))y, x(—(Q; YUntil(P ; 1))y
(—n)
x—=(P; D)y, x—=(R;(P; )N —=(R™" 5 ==(2; D)y, x(—(Q ; DUnil(P ; 1))y
(—;) with a new variable z
x—(P; 1)y, x—Rz,z—((P3 ) N —(R_' 3 =—(Q; 1))y, x(—(Q ; DUntil(P ; 1))y
(—N) and (-)
x—(P;1)y.x—=Rz.z—(P; )y.z(R™"; —==(Q ; 1))y, x(=(Q ; DUntil(P ; 1))y
/ l (Until) with z

xRz, x—Rz, ... z—(P;y,z(P;Dy,...

closed closed

AR ==(Q5 D))y z=(R™ 5 (==(@;5; D N1); R Dx, ...
(—;) with a new variable w and (—')

2R ==(Q5 D))y, w—Rz, w=((=—(Q; D N1); R )x,...
(=) with a new variable u

Z(R7V;——(0; 1)y, w—Rz,w—(——(Q; D) N 1)u,u—R'x, ...
(—=N) and (=)

Z(R7V;——(Q; 1)y, w—Rz,w—(Q ; Du,w—1"u, ...
(—;) with a new variable ¢

Z(R™';——(0;1)y.w—Rz,w—0t,t—1u, ...

O (),

wRz,w—Rz, ... w(Q; )y, w—0t,...
closed .
/(;) with 7 \
wQt,w—0t,... tly,...
closed closed

Fig. 16.3 An RLyg,-proof of [p A (R)(p A [R™']—q)] = —q Until p

in [Pas84] and then studied in [PT85]. In temporal languages both nominals and
propositional variables are considered as atomic formulas.
Given a model M = (U, R, R, m), we define the satisfaction of nominals:

o M,s Eciff m(c) = {s}.

An extensive study of nominals can be found in [B1a90].
Nominals increase drastically expressiveness of modal languages. Below we list
examples of classes of relations which are not definable in a modal language with
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a single accessibility relation, unless the language contains the nominals (see e.g.,
[B1a90]).

e Risirreflexive: ¢ — —(R)c;

R is antisymmetric: ¢ — [R]((R)c — ¢);

R is directed: (R)(R™1)c;

R is connected: (R™!)c Ve Vv (R)c;

Ris discrete: ¢ — ((R)(¢ vV —¢) — (R)[R7[R™]—c).

Let a logic TL(C) be obtained from the temporal logic TL by extending its lan-
guage with a set C of nominals. Its models are TL-models M = (U, F, P, m) such
that m(c) e U, for every ¢ € C (see Sect.7.3). In analogy to logics considered in
Sect. 16.3, we consider standard temporal logics with nominals, Ly (c), based on
TL(C). The corresponding relational logics are based on the relational logic with
point relations introduced with axioms. The logic is defined in Sect. 3.2.

Let Ly (c) be a standard temporal logic with the set C of nominals. With every
nominal ¢ € C, we associate a relational constant C.. Then, a relational logic ap-
propriate for expressing Lt (c)-formulas, RLL ,, is based on logic RL,x({C¢ :
¢ € C}) which is an instance of the logics considered in Sect.3.2. The set of rela-
tional constants of RL, ., is {1, 1’, R}U{C : ¢ € C}, where R represents the time
ordering and {C, : ¢ € C} is the set of relational constants representing nominals
from C.

RLL ,-models are structures M = (U, R, R~!,m) such that (U, m) is an
RL.x({C. : ¢ € C})-model, as defined in Sect.3.2, and R = m(R) is the relation
on U that satisfies all the conditions assumed in Ly (¢)-models.

The translation of Ly (c)-formulas into relational terms is defined as in Sect. 7.4
(p. 147), thatis (c) = C.; 1. As usual, the translation is defined so that it preserves
the validity of formulas. Due to Theorem 7.4.1, we have:

Theorem 16.5.1. Let Lt (c) be a standard temporal logic with nominals. For every
Lt1L(c)-formula ¢ and for all object variables x and y, the following conditions are
equivalent:

1. ¢ is Ly (c)-valid;
2. xt(p)y is RLiy c,-valid.

RLL; ,-dual tableau is an extension of RL,x({C : ¢ € C})-dual tableau with the
rules reflecting the properties of the time ordering R. We recall that the specific
rules of RL,x ({C, : ¢ € C})-dual tableau are (see Sect. 3.2):

For all object symbols x and y and for every c € C,

(C1) z,t are new object variables and z # ¢
7—C,t
C
(C2) A Z is any object symbol
xCez,xCcy
x1'y . .
c3) Z 1s any object symbol

xCez,x'y | yCez,x1'y
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Soundness and completeness of RLi ., -dual tableau follow from soundness and
completeness of RL,x({C, : ¢ € C})-dual tableau (see Theorem 3.2.1) and RL, -
dual tableaux for standard temporal logics (see Theorem 16.3.3). Hence, we have:

Theorem 16.5.2 (Soundness and Completeness of RLi, ). Let Lt c) be a
standard temporal logic with nominals. Then, for every RLi ,-formula ¢, the
following conditions are equivalent:

1. ¢is RLLTL(C)-valid;
2. @ is true in all standard RLLTL(C)-models;
3. ¢ is RLiy (¢, -provable.

By the above and Theorem 16.5.1, we obtain:

Theorem 16.5.3 (Relational Soundness and Completeness of Lt (c)). Let L1 (c)
be a temporal logic with nominals. Then, for every Ly (c)-formula ¢ and for all
object variables x and y, the following conditions are equivalent:

1. ¢ is Ly (c)-valid;
2. x(z(9))y is RLiy ,-provable.

Example. The formula:
¢ =c —> —{R)c

defines irreflexivity of relation R, hence it is true in all Ly (¢)-structures in which
R is irreflexive. The translation of ¢ is:

(@) = —(Ce; 1)U —(R;(Cc; 1)),

where t(c) = C.; 1. Then, ¢ is valid in all irreflexive Ly (¢)-structures iff xt(¢)y
is provable in RLy ,-dual tableau with the rule (irref R) presented in Sect. 16.3.
Figure 16.4 presents an RLi;, ., -proof of xt(¢)y which shows that ¢ is true in all
irreflexive Lt (c)-structures.
The formula:
¥ = (R Hevev (R

defines connectivity of relation R, thus v is true in all Lt (c)-structures in which R
is connected. The translation of i is:

t(¥) = (R7'5(Ce: 1)) U (Ce: ) U(R:(Ce: 1)),

where 7(c) = C, ; 1. Then, validity of ¥ in all connected Ly (c)-structures is equiv-
alent to RLi; ,-provability of x7(¥)y. RLi; (,-dual tableau includes axiomatic
sets (Ax), presented in Sect. 16.3 (p. 295), that reflect connectivity of R. Figure 16.5
presents an RLy; ,-proof of xz(y/)y.
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Y= (C; DU (R (Ce s D)y
(C))
x—=(Ce; Dy, x=(R;(Cc 3 D)y
(—;) with a new variable z
x—(C.; 1)y, x—Rz,z—(C. ; 1)y
(irref R) with x
x—(Ce; 1)y, x—Rz,z—(C.; 1)y, xRx

/(1'1) with z \

xRz, x—Rz, ... xU'z,x—(Ce 5 1)y, z—(Ce 5Dy, ...

closed

(—;) twice with new variables w and #
xl'z,x—C,w,z—C,t, ...
‘/(C?,) with w\
xCow, x—Cow, . .. 2Cew,z—Cet, . ..

losed
close l (C2) with ¢

2Cct,7—Cet, ...
closed

Fig. 16.4 An RL_;(,-proof showing that ¢ — —(R)c is true in all irreflexive Ly (c)-structures

; ith
() withz —C.t.7Cet, . .. tly,...
7—C.t,zRx,x(C.; 1)y, xRz, ... closed closed
/ (;) with ¢ \
z—C.t,zRx,xC.t, xRz, ... tly,... z—C.t,z2(C.; D)y, ...
losed
/(1/2) with z \ close /(;) with ¢ \
zRx,x1'z, xRz, . .. 7—C.t,7C.t, . .. z—C.t,7C.t, . .. tly,...
closed closed closed closed

X(RT'5(Ce3 1) U(Ces DU (R (Ce s 1))y
)
x(R™15(Ce31)y, x(Co 5 Dy, x(R5(Ce 5 1)y
(C1) with new variables z and ¢
=Cet, X(R™5(Ce 5 1)y, x(Ce s )y, x(R5(Ce 5 1)y

/ (;) with zand (71)
2—Cot, zRx, x(Co 3 1)y, (R (Co s 1))y, . .. = Cet, ACe5 DY, -

‘/(;) with # \

Fig. 16.5 An Rl -proof showing that (R™")c V ¢ V {R)c is true in all connected Ly (c)-
structures
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16.6 Temporal Information Logics

Temporal information logic TIL considered in the present section was developed
to provide a means of reasoning in temporal databases where properties of objects
change with the lapse of time. In logic TIL we intend to represent data that have
the form of a description of time varying properties of objects. For example, we
are interested in such attributes as Height, Temperature, Blood Pressure, usually
at given moments of time. Further, their change in a given time interval may be
of essential importance too. For that purpose, we include in information systems a
parameter which represents the moment to which an information about values of
attributes applies.

By a dynamic information system (see [Ort82]) we mean a system of the form
S = (OB, T,R,AT,{VAL, : ac AT}, f), where OB is a non-empty set of
objects, T is a non-empty set of moments of time, R is an ordering on aset T, AT
is a non-empty set of attributes, VAL,, fora € AT, is a non-empty set of values of
attribute a, f is a function f: OB x T x AT — (J{VAL, : a € AT}, such that
f(x,t,a)e VAL,, forallx e OB,t€T,anda € AT.

As an example, consider Table 16.1 containing partial results of photoelectric
observations of stars, presented in the Astrophysical Journal.

The table can be treated as a dynamic information system such that the set
OB of objects consists of the stars, that is OB = {S Canis Minoris, R Caneri,
R Leonis, T Centauri}, the set T of moments of time consists of non-negative
real numbers representing Julian Days given in the second column of the table,
relation R is the natural order in the set of real numbers restricted to the set T,
the set AT of attributes consists of two wavelength regions of spectrum, AT =
{visual(V'), blue—visual(B—V)}, the set VAL of values of attributes consists of
the magnitudes of a star in the given wavelength regions.

The language of logic TIL is a language of basic temporal logic with specific
atomic formulas. An atomic piece of information in an information system is a state-
ment of the form: an object x assumes a value v of an attribute a. Hence, instead
of propositional variables, we admit structured atomic formulas built with syntactic
components of three types. Let OV, AV, and AVYV be sets of object variables,
attribute variables, and attribute value variables, respectively. They are arbitrary,
pairwise disjoint, countable sets. Then, the atomic formulas of the language are

Table 16.1 A dynamic information system

D Vv B-V
S Cmi 1688.788 11.12 1.97
1798.538 9.28 1.76
R Cnc 1719.750 3.38 1.47
1800.558 9.51 2.02
R Leo 1688.821 6.27 1.62
1833.481 9.91 2.87
T Cen 1687.826 6.05 1.44
1717.816 6.12 1.73




312 16 Dual Tableaux for Temporal Logics

of the form (0, a,v), foroe OV,ae€ AV, and ve AVV. The compound formulas
are built from atomic formulas with the usual propositional operations of temporal
logics.

We define semantics of the logic TIL by means of notion of a model determined
by a dynamic information system. By a TIL-model we mean any pair M = (S, m),
where S = (OB, T, R,AT, {VAL, : a€AT}, f) is a dynamic information
system, and m is a meaning function which assigns objects to object variables, at-
tributes to attribute variables, and values of attributes to attribute value variables:
m(o) € OB, m(a) € AT, m(v) € | J{VAL, : a € AT}. We define satisfaction of
formulas in a moment of time in the usual way (see Sect.7.3), with the exception
that for atomic formulas we have:

o M.t E (0,a,v)iff f(m(o),t,m(a)) = m®©).

The relational logic RLt_ corresponding to the logic TIL is similar to the relational
logic for the basic temporal logic. The minor difference is that the relational vari-
ables are indexed with triples of the form (o, a, v). Models of the relational logic
for TIL are determined by dynamic information systems in the same way as the re-
spective TIL-models. As usual, the translation starts with a one-to-one assignment
of relational variables P, 4 ) to the atomic TIL-formulas (0, a, v). Let v’ be such an
assignment. Then the translation t of TIL-formulas into RLy -terms is defined as

in Sect. 7.4 with the following clause for atomic formulas: 7 (o, a, v) a Poav;l.

In view of Proposition 7.4.1, it is easy to check that the relational terms obtained
from TIL-formulas represent right ideal relations. Therefore, the following can be
proved in a similar way as Theorem 7.4.1:

Theorem 16.6.1. For every TIL-formula ¢ and for all object variables x and y, the
following conditions are equivalent:

1. ¢ is TIL-valid;
2. xt(p)y is RLy_-valid.

Proof. 1t suffices to show that Propositions 7.4.2 and 7.4.3 are true for all TIL-
formulas. Thus, we need to show that for every TIL-model M there exists a standard
RLt.-model M’ that satisfies the same TIL-formulas as model M, and that for
every RLyjL-model M’ there exists a TIL-model M that satisfies the same TIL-
formulas as M’. If a TIL-model M is given, then the model M’ is defined as a
standard RLy_-model such that the interpretation of a relational variable P, 4 ) is
a right ideal relation whose domain is the set of the form {x : f(m(0), x, m(a))
= m(v)}. If an RLy_-model M’ is given, then the model M is defined as a
TIL-model such that the interpretation of an atomic formula (0, a, v) is the domain
of the relation P, 4,,). The rest of the proof is similar to the proof of Theorem 7.4.1.

O

RLtiL-dual tableau is an RLy(, -dual tableau adjusted to the RLyj -language and
extended with the rule of the following form:
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For all object variables x and y,

xp(o,a,v)y
XP(O’,a’,v’)ys XP(o,a,v)y |XP(0’,a’,v)ys XP(o,a,v)y | xp(o,a,v’))’v XP(o,a,v)y

forany o' € OV,a’ € AV,andv e AVV

(TIL)

The rule (TIL) reflects the following property of relations P, 4,,): in an underlying
information system, given an object, a moment of time, and an attribute, the function
f assigns a unique value of the attribute to this triple.

The completion condition determined by this rule is:

For all object variables x and y,

Cpl(TIL) If xP(o 4,y €b, then for all 0’ € OV, @’ € AV, and v/ € AV, either
xP(O/,a/,v/)y €bor xP(O/,a/,v)y €bor xP(O,a,v/)y €b.

Proofs of all the propositions needed for proving soundness and completeness of
RLmL follow the analogous proofs in the logics RLy and RL; presented in the
previous sections of this chapter. Thus, we have:

Theorem 16.6.2 (Soundness and Completeness of RLy ). For every RLy-
formula @, the following conditions are equivalent:

1. () is RLT|L-Vcllid,'
2. @ is true in all standard RLti_-models;
3. ¢ is RLyy_-provable.

By the above and Theorem 16.6.1, we get:

Theorem 16.6.3 (Relational Soundness and Completeness of TIL). For every
TIL-formula ¢ and for all object variables x and y, the following conditions are
equivalent:

1. ¢ is TIL-valid;
2. x(z(¢))y is RLyiL-provable.
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