


Dual Tableaux: Foundations, Methodology,
Case Studies



TRENDS IN LOGIC
Studia Logica Library

VOLUME 33

Managing Editor
Ryszard Wójcicki, Institute of Philosophy and Sociology,

Polish Academy of Sciences, Warsaw, Poland

Editors
Vincent F. Hendricks, Department of Philosophy and Science Studies,

Roskilde University, Denmark
Daniele Mundici, Department of Mathematics “Ulisse Dini”,

University of Florence, Italy
Ewa Orłowska, National Institute of Telecommunications,

Warsaw, Poland
Krister Segerberg, Department of Philosophy, Uppsala University,

Sweden
Heinrich Wansing, Institute of Philosophy, Dresden University of Technology,

Germany

SCOPE OF THE SERIES

Trends in Logic is a bookseries covering essentially the same area as the jour-
nal Studia Logica – that is, contemporary formal logic and its applications and
relations to other disciplines. These include artificial intelligence, informatics,
cognitive science, philosophy of science, and the philosophy of language. How-
ever, this list is not exhaustive, moreover, the range of applications, comparisons
and sources of inspiration is open and evolves over time.

Volume Editor
Ryszard Wójcicki

For further volumes:
http://www.springer.com/series/6645

http://www.springer.com/series/6645


Ewa Orłowska � Joanna Golińska-Pilarek

Dual Tableaux: Foundations,
Methodology, Case Studies

123



Prof. Ewa Orłowska
National Institute of
Telecommunications
Szachowa 1
04-894, Warszawa, Poland
orlowska@itl.waw.pl

Joanna Golińska-Pilarek
University of Warsaw
and National Institute
of Telecommunications
Krakowskie Przedmieście 3
00-927, Warszawa, Poland
j.golinska@uw.edu.pl

ISBN 978-94-007-0004-8 e-ISBN 978-94-007-0005-5
DOI 10.1007/978-94-007-0005-5
Springer Dordrecht Heidelberg London New York

c� Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


To the Memory of Helena Rasiowa



Preface

The origin of dual tableaux goes back to the paper by Helena Rasiowa and Roman
Sikorski ‘On the Gentzen theorem’ published in Fundamenta Mathematicae in 1960.
The authors presented a cut free deduction system for the classical first-order logic
without identity. Since then the deduction systems in the Rasiowa–Sikorski style
have been constructed for a great variety of theories, ranging from well established
non-classical logics such as intuitionistic, modal, relevant, and multiple-valued log-
ics, to important applied theories such as, among others, temporal, in particular
interval temporal logics, various logics of programs, fuzzy logics, logics of rough
sets, theories of spatial reasoning including region connection calculus, theories of
order of magnitude reasoning, and formal concept analysis.

Specific methodological principles of construction of dual tableaux which make
possible such a broad applicability of these systems are:

� First, given a theory, a truth preserving translation is defined of the language of
the theory into an appropriate language of relations (most often binary);

� Second, a dual tableau is constructed for this relational language so that it pro-
vides a deduction system for the original theory.

This methodology, reflecting the paradigm ‘Formulas are Relations’, enables us to
represent within a uniform formalism the three basic components of formal sys-
tems: syntax, semantics, and deduction apparatus. The essential observation, leading
to a relational formalization of theories, is that a standard relational structure (i.e.,
a Boolean algebra together with a monoid) constitutes a common core of a great
variety of theories. Exhibiting this common core on all the three levels of syntax,
semantics and deduction, enables us to create a general framework for representa-
tion, investigation and implementation of theories.

The relational approach enables us to build dual tableaux in a systematic, mod-
ular way. First, deduction rules are defined for the common relational core of the
theories. These rules constitute a basis of all the relational dual tableau proof sys-
tems. Next, for any particular theory specific rules are added to the basic set of rules.
They reflect the semantic constraints assumed in the models of the theory. As a con-
sequence, we need not implement each deduction system from scratch, we should
only extend the basic system with a module corresponding to the specific part of a
theory under consideration.

vii



viii Preface

Relational dual tableaux are powerful tools which perform not only verification
of validity (i.e., verification of truth of the statements in all the models of a theory)
but often they can also be used for proving entailment (i.e., verification that truth of a
finite number of statements implies truth of some other statement), model checking
(i.e., verification of truth of a statement in a particular fixed model), and satisfaction
(i.e., verification that a statement is satisfied by some fixed objects of a model).

Part I of the book is concerned with the two systems which provide a foundation
for all of the dual tableau systems presented in this book. In Chap. 1 we recall the
original Rasiowa–Sikorski system and we extend it to the system for first-order logic
with identity. We discuss relationships of dual tableaux with other deduction sys-
tems, namely, tableau systems, Hilbert-style systems, Gentzen-style systems, and
resolution. In Chaps. 2 and 3 classical theories of binary relations and their dual
tableaux are presented. It is shown how dual tableaux of these theories perform the
above mentioned tasks of verification of validity, entailment, model checking, and
verification of satisfaction. Some decidable classes of relational formulas are pre-
sented in this part together with dual tableau decision procedures.

Part II is concerned with some non-classical theories of relations. In Chap. 4
we present a theory of Peirce algebras and its dual tableau. Peirce algebras pro-
vide a means for representation of interactions between binary relations and sets.
In Chap. 5 a theory of fork algebras and its dual tableau are presented. Fork al-
gebras are the algebras of binary relations which, together with all the classical
relational operations, have a special operation, referred to as fork of relations. While
the relational theories of Chap. 2 serve as means of representation for propositional
languages, the fork operation enables us a translation of first-order languages into a
language of binary relations. In Chap. 6 we present a theory of typed relations and
its dual tableau. The theory enables us to represent relations as they are understood
in relational databases. The theory deals with relations of various finite arities and,
moreover, each relation has its type which is meant to be a representation of a subset
of attributes on which the relation is defined.

In Parts III–V relational formalizations of various theories are presented. In
Part III relational dual tableaux are constructed for modal (Chap. 7), intuitionistic
(Chap. 8), relevant (Chap. 9), and finitely many-valued (Chap. 10) logics.

Part IV is concerned with the major theories of reasoning with incomplete infor-
mation. In Chaps. 11 and 12 we deal with logics of rough sets and their relational
dual tableaux. Chapter 13 presents a relational treatment of formal concept analy-
sis. In Chap. 14 a monoidal t-norm fuzzy logic is considered and a relational dual
tableau for this logic is constructed. In this system ternary relations are needed for
representation of the monoid product operation. Next, in Chap. 15 theories of order
of magnitude reasoning are considered and their dual tableaux are presented.

Part V is concerned with dual tableaux for temporal reasoning, spatial reason-
ing, and for logics of programs. The first two chapters of that part refer to temporal
logics. In Chap. 16 some classical temporal logics are dealt with and in Chap. 17
relational dual tableaux for a class of interval temporal logics are presented. In
Chap. 18 dual tableaux for theories of spatial reasoning are constructed, including



Preface ix

a system for the region connection calculus. Chapter 19 includes dual tableaux for
various versions of propositional dynamic logic and for an event structure logic.

In Part VI we consider some theories for which dual tableau systems are con-
structed directly within the theory, without translation into any relational theory.
In Chap. 20 we present a class of threshold logics where both weights of formulas
and thresholds are elements of a commutative group. In Chap. 21 we present a con-
struction of a signed dual tableau which is a decision procedure for a well known
intermediate logic. Chapter 22 includes dual tableaux for a class of first-order Post
logics. The reduct of this dual tableau for the propositional part of the logic is a
decision procedure. Chapter 23 presents a propositional logic endowed with iden-
tity treated as a propositional operation and some theories based on this logic. Dual
tableaux for all of these theories are presented. In Chap. 24 logics and algebras of
conditional decisions are considered together with their dual tableau decision pro-
cedures.

The book concludes with Part VII. In the single Chap. 25 of this part we make
a synthesis of what we learned in the process of developing dual tableaux in the
preceding chapters. We collect observations on how the dual tableaux rules should
be designed once the constraints on the models of the theories or definitions of some
specific constants are given. We also discuss some useful strategies for construction
of dual tableaux proofs.

All the dual tableau systems considered in the book are proved to be sound and
complete. We present a general method of proving completeness of dual tableaux
which is shown to be broadly applicable to many theories.

Researchers working in any of the theories mentioned in the titles of the chapters
will receive in the book a formal tool of specification and verification of those prob-
lems in their theories which involve checking validity, satisfaction, or entailment.
Every theory whose dual tableau is presented in a chapter of the book is briefly in-
troduced at the beginning of the chapter and a bibliography is indicated where an
interested reader could trace developments, major results, and applications of the
theory.

To get an idea of what dual tableaux are and how they are related to the other ma-
jor types of deduction systems, reading Chap. 1 is recommended. After reading the
introductory material from Sects. 1.1, . . . , 1.4, and Sects. 2.1, . . . , 2.8, each chapter
in Parts III, IV, and V may be read independently. The material of Chap. 7 may be
helpful in reading Chapters 11, 12, 16, 17, and 19, since they are concerned with
modal-style logics.

Readers interested in the formal methods of deduction and their application to
specification and verification will find in the book an exhaustive exposition and dis-
cussion of dual tableaux and their methodology illustrated with several case studies.



x Preface

Acknowledgments

Special thanks are due to Wendy MacCaull who suggested writing this book and
discussed its scope with Ewa Orłowska during her stay as the F. W. James chair
professor at St. Francis Xavier University in Antigonish, Canada. Ewa Orłowska is
grateful to the colleagues from the RelMiCS (Relational Methods in Computer Sci-
ence) community and the participants of the COST Action 274 TARSKI (Theory
and Applications of Relational Structures as Knowledge Instruments) for coopera-
tion, inspiration, and stimulating discussions on the subject of the book. The authors
thank the colleagues who read and commented on some chapters of this book.

Partial supports from the Polish Ministry of Science and Higher Education grant
126 N N206 399134 and from the Spanish Ministry of Science Research Project
TIN09-14562-C05-01 are gratefully acknowledged.

Warszawa, 2010 Ewa Orłowska, Joanna Golińska-Pilarek



Contents

Part I Foundations

1 Dual Tableau for Classical First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Classical First-Order Logic with Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Rasiowa–Sikorski Proof System for Classical

First-Order Logic with Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Tableau System for Classical First-Order Logic with Identity. . . . . . 12
1.5 Quasi Proof Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Transformation of Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Discussion of Various Rules for Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.9 Dual Tableaux and Hilbert-Style Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.10 Dual Tableaux and Gentzen-Style Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.11 Dual Tableaux and Dual Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Dual Tableaux for Logics of Classical Algebras of Binary Relations . . . 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Algebras of Binary Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Logics of Binary Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Relational Dual Tableaux .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 A Basic Relational Logic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 A Method of Proving Soundness and Completeness

of Relational Dual Tableaux .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 Relational Logic with Relations 1 and 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Discussion of Various Rules for Relation 10 . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.9 Full Relation Algebras and Relational Logics . . . . . . . . . . . . . . . . . . . . . . . 54
2.10 An Example of a Relational Dual Tableau Proof . . . . . . . . . . . . . . . . . . . . 55
2.11 Relational Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.12 Decision Procedures for Some Relational Logics . . . . . . . . . . . . . . . . . . . 62

xi



xii Contents

3 Theories of Point Relations and Relational Model Checking . . . . . . . . . . . . 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Relational Logics with Point Relations Introduced with Axioms . . 70
3.3 Relational Logics with Point Relations Introduced

with Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Model Checking in Relational Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Verification of Satisfaction in Relational Logics . . . . . . . . . . . . . . . . . . . . 80

Part II Reasoning in Logics of Non-classical Algebras of Relations

4 Dual Tableaux for Peirce Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Peirce Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Peirce Logic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Dual Tableau for Peirce Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 Entailment, Model Checking, and Satisfaction in Peirce Logic . . . . 93
4.6 Peirce Algebras and Terminological Languages . . . . . . . . . . . . . . . . . . . . 99

5 Dual Tableaux for Fork Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
5.2 Fork Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
5.3 Fork Logic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
5.4 Dual Tableau for Fork Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
5.5 Relational Interpretation of First-Order Theories . . . . . . . . . . . . . . . . . . .116

6 Dual Tableaux for Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
6.2 The Calculus of Typed Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
6.3 A Logic of Typed Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
6.4 Dual Tableau for the Logic of Typed Relations . . . . . . . . . . . . . . . . . . . . .127
6.5 Relational Representation of Database Dependencies . . . . . . . . . . . . . .132
6.6 Dual Tableau for Database Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Part III Relational Reasoning in Traditional Non-classical Logics

7 Dual Tableaux for Classical Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
7.2 Classical Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
7.3 Propositional Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
7.4 Relational Formalization of Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . .146
7.5 Dual Tableaux for Standard Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . .151
7.6 Entailment in Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
7.7 Model Checking in Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
7.8 Verification of Satisfaction in Modal Logics . . . . . . . . . . . . . . . . . . . . . . . .157



Contents xiii

8 Dual Tableaux for Some Logics Based on Intuitionism . . . . . . . . . . . . . . . . . .161
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
8.2 Relational Formalization of Intuitionistic Logic . . . . . . . . . . . . . . . . . . . .162
8.3 Relational Formalization of Minimal Intuitionistic Logic . . . . . . . . . .167
8.4 Relational Formalization of Some Intermediate Logics . . . . . . . . . . . .171
8.5 Relational Formalization of a Logic for Hardware Verification . . . .174

9 Dual Tableaux for Relevant Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
9.2 Relevant Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
9.3 Translation of Relevant Logics into Relational Logics. . . . . . . . . . . . . .179
9.4 Relational Dual Tableau for Logic RLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
9.5 Relational Dual Tableaux for Axiomatic Extensions

of Logic RLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

10 Dual Tableaux for Many-Valued Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
10.2 Finitely Many-Valued Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
10.3 Relational Formalization of Finitely Many-Valued Logics . . . . . . . . .199
10.4 Dual Tableaux for Finitely Many-Valued Logics . . . . . . . . . . . . . . . . . . . .204
10.5 Three-Valued Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

Part IV Relational Reasoning in Logics of Information and Data Analysis

11 Dual Tableaux for Information Logics of Plain Frames . . . . . . . . . . . . . . . . . .217
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
11.2 Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
11.3 Information Logics NIL and IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
11.4 Relational Formalization of Logics NIL and IL . . . . . . . . . . . . . . . . . . . . .225
11.5 Information Logic CI and Its Relational Formalization .. . . . . . . . . . . .231

12 Dual Tableaux for Information Logics of Relative Frames . . . . . . . . . . . . . .237
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
12.2 Relative Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
12.3 Relational Formalizations of the Logics of Strong

and Weak Relative Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
12.4 Relational Formalization of the Logic Rare-NIL . . . . . . . . . . . . . . . . . . . .245
12.5 Relational Formalization of the Logic Rare-CI. . . . . . . . . . . . . . . . . . . . . .247
12.6 Relational Formalization of the Logic of Strong

Complementarity Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

13 Dual Tableau for Formal Concept Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
13.2 Basic Notions of Formal Concept Analysis . . . . . . . . . . . . . . . . . . . . . . . . .251
13.3 Context Logic and Its Dual Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
13.4 Entailment, Model Checking, and Satisfaction in Context Logic . .257



xiv Contents

14 Dual Tableau for a Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
14.2 MTL-Algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
14.3 The Logic MTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
14.4 Relational Formalization of Logic MTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

15 Dual Tableaux for Logics of Order of Magnitude Reasoning. . . . . . . . . . . .277
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277
15.2 A Multimodal Logic of Order of Magnitude Reasoning . . . . . . . . . . . .278
15.3 Dual Tableau for the Logic of Order of Magnitude Reasoning . . . . .280

Part V Relational Reasoning about Time, Space, and Action

16 Dual Tableaux for Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291
16.2 Basic Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292
16.3 Semantic Restrictions on Basic Temporal Logic . . . . . . . . . . . . . . . . . . . .294
16.4 Temporal Logics with Since and Until . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300
16.5 Standard Temporal Logics with Nominals. . . . . . . . . . . . . . . . . . . . . . . . . . .306
16.6 Temporal Information Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311

17 Dual Tableaux for Interval Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315
17.2 Halpern–Shoham Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316
17.3 Relational Logic for Halpern–Shoham Logic . . . . . . . . . . . . . . . . . . . . . . .317
17.4 Translation of Halpern–Shoham Logic into a Relational Logic . . . .318
17.5 Dual Tableau for Halpern–Shoham Logic . . . . . . . . . . . . . . . . . . . . . . . . . . .320
17.6 Dual Tableaux for Other Interval Temporal Logics . . . . . . . . . . . . . . . . .325

18 Dual Tableaux for Spatial Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329
18.2 Dual Tableaux for Spatial Theories Based on a Plain

Contact Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330
18.3 Dual Tableaux for Spatial Theories Based on a

Contact Relation on a Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339
18.4 Dual Tableau for Region Connection Calculus . . . . . . . . . . . . . . . . . . . . . .348
18.5 Dual Tableaux for Spatial Theories of Proximity Relation . . . . . . . . .354

19 Dual Tableaux for Logics of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359
19.2 Relational Formalization of Propositional Dynamic Logic .. . . . . . . .360
19.3 Relational Formalization of Dynamic Logic

with Program Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366
19.4 Relational Formalization of Logics of Demonic

Nondeterministic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371
19.5 Relational Formalization of Event Structure Logics . . . . . . . . . . . . . . . .376



Contents xv

Part VI Beyond Relational Theories

20 Dual Tableaux for Threshold Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385
20.2 Threshold Logics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385
20.3 Dual Tableaux for Threshold Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388
20.4 Mutual Interpretability of a Threshold Logic

and Classical First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393

21 Signed Dual Tableau for Gödel–Dummett Logic . . . . . . . . . . . . . . . . . . . . . . . . . .397
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397
21.2 Gödel–Dummett Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398
21.3 Signed Dual Tableau Decision Procedure

for Gödel–Dummett Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398

22 Dual Tableaux for First-Order Post Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407
22.2 Post Algebras of Order n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407
22.3 First-Order n-Valued Post Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408
22.4 Dual Tableaux for Post Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410

23 Dual Tableau for Propositional Logic with Identity . . . . . . . . . . . . . . . . . . . . . .417
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417
23.2 A Propositional Logic with Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418
23.3 Axiomatic Extensions of the Propositional Logic with Identity . . . .420
23.4 Dual Tableau for the Propositional Logic with Identity .. . . . . . . . . . . .424
23.5 Dual Tableaux for Axiomatic Extensions

of the Propositional Logic with Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428

24 Dual Tableaux for Logics of Conditional Decisions . . . . . . . . . . . . . . . . . . . . . . .433
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433
24.2 Logic of Conditional Decisions and Its Dual Tableau

Decision Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .434
24.3 Algebras of Conditional Decisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .438
24.4 Relational Interpretation of the Logic of Conditional Decisions . . .441
24.5 Logics of Conditional Decisions of Order n and Their

Dual Tableau Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444

Part VII Conclusion

25 Methodological Principles of Dual Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .455
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .455
25.2 Theories Interpreted Relationally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .456
25.3 Relational Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .458
25.4 Relational Languages Versus First-Order Languages . . . . . . . . . . . . . . .460



xvi Contents

25.5 Dual Tableaux .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461
25.6 Constraint–Rule Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .463
25.7 Definition–Rule Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468
25.8 Branch Model and Completeness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473
25.9 Alternative Forms of Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .476
25.10 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .487
25.11 Towards Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .492
25.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .492

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .519



Part I
Foundations



Chapter 1
Dual Tableau for Classical First-Order Logic

1.1 Introduction

In [RS60] Rasiowa and Sikorski developed a deduction system for classical
first-order logic without identity. Their aim was to present a system which is a
realization of the Beth idea of the analytic tableau [Bet59] and, in contrast with the
Gentzen system [Gen34] which required the cut rule in the proof of completeness,
was cut free. In this chapter we present an extension of the dual tableau of Rasiowa
and Sikorski to first-order logic with the identity predicate. This deduction system
is an implicit foundation of all the dual tableaux presented in this book.

In this chapter the notions and terminology which will be used throughout the
book for presentation of dual tableaux is established. In particular, we discuss vari-
ous types of dual tableaux rules, the notion of correctness of a rule in a proof system,
and a form of dual tableaux proofs. We present a detailed proof of completeness of
the dual tableau for first-order logic with identity. The main steps of this proof deter-
mine a paradigm which will be relevant to all the dual tableaux completeness proofs
in the subsequent chapters of the book.

Next, we recall the tableau system for first-order logic introduced in [Smu68]
and we discuss how it is related to the Rasiowa and Sikorski system. Following
[GPO07b] and some ideas from [SOH04] we show that the two systems are dual
to each other. We present a principle of this duality and we show how proofs in
one of those systems can be transformed into proofs in the other system. We also
discuss a relationship between dual tableaux and Hilbert-style systems, Gentzen-
style systems, and resolution. Following [Kon02], we show that the dual tableau may
be seen as Gentzen system with the rules where sequents have the empty precedents.
We also compare dual tableaux proofs with resolution proofs in a similar way as
tableaux and resolution are compared in [OdS93, Sch06]. A section of this chapter is
devoted to a discussion of various ways the identity predicate may be treated in dual
tableaux. We compare the dual tableaux rules for identity with the corresponding
rules from some other deduction systems.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 1,
c� Springer Science+Business Media B.V. 2011

3



4 1 Dual Tableau for Classical First-Order Logic

1.2 Classical First-Order Logic with Identity

In this section we recall the language and the semantics of the classical first-order
logic with identity. We consider the first-order logic without function symbols. It is
known that these symbols are definable in terms of predicate symbols, therefore this
is not a severe limitation. Throughout the book, this logic will be denoted by F.

The vocabulary of the logic F consists of the following pairwise disjoint sets of
symbols:

� OV F – a countable infinite set of individual variables (also referred to as object
variables);

� PF – a countable set of predicate symbols; we assume that the identity predicate
‘D’ belongs to PF;

� f:;^;_g – the set of propositional operations of negation, conjunction and dis-
junction, respectively;

� f8; 9g – the set of the universal and existential quantifier, respectively.

The set of atomic formulas of the logic F is the smallest set such that:

� x D y is an atomic formula for all x; y 2 OV F;
� P.x1; : : : ; xk/ is an atomic formula, for every k-ary predicate P 2 PF, k � 1,

and for all x1; : : : ; xk 2 OV F.

The set of F-formulas is the smallest set including the set of atomic formulas and
closed on propositional operations and quantifiers. Throughout the book, a formula
of the form :.x D y/ will be denoted by x ¤ y. A literal is an atomic formula or
a negated atomic formula.

As usual, propositional operations of implication,!, and equivalence,$, are
definable:

For all F-formulas ' and  ,

' !  
dfD :' _  ;

' $  
dfD .' !  / ^ . ! '/:

Let ' be an F-formula and let x be an individual variable occurring in '. A variable
x is said to be free in ' whenever at least one of its occurrences in ' is not in the
scope of any quantifier, and it is said to be bound if it is not free. We write '.x/ to
say that a variable x is free in '.

An F-model is a pair M D .U;m/ satisfying the following conditions:

� U is a non-empty set;
� m is a meaning function assigning relations on U to predicates, i.e., for every
k-ary predicate P , m.P / � U k ;

� m.D/ is an equivalence relation on U ;



1.3 Rasiowa–Sikorski Proof System for Classical First-Order Logic with Identity 5

� The extensionality property (also referred to as a congruence property) is sat-
isfied: for all ai ; bi 2 U; i D 1; : : : ; k, and for every k-ary predicate symbol
P , if .a1; b1/ 2 m.D/; : : : ; .ak ; bk/ 2 m.D/, and .a1; : : : ; ak/ 2 m.P /, then
.b1; : : : ; bk/ 2 m.P /.

An F-model is standard whenever the meaning of the predicate D is the identity,
i.e., m.D/ D f.a; a/ W a 2 U g.

Let M be an F-model. A valuation in M is a mapping vWOV F ! U . We write
M; v ˆ ' to denote that ' is satisfied in M by v. The relation ˆ is defined induc-
tively as follows:

� M; v ˆ .x D y/ iff .v.x/; v.y// 2 m.D/;
� M; v ˆ P.x1; : : : ; xk/ iff .v.x1/; : : : ; v.xk// 2 m.P /;
� M; v ˆ :' iff not M; v ˆ ';
� M; v ˆ ' ^  iff M; v ˆ ' and M; v ˆ  ;
� M; v ˆ ' _  iff M; v ˆ ' or M; v ˆ  ;
� M; v ˆ 8x' iff for every valuation v0 in M such that v and v0 coincide on

OV F n fxg, M; v0 ˆ ';
� M; v ˆ 9x' iff for some valuation v0 in M such that v and v0 coincide on

OV F n fxg, M; v0 ˆ '.

A formula ' is true in M if and only if M; v ˆ ' for every valuation v in M. An
F-formula is F-valid whenever it is true in all F-models. Throughout the book, ‘not
M; v ˆ '’ will be written as M; v 6ˆ '.

Clearly, F-validity of a formula implies its truth in all standard F-models. The
following fact is well known.

Proposition 1.2.1. For every F-model M and for every valuation v in M, there
exist a standard F-model M0 and a valuation v0 in M0 such that for every F-formula
', M; v ˆ ' iff M0; v0 ˆ '.

1.3 Rasiowa–Sikorski Proof System for Classical First-Order
Logic with Identity

In this section we present the Rasiowa–Sikorski system (RS for short) for the logic
F as presented in [RS63] and we expand it with a rule for identity. The rules of
RS-system preserve and reflect validity of the sets of formulas, which are their con-
clusions and premises. Validity of a finite set of formulas is defined as validity of
the disjunction of its elements.

The rules of dual tableau for logic F are of the forms:

.rule1/
˚.x/

˚0.x0; z/
.rule2/

˚.x/

˚0.x0; z/ j˚1.x1; z/



6 1 Dual Tableau for Classical First-Order Logic

where ˚.x/ is a finite set of formulas whose individual variables are among the
elements of set.x/, where x is a finite sequence of individual variables and set.x/ is
the set of elements of sequence x; every ˚j .xj ; z/, j D 0; 1, is a finite non-empty
set of formulas, whose individual variables are among the elements of set.xj / [
fzg, where z is either instantiated to arbitrary individual variable (usually to the
individual variable that appears in the set of formulas to which the rule is being
applied) or z must be instantiated to a new variable (not appearing as a free variable
in the formulas of the set to which the rule is being applied). A rule of the form
(rule2) is a branching rule. In a rule, the set above the line is referred to as its premise
and the set(s) below the line is (are) its conclusion(s). A rule of the form (rule1)
(resp. (rule2)) is said to be applicable to a finite setX of formulas whenever˚.x/ �
X . As a result of an application of a rule of the form (rule1) (resp. (rule2)) to a setX ,
we obtain the set .X n˚.x//[˚0.x0; z/ (resp. the sets .X n˚.x//[˚i .xi ; z/, i 2
f0; 1g). As usual, we will write premises and conclusions of the rules as sequences
of formulas rather than sets.

Let ' and  be F-formulas. RS-dual tableau consists of decomposition rules of
the following forms:

(RS_)
' _  
'; 

(RS:_)
:.' _  /
:' j : 

(RS^)
' ^  
' j  

(RS:^)
:.' ^  /
:';: 

(RS:)
::'
'

(RS8)
8x'.x/
'.z/

(RS:8)
:8x'.x/

:'.z/;:8x'.x/
z is a new variable z is any variable

(RS9) 9x'.x/
'.z/; 9x'.x/ (RS:9) :9x'.x/

:'.z/
z is any variable z is a new variable

and the specific rule of the following form:

.RS D/ '.x/

x D z; '.x/ j '.z/; '.x/

where z is any variable, '.x/ is an atomic formula, and '.z/ is obtained from '.x/

by replacing all the occurrences of x in '.x/ with z.

A finite set of formulas is RS-axiomatic whenever it includes a subset of the form
(RSAx1) or (RSAx2):

(RSAx1) fx D xg, where x is any variable;
(RSAx2) f';:'g, where ' is any formula.



1.3 Rasiowa–Sikorski Proof System for Classical First-Order Logic with Identity 7

A finite set of formulas f'1; '2; : : : ; 'ng, n � 1, is said to be an RS-set whenever
the disjunction of its elements is F-valid. It follows that comma (;) in the rules is
interpreted as disjunction.

A rule of the form (rule1) (resp. (rule2)) is RS-correct whenever for every finite
set X of F-formulas, X [ ˚.x/ is an RS-set iff X [ ˚0.x0; z/ is an RS-set(resp.
X [ ˚0.x0; z/ and X [ ˚1.x1; z/ are RS-sets). It follows that branching (j) in
the rules is interpreted as conjunction. Note that, as mentioned earlier, the defini-
tion of correctness establishes preservation and reflection of validity by the rules.
It is a characteristic feature of all Rasiowa–Sikorski style deduction systems (see
[RS63, GPO07b]). A transfer of validity from the conclusion of a rule to the premise
is used for proving soundness of the system and the other direction for proving com-
pleteness.

According to the semantics of propositional operations and quantifiers we obtain:

Proposition 1.3.1.

1. The RS-rules are RS-correct;
2. The RS-axiomatic sets are RS-sets.

Proof. By way of example, we prove the proposition for rules (RS8/, (RS9/, and
(RSD/. Let X be a finite set of F-formulas and let '.x/ be an F-formula with a free
variable x.

(RS8) Let z be a variable that does not occur as a free variable in the formulas
of the set X [ f8x'.x/g. Then X [ f'.z/g is an RS-set if and only if for every
F-model M and for every valuation v in M, either there exists  2 X such that
M; v ˆ  or for every valuation v0 in M such that v and v0 coincide on OV F n fzg,
M; v0 ˆ '.z/. The latter is equivalent to F-validity of disjunction of formulas of the
set X [ f8x'.x/g, from which RS-correctness of the rule (RS8) follows.

(RS9) Let z be any variable. Clearly, if the premise of the rule is an RS-set, then
also the conclusion of the rule is an RS-set. Now, assume X [ f'.z/; 9x'.x/g is an
RS-set and suppose X [ f9x'.x/g is not an RS-set. Then there exist an F-model
M and a valuation v in M such that M; v 6ˆ 9x'.x/. However, by the assumption,
M; v ˆ '.z/. Let v0 be a valuation in M such that v0.x/ D v.z/ and for every
y 2 OV F n fxg, v0.y/ D v.y/. Thus, M; v ˆ 9x'.x/, a contradiction.

(RSD) Let '.x/ be an atomic formula. Clearly, if X [ f'.x/g is an RS-set, then
so areX [fx D z; '.x/g andX[f'.z/; '.x/g. Assume thatX [fx D z; '.x/g and
X[f'.z/; '.x/g are RS-sets. SupposeX[f'.x/g is not an RS-set. Then there exist
an F-model M and a valuation v in M such that for every formula # 2 X [f'.x/g,
M; v 6ˆ # . By the assumption, M; v ˆ x D z and M; v ˆ '.z/. Then by the
extensionality property M; v ˆ '.x/, a contradiction. ut
Given a formula, successive applications of the rules result in a tree whose nodes
consist of finite sets of formulas.



8 1 Dual Tableau for Classical First-Order Logic

Let ' be an F-formula. An RS-proof tree for ' is a tree with the following
properties:

� The formula ' is at the root of this tree;
� Each node except the root is obtained by the application of an RS rule to its

predecessor node;
� A node does not have successors whenever its set of formulas is an RS-axiomatic

set or none of the rules is applicable to its set of formulas.

A branch of an RS-proof tree is said to be closed whenever it contains a node
with an RS-axiomatic set of formulas. An RS-proof tree is closed whenever all
of its branches are closed. Note that every closed branch is finite. A formula ' is
RS-provable whenever there is a closed RS-proof tree for ' which is then referred
to as its RS-proof.

From Proposition 1.3.1 we get soundness of RS-system.

Proposition 1.3.2. If an F-formula ' is RS-provable, then ' is F-valid.

Corollary 1.3.1. If an F-formula ' is RS-provable, then ' is true in all standard
F-models.

As usual in proof theory a concept of completeness of a proof tree is needed. Intu-
itively, completeness of a tree means that all the rules that can be applied have been
applied. By abusing the notation, for a branch b and a formula ', we write ' 2 b if
' belongs to the set of formulas of a node of branch b.

A branch b of an RS-proof tree is said to be complete whenever it is closed or it
satisfies the following completion conditions:

Cpl(RS_) (resp. Cpl(RS:^)) If .' _  / 2 b (resp. :.' ^  / 2 b), then both
' 2 b (resp. :' 2 b) and  2 b (resp. : 2 b), obtained by an application of
the rule (RS_) (resp. (RS:^));

Cpl(RS^) (resp. Cpl(RS:_)) If .' ^  / 2 b (resp. :.' _  / 2 b), then either
' 2 b (resp. :' 2 b) or  2 b (resp. : 2 b), obtained by an application of
the rule (RS^) (resp. (RS:_));

Cpl(RS:) If .::'/ 2 b, then ' 2 b, obtained by an application of the rule (RS:);
Cpl(RS8) (resp. Cpl(RS:9)) If 8x'.x/ 2 b (resp. :9x'.x/ 2 b), then for some

individual variable z, '.z/ 2 b (resp. :'.z/ 2 b), obtained by an application of
the rule (RS8) (resp. (RS:9));

Cpl(RS9) (resp. Cpl(RS:8)) If 9x'.x/ 2 b (resp. :8x'.x/ 2 b), then for every
individual variable z, '.z/ 2 b (resp. :'.z/ 2 b), obtained by an application of
the rule (RS9) (resp. (RS:8));

Cpl(RSD) If '.x/ 2 b and '.x/ is an atomic formula, then for every individual
variable z, either .x D z/ 2 b or '.z/ 2 b, obtained by an application of the
rule (RSD).

An RS-proof tree is said to be complete if and only if all of its branches are complete.
A complete non-closed branch is said to be open. Note that the rules guarantee that



1.3 Rasiowa–Sikorski Proof System for Classical First-Order Logic with Identity 9

every RS-proof tree can be extended to a complete RS-proof tree. A procedure for
constructing a complete proof tree can be found in [DO96]. Observe also that every
open branch of an F-proof tree that contains an atomic formula is infinite, since the
specific rule (RSD) can be applied infinitely many times to any atomic formula.

Observe that the rules of RS-dual tableau preserve the literals, that is any appli-
cation of a rule transfers the literals from the premises to the conclusions. Hence,
we have:

Fact 1.3.1 (Preservation of literals). If a node of an RS-proof tree contains a lit-
eral, then all of its successors contain this literal as well.

Proposition 1.3.3. For any branch of an RS-proof tree, if the literals ' and :'
belong to the branch, then the branch is closed.

Proof. Let b be a branch of an RS-proof tree. Fact 1.3.1 implies that if ' 2 b and
:' 2 b, for an atomic formula ', then eventually both of these formulas appear in
a node of branch b. Since the set containing a subset f';:'g is F-axiomatic, b is
closed. ut
Let b be an open branch of an RS-proof tree. We define a branch structure Mb D
.U b; mb/ as follows:

� U b D OV F;
� mb.P / D f.x1; : : : ; xk/ 2 .U b/k W P.x1; : : : ; xk/ 62 bg, for every k-ary predi-

cate symbol P 2 PF; k � 1.

Proposition 1.3.4. For every open branch b of an RS-proof tree, Mb is an F-model.

Proof. First, we show that mb.D/ is an equivalence relation on the set U b . If for
some x 2 OV F, .x; x/ 62 mb.D/, then .x D x/ 2 b, which means that b is closed, a
contradiction. Let .x; y/ 2 mb.D/ and suppose .y; x/ 62 mb.D/. Then .x D y/ 62 b
and .y D x/ 2 b. By completion condition Cpl(RSD), either .x D y/ 2 b or
.y D y/ 2 b. In the first case we have a contradiction, in the second case the
branch b is closed, which contradicts the assumption. Let .x; y/ 2 mb.D/ and
.y; z/ 2 mb.D/, which means that .x D y/; .y D z/ 62 b. Suppose .x; z/ 62 mb.D/,
that is .x D z/ 2 b. By the completion condition Cpl(RSD), either .x D y/ 2 b or
.y D z/ 2 b, a contradiction.

Now, we show that Mb satisfies the extensionality property. We prove it for
k D 1. In the general case the proof is similar. Let .x; y/ 2 mb.D/ and let x 2
mb.P /, for some x; y 2 U b and some unary predicate symbol P . Suppose y 62
mb.P /. By the definition of Mb, we obtain .x D y/ 62 b, P.x/ 62 b, and P.y/ 2 b.
By the completion condition Cpl(RSD), either .y D x/ 2 b or P.x/ 2 b. Applying
once again the completion condition Cpl(RSD) with '.x/ being .y D x/, we get
either .x D y/ 2 b or P.x/ 2 b, a contradiction. ut
Any such model Mb is referred to as a branch model. It is constructed from the
syntactic resources of the tree built during the proof search process.

Let vb WOV F ! U b be a valuation in Mb such that vb.x/ D x, for every
x 2 OV F.



10 1 Dual Tableau for Classical First-Order Logic

Proposition 1.3.5. For every open branch b of an RS-proof tree and for every
F-formula ', if Mb; vb ˆ ', then ' 62 b.

Proof. The proof is by induction on the complexity of formulas. For atomic
formulas the proposition holds by the definitions of Mb and vb . If ' is a negated
atomic formula, then the proposition follows from the definition of Mb and
Proposition 1.3.3. Assume that the proposition holds for  , # , and their negations.

Let ' D :: . Assume Mb; vb ˆ :: . Then Mb; vb ˆ  , hence by the
induction hypothesis  62 b. Suppose :: 2 b. By the completion condition
Cpl(RS:),  2 b, a contradiction.

Let ' D 8x .x/. Assume that Mb; vb ˆ 8x .x/. Then for every z 2 U b ,
Mb; vb ˆ  .z/, thus by the induction hypothesis, .z/ 62 b. Suppose 8x .x/ 2 b.
By the completion condition Cpl(RS8), for some z 2 U b , .z/ 2 b, a contradiction.

Let ' D :8x .x/. Assume Mb; vb ˆ :8x .x/. Then for some z 2 U b ,
Mb; vb 6ˆ  .z/. Suppose that :8x .x/ 2 b. By the completion condition
Cpl(RS:8), for every z 2 U b , : .z/ 2 b. Thus, by the induction hypothesis,
Mb; vb ˆ  .z/, a contradiction.

In the remaining cases the proofs are similar. ut
Given a branch model Mb, we define the quotient model Mb

q D .U bq ; m
b
q/ as

follows:

� U bq D fkxk W x 2 U bg, where kxk is the equivalence class ofmb.D/ determined
by x;

� mbq.P / D f.kx1k; : : : ; kxkk/ 2 .U bq /
k W .x1; : : : ; xk/ 2 mb.P /g, for every

k-ary predicate symbol P , k � 1.

Since the branch model satisfies the extensionality property, the definition ofmbq.P /

is correct, i.e., if .x1; : : : ; xk/ 2 mb.P / and .x1; y1/; : : : ; .xk ; yk/ 2 mb.D/, then
.y1; : : : ; yk/ 2 mb.P /.

Let vbq be a valuation in Mb
q such that vbq.x/ D kxk, for every x 2 OV F.

Proposition 1.3.6.

1. The model Mb
q is a standard F-model;

2. For every F-formula ', Mb; vb ˆ ' iff Mb
q; v

b
q ˆ '.

Proof.

1. We have to show that mbq.D/ is the identity on U bq . Indeed, we have:

.kxk; kyk/ 2 mbq.D/ iff .x; y/ 2 mb.D/ iff kxk D kyk:

2. The proof is by an easy induction on the complexity of formulas. For example, for
the formulas of the form x D y we have: Mb; vb ˆ .x D y/ iff .x; y/2mb.D/
iff .kxk; kyk/ 2 mbq.D/Mb

q; v
b
q ˆ .x D y/. ut



1.3 Rasiowa–Sikorski Proof System for Classical First-Order Logic with Identity 11

Proposition 1.3.7. If a formula ' is true in all standard F-models, then ' is
RS-provable.

Proof. Suppose there is no any closed RS-proof tree of '. Consider a complete
RS-proof tree with ' at its root. Let b be an open branch in this tree. Since ' 2 b,
by Proposition 1.3.5, Mb; vb 6ˆ '. Therefore, by Proposition 1.3.6(2.), we have
Mb

q; v
b
q 6ˆ '. Since Mb

q is a standard F-model, we get a contradiction. ut
In this proof the branch model is constructed from a failed proof search.

Corollary 1.3.2. If a formula ' is F-valid, then ' is RS-provable.

Summarizing, RS-system provides a deduction tool for the logic F which has the
same power as the Hilbert-style axiomatization, namely we have the following
theorem which results from Corollaries 1.3.1 and 1.3.2, Propositions 1.3.2 and 1.3.7.

Theorem 1.3.1 (Soundness and Completeness of the RS-system). Let ' be an
F-formula. The following conditions are equivalent:

1. ' is F-valid;
2. ' is true in all standard F-models;
3. ' is RS-provable.

Example. Consider the following F-formula:

8x.' _  .x//! .' _ 8x .x//:

It can be equivalently presented in the form:

:8x.' _  .x// _ .' _ 8x .x//:

This formula is F-valid. In Fig. 1.1 its RS-proof is presented.

:8x.' _  .x//_ .' _8x .x//
�

(RS_) twice

:8x.' _  .x//; ';8x .x/
�(RS8) with a new variable z

:8x.' _  .x//; ';  .z/
�(RS:8) with z

:.' _  .z//; ';  .z/; : : :
��� ���(RS:_)

:'; '; : : :
closed

: .z/;  .z/; : : :
closed

Fig. 1.1 An RS-proof of the formula 8x.' _  .x//! .' _8x .x//



12 1 Dual Tableau for Classical First-Order Logic

Throughout the book, in each node of proof trees presented in the examples we
underline the formulas which determine the rule that has been applied during the
construction of the tree and we indicate which rule has been applied. If a rule intro-
duces a variable, then we write how the variable has been instantiated. This concerns
both the rules which introduce a new or an arbitrary variable. Furthermore, in each
node we write only those formulas which are essential for the application of a rule
and the succession of these formulas in the node is usually motivated by the reasons
of formatting.

1.4 Tableau System for Classical First-Order Logic
with Identity

In this section we present a tableau system for the logic F formulated in a way
analogous to the formulation of the RS-system. In particular, we indicate explicitly
in the rules the repetition of a decomposed formula if needed, in order to make
the rules semantically correct. In the original presentation of Smullyan [Smu68] the
repetition is shifted to a strategy of building a proof tree. Therefore in our case the
Smullyan notation for the rules (˛; ˇ; �; ı-rules) cannot be applied directly.

The rules of the tableau system preserve and reflect unsatisfiability of the sets
of formulas which are their conclusions and premises. There are many versions of
tableau systems. They were studied for example in [Fit90]. The specific rule for
identity presented here differs from that known in the literature. Such a choice of
the rules enables us to see an analogy between tableau and dual tableau treatment of
identity (see Sect. 1.8).

Let ' and  be any F-formulas. The tableau system for the logic F consists of
decomposition rules of the following forms:

(T_)
' _  
' j  

(T:_)
:.' _  /
:';: 

(T^)
' ^  
'; 

(T:^)
:.' ^  /
:' j : 

(T:)
::'
'

(T8)
8x'.x/

'.z/;8x'.x/ (T:8)
:8x'.x/
:'.z/

z is any variable z is a new variable

(T9) 9x'.x/
'.z/

(T:9) :9x'.x/
:'.z/;:9x'.x/

z is a new variable z is any variable



1.4 Tableau System for Classical First-Order Logic with Identity 13

and the specific rule of the following form:

(TD)
:'.x/

x ¤ z;:'.x/ j :'.z/;:'.x/

where z is any variable, '.x/ is an atomic formula, and '.z/ is obtained from '.x/

by replacing all the occurrences of x in '.x/ with z.
A finite set of formulas is T-axiomatic whenever it includes a subset of the form

(TAx1) or (TAx2):

(TAx1) fx ¤ xg, where x is any variable;
(TAx2) f';:'g, where ' is any formula.

A finite set of formulas f'1; '2; : : : ; 'ng is said to be a T-set whenever the con-
junction of its elements is unsatisfiable, that is for every F-model M and for every
valuation v in M there exists i 2 f1; : : : ; ng such that M; v 6ˆ 'i . It follows that in
this case comma in the rules is interpreted as conjunction.

A rule of the form ˚.x/
˚0.x0;z/

(resp. ˚.x/
˚0.x0;z/ j˚1.x1;z/

) is T-correct whenever for
every finite set X of F-formulas,X [˚.x/ is a T-set if and only if X [˚0.x0; z/ is
a T-set (resp. X [˚0.x0; z/ and X [˚1.x1; z/ are T-sets). That is branching in the
rules is interpreted as disjunction. Thus T-rules preserve and reflect unsatisfiability
of the sets of formulas. The classical tableau system for first-order logic presented in
[Smu68] has also the property of preserving and reflecting unsatisfiability. Although
this fact is not provable directly from the definition of the classical tableau rules, it
can be proved under the additional assumptions on repetition of some formulas in
the process of application of the rules. In the classical tableau system this assump-
tion is hidden, it is shifted to a strategy of building the proof trees. In our T-system
the required repetitions are explicitly indicated in the rules.

It is easy to show that all the rules of T-system for the logic F are T-correct,
and all its axiomatic sets are T-sets. These facts follow from the semantics of the
propositional operations and quantifiers as in the case of the RS-system.

A proof in the T-system has the form of a finitely branching tree whose nodes are
finite sets of formulas. Let ' be an F-formula. A T-proof tree for ' is a tree with the
following properties:

� The formula :' is at the root of this tree;
� Each node except the root is obtained by the application of a T-rule to its prede-

cessor node;
� A node does not have successors whenever its set of formulas is a T-axiomatic

set or none of the rules is applicable to its set of formulas.

A branch of a T-proof tree is said to be closed whenever it contains a node with a
T-axiomatic set of formulas. A T-proof tree is closed whenever all of its branches
are closed. A formula ' is T-provable whenever there is a T-closed proof tree for '
which is then referred to as its T-proof.



14 1 Dual Tableau for Classical First-Order Logic

Completion conditions and the branch model are defined in a similar way as in
the RS-proof system. For instance, the completion conditions determined by the
rules (T_), (T:_), (T8), and (T:8) are:

Cpl(T_) If ' _  2 b, then either ' 2 b or  2 b;
Cpl(T:_) If :.' _  / 2 b, then both :' 2 b and : 2 b;
Cpl(T8) If 8x'.x/ 2 b, then for every individual variable z, '.z/ 2 b;
Cpl(T:8) If :8x'.x/ 2 b, then for some individual variable z, :'.z/ 2 b.

Given an open branch b of a T-proof tree, we define a branch structure
MbD .U b; mb/ as follows:

� U b D OV F;
� mb.P / D f.x1; : : : ; xk/ 2 .U b/k W :P.x1; : : : ; xk/ 2 bg, for every k-ary

predicate symbol P 2 PF; k � 1.

In a similar way as in RS-dual tableau, the following can be proved:

Proposition 1.4.1. For every open branch b of a T-proof tree, Mb is an F-model.

Proposition 1.4.2. For every open branch b of a T-proof tree and for every
F-formula ', if Mb; vb ˆ ', then :' 62 b.

The proof of soundness and completeness of the tableau proof system is based on
the same idea as in the RS-proof system. Then, we have:

Theorem 1.4.1 (Soundness and Completeness of the T-system). Let ' be an
F-formula. Then the following conditions are equivalent:

1. ' is F-valid;
2. ' is true in all standard F-models;
3. ' is T-provable.

1.5 Quasi Proof Trees

Let P 2 fRS, Tg be one of the proof systems. Our aim is to define a transformation
of a proof tree in one of the systems into a proof tree in the other system. For that
purpose it is useful to modify the concept of a proof tree by defining a quasi proof
tree. A quasi proof tree is in fact a proof tree modulo the double negation rule.

An F-formula is said to be positive whenever negation is not its principal
operation. Let n � 0 and let ' be a positive F-formula. We define:

:0' dfD 'I
:nC1' dfD :.:n'/:



1.5 Quasi Proof Trees 15

We define the rules (P:/�:
(P:/� :n'

:nmod2'

where n � 0 and ' is a positive formula.
As usual, this rule is applicable to a set X of formulas whenever :n' 2 X for

some n � 0 and for a positive formula '. Its application to a set X may be seen as
the iteration of applications of rule .P:/.

Let # 2 f_;:_;^;:^;8;:8; 9;:9;Dg. Let .P#:�/ be a rule defined as a
composition of the rules .P#/ and .P:/� treated as maps on the family of finite
subsets of formulas and returning a finite subset of formulas (or a pair of subsets in
case .P#/ is a branching rule).

.P#:�/ dfD .P:/� ı .P#/

This rule is applicable to a set X of formulas whenever the rule .P#/ is applicable
to X . Let X0 (resp. X0 and X1 if .P#/ is a branching rule) be the set(s) obtained
from X by an application of rule .P#/. Given a finite set Z of formulas, by Zmod2

we mean the set of formulas obtained from Z by replacing every formula of the
form :l', where l � 0 and ' is a positive formula, by the formula :l mod2'. Then
the result of application of rule .P#:�/ to X is the set X0mod2 (resp. X0mod2 and
X1

mod2 if .P#/ is a branching rule), whereX0 (resp.X0 andX1) is (are) the result(s)
of application of rule (P#) to X .

Let :n' be an F-formula, where n � 0 and ' is a positive formula. A P-quasi
proof tree for :n' is a tree with the following properties:

� Its root consists of the formula  , where:

 D
� :nmod2'; if P=RS,
:.nC1/mod2'; if P=T;

� Each node except the root is obtained by the application of a rule .P#:�/ to its
predecessor node;

� A node does not have successors if its set of formulas is a P-axiomatic set or none
of the rules is applicable to its set of formulas.

An example of an RS-quasi proof tree is presented in Fig. 1.2, while Fig. 1.3 presents
a T-quasi proof tree for the same formula. Observe that in a diagram of Fig. 1.2, after
applying the rule (RS:9) to the set Z1 D f:9x9y:.x ¤ y _ y D x/g we obtain
the set f:9y:.x1 ¤ y _y D x1/g to which the rule (RS:/� is applied with n D 1.
Thus, the application of the rule (RS:9:�) to Z1 results in Z2. Then, we apply
the rule (RS:9) to Z2, so that we obtain the set f::.x1 ¤ x2 _ x2 D x1/g to
which we apply the rule (RS:/�. Since f::.x1 ¤ x2 _ x2 D x1/gmod2 D Z3, the
application of the rule (RS:9:�) toZ2 results inZ3. The application of rule (RS_)
toZ3 results inZ4 such thatZmod2

4 D Z4. Therefore,Z4 is the result of application
of the rule (RS_:�) to Z3. Similarly, the application of rule (RSD) to Z4 results in



16 1 Dual Tableau for Classical First-Order Logic

Z1 :9x9y:.x ¤ y _ y D x/

�
(RS:9:�/ with a new variable x1

Z2 :9y:.x1 ¤ y _ y D x1/

�
(RS:9:�/ with a new variable x2

Z3 x1 ¤ x2 _ x2 D x1

�
(RS_:�/

Z4 x1 ¤ x2; x2 D x1
����

			
(RSD :�)

Z5 D
8<
:
x1 D x2;

x1 ¤ x2;

x2 D x1
closed

Z6 D
8<
:
x2 D x2;

x1 ¤ x2;

x2 D x1
closed

Fig. 1.2 An RS-quasi proof tree of the formula :::9x9y:.x ¤ y _ y D x/

9x9y:.x ¤ y _ y D x/

�
(T9:�/ with a new variable x1

9y:.x1 ¤ y _ y D x1/

�
(T9:�/ with a new variable x2

:.x1 ¤ x2 _ x2 D x1/

�
(T:_:�/

x1 D x2; x2 ¤ x1
����
			
(TD :�)

x1 ¤ x2;

x1 D x2;

x2 ¤ x1
closed

x2 ¤ x2;

x1 D x2;

x2 ¤ x1
closed

Fig. 1.3 A T-quasi proof tree of the formula :::9x9y:.x ¤ y _ y D x/

Z5 and Z6. Since Zmod2
5 D Z5 and Zmod2

6 D Z6, the result of application of the
rule (RS D :�) to Z4 are sets Z5 and Z6.

A branch of a P-quasi proof tree is said to be closed whenever it contains a node
with a P-axiomatic set of formulas. A P-quasi proof tree is closed whenever all of
its branches are closed. Quasi proof trees in Figs. 1.2 and 1.3 are closed.

It is easy to see that the following proposition holds:

Proposition 1.5.1. Let ' be an F-formula and let P 2 fRS, Tg. Then there is a
closed P-proof tree for a formula ' iff there is a closed P-quasi proof tree for '.

The proof of this proposition is by induction on the complexity of proof trees.



1.6 Duality 17

Theorem 1.5.1. Let ' be an F-formula. Then the following conditions are equiva-
lent:

1. ' is F-valid;
2. ' is true in all standard F-models;
3. There is a closed P-quasi proof tree for '.

1.6 Duality

A duality of the tableau and the dual tableau for logic F is presented in [GPO07b].
This duality can be observed at the syntactic level. It is manifested through a duality
of formulas, a duality of rules, a duality of completion conditions, and a duality of
quasi proof trees. We also indicate a duality of some constructions employed in the
completeness proofs for the two systems under consideration. All these dualities
will enable us, given a proof system, to construct a dual proof system and to prove
its completeness.

Let ' be an F-formula and let i D 0; 1. We define a function of duality of formu-
las as follows:

dual.:i'/ dfD :1�i':
Given a finite set X of F-formulas, we set:

dual.X/
dfD fdual.'/ W ' 2 Xg:

Now, we show the construction of a dual rule and a dual completion condition.
Let .R/ ˚

˚0 j˚1
(resp. ˚

˚0
) be a rule of RS-system or T-system excluding .RS:/

and .T:/. Then dual.R/ is the rule of the following form:

dual.R/ D dual.˚/

dual.˚0/ j dual.˚1/

�
resp.

dual.˚/

dual.˚0/

�
:

For instance, the rule (T:_) is dual to the rule (RS_), since (T:_) can be obtained
from (RS_) in the following way: the formula of the premise, ' _  , is replaced
with a dual formula :.' _  /, and formulas ' and  of conclusions are replaced
with :' and : , respectively. Rules .R/ and dual.R/ are said to be dual. Table 1.1
presents the dual pairs of rules.

The double negation rules are the only rules which do not appear in Table 1.1,
since these rules are exactly the same in both systems.

Table 1.1 Dual rules
(RS_/ (RS^/ (RS:_/ (RS:^/ (RS8/ (RS9/ (RS:8/ (RS:9/ (RSD/
(T:_/ (T:^/ (T_/ (T^/ (T:8/ (T:9/ (T8/ (T9/ (TD/



18 1 Dual Tableau for Classical First-Order Logic

Table 1.2 Dual operations
# _ ^ 8 9
dual.#/ ^ _ 9 8

Table 1.3 Dual completion conditions
Cpl(RS_/ Cpl(RS^/ Cpl(RS:_/ Cpl(RS:^/
Cpl(T^/ Cpl(T_/ Cpl(T:^/ Cpl(T:_/

Cpl(RS8/ Cpl(RS9/ Cpl(RS:8/ Cpl(RS:9/ Cpl(RSD/
Cpl(T9/ Cpl(T8/ Cpl(T:9/ Cpl(T:8/ Cpl(TD/

Observe that if an RS-rule (resp. T-rule) introduces a variable (which may be
arbitrary or new), then its dual T-rule (resp. RS-rule) introduces a variable of the
same type.

For # 2 f_;^;8; 9g, let dual.#/ be defined as in Table 1.2. Observe that
dual.dual.#// D #.

Let i 2 f0; 1g and let Cpl(P:i#) be the completion condition of P-system for the
rule (P:i#), where P 2 fRS, Tg, and # 2 f_;^;8; 9;Dg. Then:

� If :i# is not D, then dual.Cpl(P:i#)) is obtained from Cpl(P:i#) by replacing
the symbol # occurring in the formula of the premise of the condition Cpl(P:i#)
with a dual operation, i.e., with dual.#/;

� Otherwise, dual.Cpl.PD)) is obtained from Cpl(PD) by replacing all the
formulas occurring in Cpl(PD) with their dual formulas.

Clearly, the duality defined above is symmetric. The completion conditions
Cpl(P:i#) and dual.Cpl(P:i#)) are said to be dual. Table 1.3 shows pairs of
dual completion conditions of the considered systems. Completion conditions for
the double negation rule are the only that do not appear in Table 1.3, since they are
exactly the same in both systems.

The following proposition summarizes the dualities defined above:

Proposition 1.6.1. Let i; j 2 f0; 1g, Pi 2 fRS, Tg, P0 ¤ P1, and # 2 f_;^;8; 9g.
Then:

1. The function of duality of rules satisfies:

� dual.Pi:j #/ D .P1�i:1�j #/, if # is not the identity,
� dual.Pi D/ D .P1�i D/;

2. The function of duality of completion conditions satisfies:

� dual.Cpl(Pi:j #// D .Cpl(P1�i:j dual.#//, if # 2 f_;^;8; 9g,
� dual.Cpl(Pi#// D .Cpl(P1�i#/, if # 2 f:;Dg.



1.8 Discussion of Various Rules for Identity 19

Let .Pi#/ be a rule of a Pi -system different from .Pi:/. Then a rule dual to (Pi#:�)
is defined by:

dual.Pi#:�/ D dual.Pi#/ ı .P1�i:/�:

1.7 Transformation of Proofs

Proof trees of RS-system and T-system are dual to each other. Consider an RS-proof
tree and a T-proof tree for a formula '. In the former, we start with the formula ', in
the latter with its negation, :'. In the subsequent steps, every application of a rule
in the RS-proof tree for ' can be mimicked in a T-proof tree starting with :' by the
applications of the dual rule and/or the rule (T:). As the result we obtain a node in
the T-proof tree with formulas which are equivalent to the negations of the formulas
from the corresponding node in the RS-proof tree. However, it can happen that in
the RS-proof tree the rule (RS:) was applied to some node while in the T-proof tree
the rule (T:) is not applicable to the corresponding node. It means that these proof
trees may differ in the number of applications of the double negation rule, i.e. they
may be seen as dual modulo applications of the double negation rule. The concept of
a quasi proof tree enables us to define a transformation of a proof tree in the system
RS (resp. T) into a proof tree in the system T (resp. RS).

The transformation � on the family of P-quasi proof trees is defined as follows.
For a P-quasi proof tree D, � .D/ is a quasi proof tree obtained from D by replacing
all the formulas of D with their dual formulas and by replacing each rule .P#:�/
with dual.P#:�/. Observe that an RS-quasi proof tree from Fig. 1.2 and a T-quasi
proof tree from Fig. 1.3 are transformations of each other.

Proposition 1.7.1. Let D be an RS (resp. T) quasi proof tree. Then � .D/ is a T
(resp. RS)-quasi proof tree.

The above proposition follows from the definition of quasi proof trees. Now, it is
easy to see that the following theorem holds:

Theorem 1.7.1. Let D be an RS or T quasi proof tree. Then � .� .D// D D.

It follows that the operator � expresses duality of quasi proof trees.

1.8 Discussion of Various Rules for Identity

Usually, a tableau system contains the following specific rules for identity (see
[Fit90]):

(T1D)
x D x (T2D)

x D y; '.x/
'.y/; x D y; '.x/



20 1 Dual Tableau for Classical First-Order Logic

where '.x/ is an atomic formula and '.y/ is obtained from '.x/ by replacing some
occurrences of x in '.x/ with y.

Moreover, there is only one type of axiomatic set: a finite set of formulas is
axiomatic whenever it contains ' and :', for some formula '. The completeness
of the tableau system with these rules for identity can be proved in a similar way as
the completeness of T-system (see Sect. 1.4). Observe that the tableau system in our
presentation contains only one specific rule for identity while the above version of
tableau includes two rules, and both of them are necessary for proving completeness
of that version.

Similarly, we can admit in the RS-system the following two rules for identity:

(RS1D)
x ¤ x (RS2D)

x ¤ y;:'.x/
:'.y/; x ¤ y;:'.x/

where '.x/ is an atomic formula and '.y/ is obtained from '.x/ by replacing some
occurrences of x in '.x/ with y.

It is easy to show that RS and T systems with these specific rules are dual to each
other. Therefore, from a logical point of view it is immaterial which specific rules
are taken: (RSD) or (RS1D) and (RS2D) (resp. (TD) or (T1D) and (T2D)). As far as
an implementation is concerned, the choice of the specific rules may be significant.
Tableau system with rules (T1D) and (T2D) seems to be more ‘deterministic’ : the
rule (T2D) is applicable to two formulas, while the rule (TD) is applicable only to
one. Moreover, when the rule (TD) is applied to some formula we have to choose
a variable, which is very nondeterministic. In other words, the rule (T2D) seems to
be applicable in fewer cases than (TD). However, a tableau system with the rule
(T2D) must contain also the rule (T1D). But the rule (T1D) is as nondeterministic as the
rule (TD), in both of them we have to choose a variable. Note that (T2D) is not so
deterministic as it seems to be: we must choose a variable x in a formula ' which is
replaced with y. Even if some restrictions on a choice of a variable in the application
of the rule (T1D) are added to a strategy of building a proof tree, similar restrictions
may be made in the case of a tableau system with the rule (TD).

Fitting proposed a set of specific rules that does not include the rule (T1D) [Fit90].
Following this idea we may admit the following rules for identity in RS-system:

(RS1
0

D)
y ¤ x; '.x/

'.y/; y ¤ x; '.x/ (RS2
0

D)
x ¤ y; '.x/

'.y/; x ¤ y; '.x/

where '.x/ is an atomic formula or negation of an atomic formula and '.y/ is
obtained from '.x/ by replacing some occurrences of x in '.x/ with y.

However, from the implementation point of view also this set of specific rules
seems to be comparable with the original one, since a variable x in a formula '
which is to be replaced by y must be chosen. It is difficult to compare the effective-
ness of specific rules without circumscribing the set of formulas to which those rules
are applied. Let us consider possible proof trees for formula8x8y.x ¤ y_y D x/
that expresses symmetry ofD. In the RS-proof tree for the above formula, after ap-
plications of the decomposition rules we obtain the subtree of Fig. 1.4. In this proof



1.8 Discussion of Various Rules for Identity 21

x ¤ y; y D x

����
			
(RSD)

x D y; x ¤ y; y D x

closed

y D y; x ¤ y; y D x

closed

Fig. 1.4 A subtree of an RS-proof tree of the formula 8x8y.x ¤ y _ y D x/

x ¤ y; y D x

�
(RS1

D
)

x ¤ x; x ¤ y; y D x

�
(RS2

D
), the first occurrence of x in '.x/ D .x D x/ is replaced by y

y ¤ x; y D x; : : :

closed

Fig. 1.5 A subtree of a tree of the formula 8x8y.x ¤ y _ y D x/ built with the rules (RS1
D

)
and (RS2

D
)

x ¤ y; y D x

�
(RS2

0

D
) applied to '.x/ D .y D x/

y D y

closed

Fig. 1.6 A subtree of a tree of the formula 8x8y.x ¤ y _ y D x/ built with the rule (RS2
0

D
)

tree the rule (RSD) is applied only once. If we admit the rules (RS1D) and (RS2D),
then both rules have to be applied, so that we obtain the subtree of Fig. 1.5.

The first subtree is very short and involves branching, while the second one is
longer and without branching. Therefore effectiveness of these specific rules seems
to be comparable.

The system with rules (RS1
0

D) and (RS2
0

D) is more effective than the others. In this
system the subtree of a proof tree for symmetry of D is the shortest one and does
not contain branching as it is presented in Fig. 1.6.

However, when the number of atomic formulas is less than the number of negated
atomic formulas, the system with the rule (RSD) seems to be more effective than
that with rules (RS1

0

D) and (RS2
0

D). In general, effectiveness of the systems depends
both on a strategy of applications of the rules and on the formulas to which the
specific rules are applied. Therefore we conclude that in order to construct a system
for all the F-formulas the choice of the specific rules for identity is largely a matter
of taste. Our choice was made for the reason of uniformity.



22 1 Dual Tableau for Classical First-Order Logic

1.9 Dual Tableaux and Hilbert-Style Systems

In this section we discuss the relationship between dual tableaux and Hilbert-style
systems. We show how the RS-proofs can be transformed into the proofs in a Hilbert
system H. For simplicity of presentation, we focus on systems for first-order logic
without identity and without function symbols, which is obtained from logic F,
presented in Sect. 1.2, by deleting the identity predicate from its language. A dual
tableau for this logic consists of the decomposition rules of the RS-system presented
in Sect. 1.3 and the axiomatic sets being the supersets of f';:'g, for any formula '.

All Hilbert systems have the following features in common. Certain formulas
are designated as axioms and some rules of inference are specified. A formula ' is
said to be provable whenever there exists a finite sequence '1; : : : ; 'n of formulas,
n � 1, such that 'n D ' and each 'i , i 2 f1; : : : ; ng, is an axiom or follows from
earlier formulas in the sequence by one of the rules of inference. This sequence is
then referred to as an H-proof of '.

The axioms of the Hilbert system H are formulas which have the form of tautolo-
gies of the classical propositional logic, PC, together with:

(H1) 8x'.x/! '.z/;
(H2) 8x.' !  .x//! .' ! 8x .x//, provided that x is not free in '.

The rules of inference are modus ponens and generalization:

'; ' !  

 

 ! '.z/

 ! 8x'.x/
provided that z does not occur in  

Note that the axioms and rules of system H involve formulas with the univer-
sal quantifier. The existential quantifier is introduced by defining 9x'.x/ as
:8x:'.x/.

Although, the rules of modus ponens and generalization are most often postulated
in the H-system, some other rules may be allowed; these are the derived rules. A rule
is said to be derived in system H whenever any of its applications can be replaced
with a sequence of applications of the modus ponens rule and the generalization
rule. It follows that the set of all provable formulas is closed on applications of the
derived rules. In order to show that '1 ::: 'n

 
is a derived H-rule, it suffices to

prove that '1! .: : :! .'n !  // has an H-proof.
Now, our aim is to define an effective procedure for transforming RS-proofs into

H-proofs. The transformation consists of three steps. First, we replace the sets of
formulas occurring in the nodes of the RS-proof tree by the disjunctions of its mem-
bers. Second, we form a sequence of disjunctions of formulas obtained from the
axiomatic sets of the RS-proof. Next, going along the levels of the RS-proof tree
from the bottom to the top, we append to that sequence all the remaining disjunc-
tions of formulas from the nodes of the tree. Clearly, the last formula in the sequence
is '. Third, we prove that: (1) disjunctions of formulas of the RS-axiomatic sets are
instances of the axioms in H-system, and (2) each application of an RS-rule to a set
X of formulas leading to set X0 (resp. sets X0 and X1 in the case of a branching
rule) can be converted into an application of a derived H-rule to the disjunction of



1.9 Dual Tableaux and Hilbert-Style Systems 23

formulas of X leading to the disjunction of formulas of X0 (resp. disjunctions of
formulas of X0 and X1).

Given a finite set X D f'1; : : : ; 'ng of formulas, we define:

ıX
dfD '1 _ : : : _ 'nI

Then :ıX D:'1 ^ : : : ^ :'n:
Consider an application of a rule ˚

˚0
(resp. ˚

˚1 j˚2
) to a finite set X of formulas.

Then the corresponding derived H-rule is of the form:

ıX _ ı˚0

ıX _ ı˚
�

resp.
ıX _ ı˚1

ıX _ ı˚2

ıX _ ı˚
�
:

Below we list derived H-rules induced by RS-rules applied to a set X . Due to dis-
junctive interpretation of ‘,’ in the RS-system, the rule (H_) is a trivial rule which
does not change its premise.

(RS:_)
:.' _  /
:' j : (H:_)

ıX _ :' ıX _ : 
ıX _ :.' _  /

(RS^)
' ^  
' j  

(H^)
ıX _ ' ıX _  
ıX _ .' ^  /

(RS:^)
:.' ^  /
:';: (H:^)

ıX _ :' _ : 
ıX _ :.' ^  /

(RS:)
::'
'

(H:)
ıX _ '

ıX _ ::'

(RS8)
8x'.x/
'.z/

(H8)
ıX _ '.z/

ıX _ 8x'.x/
z is a new variable z does not occur in X

(RS:8)
:8x'.x/

:'.z/;:8x'.x/ (H:8)
ıX _ :'.z/ _ :8x'.x/

ıX _ :8x'.x/
z is any variable z may occur in X

(RS9) 9x'.x/
'.z/; 9x'.x/ (H9) ıX _ '.z/ _ 9x'.x/

ıX _ 9x'.x/
z is any variable z may occur in X

(RS:9) :9x'.x/:'.z/ (H:9) ıX _ :'.z/
ıX _ :9x'.x/

z is a new variable z does not occur in X



24 1 Dual Tableau for Classical First-Order Logic

Proposition 1.9.1. For every # 2 f_;^;:_;:^;:;8; 9;:8;:9g, the rule (H#)
is a derived H-rule.

Proof. In order to prove that (H^) is a derived rule, it suffices to show that .ıX _
'/ ! ..ıX _  / ! ıX _ .' ^  // has an H-proof. Indeed, since this formula
is a tautology of the classical propositional logic, its H-proof consists of a single
formula. The same holds for all the other rules for propositional operations. Now,
we show that the rules for quantifiers are derived rules. By way of example, we
prove it for (H8) and (H:8).

For (H8), we show that if ıX _ '.z/ has an H-proof, then ıX _ 8x'.x/ has an
H-proof provided that z does not occur in X .

1. ıX _ '.z/ assumption
2. :ıX ! '.z/ modus ponens: 1, a PC axiom
3. 8x.:ıX ! '.x// generalization: 2
4. 8x.:ıX ! '.x//! .:ıX ! 8x'.x// axiom (H2)
5. :ıX ! 8x'.x/ modus ponens: 3, 4
6. ıX _ 8x'.x/ modus ponens: 5, a PC axiom

For (H:8), we show that if ıX _ :'.z/ _ :8x'.x/ has an H-proof, then ıX _
8x'.x/ has an H-proof for any variable z.

1. 8x'.x/! '.z/ axiom (H1)
2. '.z/ _ :8x'.x/ modus ponens: 1, a PC axiom
3. ıX _ '.z/ _ :8x'.x/ modus ponens: 2, a PC axiom
4. ıX _ :'.z/ _ :8x'.x/ assumption
5. ıX _ :8x'.x/ modus ponens: 3, 4, a PC axiom

ut

The method outlined above is applicable to the other dual tableaux presented in the
book.

1.10 Dual Tableaux and Gentzen-Style Systems

In this section we present a transformation of the dual tableau for first-order logic
without identity and without function symbols into a Gentzen sequent calculus G.
This method is based on a close connection between validity of sequents and validity
of sets. The method applies with minor adaptations to many dual tableaux presented
in the book. We start with introducing basic notions of the Gentzen calculus.

A sequent is a pair .�;�/ of finite sets � and� of formulas, written in the form
� ` �. A sequent � ` � is said to be valid whenever for any model M, if all the
formulas of � are true in M, then at least one formula of � is true in M.



1.10 Dual Tableaux and Gentzen-Style Systems 25

Gentzen sequent calculus G consists of axioms, each of which has the form of a
valid sequent, and inference rules, leading from valid sequents to valid sequents.
Inference rules are of the form:

�1 ` �1 �2 ` �2 : : : �n ` �n
� ` �

The sequents �i ` �i , i 2 f1; : : : ; ng are premises of the rule and the sequent
� ` � is its conclusion. A rule is said to be G-correct if and only if its conclusion
is valid whenever all its premises are valid. A G-proof of a sequent S is a finite
sequence of sequents S1; : : : ; Sn such that Sn D S and every Si is either an axiom
or is deduced from previous sequents by the rules of Gentzen calculus.

The two major differences between decomposition rules of dual tableaux and
inference rules of the sequent calculus are:

� The rules of dual tableaux preserve and reflect validity, i.e., the conclusion of
a rule is valid iff all the premises are valid, whereas sequent calculus rules, in
general, only preserve validity, that is the conclusion of a rule is valid whenever
all the premises are valid;

� The rules of RS-system are used ‘top down’ to construct a proof tree of a formula,
while the sequent calculus rules are used ‘bottom up’ to deduce a sequent from
the axioms.

Directly from the definition of validity of a sequent and the definition of an RS-set
we obtain:

Proposition 1.10.1. A sequent � ` � is valid whenever the set f:' W ' 2 � g [�
is an RS-set.

We recall that for a finite set X of formulas, ıX denotes disjunction of its members.
As a consequence of Proposition 1.10.1 we have:

Proposition 1.10.2. A sequent � ` � is valid whenever the formula ıf:'W'2� g _
ıf'W'2�g is RS-provable.

The above proposition suggests a simple method of developing a sequent calculus
from the system RS. It suffices to derive the axioms and the inference rules of the
sequent calculus from the axiomatic sets and the rules of RS-system.

Below we present the sequent calculus rules induced by the decomposition rules
of the RS-system for classical predicate calculus presented in Sect. 1.2.

(RS_)
' _  
'; 

(G_)
� ` � [ f'; g
� ` � [ f' _  g

(RS:_)
:.' _  /
:' j : (G:_)

� [ f'g ` � � [ f g ` �
� [ f' _  g ` �

(RS^)
' ^  
' j  

(G^)
� ` � [ f'g � ` � [ f g

� ` � [ f' ^  g



26 1 Dual Tableau for Classical First-Order Logic

(RS:^)
:.' ^  /
:';: (G:^)

� [ f'; g ` �
� [ f' ^  g ` �

(RS:)
::'
'

(G:)
� ` � [ f'g

� ` � [ f::'g

(RS8)
8x'.x/
'.z/

(G8)
� ` � [ f'.z/g

� ` � [ f8x'.x/g

z is a new variable z occurs neither in � nor �

(RS:8)
:8x'.x/

:'.z/;:8x'.x/ (G:8)
� [ f'.z/g ` �

� [ f8x'.x/g ` �

z is any variable z may occur in � or �

(RS9) 9x'.x/
'.z/; 9x'.x/ (G9) � ` � [ f'.z/g

� ` � [ f9x'.x/g

z is any variable z may occur in � or �

(RS:9) :9x'.x/:'.z/ (G:9) � [ f'.z/g ` �
� [ f9x'.x/g ` �

z is a new variable z occurs neither in � nor �

(RSAx) f';:'g (GAx) � [ f'g ` � [ f'g

Proposition 1.10.3.

1. The rule (RS#) is RS-correct iff the rule (G#) is G-correct, for every # 2 f_; :_;
^; :^; :; 8; :8; 9; :9g;

2. For every formula ', the sequent � [ f'g ` � [ f'g is valid.

Now, we prove that the sequent calculus G presented above is sound and complete.

Theorem 1.10.1 (Soundness and Completeness of the Sequent Calculus G). For
every sequent � ` �, the following conditions are equivalent:

1. � ` � is G-valid;
2. � ` � is G-provable.

Proof. Soundness follows from Proposition 1.10.3. To prove completeness, as-
sume that a sequent � ` � is G-valid. Then, by Proposition 1.10.2, the formula
ıf:'W'2� g _ ıf'W'2�g is RS-provable, that is it has a finite RS-proof tree with ax-
iomatic sets at all its leaves. From that tree, we can easily construct a proof of



1.11 Dual Tableaux and Dual Resolution 27

the original sequent in the calculus G. Namely, we prove by induction that any se-
quent �i ` �i corresponding to the set f:' W ' 2 �ig [ �i of formulas labelling
a node of the tree is RS-provable. Indeed, the leaves are labelled with axiomatic
sets, so the corresponding sequents are G-axioms. Going upwards in the tree, we
can replace each downward application of an RS-decomposition rule by an upward
application of the corresponding sequent calculus rule. We finish the induction at
the root which is labelled by the formula ıf:'W'2� g _ ıf'W'2�g corresponding to the
original sequent. ut

1.11 Dual Tableaux and Dual Resolution

In this section we compare resolution systems and dual tableaux. We focus on
first-order logic with function symbols and without the identity predicate, which is
obtained from logic F, presented in Sect. 1.2, by inclusion of function symbols and
individual constants and by deleting the identity predicate. Let C (resp. F) be a set
of individual constants (resp. function symbols). The set of terms, T , is the smallest
set that includes individual variables and constants and such that if f 2 F is an
n-ary function symbol, n � 1, and t1; : : : ; tn 2 T , then f .t1; : : : ; tn/ 2 T . Atomic
formulas are of the form P.t1; : : : ; tk/, where P is a k-ary predicate symbol, k � 1,
and t1; : : : ; tk are terms.

The classical resolution is a refutation procedure; it is used to show that a formula
is unsatisfiable. The rules operate on sets of clauses, where a clause is a disjunction
of literals. They preserve satisfiability: if a set of clauses is satisfiable, then so is
the set of clauses obtained by the application of a rule. A proof in the resolution
system is obtained through a sequence of applications of the resolution rule or the
factoring rule to sets of clauses leading to the empty clause at the end. If the un-
satisfiable empty clause is ever obtained, the original set of clauses must have been
unsatisfiable, hence the negation of the formula corresponding to the set of clauses
in question is valid.

The connections between resolution systems and tableaux are extensively stud-
ied. It is known that tableaux for some logics (e.g., full first-order logic, some modal
logics, description logics) can be translated into resolution systems, in the sense
that the admissible resolution steps of deduction simulate their tableaux counter-
parts. Discussion of relationship between tableaux and the resolution can be found
in [OdS93, Wol94, HS99, Sch06], among others. As it is shown in Sects. 1.6 and 1.7,
the tableau system T and the Rasiowa–Sikorski system RS are dual, hence one can
reasonably expect that the relationships of tableaux and resolution systems transfer
to dual tableaux. However, in case of dual tableaux it is more natural to consider
resolution in a dual form as suggested in [Sch06]. Accordingly, we present the dual
resolution system for first-order logic with function symbols and without the identity
predicate.

A dual clause is a conjunction of literals. Given the commutativity and idempo-
tence of conjunction, a dual clause can be regarded as a set of literals and written
simply as a list of its elements. A formula is in prenex disjunctive normal form



28 1 Dual Tableau for Classical First-Order Logic

whenever it is of the form Q1x1 : : : Qnxn', where all Qi , i D 1; : : : ; n, are quan-
tifiers, ' is a quantifier free disjunction of dual clauses, and x1, . . . , xn are all the
variables of '. A sequence Q1x1 : : : Qnxn is called a prefix of '. It is known that
for every formula ' there exists a formula ' 0 in the prenex disjunctive normal form
such that ' $ ' 0 is valid. A formula is in dual clause form whenever it is in prenex
disjunctive normal form and its prefix consists of the existential quantifiers. Usually,
a formula in dual clause form is presented as the set of dual clauses appearing in it.
As an example, consider the following formula in the prenex disjunctive normal
form:

9x9y9zŒ.:P.x/ ^ P.z// _ .P.y/ ^ :P.z// _ .P.x/ ^ P.y//�:

The above formula can be presented as:

f:P.x/; P.z/g; fP.y/;:P.z/g; fP.x/; P.y/g:

Theorem 1.11.1 (Dual Skolem Normal Form). For every formula ' there exists a
formula ' 0 in dual clause form such that ' is valid iff ' 0 is valid.

The proof of the above theorem is based on the method dual to the classical method
of skolemization (see e.g., [EFT94]). A formula ' 0 postulated in the theorem is
called a dual Skolem form of '. It is obtained from prenex disjunctive normal form
of ' by replacing each universally quantified variable y with a term f .x1; : : : ; xk/,
k � 1, whose k-ary function symbol f is new (does not occur anywhere else in the
formula) and x1; : : : ; xk are the variables that are existentially quantified and such
that a universally quantified variable y is in the scope of their quantifiers. The func-
tion f introduced in this process is called a dual Skolem function and f .x1; : : : ; xk/
is called a dual Skolem term. If a universally quantified variable y is not in the scope
of any existential quantifier, then y is replaced with an individual constant, referred
to as a dual Skolem constant. Therefore, apart from the symbols from ', the formula
' 0 may contain new function symbols or constants used for elimination of universal
quantifiers. Hence, the language of deduction in the dual resolution system must
contain function and constant symbols, even if the language of the logic for which
the system is constructed is function free.

Consider the formula ' D 9x18y19x28y2.P.x1; y1/^P.y1; x2/^P.x2; y2//
in the prenex disjunctive normal form. To obtain a dual Skolem form of ' we replace
universally quantified variables y1 and y2 by terms f .x1/ and g.x1; x2/, respec-
tively, where f and g are new function symbols. Thus, a dual Skolem form of ' is:

9x19x2.P.x1; f .x1// ^ P.f .x1/; x2/ ^ P.x2; g.x1; x2///:

The substitution is an assignment � of terms to variables extended to the set of terms
and to the set of formulas:

� �.a/ D a, for every individual constant a;
� �.f .t1; : : : ; tk// D f .�.t1/; : : : ; �.tk//, for all terms t1; : : : ; tk and for every
k-ary function symbol f , k � 1;



1.11 Dual Tableaux and Dual Resolution 29

� �.P.t1; : : : ; tn// D P.�.t1/; : : : ; �.tn//, for all terms t1; : : : ; tn and for every
n-ary predicate symbol P , n � 1;

� �.'# / D �.'/#�. /, for # 2 f_;^;!g;
� �.:'/ D :�.'/;
� �.Qx'/ D Qx�.'/, for Q 2 f8; 9g.
A substitution � is a unifier of the set fe1; e2g of expressions, where e1 and e2 are
terms or e1 and e2 are formulas, whenever �.e1/ D �.e2/. A substitution � is the
most general unifier of fe1; e2g whenever for every unifier � 0 of fe1; e2g there exists
a substitution � 00 such that � 0 D � 00I � .

The dual resolution system is a validity procedure; it is used to show that a for-
mula is valid. Its rules operate on sets of dual clauses. Let P be an n-ary predicate,
let t1; : : : ; tn; t 01; : : : ; t 0n, n � 1, be terms, and let C andD be dual clauses. The dual
resolution rule has the form:

.dres/
fP.t1; : : : ; tn/g [ C f:P.t 01; : : : ; t 0n/g [D

�.C [D/
where � is the most general unifier of fP.t1; : : : ; tn/; P.t 01; : : : ; t 0n/g.

The dual factorization rule has the form:

.dfac/
fP.t1; : : : ; tn/; P.t 01; : : : ; t 0n/g [ C

�.fP.t1; : : : ; tn/g [ C/
where � is the most general unifier of fP.t1; : : : ; tn/; P.t 01; : : : ; t 0n/g.

An application of a rule may lead to a multiset of literals, i.e., some literals may
be identical. Therefore, usually we view the dual clauses as multisets of literals
rather than sets.

Let ' be a formula and let fC1; : : : ; Cng be the set of dual clauses of the dual
Skolem form of '. An R-proof of ' is a sequence of sets of dual clauses starting with
fC1; : : : ; Cng and such that each set in the sequence is obtained from the predecessor
set by an application of the rule .dres/ or .dfac/ to some of its dual clauses, and the
last set in the sequence is the empty clause.

Theorem 1.11.2 (Soundness and Completeness of Dual Resolution). For every
formula ', the following conditions are equivalent:

1. ' is valid;
2. ' has an R-proof.

It follows that in order to check validity of ' we should apply R-system to its dual
clause form.

Example. Let ' D 8x9y.P.x/! Q.y//! 9y8x.P.x/! Q.y//.

The prenex disjunctive normal form of ' is:

9x18y19x28y2Œ.P.x1/ ^ :Q.y1// _ :P.y2/ _Q.x2/�:



30 1 Dual Tableau for Classical First-Order Logic

After dual skolemization we obtain:

9x19x2Œ.P.x1/ ^ :Q.f .x1/// _ :P.g.x1; x2// _Q.x2/�

or equivalently:

9x1.P.x1/ ^ :Q.f .x1/// _ 9x019x02:P.g.x01; x02// _ 9x2Q.x2/:

Thus, ' can be presented in dual clause form as:

ffP.x1/;:Q.f .x1//g; f:P.g.x01; x02//g; fQ.x2/gg:

An R-proof of ' is presented in Fig. 1.7.

fP.x1/;:Q.f .x1//g; f:P.g.x0

1; x
0

2//g; fQ.x2/g

f:Q.f .g.x0

1; x
0

2///g; fQ.x2/g
by .dres/ with �.x1/ D g.x0

1; x
0

2/

;
by .dres/ with �.x2/ D f .g.x0

1; x
0

2//

Fig. 1.7 An R-proof of 8x9y.P.x/! Q.y//! 9y8x.P.x/! Q.y//

9x1.P.x1/^:Q.f .x1/// _ 9x0

19x0

2:P.g.x0

1; x
0

2//_ 9x2Q.x2/

�
(RS_)

9x1.P.x1/^:Q.f .x1///; 9x0

19x0

2:P.g.x0

1; x
0

2//_ 9x2Q.x2/

�
(RS_)

.A/ 9x1.P.x1/^:Q.f .x1///; 9x0

19x0

2:P.g.x0

1; x
0

2//; 9x2Q.x2/

�
(RS9) twice with x0

1 and x0

2

9x1.P.x1/^:Q.f .x1///;:P.g.x0

1; x
0

2//; 9x2Q.x2/; : : :

�
(RS9) with x1 D g.x0

1; x
0

2/

P.g.x0

1; x
0

2// ^:Q.f .g.x0

1; x
0

2///;:P.g.x0

1; x
0

2//; 9x2Q.x2/; : : :
�

���
(RS^)

�
�
���P.g.x0

1; x
0

2//;:P.g.x0

1; x
0

2//; : : :

closed :Q.f .g.x0

1; x
0

2///;:P.g.x0

1; x
0

2//; 9x2Q.x2/; : : :

�
(RS9) with x2 D f.g.x0

1; x
0

2//

:Q.f .g.x0

1; x
0

2///;Q.f .g.x
0

1; x
0

2///; : : :

closed

Fig. 1.8 An RS-proof of 8x9y.P.x/! Q.y//! 9y8x.P.x/! Q.y//



1.11 Dual Tableaux and Dual Resolution 31

One of the advantages of the resolution systems is that the computational com-
plexity of the clause form of a given formula ' is lower than that of '. This feature
is one of the reasons for a success of resolution-based provers. The same concerns
the dual resolution.

To see relationships between the dual resolution and the dual tableau consider the
formula ' D 8x9y.P.x/ ! Q.y// ! 9y8x.P.x/ ! Q.y// from the previous
example. An RS-proof starting from the dual Skolem form of ' is presented in
Fig. 1.8. Applications of rule (RS_) to the dual Skolem form of ' result in the node
(A) which consists of existentially quantified dual clauses. This is an equivalent
representation of the dual clause form of ' from which its R-proof starts. Then the
rule (RS9) is applied four times with such a choice of the terms which leads to
axiomatic sets in the leaves of the proof tree. Between the last two applications of
the rule (RS9), the rule (RS^) is applied which completes the formation of the dual
clause form.

From the dual resolution perspective, construction of an RS-proof of a formula
consists of two interleaving processes: first, the process of forming the dual clause
form of the formula and second, the process of finding the unifying substitutions.
The first process is performed through the applications of decomposition rules for
propositional operations. The second process is realized through the choice of the
terms when the rule (RS9) is applied to a node. This choice is made so that even-
tually the branches including this node will close. To obtain an axiomatic set in a
node one should apply a substitution to two of its formulas so that one of them will
become the negation of the other.



Chapter 2
Dual Tableaux for Logics of Classical Algebras
of Binary Relations

2.1 Introduction

The first steps in developing a mathematical theory of binary relations were taken
by Augustus De Morgan in 1864 [Mor64]. His work was based on an earlier devel-
opment by George Boole [Boo47] of a calculus of sets understood as an algebra
of logic. Next, the theory was extensively developed by Charles Sanders Peirce
[Pei83] and Ernst Schröder [Sch91]. This early theory studied binary relations be-
tween elements of a set and their properties. The research was mainly concerned
with the arithmetic of binary relations and the relational notions that are expressible
as equations in the calculus of relations. Alfred Tarski [Tar41] proposed a modern
reformulation of the calculus of binary relations as a theory of abstract algebras
called relation algebras. A relation algebra is a kind of a join of a Boolean algebra
and an involuted monoid. The monoid operation of product is an abstract counterpart
of the composition of two relations, the involution models the operation of forming
the converse of a relation, and the neutral element of the product corresponds to the
identity relation. An extensive study of the theory of relation algebras and the recent
developments can be found in [TG87, HH02, Mad06], among others.

Many theories from a variety of fields, in particular from computer science and
logic, can be interpreted as theories of algebras of relations. The fundamental rela-
tional structure consisting of a Boolean algebra together with a monoid constitutes
a common core of a great variety of these theories. In Parts II, III, IV, and V of this
book the relational interpretability of theories is a basis for the construction of dual
tableau systems for them in a systematic modular way.

In this chapter we present a basic logic of binary relations which provides a
framework for the relational interpretation of the theories considered in the book.
The logic can be viewed as a generic logic for the development of dual tableaux for
these theories. The rules of the dual tableau of the basic relational logic are included
in all the proof systems presented in the chapters of the parts of the book listed
above. For each particular theory we need, first, to expand the basic relational logic
with specific relational constants and/or operations satisfying the appropriate ax-
ioms which enable us to prove relational interpretability of the given theory. Next, a
dual tableau of the basic relational logic is extended with the rules characterizing

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 2,
c� Springer Science+Business Media B.V. 2011

33



34 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

those specific constants and operations. The method of proving correctness and
completeness of dual tableaux presented in this book follows the major steps of the
corresponding proofs for the dual tableau of the basic relational logic. In this way,
the developments of this chapter establish the tools for relational interpretability of
theories and for construction of their relational proof systems.

Some other proof systems for relation algebras are presented in [Wad75, Hen80,
Sch82, Mad83, Gor95, Gor97, Gor01].

2.2 Algebras of Binary Relations

The full algebra of binary relations on a set U is a structure of the form:

R.U / D .P.U � U /;[;\;�;;; U � U; I ;�1 ; Id/;

where .P.U � U /;[;\;�;;; U � U / is the Boolean algebra of all the subsets of
U � U , ‘I’ is the relative product of relations defined for all relations R;S on U as
R IS D f.x; y/ 2 U � U W 9z 2 U .xRz ^ zSy/g, ‘�1’ is the converse of relations
defined as R�1 D f.x; y/ 2 U � U W yRxg, and Id is the identity on U , i.e.,
Id D f.x; x/ W x 2 U g.

A proper algebra of binary relations is an algebra .W;[;\;�;;; 1; I ;�1 ; 10/
whose elements are binary relations, [;\; I ;�1 ;; are as above, 1 is an equivalence
relation and the largest element of W , 10 is the identity on the field of 1, and the
complement operation ‘�’ is defined with respect to 1.

A generalization of algebras of binary relations is provided by the notion of rela-
tion algebra [Tar41].

A relation algebra is a structure of the form:

A D .W;C; �;�; 0; 1; I ; M; 10/;where W

� .W;C; �;�; 0; 1/ is a Boolean algebra,
� I is an associative binary operation that distributes over C, i.e., .x C y/ I z D
x I zC y I z and x I .y C z/ D x Iy C x I z,

� M is an unary operation that distributes over C, i.e., .x C y/M D xM C yM, and
satisfies .xM/M D x and .x Iy/M D yM I xM, for all x; y 2 W ,

� 10 I x D x I 10 D x, for every x 2 W ,
� xMI .�.xIy// � �y, for all x; y; z 2 W .

The class of relation algebras is denoted by RA. Clearly, every algebra of binary re-
lations is a relation algebra. The similarity type of relation algebras usually contains

the three constants 0; 1, and 10. However, 0 and 1 can be defined as 0
dfD 10 � .�10/

and 1
dfD 10 C .�10/. We may also define 00 dfD �10. The relation 00 is called the

diversity relation.
A relation algebra is said to be representable whenever it is isomorphic to a

proper algebra of binary relations. The class of all representable relation algebras is



2.2 Algebras of Binary Relations 35

denoted by RRA. There exist relation algebras A (both finite and infinite) such that
A 2 RA and A 62 RRA. Such algebras can be found in [Lyn50]. Some representa-
tion theorems, where each algebra from the class RA is embeddable into an algebra
which is not necessarily an algebra of binary relations, can be found in [Dun01a]. In
that paper each element of a relation algebra is mapped into a set of binary relations,
not necessarily to a single relation. It is known that RRA is not finitely axiomatiz-
able. Moreover, an infinite axiomatization of RRA requires infinitely many relation
variables [Mon64]. RRA is a variety with a recursively enumerable but undecidable
equational theory.

A relation R on U is said to be a right (resp. left) ideal relation whenever
R I 1 D R (resp. 1 IR D R). Right ideal relations play an important role in re-
lational formalization of logics discussed in Parts III, IV, and V of the book. Various
properties of right ideal relations are presented in the relevant chapters, see e.g.,
Propositions 7.4.1 and 16.4.1.

Proposition 2.2.1. For all relations R;S 2 R.U /, the following conditions are
satisfied:

1. R � S iff �R [ S D 1,
2. R D S iff .�R [ S/\ .�S [R/ D 1,
3. R ¤ ; iff 1 IR I 1 D 1,
4. R ¤ 1 iff 1 I .�R/ I 1 D 1,
5. R D 1 and S D 1 iff R \ S D 1,
6. R D 1 or S D 1 iff 1 I �.1 I .�R/ I 1/ I 1 [ S D 1,
7. R D 1 implies S D 1 iff .1 I .�R/ I 1/[ S D 1.

Some arithmetic laws of relation algebras are collected in the following theorem:

Theorem 2.2.1. The following are true in all relation algebras:

1. r I 0 D 0 I r D 0,
2. 1M D 1,
3. 1 I 1 D 1,
4. If r � 10, then rM D r ,
5. If r; s � 10, then r I s D r � s,
6. If r � 10, then .r I 1/ � s D r I s and .1 I r/ � s D s I r ,
7. .�r/M D �.rM/,
8. .r � s/ I t � .r I t/ � .s I t/ and r I .s � t/ � .r I s/ � .r I t/,
9. If t � 10, then .t I r/ � s D t I .r � s/ and .r I t/ � s D .r � s/ I t ,

10. If s is right ideal, then r � s D .s � 10/ I r ,
11. If s is left ideal, then r � s D r I .s � 10/.

Example. We present two examples of relation algebras quoted from [Mad91]. The
full algebra of binary relations on a three element set f0; 1; 2g, R.f0; 1; 2g/, has
512 elements and 9 atoms. Its atoms are f.0; 0/g, f.0; 1/g, f.0; 2/g, f.1; 0/g, f.1; 1/g,
f.1; 2/g, f.2; 0/g, f.2; 1/g, and f.2; 2/g.



36 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

Table 2.1 Compositions of atoms
of the pentagonal algebra

10 a b

10 10 a b

a a 10 C b aC b
b b aC b 10 C a

�3 a �4
�
�
��
a
�
�
��
�0

�
�

��
a
�

�
��
�2
�

��
a�

��
�1

�
��

a�
��

b

�
�
�
�
��

�
�
�
�
��

b

�
�
�
�
��

�
�
�
�
��

b











b

�
�

�
��

�
�

�
��

b

Fig. 2.1 Representation of the pentagonal algebra

The pentagonal relation algebra B has three atoms 10; a, and b. The elements
of B are 0; 10; a; b; 10 C b D �a; 10 C a D �b; a C b D 00, and 1 D 10 C
a C b. The compositions of atoms are given in Table 2.1. This table determines all
the compositions of elements of B, since every element is a join of atoms and the
composition I distributees overC.

The algebra B is representable, that is it can be embedded in some R.U /. It turns
out that this is possible only if card.U / D 5. A copy of B inside R.f0; : : : ; 4g/ can
be defined as follows:

10 D f.0; 0/; .1; 1/; .2; 2/; .3; 3/; .4; 4/gI
a D f.0; 1/; .1; 0/; .1; 2/; .2; 1/; .2; 3/; .3; 2/; .3; 4/; .4; 3/; .4; 0/; .0; 4/gI
b D f.0; 2/; .2; 0/; .1; 3/; .3; 1/; .2; 4/; .4; 2/; .3; 0/; .0; 3/; .4; 1/; .1; 4/g:

A picture of this representation in Fig. 2.1 shows a as a pentagon and b as a
pentagram.

2.3 Logics of Binary Relations

In this chapter we present a general form of logics of binary relations considered
in the book. There are two kinds of expressions of relational languages: terms and
formulas. Terms represent relations and formulas express the facts that a pair of
objects belongs to a relation.



2.3 Logics of Binary Relations 37

Most of the relational logics of binary relations considered in the book are defined
according to the following scheme. The vocabulary of the language of a relational
logic L consists of the symbols from the following pairwise disjoint sets:

� OV L – a countable infinite set of object variables;
� OCL – a countable (possibly empty) set of object constants;
� RV L – a countable infinite set of binary relational variables;
� RCL – a countable (possibly empty) set of binary relational constants;
� A set of relational operations including the standard operations �;[;\; I,

and �1.

Object constants are needed for relational representation of theories in Chaps. 3, 15,
and Sect. 16.5. Relational representations of all the theories of Parts III, IV, and V
require specific relational constants.

The set RAL D RV L [RCL is called the set of atomic relational terms. The set
OSL D OV L [OCL is called the set of object symbols. The set RT L of relational
terms is the smallest (with respect to inclusion) set of expressions that includes all
the atomic relational terms and is closed with respect to all the relational operations.
L-formulas are of the form xRy, where x; y 2 OSL and R 2 RT L. An L-formula
xRy is said to be atomic wheneverR 2 RAL.

With an L-language a class of L-structures is associated. An L-structure has the
form M D .U;m/, where U is a non-empty set andm is a meaning function which
assigns:

(m1) Elements of U to object constants, that is m.c/ 2 U , for every c 2 OCL;
(m2) Binary relations on U to atomic relational terms, that is m.R/ � U � U , for

every R 2 RAL.

m extends to all the compound relational terms, in particular:

(m3) m.�R/ D .U � U / nm.R/;
(m4) m.R [ S/ D m.R/[m.S/;
(m5) m.R \ S/ D m.R/\m.S/;
(m6) m.R�1/ D .m.R//�1= f.x; y/ 2 U � U W .y; x/ 2 m.R/g;
(m7) m.R IS/ D m.R/ Im.S/ D f.x; y/ 2 U � U W 9z 2 U; .x; z/ 2 m.R/

and .z; y/ 2 m.S/g.
So, for L-structures we only require that object constants are interpreted as elements
of their universes, relational constants are interpreted as binary relations, and stan-
dard relational operations receive their usual meaning.

L-models are L-structures, where meaning function m satisfies the conditions
specific for logic L. The conditions concern interpretation of relational operations
specific for the given logic and/or interpretation of specific relational and/or object
constants of the logic. Relational logics considered in the book are always defined
in terms of their languages and the classes of models.

In order to avoid a confusion between syntactic objects in the languages of the-
ories and semantic constraints on relations in the models of the theories, we write



38 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

xRy for the former, where x; y are object symbols and R is a relational term of a
language, and .x; y/ 2 R for the latter, where x and y are objects from the universe
of a model and R is a relation in the model.

Let M D .U;m/ be an L-structure. A valuation in M is any function
v WOSL!U such that v.c/ D m.c/, for every c 2 OCL. Satisfaction of an
L-formula xRy by a valuation v in an L-structure M is defined as:

� M; v ˆ xRy iff .v.x/; v.y// 2 m.R/.
An L-formula xRy is true in M whenever it is satisfied by all the valuations in M.
If K is a class of L-structures, then an L-formula xRy is said to be K-valid whenever
it is true in every structure of K, and it is L-valid whenever it is true in all L-models.

Fact 2.3.1. Let L and L0 be relational logics such that every L-structure is an
L0-structure. Then for any relational formula xRy, if xRy is L0-valid, then it is
L-valid.

2.4 Relational Dual Tableaux

Relational dual tableaux are founded on the Rasiowa–Sikorski system for the first-
order logic presented in Chap. 1. They are powerful tools for performing the four
major reasoning tasks: verification of validity, verification of entailment, model
checking, and verification of satisfaction. Relational proof systems are determined
by their axiomatic sets of formulas and rules which most often apply to finite sets of
relational formulas. Some relational proof systems with infinitary rules are known
in the literature (see Sect. 19.2), but in the present chapter we confine ourselves to
finitary rules only. The axiomatic sets take the place of axioms. The rules are in-
tended to reflect properties of relational operations and constants. There are two
groups of rules: decomposition rules and specific rules. Given a formula, the de-
composition rules of the system enable us to transform it into simpler formulas, or
the specific rules enable us to replace a formula by some other formulas. The rules
have the following general form:

(rule)
˚.x/

˚1.x1; u1;w1/ j : : : j˚n.xn; un;wn/
where ˚.x/ is a finite (possibly empty) set of formulas whose object symbols are
among the elements of set.x/, where x is a finite sequence of object symbols and
set.x/ is a set of elements of sequence x; every ˚j .xj ; uj ;wj /, 1 � j � n, is a
finite non-empty set of formulas, whose object symbols are among the elements of
set.xj /[set.uj /[set.wj /, where xj ; uj ;wj are finite sequences of object symbols
such that set.xj / � set.x/, set.uj / consists of the variables that may be instantiated
to arbitrary object symbols when the rule is applied (usually to the object symbols



2.5 A Basic Relational Logic 39

that appear in the set to which the rule is being applied), set.wj / consists of the
variables that must be instantiated to pairwise distinct new variables (not appear-
ing in the set to which the rule is being applied) and distinct from any variable of
sequence uj . A rule of the form (rule) is the n-fold branching rule, where the j th
successor of ˚.x/ is the set ˚j .xj ; uj ;wj /. A rule of the form (rule) is applicable
to a finite set X of formulas whenever ˚.x/ � X . As a result of an application of
a rule of the form (rule) to set X , we obtain the sets .X n ˚.x// [ ˚j .xj ; uj ;wj /,
j 2 f1; : : : ; ng. A set to which a rule has been applied is called the premise of the
rule, and the sets obtained by an application of the rule are called its conclusions.

Let L be a relational logic. A finite set f'1; : : : ; 'ng of L-formulas is said to be
an L-set whenever for every L-model M and for every valuation v in M there exists
i 2 f1; : : : ; ng such that 'i is satisfied by v in M. It follows that the first-order
disjunction of all the formulas from an L-set is valid in first-order logic. A rule of
the form (rule) is L-correct whenever for every finite set X of L-formulas,X[˚.x/
is an L-set if and only if X [ ˚j .xj ; uj ;wj / is an L-set, for every j 2 f1; : : : ; ng,
i.e., the rule preserves and reflects validity. If K is a class of L-structures, then we
define the notion of a K-set and the notion of K-correctness in a similar way. A finite
set of L-formulas f'1; : : : ; 'ng is said to be a K-set whenever for every K-structure
M and for every valuation v in M there exists i 2 f1; : : : ; ng such that 'i is satisfied
by v in M. A rule of the form (rule) is K-correct whenever for every finite set X of
L-formulas, X [ ˚.x/ is a K-set if and only if X [ ˚j .xj ; uj ;wj / is a K-set, for
every j 2 f1; : : : ; ng.

Let xRy be an L-formula. The notion of an L-proof tree is defined in a similar
way as in logic F in Sect. 1.3, that is an L-proof tree for xRy is a tree with the
following properties:

� The formula xRy is at the root of the tree;
� Each node except the root is obtained by an application of an L-rule to its prede-

cessor node;
� A node does not have successors whenever its set of formulas is an L-axiomatic

set or none of the rules is applicable to its set of formulas.

Similarly as in the dual tableau for logic F, a branch of an L-proof tree is said to
be closed whenever it contains a node with an L-axiomatic set of formulas. A tree
is closed whenever all of its branches are closed. An L-formula xRy is L-provable
whenever there is a closed L-proof tree for it which is then refereed to as its L-proof.

2.5 A Basic Relational Logic

The logic RL presented in this section is a common core of all the logics of binary
relations presented in this book. RL represents, in fact, a family of logics which
possibly differ in the object constants admitted in their languages. We do not assume
here any specific properties of these constants, so all the developments of this section



40 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

are relevant for any such logic. Throughout the book, by RL-logic we shall mean
any logic from this family. The language of RL-logic is defined as in Sect. 2.3 with:

� RCRL D ;;
� The relational operations are �;[;\; I, �1.

RL-models coincide with the RL-structures defined in Sect. 2.3 adjusted to the RL-
language.

An RL-dual tableau consists of decomposition rules and axiomatic sets. Decom-
position rules have the following forms:

For any object symbols x and y and for any relational terms R and S ,

([/ x.R [ S/y
xRy; xSy

(�[/ x�.R [ S/y
x�Ry j x�Sy

(\/ x.R \ S/y
xRy j xSy (�\/ x�.R \ S/y

x�Ry; x�Sy
(�/ x��Ry

xRy

(�1/
xR�1y
yRx

(��1/ x�R�1y
y�Rx

(I / x.R IS/y
xRz; x.R IS/y j zSy; x.R IS/y z is any object symbol

(�I / x�.R IS/y
x�Rz; z�Sy z is a new object variable

A set of RL-formulas is said to be an RL-axiomatic set whenever it includes a subset
of the following form:

(Ax) fxRy; x�Ryg, where x; y are object symbols and R is a relational term.

Most of relational logics of binary relations studied in the book are obtained from
RL by postulating some constraints on their object and/or relational constants. Dual
tableaux for these logics include the decomposition rules of RL-dual tableau, where
in each particular logic L the terms and object symbols range over the correspond-
ing entities of the language of L. Specific rules reflect the properties of constants
assumed in the L-language in question. In all relational dual tableaux considered in
the book the sets including a subset of the form (Ax) are assumed to be L-axiomatic
sets.

Proposition 2.5.1.

1. The RL-rules are RL-correct;
2. The RL-axiomatic sets are RL-sets.

Proof. By way of example, we prove correctness of the rules .I / and .�I /. Let X
be a finite set of RL-formulas.



2.5 A Basic Relational Logic 41

.I / Clearly, if X [ fx.R IS/yg is an RL-set, then so are X [ fxRz; x.R IS/yg,
X [ fzSy; x.R IS/yg. Assume X [ fxRz; x.R IS/yg and X [ fzSy; x.R IS/yg
are RL-sets, and suppose X [ fx.R IS/yg is not an RL-set. Then there exist an
RL-model M D .U;m/ and a valuation v in M such that for every ' 2 X [
fx.R IS/yg, M; v 6ˆ '. It follows that for every a 2 U , .v.x/; a/ 62 m.R/ or
.a; v.y// 62 m.S/. However, by the assumption, model M and valuation v satisfy
.v.x/; v.z// 2 m.R/ and .v.z/; v.y// 2 m.S/, a contradiction.
.�I / Assume X [ fx�.R IS/yg is an RL-set. Suppose X [ fx�Rz; z�Syg is

not an RL-set, where z does not occur in X and z ¤ x; y. Then there exist an
RL-model M D .U;m/ and a valuation v in M such that for every ' 2 X [
fx�Rz; z�Syg, M; v 6ˆ '. Thus, .v.x/; v.z// 2 m.R/ and .v.z/; v.y// 2 m.S/.
However, by the assumption, for every a 2 U , .v.x/; a/ 62 m.R/ or .a; v.y// 62
m.S/, a contradiction. Now, assume X [ fx�Rz; z�Syg is an RL-set. Then, by the
assumption on variable z, for every RL-model M D .U;m/ and for every valuation
v in M, either there exists ' 2 X such that M; v ˆ ' or for every a 2 U , either
.v.x/; a/ 62 m.R/ or .a; v.y// 62 m.S/. That is for every RL-model M D .U;m/

and for every valuation v in M either there exists ' 2 X such that M; v ˆ ' or
M; v ˆ x�.R IS/y. Hence, X [ fx�.R IS/yg is an RL-set. ut
Due to the above proposition, we obtain:

Proposition 2.5.2. Let ' be an RL-formula. If ' is RL-provable, then it is RL-valid.

A branch b of an RL-proof tree is said to be complete whenever it is closed or it
satisfies the following RL-completion conditions:

For all object symbols x and y and for all relational terms R and S ,

Cpl([/ (resp. Cpl(�\/) If x.R [ S/y 2 b (resp. x�.R \ S/y 2 b), then both
xRy 2 b (resp. x�Ry 2 b) and xSy 2 b (resp. x�Sy 2 b), obtained by an
application of the rule .[/ (resp. .�\/);

Cpl(\/ (resp. Cpl(�[/) If x.R \ S/y 2 b (resp. x�.R [ S/y 2 b), then either
xRy 2 b (resp. x�Ry 2 b) or xSy 2 b (resp. x�Sy 2 b), obtained by an
application of the rule .\/ (resp. .�[/);

Cpl(�/ If x.��R/y 2 b, then xRy 2 b, obtained by an application of the rule .�/;
Cpl(�1/ If xR�1y 2 b, then yRx 2 b, obtained by an application of the rule .�1/;
Cpl(��1/ If x�R�1y 2 b, then y�Rx 2 b, obtained by an application of the rule
.��1/;

Cpl(I) If x.R IS/y 2 b, then for every object symbol z, either xRz 2 b or zSy 2 b,
obtained by an application of the rule .I /;

Cpl(�I) If x�.R IS/y 2 b, then for some object variable z, both x�Rz 2 b and
z�Sy 2 b, obtained by an application of the rule .�I /.

An RL-proof tree is said to be complete if and only if all of its branches are complete.
A complete non-closed branch of an RL-proof tree is said to be open. Note that
every RL-proof tree can be extended to a complete RL-proof tree, i.e., for every
RL-formula ' there exists a complete RL-proof tree for '.



42 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

Due to the forms of RL-decomposition rules, Fact 1.3.1 and Proposition 1.3.3
transfer to logic RL.

Fact 2.5.1. If a node of an RL-proof tree contains an RL-formula xRy or x�Ry,
for an atomic R, then all of its successors contain this formula as well.

This property will be referred to as preservation of formulas built with atomic terms
or their complements.

Proposition 2.5.3. For every branch b of an RL-proof tree and for every atomic
term R, if xRy 2 b and x�Ry 2 b, then b is closed.

We can prove a stronger form of Proposition 2.5.3:

Proposition 2.5.4. Let b be a complete branch of an RL-proof tree. If there is a
relational term R such that xRy 2 b and x�Ry 2 b, then b is closed.

Proof. Clearly, if branch b is closed, then the proposition holds. Assume that branch
b is open. The proof of the proposition is by induction on the complexity of rela-
tional terms. For atomic relational terms the statement holds due to Proposition
2.5.3. By way of example, we prove the statement for terms of the form R IS . Sup-
pose x.R IS/y and x�.R IS/y belong to b, for some relational termsR and S , and
some object symbols x and y. Since x�.R IS/y 2 b, by the completion condition
Cpl(�I), both x�Rz 2 b and z�Sy 2 b, for some object variable z. Furthermore,
since x.R IS/y 2 b, by the completion condition Cpl(I), for every object variable
z, either xRz 2 b or zSy 2 b. Thus either both xRz and x�Rz belong to b or both
zSy and z�Sy belong to b. Hence, by the induction hypothesis, b is closed. ut
In order to prove completeness of RL-dual tableau, first, we construct a branch struc-
ture Mb D .U b; mb/ determined by an open branch b of a complete RL-proof tree
as follows:

� U b D OSRL;
� mb.c/ D c, for every c 2 OCRL;
� mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for every relational variable R;
� mb extends to all the compound relational terms as in the RL-models.

Directly from this definition, we obtain:

Fact 2.5.2. For every open branch b of an RL-proof tree, Mb is an RL-model.

Any structure Mb is referred to as an RL-branch model. Let vbWOSRL ! U b be a
valuation in Mb such that vb.x/ D x, for every x 2 OSRL.

Proposition 2.5.5. For every open branch b of an RL-proof tree and for every RL-
formula ', if Mb; vb ˆ ', then ' 62 b.



2.6 A Method of Proving Soundness and Completeness of Relational Dual Tableaux 43

Proof. The proof is by induction on the complexity of formulas.
Let ' D xRy be an atomic RL-formula. Assume that Mb; vb ˆ xRy, that is

.x; y/ 2 mb.R/. By the definition of the branch model xRy 62 b. Let R 2 RV RL

and Mb; vb ˆ x�Ry, that is .x; y/ 62 mb.R/. Therefore xRy 2 b. Then, by
Proposition 2.5.3, x�Ry 62 b, for otherwise b would be closed.

Let Mb; vb ˆ x.S IT /y. Then .x; y/ 2 mb.S IT /, that is there exists an object
symbol z 2 U b such that .x; z/ 2 mb.S/ and .z; y/ 2 mb.T /. By the induction
hypothesis, xSz 62 b and zTy 62 b. Suppose x.S IT /y 2 b. By the completion
condition Cpl(I /, for every object symbol z 2 U b , either xSz 2 b or zTy 2 b, a
contradiction.

Let Mb; vb ˆ x�.S IT /y. Then .x; y/ 62 mb.S IT /, that is for every ob-
ject symbol z 2 U b, either .x; z/ 62 mb.S/ or .z; y/ 62 mb.T /. Suppose that
x�.S IT /y 2 b. By the completion condition Cpl(�I /, for some object vari-
able z 2 U b , both x�Sz 2 b and z�Ty 2 b. By the induction hypothesis,
.x; z/ 2 mb.S/ and .z; y/ 2 mb.T /, a contradiction.

The proofs of the remaining cases are similar. ut
Fact 2.5.2 and Proposition 2.5.5 enable us to prove:

Proposition 2.5.6. Let ' be an RL-formula. If ' is RL-valid, then ' is RL-provable.

Proof. Assume ' is RL-valid. Suppose there is no any closed RL-proof tree for '.
Then there exists a complete RL-proof tree for ' with an open branch, say b. Since
' 2 b, by Proposition 2.5.5, ' is not satisfied by valuation vb in the branch model
Mb . Hence ' is not RL-valid, a contradiction. ut
By Propositions 2.5.2 and 2.5.6, we have:

Theorem 2.5.1 (Soundness and Completeness of RL). For every RL-formula ',
the following conditions are equivalent:

1. ' is RL-valid;
2. ' is RL-provable.

Example. We show that .R \ S/ IT � .R IT / \ .S IT / by proving the formula:

x.�..R \ S/ IT / [ ..R I T / \ .S IT ///y:

Figure 2.2 presents its RL-proof.

2.6 A Method of Proving Soundness and Completeness
of Relational Dual Tableaux

The method applied to proving soundness and completeness of RL-dual tableau
determines a paradigm for all the soundness and completeness proofs presented in
this book.



44 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

x.�..R \ S/ I T /[ ..R IT /\ .S IT ///y

�
.[/

x�..R \ S/ IT /y, x..R IT /\ .S IT //y

�
.�I / with a new variable z

x�.R \ S/z; z�Ty, x..R IT /\ .S IT //y

�
.�\/

x�Rz; x�Sz; z�Ty, x..R IT /\ .S IT //y
���� .\/ 			


x�Rz; z�Ty; xR IT y; : : :
�

��
.I / with z �

��
x�Rz; xRz; : : :

closed

z�Ty; zTy; : : :
closed

x�Sz; z�Ty; xS IT y; : : :
�

��
.I / with z �

��
x�Sz; xSz; : : :

closed

z�Ty; zTy; : : :
closed

Fig. 2.2 An RL-proof of .R \ S/ IT � .R IT /\ .S IT /

Let L be a relational logic. In order to prove that an L-provable formula is L-valid
it suffices to show that all the rules of an L-dual tableau are L-correct and all the
axiomatic sets are L-sets. In some cases we also show correspondences between the
semantic constraints posed on relational constants and/or relational operations and
the rules and/or axiomatic sets reflecting those constraints. More precisely, we say
that a rule (resp. an axiomatic set) of an L-dual tableau reflects a constraint assumed
in L-models whenever for every class K of L-structures, K-correctness of the rule
(resp. K-validity of the axiomatic set) implies that every structure from K satisfies
the constraint.

In order to prove that an L-valid formula has an L-proof, we suppose that the
formula does not have any L-proof. It follows that there exists a complete L-proof
tree for this formula with an open branch b. Then we construct a branch structure
Mb D .U b; mb/ determined by b, where U b consists of all the object symbols
of L-language and mb is the meaning function which assigns relations to atomic
relational terms and extends homomorphically to all the terms as in RL-models.
Most often the meaning functionmb of Mb is defined by:

mb.R/
dfD f.x; y/ 2 U b � U b W xRy 62 bg, for every atomic relational term R.

In that case we will say that Mb is defined in a standard way.We define the valu-
ation vb in the model Mb as the identity function, i.e., vb.x/ D x for every object
symbol x.

Then the major steps of the proof are the propositions showing the following
three properties:

(1) Closed Branch Property: For any branch of an L-proof tree, if xRy and
x�Ry, for an atomic term R, belong to the branch, then the branch can be
closed.



2.7 Relational Logic with Relations 1 and 10 45

(2) Branch Model Property: Let Mb be a branch structure determined by an open
branch b of an L-proof tree. Then Mb is an L-model.

(3) Satisfaction in Branch Model Property: For every L-formula ' and for every
open branch b of an L-proof tree for ', the branch model Mb and valuation vb

in Mb satisfy:
If Mb; vb ˆ '; then ' 62 b:

Then we reason as in the proof of Proposition 2.5.6.
Roughly speaking, the method can be successfully applied provided that the

following conditions will be satisfied: a sufficient condition for (1) is the preser-
vation of formulas built with atomic terms or their complements by the applications
of the rules; for (2), the L-dual tableau must have enough rules in order to reflect
all the semantic properties of relational constants and relational operations of the
L-language; for (3), the branch structure must provide a model that falsifies the non-
provable formulas.

2.7 Relational Logic with Relations 1 and 10

The logic considered in this section is obtained from RL-logic by expanding its
language with constants 1 and 10. The vocabulary of the language of RL.1; 10/-logic
is defined as in Sect. 2.3 with:

� RCRL.1;10/ D f1; 10g.
An RL.1; 10/-structure is an RL-model M D .U;m/ such that m.1/ and m.10/ are
binary relations on U . An RL.1; 10/-model is an RL.1; 10/-structure M D .U;m/

such that the following conditions are satisfied:

� m.1/ D U � U ;
� m.10/ is an equivalence relation on U ;
� m.10/ Im.R/ D m.R/ Im.10/ D m.R/, for every atomic relational term R (ex-

tensionality);
� m extends to all the compound relational terms as in RL-models.

Proposition 2.7.1. Let M D .U;m/ be an RL.1; 10/-model. Then, for every rela-
tional term R of RL.1; 10/-language, the extensionality property holds:

m.10/ Im.R/ D m.R/ Im.10/ D m.R/:

Proof. The proof is by induction on the complexity of relational terms. By way of
example, we show the extensionality property forR D �S . Sincem.10/ is reflexive,
m.�S/ � m.10/ Im.�S/. For �, assume that there exists z 2 U such that .x; z/ 2
m.10/ and .z; y/ 62 m.S/. By the induction hypothesis, for every u 2 U , .z; u/ 62
m.10/ or .u; y/ 62 m.S/. In particular, .z; x/ 62 m.10/ or .x; y/ 62 m.S/. Sincem.10/
is symmetric, .x; y/ 2 m.�S/.



46 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

The equality m.�S/ D m.�S/ Im.10/ can be proved in a similar way. The
extensionality condition for the terms built with [, \, I, and �1 follows easily from
the definition of the meaning function, properties of relational operations, and the
induction hypothesis. ut
Proposition 2.7.2. Let M D .U;m/ be an RL.1; 10/-structure satisfying the
following conditions:

1. m.1/ D U � U ;
2. m.10/ is reflexive;
3. m.10/ Im.R/ D m.R/ Im.10/ D m.R/, for every relational term R.

Then M is an RL.1; 10/-model.

Proof. Since m.10/ is reflexive, so is m.10�1/. Thus m.10/ � m.10�1/ I m.10/.
By 3., m.10�1/ I m.10/Dm.10�1/. Therefore m.10/ is symmetric. Transitivity fol-
lows directly from 3. ut
It follows that an equivalent set of conditions characterizing the RL.1; 10/-models
could be reflexivity of m.10/ and the extensionality property for all the relational
terms.

An RL.1; 10/-model M D .U;m/ is said to be standard whenever m.10/ is the
identity on U , that is m.10/ D f.x; x/ W x 2 U g.
Fact 2.7.1. If a formula is RL.1; 10/-valid, then it is true in all standard RL.1; 10/-
models.

RL.1; 10/-dual tableau includes the decomposition rules of RL-dual tableau (see
Section 2.5) adjusted to RL.1; 10/-language and the specific rules of the following
forms:

For all object symbols x and y and for every atomic relational term R,

(101/
xRy

xRz; xRy j y10z; xRy z is any object symbol

(102/
xRy

x10z; xRy j zRy; xRy z is any object symbol

The rule .101/ reflects symmetry, transitivity, and the part m.R/ Im.10/ � m.R/

of the extensionality property of 10. The rule .102/ reflects the part m.10/ Im.R/ �
m.R/ of extensionality property of 10. The formal presentation of these facts is given
in Theorem 2.7.1.

A finite set of formulas is said to be RL.1; 10/-axiomatic whenever it is an RL-
axiomatic set adjusted to R.1; 10/-language or it includes either of the sets of the
following forms:

For all object symbols x and y,

(Ax1) fx10xg;
(Ax2) fx1yg.
The axiomatic set fx10xg reflects reflexivity of 10.



2.7 Relational Logic with Relations 1 and 10 47

Theorem 2.7.1 (Correspondence). Let K be a class of RL.1; 10/-structures. Then
the following conditions are equivalent:

1. K is a class of RL.1; 10/-models;
2. The RL.1; 10/-axiomatic sets (Ax1) and (Ax2) are K-sets and the rules .101/ and
.102/ are K-correct.

Proof. .1: ! 2:/ Let K be a class of RL.1; 10/-models. Since m.1/ D U � U ,
every superset of fx1yg is an RL.1; 10/-set. Furthermore, since m.10/ is reflexive,
X [ fx10xg is a K-set, for every finite set X of RL.1; 10/-formulas.

Now, we prove that the rule .101/ is K-correct. Let X be a finite set of RL.1; 10/-
formulas. It is easy to see that if X [fxRyg is a K-set, then so are X [fxRz; xRyg
and X [ fy10z; xRyg. Now, assume X [ fxRz; xRyg and X [ fy10z; xRyg are
K-sets. Suppose X [ fxRyg is not a K-set, that is there exist an RL.1; 10/-model
M in K and a valuation v in M such that for every formula ' 2 X [ fxRyg,
M; v 6ˆ ', in particular M; v 6ˆ xRy. Then, by the assumption and since m.10/
is symmetric, M; v ˆ xRz and M; v ˆ z10y, that is .v.x/; v.z// 2 m.R/ and
.v.z/; v.y// 2 m.10/. Since m.R/ Im.10/ � m.R/, .v.x/; v.y// 2 m.R/. Hence,
M; v ˆ xRy, a contradiction. The proof for the rule .102/ is similar.
.2: ! 1:/ Let K be a class of RL.1; 10/-structures. We need to show that every

K-structure M D .U;m/ is an RL.1; 10/-model, i.e., m.1/ D U � U , m.10/ is an
equivalence relation on U , and the extensionality property is satisfied. Since every
finite superset of fx1yg is a K-set, the formula x1y is valid in every structure from
K. Hence, the first condition holds.

For reflexivity, observe that fx10xg is a K-set. Thus, in every K-structure M,
M ˆ x10x.

For symmetry, let X
dfD fy�10xg. Since the rule .101/ is K-correct and the sets

X [ fx10x; x10yg and X [ fy10x; x10yg are K-sets, X [ fx10yg is also a K-set.
Therefore, for every K-structure M D .U;m/ and for every valuation v in M, if
.v.y/; v.x// 2 m.10/, then .v.x/; v.y// 2 m.10/.

For transitivity, let X
dfD fx�10z; z�10yg. Then, X [ fx10z; x10yg and X [

fz10y; x10yg are K-sets. Thus, by K-correctness of the rule .102/, X [ fx10yg is
also a K-set. Therefore, for every K-structure M D .U;m/ and for every valuation
v in M, if .v.x/; v.z// 2 m.10/ and .v.z/; v.y// 2 m.10/, then .v.x/; v.y// 2 m.10/.

Now, we prove the extensionality property, i.e., we show that for every atomic
relational term R, m.10/ Im.R/ D m.R/ Im.10/ D m.R/.

Since m.10/ is reflexive,m.R/ � m.10/ Im.R/ andm.R/ � m.R/ Im.10/.
To show m.10/ Im.R/ � m.R/, consider X

dfD fx�10z; z�Ryg. By K-
correctness of the rule .102/, X [ fxRyg is a K-set. Therefore, for every
K-structure M D .U;m/ and for every valuation v in M, if .v.x/; v.z// 2 m.10/
and .v.z/; v.y// 2 m.R/, then .v.x/; v.y// 2 m.R/, which implies that if
.v.x/; v.y// 2 m.10/ Im.R/, then .v.x/; v.y// 2 m.R/.

For m.R/ Im.10/ � m.R/, let X
dfD fx�Rz; y�10zg. Then, by K-correctness of

the rule .101/, X [fxRyg is a K-set. Therefore, for every K-structure M D .U;m/



48 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

and for every valuation v in M, if .v.x/; v.z// 2 m.R/ and .v.y/; v.z// 2 m.10/,
then .v.x/; v.y// 2 m.R/. K-correctness of the rule .101/ implies symmetry of
m.10/, so if .v.x/; v.y// 2 m.R/ Im.10/, then .v.x/; v.y// 2 m.R/.

Hence, the extensionality property follows. ut
RL.1; 10/-correctness of the decomposition rules can be proved as in Proposition
2.5.1. Thus, by Theorem 2.7.1, we have:

Proposition 2.7.3.

1. The RL.1; 10/-rules are RL.1; 10/-correct;
2. The RL.1; 10/-axiomatic sets are RL.1; 10/-sets.

Following the general method of proving soundness described in Sect. 2.6, the above
proposition implies:

Proposition 2.7.4. Let ' be an RL.1; 10/-formula. If ' is RL.1; 10/-provable, then
it is RL.1; 10/-valid.

Corollary 2.7.1. Let ' be an RL.1; 10/-formula. If ' is RL.1; 10/-provable, then it
is true in all standard RL.1; 10/-models.

The notions of an RL.1; 10/-proof tree, a closed branch, a closed RL.1; 10/-proof
tree, and an RL.1; 10/-proof of an RL.1; 10/-formula are defined as in Sect. 2.4.
Observe that any application of the rules of RL.1; 10/-dual tableau, in particular
an application of the specific rules .101/ and .102/, preserves the formulas built with
atomic terms or their complements (see Fact 2.5.1). Therefore, whenever an atomic
formula xRy and the formula x�Ry appear in a branch, then the branch is closed.
Thus, the closed branch property holds.

A branch b of an RL.1; 10/-proof tree is said to be RL.1; 10/-complete whenever
it is closed or it satisfies RL.10/-completion conditions which consist of the comple-
tion conditions of RL-dual tableau adjusted to RL.1; 10/-language and the following
completion conditions determined by the specific rules of RL.1; 10/-dual tableau:

For all object symbols x and y and for every atomic relational term R,

Cpl(101/ If xRy 2 b, then for every object symbol z, either xRz 2 b or y10z 2 b,
obtained by an application of the rule .101/;

Cpl(102/ If xRy 2 b, then for every object symbol z, either x10z 2 b or zRy 2 b,
obtained by an application of the rule .101/.

Let b be an open branch of an RL.1; 10/-proof tree. We define a branch structure
Mb D .U b; mb/ as in RL-logic adapting it to the RL.1; 10/-language. In particular,

mb.R/
dfD f.x; y/ 2 U b � U b W xRy 62 bg, for R 2 f1; 10g.

Proposition 2.7.5 (Branch Model Property). For every open branch b of an
RL.1; 10/-proof tree, a branch structure Mb is an RL.1; 10/-model.



2.7 Relational Logic with Relations 1 and 10 49

Proof. We need to prove: (1) mb.1/ D U b � U b , (2) mb.10/ is an equivalence
relation on U b , and (3) mb.10/ Imb.R/ D mb.R/ Imb.10/ D mb.R/, for every
atomic relational term R.

Proof of (1). Clearly, for all object symbols x and y it must be x1y 62 b, for other-
wise b would be closed. Thusmb.1/ D U b � U b .

Proof of (2). For every x 2 U b , x10x 62 b, for otherwise b would be closed. There-
fore .x; x/ 2 mb.10/, hence mb.10/ is reflexive. Assume .x; y/ 2 mb.10/, that is
x10y … b. Suppose .y; x/ 62 mb.10/. Then y10x 2 b. By the completion condi-
tion Cpl(101), either y10y 2 b or x10y 2 b, a contradiction. Therefore mb.10/ is
symmetric. To prove transitivity, assume that .x; y/ 2 mb.10/ and .y; z/ 2 mb.10/,
that is x10y 62 b and y10z 62 b. Suppose .x; z/ 62 mb.10/. Then x10z 2 b. By the
completion condition Cpl(101), either x10y 2 b or z10y 2 b. In the first case we get
a contradiction, so z10y 2 b. By the completion condition Cpl(101) applied to z10y,
either z10z 2 b or y10z 2 b. In both cases we get a contradiction.

Proof of (3). Since mb.10/ is reflexive, we have mb.R/ � mb.10/ Imb.R/ and
mb.R/ � mb.R/ Imb.10/.

Now, assume .x; y/ 2 mb.10/ Imb.R/, that is there exists z 2 U b such that
x10z 62 b and zRy 62 b. Suppose .x; y/ 62 mb.R/. Then xRy 2 b. By the completion
condition Cpl.102/, for every z 2 U b , either x10z 2 b or zRy 2 b, a contradiction.

Assume .x; y/ 2 mb.R/ Imb.10/, that is, by symmetry of mb.10/, there exists
z 2 U b such that xRz 62 b and y10z 62 b. Suppose .x; y/ 62 mb.R/. Then xRy 2 b.
By the completion condition Cpl(101/, for every z 2 U b , either xRz 2 b or y10z 2 b,
a contradiction. ut
Any structure Mb defined as above is referred to as an RL.1; 10/-branch model. Let
vb WOSRL.1;10/ ! U b be a valuation in Mb such that vb.x/ D x, for every object
symbol x.

Proposition 2.7.6 (Satisfaction in Branch Model Property). For every open
branch b of an RL.1; 10/-proof tree and for every RL.1; 10/-formula ', if
Mb; vb ˆ ', then ' 62 b.

The proof of the above proposition is similar to the proof of Proposition 2.5.5.
Given an RL.1; 10/-branch model Mb, since mb.10/ is an equivalence relation

on U b , we may define the quotient model Mb
q D .U bq ; mbq/ as follows:

� U bq D fkxk W x 2 U bg, where kxk is the equivalence class of mb.10/ generated
by x;

� m
q

b
.c/ D kck, for every object constant c;

� mbq.R/ D f.kxk; kyk// 2 U bq � U bq W .x; y/ 2 mb.R/g, for every atomic rela-
tional term R;

� mbq extends to all the compound relational terms as in the RL.1; 10/-models.



50 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

Since a branch model satisfies the extensionality property, the definition of
mbq.R/ is correct, that is:

If .x; y/ 2 mb.R/ and .x; z/; .y; t/ 2 mb.10/, then .z; t/ 2 mb.R/.

Let vbq be a valuation in Mb
q such that vbq.x/ D kxk, for every object symbol x.

Proposition 2.7.7.

1. The model Mb
q is a standard RL.1; 10/-model;

2. For every RL.1; 10/-formula ', Mb; vb ˆ ' iff Mb
q ; v

b
q ˆ '.

Proof.

1. We have to show that mbq.1
0/ is the identity on U bq . Indeed, we have:

.kxk; kyk/ 2 mbq.10/ iff .x; y/ 2 mb.10/ iff kxk D kyk:

2. The proof is by an easy induction on the complexity of relational terms. ut
Proposition 2.7.8. Let ' be an RL.1; 10/-formula. If ' is true in all standard
RL.1; 10/-models, then ' is RL.1; 10/-provable.

Proof. Assume ' is true in all standard RL.1; 10/-models. Suppose there is no any
closed RL.1; 10/-proof tree for '. Then there exists a complete RL.1; 10/-proof tree
for ' with an open branch, say b. Since ' 2 b, by Proposition 2.7.6, ' is not satisfied
by vb in the branch model Mb . By Proposition 2.7.7(2.), ' is not satisfied by vbq in

the quotient model Mb
q . Since Mb

q is a standard RL.1; 10/-model, ' is not true in
all standard RL.1; 10/-models, a contradiction. ut
From Fact 2.7.1, Propositions 2.7.4 and 2.7.8 we get:

Theorem 2.7.2 (Soundness and Completeness of RL.1; 10/). Let ' be an
RL.1; 10/-formula. Then the following conditions are equivalent:

1. ' is RL.1; 10/-valid;
2. ' is true in all standard RL.1; 10/-models;
3. ' is RL.1; 10/-provable.

The class of RL.1; 10/-models corresponds to the class FRA of full relation algebras,
as it will be proved in Sect. 2.9.

2.8 Discussion of Various Rules for Relation 10

As in the case of F-proof system, in RL.1; 10/-dual tableau we can admit some other
rules for relation 10. There are at least three possibilities of choosing rules for 10. In
this section, rules .101/ and .102/ (see p. 46) will be called classical.



2.8 Discussion of Various Rules for Relation 10 51

In many relational proof systems in the style of Rasiowa–Sikorski the following
specific rules are used:

Standard

.101/1
xRy

xRz; xRy j z10y; xRy .102/1
xRy

x10z; xRy j zRy; xRy

(sym)1
x10y
y10x

where R is any relational variable or relational constant, x; y; z are any object
symbols.

Then, the axiomatic sets are those of RL.1; 10/-dual tableau, i.e., (Ax) from
Sect. 2.5 and (Ax1) and (Ax2) from Sect. 2.7.

Completion conditions for rules .101/1 and .102/2 are analogous to those for the
classical rules, and for the rule (sym)1 we have:

Cpl(sym)1 If x10y 2 b, then y10x 2 b.

Note that these standard specific rules differ from the classical ones in the rules
(102/1 and (sym)1. The rule .102/1 seems to be more natural than the rule .102/.
On the metalogical level the rule .102/1 says: xRy is valid iff the conjunction of
x10z _ xRy and zRy _ xRy is valid. In the rule (102) positions of variables x and
z in a formula x10z are interchanged and this, in some sense, expresses symmetry
of 10. From a logical point of view it is immaterial which of these sets of specific
rules is used. The standard rules are correct and give the complete proof system.
The proof of completeness is similar to the proof for the system with the classical
rules. The only difference is that symmetry of mb.10/ follows from the completion
condition corresponding to the rule (sym)1.

The following rules are essentially different from the classical ones.

Negative standard

.101/2
x�10y; y�Rz

x�Rz; x�10y; y�Rz
.102/2

x�10y; z�Rx
z�Ry; x�10y; z�Rx

(sym)2
x�10y
y�10x (ref)2

x�10x

.1/2
x�1y

where R is any relational variable or relational constant, and x; y; z are any object
symbols.



52 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

The axiomatic sets are those of RL-dual tableau, i.e., (Ax) from Sect. 2.5.
The negative forms of specific rules are dual to the rules of a tableau system

for the relational logic. Note that the rules .101/2 and .102/2 can be applied only
to negated atomic formulas. Moreover, contrary to the classical rules, they do not
branch a proof tree and do not involve introduction of a variable which makes them
more suitable for implementation. Our conclusions from the discussion of different
forms of the specific rule for the first-order logic in Sect. 1.8 are also relevant to this
case.

Below we prove completeness of the proof system with the negative form of the
rules for 10. Moreover, we show that all these rules are needed to prove it.

The completion conditions corresponding to the negative rules are:
For all object symbols x, y, and z and for every atomic relational term R,

Cpl(101/2 If x�10y 2 b and y�Rz 2 b, then x�Rz 2 b, obtained by an application
of the rule (101/2;

Cpl(102/2 If x�10y 2 b and z�Rx 2 b, then z�Ry 2 b, obtained by an application
of the rule (102/2;

Cpl(sym/2 If x�10y 2 b, then y�10x 2 b, obtained by an application of the rule
(sym/2;

Cpl(ref/2 For every object symbol x, x�10x 2 b, obtained by an application of the
rule (ref/2;

Cpl.1/2 For all object symbols x and y, x�1y 2 b, obtained by an application of
the rule .1/2.

Proposition 2.8.1 (Closed Branch Property). For every branch of a proof tree in
the relational dual tableau with negative standard rules, if xRy and x�Ry, for an
atomic R, belong to the branch, then the branch can be closed.

Proof. Although the rule (sym)2 does not preserve the formula x�10y, if x�10y
appears in a node of a branch, say b, then all the successors of this node in b include
either x�10y, if the rule (sym)2 has not been applied yet, or y�10x if the rule (sym)2

has been applied. If x10y is in a node, say n, of branch b, then either x�10y 2 n and
x10y 2 n or y�10x 2 n and x10y 2 n. In the former case, the branch is closed. In the
latter, we can apply rule (sym)2 to y�10x in node n. Then we obtain a node which
includes x�10y and x10y and we close the branch. All the remaining rules preserve
the formulas built with atomic terms or their complements. Thus, the closed branch
property holds. ut
Since the rules are applied to formulas built with complements of atomic terms, we
need to change the definition of a branch structure. Let b be an open branch of a
proof tree. We define a branch structure Mb D .U b; mb/ as follows:

� U b D OSRL.1;10/;
� mb.R/ D f.x; y/ 2 U b � U b W x�Ry 2 bg, for every atomic relational term R;
� mb extends to all the compound terms as in RL-models.

Let vbWOSRL.1;10/ ! U b be a valuation in Mb such that vb.x/ D x, for every
object symbol x. First, we prove that mb.10/ is an equivalence relation.



2.8 Discussion of Various Rules for Relation 10 53

Proposition 2.8.2. mb.10/ is an equivalence relation.

Proof. By the completion condition Cpl(ref/2, for every x 2 U b , x�10x 2 b, which
means that .x; x/ 2 mb.10/. Hence, mb.10/ is reflexive. Assume .x; y/ 2 mb.10/,
that is x�10y 2 b. By the completion condition Cpl(sym/2, y�10x 2 b, hence
.y; x/ 2 mb.10/. Thus, mb.10/ is symmetric. Assume .x; y/ 2 mb.10/, .y; z/ 2
mb.10/, that is x�10y 2 b and y�10z 2 b. By the completion condition Cpl(101/2,
x�10z 2 b, hence .x; z/ 2 mb.10/, which proves transitivity of mb.10/. ut
Note that the rules (ref)2 and (sym)2 are needed to prove reflexivity and symmetry
of mb.10/, respectively. The rule .101/2 is needed to prove transitivity of mb.10/.

Proposition 2.8.3. For every atomic relational term R:

1. mb.10/ Imb.R/ � mb.R/;
2. mb.R/ Imb.10/ � mb.R/.
Proof. For 1., assume .x; y/ 2 mb.10/ Imb.R/. Then there exists z 2 U b such that
.x; z/ 2 mb.10/ and .z; y/ 2 mb.R/, that is x�10z 2 b and z�Ry 2 b. By the
completion condition Cpl.101/2, x�Ry 2 b, hence .x; y/ 2 mb.R/.

The proof of 2. is similar. ut
By the above proposition, the branch structure satisfies the extensionality property
assumed in RL.1; 10/-models. Moreover, due to the completion condition Cpl(1/2,
it satisfies the constraintmb.1/ D U b � U b . We conclude that the branch structure
Mb is an RL.1; 10/-model. Therefore, the quotient model can be defined in a similar
way as in the proof of the completeness of RL.1; 10/ (see p. 49). The satisfaction in
branch model property can be proved by induction on the complexity of relational
terms, that is we have:

Proposition 2.8.4 (Satisfaction in Branch Model Property). For every open
branch b and for every RL.1; 10/-formula ', if Mb; vb ˆ ', then ' 62 b.

Moreover, the following can be proved in a similar way as in RL.1; 10/-dual tableau:

Proposition 2.8.5.

1. Mb
q is a standard RL.1; 10/-model;

2. Mb; vb ˆ ' iff Mb
q; v

b
q ˆ '.

Then completeness of RL.1; 10/-dual tableau with negative specific rules follows
from the above propositions.

We may refine the set of negative rules in analogy with the classical set of specific
rules by deleting the symmetry rule and interchanging the positions of x and y in
the rule .102/2. Then we have less specific rules than in the negative standard set.

.101/3
x�10y; y�Rz

x�Rz; x�10y; y�Rz
.102/3

y�10x; z�Rx
z�Ry; y�10x; z�Rx

(ref)3
x�10x .1/3

x�1y



54 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

where R is any relational variable or relational constant, and x; y; z are any
object symbols.

Then, the axiomatic sets are those of RL-dual tableau, i.e., (Ax) from Sect. 2.5.
This set of specific rules together with the decomposition rules provides a

complete proof system for RL.1; 10/. The proof of completeness is similar to the
previous one except for the parts where rules .102/2 and (sym)2 are used.

2.9 Full Relation Algebras and Relational Logics

We recall that the class of full relation algebras, FRA, is the class of algebras of the
form .P.U �U /;[;\;�;;; U �U; I ;�1 ; 10/, where U is a non-empty set, 10 is the
identity on U , operations�;[, and \ are Boolean operations, �1 and I are converse
and composition of binary relations, respectively.

Let C be a class of relation algebras. An equationR1 D R2, whereR1 andR2 are
relation algebra terms, is said to be C-valid whenever it is true in all algebras of C.
The following theorem follows directly from the definition of validity in relational
logics.

Theorem 2.9.1. Let R be any relational term and let x and y be any two different
object variables. Then xRy is true in all standard RL.1; 10/-models iff R D 1 is
FRA-valid.

Proof. .!/ Assume xRy is true in all standard RL.1; 10/-models and suppose that
R D 1 is not FRA-valid. Then there exists a FRA-algebra A of binary relations on a
set U such that RA ¤ 1A, where 1A is the universal relation on U . Hence, for some
u; u0 2 U , .u; u0/ 62 RA. Consider an RL.1; 10/-model MA D .U;mA/ such that:

� mA.P / D PA, for every relational variable P and for P 2 f1; 10g;
� mA extends to all the compound relational terms as in RL.1; 10/-models (see

Sect. 2.3).

It follows that for every relational term Q, mA.Q/ D QA. Consider a valuation v
in model MA such that v.x/ D u and v.y/ D u0. Such a valuation v exists, since
variables x and y are different. Then .v.x/; v.y// 62 mA.R/, a contradiction.

( ) Assume R D 1 is FRA-valid and suppose xRy is not true in a standard
RL.1; 10/-model M D .U;m/. Then there exists a valuation v in M such that
.v.x/; v.y// 62 m.R/. Consider a FRA-algebra AM D .P.U �U /;[;\;�;;; U �
U; I ;�1 ; m.10// such that PAM D m.P /, for every relational variable P . It follows
that for every relational termQ,QAM D m.Q/. SinceR D 1 is FRA-valid, it must
be true in AM. Hence, RAM D 1AM D U � U . This yields m.R/ D U � U , a
contradiction. ut



2.10 An Example of a Relational Dual Tableau Proof 55

Due to the above theorem and Theorem 2.7.2, we obtain:

Theorem 2.9.2. Let xRy be an RL.1; 10/-formula. Then xRy is RL.1; 10/-provable
iff R D 1 is FRA-valid.

An example of RL.1; 10/-provable formula which represents a FRA-valid equation
which is not RA-valid is presented in Sect. 2.10.

As a consequence of Proposition 2.2.1(1.), we have:

Proposition 2.9.1. Let R and S be RL.1; 10/-terms. Then R � S holds in every
FRA-algebra iff x.�R [ S/y is RL.1; 10/-valid.

Since the class RRA is a variety generated by FRA, it is know that:

Theorem 2.9.3. The set of equations valid in RRA coincides with the set of equa-
tions valid in FRA.

Hence, RL.1; 10/-logic is a tool for verification of validity of equations in the class
RRA of representable relation algebras.

2.10 An Example of a Relational Dual Tableau Proof

As an example of an RL.1; 10/-provable equation let us consider the equation � D 1,

for �
dfD .1 I � I 1/ and �

dfD .A [ B [ C [D [ E/, where A, B , C , D, and E are
defined as follows, for relational variables R and N :

� A D �.1 IR I 1/,
� B D ŒR \�Œ.N IN/\ .R IN/��,
� C D .N IN [ R IR/\N ,
� D D Œ.R [R�1 [ 10/ \N�,
� E D �.R [R�1 [ 10 [N/.
This equation is RRA-valid, while it is not RA-valid.

Proposition 2.10.1. The equation � is true in all representable relation algebras.

Proof. Suppose � is not true in some A 2 FRA, that is � ¤ 1. Then, by Proposition
2.2.1(3.), � D ; in A. It means that the following are true in A:

(1) �.1 IR I 1/ D ;,
(2) .R \ �Œ.N IN/ \ .R IN/�/ D ;,
(3) Œ.R IR [N IN/\N� D ;,
(4) Œ.R [R�1 [ 10/ \N� D ;,
(5) �.R [ R�1 [ 10 [N/ D ;.



56 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

The first condition implies that R ¤ ;, since the following holds:

�.1 IR I 1/ D ; iff .1 IR I 1/ D 1 iff R ¤ ;:

The condition (2) is equivalent to R � .N IN/ \ .R IN/, which means that
R � N IN andR � R IN . From condition (3) it follows that .R IR/\N D ; and
.N IN/\N D ;. Condition (4) implies that relationsR\N;R�1\N; 10 \N are
empty. The condition (5) means that R [R�1 [ 10 [N is the universal relation 1.

Summarizing, if � is not true in A, then the following must hold:

(a) R ¤ ;,
(b1) R � N IN ,
(b2) R � R IN ,
(c1) .R IR/\N D ;,
(c2) .N IN/\N D ;,
(d1) R \N D ;,
(d2) R�1 \N D ;,
(d3) 10 \N D ;,
(e) .R [R�1 [ 10 [N/ D 1.

By (a), (b2), and (d1) there are different x; y in the universe of A such that
.x; y/2R. By (b1) an element z must exist such that .x; z/; .z; y/ 2 N . Since
R \ N D ;, we have z ¤ x; y. Figure 2.3 presents this part of A. Thick lines
and thin lines correspond to relations R and N , respectively.

By (b2) there is v such that .x; v/ 2 R and .v; y/ 2 N . Since by (d3) 10\N D ;,
v ¤ y. If v D x or v D z, then R \ N ¤ ;. Hence v ¤ x; y; z, .x; v/ 2 R, and
.v; y/ 2 N as presented in Fig. 2.4a. By condition (e), .z; v/ 2 R or .v; z/ 2 R
or .z; v/ 2 N . Suppose .v; z/ 2 R. Then .x; v/; .v; z/ 2 R and .x; z/ 2 N

which implies that .R IR/\N is not empty, a contradiction with condition (c1).
Suppose .z; v/ 2 N . Then .z; v/; .v; y/; .z; y/ 2 N , which contradicts condition
(c2). So .z; v/ 2 R, and hence the algebra A must look as shown in Fig. 2.4b.
Since .x; v/ 2 R and by (b1) R � .N IN/, there must exist an element s such
that .x; s/; .s; v/ 2 N . By condition (d1), s ¤ y; v, for otherwise R \ N ¤ ;.
By condition (d3), s ¤ x, for otherwise 10 \ N ¤ ;. Suppose s D z. Then
.z; y/; .v; y/; .z; v/ 2 N , which means that .N IN/ \ N ¤ ;, a contradiction with
condition (c2). Therefore, s is distinct from x; y; z, and v (see Fig. 2.5a). Hence,
.x; y/; .x; v/ 2 R and .z; y/; .x; z/; .v; y/; .x; s/; .s; v/ 2 N .

�x

�y �z

�
�
�
�
�
�
��

�

�
�
�
�
��

�

Fig. 2.3 Algbra A, step 1



2.10 An Example of a Relational Dual Tableau Proof 57

a b

�x

�y �z

�
�
�
�
�
�
��

�v�
�

�
�

�
�

��

�

�

�
�
�
�
��

�
�

�
�

��

�

�x

�y �z

�
�
�
�
�
�
��

�v�
�

�
�

�
�

��

�

�

�

�
�
�
�
��

�
�

�
�

��

�

Fig. 2.4 Algebra A, step 2

a b

�x

�y �z

�
�
�
�
�
�
��

�v�
�

�
�

�
�

��

� s

���������������

�������������

�����������

�

�

�
�
�
�
��

�
�

�
�

��

�

�x

�y �z

�
�
�
�
�
�
��

�v�
�

�
�

�
�

��

� s

���������������

��������

															

															

															�����

�����������
					


�

�

�

�
�
�
�
��

�
�

�
�

��

�

Fig. 2.5 Algebra A, step 3

Again by condition (e), .y; s/ 2 R or .s; y/ 2 R or .s; y/ 2 N . Assump-
tions .s; y/ 2 N and .y; s/ 2 R lead to a contradiction with conditions (c2) and
(c1), respectively. Therefore .s; y/ 2 R as shown in Fig. 2.5b. By condition (e), s
and z must be in one of the relations R;R�1 or N . If .s; z/ 2 R, then we have
.s; z/; .z; v/ 2 R and .s; v/ 2 N , a contradiction with condition (c1). Similarly, we
can prove that .z; s/ 62 R. Therefore .s; z/ 2 N , but then .N IN/\N is non-empty,
a contradiction. ut
Proposition 2.10.2. There exists a relation algebra A in which the equation � is not
true.

Proof. Let A D .W;C; �;�; 0; 1; I ; M; 10/ be a relation algebra such that .W;C;
�;�; 0; 1/ is a Boolean algebra generated by the four atoms a; b; c, and d and the
operations I and M are defined as follows:

M I a b c d

a a a a b c d

b c b b b 1 b C d
c b c c 1 c c C d
d d d d bC d c C d aC bC c

Let v be a valuation such that v.10/ D a; v.R/ D b; v.N / D d . We show that the
equation � is not satisfied in A by v.

From Proposition 2.10.1 it is known that unsatisfiability of � in a relation algebra
implies that all the equations (1)–(5) are true in such an algebra. Therefore it suffices
to show that these equations are true in A.



58 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

Since .W;C; �;�; 0; 1/ is a Boolean algebra generated by the atoms a; b; c; d and
1 D aC b C c C d , the following hold:

(1) �.1 I b I 1/ D �Œ.a C b C c C d/ I b I .a C b C c C d/� D �.1 I 1/ D 0,
since ; is an associative operation that distributes overC,

(2) .b � �Œ.d I d/ � .b I d/�/ D b � �Œ.a C b C c/ � .b C d/� D b � �b D 0,
(3) Œ.b I b C d I d/ � d� D Œb C .aC b C c/� � d D 0,
(4) Œ.b C b` C 10/ � d� D .aC b C c/ � d D 0,
(5) �.b � b` C 10 C d/ D �.aC b C c C d/ D �1 D 0.

Therefore we may conclude that � is not true in A. ut
Below we present a construction of an RL.1; 10/-proof of the formula u�w which
provides a proof of RRA-validity of the equation � D 1.

It is easy to show that in a proof tree of u�w, if a formula u�w occurs in a node
of this tree, then it is possible to build a subtree of this proof tree with this formula
at the root such that it ends with exactly one non-axiomatic node containing at least
one of the following formulas: zAv, zBv, zC v, zDv, and zEv, for some variables
z and v. Therefore, in such cases instead of building long subtrees we will use the
following derived rules:

For all object symbols u;w; z; and v,

(Azv)
u�w

zAv; u�w
(Bzv)

u�w

zBv; u�w
(C zv)

u�w

zC v; u�w

(Dzv)
u�w

zDv; u�w
(Ezv)

u�w

zEv; u�w

By way of example, in Fig. 2.6 we present a derivation of rule .Azv/.
Similarly, we can admit the following derived rules:

(10�)
x10y
y10x

(Rxyz)
x�Ry; u�w

x�N z; z�Ny; x�.R IN/y; x�Ry; u�w

z is a new variable

u1 I .A[ B [ C [D [ E/ I 1w
����

			
.I / with z

u1z; : : :
closed

z.A[ B [ C [D [E/ I 1w; u1 I .A[ B [ C [D [ E/ I 1w
����

			
.I / with v

v1w; : : :
closed

z.A[ B [ C [D [E/v; u1 I .A[ B [ C [D [ E/ I 1w; : : :

�
.[/ � 4

zAv; zBv; zC v; zDv; zEv; u1 I .A[ B [ C [D [E/ I 1w; : : :

Fig. 2.6 A derivation of rule .Azv/



2.10 An Example of a Relational Dual Tableau Proof 59

.RN10xyz/1
z�Rx; z�Ny; u�w

x10y; z�Rx; z�Ny; u�w

z�Rx; z�Ny; u�w

y10x; z�Rx; z�Ny; u�w

(RN10xyz/2
x�Rz; y�N z; u�w

x10y; x�Rz; y�N z; u�w

x�Rz; y�N z; u�w

y10x; x�Rz; y�N z; u�w

(RRNxyz)
x�Ry; y�Rz; x�N z; u�w

closed

(NNNxyz)
x�Ny; y�N z; x�N z; u�w

closed

By way of example, in Figs. 2.10 and 2.11 we show how to obtain the derived rules
.Rxyz/ and .RN10xyz/1, respectively. The remaining derived rules are obtained
in a similar way. It is easy to check that the derived rule .Cxy/ is needed to get
.RRNxyz/ and .NNNxyz/, while .Dxy/ is needed in the proofs of .RN10xyz/1
and .RN10xyz/2. Figure 2.7 presents an RL.1; 10/-proof of u�w.

u�w

�
.Au0w0/

u0�.1 IR I 1/w0; u�w; : : :

�.�I / twice with new variables x and y

u0�1x; x�Ry; y1w0; u�w; : : :

�.Rxyz/ with a new variable z

x�N z; z�Ny; x�.R IN/y; x�Ry; u�w; : : :

�.�I / with a new variable v

x�N z; z�Ny; x�Rv; v�Ny; x�Ry; u�w; : : :

�
.RN10vzx/1

z10v; x�N z; z�Ny; x�Rv; v�Ny; x�Ry; u�w; : : :
�����

�
���

�
���

				

.Ezv/ and .�[/ � 3 and .��1/

˘ v�Rz; x�N z; x�Rv; : : :

�
.RRNxvz/

closed

z�10v; z10v; : : :
closed

z�N v; z�Ny; v�Ny; : : :

�
.NNN zvy/

closed

the subtree ˘ is presented in Figure 2.8

Fig. 2.7 An RL.1; 10/-proof of u�w



60 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

z�Rv; z�Ny; x�Rv; v�Ny; x�N z; x�Ry; u�w; : : :

�
.Rxvs/ with a new variable s

z�Rv; z�Ny; x�Rv; x�Ns; s�N v; x�.R IN/v; v�Ny; x�N z; x�Ry; u�w; : : :

�
.RN10ysx/1

z�Rv; z�Ny; s10y; x�Ns; s�N v; v�Ny; x�N z; x�Ry; u�w; : : :
���� �

�� �

			
.Esy/ and .�[/� 3 and .��1/

y�Rs; x�Ns; x�Ry; : : :

�
.RRNxys/

closed

� s�10y; s10y; : : :

closed

s�Ny; s�N v; v�Ny; : : :

�
.NNNsvy/

closed

� is presented in Figure 2.9

Fig. 2.8 The subtree ˘

s�Ry; z�Rv; z�Ny; x�Ns; s�N v; v�Ny; x�N z; u�w; : : :

�
.RN10zsv/2

s10z; s�Ry; z�Rv; z�Ny; x�Ns; s�N v; v�Ny; x�N z; u�w; : : :
���� �

�� �

			
.Esz/ and .�[/ � 3 and .��1/

s�Rz; z�Rv;
s�N v : : :

�
.RRNszv/

closed

z�Rs; s�Ry
z�Ny : : :

�
.RRN zsy/

closed

s�10z; s10z; : : :
closed

s�N z; x�Ns;
x�N z; : : :

�
.NNNxsz/

closed

Fig. 2.9 The subtree �

x�Ry; u�w

�
.Bxy/

x.R \�..N IN/\ .R IN///y; x�Ry; u�w; : : :
������
������.\/

xRy; x�Ry; : : :
closed

x�..N IN/\ .R IN//y; x�Ry; u�w; : : :

�
.�\/ and .�I / with a new variable z

x�N z; z�Ny; x�.R IN/y; x�Ry; u�w; : : :

Fig. 2.10 A derivation of the rule .Rxyz/



2.11 Relational Entailment 61

z�Rx; z�Ny; u�w

�
.Dzy/

z.N \ .R [R�1 [ 10/y; z�Rx; z�Ny; u�w; : : :
����
			
.\/

zNy; z�Ny; : : :
closed

z.R [ R�1 [ 10/y; z�Rx; z�Ny; u�w; : : :

�
.[/ twice

zRy; z�Rx; z�Ny; u�w; : : :
����

			
.101/ with variable x

zRx; z�Rx; : : :
closed

y10x; z�Rx; z�Ny; u�w; : : :

Fig. 2.11 A derivation of the rule .RN10xyz/1

2.11 Relational Entailment

The logic RL.1; 10/ can be used to verify entailment of formulas from a finite
set of formulas. The method is based on the following fact. Let n � 1 and let
R1; : : : ; Rn; R be binary relations on a set U and let 1 D U � U . It is known
([Tar41], see also Proposition 2.2.1(7.)), that R1D 1; : : : ; RnD 1 imply RD 1 iff
.1 I �.R1 \ : : : \ Rn/ I 1/ [ R D 1. It follows that for every RL.1; 10/-model M,
M ˆ xR1y, . . . , M ˆ xRny imply M ˆ xRy iff M ˆ x.1 I �.R1 \ : : : \
Rn/ I 1/ [ R/y which means that entailment in RL.1; 10/ can be expressed in its
language.

Example. We prove that x�.R I �P/y and x�.R I �.�P [ Q//y entail
x�.R I �Q/y, by showing that the formula:

xŒ.1 I �.�.R I �P/ \ �.R I �.�P [Q/// I 1/[ �.R I �Q/�y

is RL.1; 10/-provable. Figure 2.12 presents an RL.1; 10/-proof of this formula.
Now, we show that for every relation R, R I 1 D 1 or 1 I �R D 1. Applying

Proposition 2.2.1(6.), we need to show that the formula

x1 I .�.1 I .�.R I 1/ I 1// I 1/[ .1 I �R/y

is RL.1; 10/-provable. Figure 2.13 presents an RL.1; 10/-proof of this formula.



62 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

xŒ.1 I�.�.R I�P/\�.R I�.�P [Q/// I 1/[�.R I�Q/�y

�.[/
x.1 I�.�.R I�P/\�.R I�.�P [Q/// I 1/y; x�.R I�Q/y

����
			


�

.I / twice with x and y

x1x; : : :

closed

y1y; : : :

closed

x�.�.R I�P/\�.R I�.�P [Q///y; x�.R I�Q/y; : : :

�
.�\/ and .�/

x.R I�P/y; x.R I�.�P [Q//y; x�.R I�Q/y; : : :

�

.�I / with a new variable z and .�/

x.R I�P/y; x.R I�.�P [Q//y; x�Rz; zQy; : : :
����

			
.I / with z

xRz; x�Rz; : : :
closed

x.RI�P/y; z�.�P [Q/y; x�Rz; zQy; : : :
����

			
.I / with z

xRz; x�Rz; : : :
closed

z�Py; z�.�P [Q/y; zQy; : : :
����

			
.�[/ and .�/
z�Py; zPy; : : :

closed

z�Qy; zQy; : : :
closed

Fig. 2.12 An RL.1; 10/-proof showing that x�.R I�P/y and x�.R I�.�P [ Q//y entail
x�.R I�Q/y

2.12 Decision Procedures for Some Relational Logics

In this section we present some decidable subclasses of formulas of the basic
relational logic RL chosen from those presented in [BO97, Dob96a, Dob96b]. The
classes are described in the syntactic terms. Usually, a distinguishing feature of a
class is formulated in terms of a condition on the occurrences of the composition
symbol in the formulas of the class. For the sake of simplicity, we will often say
composition when referring to its occurrences.

An occurrence of the symbol of composition .I / is said to be positive (resp.
negative) in a formula iff it is in the scope of an even (resp. odd) number of the
complement symbols in the formula. Similarly, an occurrence of the symbol of com-
position is negative-positive (resp. positive-negative) iff it is positive (resp. negative)
and it falls into the scope of a negative (resp. positive) composition. An occurrence
c of the composition is between the compositions c1 and c2 iff c falls into the scope
of c1 and c2 falls into the scope of c.



2.12 Decision Procedures for Some Relational Logics 63

x.1 I�.1 I�.R I 1/ I 1/ I 1/[ .1 I�R/y

�
.[/

x1 I�.1 I�.R I 1/ I 1/ I 1y; x1 I�Ry
��� 		


x1x; : : :

closed

y1y; : : :

closed

.I / twice with x and y

�
x�.1 I �.R I 1/ I 1/y; x1 I�Ry; : : :

�
.�I / twice with new variables z and w and .�/

x�1z; z.R I 1/w;w�1y; x1 I�Ry; : : :
����

x1z; : : :
closed

�
.I / with z

z.R I 1/w; z�Ry; : : :
����

			
.I / with y

zRy; z�Ry; : : :
closed

y1w; : : :
closed

Fig. 2.13 An RL.1; 10/-proof showing that R I 1 D 1 or 1 I�R D 1

A formula ' of the logic RL is said to be:

� Positive (resp. negative) iff all the compositions in ' are positive (resp. negative);
� Negative-positive if there is no any positive-negative composition in ';
� 1-positive iff there is exactly one positive composition in ' (and possibly some

negative ones);
� 2-positive iff there are exactly two positive compositions in ' and there is no any

negative composition in ' between the positive compositions.

The classes of formulas considered above will be referred to as:

� RLPOS – the class of all positive formulas;
� RLNEG – the class of all negative formulas;
� RLNP – the class of all negative-positive formulas;
� RLPOS.1/ – the class of all 1-positive formulas;
� RLPOS.2/ – the class of all 2-positive formulas.

Example. Let P;Q be relational variables. Consider the following RL-terms:

T1 D �.�.P I .Q \ P// [ �.Q IP//,
T2 D .�.P IQ/\ �.Q [ .Q IP///,
T3 D �..�.P IQ/ I �.Q IP// I .�.Q I �P/ I �.P I �Q///,
T4 D �..P [Q/ I �.�.Q IP/ IQ//,
T5 D �.�P I �..Q I �.Q IP// IQ//.

The formula xT1y is positive, since all of its compositions are in the scope of
an even number of complements, and similarly, xT2y is negative, since all of
its compositions are negative. The formula xT3y is negative–positive, and its



64 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

positive compositions occur in the following terms that do not contain any negative
occurrence of composition: .P IQ/, .Q IP/, .Q I �P/, and .P I �Q/. The formula
xT4y is 1-positive, since the only positive composition of this formula is the princi-
pal composition of .�.Q IP/ IQ/ and all the other compositions are negative. The
formula xT5y is 2-positive. In order to see this, observe that xT5y contains only two
positive compositions, namely those in the term ..Q I �.Q IP// IQ/, and there is
no any negative composition between these two positive compositions.

Decidability of these classes of formulas is proved by showing that the first-
order translations of their members form decidable subclasses of the classical
first-order predicate logic F. A natural translation � of relational formulas into first-
order formulas is defined as follows. Let a one-to-one assignment � 0 be given of
object variables and relational variables of RL to individual variables and predicate
symbols from the language of F, respectively. Then we define:

� �.xPy/ D � 0.P /.� 0.x/; � 0.y//, for every atomic relational variable P ;

For all relational terms R and S :

� �.x�Ry/ D :�.xRy/;
� �.x.R [ S/y/ D �.xRy/ _ �.xSy/;
� �.x.R \ S/y/ D �.xRy/ ^ �.xSy/;
� �.xR�1y/ D �.yRx/;
� �.x.R IS/y/ D 9� 0.z/.�.xRz/ ^ �.zSy//.
The translations of relational formulas from the classes defined above belong to the
following decidable classes of first-order formulas. Let .8/ and .9/ denote finite
strings of universal and existential quantifiers, respectively. The classes are denoted
by indicating a form of the string of quantifiers in the prenex normal form of the
formulas in the class:

� .9/ – the class of existential formulas;
� .8/ – the class of universal formulas;
� .8/.9/ – the class of formulas with universal quantifiers followed by existential

quantifiers;
� .8/9.8/ – the class of formulas with exactly one existential quantifier between

the universal quantifiers;
� .8/9192.8/ – the class of formulas with exactly two existential quantifiers

between the universal quantifiers.

The following is well known (see [Ack54]):

Proposition 2.12.1. The classes .9/, .8/, .8/.9/, .8/9.8/, and .8/9192.8/ have a
decidable validity problem.



2.12 Decision Procedures for Some Relational Logics 65

The translations of relational formulas from the classes listed above fall into the
following classes of first-order logic:

Proposition 2.12.2. For every relational formula ', the prenex form of �.'/,
pf .�.'//, satisfies:

1. If ' is positive, then pf .�.'// 2 8182.9/;
2. If ' is negative, then pf .�.'// 2 .8/;
3. If ' is negative-positive, then pf .�.'// 2 .8/.9/;
4. If ' is 1-positive, then pf .�.'// 2 .8/9.8/;
5. If ' is 2-positive, then pf .�.'// 2 .8/9192.8/.
By Propositions 2.12.1 and 2.12.2, we get:

Theorem 2.12.1 (Decidable Classes of Relational Formulas). The classes
RLPOS, RLNEG, RLNP, RLPOS.1/, and RLPOS.2/ of relational formulas have a
decidable validity problem.

Below we present sound and complete dual tableaux that are decision procedures
for the classes RLPOS, RLNEG, RLNP. Note that RL-dual tableau is not a decision
procedure for these classes, since if the rule .I / is applicable, then it can be applied
infinitely many times. Observe that the rule .I / is the only rule of RL-dual tableau
with that property. Therefore, in order to obtain decision procedures for the classes
defined in terms of positive formulas we need to modify the rule for the composition
or to restrict its applicability. According to the definition of the classes RLK, for
K 2 fPOS;NEG;NPg given above, we observe that:

� If ' is positive, then none of its proof trees involves any application of the rule
.�I /,

� If ' is negative, then none of its proof trees involves any application of the rule
.I /,

� If ' is negative-positive, then in each of its proof trees the applications of the rule
.�I / precede the applications of the rule .I /.

These observations suggest that dual tableaux for these classes should be con-
structed from RL-dual tableau as follows:

� RLPOS-dual tableau consists of the axiomatic sets and decomposition rules of
RL-dual tableau except the rule .�I /,

� RLNEG-dual tableau consists of the axiomatic sets and decomposition rules of
RL-dual tableau except the rule .I /,

� RLNP-dual tableau consists of the axiomatic sets and decomposition rules of RL-
dual tableau.

In order to obtain decision procedures for the classes listed above we modify the
applicability of the rule .I / as follows. The rule .I / of the form:

x.R IS/y
xRz; x.R IS/y j zSy; x.R IS/y



66 2 Dual Tableaux for Logics of Classical Algebras of Binary Relations

may be applied to a finite set X of relational formulas if and only if the following
conditions are satisfied:

� x.R IS/y 2 X ;
� z occurs in X ;
� The rule .I / introduces a new formula, i.e., xRz 62 X or zSy 62 X ;
� No other rule is applicable to X .

The second condition implies that there are finitely many possibilities of choosing a
variable z. Hence, together with the third condition, they prevent needless expansion
of sets of formulas ad infinitum by repeated applications of the rule. The last condi-
tion guarantees that the rule .I / can be applied only after the applications of the rule
.�I /, since all the classes in question do not contain positive–negative formulas.

As in RL-logic, the rules of all dual tableaux considered above guarantee that
whenever xRy and x�Ry, for an atomicR, belong to a branch of a proof tree, then
the branch is closed. Thus the closed branch property holds. Since all the rules are
RL-correct, we have:

Proposition 2.12.3. For every K 2 fPOS;NEG;NPg, all RLK-rules are RLK-
correct.

Moreover, since formulas of the class RLNEG do not contain positive compositions,
the completeness of the reduct of RL-dual tableau for RLNEG can be proved as for
the appropriate part of RL-dual tableau.

Theorem 2.12.2 (Soundness and Completeness of RLNEG). For every RLNEG-
formula ', the following conditions are equivalent:

1. ' is RLNEG-valid;
2. ' is RLNEG-provable.

By the above theorem and due to the forms of RLNEG-rules, RLNEG-dual tableau is
a decision procedure for the class RLNEG.

Now, we aim at proving completeness of RLPOS-dual tableau. Let b be a branch
of an RLPOS-proof tree. Let OV .b/ be the set of all variables that occur in formulas
appearing in the nodes of b. The branch b is said to be complete if it is closed or
it satisfies all the completion conditions of RL-dual tableau except Cpl(I) and, in
addition, the following completion condition:

Cpl’(I) If x.R IS/y 2 b, then for every z 2 OV .b/, either xRz 2 b or zSy 2 b.

We define the branch structure Mb D .U b; mb/ as follows:

� U b D OV .b/;
� mb.P / D f.x; y/ 2 U b � U b W xPy 62 bg, for every atomic term P ;
� mb extends to all the compound relational terms as in RL-models.

Clearly, Mb is an RL-model. Hence, the branch model property holds. Let vb be a
valuation in Mb such that vb.x/ D x for every object variable x.



2.12 Decision Procedures for Some Relational Logics 67

Proposition 2.12.4 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLPOS-proof tree. Then, for every RLPOS-formula ', if ' 2 b, then
Mb; vb 6ˆ '.

Proof. The proof is by induction on the complexity of terms. IfP is a relational vari-
able and xPy 2 b, then the proposition holds by the definition of Mb . If x�Py 2 b,
then xPy 62 b, since otherwise, due to the closed branch property, b would be
closed. Thus, .x; y/ 2 mb.P /. Suppose Mb; vb ˆ x�Py. Then .x; y/ 62 mb.P /,
a contradiction.

Now, assume x.R IS/y 2 b. Then, by the completion condition Cpl’(I), for
every z 2 U b , either xRz 2 b or zSy 2 b. By the induction hypothesis, for every z 2
U b , either .x; z/ 62 mb.R/ or .z; y/ 62 mb.S/. Suppose Mb; vb ˆ x.R IS/y. Then
there exists z 2 U b such that .x; z/ 2 mb.R/ and .z; y/ 2 mb.S/, a contradiction.

The proofs for terms of the formR[S ,R\S , and their complements are similar
as in the completeness proof of RL-dual tableau. ut
We conclude:

Theorem 2.12.3 (Soundness and Completeness of RLPOS). For every RLPOS-
formula ', the following conditions are equivalent:

1. ' is RLPOS-valid;
2. ' is RLPOS-provable.

Note that none of the RLPOS-rules introduces a new variable. Therefore, the rule .I /
can be applied to a given set of formulas only finitely many times. Hence, RLPOS-
dual tableau is a decision procedure for the class RLPOS.

Completeness of RLNP-dual tableau can be proved in a similar way as com-
pleteness of RLPOS-dual tableau. Namely, RLNP-completion conditions are RLPOS-
completion condition and the following:

Cpl’(�I) If x�.R IS/y 2 b, then for some z 2 OV .b/, both xRz 2 b and zSy 2 b.

We have:

Theorem 2.12.4 (Soundness and Completeness of RLNP). For every RLNP-
formula ', the following conditions are equivalent:

1. ' is RLNP-valid;
2. ' is RLNP-provable.

Recall that RLNP-formulas do not contain positive-negative compositions, which
means that each positive composition is in the scope of a negative composition.
Although, the rule .�I / introduces a new variable, it is never applied after the appli-
cation of the rule .I /. Consequently, there are finitely many possibilities of choosing
a variable in the application of the rule .I /, and hence the rule .I / can be applied
to a given set of formulas only finitely many times. Therefore, we conclude that
RLNP-dual tableau is a decision procedure for the class RLNP.



Chapter 3
Theories of Point Relations and Relational
Model Checking

3.1 Introduction

In this chapter we consider logics providing a means of relational reasoning in the
theories which refer to individual objects of their domains. There are two relational
formalisms for coping with the objects. A logic RLax.C/ presented in Sect. 3.2 is
a purely relational formalism, where objects are introduced through point relations
which, in turn, are presented axiomatically with a well known set of axioms. The
axioms say that a binary relation is a point relation whenever it is a non-empty right
ideal relation with one-element domain. We recall that a binary relation R on a set
U is right ideal whenever R I 1 D R, where 1 D U � U . In other words such
an R is of the form X � U , for some X � U . We may think of right ideal rela-
tions as representing sets, they are sometimes referred to as vectors (see [SS93]).
If the domain of a right ideal relation is a singleton set, the relation may be seen
as a representation of an individual object. A logic RLdf .C/ presented in Sect. 3.3
includes object constants in its language interpreted as singletons. Moreover, asso-
ciated with each object constant c is a binary relation C , such that its meaning in
every model is defined as a right ideal relation with the domain consisting of the sin-
gle element being the meaning of c. The logic RLax.C/will be applied in Sect. 16.5
to the relational representation of some temporal logics. The logic RLdf .C/ will be
applied in Chap. 15 to the relational representation of the logic for order of mag-
nitude reasoning. In Sects. 3.4 and 3.5 we present the methods of model checking
and verification of satisfaction of a formula by some given objects in a finite model,
respectively. The methods are based on the development of a relational logic which
enables us to replace the problems of model checking and verification of satisfac-
tion by the problems of verification of validity of some formulas of this logic. The
logic is obtained from RL.1; 10/-logic by an appropriate choice of object constants
and relational constants in its language and by some specific postulates concerning
its models. Then, a dual tableau for the logic is obtained from the RL.1; 10/-dual
tableau by adapting it to this language and by adding the rules which reflect these
specific semantic postulates.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 3,
c� Springer Science+Business Media B.V. 2011

69



70 3 Theories of Point Relations and Relational Model Checking

3.2 Relational Logics with Point Relations Introduced
with Axioms

The language of the logics considered in this section includes, apart from the
relational constants 1 and 10, a family C of relational constants interpreted as point
relations. The language of RLax.C/-logic is a relational language as presented in
Sect. 2.3 such that:

� RCRLax.C/ D f10; 1g [C;
� The relational operations are �, [, \, �1, and ;.

As in the case of RL-logic (see Sect. 2.5), RLax.C/ represents, in fact, a whole
family of logics which possibly differ in the object constants admitted in their
languages.

An RLax.C/-model is an RL.1; 10/-model M D .U;m/ such that for every
C 2 C:

(1) m.C/ ¤ ;,
(2) m.C/ D m.C/ Im.1/,
(3) m.C/ Im.C/�1 � m.10/.
An RLax.C/-model M D .U;m/ is said to be standard whenever m.10/ is the
identity on U .

The conditions (1), (2), and (3) say that relations from C are point relations.
Condition (2) guarantees that every C 2 C is a right ideal relation, and condition
(3) together with the remaining axioms says that in the standard models the domains
of relations from C are singleton sets.

RLax.C/-dual tableau consists of decomposition rules and specific rules of
RL.1; 10/-system adjusted to the RLax.C/-language and the specific rules that char-
acterize relational constants from the set C:

For all object symbols x and y and for every C 2 C,

.C1/
z�C t z; t are new object variables and z ¤ t

(C2/
xCy

xC z; xCy
z is any object symbol

(C3/
x10y

xC z; x10y j yC z; x10y
z is any object symbol

RLax.C/-axiomatic sets are those of RL.1; 10/ adapted to the RLax.C/-language.
It is easy to see that the specific rules for relational constants from C have the

property of preservation of formulas built with atomic terms or their complements.
Hence, the closed branch property holds.

As usual, an RLax.C/-set is a finite set of RLax.C/-formulas such that the first-
order disjunction of its members is true in all RLax.C/-models. Correctness of a
rule is defined as in Sect. 2.4.



3.2 Relational Logics with Point Relations Introduced with Axioms 71

Proposition 3.2.1.

1. The RLax.C/-rules are RLax.C/-correct;
2. The RLax.C/-axiomatic sets are RLax.C/-sets.

Proof. Correctness of the rules .C1/, .C2/, and .C3/ follows directly from the
semantic conditions (1), (2), and (3), respectively. By way of example, we prove
correctness of the rule .C1/. Let X be a finite set of RLax.C/-formulas and let z
and t be object variables that do not occur in X and such that z ¤ t . If X is an
RLax.C/-set, then so is X [ fz�C tg. Assume that X [ fz�C tg is an RLax.C/-set,
that is for every RLax.C/-model M and for every valuation v in M, .z; t/ 62 m.C/
or M; v ˆ ' for some formula ' 2 X . By the assumption on variables z and t ,
for every RLax.C/-model M D .U;m/ and for every valuation v in M, either
.a; b/ 62 m.C/ for all a; b 2 U or M; v ˆ ' for some formula ' 2 X . Since
in every RLax.C/-model m.Ci / ¤ ;, for every RLax.C/-model M and for every
valuation v in M there exists ' 2 X such that M; v ˆ '. Therefore, X is an
RLax.C/-set. ut
The notions of an RLax.C/-proof tree, a closed branch of such a tree, a closed
RLax.C/-proof tree, and an RLax.C/-proof of an RLax.C/-formula are defined as
in Sect. 2.4.

Following the general method of proving soundness presented in Sect. 2.6,
Proposition 3.2.1 implies:

Proposition 3.2.2. Let ' be an RLax.C/-formula. If ' is RLax.C/-provable, then
it is RLax.C/-valid.

Corollary 3.2.1. Let ' be an RLax.C/-formula. If ' is RLax.C/-provable, then it
is true in all standard RLax.C/-models.

A branch b of an RLax.C/-proof tree is said to be RLax.C/-complete whenever it
is closed or it satisfies RLax.C/-completion conditions which consist of the com-
pletion conditions of RL.1; 10/-dual tableau and the following:

For every C 2 C and for all object symbols x and y,

Cpl(C1/ There exist object variables z and t such that z�C t 2 b, obtained by an
application of the rule .C1/;

Cpl(C2/ If xCy 2 b, then for every object symbol z, xC z 2 b, obtained by an
application of the rule .C2/;

Cpl(C3/ If x10y 2 b, then for every object symbol z, either xC z 2 b or yC z 2 b,
obtained by an application of the rule .C3/.

The notions of a complete RLax.C/-proof tree and an open branch of an RLax.C/-
proof tree are defined as in RL-logic (see Sect. 2.5).

Let b be an open branch of an RLax.C/-proof tree. We define a branch structure
Mb D .U b; mb/ with U b D OSRLax.C/ in a similar way as in RL.1; 10/-logic, that
is mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for every R 2 RARLax.C/.



72 3 Theories of Point Relations and Relational Model Checking

Proposition 3.2.3 (Branch Model Property). For every open branch b of an
RLax.C/-proof tree, the branch structure Mb is an RLax.C/-model.

Proof. We have to show that meaning functionmb satisfies conditions (1), (2), and
(3) of RLax.C/-models.

For (1), by the completion condition Cpl.C1/, there are z; t 2 U b such that
z�C t 2 b. Thus, zC t 62 b, since otherwise b would be closed. Hence, .z; t/ 2
mb.C /.

For (2), note that mb.1/ D U b � U b impliesmb.C / � mb.C / Imb.1/. Assume
there exists z 2 U b such that .x; z/ 2 mb.C / and .z; y/ 2 mb.1/, that is xC z 62 b
and z1y 62 b. Suppose .x; y/ 62 mb.C /. Then xCy 2 b. By the completion condi-
tion Cpl.C2/, for every z 2 U b , xC z 2 b, a contradiction.

The proof of (3) is similar. ut
Since the branch model Mb is defined in a standard way (see Sect. 2.6, p. 44),
the satisfaction in branch model property can be proved as in RL.1; 10/-logic (see
Sects. 2.5 and 2.7). Hence, completeness of RLax.C/-dual tableau follows.

Proposition 3.2.4. Let ' be an RLax.C/-formula. If ' is true in all standard
RLax.C/-models, then it is RLax.C/-provable.

The proof of this theorem can be obtained applying the general method described in
Sect. 2.6 (p. 44), see also Propositions 2.5.6 and 2.7.8.

Corollary 3.2.2. Let ' be an RLax.C/-formula. If ' is RLax.C/-valid, then it is
RLax.C/-provable.

Due to Proposition 3.2.2 and 3.2.4, we get:

Theorem 3.2.1 (Soundness and Completeness of RLax.C/). Let ' be an RLax

.C/-formula. Then the following conditions are equivalent:

1. ' is RLax.C/-valid;
2. ' is true in all standard RLax.C/-models;
3. ' is RLax.C/-provable.

3.3 Relational Logics with Point Relations Introduced
with Definitions

The language of RLdf .C/-logic is a relational language with relational constants
which are explicitly defined in such a way that in the standard models they are right
ideal relations with singleton domains. For that purpose we include in the language
the object constants interpreted as elements of the models. Thus, the vocabulary of
RLdf .C/-language is a relational language as defined in Sect. 2.3 such that:

� RCRLdf .C/ D f10; 1g [ C;
� OCRLdf .C/ is a set of object constants, which includes the set fcC W C 2 Cg of

object constants needed for definitions of point relations.



3.3 Relational Logics with Point Relations Introduced with Definitions 73

An RLdf .C/-model is an RL.1; 10/-model M D .U;m/ such that for every C 2 C
the following hold:

� m.cC / 2 U ;
� m.C/ D f.x; y/ 2 U � U W .x;m.cC // 2 m.10/g.
The following proposition shows that for the formulas of RLax.C/-language the
notions of validity in the logics RLax.C/ and RLdf .C/ coincide.

Proposition 3.3.1. For every RLax.C/-formula ', the following conditions are
equivalent:

1. ' is RLax.C/-valid;
2. ' is RLdf .C/-valid.

Proof. Let ' be an RLax.C/-formula.

.1: ! 2:/ Assume that ' is RLax.C/-valid. Suppose ' is not RLdf .C/-valid,
that is there exists an RLdf .C/-model M D .U;m/ such that M 6ˆ '. Consider
a model M0 D .U;m0/ with the same universe as M and such that m0.R/ D
m.R/, for every R 2 RARLax.C/. Model M0 is an RLax.C/-model. Indeed,m0.C /
is a non-empty right ideal binary relation on U , hence conditions (1) and (2) from
definition of RLax.C/-models in Sect. 3.2 are satisfied. Moreover, by the definition
of m.C/, if .x; z/ 2 m0.C / and .y; z/ 2 m0.C /, then by symmetry and transitivity
of 1’, .x; y/ 2 m0.10/. Therefore, the condition (3) is satisfied. Clearly, models M
and M0 satisfy the same RLax.C/-formulas. Thus, by the assumption, M0 6ˆ ', a
contradiction.
.2:! 1:/ Now, assume that ' is RLdf .C/-valid. Suppose that ' is not RLax.C/-

valid, that is there exists an RLax.C/-model M D .U;m/ such that M 6ˆ '.
Note that by condition (3) from definition of RLax.C/-models, for every relational
constant C 2 C, if x and y belong to the domain of m.C/, then .x; y/ 2 m.10/.
We construct a model M0 D .U;m0/ with the same universe as in M as follows:
m0.R/ D m.R/, for every R 2 RARLax.C/, and m0.cC / is defined as an arbitrary
element from the domain of m.C/. Now, by the above definition and condition (3),
it follows that m0.C / D fx 2 U W .x;m0.cC // 2 m0.10/g � U , hence model M0 is
an RLdf .C/-model satisfying the same RLax.C/-formulas as M. Therefore, by the
assumption, M0 6ˆ ', a contradiction. ut
RLdf .C/-dual tableau consists of the rules and axiomatic sets of RL.1; 10/-dual
tableau adjusted to RLdf .C/-language and the specific rules that characterize re-
lational constants from the set C:

For every C 2 C and for all object symbols x and y,

(CD1/
xCy

x10cC ; xCy

(CD2/
x�Cy

x�10cC ; x�Cy



74 3 Theories of Point Relations and Relational Model Checking

The notions of RLdf .C/-set, correctness of a rule, an RLdf .C/-proof tree, a closed
branch of an RLdf .C/-proof tree, a closed RLdf .C/-proof tree, and RLdf .C/-
provability are defined in a standard way as in Sect. 2.4.

Proposition 3.3.2.

1. The RLdf .C/-rules are RLdf .C/-correct;
2. The RLdf .C/-axiomatic sets are RLdf .C/-sets.

Proof. By way of example, we show correctness of the specific rules for relational
constants from the set C. It is easy to see that correctness of the rule .CD1/ follows
from the property: for every RLdf .C/-model M D .U;m/, if .x;m.cC // 2 m.10/,
then for every y 2 U , .x; y/ 2 m.C/. Correctness of the rule .CD2/ follows from
the property: if .x;m.cC // 62 m.10/, then for every y 2 U , .x; y/ 62 m.C/. ut

Due to the above proposition, we have:

Proposition 3.3.3. Let ' be an RLdf .C/-formula. If ' is RLdf .C/-provable, then it
is RLdf .C/-valid.

Corollary 3.3.1. Let ' be an RLdf .C/-formula. If ' is RLdf .C/-provable, then it is
true in all standard RLdf .C/-models.

To prove completeness of RLdf .C/-dual tableau we define, as usual, the branch
structure and we prove that branch model property and satisfaction in branch model
property are satisfied. Note that in view of Fact 2.5.1 and since any application of the
rules .CD1/ and .CD2/ to a set X of formulas preserves the formulas of X built
with atomic terms or their complements, for every branch b of an RLdf .C/-proof
tree whenever an atomic formula xRy and the formula x�Ry appear in b, then the
branch is closed. As stated in Sects. 2.5 and 2.7, the same holds for the remaining
rules.

A branch b of an RLdf .C/-proof tree is said to be RLdf .C/-complete when-
ever it is closed or it satisfies RLdf .C/-completion conditions which consist of the
completion conditions of RL.1; 10/-system adjusted to RLdf .C/-language and the
following completion conditions determined by the specific rules for relational con-
stants from C.

For every C 2 C and for all object symbols x and y,

Cpl(CD1/ If xCy 2 b, then x10cC 2 b, obtained by an application of the rule
.CD1/;

Cpl(CD2/ If x�Cy 2 b, then x�10cC 2 b, obtained by an application of the rule
.CD2/.

The notions of a complete RLdf .C/-proof tree and an open branch of an RLdf .C/-
proof tree are defined as usual (see Sect. 2.5).

Let b be an open branch of an RLdf .C/-proof tree. We define a branch structure
Mb D .U b; mb/ as follows:

� U b D OSRLdf .C/;
� mb.c/ D c, for every c 2 OCRLdf .C/;



3.4 Model Checking in Relational Logics 75

� mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for every R 2 RV RLdf .C/ [ f1; 10g;
� mb.C / D fx 2 U b W .x; cC / 2 mb.10/g � U b , for every C 2 C;
� m extends to all the compound relational terms as in RLdf .C/-models.

Directly from the above definition we get:

Proposition 3.3.4 (Branch Model Property). Let b be an open branch of an
RLdf .C/-proof tree. Then Mb is an RLdf .C/-model.

Proposition 3.3.5 (Satisfaction in Branch Model Property). For every open
branch b of an RLdf .C/-proof tree and for every RLdf .C/-formula ', if
Mb; vb ˆ ', then ' 62 b.

Proof. By way of example, we prove that the proposition holds for formulas of the
form xCy and x�Cy.

Assume .x; y/ 2 mb.C /, that is .x; cC / 2 mb.10/. Then x10cC 62 b. Suppose
xCy 2 b. By the completion condition Cpl.CD1/, x10cC 2 b, a contradiction.

Now, assume .x; y/ 2 mb.�C/, that is .x; cC / 62 mb.10/. Suppose x�Cy 2 b.
By the completion condition Cpl.CD2/, x�10cC 2 b. Thus x10cC 62 b, hence
.x; cC / 2 mb.10/, contradiction. ut
Finally, we get:

Proposition 3.3.6. Let ' be an RLdf .C/-formula. If ' is true in all standard
RLdf .C/-models, then it is RLdf .C/-provable.

The proof of the above proposition follows the general method described in Sect. 2.6
(p. 44), see also Propositions 2.5.6 and 2.7.8.

Corollary 3.3.2. Let ' be an RLdf .C/-formula. If ' is RLdf .C/-valid, then it is
RLdf .C/-provable.

Due to Proposition 3.3.3 and 3.3.6, we have:

Theorem 3.3.1 (Soundness and Completeness of RLdf .C/). Let ' be an
RLdf .C/-formula. Then the following conditions are equivalent:

1. ' is RLdf .C/-valid;
2. ' is true in all standard RLdf .C/-models;
3. ' is RLdf .C/-provable.

3.4 Model Checking in Relational Logics

The RL.1; 10/-dual tableau can also be used for model checking in relational logics,
besides verification of validity and entailment. Let M D .U;m/ be a fixed standard
RL.1; 10/-model with a finite universeU and let ' D xRy be an RL.1; 10/-formula,



76 3 Theories of Point Relations and Relational Model Checking

where R is a relational term and x; y are any object symbols. For the simplicity of
the presentation we assume that R does not contain 1 or 10, although the presented
method applies to all RL.1; 10/-terms. In order to obtain a relational formalism ap-
propriate for representing and solving the problem ‘M ˆ '?’, we consider an
instance RLM;' of the logic RL.1; 10/. Its language provides a code of model M
and formula ', and in its models the syntactic elements of ' are interpreted as in the
model M.

The vocabulary of language of the logic RLM;' consists of symbols from the
following pairwise disjoint sets:

� OV RLM;'
– a countable infinite set of object variables;

� OCRLM;'
D OC0

RLM;'
[ OC1

RLM;'
– a finite set of object constants, where

OC0
RLM;'

D fca W a 2 U g is such that if a ¤ b, then ca ¤ cb, OC1
RLM;'

D
fc 2 OCRL.1;10/ W c occurs in 'g and OC1

RLM;'
\OC0

RLM;'
D ;;

� RCRLM;'
D S[ f1; 10g – the set of relational constants, where S is the set of all

the atomic subterms of R;
� f�;[;\; I ;�1 g – the set of relational operations.

An RLM;'-model is a pair N D .W; n/, where:

� W D U ;
� n.c/ D m.c/, for every c 2 OC1

RLM;'
;

� n.ca/ D a, for every ca 2 OC0
RLM;'

;
� n.S/ D m.S/, for every S 2 S;
� n.1/, n.10/ are defined as in standard RL.1; 10/-models;
� n extends to all the compound terms as in RL.1; 10/-models.

A valuation in N is a function vWOSRLM;'
! W such that v.c/ D n.c/, for every

c 2 OCRLM;'
. Observe that any valuation v in model N restricted to OSRLM;'

n
OC0

RLM;'
is a valuation in model M. Moreover, the above definition implies that

for every S 2 S and for all x; y 2 OSRLM;'
, N ; v ˆ xSy iff M; v ˆ xSy.

Therefore, it is easy to prove that n.R/ D m.R/. Note also that the class of RLM;'-
models has exactly one element up to isomorphism. Therefore, RLM;'-validity of
xRy is equivalent to its truth in a single RLM;'-model N , that is the following
holds:

Proposition 3.4.1. The following statements are equivalent:

1. M ˆ ';
2. ' is RLM;'-valid.

Dual tableau for the logic RLM;' includes all the rules and axiomatic sets of
RL.1; 10/-system adapted to the language of RLM;' and, in addition, the rules and
axiomatic sets listed below.



3.4 Model Checking in Relational Logics 77

Specific Rules for Model Checking

For every S 2 S, for any object symbols x and y, and for any a;b 2 U ,

.�Sab/ x�Sy
x10ca; x�Sy j y10cb; x�Sy for .a;b/ 62 m.S/

.10/
x�10c1 j : : : j x�10cn whenever

OC0
RLM;'

D fc1; : : : ; cng;n � 1

.a ¤ b/
ca10cb

for a ¤ b

Observe that these rules preserve the formulas built with atomic terms and their
complements.

Specific Axiomatic Sets for Model Checking

fcaScbg, for any a;b 2 U such that .a;b/ 2 m.S/;
fca�Scbg, for any a;b 2 U such that .a;b/ 62 m.S/.
The rules .�Sab/ and the axiomatic sets reflect the meaning of atomic subterms of
R, while the rules .10/ and .a ¤ b/ guarantee that the universe of an RLM;'-model
is of the same cardinality as that of M.

The notions of RLM;'-set and RLM;'-correctness of a rule are defined as in
Sect. 2.4.

Proposition 3.4.2. The rules .�Sab/, .10/, and .a ¤ b/ are RLM;'-correct.

Proof. For the rule .�Sab/, let a;b 2 U be such that .a;b/ 62 m.S/ and
let X be any finite set of RLM;'-formulas. Assume X [ fx10ca; x�Syg and
X [ fy10cb; x�Syg are RLM;'-sets. Suppose X [ fx�Syg is not RLM;'-set, that
is for some valuation v in N , .v.x/; v.y// 2 m.S/. It follows from the assump-
tion that the valuation v satisfies v.x/ D a and v.y/ D b. Since .a;b/ 62 m.S/,
.v.x/; v.y// 62 m.S/, a contradiction. On the other hand, if X [ fx�Syg is an
RLM;'-set, then so are X [ fx10ca; x�Syg and X [ fy10cb; x�Syg.

For the rule .10/, note that for every x 2 OSRLM;'
and for every valuation v

in N , there exists c 2 OC0
RLM;'

such that v.x/ D n.c/, hence the rule .10/ is
RLM;'-correct.

The rule .a¤b/ is correct, since for all a;b2U , if a ¤ b, then n.ca/¤n.cb/.
ut

Validity of specific axiomatic sets follows directly from the definition of semantics
of RLM;' .

The notions of an RLM;'-proof tree, a closed branch of such a tree, a closed
RLM;'-proof tree, and an RLM;'-proof of an RLM;'-formula are defined as in
Sect. 2.4.



78 3 Theories of Point Relations and Relational Model Checking

The notions of a complete branch of an RLM;'-proof tree and a complete
RLM;'-proof tree are defined as in Sect. 2.5. The completion conditions are those of
RL.1; 10/-dual tableau adapted to the language of RLM;' and the conditions listed
below:

For all object symbols x and y, for every S 2 S, and for all a;b 2 U such that
.a;b/ 62 m.S/,
Cpl(�Sab/ If x�Sy 2 b, then either x10ca 2 b or y10cb 2 b, obtained by an

application of the rule .�Sab/;
Cpl(10) There exists c 2 OC0

RLM;'
such that x�10c 2 b, obtained by an application

of the rule .10/;
Cpl(a ¤ b) ca1

0cb 2 b, for all a;b 2 U such that a ¤ b, obtained by an applica-
tion of the rule .a ¤ b/.

An open branch of an RLM;'-proof tree is defined as in Sect. 2.5. A branch structure
N b D .W b; nb/ is defined as follows:

� W b D OC0
RLM;'

;

� nb.c/ D ca, where a D n.c/, for every c 2 OC1
RLM;'

;

� nb.c/ D c, for every c 2 OC0
RLM;'

;

� nb.S/ D
( f.ca; cb/ 2 W b �W b W caScb 62 bg; if S 2 f1; 10g
f.ca; cb/ 2 W b �W b W .a;b/ 2 m.S/g; if S 2 SI

� nb extends to all the compound terms as in RL.1; 10/-models.

Similarly as in RL.1; 10/-logic it is easy to prove that nb.10/ and nb.1/ are an
equivalence relation and a universal relation, respectively. Therefore, N b is an
RL.1; 10/-model. Note that N b is not necessarily an RLM;'-model, since nb.10/
may not be the identity.

Let vb WOSRLM;'
! W b be a valuation in N b such that:

vb.c/ D nb.c/, for c 2 OCRLM;'
;

vb.x/ D ca, where ca 2 OCRLM;'
is such that x10ca 62 b, for x 2 OV RLM;'

.

The valuation vb is well defined, that is for every x 2 OV RLM;'
, there exists exactly

one c 2 OC0
RLM;'

such that x10c 62 b. Indeed, by the completion condition Cpl(10),
there exists c 2 OC0

RLM;'
such that x�10c 2 b. So x10c 62 b. Suppose there

exist two different ca; cb 2 OC0
RLM;'

such that x10ca 62 b and x10cb 62 b. By the
completion condition Cpl(a ¤ b), ca10cb 2 b. Then, by the completion conditions
Cpl(101) and Cpl(102), x10ca 2 b or x10cb 2 b, a contradiction.

Proposition 3.4.3 (Satisfaction in Branch Model Property). For every open
branch b of an RLM;'-proof tree and for every RLM;'-formula  , if N b; vb ˆ  ,
then  62 b.



3.4 Model Checking in Relational Logics 79

Proof. First, we need to show that the proposition holds for formulas xSy and
x�Sy, where S 2 S.

Let  D xSy, for some S 2 S. Assume N b; vb ˆ xSy. Let a;b 2 U be such
that vb.x/ D ca and vb.y/ D cb, that is x10ca 62 b and y10cb 62 b. Since N b; vb ˆ
xSy, .ca; cb/ 2 nb.S/, hence .a;b/ 2 m.S/. Thus caSccb 62 b, otherwise b would
be closed. Suppose xSy 2 b. By the completion conditions for the rules .101/
and .102/ presented in Sect. 2.7, at least one of the following holds: x10ca 2 b or
y10cb 2 b or caSccb 2 b, a contradiction.

Let  D x�Sy, for some S 2 S. Assume N b; vb ˆ x�Sy. Let a;b 2 U be
such that vb.x/ D ca and vb.y/ D cb, that is x10ca 62 b and y10cb 62 b. Since
N b; vb ˆ x�Sy, .ca; cb/ 62 nb.S/. Therefore .a;b/ 62 m.S/. Suppose x�Sy 2 b.
Then by the completion condition Cpl(�Sab), either x10ca 2 b or y10cb 2 b, a
contradiction.

The rest of the proof is similar to the proofs of the analogous propositions for
logics RL and RL.1; 10/ (see Proposition 2.5.5 and 2.7.6). ut
Since nb.10/ is an equivalence relation onW b , we may define the quotient structure
N b
q D .W b

q ; n
b
q/:

� W b
q D fkck W c 2 W bg, where kck is the equivalence class of nb.10/ determined

by c;
� nbq.c/ D knb.c/k, for every c 2 OCRLM;'

;

� nbq.S/ D f.kcak; kcbk/ 2 W b
q � W b

q W .ca; cb/ 2 nb.S/g, for every S 2
RCRLM;'

;
� nbq extends to all the compound terms as in RL.1; 10/-models.

Proposition 3.4.4 (Branch Model Property). Let b be an open branch of an
RLM;'-proof tree. Then models N b

q and N are isomorphic.

Proof. Since constants c 2 OC0
RLM;'

are uniquely assigned to the elements of

model M, card.W b
q / D card.W /. Let f WW ! W b be a function defined as

f .a/
dfD kcak, for every a 2 W . By the definition of model N b

q , the function f

is an isomorphism between N b
q and N . ut

Let vbq be a valuation in N b
q defined as vbq.x/ D kvb.x/k, for every x 2 OSRLM;'

.

As in RL-logic, it is easy to show that the sets of formulas satisfied in N b and
N b
q by valuations vb and vbq , respectively, coincide. Moreover, since N b

q and N
are isomorphic, they satisfy exactly the same formulas. Now the completeness of
RLM;' can be proved following Theorems 2.5.1 and 2.7.2.

Theorem 3.4.1 (Soundness and Completeness of RLM;'). For every RLM;'-
formula  , the following conditions are equivalent:

1.  is RLM;'-valid;
2.  is RLM;'-provable.



80 3 Theories of Point Relations and Relational Model Checking

Due to the above theorem and Proposition 3.4.1, we have:

Theorem 3.4.2 (Model Checking in RL.1; 10/). For every RL.1; 10/-formula '
and for every finite standard RL.1; 10/-model M, the following statements are
equivalent:

1. M ˆ ';
2. ' is RLM;'-provable.

Example. Consider RL.1; 10/-formula ' D xR IPy and the standard RL.1; 10/-
model M D .U;m/ defined as follows:

� U D fa;bg;
� m.1/ D U � U ;
� m.P / D f.a;a/; .a;b/g;
� m.R/ D f.a;a/; .b;a/g;
� m.10/ D f.a;a/; .b;b/g;
� m extends to all the compound terms as in RL.1; 10/-models.

We apply the method presented above to checking whether ' is true in M. The
vocabulary of RLM;'-language adequate for expressing this problem consists of
the following sets of symbols:

� OV RLM;'
– a countable infinite set of object variables;

� OCRLM;'
D OC0

RLM;'
D fca; cbg – the set of object constants;

� RCRLM;'
D fR;P; 1; 10g – the set of relational constants;

� f�;[;\; I ;�1 g – the set of relational operations.

An RLM;'-model is the structure N D .U; n/ defined as model M with the follow-
ing additional conditions: n.ca/ D a, n.cb/ D b.

The specific rules of RLM;'-dual tableau are: .�Rab/, .�Rbb/, .�Pba/,
.�Pbb/, .a ¤ b/, .b ¤ a/, and the rule .10/ of the following form:

.10/
x�10cajx�10cb

Specific RLM;'-axiomatic sets are those including either of the following sets:
fcaRcag, fcbRcag, fcb�Rcbg, fca�Rcbg, fcaPcag, fcaPcbg, fcb�Pcbg or
fcb�Pcag.

By Theorem 3.4.2, truth of ' in M is equivalent to RLM;'-provability of '.
Figure 3.1 presents an RLM;'-proof of '.

3.5 Verification of Satisfaction in Relational Logics

The logic RL.1; 10/ can also be used for verification of satisfaction of a formula
in a fixed finite model. Let ' D xRy be an RL.1; 10/-formula, where R is a rela-
tional term and x; y are any object symbols, let M D .U;m/ be a fixed standard
RL.1; 10/-model with a finite universe U , and let v be a valuation in M such that



3.5 Verification of Satisfaction in Relational Logics 81

xR IPy
��� 		
.I / with ca

xRca; : : : caPy; : : :

��� 		
.10/

with x
.10/

with y

		
���
xRca;

x�10ca; : : :

xRca;

x�10cb; : : :

caPy;

y�10ca; : : :

caPy;

y�10cb; : : :

�
��

.102/

with ca
�
��

�
��

.102/

with cb
�

��
�

��
.101/

with ca
�
��

�
��

.101/

with cb
�
��

x10ca;

x�1ca,. . .
closed

caRca;. . .
closed

x10cb;

x�1cb,. . .
closed

cbRca;. . .
closed

caPca;. . .
closed

y10ca;

y�1ca,. . .
closed

caPcb;. . .
closed

y10cb;

y�1cb,. . .
closed

Fig. 3.1 An RLM;' -proof showing that xR IPy is true in the model M

v.x/ D a and v.y/ D b, for some elements a;b 2 U . Recall that for every object
constant c, for every relational model M D .U;m/, and for every valuation v in M,
v.c/ D m.c/ by definition. In particular, if both x and y are object constants, then
there is exactly one pair (a;b) of elements of U such that v.x/ D a and v.y/ D b.

The relational formalism appropriate for solving the problem ‘.a;b/ 2 m.R/‹’
is the logic RLM;' defined in the previous section with ' D xRy. Since for every
RLM;'-model N D .U; n/, for every valuation v in N , and for every a 2 U ,
v.ca/ D a, the following holds:

Proposition 3.5.1. The following statements are equivalent:

1. .a;b/ 2 m.R/;
2. caRcb is RLM;'-valid.

Due to the above proposition and Theorem 3.4.1, we get:

Theorem 3.5.1 (Satisfaction in RL.1; 10/-models). For every relational term R of
RL.1; 10/-language, for every finite standard RL.1; 10/-model M D .U;m/, and for
all a;b 2 U , the following statements are equivalent:

1. .a;b/ 2 m.R/;
2. caRcb is RLM;'-provable.

Example. Consider RL.1; 10/-formula ' D x.P I �.R IP//y and the standard
RL.1; 10/-model M D .U;m/ such that:

� U D fa;b;cg;
� m.1/ D U � U ;
� m.P / D f.a;a/; .a;b/; .a;c/g;
� m.R/ D f.b;a/; .c;c/g;
� m.10/ D f.a;a/; .b;b/; .c;c/g;
� m extends to all the compound terms as in RL.1; 10/-models.



82 3 Theories of Point Relations and Relational Model Checking

Let v be a valuation such that v.x/ D a and v.y/ D b. By Theorem 3.5.1 the
satisfaction problem ‘is the formula ' D x.P I �.R IP//y satisfied in M by v?’ is
equivalent to RLM;'-provability of ca.P I �.R IP//cb.

RLM;'-dual tableau contains the rules and axiomatic sets of RL.1; 10/-proof sys-
tem adjusted to RLM;'-language, the rules .�Raa/, .�Rab/, .�Rac/, .�Rbb/,
.�Rbc/, .�Rca/, .�Rcb/, .�Pba/, .�Pbb/, .�Pbc/, .�Pca/, .�Pcb/,
.�Pcc/, .a ¤ b/, .a ¤ c/, .b ¤ c/, and the rule .10/ of the following form:

.10/
x�10cajx�10cbjx�10cc

The axiomatic sets specific for RLM;' are those including one of the following sets:
fcbRcag, fccRccg, fcaPcag, fcaPcbg, fcaPccg, fca�Rcag, fca�Rcbg, fca�Rccg,
fcb�Rcbg, fcb�Rccg, fcc�Rcag, fcc�Rcbg, fcb�Pcag, fcb�Pcbg, fcb�Pccg,
fcc�Pcag, fcc�Pcbg or fcc�Pccg.

Figure 3.2 presents an RLM;'-proof of ca.P I �.R IP//cb that shows satisfac-
tion of x.P I �.R IP//y in the model M by the valuation v defined above.

ca.P I�.R IP//cb
����

			

.I /

with cc
caPcc; : : :

closed

cc�.R IP/cb; : : :

�
.�I / with a new variable z

cc�Rz; z�Pcb; : : :
���� .�Rca/ 			


cc1
0cc; : : :

closed

z10ca; cc�Rz; z�Pcb; : : :
���� .�Rcb/ 			


cc1
0cc; : : :

closed

z10cb; z10ca; z�Pcb; : : :
���� .�Pcb/ 			


cb1
0cb; : : :

closed

z10cc; z10ca; z10cb; : : :

����

�

.10/ with z
			


z�10ca; z10ca; : : :

closed

z�10cb; z10cb; : : :

closed

z�10cc; z10cc; : : :

closed

Fig. 3.2 An RLM;' -proof showing that x.P I�.R IP//y is satisfied in the model M by the pair
.a;b/



Part II
Reasoning in Logics of Non-classical

Algebras of Relations



Chapter 4
Dual Tableaux for Peirce Algebras

4.1 Introduction

Peirce algebras are two-sorted algebras of relations and sets. A Peirce algebra
consists of a Boolean algebra where sets interact with each other, a relation algebra
where relations interact with each other, and two operators that relate these two
structures: a set-forming operator acting on a relation and a set, and a relation-
forming operator acting on a set. Peirce algebras were first introduced in a modern
form in [Bri88] and studied in [BBS94, dR99, SOH04, Hir07]. However, the his-
tory of these algebras can be traced back to the work of Charles Sanders Peirce
who gave the first algebraic treatment of the algebra of relations interacting with
sets. Whereas De Morgan was primarily interested in the formalization of state-
ments within the paradigm of binary relations, Peirce considered the expressions
obtained as a product of a relation and a set. Brink [Bri81] named this operation the
Peirce product and axiomatized it within the framework of Boolean modules. The
relation forming operator of Peirce algebras may be viewed as a cylindrification.
Peirce algebras provide tools for modelling program constructors in program-
ming languages, for natural language analysis [Böt92a, Böt92b] and for knowledge
representation. In particular, they provide semantics for terminological languages
[Sch91, WS92].

In this chapter we present a dual tableau for Peirce logic based on Peirce algebras
and we prove its completeness. The logic has the expressions of the two sorts repre-
senting Boolean and relational elements, respectively, of Peirce algebras. It follows
that in the dual tableau there are three types of decomposition rules: those applica-
ble to purely relational expressions, those to purely Boolean expressions, and those
to mixed expressions built with the Peirce product or the cylindrification. Next, we
discuss a representation of terminological languages with Peirce logic. Some other
logic of Peirce algebras can be found in [dR95].

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 4,
c� Springer Science+Business Media B.V. 2011

85



86 4 Dual Tableaux for Peirce Algebras

4.2 Peirce Algebras

A full Peirce algebra on a non-empty set U is a two-sorted structure of the form
.B.U /;R.U /; W;c /, where:

� B.U / D .P.U /;[;\;�;;; U / is a Boolean algebra of all subsets of U ;
� R.U / D .P.U � U /;[;\;�;;; U � U; I ;M ; Id/ is a full algebra of binary

relations on U ;
� W is a mapping P.U � U / � P.U / ! P.U / referred to as a Peirce product and

defined for any R � U � U and for any A � U as R W A dfD fx 2 U W 9y 2 U;
xRy and y 2 Ag;

� c WP.U /! P.U�U / is a right cylindrification operation defined for anyA � U
as Ac

dfD f.x; y/ 2 U � U W x 2 Ag.
In terms of the operations of Peirce algebras some other useful operations can be
defined:

� Left cylindrification cA
dfD .Ac/�1,

� Product of sets A � B dfD .Ac/ \ .cB/ D f.x; y/ 2 U � U W x 2 A and y 2 Bg,
� Domain of a relation Dom.R/

dfD R W 1,

� Range of a relation Rng.R/
dfD R�1 W 1.

In an abstract setting, a Peirce algebra is a two-sorted structure .B;R; W;c / such that:

� B D .B;�;C; �; 1; 0/ is a Boolean algebra;
� R D .W;�;C; �; I ;M ; 1; 0; 10/ is a relation algebra;
� W is a functionW �B ! B , c is a functionB ! W , and for all a; b 2 B and for

all r; s 2 W the following conditions are satisfied:

(P1) r W .aC b/ D r W aC r W b,
(P2) .r C s/ W a D r W aC s W a,
(P3) r W .s W a/ D .r I s/ W a,
(P4) 10 W a D a,
(P5) 0 W a D 0,
(P6) rM W �.r W a/ � �a,
(P7) ac W 1 D a,
(P8) .r W 1/c D r I 1.

Every full Peirce algebra is a Peirce algebra. The following theorem presents some
arithmetic laws of Peirce algebras.

Theorem 4.2.1. Let .B;R; W;c / be a Peirce algebra. Then for all a; b 2 B and for
all r; s 2 W :

1. ac is a right ideal element,
2. 0c D 0; 1c D 1,
3. a � b iff ac � bc ,



4.3 Peirce Logic 87

4. .�a/c D �.ac/,
5. .aC b/c D ac C bc ,
6. .a � b/c D ac � bc ,
7. .r W a/c D r I ac ,
8. .r I a/c W 1 D r W a,
9. r W a D b iff r I ac D bc ,

10. r W 1 D 0 iff r D 0,
11. .r � .ac/M / W b D r W .a � b/.
A verification of these laws can be found in [BBS94].

Peirce algebras are expressively equivalent to relation algebras. More precisely,
it is shown in [BBS94] that the Boolean elements of a Peirce algebra are up to
isomorphism the right ideal elements of its relation algebra part.

Theorem 4.2.2. Let .B;R; W;c / be a Peirce algebra. Then B is isomorphic to
fr 2 R W r D r I 1g.
A Peirce algebra is representable whenever its relation algebra part is representable.

4.3 Peirce Logic

The language of the Peirce logic, PL, is built with the symbols from the following
pairwise disjoint sets:

� OV PL – a countable infinite set of object variables;
� BV PL – a countable infinite set of Boolean variables;
� RV PL – a countable set of relational variables;
� BCPL D f1Bg – the set consisting of the Boolean unit element;
� RCPL D f1R; 10g – the set of relational constants;
� f�;[;\; I ;�1 ; W; cg – the set of operations.

The sets BAPL D BV PL [ f1Bg and RAPL D RV PL [ f1R; 10g are called the sets
of atomic Boolean terms and atomic relational terms, respectively. The set BTPL

of Boolean terms and the set RT PL of relational terms of the logic PL are defined
inductively as the smallest sets satisfying the following conditions:

� BAPL � BTPL;
� RAPL � RT PL;
� If A;B 2 BTPL and R 2 RT PL, then �A;A [ B;A\ B , R W A 2 BTPL;
� IfA 2 BTPL andR;S 2 RT PL, then�R;R[S;R\S ,R IS;R�1; Ac 2 RT PL.

Formulas of the Peirce logic are of the form xA or xRy, where x; y 2 OV PL; A 2
BTPL, and R 2 RT PL.

A PL-model is a structure M D .U;m/ where U is a non-empty set and
mWBAPL [ RAPL ! P.U / [ P.U � U / is a meaning function satisfying the
following conditions:

� m.A/ � U , for every A 2 BV PL;
� m.1B/ D U ;



88 4 Dual Tableaux for Peirce Algebras

� m extends to all the Boolean terms:

– m.A[ B/ D m.A/[m.B/,
– m.A\ B/ D m.A/\m.B/,
– m.�A/ D �m.A/;

� m.R/ � U � U , for everyR 2 RV PL;
� m.1R/ D U � U ;
� m.10/ is an equivalence relation on U and for every R 2 RAPL the following

extensionality property is satisfied: m.10 IR/ D m.R I 10/ D m.R/;
� m extends to all the relational terms:

– m.R [ S/ D m.R/[m.S/,
– m.R \ S/ D m.R/\m.S/,
– m.�R/ D �m.S/,
– m.R�1/ D m.R/�1,
– m.R IS/ D m.R/ Im.S/;

� m.Ac/ D f.a; b/ 2 U � U W a 2 m.A/g, for every A 2 BTPL;
� m.R W A/ D fa 2 U W 9b 2 U; .a; b/ 2 m.R/ and b 2 m.A/g, for every
A 2 BTPL and for every R 2 RT PL.

A PL-model M is said to be standard wheneverm.10/ is the identity on U .
A valuation in a PL-model M D .U;m/ is any mapping vWOV PL ! U . Let

A 2 BT PL and R 2 RT PL. Satisfaction of a formula by a valuation v in a PL-
model M D .U;m/ is defined as:

M; v ˆ xA iff v.x/ 2 m.A/I
M; v ˆ xRy iff .v.x/; v.y// 2 m.R/:

A formula is true in a model M provided that it is satisfied by all the valuations in
M. A formula is PL-valid whenever it is true in all PL-models.

4.4 Dual Tableau for Peirce Logic

The PL-dual tableau consists of decomposition rules for relational formulas, decom-
position rules for Boolean formulas, and two mixed rules, where decomposition of a
relational formula built with the cylindrification operation results in a Boolean for-
mula, and decomposition of a Boolean formula built with the Peirce product results
in a relational formula and a Boolean formula. Decomposition rules for relational
formulas are those of RL.1; 10/-dual tableau, i.e., .[/, .�[/, .\/, .�\/, .�/, .�1/,
.��1/, .I /, and .�I / adjusted to PL-language (see Sect. 2.4).



4.4 Dual Tableau for Peirce Logic 89

Both a dual tableau and a tableau for Peirce logic are presented in [SOH04].
Decomposition rules of PL-dual tableau for Boolean formulas have the following
forms:

For all object variables x and y, for all Boolean terms A and B , and for every
relational term R,

([Bool)
x.A[ B/
xA; xB

(�[Bool)
x�.A [ B/
x�A j x�B

(\Bool)
x.A\ B/
xA j xB (�\Bool)

x�.A\ B/
x�A; x�B

(�Bool)
x��A
xA

(c)
xAcy

xA
(�c) x�A

cy

x�A
(W) x.R W A/
xRz; x.R W A/ j zA; x.R W A/ (� W) x�.R W A/

x�Rz; z�A
z is any object variable z is a new object variable

The specific rules of PL-dual tableau are the rules .101/ and .102/ of RL.1; 10/-dual
tableau (see Sect. 2.7) adjusted to PL-language and the rules of the following forms:

For every object variable x and for every atomic Boolean term A,

(103)
xA

zA; xA j x10z; xA z is any object variable

The rule .103/ reflects the law of replacement of equivalent objects in Boolean
formulas.

A finite set of formulas is said to be PL-axiomatic whenever it includes either of
the subsets (Ax1), . . . , (Ax5):

For all object variables x and y, for every Boolean term A, and for every rela-
tional term R,

(Ax1) fx10xg;
(Ax2) fx1Ryg;
(Ax3) fx1Bg;
(Ax4) fxA; x�Ag;
(Ax5) fxRy; x�Ryg.
As in RL-logic, a PL-set is a finite set of PL-formulas such that the first-order dis-
junction of its members is true in all PL-models. Correctness of a rule is defined in
a similar way as in the logic RL (see Sect. 2.4).

Proposition 4.4.1.

1. The PL-rules are PL-correct;
2. The PL-axiomatic sets are PL-sets.



90 4 Dual Tableaux for Peirce Algebras

Proof. By way of example, we show correctness of the rule .� W/.
Let X be a finite set of PL-formulas. Assume X [ fx�.R W A/g is a PL-set.

SupposeX[fx�Rz; z�Ag, where z does not occur inX and z ¤ x, is not a PL-set.
Then there exist a PL-modelM D .U;m/ and a valuation v in M such that for every
' 2 X [ fx�Rz; z�Ag, M; v 6ˆ '. Thus, .v.x/; v.z// 2 m.R/ and v.z/ 2 m.A/.
By the definition of Peirce product, v.x/ 2 m.R W A/. On the other hand, since
X [ fx�.R W A/g is a PL-set, M; v ˆ x�.R W A/, and hence v.x/ 62 m.R W A/, a
contradiction. Now, assume thatX [fx�Rz; z�Ag is a PL-set. Then, for every PL-
model M D .U;m/ and for every valuation v in M, either there exists ' 2 X such
that M; v ˆ ' or M; v ˆ x�Rz or M; v ˆ z�A. By the assumption on variable z,
either there exists ' 2 X such that M; v ˆ ' or for every t 2 U , .v.x/; t/ 62 m.R/
or t 62 m.A/, so v.x/ 62 m.R W A/. Therefore, if X [ fx�Rz; z�Ag is a PL-set,
then for every PL-model M D .U;m/ and for every valuation v in M, either there
exists ' 2 X such that M; v ˆ ' or for every t 2 U , v.x/ 2 m.�R W A/. Hence,
X [ fx�.R W A/g is a PL-set. ut
The notions of a PL-proof tree, a closed branch of such a tree, a closed PL-proof
tree, and a PL-proof of a PL-formula are defined as in Sect. 2.4.

The rules of PL-dual tableau, in particular the specific rules, guarantee that for
any branch of a PL-proof tree, if xRy and x�Ry (resp. xA and x�A) for an atomic
relational term R (resp. for an atomic Boolean term A) belong to the branch, then
the branch is closed, i.e., both of these formulas appear in a node of that branch.
Thus, the closed branch property holds.

Completion conditions corresponding to the rules that are specific for PL-logic
are as follows:

For all object variables x and y, for all Boolean terms A and B , and for every
relational term R,

Cpl([Bool) (resp. Cpl(�\Bool)) If x.A [ B/ 2 b (resp. x�.A \ B/ 2 b), then
both xA 2 b (resp. x�A 2 b) and xB 2 b (resp. x�B 2 b), obtained by an
application of the rule ([Bool) (resp. (�\Bool));

Cpl(\Bool) (resp. Cpl(�[Bool)) If x.A \ B/ 2 b (resp. x�.A [ B/ 2 b), then
either xA 2 b (resp. x�A 2 b) or xB 2 b (resp. x�B 2 b), obtained by an
application of the rule (\Bool) (resp. (�[Bool));

Cpl(�Bool) If x��A 2 b, then xA 2 b, obtained by an application of the rule
(�Bool);

Cpl(c) If xAcy 2 b, then xA 2 b, obtained by an application of the rule (c);
Cpl(�c) If x�Acy 2 b, then x�A 2 b, obtained by an application of the rule (�c);
Cpl(W) If x.R W A/ 2 b, then for every object variable z, either xRz 2 b or zA 2 b,

obtained by an application of the rule (W);
Cpl(� W) If x�.R W A/ 2 b, then for some object variable z, both x�Rz 2 b and

z�A 2 b, obtained by an application of the rule (� W);
Cpl(103) If xA 2 b for some atomic Boolean term A, then for every object variable

z, either zA 2 b or x10z 2 b, obtained by an application of the rule (103).



4.4 Dual Tableau for Peirce Logic 91

The remaining completion conditions determined by the rules for relational opera-
tions are the same as those presented in Sects. 2.5 and 2.7 for the relational logics of
classical algebras of binary relations. The notions of a complete PL-proof tree and
an open branch of a PL-proof tree are defined as in RL-logic (see Sect. 2.5).

Let b be an open branch of a PL-proof tree. We define a branch structure Mb D
.U b; mb/:

� U b D OV PL;
� mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for every R 2 RAPL;
� mb.A/ D fx 2 U b W xA 62 bg, for every A 2 BAPL;
� mb extends to all the Boolean and relational terms as in PL-models.

Let vb WOV PL ! U b be a valuation in Mb such that vb.x/ D x, for every x 2
OV PL.

According to the method of proving completeness described in Sect. 2.6 we need
to prove the branch model property and the satisfaction in branch model property.
The branch model property can be proved as in RL.1; 10/-logic.

Proposition 4.4.2 (Branch Model Property). For every open branch b of a
PL-proof tree, Mb is a PL-model.

Proposition 4.4.3 (Satisfaction in Branch Model Property). For every open
branch b of a PL-proof tree and for every PL-formula ', if Mb; vb ˆ ', then
' 62 b.

Proof. The proof is by induction on the complexity of formulas. The atomic case
can be proved as in Sect. 2.5 and it uses the closed branch property. Let R 2 RT PL

and A 2 BTPL. By way of example, we show the proposition for the formulas of
the form xAcy and x.R W A/.

Assume Mb; vb ˆ xAcy. Then x 2 mb.A/. By the induction hypothesis,
xA 62 b. Suppose xAcy 2 b. By the completion condition Cpl.c/, xA 2 b, a con-
tradiction.

Assume Mb; vb ˆ x.R W A/. Then there exists y 2 U b such that .x; y/ 2
mb.R/ and y 2 mb.A/. By the induction hypothesis, xRy 62 b and yA 62 b.
Suppose x.R W A/ 2 b. By the completion condition Cpl.W/, either xRy 2 b or
yA 2 b, a contradiction.

The proofs of the remaining cases are similar as in the relational logics of classi-
cal algebras of binary relations (see Sects. 2.5 and 2.7). ut
The quotient model Mb

q is defined as in relational logics in Sect. 2.7. Then the
following proposition can be proved:

Proposition 4.4.4. For every open branch b of a PL-proof tree and for every PL-
formula ':

1. Mb
q is a standard PL-model;

2. Mb; vb ˆ ' iff Mb
q; v

b
q ˆ '.



92 4 Dual Tableaux for Peirce Algebras

Due to Propositions 4.4.1–4.4.4, we have:

Theorem 4.4.1 (Soundness and Completeness of PL). For every PL-formula ',
the following conditions are equivalent:

1. ' is PL-valid;
2. ' is true in all standard PL-models;
3. ' is PL-provable.

Example. We consider inclusions from right to left of the set instances of the
Eq. 11. from Theorem 4.2.1 and the axiom (P8) of Peirce algebras. Applying Propo-
sition 2.2.1(1.) of Sect. 2.2 we conclude that their validity in Peirce algebras is
equivalent to PL-validity of the following PL-formulas:

xŒ�..R \ .Ac/�1/ W B/ [ .R W .A \ B//�;

xŒ�.R W 1/c [ .R I 1/�y:

Figures 4.1 and 4.2 present PL-proofs of these formulas.

xŒ�..R \ .Ac/�1/ W B/[ .R W .A\ B//�
�([Bool)

x�..R \ .Ac/�1/ W B/; x.R W .A\ B//
�(� W) with a new variable z

x�.R \ .Ac/�1/z; z�B; x.R W .A\ B//
�(�\)

x�Rz; x�.Ac/�1z; z�B; x.R W .A\ B//
�(��1)

x�Rz; z�.Ac/x; z�B; x.R W .A\ B//
�(�c )

x�Rz; z�A; z�B; x.R W .A\ B//
��� (W) with z 		


x�Rz; xRz; : : :
closed

z�A; z�B; z.A \ B/; : : :
��� (\Bool) 		


z�A; zA; : : :
closed

z�B; zB; : : :
closed

Fig. 4.1 A PL-proof of xŒ�..R \ .Ac/�1/ W B/[ .R W .A\ B//�



4.5 Entailment, Model Checking, and Satisfaction in Peirce Logic 93

xŒ�.R W 1/c [ .R I 1/�y
�([)

x�.R W 1/cy; x.R I 1/y
�(�c )

x�.R W 1/; x.R I 1/y
�(� W) with a new variable z

x�Rz; z�1; x.R I 1/y
��� 		
(I) with z

x�Rz; xRz; : : :
closed

z1y; : : :
closed

Fig. 4.2 A PL-proof of xŒ�.R W 1/c [ .R I 1/�y

4.5 Entailment, Model Checking, and Satisfaction
in Peirce Logic

The method for verification of entailment presented in Sect. 2.11 can be applied
to Peirce logic provided that the Boolean terms of the logic will be replaced with
relational terms representing right ideal relations. To obtain a relational formal-
ism appropriate for verification of entailment of PL-formulas from a finite set of
PL-formulas, we consider an instance PLent of the logic RL.1; 10/. The vocabulary
of the language of PLent-logic is defined as in Sect. 2.7 with:

� RV PLent D RV 0
PLent
[ RV 1

PLent
, where RV 0

PLent
and RV 1

PLent
are infinite sets of

relational variables such that RV 0
PLent
\ RV 1

PLent
D ;; relational variables from

the set RV 0
PLent

are intended to represent Boolean variables of PL-logic as right
ideal relations.

A PLent-model is an RL.1; 10/-model M D .U;m/ such that m.R/ is a right ideal
relation for every R 2 RV 0

PLent
.

The translation of PL-terms into PLent-terms starts with a one-to-one assign-
ment of relational variables from RV 0

PLent
and relational variables from RV 1

PLent
to

Boolean variables and relational variables of PL-logic, respectively. Let � 0 be such
an assignment. Then the translation � is defined inductively as follows:

� �.A/ D � 0.A/, for every A 2 BV PL;
� �.R/ D � 0.R/, for every R 2 RV PL;
� �.1B/ D �.1R/ D 1 and �.10/ D 10;
For PL-terms T , T1, and T2 and for # 2 f[;\g such that T1#T2 is a PL-term,

� �.�T / D ��.T /;
� �.T1#T2/ D �.T1/#�.T2/;



94 4 Dual Tableaux for Peirce Algebras

For any relational PL-terms T , T1, and T2,

� �.T �1/ D �.T /�1;
� �.T1IT2/ D �.T1/I �.T2/;
For any relational term R and for any Boolean term A,

� �.Ac/ D �.A/;
� �.R W A/ D �.R/I �.A/.
Now, we extend translation � to PL-formulas as follows.

For any Boolean PL-termA, a relational PL-termR, and for any object variables
x and y,

� �.xA/ D x�.A/y;
� �.xRy/ D x�.R/y.

Observe that since being a right ideal relation is preserved by making Boolean
operations and by composition of an arbitrary relation with a right ideal relation,
every Boolean term of PL-logic is translated into a relational PLent-term represent-
ing a right ideal relation.

Proposition 4.5.1. Let ' be a PL-formula. Then:

1. For every PL-model M there exists a PLent-model M0 such that M ˆ ' iff
M0 ˆ �.'/;

2. For every PLent-model M0 there exists a PL-model M such that M ˆ ' iff
M0 ˆ �.'/.

The above proposition implies:

Theorem 4.5.1 (Entailment in PL). Let '1, . . . , 'n, n � 1, and ' be PL-formulas.
Then the following conditions are equivalent:

1. '1, . . . , 'n entail ';
2. �.'1/, . . . , �.'n/ entail �.'/.

Therefore, entailment in PL-logic can be represented as entailment in PLent-logic.
As in RL.1; 10/-logic, entailment in PLent-logic is expressible in its language and
we apply the method presented in Sect. 2.11 to verify it.

PLent-dual tableau includes the rules and axiomatic sets of RL.1; 10/-dual tableau
(see Sects. 2.5 and 2.7) adjusted to PLent-language and the specific rule of the
following form:

For all object variables x and y and for every relational variable R 2 RV 0
PLent

,

(ideal)
xRy

xRz; xRy
z is any object variable



4.5 Entailment, Model Checking, and Satisfaction in Peirce Logic 95

The rule (ideal) reflects the fact that relational variables representing Boolean
PL-variables are interpreted as right ideal relations. PLent-correctness of the rule
(ideal) follows directly from the definition of PLent-models.

The completion condition determined by the rule (ideal) is:
For all object variables x and y and for every relational variable R 2 RV 0

PLent
,

Cpl(ideal) If xRy 2 b, then for every object variable z, xRz 2 b.

Now, completeness of PLent-dual tableau can be proved in a similar way as for
RL.1; 10/-logic.

Theorem 4.5.2 (Soundness and Completeness of PLent). Let ' be a PLent-
formula. Then the following conditions are equivalent:

1. ' is PLent-valid;
2. ' is true in all standard PLent-model;
3. ' is PLent-provable.

Example. Let A and B be Boolean variables of PL-logic. Consider PL-formulas:

' D x.1 IBc I 1/y;
 D x.�A[ .Ac W B//:

The translations of these formulas into PLent-formulas are:

�.'/ D x.1 IRB I 1/y;
�. / D x.�RA [ .RA IRB //y;

where for simplicity of notation � 0.A/ D RA and � 0.B/ D RB , for RA; RB 2
RV 0

PLent
. By Theorem 4.5.1, the problem of verification whether ' entails  is

equivalent to the problem ‘Does �.'/ entails �. /’. According to the method de-
scribed in Sect. 2.11, the latter can be verified by showing that the formula:

x..1 I �.1 IRB I 1/ I 1/[ �RA [ .RA IRB //y

is PLent-provable. Figure 4.3 presents its PLent-proof.

The method of model checking and verification of satisfaction presented in
Sects. 3.4 and 3.5 can also be applied to PL-formulas. Let M D .U;m/ be a
fixed standard PL-model with a finite universe U and let ' be a PL-formula. As
in RL.1; 10/-logic, in order to obtain a relational formalism appropriate for repre-
senting and solving the problem ‘M ˆ '?’, we consider an instance PLM;' of
the logic PL. The vocabulary of the logic PLM;' consists of symbols from the
following pairwise disjoint sets:

� OV PLM;'
– a countable infinite set of object variables;

� OCPLM;'
D fca W a 2 U g is the set of object constants such that if a ¤ b, then

ca ¤ cb;



96 4 Dual Tableaux for Peirce Algebras

x..1 I�.1 IRB I 1/ I 1/[�RA [ .RA IRB//y

�
.[/ twice

x.1 I�.1 IRB I 1/ I 1/y, x�RAy, x.RA IRB/y
���

x1x; : : :

closed

		

y1y; : : :

closed
�
.I / twice with variables x and y

x�.1 IRB I 1/y, x�RAy, x.RA IRB/y, . . .

�
.�I / twice with new variables z and t

x�1z; z�RBt; t�1y, x�RAy, x.RA IRB/y, . . .
���� .I / with z

			

x�RAy, xRAz, . . .

�
(ideal) with y

x�RAy, xRAy, . . .
closed

z�RBt; ; zRBy; : : :

�
(ideal) with t

z�RBt , zRBt , . . .
closed

Fig. 4.3 A PLent-proof showing that x.1 IBc I 1/y entails x.�A[ .Ac W B//

� BCPLM;'
D B [ f1Bg – the set of Boolean constants, where B is the set of all

the atomic Boolean terms occurring in ';
� RCPLM;'

D S [ f1R; 10g – the set of relational constants, where S is the set of
all the atomic relational terms occurring in ';

� f�;[;\; I ;�1 ; W;c g – the set of operations.

A PLM;'-model is a pair N D .W; n/, where W D U and n is a meaning function
satisfying:

� n.ca/ D a, for every ca 2 OCPLM;'
;

� n.B/ D m.B/, for every B 2 B;
� n.S/ D m.S/, for every S 2 S;
� n.1B/, n.1R/, n.10/ are defined as in standard PL-models;
� n extends to all the compound terms as in PL-models.

A valuation in N is a function vWOSPLM;'
! W such that v.c/ D n.c/, for every

c 2 OCPLM;'
. As in the logic RL.1; 10/, it is easy to prove that for every Boolean

PLM;'-term A and for every relational PLM;'-termQ the following hold: n.A/ D
m.A/ and n.Q/ D m.Q/. Therefore, PLM;'-validity of ' is equivalent to its truth
in a single PLM;'-model N . Hence, the following holds:

Proposition 4.5.2. The following statements are equivalent:

1. M ˆ ';
2. ' is PLM;'-valid.

Dual tableau for the logic PLM;' is constructed as follows. We extend PL-dual
tableau with the rules and the axiomatic sets of RLM;'-dual tableau presented in
Sect. 3.4 adapted to the language of PLM;' . In particular, in the rules .I /, .W/, and



4.5 Entailment, Model Checking, and Satisfaction in Peirce Logic 97

.103/, z is an object variable or an object constant. Furthermore, we add the rules
and axiomatic sets of the following forms:

� For every B 2 B, for any object symbol x, and for any a 2 U ,

.�Ba/ x�B
x10ca; x�B for every a 62 m.B/;

� For every B 2 B and for every a 2 U such that a 2 m.B/, any set including
fcaBg is assumed to be a PLM;'-axiomatic set;

� For every B 2 B and for every a 2 U such that a 62 m.B/, any set including
fca�Bg is assumed to be a PLM;'-axiomatic set.

These rules and axiomatic sets reflect the meaning of atomic Boolean terms occur-
ring in '.

A PLM;'-set of formulas, PLM;'-correctness of a rule, a PLM;'-proof tree, a
closed branch and an open branch of a PLM;'-proof tree are defined in a standard
way as in Sect. 2.4.

Proposition 4.5.3. The rule .�Ba/ is PLM;'-correct.

Proof. Let a 2 U be such that a 62 m.B/ and let X be a finite set of PLM;'-
formulas. Assume X [ fx10ca; x�Bg is a PLM;'-set. Suppose X [ fx�Bg is not
a PLM;'-set, that is for some valuation v in N , v.x/ 2 m.B/. By the assumption,
v.x/ D a. Since a 62 m.B/, v.x/ 62 m.B/, a contradiction. On the other hand, if
X[fx�Bg is a PLM;'-set, then so isX[fx10ca; x�Bg. Therefore, the rule .�Ba/
is PLM;'-correct. ut
Correctness of the remaining rules follows from the corresponding propositions for
the relational logics of classical algebras of binary relations and for PL-logic (see
Sects. 2.5, 2.7, 3.4, and 4.4). The validity of all the added axiomatic sets follows
directly from the definition of semantics of PLM;' .

The completion conditions are those of RLM;'-dual tableau adapted to the lan-
guage of PLM;' and the condition determined by the rule .�Ba/. For every object
symbol x, for everyB 2 B, and for every a 2 U such that a 62 m.B/, we postulate:

Cpl(�Ba/ If x�B 2 b, then x10ca 2 b, obtained by an application of the rule
(�Ba/.

A branch structure N b D .W b; nb/ is defined as follows:

� W b D OCPLM;'
;

� nb.c/ D c, for every c 2 OCPLM;'
;

� nb.1B/ D W b;
� nb.B/ D fca 2 W b W a 2 m.B/g, for every B 2 B;



98 4 Dual Tableaux for Peirce Algebras

� nb.S/ D
� f.ca; cb/ 2 W b �W b W caScb 62 bg; if S 2 f1R; 10g
f.ca; cb/ 2 W b �W b W .a;b/ 2 m.S/g; if S 2 SI

� nb extends to all the compound terms as in PL-models.

In a similar way as in RLM;'-dual tableau, it is easy to prove that N b is a PL-model.
Let vb WOSPLM;'

! W b be a valuation in N b such that:

vb.c/ D nb.c/, for c 2 OCPLM;'
;

vb.x/ D ca, where ca 2 OCPLM;'
is such that x10ca 62 b, for any object

variable x.

As in the completeness proof of RLM;'-dual tableau, it can be proved that the val-
uation vb is well defined, that is for every x 2 OV PLM;'

, there exists exactly one
c 2 OCPLM;'

such that x10c 62 b.

Proposition 4.5.4 (Satisfaction in Branch Model Property). For every open
branch b of a PLM;'-proof tree and for every PLM;'-formula  , if N b; vb ˆ  ,
then  62 b.

Proof. It suffices to show the proposition for formulas of the form xB and x�B ,
where B 2 B.

Let  D xB for some B 2 B. Assume N b; vb ˆ xB . Let a 2 U be such that
vb.x/ D ca, that is x10ca 62 b. Since N b ; vb ˆ xB , ca 2 nb.B/, hence a 2 m.B/.
Thus caB 62 b, otherwise b would be closed. Suppose xB 2 b. By the completion
condition Cpl(103), at least one of the following holds: caB 2 b or x10ca 2 b, a
contradiction.

Let  D x�B , for some B 2 B. Assume N b; vb ˆ x�B . Let a 2 U be such
that vb.x/ D ca, that is x10ca 62 b. Since N b; vb ˆ x�B , ca 62 nb.B/. There-
fore a 62 m.B/. Suppose x�B 2 b. Then by the completion condition Cpl(�Ba),
x10ca 2 b, a contradiction.

The rest of the proof is similar to the proofs of the analogous propositions for
logics RL, RL.1; 10/, RLM;' , and PL (see Sects. 2.5, 2.7, 3.4, and 4.4). ut
Since nb.10/ is an equivalence relation onW b , we may define the quotient structure
N b
q D .W b

q ; n
b
q/ as follows:

� W b
q D fkck W c 2 W bg, where kck is the equivalence class of nb.10/ determined

by c;
� nbq.c/ D knb.c/k, for every c 2 OCPLM;'

;

� nbq.B/ D fkcak 2 W b
q W ca 2 nb.B/g, for every B 2 BCPLM;'

;

� nbq.S/ D f.kcak; kcbk/ 2 W b
q � W b

q W .ca; cb/ 2 nb.S/g, for every S 2
RCPLM;'

;
� nbq extends to all the compound terms as in PL-models.

Proposition 4.5.5 (Branch Model Property). Let b be an open branch of a
PLM;'-proof tree. Then models N b

q and N are isomorphic.



4.6 Peirce Algebras and Terminological Languages 99

The above proposition can be proved following the proof of Proposition 3.4.4.

Let vbq be a valuation in N b
q defined as vbq.x/ D kvb.x/k, for every x 2 OSPLM;'

.

As in RL-logic, it is easy to show that the sets of PLM;'-formulas satisfied in N b

and N b
q by valuations vb and vbq , respectively, coincide. Moreover, since N b

q and N
are isomorphic, they satisfy exactly the same formulas. Now, the completeness of
PLM;' can be proved in a similar way as in RL.1; 10/-logic.

Theorem 4.5.3 (Soundness and Completeness of PLM;'). For every PLM;'-
formula  , the following conditions are equivalent:

1.  is PLM;'-valid;
2.  is PLM;'-provable.

Therefore, we have:

Theorem 4.5.4 (Model Checking in PL). For every PL-formula ' and for every
finite standard PL-model M, the following statements are equivalent:

1. M ˆ ';
2. ' is PLM;'-provable.

In a similar way, we can use the method for verification of satisfaction presented in
Sect. 3.5. Let ' D xRy (resp. ' D xB) be a PL-formula, where R is a relational
term (resp. B is a Boolean term) and let x; y be any object variables. Let M D
.U;m/ be a fixed finite standard PL-model, and let v be a valuation in M such
that v.x/ D a and v.y/ D b, for some elements a;b of U . To solve the problem
‘Is ' satisfied in M by valuation v?’ we consider the logic PLM;' defined in this
section. For every PLM;'-model N D .U; n/, for every valuation v in N , and for
all a;b 2 U , .a;b/ 2 m.R/ (resp. a 2 m.B/) if and only if caRcb (resp. caB) is
PLM;'-valid. Thus, we have:

Theorem 4.5.5 (Satisfaction in PL-models). For every relational term R of
PL-language, for every Boolean term B of PL-language, for every finite stan-
dard PL-model M D .U;m/, and for all a;b 2 U , the following statements are
equivalent:

1. .a;b/ 2 m.R/ (resp. a 2 m.B/);
2. caRcb (resp. caB) is PLM;'-provable.

Following the methods described above, in the next section we present examples of
applications of PL-dual tableau to model checking and verification of satisfaction
of PL-formulas.

4.6 Peirce Algebras and Terminological Languages

Peirce algebras provide an algebraic semantics for the terminological languages
from the family originated with KL�ONE [BS85].



100 4 Dual Tableaux for Peirce Algebras

Terminological representation languages are extensively studied in description
logics. The languages have two kinds of syntactic primitives, called concepts and
roles. Concepts are interpreted as sets and roles as binary relations. Concepts consist
of atomic concepts, constant concepts > and ?, and compound concepts of the
following forms, where C;C1; C2 are concepts and R is a role:

� .andC1C2/;
� .notC/;
� .someRC/;
� .allRC/.

Roles consist of atomic roles, constant roles 0, 1, and self , and compound roles of
the following forms, where C is a concept and R;R1; R2 are roles:

� .andR1R2/;
� .notR/;
� .inverseR/;
� .composeR1R2/;
� .restrictRC/.

A model for a terminological language, T-language for short, is a pair M D .U;m/,
where U is a non-empty set and m is a meaning function satisfying the following
conditions:

� m.C/ � U , for every atomic concept C ;
� m.R/ � U � U , for every atomic role R;
� m.>/ D U , m.?/ D ;;
� m.andC1C2/ D m.C1/\m.C2/;
� m.notC/ D U nm.C/;
� m.someRC/ D fx 2 U W 9y 2 U; .x; y/ 2 m.R/ and y 2 m.C/g;
� m.allRC/ D fx 2 U W 8y 2 U; .x; y/ 2 m.R/ implies y 2 m.C/g;
� m.1/ D U � U , m.0/ D ;, m.self / D f.x; y/ 2 U � U W x D yg;
� m.andR1R2/ D m.R1/ \m.R2/;
� m.notR/ D U � U �m.R/;
� m.inverseR/ D f.x; y/ 2 U � U W .y; x/ 2 m.R/g;
� m.composeR1R2/

D f.x; y/ 2 U � U W 9z 2 U; .x; z/ 2 m.R1/ and .z; y/ 2 m.R2/g;
� m.restrictRC/ D f.x; y/ 2 U � U W .x; y/ 2 m.R/ and y 2 m.C/g.
Given a T-language, the important questions in terminological reasoning are:

(T1) The satisfiability problem: given a concept C (resp. a role R) is there a model
M D .U;m/ of the T-language such that m.C/ ¤ ; (resp. m.R/ ¤ ;);

(T2) The subsumption problem: given concepts C and D (resp. roles R and Q) is
it true that in every model M D .U;m/ of the T-language C subsumes D, i.e.,
m.D/ � m.C/ (resp. R subsumesQ, i.e., m.Q/ � m.R/).



4.6 Peirce Algebras and Terminological Languages 101

There is a direct relationship between Peirce algebras and terminological languages.
Concepts can be viewed as Boolean terms of Peirce algebras and roles as their rela-
tional terms. The following translation function transforms concepts and roles into
Peirce algebra terms.

Let � 0 be a one-to-one assignment of Boolean variables to atomic concepts and
relation variables to atomic roles. Then a translation function � is defined as follows:

� �.?/ D �1B , �.>/ D 1B ;
� �.0/ D �1R, �.1/ D 1R, �.self / D 10;
� �.andC1C2/ D �.C1/\ �.C2/;
� �.notC/ D ��.C /;
� �.someRC/ D �.R/ W �.C /;
� �.allRC/ D �.�.R/ W ��.C //;
� �.andR1R2/ D �.R1/\ �.R2/;
� �.notR/ D ��.R/;
� �.inverseR/ D �.R/�1;
� �.composeR1R2/ D �.R1/ I �.R2/;
� �.restrictRC/ D �.R/\ .�.C /c/�1.

The problems (T1) and .T2/ can be represented in Peirce logic:

(TPL
1 ) Let C be a concept (resp. let R be a role) of a T-language and let M D
.U;m/ be a model of this language. The problem ‘Does m.C/ ¤ ; (resp.
m.R/ ¤ ;) hold in M?’ is equivalent to the problem of verifying whether
x.1R W �.C // (resp. x.1R I �.R/ I 1R/y) is true in model M; so we may apply
the method of model checking presented in Sect. 4.5;

(TPL
2 ) Let C and D be concepts (resp. let R and Q be roles) of a T-language.
The problem ‘Is it true that for every model M D .U;m/ of the T-language
m.D/ � m.C/ (resp. m.Q/ � m.R/)?’ is equivalent to PL-validity of the for-
mula x.�D[C/ (resp. x.�Q[R/y); we may apply the dual tableau presented
in Section 4.4 for verification of validity of these formulas.

Example. Consider a semantic network given in Fig. 4.4, which is a reformulation
of a network presented in [Sch91].

The universe consists of three people: Anne (a), Charles (c), and William (w).
The nodes represent concepts: ‘Vegetarians’ (Vg) and ‘Mathematicians’ (Ma).
Thick lines indicate their members. The directed edges marked with thin lines rep-
resent roles: ‘sister-of’ (S ) and ‘parent-of’ (P ). Thus, the above semantic network
represents some explicit facts like ‘William is a mathematician’, ‘Charles is a parent
of William’, ‘Anne is a sister of Charles’, etc. The semantic network also contains
some implicit facts, such as: ‘Charles is a parent of some mathematician’, ‘Anne is
an aunt of some mathematician’, ‘Some vegetarian is a parent of William’.

A terminological language for representation of the information given above is
a T-language such that its atomic concepts are Vg and Ma and its atomic roles are
S and P . A model that represents the information given in Fig. 4.4 is a T-model



102 4 Dual Tableaux for Peirce Algebras

Anne Charles William

Vegetarians

�

�

�

�
Mathematicians

�

�

�

�

�sister-of �parent-of

�

���������� �

Fig. 4.4 A semantic network sample

M D .U;m/ such that:

� U D fa;c;wg;
� m.Vg/ D fcg;
� m.Ma/ D fc;wg;
� m.S/ D f.a;c/g;
� m.P / D f.c;w/g.
Consider the following problem which is an instance of (T1): Is it true that some
vegetarian is a parent of some mathematician? This problem can be represented in
a terminological language as:

Does and Vg .someP Ma/ ¤ ;‹

Let � be a translation from the T-language in question to a corresponding Peirce
logic. In what follows, we will identify symbols of concepts and roles of the
T-language with their translations into Peirce logic. Let M be a model defined
above that represents the information of Fig. 4.4. Then, the problem ‘and Vg .some
P Ma/ ¤ ;?’ can be expressed in Peirce logic:

Does x.1R W Vg \ .P WMa// is true in M‹

By Theorem 4.5.4, the above problem is equivalent to PLM;'-provability of ' D
x.1R W Vg \ .P WMa//, where PLM;' is constructed as described in Sect. 4.5.

The specific symbols of the language of PLM;'-logic are:

� OCPLM;'
D fca; cc; cwg;

� BCPLM;'
D fVg;Ma; 1Bg – the set of Boolean constants;

� RCPLM;'
D f1R; 10; P g – the set of relational constants.

A PLM;'-model is a PL-model N D .W; n/ such that:

� W D fa;c;wg;
� n.ci/ D i, for every ci 2 OCPLM;'

;



4.6 Peirce Algebras and Terminological Languages 103

� n.B/ D m.B/, for every B 2 f1B ; Vg;Mag;
� n.S/ D m.S/, for every S 2 f1R; 10; P g.
The rules that are specific for PLM;'-dual tableau are:

.�Vg i/ x�Vg
x10ci; x�Vg for every i 2 fa;wg

.�Ma a/ x�Ma
x10ca; x�Ma

.�Pij/ x�Py
x10ci; x�Py j y10cj; x�Py for every .i;j/ 62 m.P /

.10/
x�10ca j x�10cc j x�10cw for every object variable x

.i ¤ j/
ci10cj

for all i;j such that i ¤ j

The axiomatic sets that are specific for PLM;'-dual tableau are:

� fccVgg, fca�Vgg, and fcw�Vgg;
� fccMag, fcwMag, and fca�Mag;
� fccPcwg, fca�Pcag, fca�Pccg, fca�Pcwg, fcc�Pcag, fcc�Pccg, fcw�Pcag,
fcw�Pccg, fcw�Pcwg.

Figure 4.5 presents a proof of x.1R W Vg \ .P W Ma//. Thus, it follows that the
problem in question has the positive solution.

x.1R W Vg \ .P W Ma//
����

			
.W/ with cc

x1Rcc; : : :

closed

cc.Vg \ .P W Ma//; : : :
����

			
.\Bool)

ccVg; : : :

closed

cc.P W Ma/; : : :
����

			
.W/ with cw

ccPcw; : : :

closed

cwMa; : : :

closed

Fig. 4.5 A PLM;' -proof solving the problem ‘and Vg .someP Ma/ ¤ ;?’



Chapter 5
Dual Tableaux for Fork Algebras

5.1 Introduction

The origin of fork algebras can be traced back to the paper [HV91a]. Fork algebras
are the algebras of binary relations which together with all the classical relational
operations have a specific binary operation referred to as fork of relations. In proper
fork algebras the operation fork is induced by an injective operation which per-
forms a coding of a pair of objects into a single object. Abstract fork algebras
are defined with a finite set of axioms [FHV97]. In contrast to abstract relation
algebras, abstract fork algebras are representable in such a way that the repre-
sentation algebras are proper fork algebras [VHF95, Gyu95]. As a consequence,
the first-order theory of proper fork algebras and the first-order theory of abstract
fork algebras are equivalent, and hence any first-order property of binary relations
which is true in all proper fork algebras can be proved from the axioms of abstract
fork algebras. This has a direct application in the theory of programming. Since
programs are often viewed as input-output relations, their specifications can be con-
veniently expressed in the language of fork algebras. The first ideas of application
of fork algebras to specification, derivation, and verification of programs can be
found in [HV91b]. Since then this issue has been extensively explored, see e.g.,
[HBS93, BFHL96, FBH98, FBH01, Fri02, FGSB06].

Another very important application of fork algebras is that classical first-order
logic is interpretable in a logic of fork algebras [VHF95]. In this chapter we present,
first, a generic logic of fork algebras, FL, and a dual tableau for this logic. We prove
its soundness and completeness. Next, we show how this logic can be specialized
to logics appropriate for the translation of first-order languages each of which is
determined by fixed families of object constants, function symbols and predicate
symbols. The dual tableau for logic FL could be extended to provide deduction
mechanisms for first-order theories.

Yet another stream of applications of fork algebras and their logics is con-
cerned with interpretability of first-order non-classical logics see e.g., [FO95, FO98,
FBM02, FP06].

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 5,
c� Springer Science+Business Media B.V. 2011

105



106 5 Dual Tableaux for Fork Algebras

5.2 Fork Algebras

A full fork algebra is an algebra of the form:

.P.U � U /;[;\;�;;; U � U; I ;�1 ; Id;	;r/; where:

� .P.U � U /;[;\;�;;; U � U; I ;�1 ; Id/ is a full algebra of binary relations
on U ;

� 	WU � U ! U is a binary function on U which is injective, i.e., for all
x; y; u; v 2 U , if 	.x; y/ D 	.u; v/, then x D u and y D v;

� r is a binary relational operation defined for all relations R and S on U as:

.r/ RrS dfD f.x;	.y; z// W .x; y/ 2 R ^ .x; z/ 2 Sg:
It is referred to as fork of relations R and S . A graphical representation of fork is
given in Fig. 5.1. Set U is referred to as the underlying domain of the algebra.

The function 	 plays the role of pairing, encoding a pair of objects into a single
object. Clearly, there are 	 functions which are distinct from set-theoretical pair
formation, that is 	.x; y/ may differ from fx; fx; ygg.

A proper fork algebra is an algebra of the form:

.W;[;\;�;;; 1; I ;�1 ; 10;	;r/; where:

� .W;[;\;�;;; 1; I ;�1 ; 10/ is a proper algebra of binary relations (see Sect. 2.2);
� 	WU � U ! U is a binary function which is injective on .U � U /\ 1;
� The operation r is defined with condition .r/.
The class of proper fork algebras is denoted by PFA. Clearly, any full fork algebra
is a proper fork algebra.

Given a pair of binary relations, the operation called cross performs a kind of
parallel product. Its definition is:

R˝ S dfD f.	.x; y/;	.w; z// W .x;w/ 2 R ^ .y; z/ 2 Sg:
It is easy to show that in full fork algebras the cross operation is definable from the
other relational operations with the use of the fork operation, namely:

R˝ S D ..IdrU � U /�1 IR/r..U � UrId/�1 IS/:

x
��
��

R

r
S

���

����

y 2 R.x/
�

z 2 S.x/

Fig. 5.1 The operation r



5.2 Fork Algebras 107

An abstract fork algebra is a structure of the form:

.W;C; �;�; 0; 1; I ; M; 10;r/;

where .W;C; �;�; 0; 1; I ; M; 10/ is a relation algebra and for all r; s; t; q 2 W; the
following conditions are satisfied:

� rrs D .r I .10r1// � .s I .1r10//;
� .rrs/ I .trq/M D .r I tM/ � .s I qM/;
� .10r1/M r.1r10/M � 10.
The cross operation is defined by the equation:

r ˝ s dfD ..10r1/M I r/r..1r10/MI s/:

The class of all fork algebras is denoted by FA. Next theorem states a relationship
between proper and abstract fork algebras. In contrast with relation algebras, fork
algebras are representable.

Theorem 5.2.1. Every fork algebra is isomorphic to a proper fork algebra.

A first proof of this representation theorem for complete and atomistic fork algebras
can be found in [FBHV93] and [FBHV95]. Later on Gyuris [Gyu95] and Frias et
al. [FHV97] proved a representation theorem for the whole class of fork algebras.

In proper fork algebras the relations 	
dfD .10r1/M and �

dfD .1r10/M appearing
in the third specific axiom of fork algebras behave as projections, projecting com-
ponents of pairs constructed with the function 	. They are presented in Fig. 5.2. An
element f of a fork algebra is said to be functional whenever f M I f � 10. The do-

main of a relation r is defined as Dom.r/
dfD .r I rM/ � 10. Similarly, the range of r is

defined as Rng.r/
dfD .rM I r/ � 10.

We define a constant Ur1 by setting:

Ur1
dfD �..1r1/M/:

This constant is a right ideal relation whose domain consists of what is called ure-
lements, that is, atomic objects which do not involve the pairing function 	.

x

�
y

���

���

10

r
1

���
��� x

projection 	 projection �

x

�
y

���

���

1
r
10

���
��� y

Fig. 5.2 The projections 	 and �



108 5 Dual Tableaux for Fork Algebras

Furthermore, we consider the constants 1Ur and 10Ur defined as:

1Ur
dfD �.1r1/I

10Ur
dfD .Ur1 I 1Ur/ � 10:

1Ur has urelements in the range, and 10Ur is a partial identity ranging over urelements.
Let .Ur/ be the following equation:

.Ur/ 1 I 10Ur I 1 D 1:

It is true in a proper fork algebra whenever its set of urelements is non-empty.
The class of fork algebras with urelements, FAU, is a subclass of FA satisfying

the equation .Ur/. The class of proper fork algebras with urelements, PFAU, is the
subclass of PFA of those algebras A whose underlying domainUA contains a subset
UrA of the elements that are not pairs.

Next proposition lists some arithmetic properties of fork algebras.

Proposition 5.2.1. The following properties hold in all fork algebras for all rela-
tions f; r; s; t; u:

1. r I .srt/ � .r I s/r.r I t/;
2. Let f be functional, then f I .rrs/ D .f I r/r.f I s/;
3. If f � 10, then .f I r/rs D f I .rrs/;
4. .rrs/ � .tru/ D .r � t/r.s � u/;
5. .r C s/˝ t D .r ˝ t/C .s ˝ t/ and r ˝ .s C t/ D .r ˝ s/C .r ˝ t/;
6. The relations 	 and � are functional;
7. 	M I � D 1;
8. Dom.	/ D Dom.�/ D 10 ˝ 10;
9. .rrs/ I	 D Dom.s/ I r and .rrs/ I � D Dom.r/ I s.
In the next section we present a logic corresponding to fork algebras.

5.3 Fork Logic

The vocabulary of the language of fork logic, FL, consists of the following pairwise
disjoint sets:

� OV FL – a countable infinite set of object variables;
� OUrFL – a non-empty set of object variables representing urelements;
� RV FL – a countable set of relational variables;
� RCFL D f1; 10g – the set of the relational constants;
� f�;[;\; I ;�1 ;rg – the set of relational operations;
� f	g – the set consisting of a binary object operation.



5.3 Fork Logic 109

The set OT FL of object terms is the smallest set satisfying:

� OV FL [OUrFL � OT FL;
� If t1; t2 2 OT FL, then t1 	 t2 2 OT FL.

The set RAFL D RV FL [RCFL is called the set of atomic relational terms. The set
RT FL of relational terms is the smallest set such that:

� RAFL � RT FL;
� If R;S 2 RT FL, then R [ S;R \ S;R IS;�R;R�1; RrS 2 RT FL.

Formulas of the logic FL have the form xRy, where x; y 2 OT FL, R 2 RT FL. In
semantics of FL-language we will slightly abuse the notation and use the symbol 	
for the function which provides an interpretation of the object operation 	.

A structure M D .U; Ur;	; m/ is an FL-model whenever the following condi-
tions are satisfied:

� U is a non-empty set;
� m.R/ � U � U , for everyR 2 RA;
� m.1/ and m.10/ are defined as in RL.1; 10/-models, i.e., m.1/ D U � U

and m.10/ is an equivalence relation on U such that the extensionality con-
dition m.10/ Im.R/ D m.R/ Im.10/ D m.R/ is satisfied for every atomic
relational term R;

� 	WU �U ! U is a binary operation on U such that the following conditions are
satisfied:

– (	1) Ur
dfD fx 2 U W 8y; z 2 U .x; y 	 z/ 62 m.10/g is a non-empty proper

subset of U ,
– (	2) ..x1 	x2/; .y1 	y2// 2 m.10/ iff .x1; y1/ 2 m.10/ and .x2; y2/ 2 m.10/,

for all x1; x2; y1; y2 2 U ;

� m extends to all the compound relational terms as follows:

– m.�R/,m.R�1/,m.R[S/,m.R\S/,m.R IS/ are defined as in RL-models;
– m.RrS/ D f.x; y/ 2 U � U W 9u; t 2 U Œ.y; .u 	 t// 2 m.10/ ^ .x; u/ 2
m.R/ ^ .x; t/ 2 m.S/�g.

An FL-model M D .U; Ur;	; m/ is said to be standard whenever m.10/ is the
identity on U . Note the condition .	1/ implies that for every FL-model M D
.U; Ur;	; m/ and for all x; y 2 U , x 	 y 2 U n Ur . Moreover, in standard FL-
models, 	 is an injective function from U � U to U n Ur .

Let M be an FL-model. A valuation in M is a mapping vWOT FL ! U defined
inductively as follows:

� v.x/ 2 U , for any x 2 OV FL;
� v.x/ 2 Ur , for any x 2 OUrFL;
� v.x 	 y/ D v.x/ 	 v.y/, for any x; y 2 OT FL.



110 5 Dual Tableaux for Fork Algebras

An FL-formula xRy is said to be satisfied in an FL-model M by a valuation v
whenever .v.x/; v.y// 2 m.R/. An FL-formula xRy is true in M if and only if for
every valuation v in M, M; v ˆ xRy. An FL-formula is FL-valid whenever it is
true in all FL-models.

Observe that every standard FL-model determines a full fork algebra with urele-
ments and a theorem analogous to Theorem 2.9.1 holds:

Theorem 5.3.1. For every FL-term R and for any two different variables x; y 2
OV FL, the following conditions are equivalent:

1. R D 1 is true in all full fork algebras with urelements;
2. xRy is true in all standard FL-models.

Theorem 5.3.2. For every FL-term R and for any two different variables x; y 2
OV FL, if R D 1 is true in all full fork algebras, then xRy is true in all standard
FL-models.

5.4 Dual Tableau for Fork Logic

As usual, a dual tableau for the logic FL consists of decomposition rules and specific
rules. Specific rules reflect properties of the function 	 and the relational constant 10.

FL-dual tableau includes the decomposition rules .[/, .\/, .�[/, .�\/, .�/,
.�1/, .��1/, .I /, and .�I / from Sect. 2.5 adapted to FL-language. In all the rules
x; y denote arbitrary FL-object terms, in the rule .I / z is any FL-object term, and in
the rule .�I / z is a new object variable. Furthermore, we admit the decomposition
rules of the following forms:

For all x; y 2 OT FL and R;S 2 RT FL,

(r)
x.RrS/y

y10.u 	 t/; x.RrS/y j xRu; x.RrS/y j xSt; x.RrS/y
u; t are any object terms

(�r)
x�.RrS/y

y�10.u 	 t/; x�Ru; x�St u; t are new object variables and u ¤ t

The specific rules of FL-dual tableau have the following forms:
For every atomic relational term R and for all object terms x; y; x1; x2; y1; y2,

(10)
.x1 	 x2/10.y1 	 y2/
x110y1 j x210y2 (�10) .x1 	 x2/�10.y1 	 y2/

x1�10y1; x2�10y2

(101)
xRy

xRz; xRy j y10z; xRy z is any object term

(102)
xRy

x10z; xRy j zRy; xRy z is any object term



5.4 Dual Tableau for Fork Logic 111

(10Cut)
x10y

.x 	 u/10.y 	 t/; x10y j .x 	 u/�10.y 	 t/; x10y

u; t are any object terms

.rUr/
u10.t1 	 t2/ u 2 OUrFL and t1; t2 are any object terms

The rules .10/ and .�10/ reflect condition .	2/ assumed in FL-models. .101/ and
.102/ are the usual rules for relation 10, the same as in RL.1; 10/-dual tableau (see
Sect. 2.7). The rule .rUr/ reflects the condition .	1/. The relationships between
these rules and the corresponding semantic constraints will be shown in detail in the
proof of Proposition 5.4.1.

A finite set of formulas is FL-axiomatic whenever it includes either of the fol-
lowing subsets:

For x; y 2 OTFL and R 2 RT FL,

(Ax1) fx1yg;
(Ax2) fx10xg;
(Ax3) fxRy; x�Ryg.

The notions of FL-set, FL-correctness of a rule, an FL-proof tree, a closed
FL-proof tree for an FL-formula, and FL-provability of an FL-formula are defined
as in relational logics in Sect. 2.4.

Proposition 5.4.1.

1. The FL-decomposition rules are FL-correct;
2. The FL-specific rules are FL-correct;
3. The FL-axiomatic sets are FL-sets.

Proof. We prove some parts of 1. and 2.
1. By way of example, we prove correctness of the rule .�r/. Let X be a finite set
of FL-formulas.

Let u; t 2 OV FL be variables that do not occur in X [ fx�.RrS/yg
and such that u ¤ t . Assume X [ fx�.RrS/yg is an FL-set. Suppose that
X [ fy�10.u 	 t/; x�Ru; x�Stg is not an FL-set. Then there exist an FL-model
M D .U; Ur;	; m/ and a valuation v in M such that for every ' 2 X [
fy�10(u*t), x�Ru; x�Stg, M; v 6ˆ ', in particular .v.y/; .v.u/ 	 v.t/// 2 m.10/,
.v.x/; v.u// 2 m.R/, and .v.x/; v.t// 2 m.S/. Hence, .v.x/; v.y// 2 m.RrS/.
However, since X [ fx�.RrS/yg is an FL-set and for every ' 2 X M; v 6ˆ ',
M; v ˆ x�.RrS/y, that is .v.x/; v.y// 62 m.RrS/, a contradiction.

Now, assume that X [ fy�10.u 	 t/; x�Ru; x�Stg is an FL-set. Then for every
FL-model M and for every valuation v in M either there exists ' 2 X such that
M; v ˆ ' or the following hold: .v.y/; .v.u/ 	 v.t/// 62 m.10/ or .v.x/; v.u// 62
m.R/ or .v.x/; v.t// 62 m.S/. By the assumption on variables u and t , it follows that
for every FL-model M and for every valuation v in M either there exists ' 2 X
such that M; v ˆ ', or for all a; b 2 U the following hold: either .v.y/; .a 	 b// 62



112 5 Dual Tableaux for Fork Algebras

m.10/ or .v.x/; a/ 62 m.R/, or .v.x/; b/ 62 m.S/. Thus, either there exists ' 2 X
such that M; v ˆ ' or .v.x/; v.y// 62 m.RrS/. Therefore, X [ fx�.RrS/yg is
an FL-set, and hence the rule .�r/ is FL-correct.

Correctness of the rule .r/ can be proved in a similar way. Correctness of the
remaining decomposition rules can be proved as in RL-logic (see Sect. 2.5).

2. By way of example, we prove correctness of the rules .10/ and .rUr/. For .10/,
let X be a finite set of FL-formulas. Assume X [ f.x1 	 x2/10.y1 	 y2/g is an
FL-set. Suppose X [ fx110y1g is not an FL-set. Then there exist an FL-model M
and a valuation v in M such that for every ' 2 X [ fx110y1g, M; v 6ˆ '. Hence,
.v.x1/; v.y1// 62 m.10/. It follows that M; v ˆ .x1 	x2/10.y1 	y2/. Then ..v.x1/	
v.x2//; .v.y1/ 	 v.y2/// 2 m.10/. By the condition (	2), .v.x1/; v.y1// 2 m.10/, a
contradiction. If X [ fx210y2g is not an FL-set, then the proof is similar.

For .rUr/, let u 2 OUrFL and let t1; t2 2 OT FL. Clearly, if X is an FL-set, then
X[fu10.t1	t2/g is also an FL-set. AssumeX[fu10.t1	t2/g is an FL-set and suppose
that X is not an FL-set. Then there exist an FL-model M and a valuation v in M
such that M; v ˆ u10.t1 	 t2/. Thus, there exist v.u/ 2 Ur and v.t1 	 t2/ 2 U n Ur
such that .v.u/; v.t1 	 t2// 2 m.10/ a contradiction with condition .	1/. ut
A branch b of an FL-proof tree is complete whenever it is closed or it satisfies
the completion conditions of RL.1; 10/-dual tableau adjusted to FL-language (see
Sects. 2.5 and 2.7) and the following conditions which are specific for the FL-dual
tableau:

For all x; y 2 OT FL and R;S 2 RT FL,

Cpl(r) If x.RrS/y 2 b, then for all u; t 2 OT FL, either y10u 	 t 2 b or xRu 2 b
or xSt 2 b, obtained by an application of the rule .r/;

Cpl(�r) If x�.RrS/y 2 b, then for some u; t 2 OV FL all the formulas y�10.u 	
t/, x�Ru, and x�St are in b, obtained by an application of the rule .�r/;
For every atomic relational term R and for all object terms x; y; x1; x2; y1; y2,

Cpl(10) If .x1 	 x2/10.y1 	 y2/ 2 b, then either x110y1 2 b or x210y2 2 b, obtained
by an application of the rule .10/;

Cpl(�10) If .x1 	 x2/�10.y1 	 y2/ 2 b, then both x1�10y1 2 b and x2�10y2 2 b,
obtained by an application of the rule .�10/;

Cpl(10Cut) If x10y 2 b, then for all object terms u and t , either .x 	 u/10.y 	 t/ 2 b
or .x 	 u/�10.y 	 t/ 2 b, obtained by an application of the rule .10Cut);

Cpl(rUr) For every u 2 OUrFL and for all object terms t1 and t2, u10.t1 	 t2/ 2 b,
obtained by an application of the rule .rUr/.

The notions of a complete FL-proof tree and an open branch of an FL-proof tree are
defined as in RL-logic (see Sect. 2.5).

Although, the rules .10/ and .�10/ do not preserve the formulas of the form .x1 	
x2/1

0.y1 	y2/ and .x1 	x2/�10.y1 	y2/, respectively, we can show that the closed
branch property holds. The proof is similar to the proof of Proposition 2.8.1.



5.4 Dual Tableau for Fork Logic 113

Let b be an open branch of an FL-proof tree. We define a branch structure Mb D
.U b; Urb;	b; mb/ as follows:

� U b D OT FL;
� x 	b y D x 	 y, for all x; y 2 U b;
� mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for every atomic relational FL-term
R;

� Urb D fx 2 U b W 8u; t 2 U b .x; u 	b t/ 62 mb.10/g;
� mb extends to all the compound relational terms as in FL-models.

Proposition 5.4.2 (Branch Model Property). For every open branch b of an FL-
proof tree, Mb is an FL-model.

Proof. Clearly, U b is a non-empty set. Moreover, as in RL.1; 10/-logic, mb.1/ and
mb.10/ satisfy all the required conditions. Now we show that Mb satisfies all the
conditions that are specific for FL-logic, i.e., the conditions concerning operation 	.

To show condition .	1/ observe that by the completion condition Cpl(rUr), for
every x 2 OUrFL and for all y1; y2 2 OT FL, x10.y1 	 y2/ 2 b. Thus .x; y1 	
y2/ 62 mb.10/, and hence Urb is a non-empty set such that OUrFL � Urb . Since
..y1 	 y2/; .y1 	 y2// 2 mb.10/ for all y1; y2 2 U b , we have y1 	 y2 2 U b n Urb .
Therefore, Urb is a proper subset of U b . Hence, the condition .	1/ is satisfied.

Now, we show condition (	2). Assume ..x1 	b x2/; .y1 	b y2// 2 mb.10/, that
is .x1 	 x2/10.y1 	 y2/ 62 b. Suppose .x1; y1/ 62 mb.10/ or .x2; y2/ 62 mb.10/, so
x11
0y1 2 b or x210y2 2 b. If x110y1 2 b, then by Cpl(10Cut), either .x1	x2/10.y1	

y2/ 2 b or .x1 	 x2/�10.y1 	 y2/ 2 b. The first case is not possible, therefore .x1 	
x2/�10.y1 	 y2/ 2 b. Thus, by the completion condition Cpl(�10), x1�10y1 2 b, a
contradiction. In case x210y2 2 b, the proof is similar. Now, assume that .x1; y1/ 2
mb.10/ and .x2; y2/ 2 mb.1/, that is x110y1 62 b and x210y2 62 b. Suppose that
..x1 	b x2/; .y1 	b y2// 62 mb.10/, that is .x1 	 x2/10.y1 	 y2/ 2 b. Thus by the
completion condition Cpl(10), either x110y1 2 b or x210y2 2 b, a contradiction.
Therefore, the condition (	2) is satisfied. Hence, Mb is an FL-model. ut
Let vb be a valuation in Mb such that:

� vb.x/ D x, for every x 2 OV FL [OUrFL;
� vb.x 	 y/ D vb.x/ 	b vb.y/, for all x; y 2 OT FL.

It is easy to see that vb.x 	 y/ D x 	 y, for all x; y 2 OT FL. Note also that vb is
well defined. Indeed, since OUrFL � Urb , for every x 2 OUrFL, vb.x/ 2 Urb .

Proposition 5.4.3 (Satisfaction in Branch Model Property). Let b be an open
branch of an FL-proof tree. Then for every FL-formula ', if Mb; vb ˆ ', then
' 62 b.

Proof. The proof is by induction on the complexity of formulas. The atomic case
can be proved as in Sect. 2.5 and it uses the closed branch property. By way of
example, we show the proposition for specific compound fork formulas.



114 5 Dual Tableaux for Fork Algebras

Assume that .x; y/ 2 mb.RrS/, that is there are u; t 2 OT FL such that
.y; .u 	b t// 2 mb.10/, .x; u/ 2 mb.R/, and .x; t/ 2 mb.S/. Then, by the induction
hypothesis, y10u 	 t 62 b, xRu 62 b, and xSt 62 b. Suppose that x.RrS/y 2 b. By
the completion condition Cpl(r), either y10u 	 t 2 b or xRu 2 b or xSt 2 b, a
contradiction.

Now, assume that .x; y/ 2 mb.�.RrS//. Then, for all u; t 2 OTFL ei-
ther .y; .u 	b t// 62 mb.10/ or .x; u/ 62 mb.R/ or .x; t/ 62 mb.S/. Suppose
x�.RrS/y 2 b. By the completion condition Cpl(�r), for some u; t 2 OV FL,
y�10.u 	 t/ 2 b, x�Ru 2 b, and x�St 2 b. Then, by the induction hypothesis,
.y; .u 	b t// 2 mb.10/, .x; u/ 2 mb.R/, and .x; t/ 2 mb.S/, a contradiction. ut
The quotient model Mb

q D .U bq ; Urbq ;	bq; mbq/ is defined in an analogous way as in
Sect. 2.7:

� U bq D fkxk W x 2 U bg and Urbq D fkxk W x 2 Urbg, where kxk is the

equivalence class of mb.10/ generated by x;
� mbq.R/ D f.kxk; kyk// 2 U bq � U bq W .x; y/ 2 mb.R/g, for every atomic rela-

tional term R;
� kxk 	bq kyk D kx 	 yk, for all kxk; kyk 2 U bq ;

� mbq extends to all the compound relational terms as in the FL-models.

The valuation vbq is defined as usual, i.e., vbq.x/
dfD kxk, for all x 2 OTFL. It is easy

to see that vbq is a valuation in an FL-model Mb
q . As in Sect. 2.7, it can be proved

that Mb
q is a standard FL-model satisfying the same formulas as branch model Mb .

Therefore, the following theorem holds:

Theorem 5.4.1 (Soundness and Completeness of FL). For every FL-formula ',
the following conditions are equivalent:

1. ' is FL-valid;
2. ' is true in all standard FL-models;
3. ' is FL-provable.

By the above theorem and Theorem 5.3.1, we have:

Theorem 5.4.2. For every FL-term R and for any two different variables x; y 2
OV FL, the following conditions are equivalent:

1. R D 1 is true in all full fork algebras with urelements;
2. xRy is FL-provable.

As a consequence, by Theorem 5.3.2, the following holds:

Theorem 5.4.3. For every FL-term R and for any two different variables x; y 2
OV FL, if R D 1 is true in all full fork algebras, then xRy is FL-provable.



5.4 Dual Tableau for Fork Logic 115

Example. Consider the following equations:

.1 I Œ.�.1r1/�1 I �.1r1//\ 10� I 1 D 1;

..10r1/�1/�1 I .1r10/�1 D 1:
The first equation is true in the fork algebras with urelements, while the second
equation, 	M I � D 1, is true in all fork algebras (see Proposition 5.2.1(7.)). Let x
and y be any different object variables. Due to Theorems 5.3.1 and 5.4.1 the truth
of the above equations is equivalent to FL-provability of the following formulas,
respectively:

x1 I Œ.�.1r1/�1 I �.1r1//\ 10� I 1y;

x..10r1/�1/�1 I .1r10/�1y:

Figures 5.3 and 5.4 present FL-proofs of these formulas, respectively.

x1 I Œ.�.1r1/�1 I�.1r1// \ 10� I 1y
����

x1z; : : :
closed

����
z1y; : : :
closed�

.I / twice with z 2OUrFL

zŒ.�.1r1/�1 I�.1r1//\ 10�z; : : :

��� .\/ �
��

z10z; : : :
closed

zŒ.�.1r1/�1 I�.1r1//�z; : : :
���� .I / with z

			

z�.1r1/�1z; : : :

�
.��1/

z�.1r1/z; : : :

�
.�r/ with new u; t 2OV FL

z�10.u � t /; : : :

�
.rUr/ with u and t

z�10.u � t /; z10.u � t /; : : :
closed

z�.1r1/z; : : :

�
.�r/ with new u; t 2OV FL

z�10.u � t /; : : :

�
.rUr/ with u and t

z�10.u � t /; z10.u � t /; : : :
closed

Fig. 5.3 An FL-proof of x1 I Œ.�.1r1/�1 I�.1r1//\ 10� I 1y



116 5 Dual Tableaux for Fork Algebras

x..10r1/�1/�1 I .1r10/�1y

�����
				
.I / with x � y

x..10r1/�1/�1.x � y/; : : :

�
.�1/ twice

x.10r1/.x � y/; : : :
�����

�

.r/, u WD x and t WD y �
��

.x � y/10.x � y/; : : :
closed

x10x; : : :
closed

x1y; : : :
closed

.x � y/.1r10/�1y; : : :

�
.�1/

y.1r10/.x � y/; : : :
�

���

�

.r/, u WD x and t WD y �
��

.x � y/10.x � y/; : : :
closed

y1x; : : :
closed

y10y; : : :
closed

Fig. 5.4 An FL-proof of x..10r1/�1/�1 I .1r10/�1y

5.5 Relational Interpretation of First-Order Theories

Much the same as relational logic RL.1; 10/ serves as a tool for presentation of
languages of propositional logics and for relational reasoning in these logics, fork
logic is expressive enough for relational interpretation of first-order languages. The
computer science applications of fork logic are concerned with program construc-
tion based on binary relations. Within the FL-framework any program is thought
of as a relation which it establishes between input and output data. Since pro-
gram specifications are often presented in a first-order language, fork logic and
its deductive tools enable us to derive programs from their specifications, see e.g.,
[FBH01, Fri02, FGSB06].

In this section we briefly present the main steps of the translation of a first-order
language with function symbols and without the identity predicate into terms of the
logic FL. A detailed description of the translation procedure and the proofs of the
theorems of this section can be found in [Fri02].

Now, we recall the definition of the first-order language dealt with in this section.
Let FOL be a first-order language built from the symbols of the following pairwise
disjoint sets:

� OV FOL – a set of individual variables;
� OCFOL – a set of individual constants;
� FFOL – a set of function symbols;
� PFOL – a set of predicate symbols;
� f:;_;^; 9;8g – the set of propositional operations and quantifiers.

In order to reflect the intuition of relations as programs, we assume that with every
n-ary predicate symbol P , n � 1, there are associated two natural numbers r and
s such that r C s D n with intended meaning that P acts on r input objects and s
output objects.



5.5 Relational Interpretation of First-Order Theories 117

The set TFOL of FOL-terms is the smallest set satisfying:

� OV FOL [OCFOL � TFOL;
� If f 2 FFOL is an n-ary function symbol, n � 1, and t1; : : : ; tn 2 TFOL, then
f .t1; : : : ; tn/ 2 TFOL.

Atomic FOL-formulas are of the form P.t1; : : : ; tn/, where P 2PFOL is an
n-ary predicate symbol, n � 1, and t1; : : : ; tn 2 TFOL. The set of FOL-formulas is
the smallest set including all atomic FOL-formulas and closed with respect to the
propositional operations and quantifiers.

A FOL-model is a structure M D .U;m/ such that U is a non-empty set and m
is the meaning function satisfying:

� m.c/ 2 U , for any c 2 OCFOL;
� m.f /WU n ! U is an n-ary function on U , for every n-ary function symbol
f 2 FFOL;

� m.P / � U n, for any n-ary predicate symbol P 2 PFOL;
� m extends to all terms so that m.t/WUOV FOL ! U is a function from the set of

valuations in M into U such that for a valuation vWOV FOL ! U its value is
defined as:

if t D x, x 2 OV FOL, then m.x/.v/ D v.x/,
if t D c, c 2 OCFOL, then m.c/.v/ D m.c/,
m.f .t1; : : : ; tn//.v/ D m.f /.m.t1/.v/; : : : ; m.tn/.v//.

Let M be a FOL-model. Satisfaction of a FOL-formula ' in M by a valuation v,
M; v ˆ ', is defined inductively as follows:

� M; v ˆ P.t1; : : : ; tn/ iff .m.t1/.v/; : : : ; m.tn/.v// 2 m.P /;
� M; v ˆ :' iff M; v 6ˆ ';
� M; v ˆ ' _  iff M; v ˆ ' or M; v ˆ  ;
� M; v ˆ ' ^  iff M; v ˆ ' and M; v ˆ  ;
� M; v ˆ 9x' iff there exists v0 in M such that for all z ¤ x, v.z/ D v0.z/ and

M; v0 ˆ ';
� M; v ˆ 8x' iff for all v0 in M, if v.z/ D v0.z/ for all z ¤ x, then M; v0 ˆ '.

The language of FLFOL is an FL-language endowed with the symbols of binary
relational constants corresponding to the object constants, function symbols, and
predicate symbols of FOL. More precisely, the language of FLFOL is an FL-language
with the following set of relational constants:

RCFLFOL D f1; 10g [ fRc W c 2 OCFOLg [ fRf W f 2 FFOLg [ fRP W P 2 PFOLg:

The semantics of the FLFOL-language is defined so that in the models of FLFOL

the sets of urelements represent the universes of FOL-models. The function 	 in
an FLFOL-model enables us to represent each n-tuple of elements of the model as a
single element. The specific relational constants of FLFOL are interpreted as binary
relations satisfying the conditions which reflect their role in the language of FOL.



118 5 Dual Tableaux for Fork Algebras

An FLFOL-model is a standard FL-model M D .U; Ur;	; m/ where:

.Rc/ If c is an object constant of FOL-language, then m.Rc/ is a binary relation
C which is a point relation, i.e., it satisfies the following conditions:

(C1) C�1 IC � 10Ur,
(C2) 1 IC D C ,
(C3) C I 1 D 1,

(Rf ) If f is an n-ary function symbol of FOL-language, then m.Rf / is a binary
functional relation F whose domain consists of elements of the form a1 	 : : : 	 an
with a1; : : : ; an 2 Ur . This is guaranteed by the following conditions:

(F1) F�1 IF � 10Ur,
(F2) .10Ur/

n IF D F ,

.RP / If P is an n-ary predicate of FOL-language such that n D rC s, thenm.RP /
is a binary relation P 0 such that its domain consists of elements of the form a1 	
: : : 	 ar , for a1; : : : ; ar 2 Ur , which represent strings of r urelements, and its range
consists of objects of the form a01 	 : : : 	 a0s , for a01; : : : ; a0s 2 Ur , which represent
strings of s urelements. This is guaranteed by the following condition:

(P) .10Ur/
r IP 0 I .10Ur/

s D P 0.
The elements of set Ur in FLFOL-models are intended to represent objects of the
universe of a FOL-model. Condition (C1) says that C is a functional relation on a
set of urelements, (C2) says that C is left ideal, and (C3) says that C is non-empty.
It is intended that the elements from the range of C represent objects of a FOL-
model. Condition (F1) says that F is a function on the set of urelements. Condition
(F2) says that domain of relation F represents n-tuples of arguments of function
f . Condition (P) guarantees that relation P 0 represents n-tuples of arguments of
predicate P with an indication of input and output arguments. In Propositions 5.5.1
and 5.5.2 we show how these postulates can be realized.

The first step towards a translation of the formulas of FOL into terms of FLFOL

is to assign binary relation symbols to all the symbols of FLFOL. We define the
mapping � 0 from the symbols of FOL to relation variables or relation constants of
FLFOL as follows:

� � 0.c/ D Rc , for any c 2 OCFOL;
� � 0.f / D Rf , for any n-ary function symbol f 2 FFOL;
� � 0.P / D RP , for any n-ary predicate symbol P 2 PFOL.

The translation of FOL-terms into FL-terms is defined relative to a string of free
variables in a FOL-formula, where the terms appear. Let ' be a FOL-formula with
the free variables x1; : : : ; xm, m � 1. Then we define the translation �' of FOL-
terms as follows:



5.5 Relational Interpretation of First-Order Theories 119

� If xi 2 OV FOL appears among x1; : : : ; xm, then:

�'.xi /
dfD

8̂
<̂
ˆ̂:

� I : : : I �„ ƒ‚ …
i�1 times

I	 if i ¤ m

� I : : : I �„ ƒ‚ …
m�1 times

if i D m

where � and 	 are projection relations defined in Sect. 5.2 and for i D 1:

� I : : : I �„ ƒ‚ …
i�1 times

dfD 10;

� If c 2 OCFOL and c appears in ', then �'.c/
dfD � 0.c/,

� If f .t1; : : : ; tn/ 2 TFOL and f .t1; : : : ; tn/ appears in ', then:

�'.f .t1; : : : tn//
dfD .�'.t1/r : : :r�'.tn// I � 0.f /:

It follows that the translation of a term f .t1; : : : ; tn/ is obtained by making a con-
traction of the string t1; : : : ; tn of terms to an element t D t1	.t2	: : : .tn�1	tn/ : : :/
and by replacing f by a functional relation � 0.f / which takes t as its argument.

Now, we define a translation � of FOL-formulas into FLFOL-terms:

� If ' is an atomic formula of the form P.t1; : : : ; tr ; t
0
1; : : : ; t

0
s/, then:

�.'/
dfD Œ.�'.t1/r : : :r�'.tr//r.�'.t 01/r : : :r�'.t 0s// I � 0.P /�1� I 2�1 I 1;

and 2
dfD 10r10, i.e., 2 consists of the elements of the form .a; a 	 a/, where

a 2 U for some set U ;

� �.:'/ dfD ��.'/;
� �.' _  / dfD �.'/ [ �. /;
� �.' ^  / dfD �.'/ \ �. /;
� �.9x'/ dfD .�'.x1/r : : :r�'.xi�1/r1Urr�'.xiC1/r : : :r�'.xm// I �.'/,

where x1; : : : ; xm is a string of all the free variables of ' and x appears in it on
the i th position;

� �.8x'/ dfD �.:9x:'/.
Note that every FOL-formula �.'/ represents a right ideal relation.

Proposition 5.5.1. For every FOL-model M D .U;m/ there exists an FLFOL-
model M0 D .U 0; Ur;	; m0/ such that Ur D U 
 U 0 and for every FOL-formula
' with k free variables, M ˆ ' iff m0.�.'// D .10Ur/

k I 1.



120 5 Dual Tableaux for Fork Algebras

Proof. The model M0 is defined to be a standard FL-model, i.e., relational variables
are interpreted as binary relations on U 0 and constants 1 and 10 are interpreted as
m0.1/ D U � U andm0.10/ D IdU 0 , respectively. Furthermore, we define:

� For all a; b; c 2 U 0, a 	 b D c iff .c; a/ 2 m0.	/ and .c; b/ 2 m0.�/;
� m0.Rc/

dfD f.a;m.c// W a 2 U 0g, for any object constant c 2 OCFOL;

� m0.Rf /
dfD f.a1 	 : : : 	 an; b/ W m.f /.a1; : : : ; an/ D bg, for any n-ary function

symbol f 2 FFOL;

� m0.RP /
dfD f..a1 	 : : : 	 ar ; / 	 .a01 	 : : : 	 a0s/; b/ W .a1; : : : ; ar ; a01; : : : ; a0s/ 2

m.P /; b 2 U 0g, for any n-ary predicate symbol P 2 PFOL such that n D r C s.
The model defined above satisfies all the required conditions. ut
Proposition 5.5.2. For every FLFOL-model M0 D .U 0; Ur;	; m0/ there exists a
FOL-model M D .U;m/ such that U D Ur and for every FOL-formula ' with
free variables x1; : : : ; xm, m � 1, (or in case of formulas 9x' or 8x', x1; : : : ; xm
are free variables of '), and for every s D a1	 : : :	am 2 U 0 with a1; : : : ; am 2 Ur ,
the following holds:

s 2 Dom.m0.�.'/// iffM; v ˆ ' for all v in M such that v.xi / D ai ; i D 1; : : : ; m.

Proof. The model M is constructed as follows:

� m.c/
dfD Rng.m0.Rc//;

� If .a1 	 : : : 	 an; b/ 2 m0.Rf /, then we put m.f /.a1; : : : ; an/ D b;
� If ..a1 	 : : : 	 ar / 	 .a01 	 : : : 	 a0s/; b/ 2 m0.RP /, then we put .a1; : : : ; ar ;
a01; : : : ; a0s/ 2 m.P /.

The conditions .Rc/, .Rf /, and .RP / assumed in FLFOL-models guarantee that
the meanings of the relational constants Rc , Rf , and RP in model M0 are binary
relations on set Ur and satisfy the required conditions. ut
Theorem 5.5.1. For every FOL-formula ' and for all object variables x; y 2
OV FLFOL , the following conditions are equivalent:

1. ' is FOL-valid;
2. In every FLFOL-model M D .U; Ur;	; m/,m.�.'// D 1;
3. x�.'/y is FLFOL-valid.



Chapter 6
Dual Tableaux for Relational Databases

6.1 Introduction

We present a calculus TRL of typed relations introduced in [MO04] which is
intended to be a formal tool both for representing relational databases [Cod70] and
also for reasoning with them. Typed relations are heterogeneous relations, i.e., the
objects related with a relation may range over different domains. Three features of
this calculus distinguish it from the calculus of ordinary relations in the Tarski-style.

First, associated with each relation is its type, which is a finite subset of a set
whose members are interpreted as attributes. In this way we cope with the fact that
database relations are determined by (finite) subsets of a set of attributes. There-
fore, the relations of the calculus are relative in the sense suggested in [Orł88] and
[DO02].

Second, as with ordinary relations, each typed relation has an arity, which is the
cardinality of its type. However, for any n � 1, the order of the elements in the n-
tuples belonging to a relation does not matter. This reflects the well-known property
of database relations that the order of the attributes in the data table is immaterial.
Tuples are treated as mappings that assign to an attribute an element of its domain.

Third, the calculus is comprised of relations of various arities and some opera-
tions may act on relations of not necessarily the same arity.

The basic operations on typed relations are intersection, complement, product,
and projection. The other typical operations used in relational databases, namely,
union, complement of a relation with respect to another relation, natural join, divi-
sion, and selection are definable in terms of these basic operations. Analogous to
the logics of binary relations, formulas of the logic of typed relations are built with
typed relational terms and a string of object variables and/or constants of the appro-
priate length. We present a dual tableau for this logic and prove its completeness.

Next, following [BO97], we discuss a relational representation of database
dependencies. All the typical dependencies can be expressed in terms of indiscerni-
bility relations in the set of tuples of a relation in a relational database. Along these
lines, any relation generated from indiscernibility relations with the operations from
algebras of binary relations may be regarded as a generalized database dependency.
This allows us to apply a rule extension of the dual tableau of logic RL.1; 10/ to

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 6,
c� Springer Science+Business Media B.V. 2011

121



122 6 Dual Tableaux for Relational Databases

the verification of these dependencies and their implications. Since indiscernibility
relations are equivalence relations we have to add the rules reflecting reflexivity,
symmetry, and transitivity to the rules of the system for RL.1; 10/. The dual tableau
obtained in this way is sound and complete.

6.2 The Calculus of Typed Relations

Let˝ be an infinite set whose elements are referred to as attributes. To each a 2 ˝
there is associated a non-empty set Da called the domain of attribute a. Types of
relations, usually denoted by capital letters A;B ,. . . , etc., are finite subsets of ˝ ,
including the empty set; clearly, if A and B are types, then A[B , A\B , and A�B
are types. A ] B denotes the union of disjoint sets A0 and B 0 obtained from A and
B , respectively, by renaming their elements, if necessary. Consequently, card(A) =
card(A0), card(B) = card(B 0), and A0 \B 0 D ;. In particular, A]A is the union of
two disjoint sets each of which has the same cardinality as A. This understanding of
] allows us to assume that ] is commutative and associative and that A ] ; D A.
It is a common practice in database systems to rename attributes as needed. To
enable renaming, we assume that for every attribute a 2 ˝ , there are infinitely
many attributes ai such that Dai

D Da. When forming A ] B , if a0 2 A0 and
b0 2 B 0 correspond to a 2 A and b 2 B , respectively, it is necessary thatDa0 D Da
and Db0 D Db . The set of all types will be denoted by T˝ . Our definition of the
disjoint union involves renaming implicitly.

Let DA D SfDa W a 2 Ag; then in particular, D; D ;. A tuple of type A is a
map u W A! DA such that for every a 2 A, u.a/ 2 Da. The collection of all tuples
of type A is called the relation 1A; for each a 2 ˝ the collection of tuples of type
fag is denoted by 1a. Let 1; D feg, where e is the empty tuple. For each a 2 ˝ ,
Da ¤ ;; therefore 1a ¤ ;. Consequently, 1A ¤ ; for all A 2 T˝ .

The above definitions imply that 1A]B D ft W 9u 2 1A; 9v 2 1B such that
if a 2 A then t.a/ D u.a/ and if b 2 B then t.b/ D v.b/g. Observe that we
have defined ] so that 1A]B D 1B]A, 1A].B]C/ D 1.A]B/]C , and if B � A,
then 1A D 1B].A�B/. We often denote tuples t 2 1A]B by uv, and say t D uv,
where u 2 1A and v 2 1B . Clearly, uv is a mapping, uv W A ] B ! DA]B , where
DA]B D DA[DB . Our notation uv is analogous to the relational database notation
for unions of sets of attributes: uv is the union of two mappings, where a mapping
is understood as a set of pairs satisfying the well known functionality requirements.
Thus uv D vu; similarly, .uv/w D u.vw/. Finally, for any A 2 T˝ , and for any
u 2 1A, ue D eu D u.

A relation R is said to be of type A whenever it is a subset of 1A.
The basic operations on typed relations are as follows. Let A;B 2 T˝ :

� Intersection .\/
Let R;S � 1A; then R \A S dfD fu 2 1A W u 2 R and u 2 Sg.



6.2 The Calculus of Typed Relations 123

� Projection .˘/

Let B � A and let R � 1A; then ˘A
BR

dfD fu 2 1B W 9v 2 1A�B such that
uv 2 Rg.

� Product .�/
Let R � 1A and S � 1B ; then R �A]B S dfD fuv 2 1A]B W u 2 1A, v 2 1B ,
u 2 R, and v 2 Sg.

� Complement .�/
Let R � 1A; then �AR dfD .1A�R/ D fu 2 1A W u 62 Rg.

We define the constant 0A as follows: 0A
dfD �A1A. Clearly, 0A D ; for allA 2 T˝ .

Union, R [A S , and complement of S with respect to R, R�AS , can easily be
defined in terms of the above operations. Other operations are typically used in
databases; we give their set theoretic definition and the corresponding expression in
terms of the above four basic operations:

� Natural join (FG)

Let R � 1A and S � 1B ; then R FGA[B S dfD fuvw 2 1A[B W u 2 1A�.A\B/,
v 2 1A\B , w 2 1B�.A\B/, uv 2 R, and vw 2 Sg.
The corresponding term of the calculus of typed relations is:

.R �A].B�.A\B// 1B�.A\B//\A].B�.A\B// .S �B].A�.B\A// 1A�.B\A//:

� Division .�/
Let B � A, let R � 1A and S � 1B , S ¤ 0B ; then R �AB S dfD ft 2 1A�B W
8s 2 S , ts 2 Rg.
The representation in the calculus of typed relations is:

˘A
A�BR�A�B.˘A

A�B..˘
A
A�BR �.A�B/]B S/�AR//:

A general notion of selection operation, namely select S in R is defined for any
B � A, S � 1B and R � 1A as follows. Its application to such S and R yields the
tuples ut 2 R such that u 2 S . We give its set theoretic definition and an equivalent
formulation in terms of the four basic operations:

� Selection .�/

Let B � A, let R � 1A and let S � 1B ; then �AB .S;R/
dfD fut 2 1A W u 2 1B ,

t 2 1A�B , u 2 S , and ut 2 Rg.
The representation in the calculus of typed relations is:

.S �B].A�B/ 1A�B/ \A R:
Now, we define a binary operation, ˇa;b , which is useful to represent entailment.
Let R;S � 1A and let a; b 2 A; a ¤ b. Then:

Rˇa;b S dfD .1A�fa;bg �˘A
a R/ �˘A

b S:



124 6 Dual Tableaux for Relational Databases

In [IL84] it is shown that the operations of Codd’s relational algebra [Cod70]
may be defined in terms of intersection, complement, and cylindrification. It fol-
lows that Codd’s relational algebra can be treated as a disguised version of cylindric
set algebra. The approach to relational databases via cylindrification operation has
the advantage that all operations are total, since all relations are of the same type.
The disadvantage of this approach is that all relations are forced to be of the same
arity, and in real-life databases query checking is computationally more efficient if
we use relations with varying arities. Moreover, there is no completeness theorem
for the cylindrical version of relational database theory. For this reason, we choose
to develop a typed calculus, with the four basic operations defined above. Other
operations definable in terms of intersection, projection, product, and complement
include the update operations (see [Ngu91]) and other joins.

We can easily see that with typed relations we can express all of the fundamen-
tal notions of relational database theory: schema – a set of attributes, relation over
a schema – a typed relation, tuple and database – a set of typed relations. We of-
ten write explicitly the types of both the operations and their argument relations,
although some typing information may be redundant.

Some arithmetics laws of the calculus of typed relations are listed in the follow-
ing propositions. The proofs can be found in [MO06].

Proposition 6.2.1 (Properties of ˘A
B ). For all A;B 2 T˝ and for all R;S � 1A,

if B � A, then:

1. ˘A
B .1

A/ D 1B , ˘A
B .0

A/ D 0B ;
2. ˘A

B .R [A S/ D ˘A
BR [B ˘A

BS ;
3. ˘A

B .R \A S/ � ˘A
BR \B ˘A

BS ;

4. �B˘A
BR � ˘A

B .�AR/;
5. ˘A

AR D R;
6. ˘A; R � 1; and if R ¤ 0A, then ˘A; R D 1;.
Proposition 6.2.2 (Properties of �AB ). For all A;B 2 T˝ , for all R � 1A, and for
all S; T � 1B , if B � A, then:

1. �AB .S [B T;R/ D �AB .S;R/[A �AB .T;R/;
2. �AB .S;R [A T / D �AB .S;R/[A �AB .S; T /;
3. �AB .S \B T;R/ D �AB .S;R/\A �AB .T;R/;
4. �AB .S;R \A T / D �AB .S;R/\A �AB .S; T /;
5. �AB .�BS;R/ � �A�AB .S;R/;
6. �AB .0

B ; R/ D 0A;
7. �AB .S; 0

A/ D 0A.

Proposition 6.2.3 (Properties of �). For all A;B;C 2 T˝ , for all R 2 1A; S 2
1B ; T 2 1C :

1. R �A]B S D S �B]A R;
2. .R �A]B S/ �.A]B/]C T D R �A].B]C/ .S �B]C T /.



6.3 A Logic of Typed Relations 125

Proposition 6.2.4 (Properties of FG). For all A;B;C 2 T˝ , for all R 2 1A;

S 2 1B ; T 2 1C :

1. R FG A[A R D R;
2. R FG A[B S D S FG B[A R;
3. .R FG A[B S/ FG .A[B/[C T D R FG A[.B[C/ .S FG B[C T /.
Proposition 6.2.5 (Properties ofˇa;b). For all A 2 T˝ , for all a; b 2 A such that
a ¤ b, and for all R;S; P;Q � 1A, if Q ¤ ;, then:

1. 1A ˇa;b �A1A D 0A;
2. .1A ˇa;b �A1A/ˇa;b 1A D 0A;
3. 1A ˇa;b 1A D 1A;
4. Rˇa;b 0A D 0A D 0A ˇa;b R;
5. Rˇa;b .S ˇa;b P/ D .Rˇa;b S/ˇa;b P .

Let R;S � 1A and let a; b 2 A; a ¤ b. Then:

R �Aa;b S dfD ..1A ˇa;b �AR/ˇa;b 1A/ [A S:

Proposition 6.2.6. Let R;S � 1A. Then for all a; b 2 A such that a ¤ b the
following hold:

1. 1A �A
a;b

S D S ;

2. If R ¤ 1A, then R �A
a;b

S D 1A.

The following theorem shows that entailment in the calculus of typed relations can
be expressed in its language.

Theorem 6.2.1. Let A;B 
 ˝ , let R � 1A; S � 1B , a; b 2 A; a ¤ b, and let
C D A [ B . Then the following are equivalent:

1. R D 1A implies S D 1B ;
2. R � 1C�A �C

a;b
S � 1C�B D 1C .

6.3 A Logic of Typed Relations

In this section we present a language of typed relations introduced in [MO06] whose
intended models are databases. Let ˝ be a set of attributes as defined in Sect. 6.2.
Let T˝ be a set of types based on ˝ . Then the expressions of the language of the
logic TRL of typed relations over ˝ are built from the following pairwise disjoint
sets of symbols:

� feg – the empty tuple;
� OV a

TRL – an infinite set of object variables of type a, for each a 2 ˝; by OVA
TRL

we denote the set
S
a2A OV a

TRL, where A 2 T˝ ;



126 6 Dual Tableaux for Relational Databases

� OCa
TRL – a set of object constants of type a, for each a 2 ˝; by OCA

TRL we
denote the set

S
a2A OCA

TRL, where A 2 T˝ ;
� OSaTRL D OV a

TRL [OCa
TRL; by OSATRL we denote the set

S
a2A OSaTRL, where

A 2 T˝ ; we presume OC;TRL D feg;
� RVA

TRL – a set of relational variables of type A, for each A 2 T˝ ;
� RCA

TRL – a set of relational constants of type A, for each A 2 T˝ ; 0A; 1A 2
RCA

TRL;
� OP TRL – a set of operations of varying arities such that: for every k-ary operation

# 2 OP TRL, k � 1, there is associated a sequence �.#/ D .A1; : : : ; Ak; A/ of
kC1 elements of T˝ , whereAi is the type of the i th argument of #, i D 1; : : : ; k,
A is the type of the expression obtained by performing the operation #.

We presume: OP TRL � f˘A
B , [A, \A, �A, �A]C :A;B;C 2 T˝ ; B � Ag, where

�.˘A
B / D .A;B/, �.[A/ D �.\A/ D .A;A;A/, �.�A/ D .A;A/, and �.�A]C / D

.A; C;A] C/. It follows that �.�AB / D .A;B;A�B/, �.�AB / D .B;A;A/, and for
anyD 2 T˝ , �.FGA[D/ D .A;D;A [D/.

Assumptions concerning the elements of OSA]BTRL and OS;TRL, analogous to the
corresponding assumptions on the set of tuples, are assumed to hold. It follows from
the definitions that OSA]BTRL D OSB]ATRL and OS.A]B/]CTRL D OSA].B]C/TRL . As with
the notation defined for the tuples, if u denotes a variable from OVA]B

TRL , it may
be replaced by an expression vw, where v 2 OVA

TRL and w 2 OVB
TRL. The set of

atomic terms RAA
TRL is defined as the set RVA

TRL [RCA
TRL. We assume that for all

A, OSATRL ¤ ; and OS;TRL D feg.
For each A 2 T˝ , the set of terms of type A, RTA

TRL, is the smallest set such
that:

� RAATRL � RTA
TRL;

� If # 2 OP TRL is such that �.#/ D .A1; : : : ; Am; A/ and Fi 2 RTAi

TRL, i D
1; : : : ; m, then #.F1; : : : ; Fm/ 2 RTA

TRL.

A formula in the language of the logic TRL of typed relations over ˝ is an expres-
sion of the form F.u/, where F 2 RTA

TRL and u 2 OSATRL, for some A 2 T˝ .
A TRL-model for the language of the logic TRL of typed relations over ˝ is a

system M D ffA W A 2 T˝g; fUA W A 2 T˝g; e;mg, where UA is a non-empty set
of tuples of type A, U ; D feg, andm is a meaning function subject to the following
conditions:

� If u 2 OCA
TRL, then m.u/ 2 UA and if u D vw, then m.u/ D m.v/m.w/; in

addition,m.e/ D e;
� If R 2 RAATRL, then m.R/ � UA; in particular,m.0A/ D ; and m.1A/ D UA;
� If # 2 OP TRL and �.#/ D .A1; : : : ; Ak; A/, then m.#/ is a k-ary operation

acting on relations of typesA1; : : : ; Ak and returning a relation of type A:m.#/ W
2U

A1 � � � � � 2UAk ! 2U
A

;
� m extends to all the compound relational terms as follows:

if F D #.F1; : : : ; Fk/, then m.F / D m.#/.m.F1/; : : : ; m.Fk//.
It is easy to see that each database over˝ determines a TRL-model.



6.4 Dual Tableau for the Logic of Typed Relations 127

A valuation in a TRL-model M D ffA W A 2 T˝g; fUA W A 2 T˝g; e;mg is a
function vWSfOSATRLWA 2 T˝g !SfUAWA 2 T˝g such that:

� If u 2 OVA
TRL, then v.u/ 2 UA;

� If u 2 OCA
TRL, then v.u/ D m.u/;

� If u 2 OSATRL and w 2 OSBTRL, then v.uw/ D v.u/v.w/.

It follows from the definition of tuple that v.ut/ D v.tu/, v..ut/w/ D v.u.tw//, and
v.ue/ D v.eu/ D v.u/.

Let F 2 RTA
TRL and let u 2 OSATRL. The formula F.u/ is said to be satisfied in

a TRL-model M by a valuation v whenever v.u/ 2 m.F /. We say that the formula
F.u/ is true in the model M if and only if it is satisfied by all valuations in M.
Therefore if u 2 OVA

TRL, then F.u/ is true in the model M if and only if m.F / D
UA. We say that F.u/ is TRL-valid if it is true in all TRL-models.

6.4 Dual Tableau for the Logic of Typed Relations

We present a dual tableau for the language of typed relations whose semantics is
determined by the class of TRL-models.

Decomposition rules have the following forms:
For all F;G 2 RTA

TRL, B � A, u 2 OSATRL, and w 2 OSBTRL,

.[/ .F [A G/.u/
F.u/; G.u/

.�[/ �
A.F [A G/.u/
�AF.u/ j �AG.u/

.\/ .F \A G/.u/
F.u/ jG.u/ .�\/ �

A.F \A G/.u/
�AF.u/;�AG.u/

.�/ �
A�AF.u/
F.u/

.˘/
.˘A

BF /.w/

F.wt/; .˘A
BF /.w/

t 2 OSA�BTRL is any object symbol

.�˘/ �
B.˘A

BF /.w/

�AF.wt/ t 2 OVA�B
TRL is a new object variable

For all F 2 RTA
TRL, G 2 RTB

TRL, v 2 OSATRL, w 2 OSBTRL, and z 2 OSA�BTRL ,

.�/ .F �A]B G/.vw/

F.v/ jG.w/ .��/ �
A]B.F �A]B G/.vw/

�AF.v/;�BG.w/
Specific rules have the following forms:
For all F 2 RTA

TRL, ui 2 OSAi

TRL, A D A1 ] : : : ] An, 1 � i � n,



128 6 Dual Tableaux for Relational Databases

.e/
F.u1 : : : ui�1.eui / : : : un/

F.u1 : : : ui�1ui : : : un/; F .u1 : : : ui�1.eui / : : : un/

.e0/
F.u1 : : : ui�1ui : : : un/

F.u1 : : : ui�1.eui / : : : un/; F .u1 : : : ui�1ui : : : un/

.	/
F.u1 : : : un/

F.u�.1/ : : : u�.n//

where 	 is a permutation on f1; : : : ; ng

.]/ F.u1 : : : un/

F.u1 : : : ui�1v1v2uiC1 : : : un/; F .u1 : : : un/

Ai D B1 ] B2,

v1 2 OSB1

TRL, v2 2 OSB2

TRL are any object symbols

The rules .e/ and .e0/ reflect the interpretation of e as the empty tuple, the rule
.	/ reflects the fact that objects can be permuted without changing the meaning
of a formula, and the rule .]/ reflects the fact that any variable can be split into
components in such a way that its type is preserved. The language includes variables
of the empty type so that the rule ] holds for all types.

A set of TRL-formulas is said to be TRL-axiomatic whenever it includes either
of the sets of the following forms:

For any u 2 OSATRL, R 2 RAA
TRL, and F 2 RTA

TRL, F ¤ 0A,

(Ax1) fR.u/; .�AR/.u/g;
(Ax2) f1A.u/g;
(Ax3) f�A0A.u/g;
(Ax4) f.˘A; F /.e/g.
Rules for the defined operations may be given explicitly using their set theoretic
formulation. We present some examples below.

Let F 2 RTA
TRL; G 2 RTB

TRL, B � A, w 2 OSBTRL, t 2 OSA�BTRL , then:

.�/
.�AB .G; F //.wt/

G.w/ jF.wt/ .��/ �
A.�AB .G; F //.wt/

�BG.w/;�AF.wt/
if, in addition, B ¤ ;, then:

.�/ .F �AB G/.t/
�BG.w/; F .tw/ w 2 OVB

TRL is a new object variable

.��/ �A�B.F �AB G/.t/
G.w/;�A�B.F �AB G/.t/ j �AF.tw/;�A�B.F �AB G/.t/

w 2 OSBTRL is any object symbol



6.4 Dual Tableau for the Logic of Typed Relations 129

LetF 2 RTA
TRL; G 2 RTB

TRL, u 2 OSA�.A\B/TRL , v 2 OSA\BTRL , w 2 OSB�.A\B/TRL ,
then:

.FG/ .FFGA[BG/.uvw/

F.uv/ jG.vw/
.�FG/ �

A[B .FFGA[BG/.uvw/

�AF.uv/;�BG.vw/

As usual, a TRL-set is a finite set of TRL-formulas such that the first-order disjunc-
tion of its members is true in all TRL-models. Correctness of a rule is defined in a
similar way as in the relational logics of classical algebras of binary relations (see
Sect. 2.4).

Proposition 6.4.1.

1. The TRL-rules are TRL-correct;
2. The TRL-axiomatic sets are TRL-sets.

Proof. By way of example, we show correctness of the rules .�˘/ and .e/.

.�˘/ Let X be a finite set of TRL-formulas and let t be such that t ¤ w and
it does not occur in X . Assume X [ f�B .˘A

BF /.w/g is a TRL-set. Suppose X [
f�AF.wt/g is not a TRL-set. Then, there exist a TRL-model M and a valuation
v in M such that for every ' 2 X [ f�AF.wt/g, M; v 6ˆ ', which means that
v.w/v.t/ 2 m.F /, where v.w/ 2 1B and v.t/ 2 1A�B . Since X [ f�B.˘A

BF /.w/g
is a TRL-set, M; v ˆ �B.˘A

BF /.w/. Thus, for every u 2 1A�B , v.w/u 62 m.F /,
a contradiction. Now, assume that X [ f�AF.wt/g is a TRL-set. Then for every
TRL-model M and for every valuation v in M, either there exists ' 2 X such that
M; v ˆ ' or M; v ˆ �AF.wt/. By the assumption on variable t , it follows that
either there exists ' 2 X such that M; v ˆ ' or for every u 2 1A�B , v.w/u 62
m.F /. Hence, X [ f�B .˘A

BF /.w/g is a TRL-set.
.e/ Let X be a finite set of TRL-formulas. If X [ fF.u1 : : : ui�1.eui / : : : un/g is

a TRL-set, then so is X [ fF.u1 : : : ui�1.eui / : : : un/; F .u1 : : : ui�1ui : : : un/g.
Assume X [ fF.u1 : : : ui�1.eui / : : : un/; F .u1 : : : ui�1ui : : : un/g is a TRL-
set. Suppose X [ fF.u1 : : : ui�1.eui / : : : un/g is not a TRL-set. Then, there
exist a TRL-model M and a valuation v in M such that for every ' 2
X [ fF.u1 : : : ui�1.eui/ : : : un/g, M; v 6ˆ ', so v.u1/ : : : v.ui�1/v.eui / : : : v.un/ 62
m.F /. Since v.eui / D v.ui/, we obtain v.u1/ : : : v.ui�1/v.ui / : : : v.un/ 62 m.F /.
However, by the assumption M; v ˆ F.u1 : : : ui�1ui : : : un/. Hence, v.u1/ : : :
v.ui�1/v.ui / : : : v.un/ 2 m.F /, a contradiction. ut
The notions of a TRL-proof tree, a closed branch of such a tree, a closed TRL-proof
tree, and TRL-provability are defined as in Sect. 2.4.

Due to Proposition 6.4.1, we obtain:

Proposition 6.4.2. Let ' be a TRL-formula. If ' is TRL-provable, then it is TRL-
valid.

Below we list the completion conditions that are specific for the logic TRL. The
completion conditions for the rules .\/, .�\/, and .�/ are as in Sect. 2.5.

For all F;G 2 RTA
TRL, B � A, u 2 OSATRL, and w 2 OSBTRL,



130 6 Dual Tableaux for Relational Databases

Cpl(˘ ) (resp. Cpl(�˘ )) If .˘A
BF /.u/ 2 b (resp. .�B˘A

BF /.u/ 2 b), then for
every t 2 OSA�BTRL , F.ut/ 2 b (resp. for some t 2 OVA�B

TRL , �AF.ut/ 2 b),
obtained by an application of the rule (˘ ) (resp. (�˘ ));

For all F 2 RTA
TRL, G 2 RTB

TRL, v 2 OSATRL, w 2 OSBTRL, and z 2 OSA�BTRL ,

Cpl(�) (resp. Cpl(��)) If .F �A]B G/.vw/ 2 b (resp. �A]B.F �A]B G/.vw/ 2
b), for some v 2 OSATRL and w 2 OSBTRL, then either F.v/ 2 b or G.w/ 2 b
(resp. both �AF.v/ 2 b and �BG.w/ 2 b), obtained by an application of the
rule (�) (resp. (��));

For all F 2 RTA
TRL, ui 2 OSAi

TRL, A D A1 ] : : : ] An, 1 � i � n,

Cpl(e) If F.u1 : : : ui�1.eui / : : : un/ 2 b, for n � 1 and 1 � i � n, then
F.u1 : : : ui�1ui : : : un/ 2 b, obtained by an application of the rule (e);

Cpl(e0) If F.u1 : : : ui�1.ui / : : : un/ 2 b, for n � 1 and 1 � i � n, then
F.u1 : : : ui�1.eui / : : : un/ 2 b, obtained by an application of the rule (e0);

Cpl(	) If F.u1 : : : un/ 2 b, then for any permutation 	 of the indices 1; : : : ; n,
F.u�.1/ : : : u�.n// 2 b, obtained by an application of the rule (	);

Cpl(]) If F.u1 : : : un/ 2 b, for ui 2 OSAi

TRL, 1 � i � n, and Ai D B1 ] B2, then

for all v1 2 OSB1

TRL, v2 2 OSB2

TRL, F.u1 : : : ui�1v1v2uiC1 : : : un/ 2 b, obtained
by an application of the rule (]).

The notions of a complete TRL-proof tree and an open branch of a TRL-proof tree
are defined as in RL-logic (see Sect. 2.5). Due to the forms of the rules of TRL-dual
tableau, we can prove that whenever a branch of a TRL-proof tree contains both of
the formulas R.u/ and .�AR/.u/, for u 2 OSATRL and for an atomic R 2 RAA

TRL,
then the branch can be closed. Thus, the closed branch property can be proved.

Let b be an open branch of a TRL-proof tree. A branch structure

Mb D ffA W A 2 T˝g; fUA W A 2 T˝g; eb; mbg

is defined as follows:

� UA D OSATRL, for any ; ¤ A 2 T˝ ;
� U ; D feg and eb D mb.e/ D e;
� mb.c/ D c, for every c 2 OCA

TRL;
� mb.R/ D fu 2 OSATRL W R.u/ 62 bg, for every R 2 RAATRL;
� For every # 2 OP TRL, mb.#/ is defined as in TRL-models;
� mb extends to all the compound relational terms as in TRL-models.

It is easy to see that the branch structure defined above is a TRL-model. Hence, the
branch model property holds. Let vb be a valuation in Mb such that vb.u/ D u, for
every u 2 OSTRL.

Proposition 6.4.3 (Satisfaction in Branch Model Property). For every open
branch b of a TRL-proof tree and for every TRL-formula ', if Mb; vb ˆ ', then
' 62 b.



6.4 Dual Tableau for the Logic of Typed Relations 131

Proof. The proof is by induction on the complexity of formulas. The atomic case
can be proved as in Sect. 2.5, it uses the closed branch property. By way of example,
we show the proposition for some compound formulas that are specific for TRL-
logic.

Let ' D .˘A
BF /.w/. Assume Mb; vb ˆ .˘A

BF /.w/. Then there exists u 2
OSA�BTRL such that wu 2 mb.F /, and by the induction hypothesis, F.wu/ 62 b.
Suppose .˘A

BF /.w/ 2 b. Then by the completion condition Cpl(˘ ), for every u 2
OSA�BTRL , F.wu/ 2 b, a contradiction.

Let ' D �A]B.F �A]B G/.uw/. Assume Mb; vb ˆ �A]B.F �A]B G/.uw/.
Then u 62 mb.F / or w 62 mb.G/. Suppose �A]B .F �A]B G/.uw/ 2 b. Then, by
the completion condition Cpl(��), �AF.u/ 2 b and �BG.w/ 2 b. Thus, by the
induction hypothesis, u 2 mb.F / and w 2 mb.G/, a contradiction. ut
As usual, Proposition 6.4.3 enables us to prove:

Proposition 6.4.4. Let ' be a TRL-formula. If ' is TRL-valid, then it is TRL-
provable.

Finally, by Propositions 6.4.2 and 6.4.4, we have:

Theorem 6.4.1 (Soundness and Completeness of TRL). For every TRL-formula
', the following conditions are equivalent:

1. ' is TRL-valid;
2. ' is TRL-provable.

Some other relational approaches to databases can be found in [DM01, Mac00,
Mac01].

Theorem 6.4.2.

1. Each of the Boolean algebra identities is TRL-provable;
2. Each of the expressions in Propositions 6.2.1, . . . , 6.2.5 is TRL-provable.

Example. Consider the following property: if R is a relation of type A and B �
A, then R � .˘A

BR/ �B].A�B/ 1A�B . To prove that this property holds in all
TRL-models it suffices to demonstrate that the formula .R !A .˘A

BR/ �B].A�B/
1A�B/.u/ is TRL-provable, where F !A G is defined as �AF [A G. If u 2
OVA

TRL, then .F !A G/.u/ is TRL-valid iff for all TRL-models, m.F / � m.G/.
Figure 6.1 presents a TRL-proof of the formula

.�AR [A .˘A
BR/ �B].A�B/ 1A�B/.u/:

Figure 6.2 shows TRL-provability of the formula:

.T �A1]A2 �
A2

B .S;R/!A1]A2 �
A1]A2

B .S; T � R//.u/:



132 6 Dual Tableaux for Relational Databases

.�AR [A .˘A
BR/�B].A�B/ 1A�B/.u/

�
.]/ with v 2OSA

TRL and w 2OSA�B
TRL

.�AR [A .˘A
BR/�B].A�B/ 1A�B/.vw/

�
.[/

.�AR/.vw/; .˘A
B R/�B].A�B/ 1A�B.vw/; : : :
������

					

.�/

.�AR/.vw/; 1A�B.w/; : : :
closed

.�AR/.vw/; .˘A
B R/.v/; : : :

�
.˘/ with w 2OSA�B

TRL

.�AR/.vw/; R.vw/; .˘A
B R/.v/; : : :

closed

Fig. 6.1 A TRL-proof of the formula .�AR [A .˘A
BR/�B].A�B/ 1A�B/.u/

Its equivalent form is:

.�A1]A2.T �A1]A2 �
A2

B .S;R//[A1]A2 �
A1]A2

B .S; T � R//.u/:

6.5 Relational Representation of Database Dependencies

Let a universe ˝ of attributes be given and let A be a finite subset of ˝ . We recall
that a database relation over A, RA, is a set of tuples of type A. We shall often omit
the indexA in the name of a database relation. Given a database relation R, by ATR
we mean the underlying set of attributes. Following the usual database notation, for
a subset B of A and for a tuple t 2 RA we write t ŒB� for a restriction of t (as a
mapping) to set B .

Given a database relation R overA and a subset B of A, we define an indiscerni-
bility relation in R as follows. For any t; u 2 R, .t; u/ 2 ind.B/ iff t ŒB� D uŒB�.

Example. Consider relation R defined in Table 6.1. Indiscernibility relation ind.a/
determined by attribute a consists of the following pairs of tuples:

ind.a/ D f.t1; t1/; .t2; t2/; .t3; t3/; .t4; t4/; .t1; t4/; .t2; t3/; .t3; t2/g:

Indiscernibility relation ind.bc/ determined by attributes b and c consists of the
following tuples:

ind.bc/ D f.t1; t1/; .t2; t2/; .t3; t3/; .t4; t4/; .t1; t2/; .t2; t1/g:



6.5 Relational Representation of Database Dependencies 133

.�A1]A2.T �A1]A2 �A2B .S; R//[A1]A2 �A1]A2B .S; T �R//.u/

�
.[/

�A1]A2.T �A1]A2 �A2B .S; R//.u/; .�A1]A2B .S; T � R//.u/

�
.]/ with z 2OS

A1
TRL and t 2OS

A2
TRL

�A1]A2.T �A1]A2 �A2B .S; R//.zt /; .�A1]A2B .S; T � R//.u/; : : :

�
.��/

�A1T .z/; �A2�A2B .S; R/.t/; .�
A1]A2
B .S; T �R//.u/; : : :

�
.]/ with v 2OSB

TRL and x 2OS
A2�B

TRL

�A1T .z/; �A2�A2B .S; R/.vx/; .�A1]A2B .S; T �R//.u/; : : :

�
.��/

�A1T .z/; �BS.v/; �A2R.vx/; .�A1]A2B .S; T � R//.u/; : : :

�
.]/ with v 2OSB

TRL and q 2OS
A1]A2�B

TRL

�A1T .z/; �BS.v/; �A2R.vx/; .�A1]A2B .S; T � R//.vq/; : : :
������

					

.�/

�A1T .z/; �BS.v/;
�A2R.vx/; S.v/; : : :

closed

�A1T .z/; �BS.v/; �A2R.vx/; .T �A1]A2 R/.vq/; : : :

�

.]/ with z 2OS
A1
TRL

and x 2OS
A2
TRL

�A1T .z/; �BS.v/; �A2R.vx/; .T �A1]A2 R/.vzx/; : : :

�
.�/

�A1T .z/; �BS.v/; �A2R.vx/; .T �A1]A2 R/.zvx/; : : :

����
			
.�/

�A1T .z/; �BS.v/;
�A2R.vx/; T .z/; : : :

closed

�A1T .z/; �BS.v/;
�A2R.vx/; R.vx/; : : :

closed

Fig. 6.2 A TRL-proof of .�A1]A2 .T �A1]A2 �A2B .S; R//[A1]A2 �A1]A2B .S; T � R//.u/



134 6 Dual Tableaux for Relational Databases

Table 6.1 A database relation
Attributes

Tuples a b c

t1 1 2 3

t2 4 2 3

t3 4 5 3

t4 1 5 6

In the following proposition we recall some basic properties of the indiscernibil-
ity relations.

Proposition 6.5.1. For any database relation R and for all A;B � ATR, the fol-
lowing conditions are satisfied:

1. ind.ATR/ D f.t; t/ W t 2 Rg, ind.;/ D R �R;
2. ind.A[ B/ D ind.A/ \ ind.B/;
3. ind.A/[ ind.B/ � ind.A/ I ind.B/;
4. If A � B , then ind.B/ � ind.A/;
5. ind.A/ DTfind.a/ W a 2 Ag.
Let a database relation R be given. Various attribute dependencies in R can be de-
fined in terms of indiscernibility relations. We recall the standard definitions of
those dependencies and their relational representation developed in [Orł87]. Let
A;B;C � ATR.

Functional Dependency

A! B holds in R iff for all tuples t; u 2 R, if t ŒA� D uŒA�, then t ŒB� D uŒB�.

Proposition 6.5.2. The following conditions are equivalent:

1. Functional dependencyA! B holds in R;
2. ind.A/ � ind.B/.

Multivalued Dependency

A !! B holds in R iff for all tuples t; u 2 R, if t ŒA� D uŒA�, then there exists
t 0 2 R such that the following conditions are satisfied:

� t 0ŒA [ B� D t ŒA [ B�;
� t 0ŒATR�.A[ B/� D uŒATR�.A [ B/�.
Proposition 6.5.3. The following conditions are equivalent:

1. Multivalued dependencyA!! B holds in R;
2. ind.A/ � ind.A [ B/ I ind.ATR�.A[ B//.
Embedded Multivalued Dependency

A!! BjC holds in R iff A!! B holds in the set ft ŒA [ B [ C � W t 2 Rg.



6.6 Dual Tableau for Database Dependencies 135

Proposition 6.5.4. The following conditions are equivalent:

1. Embedded multivalued dependencyA!! BjC holds in R;
2. ind.A/ � ind.A [ B/ I ind..C�.A[ B///.
Decomposition

.A;B/ holds in R iff A [ B D ATR and for all t; u 2 R, if t ŒA \ B� D uŒA \ B�,
then there exists t 0 2 R such that t 0ŒA� D t ŒA� and t 0ŒB� D uŒB�.

Proposition 6.5.5. The following conditions are equivalent:

1. Decomposition .A;B/ holds in R;
2. A[ B D ATR and ind.A\ B/ � ind.A/ I ind.B/.

Join Dependency
�.A1; : : : ; An/ holds in R iff A1; : : : ; An D ATR and R is the join of relations
ft ŒAi � W t 2 Rg, for i D 1; : : : ; n.

Proposition 6.5.6. Join dependency �.A1; : : : ; An/ holds in R implies ind.A1 \
: : : \An/ � ind.A1/ I : : : I ind.An/.

A dependency defined by the condition ind.A1 \ : : : \ An/ � ind.A1/ I : : : I
ind.An/, for A1; : : : ; An such that A1 [ : : : An D ATR, is called a generalized
join dependency.

We conclude that given a database relation R, any relation generated from rela-
tions ind.a/, for a 2 ATR, with the operations of algebras of binary relations may
be viewed as a kind of database dependency.

6.6 Dual Tableau for Database Dependencies

Due to the relational representation of database dependencies we can verify de-
pendencies and implications of dependencies within a relational logic. The logic
adequate for this purpose, RLEQ, is obtained from RL.1; 10/ by restricting its class
of models to the models where the meanings of relation variables are assumed to be
equivalence relations. This assumption is in agreement with the fact that dependen-
cies are represented with relations generated by indiscernibility relations which in
turn are equivalence relations.

A relational logic obtained from RLEQ by restricting its class of models to the
models whose universes are sets of tuples of a database relation, is referred to as a
relational logic with database models, RLDEP.

Given a database relation R, an RLDEP-model is a structure M D .R;m/ such
that:

� R is the set of tuples;
� m.P / 2 findR.a/ W a 2 ATRg, for every relational variable P ;
� m.1/ D R � R;
� m.10/ D IdR.



136 6 Dual Tableaux for Relational Databases

Since ATR is finite for any database relation R, the image under m of the set of
relational variables is finite in any database model. Clearly, RLDEP-model is an
RLEQ-model. On the other hand, for every RLEQ-model we can construct an RLDEP-
model such that the models verify the same formulas, that is we have the following
proposition.

Proposition 6.6.1.

1. For every RLDEP-model there exists an RLEQ-model M D .U;m/ such that
m.fP W P is a relational variableg/ is finite and the models verify the same for-
mulas;

2. For every RLEQ-model M D .U;m/, if m.fP W P is a relational variableg/
is finite, then there is an RLDEP-model such that the models verify the same
formulas.

Proof. The part 1. of the proposition is obvious in view of the corresponding
definitions. To prove 2. we construct an RLDEP-model determined by the given
RLEQ-model M D .U;m/. We define a database relationR so that ATR D m.fP W
P is a relational variableg/, that is the attributes of R are the equivalence relations
determined by the meanings of relational variables. It follows that for every re-
lational variable P , fm.P /g is an attribute; it will be denoted by aP . For every
x 2 U we define a tuple tx as tx.aP / D kxkm.P/ which assigns an equivalence
class of x with respect to the relation m.P / to the attribute aP . Then we have
.tx; ty/ 2 indR.aP / iff .x; y/ 2 m.P /. It is easy to check that the sets of formulas
true in these models coincide. ut
A dual tableau for the logic RLEQ consists of the rules and axiomatic sets of
RL.1; 10/-dual tableau endowed with the rules which reflect interpretation of re-
lational variables as equivalence relations:

For all object symbols x and y and for any relational variable P ,

(ref P )
xPy

x10y; xPy
(sym P )

xPy

yPx

(tran P )
xPy

xP z; xPy j zPy; xPy z is any object symbol

The notions of an RLEQ-set and RLEQ-correctness of a rule are defined as in
Sect. 2.4.

Theorem 6.6.1 (Correspondence). Let K be a class of RL.1; 10/-models. Then K
is a class of RLEQ-models iff the rules (ref P ), (sym P ), and (tran P ) are K-correct.

Proof. Let K be a class of RL.1; 10/-models.

.!/ Assume that K is the class of RLEQ-models. By way of example, we show
correctness of the rule (tran P ). Let X be any finite set of formulas. Clearly, if
X [ fxPyg is an RLEQ-set, then so are X [ fxP z; xPyg and X [ fzPy; xPyg.



6.6 Dual Tableau for Database Dependencies 137

Now, assume that X [ fxP z; xPyg and X [ fzPy; xPyg are RLEQ-sets, and sup-
poseX[fxPyg is not an RLEQ-set. Then, there exist an RLEQ-model M D .U;m/
and a valuation v in M such that for every ' 2 X [ fxPyg, M; v 6ˆ '. Thus,
.v.x/; v.y// 62 m.P /. By the assumption, M; v ˆ xP z and M; v ˆ zPy.
Hence, .v.x/; v.z// 2 m.P / and .v.z/; v.y// 2 m.P /, and by transitivity of m.P /,
.v.x/; v.y// 2 m.P /, a contradiction. Therefore, the rule (tran P ) is RLEQ-correct.
. / Assume that for all relational variables P the rules (ref P ), (sym P ),

and (tran P ) are K-correct. We show that for every relational variable P , and for
every K-model M D .U;m/, m.P / is an equivalence relation. By way of ex-
ample, we show transitivity of the relation m.P /. Observe that due to correctness
of rule (tran P ), for every finite set X of relational formulas the following holds:

X[fxPyg is a K-set iffX[fxP z; xPyg andX[fzPy; xPyg are K-sets. LetX
dfD

fx�P z; z�Pyg. Since fxP z; xPy; x�P z; z�Pyg and fzPy; xPy; x�P z; z�Pyg
are K-sets, then so is the set fxPy; x�P z; z�Pyg. Thus, for every K-model
M D .U;m/ and for every valuation v in M, if .v.x/; v.z// 2 m.P / and
.v.z/; v.y// 2 m.P /, then .v.x/; v.y// 2 m.P /. Hence, m.P / is transitive in every
K-model. ut
Proposition 6.6.2.

1. The RLEQ-rules are RLEQ-correct;
2. The RLEQ-axiomatic sets are RLEQ-sets.

Correctness of the rules (ref P ), (sym P ), and (tran P ) follows from
Theorem 6.6.1. Correctness of the remaining rules can be proved as in RL.1; 10/-
logic (see Sects. 2.5 and 2.7).

The notions of an RLEQ-proof tree, a closed branch of such a tree, a closed RLEQ-
proof tree, and RLEQ-provability are defined as in Sect. 2.4.

The completion conditions that are specific for RLEQ-dual tableau are:
For all object symbols x and y and for any relational variable P ,

Cpl(ref P ) If xPy 2 b, then x10y 2 b, obtained by an application of the rule
(ref P );

Cpl(sym P ) If xPy 2 b, then yPx 2 b, obtained by an application of the rule (sym
P );

Cpl(tranP ) If xPy 2 b, then for every object symbol z, either xP z 2 b or zPy 2 b,
obtained by an application of the rule (tran P ).

The notions of a complete RLEQ-proof tree and an open branch of an RLEQ-proof
tree are defined as in RL-logic (see Sect. 2.5).

Although, the rule (sym P ) does not preserve the formulas of the form xPy,
for a relational variable P , we can show that the closed branch property holds. The
proof is similar to the proof of Proposition 2.8.1.

The branch structure Mb D .U b; mb/ determined by an open branch b of an
RLEQ-proof tree is defined as in the completeness proof of RL-dual tableau, in par-
ticular mb.P / D f.x; y/ 2 U b � U b W xPy 62 bg, for every relational variable P
(see Sect. 2.6, p. 44).



138 6 Dual Tableaux for Relational Databases

Proposition 6.6.3 (Branch Model Property). For every open branch b of an
RLEQ-proof tree, Mb is an RLEQ-model.

Proof. Following the method of proving the branch model property in the com-
pleteness proof of RL.1; 10/-dual tableau (see Sects. 2.5 and 2.7), we show that Mb

satisfies specific properties of RLEQ-models, namely, we need to prove that every re-
lationmb.P / is an equivalence relation. For reflexivity, assume that .x; y/ 2 mb.10/
and suppose that .x; y/ 62 mb.P /. Then x10y 62 b and xPy 2 b. By the comple-
tion condition Cpl(ref P ), x10y 2 b, a contradiction. For symmetry, assume that
.x; y/ 2 mb.P / and suppose that .y; x/ 62 mb.P /. Then xPy 62 b and yPx 2 b.
By the completion condition Cpl(symR), xPy 2 b, a contradiction. For transitivity,
assume that .x; y/ 2 mb.P / and .y; z/ 2 mb.P /, that is xPy 62 b and yP z 62 b.
Suppose that .x; z/ 62 mb.P /. Then xP z 2 b, and by the completion condition
Cpl(tran P ), either xPy 2 b or yP z 2 b, a contradiction. ut
Now, the completeness of the RLEQ-dual tableau can be proved as in RL.1; 10/-
logic.

x.1 I�..�A[ C/\ .�.C \D/[ .A\E/// I 1[ .�.A\D/[ E//y

�
.[/ twice

x.1 I�..�A[ C/\ .�.C \D/[ .A\E/// I 1/y; x�.A\D/y; xEy
����

x1x; : : :

closed

			

y1y; : : :

closed�

.I / twice with x;y

x�..�A[ C/\ .�.C \D/[ .A\E///y; x�.A\D/y; xEy; : : :

�
.�\/ twice

x�.�A[ C/y; x�.�.C \D/[ .A\E//y; x�Ay; x�Dy; xEy; : : :
���� .�[/

x�.�A[ C/y; x��.C \D/y;
x�Ay; x�Dy; : : :

����
			
.�/ and .\/

xDy; x�Dy; : : :
closed

xCy; x�Ay;
x�.�A[ C/y; : : :
����

			
.�[/ and .�/
xAy; x�Ay; : : :
closed

x�Cy; xCy; : : :
closed

			

x�.A\ E/y; xEy; : : :

�

.�\/

x�Ay; x�Ey; xEy; : : :
closed

Fig. 6.3 An RLEQ-proof showing that fA! C;CD! AEg implies AD! E



6.6 Dual Tableau for Database Dependencies 139

Theorem 6.6.2 (Soundness and Completeness of RLEQ). For every RLEQ-
formula ', the following conditions are equivalent:

1. ' is RLEQ-valid;
2. ' is RLEQ-provable.

Theorems on entailment, model checking, and verification of satisfaction presented
in Sects. 2.11, 3.4, and 3.5, respectively, apply to RLEQ-logic.

Example. We show that the set fA ! C;CD ! AEg of functional dependencies
implies dependency AD ! E . By Propositions 6.5.1(2.) and 6.5.2, it suffices to
show that ind.A/ � ind.C / and ind.C /\ind.D/ � ind.A/\ind.E/ entail ind.A/\
ind.D/ � ind.E/. In what follows, for the sake of simplicity, we shall write Z
instead of ind.Z/ for Z D A;C;D;E . We apply the method of verification of
entailment presented in Sect. 2.11, thus we verify RLEQ-validity of the following
relational formula:

xŒ1 I �Œ.�A [ C/\ .�.C \D/ [ .A\ E//� I 1 [ .�.A \D/ [E/�y:

Figure 6.3 presents its RLEQ-proof.



Part III
Relational Reasoning in Traditional

Non-classical Logics



Chapter 7
Dual Tableaux for Classical Modal Logics

7.1 Introduction

In a narrow sense, modal logic is a logic obtained from the classical logic by
endowing it with unary propositional operations intuitively corresponding to ‘it is
necessary that’ and ‘it is possible that’. These operations are intensional, i.e., the
truth of a formula built with the operation does not depend only on the truth of the
subformula to which the operation is applied but also on a relevant state or a sit-
uation in which the truth is considered. A development of the semantics of modal
logics in terms of a relational structure of states is due to Stig Kanger [Kan57] and
Saul Kripke [Kri63]. Algebraic semantics of these standard modal logics is provided
by Boolean algebras with normal and additive operations [JT52]. Since the origin
of Kripke semantics, intensional logics have been introduced to computer science
as an important tool for its formal methods.

In a broad sense modal logic is a field of studies of logics with intensional opera-
tions. The operations may have various intuitive interpretations and are relevant in a
variety of fields. In logical theories intensional operations enable us to express qual-
itative degrees of truth, belief, knowledge, obligation, permission, etc. Elements of
the relevant relational structures are then interpreted as possible worlds, situations,
instants of time, etc. In computer science intensional operations serve as formal
tools for expressing dynamic aspects of physical or cognitive processes. In these
cases elements of the relational structures are interpreted as the states of a computer
program, the tuples of a relational database, the objects of an information system
with incomplete information, the agents of multiagents systems, etc.

The basic systems of modal logic in a modern form are due to Clarence Irving
Lewis (see [Lew20, LL59, Zem73]). They evolved from his treatment of impli-
cation in search for elimination of the paradoxes of the classical implication of
Frege–Russell. A development and broad range of research in modal logic and its
applications can be traced through an extensive literature of the subject, see e.g.,
[Fey65, HC68, Seg71, Gal75, Gab76, Boo79, Che80, HC84, vB85, Boo93, Gol93,
vB96, CZ97, HKT00, BdRV01, BvBW06].

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 7,
c� Springer Science+Business Media B.V. 2011

143



144 7 Dual Tableaux for Classical Modal Logics

In this chapter we present a relational formalization of modal logics which
originated in [Orł91]. Given a modal logic L, we show how one can construct
a relational logic, RLL, and a dual tableau for RLL so that it provides a validity
checker for the logic L. We show that in fact the RLL-dual tableau does more: it
can be used for proving entailment of an L-formula from a finite set of L-formulas,
model checking of L-formulas in finite L-models, and verification of satisfaction
of L-formulas in finite L-models. The relational formalization of modal logics pre-
sented in this chapter provides a paradigm for all the relational formalisms and dual
tableaux considered in Parts III, IV, and V of the book.

7.2 Classical Propositional Logic

The vocabulary of the language of the classical propositional logic, PC, consists of
the following pairwise disjoint sets:

� V – a countable set of propositional variables;
� f:;_;^g – the set of propositional operations of negation :, disjunction _, and

conjunction^.

The set of PC-formulas is the smallest set including V and closed with respect
to the propositional operations. We admit the operations of implication, !, and
equivalence,$, as the standard abbreviations, that is for all PC-formulas ' and  :

� ' !  
dfD :' _  ;

� ' $  
dfD .:' _  / ^ .: _ '/.

Let f0; 1g be a two-element Boolean algebra whose elements represent truth-values
‘false’ and ‘true’, respectively. A PC-model is a structure M D .f0; 1g; v/, where
vWV ! f0; 1g is a valuation of propositional variables in f0; 1g. A PC-formula ' is
said to be true in a PC-model M D .f0; 1g; v/ whenever the following conditions
hold:

� M ˆ p iff v.p/ D 1, for every propositional variable p;
� M ˆ :' iff M 6ˆ ';
� M ˆ ' _  iff M ˆ ' or M ˆ  ;
� M ˆ ' ^  iff M ˆ ' and M ˆ  .

A PC-formula ' is PC-valid whenever it is true in all PC-models.

7.3 Propositional Modal Logics

The vocabulary of a modal language consists of the following pairwise disjoint sets:

� V – a countable set of propositional variables and/or constants;
� A set of relational constants;



7.3 Propositional Modal Logics 145

� f:;_;^g – a set of classical propositional operations;
� A set of modal propositional operations is included in the set:

fŒR�; hRi; ŒŒR��; hhRii W R is a relational constantg:

The modal operations hRi and hhRii are definable in terms of ŒR� and ŒŒR��, respec-
tively, as follows:

hRi' dfD :ŒR�:'; hhRii dfD :ŒŒR��:':

The propositional operations ŒR�, hRi, ŒŒR��, and hhRii are referred to as necessity,
possibility, sufficiency, and dual sufficiency, respectively.

The set of modal formulas is the smallest set including the set V and closed with
respect to the propositional operations.

If the set of relational constants is a singleton set, say fRg, then the modal propo-
sitional operations ŒR�, hRi, ŒŒR��, and hhRii are often written as �, Þ, ŒŒ ��, and
hhii, respectively. Some modal languages include propositional constants which are
interpreted as singletons; they are referred to as nominals. If the cardinality of the set
of relational constants is at least 2 or the language includes at least two different and
not mutually definable modal operations, then the logic is referred to as multimodal.

Let a modal language be given. A model for the modal language is a structure
M D .U;m/ such that U is a non-empty set, whose elements are referred to as
states, andm is a meaning function such that the following conditions are satisfied:

� m.p/ � U , for every p 2 V ;
� m.R/ � U � U , for every relational constant R.

The relationsm.R/ are referred to as the accessibility relations.
A frame is a structure F D .U;m/ such thatU is a non-empty set andm is a map

which assigns binary relations onU to relational constants. If there are finitely many
relational constants in a modal language, then in the frames we often list explicitly
all the corresponding relations and usually we denote them with the same symbols
as the corresponding constants in the language. A model M D .U;m0/ is said to
be based on a frame F D .U;m/ whenever m is the restriction of m0 to the set of
relational constants.

A formula ' is said to be satisfied in a model M by a state s 2 U , M; s ˆ ',
whenever the following conditions are satisfied:

� M; s ˆ p iff s 2 m.p/ for p 2 V ;
� M; s ˆ ' _  iff M; s ˆ ' or M; s ˆ  ;
� M; s ˆ ' ^  iff M; s ˆ ' and M; s ˆ  ;
� M; s ˆ :' iff M; s 6ˆ ';
� M; s ˆ ŒR�' iff for every s0 2 U , if .s; s0/ 2 m.R/, then M; s0 ˆ ';
� M; s ˆ hRi' iff there is s0 2 U such that .s; s0/ 2 m.R/ and M; s0 ˆ ';



146 7 Dual Tableaux for Classical Modal Logics

� M; s ˆ ŒŒR��' iff for every s0 2 U , if M; s0 ˆ ', then .s; s0/ 2 m.R/;
� M; s ˆ hhRii' iff there is s0 2 U such that .s; s0/ 62 m.R/ and M; s0 6ˆ '.

As usual, given a model M and a state s, ‘M; s 6ˆ '’ is an abbreviation of ‘not
M; s ˆ '’. Throughout the book, by a modal logic we mean the pair L D .a modal
language, a class of models of the language). Given a modal logic L, we write
L-language and L-model for the relevant components of L. Formulas of the
L-language are referred to as L-formulas.

An L-formula ' is said to be true in an L-modelM D .U;m/,M ˆ ', whenever
for every s 2 U , M; s ˆ ', and it is L-valid whenever it is true in all L-models.
An L-formula ' is said to be true in the L-frame F , F ˆ ' for short, whenever '
is true in all the L-models based on F . Note that in every L-model the propositional
operations :;_, and ^ receive their standard meaning as classical operations of
negation, disjunction, and conjunction of PC, respectively.

Standard Modal Logics

The standard modal logics are K, T, B, S4, and S5. Their common language is a
modal language with a single relational constant R and with the modal operations
ŒR� and hRi.
The models of these logics are of the form M D .U;R;m/ where:

� M is a K-model iff R is a binary relation on U ;
� M is a T-model iff R is a reflexive relation on U (i.e., 10 � R);
� M is a B-model iff it is a T-model such thatR is a symmetric relation on U (i.e.,
R�1 � R);

� M is an S4-model iff it is a T-model such that R is a transitive relation on U
(i.e., R IR � R);

� M is a S5-model iff it is a B-model and S4-model (i.e., R is an equivalence
relation on U ).

All the standard modal logics are decidable. For details of the proof see e.g.,
[BvBW06].

7.4 Relational Formalization of Modal Logics

The logic RL.1; 10/ serves as a basis for the relational formalisms for modal log-
ics whose Kripke-style semantics is determined by frames with binary accessibility
relations (see [Orł97b]). Let L be a modal logic. The relational logic RLL appropri-
ate for expressing L-formulas is obtained from RL.1; 10/ by endowing its language
with relational constants representing the accessibility relations from the models of
L-language and with propositional constants of L (if there are any) which will be
interpreted appropriately as relations.



7.4 Relational Formalization of Modal Logics 147

The vocabulary of the relational logic RLL consists of the symbols from the
following pairwise disjoint sets:

� OV RLL – a countable infinite set of object variables;
� OCRLL – a countable (possibly empty) set of object constants;
� RV RLL – a countable infinite set of relational variables;
� RCRLL D f1; 10g [ fR W R is a relational constant of Lg [ fCc W c is a proposi-

tional constant of Lg – a set of relational constants;
� f�;[;\; I ;�1 g – the set of relational operations.

Object symbols, relational terms, and RLL-formulas are defined as in RL.1; 10/-logic
(see Sect. 2.3).

An RLL-structure is an RL.1; 10/-model M D .U;m/ (see Sect. 2.7) such that:

� m.R/ � U � U , for every relational constant R of L;
� m.Cc/ � U � U , for every propositional constant c of L.

An RLL-model is an RL.1; 10/-model M D .U;m/ such that:

� m.Cc/ D X �U , whereX � U , for any propositional constant c of L; it follows
that propositional constants of L are represented in RLL as right ideal relations;

� The domains of relations m.Cc/ satisfy the constraints posed on propositional
constants c in L-models; examples of such constants can be found in Sects. 11.3,
15.2, and 16.5;

� For all relational constants representing the accessibility relations of L, all the
properties of these relations from L-models are assumed in RLL-models; many
examples of such properties can be found in Sects. 7.5, 11.4, and 16.3.

If in a modal logic L there are finitely many accessibility relations, then in the RLL-
models we list explicitly these relations and we denote them with the same symbols
as the corresponding constants in the language.

As established in Sect. 2.7, the models of RLL with 10 interpreted as the identity
are referred to as standard RLL-models.

Translation

The translation of modal formulas into relational terms starts with a one-to-one
assignment of relational variables to the propositional variables. Let � 0 be such an
assignment. Then the translation � of formulas is defined inductively:

� �.p/ D � 0.p/ I 1, for any propositional variable p 2 V ;
� �.c/ D Cc I 1, for any propositional constant c 2 V ;
� �.:'/ D ��.'/;
� �.' _  / D �.'/ [ �. /;
� �.' ^  / D �.'/ \ �. /;
and for every relational constant R of L:

� �.hRi'/ D R I �.'/;
� �.ŒR�'/ D �.R I ��.'//;



148 7 Dual Tableaux for Classical Modal Logics

� �.hhRii'/ D �R I ��.'/;
� �.ŒŒR��'/ D �.�R I �.'//.
It follows that translation of defined propositional operations! and$ is:

� �.' !  / D ��.'/[ �. /;
� �.' $  / D .��.'/[ �. // \ .��. / [ �.'///.

Hence, when passing from modal formulas to relational terms we replace propo-
sitional variables and constants by relational variables and relational constants,
respectively, and propositional operations by relational operations. The crucial point
here is that the accessibility relation is ‘taken out’ of the modal operation and it be-
comes an argument of an appropriate relational operation. In particular, possibility
operation is replaced by the relational composition of two relations: the relation rep-
resenting an accessibility relation and the relation resulting from the translation of
the formula which is in the scope of the possibility operation. In this way to any
formula ' of a modal logic there is associated a relational term �.'/. The above
translation assigns to any modal formula a right ideal relation i.e., a relation Q that
satisfies Q D Q I 1. It follows from the following proposition:

Proposition 7.4.1. For every set U , the following conditions are satisfied:

1. The family of right ideal relations on U is closed on �, [, and \;
2. For any relation R on U and any right ideal relation P on U , R IP is a right

ideal relation;
3. If P is a right ideal relation on U , then for all s; s0 2 U : .s; s0/ 2 P iff for every
t 2 U , .s; t/ 2 P .

Proof. 1. and 3. follow directly from the definition of right ideal relations. For 2.,
note that since P D P I 1, R IP D R I .P I 1/ D .R IP/ I 1. ut

In some examples of dual tableaux proofs presented in the book a simpler trans-
lation of the formula to be proved is sufficient such that �.p/ D � 0.p/ for every
propositional variable p appearing in the formula.

The translation � is defined so that it preserves validity of formulas.

Proposition 7.4.2. Let L be a modal logic and let ' be an L-formula. Then, for
every L-modelM D .U;m/ there exists an RLL-modelM0 D .U;m0/ with the same
universe as that of M such that for all s; s0 2 U , M; s ˆ ' iff .s; s0/ 2 m0.�.'//.
Proof. Let ' be an L-formula and let M D .U;m/ be an L-model. We define an
RLL-model M0 D .U;m0/ as follows:

� m0.1/ D U � U ;
� m0.10/ is the identity on U ;
� m0.�.p// D m.p/ � U , for every propositional variable p;
� m0.�.c// D m.c/ � U , for any propositional constant c 2 V ;



7.4 Relational Formalization of Modal Logics 149

� m0.R/ D m.R/;
� m0 extends to all the compound terms as in RL.1; 10/-models.

Now, we prove the proposition by induction on the complexity of formulas. Let
s; s0 2 U .

Let ' D p, p 2 V . Then M; s ˆ p iff s 2 m.p/ iff .s; s0/ 2 m0.�.p//, since
m0.�.p// is a right ideal relation.

Let ' D  _ # . Then M; s ˆ  _ # iff M; s ˆ  or M; s ˆ # iff, by
the induction hypothesis, .s; s0/ 2 m0.�. // or .s; s0/ 2 m0.�.#// iff .s; s0/ 2
m0.�. // [m0.�.#// iff .s; s0/ 2 m0.�. _ #//.

Let ' D hRi . By the induction hypothesis, for all t; s0 2 U , we have
M; t ˆ  iff .t; s0/ 2 m0.�. //. Therefore, M; s ˆ ' iff there exists t 2 U
such that .s; t/ 2 m.R/ and M; t ˆ  iff, by the induction hypothesis, there exists
t 2 U such that .s; t/ 2 m0.R/ and .t; s0/ 2 m0.�. // iff .s; s0/ 2 m0.R I �. // iff
.s; s0/ 2 m0.�.'//.

Let ' D ŒŒR�� . Then M; s ˆ ' iff for every t 2 U , if M; t ˆ  , then .s; t/ 2
m.R/ iff, by the induction hypothesis, for every t 2 U , if .t; s0/ 2 m0.�. //, then
.s; t/ 2 m0.R/ iff .s; s0/ 62 m0.�R I �. // iff .s; s0/ 2 m0.�.'//.

In the remaining cases the proofs are similar. ut
Proposition 7.4.3. Let L be a modal logic and let ' be an L-formula. Then, for
every standard RLL-model M0 D .U;m0/ there exists an L-model M D .U;m/

with the same universe as that of M0 such that for all s; s0 2 U , the condition of
Proposition 7.4.2 holds.

Proof. Let ' be an L-formula and let M0 D .U;m0/ be a standard RLL-model. We
define an L-model M D .U;m/ as follows:

� m.p/ D fx 2 U W there exists y 2 U , .x; y/ 2 m0.�.p//g, for every proposi-
tional variable p;

� For every propositional constant c, s 2 m.c/ iff there is s0 2 U such that .s; s0/ 2
m0.�.c//;

� m.R/ D m0.R/.
We can prove that M; s ˆ ' iff .s; s0/ 2 m0.�.'// in a similar way as in
Proposition 7.4.2. ut
Proposition 7.4.4. Let L be a modal logic and let ' be an L-formula. Then, for
every L-model M there exists an RLL-model M0 such that for all object variables
x and y, M ˆ ' iff M0 ˆ x�.'/y.

Proof. Let ' be an L-formula, let M D .U;m/ be an L-model. We construct a
standard RLL-model M0 D .U;m0/ as in the proof of Proposition 7.4.2. Let x
and y be any object variables. Assume M ˆ '. Suppose there exists a valua-
tion v in M0 such that M0; v 6ˆ x�.'/y. Then .v.x/; v.y// 62 m0.�.'//. However,
by Proposition 7.4.2, models M and M0 satisfy M; v.x/ ˆ ' iff .v.x/; v.y// 2
m0.�.'//. Therefore, M; v.x/ 6ˆ ', and hence M 6ˆ ', a contradiction. Now, as-
sume M0 ˆ x�.'/y. Suppose there is s 2 U such that M; s 6ˆ '. Let s0 be any



150 7 Dual Tableaux for Classical Modal Logics

element of U . By Proposition 7.4.2, M; s ˆ ' if and only if .s; s0/ 2 m0.�.'//. Let
v be a valuation in M0 such that v.x/ D s and v.y/ D s0. Since M; s 6ˆ ',
.v.x/; v.y// 62 m0.�.'//, so M0; v 6ˆ x�.'/y, and hence M0 6ˆ x�.'/y, a
contradiction. ut
Due to Proposition 7.4.3, the following can be proved:

Proposition 7.4.5. Let L be a modal logic and let ' be an L-formula. Then, for
every standard RLL-model M0 there exists an L-model M such that for all object
variables x and y, the condition of Proposition 7.4.4 holds.

From Theorem 2.7.2, Propositions 7.4.4, and 7.4.5, we get:

Theorem 7.4.1. Let L be a modal logic. Then, for every L-formula ' and for all
object variables x and y, the following conditions are equivalent:

1. ' is L-valid;
2. x�.'/y is RLL-valid.

Proof. .1:! 2:/ Let ' be L-valid. Suppose x�.'/y is not RLL-valid. Then, there
exists a standard RLL-model M such that M 6ˆ x�.'/y. By Proposition 7.4.5,
there is an L-model M0 such that M0 6ˆ ', which contradicts the assumption of
L-validity of '.
.2:! 1:/ Let ' be an L-formula such that x�.'/y is RLL-valid. Suppose ' is not

L-valid. Then there exists an L-model M such that M 6ˆ '. By Proposition 7.4.4,
there exists an RLL-model M0 such that M0 6ˆ x�.'/y, a contradiction. ut
Relational dual tableaux for modal logics are extensions of RL.1; 10/-dual tableau.
We add to the RL.1;0 1/-system the specific rules and/or axiomatic sets that reflect
properties of the specific relational constants corresponding to accessibility relations
and propositional constants (if there are any) of the logic in question. Given a logic
L, a relational dual tableau for L, RLL-dual tableau, enables us to prove facts about
the relations from the models of L expressed in the language of L or in the language
of RLL.

Given a modal logic L, an RLL-set is a finite set of RLL-formulas such that the
first-order disjunction of its members is true in all RLL-models. Correctness of a
rule is defined in a similar way as in the relational logics of classical algebras of
binary relations (see Sect. 2.4).

Following the method of proving soundness and completeness of RL-dual
tableau described in Sect. 2.6, we can prove soundness and completeness of the
RLL-dual tableau in a similar way. To prove soundness, it suffices to show that
all the rules are RLL-correct and all the axiomatic sets are RLL-sets (see Propo-
sition 7.5.1). In order to prove completeness we need to prove the closed branch
property, the branch model property, and the satisfaction in branch model property.
Then the completeness proof is the same as the completeness proof of RL.1; 10/-
dual tableau (see Sects. 2.5 and 2.7). In Table 7.1 we recall the main facts that have
to be proved.



7.5 Dual Tableaux for Standard Modal Logics 151

Table 7.1 The key steps in the completeness proof of relational dual
tableaux
(1) Closed Branch Property:

For any branch of an RLL-proof tree, if xRy 2 b and x�Ry 2 b
for an atomic term R, then the branch can be closed;

(2) Branch Model Property:
Define the branch model Mb determined by an open branch b of
an RLL-proof tree and prove that it is an RLL-model;

(3) Satisfaction in Branch Model Property:
For every branch b of an RLL-proof tree and for every RLL-formula ',
the branch model Mb and the identity valuation vb in Mb satisfy:

If Mb; vb ˆ ', then ' 62 b.

7.5 Dual Tableaux for Standard Modal Logics

Let L be a standard modal logic as presented in Sect. 7.3 (see p. 146). The relational
logic appropriate for expressing L-formulas, RLL, is obtained from logic RL.1; 10/
by expanding its language with a relational constantR representing the accessibility
relation from the models of L-language. If a relation R in the models of logic L is
assumed to satisfy some conditions, e.g., reflexivity (logic T), symmetry (logic B),
transitivity (logic S4) etc., then in the corresponding logic RLL we add the respec-
tive conditions as the axioms of its models. The translation of a modal formula of L
into a relational term of RLL is defined as in Sect. 7.4.

By Theorem 7.4.1 the following holds:

Theorem 7.5.1. For every formula ' of a standard modal logic L and for all object
variables x and y, the following conditions are equivalent:

1. ' is L-valid;
2. xt.'/y is RLL-valid.

Dual tableaux for standard modal logics in their relational formalizations are con-
structed as follows. We add to the RL.1; 10/-dual tableau the following rules:

� Logic T: (ref R),
� Logic B: (ref R) and (sym R),
� Logic S4: (ref R) and (tran R),
� Logic S5: (ref R), (sym R), and (tran R).

We recall that these rules are of the form (see Sect. 6.6):
For all object symbols x and y,

(ref R)
xRy

x10y; xRy
(sym R)

xRy

yRx

(tran R)
xRy

xRz; xRy j zRy; xRy z is any object symbol



152 7 Dual Tableaux for Classical Modal Logics

As defined in Sect. 7.4, given a standard modal logic L, an RLL-structure is of the
form M D .U;R;m/, where .U;m/ is an RL.1; 10/-model and R is a binary re-
lation on U . An RLL-model is an RLL-structure such that relation R satisfies the
constraints posed in L-models.

Theorem 7.5.2 (Correspondence). Let L be a standard modal logic and let K be
a class of RLL-structures. Relation R is reflexive (resp. symmetric, transitive) in all
structures of K iff the rule (ref R), (resp. (sym R), (tran R)) is K-correct.

For the proof see Theorem 6.6.1. Theorem 7.5.2 leads to:

Proposition 7.5.1. Let L be a standard modal logic. Then:

1. The RLL-rules are RLL-correct;
2. The RLL-axiomatic sets are RLL-sets.

The notions of an RLL-proof tree, a closed branch of such a tree, a closed RLL-proof
tree, and RLL-provability are defined as in Sect. 2.4.

We recall that the completion conditions determined by the rules (ref R),
(sym R), and (tran R) are:

For all object symbols x and y,

Cpl(ref R) If xRy 2 b, then x10y 2 b;
Cpl(sym R) If xRy 2 b, then yRx 2 b;
Cpl(tranR) If xRy 2 b, then for every object symbol z, either xRz 2 b or zRy 2 b.

The notions of a complete branch of an RLL-proof tree, a complete RLL-proof tree,
and an open branch of an RLL-proof tree are defined as in RL-logic (see Sect. 2.5).
In order to prove completeness, we need to define a branch model and to show the
three theorems of Table 7.1.

The branch model is defined as in the completeness proof of RL.1; 10/-dual
tableau, that isRbDmb.R/Df.x; y/2U b �U b W xRy 62 bg. Using the completion
conditions, it is easy to show that Rb satisfies the conditions assumed in the corre-
sponding L-models (see the proof of Proposition 6.6.3). Hence, the branch model
property is satisfied. In similar way as in RL.1; 10/-dual tableau (see also RLEQ-dual
tableau in Sect. 6.6), we can prove the closed branch property and the satisfaction in
branch model property:

Proposition 7.5.2 (Satisfaction in Branch Model Property). For every open
branch b of an RLL-proof tree and for every RLL-formula ', if Mb; vb ˆ ', then
' 62 b.

Then, completeness can be proved as for RL.1; 10/-dual tableau.

Theorem 7.5.3 (Soundness and Completeness of Relational Logics for Stan-
dard Modal Logics). Let L be a standard modal logic and let ' be an RLL-formula.
Then, the following conditions are equivalent:



7.6 Entailment in Modal Logics 153

1. ' is RLL-valid;
2. ' is true in all standard RLL-models;
3. ' is RLL-provable.

Finally, by Theorem 7.5.1 and Theorem 7.5.3, we obtain:

Theorem 7.5.4 (Relational Soundness and Completeness of Standard Modal
Logics). Let L be a standard modal logic and let ' be an L-formula. Then for all
object variables x and y, the following conditions are equivalent:

1. ' is L-valid;
2. x�.'/y is RLL-provable.

Example. We present a translation and a relational proof of a formula of logic K.
Note that RLK-proof system is exactly the same as RL.1; 10/-system, because in
K-models the accessibility relation is an arbitrary binary relation. Consider the fol-
lowing K-formula:

' D .ŒR�p ^ ŒR�q/! ŒR�.p ^ q/:
For reasons of simplicity, let �.p/ D P and �.q/ D Q. The translation �.'/ of the
formula ' into a relational term of logic RLK is:

�Œ�.R I �P/ \ �.R I �Q/�[ �.R I �.P \Q//:

We show that the formula ' is K-valid, by showing that x�.'/y is RLK-valid.
Figure 7.1 presents its RLK-proof.

7.6 Entailment in Modal Logics

The logic RL.1; 10/ can be used to verify entailment of formulas of non-classical
logics, provided that they can be translated into binary relations. Let L be a modal
logic. In order to verify the entailment we apply the method presented in Sect. 2.11.
We translate L-formulas in question into relational terms of the logic RLL and then
we use the method of verification of entailment for RLL-logic as shown in Sect. 2.11.

For example, in every model M of K-logic the truth of the formula p ! q in
M implies the truth of ŒR�p ! ŒR�q in M. The translation of these formulas to
RLK-terms is:

�.p ! q/ D �P [Q;
�.ŒR�p ! ŒR�q/ D ��.R I �P/ [ �.R I �Q/;

where for simplicity �.p/ D P and �.q/ D Q. To verify the entailment we need
to show that �P [Q D 1 implies ��.R I �P/ [ �.R I �Q/ D 1. According to
Proposition 2.2.1(7.), we need to show that the formula:

xŒ.1 I �.�P [Q/ I 1/[��.R I �P/ [ �.R I �Q/�y

is RLK-provable. Figure 7.2 presents an RLK-proof of this formula.



154 7 Dual Tableaux for Classical Modal Logics

x�Œ�.R I�P/\�.R I�Q/�[�.R I�.P \Q//y

�
.[/

x�Œ�.R I�P/\�.R I�Q/�y; x�.R I�.P \Q//y

�.�\/
x��.R I�P/y; x��.R I�Q/y; x�.R I�.P \Q//y

�
.�/ � 2

x.R I�P/y; x.R I�Q/y; x�.R I�.P \Q//y

�
.�I / with a new variable z and .�/

x.R I�P/y; x.R I�Q/y; x�Rz; z.P \Q/y
������

					

.I / with z

xRz; x�Rz; : : :
closed

z�Py; x.R I�Q/y; x�Rz; z.P \Q/y; : : :
������

					

.I / with z

xRz; x�Rz; : : :
closed

z�Py; z�Qy; z.P \Q/y; : : :
������

					

.\/

z�Py; zPy; : : :
closed

z�Qy; zQy; : : :
closed

Fig. 7.1 An RLK-proof of K-formula .ŒR�p ^ ŒR�q/! ŒR�.p ^ q/

Furthermore, observe that in every model M of K-logic the truth ofR IR � R in
M implies the truth of ŒR�p ! ŒR�ŒR�p in M. The translation of the latter formula
to RLK-term is:

��.R I �P/ [�.R I ��.R I �P//;
where for simplicity �.p/ D P . To verify the entailment we need to show that
�.R IR/ [ R D 1 implies ��.R I �P/ [ �.R I ��.R I �P// D 1. According to
Proposition 2.2.1(7.), we need to show that the formula:

xŒ.1 I �.�.R IR/[ R/ I 1/[��.R I �P/ [ �.R I ��.R I �P//�y

is RLK-provable. Figure 7.3 presents its RLK-proof.



7.6 Entailment in Modal Logics 155

xŒ.1 I�.�P [Q/ I 1/[��.R I�P/[�.R I�Q/�y
�.[/ twice and .�/

x.1 I�.�P [Q/ I 1/y; x.R I�P/y; x�.R I�Q/y
�.�I / with a new variable z and .�/

x.1 I�.�P [Q/ I 1/y; x.R I�P/y; x�Rz; zQy
��� 		
.I / with z

xRz; x�Rz; : : :
closed

x.1 I�.�P [Q/ I 1/y; z�Py; zQy; : : :
���

�

.I / twice with z; y
		


x1z; : : :
closed

y1y; : : :

closed

z�.�P [Q/ I 1/y; z�Py; zQy; : : :
����

			
.�[/ and .�/
zPy; z�Py; : : :

closed

z�Qy; zQy; : : :
closed

Fig. 7.2 An RLK-proof showing that p! q entails ŒR�p! ŒR�q

xŒ.1 I�.�.R IR/[R/ I 1/[��.R I�P/[�.R I��.R I�P//�y

�
.[/ twice and .�/

x.1 I�.�.R IR/[R/ I 1/y; x.R I�P/y; x�.R I��.R I�P//y
����

x1x; : : :

closed

�
.I / with x

x.�.�.R IR/[R/ I 1/y; x.R I�P/y; x�.R I��.R I�P//y; : : :

�
.�I / with a new z and .�/

x.�.�.R IR/[ R/ I 1/y; x.R I�P/y; x�Rz; z�.R I�P/y; : : :

�
.�I / with a new t and .�/

x.�.�.R IR/[ R/ I 1/y; x.R I�P/y; x�Rz; z�Rt; tPy; : : :
����

			
.I / with t

t�Py; tPy; : : :
closed

x.�.�.R IR/[R/ I 1/y; xRt; x�Rz; z�Rt; : : :
����

			
.I / with t

t1y; : : :

closed

x�.�.R IR/[ R/t ; xRt; x�Rz; z�Rt; : : :
����

			
.�[/ and .�/
x�Rt; xRt; : : :

closed

x.RIR/t ; x�Rz; z�Rt; : : :
����

			
.I / with z

xRz; x�Rz; : : :
closed

zRt; z�Rt; : : :
closed

Fig. 7.3 An RLK-proof showing that R IR � R entails ŒR�p! ŒR�ŒR�p



156 7 Dual Tableaux for Classical Modal Logics

7.7 Model Checking in Modal Logics

The method presented in Sect. 3.4 can be used for model checking in finite models
of modal logics. The general idea is as follows. Let M be a finite model of a modal
logic L and let ' be an L-formula. In order to verify whether ' is true in M, we con-
struct a relational logic RLL and an RLL-model M0 such that for all object variables
x and y, the problem ‘M ˆ '?’ is equivalent to the problem ‘M0 ˆ x�.'/y?’.
Then, we apply the method of model checking for the relational logic RLL, the
model M0, and the formula x�.'/y as presented in Sect. 3.4. For that purpose, we
consider an instance RLM0;x�.'/y of the logic RLL. Then, we obtain:

Theorem 7.7.1 (Relational Model Checking in Modal Logics). For every
L-formula ', for every finite L-model M, and for all object variables x and y,
the following statements are equivalent:

1. M ˆ ';
2. x�.'/y is RLM0;x�.'/y -provable.

By way of example, consider modal logic K. Let M D .U;R;m/ be a
K-model such that U D fa;b;cg, m.p/ D fag, and the accessibility relation
is R D f.a;b/; .b;c/; .a;c/g. Let ' be the formula of the form :hRihRip. Let us
consider the problem: ‘is ' true in M?’. The translation of the formula ' is:

�.'/ D �.R I .R I .P I 1///;

where � 0.p/ D P . Using the construction from the proof of Proposition 7.4.2 it is
easy to prove that there exists an RLK-model M0 such that for all object variables x
and y, M ˆ ' iff M0 ˆ x�.'/y.

The model M0 D .U 0; R0; m0/ is an RLK-model such that U 0 D U , R0 D R, and
m0 is the meaning function satisfying:

m0.P / D f.a;a/; .a;b/; .a;c/g:

Let x and y be any object variables. The model checking problem ‘is ' true in M?’
is equivalent to the problem ‘is the formula x�.'/y true in M0?’. For the latter we
apply the method presented in Sect. 3.4. The vocabulary of the language adequate
for testing whether M0 ˆ x�.'/y consists of the following pairwise disjoint sets
of symbols:

� OV RLM0;x�.'/y
- a countable infinite set of object variables;

� OCRLM0;x�.'/y
D fca; cb; ccg – the set of object constants;

� RCRLM0;x�.'/y
D fR;P; 1; 10g – the set of relational constants;

� f�;[;\; I ;�1 g – the set of relational operations.

An RLM0;x�.'/y -model is the structure N D .W;R; n/, where:

� W D fa;b;cg;
� n.ca/ D a, n.cb/ D b, and n.cc/ D c;



7.8 Verification of Satisfaction in Modal Logics 157

� n.1/ D W �W ;
� n.10/ D f.a;a/; .b;b/; .c;c/g;
� n.P / D f.a;a/; .a;b/; .a;c/g;
� R D n.R/ D f.a;b/; .b;c/; .a;c/g;
� n extends to all the compound terms as in RL-models.

The rules of RLM0;x�.'/y-dual tableau which are specific for the model checking
problem in question have the following forms:

.�Rij/ x�Ry
x10ci; x�Ry j y10cj; x�Ry

for every .i;j/ 2 f.a;a/; .b;a/; .b;b/; .c;a/; .c;b/; .c;c/g;

.�Pij/ x�Py
x10ci; x�Py j y10cj; x�Py

for every .i;j/ 2 f.b;a/; .b;b/; .b;c/; .c;a/; .c;b/; .c;c/g;

.10/
x�10ca j x�10cb j x�10cc

.i ¤ j/
ci10cj

for any i;j 2 fa;b;cg;i ¤ j

The RLM0;x�.'/y -axiomatic sets are:

� fciRcjg, for every .i;j/ 2 f.a;b/; .b;c/; .a;c/g;
� fci�Rcjg, for every.i;j/ 2 f.a;a/; .b;a/; .b;b/; .c;a/; .c;b/; .c;c/g;
� fciPcjg, for every .i;j/ 2 f.a;a/; .a;b/; .a;c/g;
� fci�Pcjg, for every .i;j/ 2 f.b;a/; .b;b/; .b;c/; .c;a/; .c;b/; .c;c/g.
Let x and y be object variables. The truth of ' in model M is equivalent to
RLM0;x�.'/y -provability of x�.'/y. Figure 7.4 presents an RLM0;x�.'/y -proof of
x�.'/y. The subtree ˘1 is presented in Fig. 7.5. The subtrees ˘2 and ˘3 are
presented in Figs. 7.6 and 7.7, respectively. Observe that in a diagram of Fig. 7.7
the applications of the rules .�Pca/, .�Pcb/, and .�Pcc/ result in the nodes
with formulas v10ca, v10cb, and v10cc. Therefore, in the picture we identify all these
nodes.

7.8 Verification of Satisfaction in Modal Logics

The method of verification of satisfaction in finite models presented in Sect. 3.5 can
be also used in the case of standard modal logics. Let M D .U;R;m/ be a finite
model of a modal logic L, let ' be an L-formula, and let a 2 U be a state. In order
to verify whether ' is satisfied in M by the state a, we construct a relational logic



158 7 Dual Tableaux for Classical Modal Logics

x�.R I .R I .P I 1///y

�
.�I / twice with new variables z; v

x�Rz; z�Rv; v�.P I 1/y
�����

				
�
.10/

x�10ca; x�Rz;
z�Rv; v�.P I 1/y; : : :
��� ���.�Raa/

x10ca;

x�10ca; : : :

closed

˘1

x�10cb; x�Rz;
z�Rv; v�.P I 1/y; : : :

��� ���.�Rba/
x10cb;

x�10cb; : : :

closed

˘1

x�10cc; x�Rz;
z�Rv; v�.P I 1/y; : : :
��� ���.�Rca/

x10cc;

x�10cc; : : :

closed

˘1

Fig. 7.4 An RLM0 ;x�.'/y -proof of the truth of K-formula hRihRip! hRip in the model M

z10ca; z�Rv; v�.P I 1/y; : : :
����

			
.�Rba/
˘2 v10ca; z�Rv; v�.P I 1/y; : : :

��� 		
.�Rbb/
˘2 ˘3

Fig. 7.5 The subtree ˘1

z10ca; z10cb; z�Rv; v�.P I 1/y; : : :

�

			
.�Rca/
z10ca; z10cb; z�Rv; v10ca; v�.P I 1/y; : : :
����

			
.�Rcb/
z10ca; z10cb; z10cc; : : : ˘3

����
			
�.10/

z10ca;

z�10ca; : : :

closed

z10cb;

z�10cb; : : :

closed

z10cc;

z�10cc; : : :

closed

Fig. 7.6 The subtree ˘2

RLL, an RLL-model M0 D .U 0; R0; m0/, and a valuation va in M0 such that for all
object variables x and y, the problem ‘M;a ˆ '?’ is equivalent to the problem
‘M0; va ˆ x�.'/y?’. Then, we apply the method of verification of satisfaction
as presented in Sect. 3.5 to the relational logic RLL, the model M0, the formula
x�.'/y, and elements va.x/ and va.y/ ofU 0. We construct an instance RLM0;x�.'/y

of the logic RLL and we obtain:



7.8 Verification of Satisfaction in Modal Logics 159

v10ca; v10cb; v�.P I 1/y; : : :
�.�I / with a new variable t

v10ca; v10cb; v�P t; : : :

�

		
.�Pca/
v10ca; v10cb; v�P t; t10ca; : : :

�
�

�
�

�
�

���

		
.�Pcb/

v10ca; v10cb; v10cc; : : :

v10ca; v10cb; v�P t; t10ca; t1
0cb; : : :

		
�
�

�
�

���

.�Pcc/
t10ca; t1

0cb; t1
0cc; : : :

����
			
�.1

0/

t10ca;

t�10ca; : : :

closed

t10cb;

t�10cb; : : :

closed

t10cc;

t�10cc; : : :

closed

��� 		
�.10/

v10ca;

v�10ca; : : :

closed

v10cb;

v�10cb; : : :

closed

v10cc;

v�10cc; : : :

closed

Fig. 7.7 The subtree ˘3

Theorem 7.8.1 (Relational Satisfaction in Standard Modal Logics). For every
L-formula ', for every finite L-model M D .U;R;m/, and for every state a 2 U ,
the following statements are equivalent:

1. M;a ˆ ';
2. cva.x/�.'/va.y/ is RLM0;x�.'/y -provable.

As an example of an application of the method, consider the modal logic K. Let
M D .U;R;m/ be a K-model such that U D fa;bg, m.p/ D fag and the ac-
cessibility relation is R D f.b;a/g. Let ' be the formula hRip. Let us consider
the problem: ‘is ' satisfied in M by state b?’ The translation of the formula ' is
�.'/ D .R I .P I 1//, where � 0.p/ D P . By Proposition 7.4.2, there exist a standard
RLK-model M0 and a valuation vb in M0 such that for all object variables x and y,
M;b ˆ ' iff M0; vb ˆ x�.'/y.

The RLK-model M0 D .U 0; R0; m0/ is such that U 0 D U , R0 D R, and m0 is the
meaning function satisfying:

m0.P / D f.a;a/; .a;b/g:
Let vb be a valuation such that vb.x/ D b and vb.y/ D a. Then M0 and vb satisfy
the condition: M;b ˆ ' iff M0; vb ˆ x�.'/y.

Therefore the satisfaction problem ‘is ' satisfied in M by state b?’ is equivalent
to the problem ‘.b;a/ 2 m0.�.'//?’. By Proposition 3.5.1 this is equivalent to
RLM0;x�.'/y -provability of cb�.'/ca.



160 7 Dual Tableaux for Classical Modal Logics

cb.R I .P I 1//ca
����

			
.I / with ca

cbRca; : : :

closed
ca.P I 1/ca; : : :
����

			
.I / with ca

caPca; : : :

closed

ca1ca; : : :

closed

Fig. 7.8 An RLM0 ;x�.'/y -proof showing that hRip is satisfied in M by state b

RLM0;x�.'/y-dual tableau contains the rules and axiomatic sets of RL.1; 10/-dual
tableau adjusted to RLM0;x�.'/y -language and the rules and axiomatic sets specific
for the satisfaction problem as presented in Sect. 3.5:

� The rules are: .�Raa/, .�Rab/, .�Rbb/, .�Pbb/, .�Pba/, .10/, and
.a ¤ b/;

� The axiomatic sets are those that include either of the following subsets:
fcbRcag, fcaPcag, fcaPcbg, fca�Rcag, fcb�Rcbg, fca�Rcbg, fcb�Pcbg,
and fcb�Pcag.

It is easy to see that the formula x�.'/y is satisfied in M0 by valuation vb, though it
is not true in M0. Therefore, the formula hRip is satisfied in M by state b, while
it is not true in M. Figure 7.8 presents an RLM0;x�.'/y-proof of cb�.'/ca, which
shows that the formula hRip is satisfied in M by state b.



Chapter 8
Dual Tableaux for Some Logics Based
on Intuitionism

8.1 Introduction

Intuitionistic logic encompasses the principles of reasoning which were used by
L. Brouwer in developing his intuitionistic mathematics, beginning in [Bro07]. Intu-
itionistic logic can be succinctly described as classical logic without the law '_:'
of excluded middle. Brouwer observed that this law was abstracted from finite sit-
uations and its application to statements about infinite collections is not justified.
One of the consequences of the rejection of the law of excluded middle is that every
intuitionistic proof of an existential sentence can be effectively transformed into
an intuitionistic proof of an instance of that sentence. More precisely, if a formula
of the form 9x'.x/ without free variables is provable in the intuitionistic predi-
cate logic, then there is a term t without free variables such that '.t/ is provable. In
particular, if '_ is provable, then either ' or is provable. In that sense intuition-
istic logic may provide a logical basis for constructive reasoning. A formal system
of intuitionistic logic was proposed in [Hey30]. A relationship between the classi-
cal propositional logic PC and intuitionistic propositional logic INT was proved by
Glivenko in [Gli29], namely a PC-formula ' is PC-provable if and only if ::' is
INT-provable. Kripke semantics for intuitionistic logic was developed in [Kri65].

In this chapter we present relational dual tableaux for the propositional intu-
itionistic logic INT, for the minimal intuitionistic logic of Johansson, and for some
axiomatic extensions of INT, namely for the Scott’s logic and the logic of weak ex-
cluded middle. All these logics are decidable. We also develop a dual tableau for
the logic proposed in [FM95] for hardware verification. It is an intuitionistic logic
endowed with a propositional operation which enables us to specify the propagation
of signals along the gates of combinatorial circuits. Dual tableaux presented in this
chapter are modifications of the deduction systems presented in [FO95] within the
context of relational logics of Chap. 2.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 8,
c� Springer Science+Business Media B.V. 2011

161



162 8 Dual Tableaux for Some Logics Based on Intuitionism

8.2 Relational Formalization of Intuitionistic Logic

In this section we present the relational formalization of an intuitionistic logic, INT.
The vocabulary of INT-language consists of symbols from the following pairwise
disjoint sets:

� V – a countable set of propositional variables;
� f:;_;^;!g – the set of propositional operations.

The set of INT-formulas is the smallest set including the set V and closed with
respect to all the propositional operations.

An INT-model is a structure M D .U;R;m/ such that U is a non-empty set of
states, R is a reflexive and transitive relation on U , and m is a meaning function
such that the following conditions are satisfied:

� m.p/ � U , for every propositional variable p 2 V ;
� For all s; s0 2 U the following heredity condition holds:

(her) If .s; s0/ 2 R and s 2 m.p/, then s0 2 m.p/.
Let M D .U;R;m/ be an INT-model and let s 2 U . Satisfaction of INT-formula '
in M by state s, M; s ˆ ' for short, is defined inductively as follows:

� M; s ˆ p iff s 2 m.p/, for any propositional variable p;
� M; s ˆ :' iff for every s0 2 U , if .s; s0/ 2 R, then M; s0 6ˆ ';
� M; s ˆ ' _  iff M; s ˆ ' or M; s ˆ  ;
� M; s ˆ ' ^  iff M; s ˆ ' and M; s ˆ  ;
� M; s ˆ .' !  / iff for every s0 2 U , if .s; s0/ 2 R and M; s0 ˆ ', then

M; s0 ˆ  .

It is known that the heredity condition holds for every formula ', i.e., if .s; s0/ 2 R
and M; s ˆ ', then M; s0 ˆ '.

An INT-formula ' is said to be true in an INT-model M D .U;R;m/, M ˆ ',
whenever for every s 2 U , M; s ˆ ', and it is said to be INT-valid whenever it is
true in all INT-models.

In the relational formalization of logic INT we follow the main ideas of the
method presented in Sect. 7.4. The vocabulary of the language of the relational logic
RLINT consists of the symbols from the following pairwise disjoint sets:

� OV RLINT – a countable infinite set of object variables;
� RV RLINT – a countable infinite set of relational variables;
� RCRLINT D f1; 10; Rg – the set of relational constants;
� f�;[;\; I ;�1 g – the set of relational operations.

As in case of modal logics of Sect. 7.4, the constant R represents the accessibility
relation from INT-models. Relational terms and formulas of the logic RLINT are
defined as described in Sect. 2.3. The relational variables are intended to represent
intuitionistic formulas.



8.2 Relational Formalization of Intuitionistic Logic 163

An RLINT-model is an RL.1; 10/-model M D .U;R;m/ such that the following
conditions are satisfied:

� m.P / is a right ideal relation on U , for every P 2 RV RLINT ;
� R D m.R/ is a reflexive and transitive relation on U such that for every P 2

RV RLINT and for all x; y; z 2 U , the following holds:

(her’) If .x; y/ 2 R and .x; z/ 2 m.P /, then .y; z/ 2 m.P /.
The translation of INT-formulas into relational terms starts with a one-to-one as-
signment of relational variables to the propositional variables. Let � 0 be such an
assignment. Then the translation � of formulas is defined inductively:

� �.p/ D � 0.p/, for any propositional variable p;
� �.:'/ D �.R I �.'//;
� �.' _  / D �.'/ [ �. /;
� �.' ^  / D �.'/ \ �. /;
� �.' !  / D �.R I .�.'/\ ��. ///.
The translation of atomic INT-formulas cannot be defined as in modal logics (see
Sect. 7.4) due to the assumption of heredity. Therefore, in the RLINT-models rela-
tional variables are assumed to be right ideal relations and in the RLINT-dual tableau
the rule (ideal) reflecting this condition is included.

The translation � is defined so that it preserves validity of formulas.

Proposition 8.2.1. Let ' be an INT-formula. Then for every INT-model M D
.U;R;m/ there exists an RLINT-model M0 D .U;R;m0/ with the same universe
and the same relation R as those in M such that for all s; s0 2 U , M; s ˆ ' iff
.s; s0/ 2 m0.�.'//.
Proof. The proof is similar to the proof of Proposition 7.4.2. Let ' be an INT-
formula and let M D .U;R;m/ be an INT-model. We define an RLINT-model
M0 D .U;R;m0/ as follows:

� m0.1/ D U � U ;
� m0.10/ is the identity on U ;
� m0.�.p// D f.x; y/ 2 U � U W x 2 m.p/g, for every propositional variable p;
� m0.R/ D R;
� m0 extends to all the compound terms as in RL.1; 10/-models.

The proof is by induction on the complexity of formulas. By way of example, we
show the proposition for a compound formula built with the implication operation
which has a non-classical semantics in INT-logic.

Let ' D  ! # and let s0 2 U . Then M; s ˆ  ! # iff for every t 2 U ,
if .s; t/ 2 R and M; t ˆ  , then M; t ˆ # iff, by the induction hypothesis, for
every t 2 U , if .s; t/ 2 R and .t; s0/ 2 m0.�. //, then .t; s0/ 2 m0.�.#// iff
.s; s0/ 2 m0.�.R I .�. / \ ��.#//// iff .s; s0/ 2 m0.�.'//. ut



164 8 Dual Tableaux for Some Logics Based on Intuitionism

Proposition 8.2.2. Let ' be an INT-formula. Then for every standard RLINT-model
M0 D .U;R;m0/ there exists an INT-model M D .U;R;m/ with the same uni-
verse and the same relation R as those in M0 such that for all s; s0 2 U , the
condition of Proposition 8.2.1 holds.

Proof. Let ' be an INT-formula, let M0 D .U;R;m0/ be a standard RLINT-model.
We define an INT-model M D .U;R;m/ as follows:

m.p/ D f.x 2 U W for some y 2 U , .x; y/ 2 m0.�.p//g, for every proposi-
tional variable p.

Now, the proposition can be proved as Proposition 8.2.1. ut
Due to the above propositions we can prove the following (see also Propositions 7.4.4
and 7.4.5):

Proposition 8.2.3. Let ' be an INT-formula. Then for every INT-model M there
exists an RLINT-model M0 such that for any object variables x and y, M ˆ ' iff
M0 ˆ x�.'/y.

Proposition 8.2.4. Let ' be an INT-formula. Then for every standard RLINT-model
M0 there exists an INT-model M such that for any object variables x and y, the
condition of Proposition 8.2.3 holds.

Finally, from Propositions 8.2.3 and 8.2.4, we get:

Theorem 8.2.1. For every INT-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is INT-valid;
2. x�.'/y is RLINT-valid.

A dual tableau for the logic RLINT consists of the axiomatic sets and the rules of
dual tableau for RL.1; 10/-logic adjusted to the language of RLINT, the rules (ref R)
and (tran R) presented in Sects. 6.6 (see also Sect. 7.4) that reflect reflexivity and
transitivity of relation R from INT-models, respectively. Furthermore, we have the
rules of the following forms:

For every relational variable P and for all object variables x and y,

(rher’)
xPy

zRx; xPy j zPy; xPy z is any object variable

(ideal)
xPy

xP z; xPy
z is any object variable

The rule (rher’) reflects the heredity condition, while the rule (ideal) reflects the
fact that every relational variable is interpreted in an RLINT-model as a right ideal
relation. Note that any application of the rules of RLINT-dual tableau, in particular
an application of the specific rules listed above, preserves the formulas built with
atomic terms or their complements, and hence the closed branch property holds.

The notions of an RLINT-set of formulas and correctness of a rule are defined as
in Sect. 2.4.



8.2 Relational Formalization of Intuitionistic Logic 165

Proposition 8.2.5. The specific RLINT-rules are RLINT-correct.

Proof. By way of example, we show correctness of the rule (rher’). Correctness of
the remaining rules can be proved as in standard modal logics. LetX be a finite set of
RLINT-formulas. Clearly, ifX[fxPyg is an RLINT-set, then so areX[fzRx; xPyg
andX [fzPy; xPyg. Now, assume thatX [fzRx; xPyg andX [fzPy; xPyg are
RLINT-sets and suppose X [ fxPyg is not an RLINT-set. Then there exist an RLINT-
model M D .U;R;m/ and a valuation v in M such that for every ' 2 X [ fxPyg
M; v 6ˆ ', which implies .v.x/; v.y// 62 m.P /. By the assumption, M; v ˆ zRx
and M; v ˆ zPy. Thus, .v.z/; v.x// 2 R and .v.z/; v.y// 2 m.P /. Then, by the
condition (her’), .v.x/; v.y// 2 m.P /, a contradiction. ut
It is easy to see that all the remaining rules of RLINT-dual tableau are RLINT-correct
and all the RLINT-axiomatic sets are RLINT-sets.

The notions of an RLINT-proof tree, a closed branch of such a tree, a closed
RLINT-proof tree, and RLINT-provability are defined as in Sect. 2.4.

A branch b of an RLINT-proof tree is complete whenever it is either closed or
it satisfies the completion conditions of RL.1; 10/-dual tableau and the following
completion conditions determined by the rules specific for the RLINT-dual tableau:

For every relational variable P and for all object variables x and y,

Cpl(rher’) If xPy 2 b, then for every object variable z, either zRx 2 b or zPy 2 b,
obtained by an application of the rule (rher’);

Cpl(ideal) If xPy 2 b, then for every object variable z, xP z 2 b, obtained by an
application of the rule (ideal).

The notions of a complete RLINT-proof tree and an open branch of an RLINT-proof
tree are defined as in RL-logic (see Sect. 2.5).

The branch structure Mb D .U b; Rb; mb/ is defined in a standard way, that is
mb.Q/ D f.x; y/ 2 U b � U b W xQy 62 bg, for every Q 2 RV RLINT [ fRg, and
Rb D mb.R/. The completion conditions enable us to show that Rb satisfies all the
conditions assumed in RLINT-models. Therefore, the following holds:

Proposition 8.2.6 (Branch Model Property). For every open branch b of an
RLINT-proof tree, Mb is an RLINT-model.

Proof. We show that Mb satisfies the condition (her’) and every relational variable
P is interpreted in Mb as a right ideal relation. Assume that .x; y/ 2 Rb and
.x; z/ 2 mb.P /, that is xRy 62 b and xP z 62 b. Suppose .y; z/ 62 mb.P /, that is
yP z 2 b. Then, by the completion condition Cpl(rher’), either xRy 2 b or xP z 2 b,
a contradiction. Hence, Mb satisfies the condition (her’). Now, assume that .x; y/ 2
mb.P /, that is xPy 62 b. Suppose that for some z 2 U b , .x; z/ 62 mb.P /. Then
xP z 2 b and by the completion condition Cpl(ideal), xPy 2 b, a contradiction.
Therefore, for every relational variable P , mb.P / is a right ideal relation on U b . ut
Since branch model Mb is defined in a standard way, the satisfaction in branch
model property can be proved as in RL.1; 10/-logic (see Sects. 2.5 and 2.7).



166 8 Dual Tableaux for Some Logics Based on Intuitionism

Proposition 8.2.7 (Satisfaction in Branch Model Property). For every open
branch b of an RLINT-proof tree and for every RLINT-formula ', if Mb; vb ˆ ',
then ' 62 b.

Hence, the completeness of RLINT-dual tableau follows.

Theorem 8.2.2 (Soundness and Completeness of RLINT). Let ' be an RLINT-
formula. Then the following conditions are equivalent:

1. ' is RLINT-valid;
2. ' is true in all standard RLINT-models;
3. ' is RLINT-provable.

By the above theorem and Theorem 8.2.1, we obtain:

Theorem 8.2.3 (Relational Soundness and Completeness of INT). Let ' be an
INT-formula. Then for all object variables x and y, the following conditions are
equivalent:

1. ' is INT-valid;
2. x.�.'//y is RLINT-provable.

Example. Consider the following INT-formula ':

' D :p ! .p ! t/:

The translation of this formula into RLINT-term is:

�.'/ D �.R I .�.R IP/ \ ��.R I .P \ �T ////;

where �.p/ D P and �.t/ D T . INT-validity of ' is equivalent to RLINT-provability
of the formula x�.'/y. Figure 8.1 presents its RLINT-proof.

x�.R I .�.R IP/\��.R I .P \�T ////y

�
.�I / with a new variable z

x�Rz; z�.�.R IP/\��.R I .P \�T ///y

�
.�\/ and .�/

x�Rz; z.R IP/y; z�.R I .P \�T //y

�
.�I / with a new variable w

x�Rz; z.R IP/y; z�Rw;w�.P \�T /y

�
.�\/ and .�/

x�Rz; z.R IP/y; z�Rw;w�Py;wTy
���� .I / with w

			

zRw; z�Rw; : : :

closed

wPy;w�Py; : : :
closed

Fig. 8.1 An RLINT-proof of the formula :p! .p! t /



8.3 Relational Formalization of Minimal Intuitionistic Logic 167

8.3 Relational Formalization of Minimal Intuitionistic Logic

Minimal intuitionistic logic J was introduced by Johansson in [Joh36]. It differs
from the intuitionistic logic INT in that the formula :' ! .' !  / is not a theo-
rem of the logic. The language of the logic J is the same as INT-language. However,
these logics differ in semantics. A J-model is a structure M D .U;R;Q;m/ such
that the following conditions are satisfied:

� .U;R;m/ is an INT-model;
� Q � U is such that for every s 2 U , if s 2 Q and .s; s0/ 2 R, then s0 2 Q.

The satisfaction of a J-formula ' in a J-model M by a state s 2 U is defined as in
INT-logic except for the clause for negated formulas:

M; s ˆ : iff for all s0 2 U; if .s; s0/ 2 R; then M; s0 6ˆ  or s0 2 Q:

Intuitively,Q is thought of as the set of those states which are inconsistent.
The language of the relational logic RLJ is an RLINT-language with the following

set of relational constants: RCRLJ D f1; 10; R;Qg.
An RLJ-model is an RLINT-model M D .U;R;Q;m/ such that the following

conditions are satisfied:

(Q1) Q is a right ideal relation on U ;
(Q2) If .x; z/ 2 Q and .x; y/ 2 R, then .y; z/ 2 Q, for all x; y; z 2 U .

The translation � from J-formulas into relational terms coincides with the translation
of INT-formulas defined in Sect. 8.2 except for the translation of negated formulas:

�.:'/ dfD �.R I .�.'/\ �Q//:

Following the method of proving Theorem 8.2.1, we can prove:

Theorem 8.3.1. For every J-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is J-valid;
2. x�.'/y is RLJ-valid.

A dual tableau for the logic RLJ consists of the axiomatic sets and the rules of dual
tableau for RLINT-logic presented in Sect. 8.2 adjusted to the language of RLJ and
in addition the rules of the following forms:

For all object variables x and y,

(rQ1/
xQy

xQz; xQy
z is any object variable

(rQ2/
xQy

zQy; xQy j zRx; xQy z is any object variable



168 8 Dual Tableaux for Some Logics Based on Intuitionism

The above rules reflect the properties of relation Q assumed in RLJ-models. As in
RLINT-dual tableau, any application of the rules listed above preserves the formulas
built with atomic terms or their complements, and hence the closed branch property
holds.

Proposition 8.3.1. The RLJ-rules are RLJ-correct.

Proof. By way of example, we prove correctness of the rule (rQ2/. Correctness of
the other rules can be proved as in standard modal logics. Let X be any finite set of
RLJ-formulas. Clearly, ifX[fxQyg is an RLJ-set, then so areX[fzQy; xQyg and
X[fzRx; xQyg. Now, assume thatX[fzQy; xQyg andX[fzRx; xQyg are RLJ-
sets. Suppose X [ fxQyg is not an RLJ-set. Then there exist an RLJ-model M D
.U;R;Q;m/ and a valuation v in M such that for every ' 2 X[fxQygM; v 6ˆ ',
which implies .v.x/; v.y// 62 m.Q/. By the assumption, M; v ˆ zQy and M; v ˆ
zRx. Thus, .v.z/; v.y// 2 Q and .v.z/; v.x// 2 R. By property (Q2) assumed in
RLJ-models, .v.x/; v.y// 2 Q, a contradiction. Therefore, the rule (rQ2/ is RLJ-
correct. ut
The completion conditions determined by the rules (rQ1/ and (rQ2/ are:

For all object variables x and y,

Cpl(rQ1) If xQy 2 b, then for every object variable z, xQz 2 b;
Cpl(rQ2) If xQy 2 b, then for every object variable z, either zQy 2 b or

zRx 2 b.

The branch model is defined in a standard way, i.e., mb.T / D f.x; y/ 2 U b �
U b W xTy 62 bg, for every T 2 RV RLJ [ fR;Qg. The relation Qb satisfies all the
conditions assumed in RLJ-models, therefore we have:

Proposition 8.3.2 (Branch Model Property). For every open branch b of an RLJ-
proof tree, Mb is an RLJ-model.

Proof. We show that Qb is well defined. It can be easily proved that Qb is a right
ideal relation on U b . Now, assume that .x; z/ 2 Qb and .x; y/ 2 Rb , that is
xQz 62 b and xRy 62 b. Suppose .y; z/ 62 Qb, that is yQz 2 b. Then, by the
completion condition Cpl(rQ2), either xQz 2 b or xRy 2 b, a contradiction. ut
Satisfaction in branch model property can be proved as in RL.1; 10/-logic, hence we
get:

Theorem 8.3.2 (Soundness and Completeness of RLJ). Let ' be an RLJ-formula.
Then the following conditions are equivalent:

1. ' is RLJ-valid;
2. ' is true in all standard RLJ-models;
3. ' is RLJ-provable.



8.3 Relational Formalization of Minimal Intuitionistic Logic 169

By the above theorem and Theorem 8.3.1, we have:

Theorem 8.3.3 (Relational Soundness and Completeness of J). Let ' be a
J-formula. Then for all object variables x and y, the following conditions are
equivalent:

1. ' is J-valid;
2. x.�.'//y is RLJ-provable.

Example. Consider the following J-formula ':

' D p ! ::p:

The translation of ' into an RLJ-term is:

�.'/ D �.R I .P \ ��.R I .�.R I .P \ �Q//\�Q////;

where �.p/ D P . J-validity of ' is equivalent to RLJ-provability of the formula
x�.'/y. Figure 8.2 presents its RLJ-proof.

In the previous section we constructed an RLINT-proof for the formula ' D
:p ! .p ! t/ which showed its INT-validity. This formula is not J-valid. Its
translation into RLJ-term is:

�.'/ D �.R I .�.R I .P \ �Q//\��.R I .P \ �T ////;

x�.R I .P \��.R I .�.R I .P \�Q//\�Q////y

�
.�I / with a new variable z

x�Rz; z�.P \��.R I .�.R I .P \�Q//\�Q///y; : : :

�
.�\/ and .�/

z�Py; z�.R I .�.R I .P \�Q//\�Q//y; : : :

�
.�I / with a new variable w

z�Py; z�Rw;w�.�.R I .P \�Q//\�Q/y; : : :

�
.�\/ and .�/

z�Py; z�Rw;w.R I .P \�Q//y;wQy; : : :
�����

.I / with w
				


wRw; : : :

�
(ref R)

w10w; : : :
closed

z�Py; z�Rw;w.P \�Q/y;wQy; : : :
�����

.\/ 				

z�Py; z�Rw;wPy; : : :
���� (rher’) with z

			

zRw; z�Rw; : : :

closed

zPy; z�Py; : : :
closed

w�Qy;wQy; : : :
closed

Fig. 8.2 An RLJ-proof of the formula p!::p



170 8 Dual Tableaux for Some Logics Based on Intuitionism

x�.R I .�.R IP \�Q/\��.R I .P \�T ////y

�
.�I / with a new variable z

x�Rz; z�.�.R IP \�Q/\��.R I .P \�T ///y

�
.�\/ and .�/

x�Rz; z.R IP \�Q/y; z�.R I .P \�T //y

�
.�I / with a new variable w

x�Rz; z.R IP \�Q/y; z�Rw;w�.P \�T /y

�
.�\/ and .�/

x�Rz; z.R IP \�Q/y; z�Rw;w�Py;wTy
���� .I / with ˛

			

z�Rw; zR˛; : : : x�Rz; z�Rw;w�Py;wTy;

˛.P \�Q/y; z.R IP \�Q/y
��� .\/ 		


. . . . . .
node .B/

x�Rz; z�Rw;w�Py;wTy;
˛�Qy; z.R IP \�Q/y

. . . . . .

Fig. 8.3 A failed proof search of the formula :p! .p! t /

where �.p/ D P and �.t/ D T . Since ' is not J-valid, any RLJ-proof tree must not
close. Figure 8.3 presents an RLJ-proof tree of x�.'/y in which there is a branch
that cannot be closed. Consider the node .B/ in that tree which consists of the fol-
lowing formulas: x�Rz, z�Rw, w�Py, wTy, ˛�Qy, z.R I .P \ �Q//y, where
a variable ˛ is arbitrary. The only decomposition rule that can be applied to node
.B/ is the rule .I /, which generates, among others, a node consisting of the same
formulas as .B/ and a formula ˇ�Qy, where ˇ may be an arbitrary variable. We
can observe that no application of the rule .I / would close the branch. Also, no ap-
plication of a specific rule would close the branch. The rules .101/ and .102/ can be
applied only to the formula wTy. As the result we obtain a node that consists of the
same formulas as node .B/ and the formula y10ˇ or w10ˇ. Since node .B/ does not
contain a formula built with the complement of 10, the branch can be closed neither
by an application of the rule .101/ nor .102/. The rules (refR) and (tranR) cannot be
applied to the node .B/, because it does not contain a formula built with the atomic
term R. Similarly, the rules (rQ1) and (rQ2/ cannot be applied. The rules (rher’)
and (ideal) can be applied only to the formula wTy. However, observe that any ap-
plication of the rule (rher’) generates a node consisting of the same formulas as .B/
together with the formula ˇTy. It is easy to see that it cannot close the branch. In a
similar way, one can show that the same holds for the rule (ideal). Thus, the branch
cannot be closed.



8.4 Relational Formalization of Some Intermediate Logics 171

8.4 Relational Formalization of Some Intermediate Logics

Intermediate logics are the logics whose valid formulas include all the formulas that
are valid in intuitionistic logic but not necessarily all the tautologies of classical
propositional logic. In that sense, intermediate logics are between intuitionistic and
classical logic. The common language of intermediate logics is the INT-language.

In this section we consider two intermediate logics INTL1 and INTL2 whose
models are the INT-models satisfying the following conditions, respectively:

(L1) 8x8y8z8t Œ..x; y/ 2 R ^ .x; z/ 2 R ^ .y; t/ 2 R/! ..y; z/ 2 R _ .z; y/ 2
R _ .z; t/ 2 R/�;

(L2) 8x8y8zŒ..x; y/ 2 R ^ .x; z/ 2 R/! 9t..y; t/ 2 R ^ .z; t/ 2 R/�.
The specific axioms of the logics INTL1 and INTL2 in their Hilbert-style axiomati-
zations are:

(A1) Œ.::' ! '/! .:' _ '/�! .:' _ ::'/;
(A2) :' _ ::'.

INTL1 is referred to as Scott’s logic and INTL2 is the logic of weak excluded middle.
The common language of a relational logic RLINTL for an intermediate logic L 2

fL1;L2g is the RLINT-language. Models of RLINTL satisfy all the conditions assumed
in INTL-models for the accessibility relation R and (L1) or .L2/, respectively. The
translation of INTL-formulas into relational terms is defined as for INT-formulas in
Sect. 8.2. To obtain dual tableaux for these logics, we add to RLINT-dual tableau the
rules reflecting the specific semantic conditions that are assumed in their models.
The specific rules reflecting the conditions (L1) and (L2) have the following forms:

For all object variables x; y; z, and t ,

(rL1)
yRz; zRy; zRt

xRy; yRz; zRy; zRt j xRz; yRz; zRy; zRt j yRt; yRz; zRy; zRt

(rL2)
xRy j xRz j y�.R IR�1/z

The above rules have the property of preserving formulas built with atomic terms or
their complements. Hence, the closed branch property holds. An alternative form of
rule (rL2) is discussed in Sect. 25.9.

Theorem 8.4.1 (Correspondence). Let K be a class of RLINT-models and let i 2
f1;2g. Then, K is a class of RLINTLi

-models iff the rule (rLi) is K-correct.

Proof.

(!) By way of example, we show it for iD1. Let K be a class of RLINTL1
-

models, that is every model from K satisfies the condition (L1). Let X be
a finite set of RLINT-formulas. Clearly, if X [ fyRz; zRy; zRtg is a K-set,
then so are X [ fxRy; yRz; zRy; zRtg, X [ fxRz; yRz; zRy; zRtg, and X [
fyRt; yRz; zRy; zRtg. Assume X [ fxRy; yRz; zRy; zRtg, X [ fxRz; yRz;



172 8 Dual Tableaux for Some Logics Based on Intuitionism

zRy; zRtg, and X [ fyRt; yRz; zRy; zRtg are K-sets. Suppose X [ fyRz;
zRy; zRtg is not a K-set. Then there exist an RLINTL1

-model M D .U;R;m/

and a valuation v in M such that for every ' 2 X [fyRz; zRy; zRtg, M; v 6ˆ ', in
particular, .v.y/; v.z// 62 R, .v.z/; v.y// 62 R, and .v.z/; v.t// 62 R. However, by the
assumption, model M and valuation v satisfy .v.x/; v.y// 2 R, .v.x/; v.z// 2 R,
and .v.y/; v.t// 2 R. By the condition (L1), it means that either .v.y/; v.z// 2 R or
.v.z/; v.y// 2 R or .v.z/; v.t// 2 R, a contradiction.
. / By way of example, we show it for i D 2. Let K be a class of RLINT-models.

Assume the rule (rL2) is K-correct. LetX
dfD fx�Ry; x�Rz; y.R IR�1/zg. Clearly,

the sets X [ fxRyg, X [ fxRzg, and X [ fy�.R IR�1/zg are K-sets. Thus, by the
assumption, X must be a K-set. Therefore, for every model M D .U;R;m/ from
K and for all x; y; z 2 U , if .x; y/ 2 R and .x; z/ 2 R, then .y; z/ 2 R IR�1.
Since .y; z/ 2 R IR�1 is equivalent to 9t..y; t/ 2 R and .z; t/ 2 R/, K is a class of
RLINTL2

-models. ut
The completion conditions determined by the rules (rL1) and (rL2) are:

For all object variables x; y; z, and t ,

Cpl(rL1) If the formulas yRz; zRy, and zRt are in b, then either xRy 2 b or
xRz 2 b or yRt 2 b;

Cpl(rL2) Either xRy 2 b or xRz 2 b or y�.R IR�1/z 2 b.

In order to prove completeness, we need to show that the branch structure is an
RLINTL-model, for L 2 fL1;L2g.
Proposition 8.4.1 (Branch Model Property). Let L 2 fL1;L2g and let b be an
open branch of an RLINTL-proof tree. Then, Mb is an RLINTL-model.

Proof. It suffices to show that if RLINTL-dual tableau includes a rule (rLi), then Mb

satisfies the condition (Li), for i 2 f1;2g. By way of example, we show it for i D 2.
Indeed, by the completion condition Cpl(rL2), for all x; y; z 2 U b , either xRy 2 b
or xRz 2 b or y�.R IR�1/z 2 b. Thus, by the completion conditions Cpl(I) and
Cpl(��1), for all x; y; z 2 U b , either xRy 2 b or xRz 2 b or there exists t 2 U b
such that y�Rt 2 b and z�Rt 2 b. So .x; y/ 62 Rb or .x; z/ 62 Rb or there exists
t 2 U b such that .y; t/ 2 Rb and .z; t/ 2 Rb . Therefore, for all x; y; z 2 U b , if
.x; y/ 2 Rb and .x; z/ 2 Rb , then there exists t 2 U b such that .y; t/ 2 Rb and
.z; t/ 2 Rb , hence the condition (L2) is satisfied. ut
Since the language of the logics RLINTL1

and RLINTL2
is the same as in RLINT-logic,

the satisfaction in branch model property holds. Thus, the proof of completeness is
similar as in RLINT-logic.

Theorem 8.4.2 (Soundness and Completeness of RLINTL ). Let L 2 fL1;L2g and
let ' be an RLINTL-formula. Then the following conditions are equivalent:



8.4 Relational Formalization of Some Intermediate Logics 173

1. ' is RLINTL-valid;
2. ' is true in all standard RLINTL -models;
3. ' is RLINTL-provable.

Theorem 8.4.3 (Relational Soundness and Completeness of INTL). Let L 2
fL1;L2g and let ' be an INTL-formula. Then for all object variables x and y, the
following conditions are equivalent:

1. ' is INTL-valid;
2. x.�.'//y is RLINTL-provable.

Example. Consider the following INTL2
-formula:

' D :p _ ::p:

The translation of ' into RLINTL2
-term is:

�.'/ D �.R IP/ [ �.R I �.R IP//;

where �.p/ D P . INTL2
-validity of ' is equivalent to RLINTL2

-provability of the
formula x�.'/y. Figure 8.4 presents its RLINTL2

-proof.

x.�.R IP/[�.R I�.R IP///y

�
.[/

x�.R IP/y; x�.R I�.R IP//y

�
.�I / with a new variable z

x�Rz; z�Py; x�.R I�.R IP//y

�
.�I / with a new variable w and .�/

x�Rz; z�Py; x�Rw;w.R IP/y
����� �

(rL2) with x; z;w
				


xRz; x�Rz; : : :
closed

xRw; x�Rw; : : :
closed

z�.R IR�1/w; z�Py;w.R IP/y; : : :

�
.�I / with a new variable t , .��1/

z�Rt;w�Rt; z�Py;w.R IP/y; : : :
����

w�Rt;wRt; : : :
closed

�
.I / with t

z�Rt; z�Py; tPy; : : :
���� (rher’) with z

			

z�Rt; zRt; : : :

closed

z�Py; zPy; : : :
closed

Fig. 8.4 An RLINTL2
-proof of the formula :p _::p



174 8 Dual Tableaux for Some Logics Based on Intuitionism

8.5 Relational Formalization of a Logic for Hardware
Verification

In this section we consider a propositional logic PLL which has been proposed as a
tool for a formal verification of computer hardware (see [FM95, Men90, Men93]).

The logic PLL is obtained from the logic INT by endowing its language with
a unary propositional operation that models a delay of propagation of signals.
Signals are conceived as Boolean valued functions, where Boolean values are de-
noted by 1 and 0. To input and output signals of the gates we assign propositional
variables. If p is such a variable, then truth of p in a model is interpreted as ‘p is
stable at 1”, truth of :p means “p is stable at 0’, truth ofp means ‘p is going to
stabilize to 1’, and truth of:p means ‘p is going to stabilize to 0’.

A PLL-model is a structure M D .U;R; S;m/ such that .U;R;m/ is an INT-
model and S is a reflexive and transitive relation on U such that S � R. Then, the
satisfaction of formulas of the form' is defined as follows:

M; s ˆ ' iff for every s0 2 U; if .s; s0/ 2 R; then there exists t 2 U such
that .s0; t/ 2 S and M; t ˆ '.

The language of the relational logic RLPLL is the language of RLINT-logic endowed
with the relational constant S .

An RLPLL-model is a structure M D .U;R; S;m/ such that .U;R;m/ is an
RLINT-model and S is a reflexive and transitive relation on U satisfying S � R.

The translation � from PLL-formulas into relational terms is defined as the trans-
lation in Sect. 8.2 with the following clause for formulas of the form':

�.'/ dfD �.R I �.S I .�.'////:

Much the same as we proved Theorem 8.2.1, we can show:

Theorem 8.5.1. For every PLL-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is PLL-valid;
2. x�.'/y is RLPLL-valid.

A dual tableau for the logic RLPLL consists of the axiomatic sets and the rules of
dual tableau for RLINT-logic (see Sect. 8.2) adjusted to the language of RLPLL, the
rules (ref S ) and (tran S ) reflecting reflexivity and transitivity of S , respectively (see
Sect. 6.6), and in addition the rule .SR/ of the following form:

For all object variables x and y,

.SR/
xRy

xSy; xRy



8.5 Relational Formalization of a Logic for Hardware Verification 175

The above rule reflects the condition S � R. The rule (SR) preserves formulas built
with atomic terms. Hence, the closed branch property holds. It is easy to see that the
rule .SR/ is RLPLL-correct.

Proposition 8.5.1. The RLPLL-rules are RLPLL-correct.

The completion condition determined by the rule .SR/ is:
For all object variables x and y,

Cpl(SR) If xRy 2 b, then xSy 2 b.

The branch model is defined in a standard way, that ismb.T / D f.x; y/ 2 U b�U b W
xTy 62 bg, for every T 2 RV RLPLL [ fR;Sg.
Proposition 8.5.2 (Branch Model Property). For every open branch b of an
RLPLL-proof tree, Mb is an RLPLL-model.

Proof. It suffices to show that Sb satisfies all the conditions assumed in RLPLL-
models. Reflexivity and transitivity of Sb can be proved as in Theorem 6.6.1.
Now, assume that .x; y/ 2 Sb , that is xSy 62 b. Suppose .x; y/ 62 Rb, that is
xRy 2 b. Then, by the completion condition Cpl(SR), we get xSy 2 b, a contra-
diction. Hence, Mb is an RLPLL-model. ut
Since the branch model Mb is defined in a standard way (see Sect. 2.6, p. 44),
the satisfaction in branch model property can be proved as in RL.1; 10/-logic (see
Sects. 2.5 and 2.7). Hence, completeness of RLPLL-dual tableau follows.

Theorem 8.5.2 (Soundness and Completeness of RLPLL). Let ' be an RLPLL-
formula. Then the following conditions are equivalent:

1. ' is RLPLL-valid;
2. ' is true in all standard RLPLL-models;
3. ' is RLPLL-provable.

By the above theorem and Theorem 8.5.1, we have:

Theorem 8.5.3 (Relational Soundness and Completeness of PLL). Let ' be a
PLL-formula. Then for all object variables x and y, the following conditions are
equivalent:

1. ' is PLL-valid;
2. x.�.'//y is RLPLL-provable.

Example. Consider the following PLL-formula:

' D p !p:

The translation of ' into RLPLL-term is:

�.'/ D �.R I .P \ ��.R I �.S IP////;

where �.p/ D P . PLL-validity of ' is equivalent to RLPLL-provability of the for-
mula x�.'/y. Figure 8.5 presents its RLPLL-proof.



176 8 Dual Tableaux for Some Logics Based on Intuitionism

x�.R I .P \��.R I�.S IP////y

�
.�I / with a new variable z

x�Rz; z�.P \��.R I�.S IP///y

�
.�\/ and .�/

x�Rz; z�Py; z�.R I�.S IP//y

�
.�I / with a new variable t and .�/

x�Rz; z�Py; z�Rt; t.S IP/y
���� .I / with t

			

tSt; : : :

�
(ref)

t10t; : : :

closed

x�Rz; z�Py; z�Rt; tPy
���� (rher’) with z

			

z�Rt; zRt; : : :

closed

z�Py; zPy; : : :
closed

Fig. 8.5 An RLPLL-proof of the formula p!�p



Chapter 9
Dual Tableaux for Relevant Logics

9.1 Introduction

Relevant logics developed as attempts to avoid the paradoxes of classical implication
such as e.g., validity in the classical propositional logic PC of the formulas of the
form .' ^ :'/ !  or ' ! . ! '/. The source of these paradoxes was
identified as irrelevance of the antecedent of the implication to the consequent. The
history and developments of relevant logics can be found e.g., in [AB75, ABD92,
RMPB83, Bra03a].

Like in the semantics of modal logics, in a Kripke-style semantics for relevant
logics truth of formulas depends on states. However, the accessibility relations in
models of relevant logic must be ternary; binary relations are not sufficient for elimi-
nating the paradoxical tautology ' ! . ! '/. The first contributions to semantics
of relevant logics are [Urq72, RM73, Mak73].

Relevant logics have many applications in computer science where they provide
an insight into the nature of information, see e.g., [Res96]. With this interpreta-
tion, states of the models of the logics are thought of as pieces of information.
The languages of many relevant logics include a binary product operation which
is interpreted as a fusion, in the sense that it combines the information of two states.
In the linear logic [Gir87], which belongs to the family of relevant logics, formulas
provide an information about computational resources and implication ' !  is
read as saying that we can get  from a single resource of type '. Since in the linear
logic the contraction law .' ! .' !  // ! .' !  / is not assumed, the truth
of formula ' ! .' !  / says that we can obtain a resource of type  from two
resources of type ', but it does not necessarily imply that we can get from a single
resource '. A dual tableau for the linear logic is developed in [Mac97].

In this chapter we present relational dual tableaux for various relevant logics.
The method applied here extends the method followed in the preceding chapters
in that we interpret relevant logics in the logics of ternary relations. However, the
main principle of relational proof systems for non-classical logics is the same:
we interpret formulas of the logics as relations of the same arity as the relations
from the models of the logics. Dual tableaux presented in this chapter originated
in [Orł92]. They provide a uniform deduction tool for a variety of relevant logics.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 9,
c� Springer Science+Business Media B.V. 2011

177



178 9 Dual Tableaux for Relevant Logics

Relevant logics belong to a larger family of substructural logics. Dual tableaux for
some substructural logics not treated in this chapter can be found in [Mac97, Mac98,
Mac99]. Decidability and undecidability problems of relevant logics are discussed
in [Urq84, Gia85, Bra90, Bra03b], among others.

9.2 Relevant Logics

The vocabulary of the language of propositional relevant logics consists of symbols
from the following pairwise disjoint sets:

� V – a countable infinite set of propositional variables;
� f:;_;^;ˇ;!g – a set of propositional operations of negation, disjunction, con-

junction, intensional conjunction (also referred to as fusion or product), and
implication, respectively.

The set of relevant formulas is the smallest set including the set V and closed with
respect to the propositional operations.

Models of relevant logics are the structures of the form M D .U;O;	; R;m/
such that U is a non-empty set of states, O 2 U is a distinguished ‘real’ state,
	WU ! U is a function on the set of states, R � U �U �U is a ternary relation on
U , and mWV ! P.U / is a meaning function which assigns sets of states to propo-
sitional variables. Function 	 provides an interpretation of negation and relation R
provides an interpretation of the intensional conjunction and implication.

A relevant formula ' is said to be satisfied in a model M by a state s 2 U ,
M; s ˆ ', whenever the following conditions are satisfied:

� M; s ˆ p iff s 2 m.p/, for every p 2 V ;
� M; s ˆ :' iff not M; s� ˆ ';
� M; s ˆ ' _  iff M; s ˆ ' or M; s ˆ  ;
� M; s ˆ ' ^  iff M; s ˆ ' and M; s ˆ  ;
� M; s ˆ ' ˇ  iff for some x; y 2 U , .x; y; s/ 2 R and M; x ˆ ' and

M; y ˆ  ;
� M; s ˆ ' !  iff for all x; y 2 U , if .s; x; y/ 2 R and M; x ˆ ', then

M; y ˆ  .

A formula ' is said to be true in a relevant model M if and only if M; O ˆ '.
A formula ' is valid in a relevant logic whenever ' is true in all models for the
logic.

In every relevant logic function 	 and relationR satisfy some constraints specific
for the logic. A minimal set of constraints which are assumed in many relevant
logics is:

For all x; y; z;w 2 U ,

(M1) .O; x; x/ 2 R;
(M2)(i) If .O; x; y/ 2 R and .y; z;w/ 2 R, then .x; z;w/ 2 R;
(M2)(ii) If .O; x; y/ 2 R and x 2 m.p/, then y 2 m.p/, for every p 2 V ;



9.3 Translation of Relevant Logics into Relational Logics 179

(M3) If .x; y; z/ 2 R, then .x; z�; y�/ 2 R;
(M4) .O; x��; x/ 2 R and .O; x; x��/ 2 R.

Algebras of relevant logics are distributive residuated lattices, where product ˇ
has a left identity and! is the left residuum of ˇ. Dualities for relevant algebras
(Priestley duality of [Urq96] and discrete duality of [ORR10]) suggest that holding
R.x; y; z/ in a frame may be viewed as holding x ˇ y � z in a relevant algebra
and element O of a frame is a counterpart to the left identity of ˇ. Then condi-
tion (M1) corresponds to reflexivity of �, (M2) (i) simulates left monotonicity of
ˇ, (M2) (ii) is the atomic heredity, (M3) says that negation is order reversing, and
(M4) simulates the law of double negation.

In what follows, by RLV we mean the logic whose models satisfy the conditions
(M1), . . . , (M4).

For x; y; z; t 2 U , we define:

.x; y; z; t/ 2 R1 df, there is a 2 U such that .x; y; a/ 2 R and .a; z; t/ 2 R;

.x; y; z; t/ 2 R2 df, there is a 2 U such that .y; z; a/ 2 R and .x; a; t/ 2 R.

In the relevant logic literature R1.x; y; z; t/ is usually denoted by R2xyzt and
R2.x; y; z; t/ is denoted byR2x.yz/t . Our notation enables us presentation of these
constants without using object variables which is useful in the definition of relational
logics associated to relevant logics.

Various relevant logics can be defined by adding postulates to (M1), . . . , (M4).
Below we give the list of some such typical conditions:

(M5) .x; y; z; t/ 2 R1 implies .x; y; z; t/ 2 R2;
(M6) .x; y; z; t/ 2 R1 implies .y; x; z; t/ 2 R2;
(M7) .x; y; z; t/ 2 R1 implies .x; z; y; t/ 2 R1;
(M8) .x; y; z/ 2 R implies .x; y; y; z/ 2 R1;
(M9) .x; x�; x/ 2 R;
(M10) If .x; y; z/ 2 R, then .O; x; z/ 2 R or .O; y; z/ 2 R;
(M11) If .x; y; z/ 2 R, then .O; x; z/ 2 R;
(M12) .x; y; z/ 2 R implies .z; x; y; z/ 2 R2.

9.3 Translation of Relevant Logics into Relational Logics

In this section we define a translation of relevant logics into relational logics. Let L
be a relevant logic. We define a relational logic RLL corresponding to L. Formulas
of RLL, interpreted as ternary or quaternary relations, will represent formulas of the
relevant logic L, the accessibility relation from the models of L, and the constants
R1 and R2. The vocabulary of the language of RLL consists of the symbols from
the following pairwise disjoint sets:

� OV RLL – a countable infinite set of object variables;
� fOg – the set consisting of an object constant;



180 9 Dual Tableaux for Relevant Logics

� RV RLL – a countable infinite set of relational variables corresponding to the
propositional variables of L;

� fR;R1; R2g – the set of the relational constants;
� f	g – the set consisting of an unary object operation;
� f�;:;[;\;ˇ;!g – the set of relational operations.

The operations :;ˇ;! will be defined so that they will be the counterparts to
the specific operations of logic L and �, [, and \ are the classical complement,
union, and intersection of relations, respectively. We slightly abuse the notation here
by using the same symbols :, ˇ, ! in relevant logics and in the corresponding
relational logics.

The set OT RLL of object terms is the smallest set including OV RLL [ fOg
and closed on the operation 	. The set of relational terms is defined as RT RLL

dfD
RT0

RLL
[fR1; R2;�R1;�R2g, where RT 0

RLL
is the smallest set including RV RLL[

fRg and closed on the relational operations. Formulas are of the form S.x; y; z/
or Q.x; y; z; t/, where S 2 RT 0

RLL
, Q 2 fR1; R2;�R1;�R2g, and x; y; z; t 2

OT RLL .
Now, we define models of the logic RLL. As usual, we use the same symbols for

operations and constants in the language and for the corresponding entities in the
models. An RLRLV-model is a structure M D .U;O;	; R;R1; R2; m/ such that U
is a non-empty set, m is a meaning function that provides the interpretation of the
symbols of the language, and the following conditions are satisfied:

� O 2 U is an object which provides interpretation of constant O ;
� 	WU ! U is a function in U which provides interpretation of operation 	;
� R � U 3 is a ternary relation which provides interpretation of relational

constant R;
� R1 andR2 are quaternary relations onU providing the interpretation of relational

constantsR1 and R2, respectively, defined as in RLV-models in Sect. 9.2;
� m.P / D X�U �U , for someX � U , for every relational variableP 2 RV RLL ;
� The conditions (M1), (M2)(i), (M3), (M4) of L-models are satisfied together with

the following modification of (M2) (ii):

(M2)’(ii) If .O; x; y/ 2 R and .x; t; u/ 2 m.P /, then .y; t; u/ 2 m.P /, for
every relational variable P ;

� m extends to all the compound relational terms as follows:

ForQ 2 fR1; R2g,
m.�Q/ D U 4�m.Q/;

For all ternary relational terms S and T ,

m.�S/ D U 3�m.S/,
m.:S/ D :m.S/ dfD f.x; y; z/ 2 U 3 W .x�; y; z/ 2 m.�S/g,



9.3 Translation of Relevant Logics into Relational Logics 181

m.S [ T / D m.S/ [m.T /
dfD f.x; y; z/ 2 U 3 W .x; y; z/ 2 m.S/ or .x; y; z/ 2 m.T /g,

m.S \ T / D m.S/ \m.T /
dfD f.x; y; z/ 2 U 3 W .x; y; z/ 2 m.S/ and .x; y; z/ 2 m.T /g,

m.S ˇ T / D m.S/m.T /
dfD f.x; y; z/ 2 U 3 W there are t;w 2 U such that .t;w; x/ 2 R and

.t; y; z/ 2 m.S/ and, .w; y; z/ 2 m.T /g,
m.S ! T / D m.S/! m.T /

dfD f.x; y; z/ 2 U 3 W for all t;w 2 U if .x; t;w/ 2 R and
.t; y; z/ 2 m.S/; then .w; y; z/ 2 m.T //g.

In analogy to binary right ideal relations, the ternary relations on U which are of the
form X � U � U , for some X � U , will be referred to as ideal relations.

Proposition 9.3.1. For every RLRLV-model M D .U;O;	; R;R1; R2; m/, the
set of ideal relations in U is closed with respect to the relational operations
�;:;[;\;ˇ, and!.

Proof. Let S and T be ternary ideal relations on U . Consider relation S ! T .
Assume .x; y; z/2S ! T . Then, for all t;w2U , if .x; t;w/2R and .t; y; z/2S ,
then .w; y; z/ 2 T . Suppose there are s; u 2 U such that .x; s; u/ 62 S ! T .
Thus, there are t 0;w0 2 U such that .x; t 0;w0/ 2 R and .t 0; s; u/ 2 S and
.w0; s; u/ 62 T . Since S is an ideal relation, .t 0; y; z/ 2 S . Since .x; t 0;w0/2R
and .t 0; y; z/2S , we have .w0; y; z/ 2 T . Hence, since T is an ideal relation,
.w0; s; u/ 2 T , a contradiction.

In the remaining cases the proofs are similar. ut
If L is obtained from RLV by assuming some of the conditions (M5), . . . , (M12) in
its models, then RLL-models are RLRLV-models which in addition satisfy the condi-
tions corresponding to those specific conditions of L-models (see e.g., Sect. 9.5).

Let M be an RLL-model. A valuation in M is a function vWOT RLL ! U such
that v.O/ D O and v.x�/ D v.x/�. We say that an RLL-formula S.x; y; z/ (resp.
Q.x; y; z; t/) is satisfied in M by a valuation v, M; v ˆ S.x; y; z/ (resp. M; v ˆ
Q.x; y; z; t/), whenever .v.x/; v.y/; v.z// 2 m.S/ (resp. .v.x/; v.y/; v.z/; v.t// 2
m.Q/). An RLL-formula is true in M if and only if it is satisfied in M by all
valuations, and it is RLL-valid whenever it is true in all RLL-models.

Now, we define a translation function � from formulas of relevant logics into
relational terms. Let � 0WV ! RV RLL be a one-to-one mapping assigning relational
variables to propositional variables. Then we define:

� �.p/ D � 0.p/, for every p 2 V ;
� �.:'/ D :�.'/;
� �.' _  / D �.'/ [ �. /;



182 9 Dual Tableaux for Relevant Logics

� �.' ^  / D �.'/ \ �. /;
� �.' ˇ  / D �.'/ˇ �. /;
� �.' !  / D �.'/! �. /.

Clearly, on the right hand side of these equalities we have the relational operations
of RLL-logic. Observe also that every relevant formula is translated into ternary
relational term.

Proposition 9.3.2. For every L-model M D .U;O;	; R;m/ there exists an RLL-
model M0 D .U;O;	; R;R1; R2; m0/ such that its set of objects, element O ,
operation 	, and relation R are the same as those in M, and for every L-formula '
and for all s; t; u 2 U , M; s ˆ ' iff .s; t; u/ 2 m0.�.'//.
Proof. Let M D .U;O;	; R;m/ be an L-model. We construct an RLL-model
M0 D .U;O;	; R;R1; R2; m0/ definingm0 by:

� m0.P / D m.p/�U 2, for every relational variable P , where p is a propositional
variable such that �.p/ D P ;

� R1 andR2 are quaternary relations onU providing the interpretation of relational
constantsR1 and R2, respectively, defined as in RLV-models in Sect. 9.2;

� m0 extends to all the compound relational terms as in RLL-models.

It is easy to see that since R is the same in both models, conditions (M1), (M2)(i),
(M2)’(ii), (M3), and (M4) are satisfied in M0, and if M satisfies some of the condi-
tions (Mj ), for j 2 f5; : : : ; 12g, then the corresponding conditions are also satisfied
in M0.

Now, we prove the proposition by induction on the complexity of formulas. Let
s; t; u 2 U . Let p 2 V . Then M; s ˆ p iff s 2 m.p/ iff, by the definition ofm0.P /,
.s; t; u/ 2 m0.P / iff .s; t; u/ 2 m.�.p//.

Assume that the proposition holds for formulas ' and  .
M; s ˆ :' iff M; s� 6ˆ ' iff, by the induction hypothesis, .s�; t; u/ 62 m0.�.'//

iff .s; t; u/ 2 m0.�.:'//
M; s ˆ ' ˇ  iff there exist x; y 2 U such that .x; y; s/ 2 R and M; x ˆ '

and M; y ˆ  iff, by the induction hypothesis, there exist x; y 2 U such that
.x; y; s/ 2 R and .x; t; u/ 2 m0.�.'// and .y; t; u/ 2 m0.�. // iff .s; t; u/ 2
m0.�.' //.

In the remaining cases the proofs are similar. ut
Proposition 9.3.3. For every RLL-model M0 D .U;O;	; R;R1; R2; m0/ there
exists an L-model M D .U;O;	; R;m/ such that its set of objects, element O ,
operation 	, and relation R are the same as those in M0, and for every L-formula
' and for all s; t; u 2 U , M; s ˆ ' iff .s; t; u/ 2 m0.�.'//.
Proof. Let M0 D .U;O;	; R; R1; R2, m0/ be an RLL-model. We construct an
L-model M D .U;O;	; R;m/ such that for every p 2 V , m.p/ is defined as:

m.p/ D fx 2 U W for some y; z 2 U , .x; y; z/ 2 m0.P /g, where P is a relational
variable such that P D � 0.p/.



9.4 Relational Dual Tableau for Logic RLV 183

Then the proof is similar to the proof of Proposition 9.3.2. ut
Propositions 9.3.2 and 9.3.3 lead to the following theorem:

Theorem 9.3.1. For every L-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is L-valid;
2. �.'/.O; x; y/ is RLL-valid.

Proof. Assume that ' is true in all L-models. Suppose �.'/.O; x; y/ is not RLL-
valid, that is there exist an RLL-model M D .U;O;	; R;R1; R2; m/ and a
valuation v in M such that .O; v.x/; v.y// 62 m.�.'//. By Proposition 9.3.3, there
exists an L-model M0 such that M0; O 6ˆ ', a contradiction. Now, assume that
�.'/.O; x; y/ is RLL-valid and suppose ' is not L-valid. Then there exists an
L-model M D .U;O;	; R;m/ in which ' is not true, that is M; O 6ˆ '. By
Proposition 9.3.2, there exists RLL-model M0 such that M0 6ˆ �.'/.O; x; y/,
which means that �.'/.O; x; y/ is not RLL-valid, a contradiction. ut

9.4 Relational Dual Tableau for Logic RLV

In this section we present a dual tableau for the logic RLV defined in Sect. 9.2.
RLRLV-dual tableau contains decomposition rules of the following forms:

For all object terms x; y; z and for all relational terms S and T ,

.�/ ��S.x; y; z/
S.x; y; z/

.:/ :S.x; y; z/
�S.x�; y; z/ .�:/ �:S.x; y; z/

S.x�; y; z/

.[/ .S [ T /.x; y; z/
S.x; y; z/; T .x; y; z/

.�[/ �.S [ T /.x; y; z/
�S.x; y; z/ j �T .x; y; z/

.\/ .S \ T /.x; y; z/
S.x; y; z/ jT .x; y; z/ .�\/ �.S \ T /.x; y; z/

�S.x; y; z/;�T .x; y; z/

.ˇ/ .S ˇ T /.x; y; z/
R.t;w; x/; 
 jS.t; y; z/; 
 jT .w; y; z/; 

t;w are any object terms and 
 D .S ˇ T /.x; y; z/

.�ˇ/ �.S ˇ T /.x; y; z/
�R.t;w; x/;�S.t; y; z/;�T .w; y; z/

t;w are new object variables such that t ¤ w



184 9 Dual Tableaux for Relevant Logics

.!/ .S ! T /.x; y; z/

�R.x; t;w/;�S.t; y; z/; T .w; y; z/
t;w are new object variables such that t ¤ w

.� !/ �.S ! T /.x; y; z/

R.x; t;w/; 
 jS.t; y; z/; 
 j �T .w; y; z/; 

t;w are any object terms and 
 D �.S ! T /.x; y; z/

Specific rules of RLRLV-dual tableau are of the following forms:
For all object terms x; y; z; t; and w and for any relational variable P ,

.R1/
R1.x; y; z; t/

R.x; y; u/; R1.x; y; z; t/ jR.u; z; t/; R1.x; y; z; t/
u is any object term

.�R1/ �R1.x; y; z; t/
�R.x; y; u/;�R.u; z; t/

u is a new object variable

.R2/
R2.x; y; z; t/

R.y; z; u/; R2.x; y; z; t/ jR.x; u; t/; R2.x; y; z; t/
u is any object term

.�R2/ �R2.x; y; z; t/
�R.y; z; u/;�R.x; u; t/ u is a new object variable

(ideal)
P.x; y; z/

P.x; t; u/; P.x; y; z/
t; u are any object terms

(rM2i)
R.x; z;w/

R.O; x; y/; R.x; z;w/ jR.y; z;w/; R.x; z;w/ y is any object term

(rM2’ii)
P.y; t; u/

R.O; x; y/; P.y; t; u/ jP.x; t; u/; P.y; t; u/ x is any object term

(rM3)
R.x; z�; y�/

R.x; y; z/; R.x; z�; y�/

A set of RLV-formulas is said to be RLRLV-axiomatic whenever it includes either of
the following subsets:

For all object terms x; y; z and t , for any ternary relational term S , and for any
quaternary relational term Q,



9.4 Relational Dual Tableau for Logic RLV 185

(Ax0) fS.x; y; z/;�S.x; y; z/g;
(Ax1) fQ.x; y; z; t/;�Q.x; y; z; t/g;
(Ax2) fR.O; x; x/g;
(Ax3) fR.O; x��; x/g;
(Ax4) fR.O; x; x��/g.
As usual, an RLRLV-set is a finite set of RLRLV-formulas whose first-order disjunc-
tion is true in all RLRLV-models. Correctness of a rule is defined in a similar way
as in the relational logics of classical algebras of binary relations, i.e., a rule is
RLRLV-correct whenever is preserves and reflects RLRLV-validity of its premise and
conclusion(s) (see Sect. 2.4).

Proposition 9.4.1.

1. The RLRLV-axiomatic sets are RLRLV-sets;
2. The RLRLV-decomposition rules are RLRLV-correct;
3. The RLRLV-specific rules are RLRLV-correct.

Proof. For 1., note that sets including subsets of the form (Ax0) or (Ax1) are RLRLV-
sets by the definition of relational complement. Sets including subsets of the form
(Ax2) or (Ax3) or (Ax4) are RLRLV-sets, because (Ax2) reflects condition (M1)
assumed in RLRLV-models, while (Ax3) and (Ax4) reflect condition (M4).

By way of example, we prove 2. for the rule .ˇ/. Let X be a finite set of RLRLV-
formulas. Clearly, if X [ f.S ˇ T /.x; y; z/g is an RLRLV-set, then so are the sets
X [ fR.t;w; x/; .S ˇ T /.x; y; z/g, X [ fS.t; y; z/; .S ˇ T /.x; y; z/g, and X [
fT .w; y; z/; .S ˇ T /.x; y; z/g. Now, assume that the sets X [ fR.t;w; x/; .S ˇ
T /.x; y; z/g,X[fS.t; y; z/; .SˇT /.x; y; z/g, andX[fT .w; y; z/; .SˇT /.x; y; z/g
are RLRLV-sets and suppose that X [ f.S ˇ T /.x; y; z/g is not an RLRLV-set. Then
there exist an RLRLV-model M D .U;O;	; R;R1; R2; m/ and a valuation v in M
such that M; v 6ˆ ', for every ' 2 X , and M; v 6ˆ .S ˇ T /.x; y; z/. Hence,
.v.x/; v.y/; v.z// 62 m.S ˇ T /. By the assumption, we obtain:

M; v ˆ R.t;w; x/;
M; v ˆ S.t; y; z/;
M; v ˆ T .w; y; z/.
Therefore, we obtain .v.t/; v.w/; v.x// 2 R, .v.t/; v.y/; v.z// 2 m.S/, and .v.w/;
v.y/; v.z// 2 m.T /. Hence, by the definition of the operationˇ, .v.x/; v.y/; v.z// 2
m.S ˇ T /, a contradiction.

The proofs of correctness of the remaining decomposition rules are similar.
By way of example, we show 3. for the rules .R1/ and .�R2/. Let X be a finite

set of RLRLV-formulas.
For .R1/, note that if X [ fR1.x; y; z; t/g is an RLRLV-set, then so are

X [ fR.x; y; u/, R1.x; y; z; t/g and X [ fR.u; z; t/; R1.x; y; z; t/g. Assume
X [ fR.x; y; u/; R1.x; y; z; t/g and X [ fR.u; z; t/; R1.x; y; z; t/g are RLRLV-sets
and suppose X [ fR1.x; y; z; t/g is not an RLRLV-set. Then, there is an RLRLV-
model M and a valuation v in M such that .v.x/; v.y/; v.z/; v.t// 62 R1. Since
the assumption implies .v.x/; v.y/; v.u// 2 R and .v.u/; v.z/; v.t// 2 R, we get a
contradiction with the definition of R1.



186 9 Dual Tableaux for Relevant Logics

For .�R2/, let u be an object variable that does not occur in the set X and
x; y; z; t ¤ u. Assume X [ f�R.y; z; u/;�R.x; u; t/g is an RLRLV-set and suppose
thatX[f�R2.x; y; z; t/g is not an RLRLV-set. Then, there exist an RLRLV-model M
and a valuation v in M such that .v.x/; v.y/; v.z/; v.t// 2 R2 and, by the assump-
tion on variable u, for every a 2 U either .v.y/; v.z/; a/ … R or .v.x/; a; v.t// 62 R,
a contradiction. The remaining implication can be proved in a similar way. ut
The notion of an RLRLV-proof tree, a closed branch of such a tree, a closed RLRLV-
proof tree, and RLRLV-provability are defined in a similar way as in the logic RL
(see Sect. 2.4). As usual, to prove completeness we need the notion of a complete
proof tree. A branch b of an RLRLV-proof tree is said to be complete whenever it is
closed or it satisfies the following completion conditions.

The completion conditions for the decomposition rules for set operations �, [,
and \ are analogous to the corresponding conditions in Sect. 2.5.

For all object terms x; y; z and for all relational terms S and T ,

Cpl(:) If :S.x; y; z/ 2 b, then �S.x�; y; z/ 2 b, obtained by an application of
the rule .:/;

Cpl(�:) If �:S.x; y; z/ 2 b, then S.x�; y; z/ 2 b, obtained by an application of
the rule .�:/;

Cpl(ˇ) If .SˇT /.x; y; z/ 2 b, then for all object terms t and w, eitherR.t;w; x/ 2
b or S.t; y; z/ 2 b or T .w; y; z/ 2 b, obtained by an application of the
rule .ˇ/;

Cpl(�ˇ) If �.S ˇ T /.x; y; z/ 2 b, then for some object variables t and w,
�R.t;w; x/ 2 b, �S.t; y; z/ 2 b, and �T .w; y; z/ 2 b, obtained by an ap-
plication of the rule .�ˇ/;

Cpl(!) If .S ! T /.x; y; z/ 2 b, then for some object variables t and w,
�R.x; t;w/ 2 b, �S.t; y; z/ 2 b, and T .w; y; z/ 2 b, obtained by an application
of the rule .!/;

Cpl(� !) If �.S ! T /.x; y; z/ 2 b, then for all object terms t and w, either
R.x; t;w/ 2 b or S.t; y; z/ 2 b or �T .w; y; z/ 2 b, obtained by an application
of the rule .� !/;
For all object terms x; y; z; t; and w and for any relational variable P ,

Cpl(R1) If R1.x; y; z; t/ 2 b, then for every object term u, either R.x; y; u/ 2 b or
R.u; z; t/ 2 b, obtained by an application of the rule .R1/;

Cpl(�R1) If �R1.x; y; z; t/ 2 b, then for some object variable u, both
�R.x; y; u/ 2 b and �R.u; z; t/ 2 b, obtained by an application of the rule
.�R1/;

Cpl(R2) If R2.x; y; z; t/ 2 b, then for every object term u, either R.y; z; u/ 2 b or
R.x; u; t/ 2 b, obtained by an application of the rule .R2/;

Cpl(�R2) If �R2.x; y; z; t/ 2 b, then for some object variable u, both
�R.y; z; u/ 2 b and �R.x; u; t/ 2 b, obtained by an application of the rule
.�R2/;



9.4 Relational Dual Tableau for Logic RLV 187

Cpl(ideal) IfP.x; y; z/ 2 b for some relational variableP , then for all object terms
t and u, P.x; t; u/ 2 b, obtained by an application of the rule (ideal);

Cpl(rM2i) If R.x; z;w/ 2 b, then for every object term y, either R.O; x; y/ 2 b or
R.y; z;w/ 2 b, obtained by an application of the rule (rM2i);

Cpl(rM2’ii) If P.y; t; u/ 2 b for some relational variable P , then for every object
term x, either R.O; x; y/ 2 b or P.x; t; u/ 2 b, obtained by an application of
the rule (rM2’ii);

Cpl(rM3) If R.x; z�; y�/ 2 b, then R.x; y; z/ 2 b, obtained by an application of
the rule (rM3).

The notions of a complete RLRLV-proof tree and an open branch of an RLRLV-proof
tree are defined as in RL-logic (see Sect. 2.5).

The following form of the closed branch property holds:

Fact 9.4.1 (Closed Branch Property). For every branch b of an RLRLV-proof tree,
if S.x; y; z/ 2 b and �S.x; y; z/ 2 b for some atomic ternary relational term S ,
then branch b is closed.

Although, it does not concern the constants R1 and R2, it is sufficient for proving
satisfaction in branch model property (Proposition 9.4.3). The reason being that the
rules for these constants reflect their corresponding definitions in logic RLV.

Let b be an open branch of an RLRLV-proof tree for a formula '. We define a
branch structure Mb D .U b; Ob;	b; Rb; Rb1 ; Rb2 ; mb/ as follows:

� U b D OT RLRLV , that is the set of objects coincides with the set of object terms;
� Ob D O D mb.O/;
� The function 	b is defined by the clause 	b.x/ D x�;
� Rb D mb.R/ D f.x; y; z/ 2 .U b/3 W R.x; y; z/ 62 bg;
� Rbi D mb.Ri /, for i 2 f1; 2g, are defined as:

Rb1 D f.x; y; z; t/ 2 .U b/4 W 9a 2 U b; .x; y; a/ 2 Rb ^ .a; z; t/ 2 Rbg,
Rb2 D f.x; y; z; t/ 2 .U b/4 W 9a 2 U b; .y; z; a/ 2 Rb ^ .x; a; t/ 2 Rbg;

� mb.P / D f.x; y; z/ 2 .U b/3 W P.x; y; z/ 62 bg, for P 2 RV RLRLV ;
� mb extends to all the compound relational terms as in RLRLV-models.

Proposition 9.4.2 (Branch Model Property). For every open branch b of an
RLRLV-proof tree, the branch structure Mb D .U b; Ob;	b; Rb; Rb1 ; Rb2; mb/ is an
RLRLV-model.

Proof. Let b be an open branch of an RLRLV-proof tree. In order to prove that Mb is
an RLRLV-model, it suffices to show that Mb satisfies the conditions (M1), (M2)(i),
(M2)’(ii), (M3), and (M4). By way of example, we prove it for (M2)’(ii) and (M4).

For (M2)’(ii), assume .O; x; y/ 2 Rb and .x; t; u/ 2 mb.P /, that isR.O; x; y/ 62
b and P.x; t; u/ 62 b. Suppose .y; t; u/ 62 mb.P /. Then P.y; t; u/ 2 b. By the
completion condition Cpl(rM2’ii), for every object term x, eitherR.O; x; y/ 2 b or
P.x; t; u/ 2 b, a contradiction.



188 9 Dual Tableaux for Relevant Logics

For (M4), since fR.O; x��; x/g and fR.O; x; x��/g are RLRLV-axiomatic sets,
for every object term x, R.O; x��; x/ 62 b and R.O; x; x��/ 62 b. Thus, for every
object term x, .O; x��; x/ 2 Rb and .O; x; x��/ 2 Rb . ut
Let vb be the identity valuation, that is vb.x/ D x, for any object term x. Then, the
following can be proved:

Proposition 9.4.3 (Satisfaction in Branch Model Property). For every open
branch b of an RLRLV-proof tree and for every RLRLV-formula ', if Mb; vb ˆ ',
then ' 62 b.

Proof. Let ' be an RLRLV-formula. The proof is by induction on the complexity of
formulas.

If ' D S.x; y; z/ for an atomic ternary relational term, then the required condi-
tion holds by the definition of the meaning functionmb . Let ' D �S.x; y; z/, for an
atomic ternary term S . If Mb; vb ˆ �S.x; y; z/, then S.x; y; z/ 2 b. By Fact 9.4.1,
�S.x; y; z/ 62 b.

Let ' D R2.x; y; z; t/. Assume Mb; vb ˆ R2.x; y; z; t/, that is there exists
u 2 U b such that .y; z; u/ 2 Rb and .x; u; t/ 2 Rb . Suppose R2.x; y; z; t/ 2 b.
Then, by the completion condition Cpl(R2), for every u 2 U b , either .y; z; u/ 62 Rb
or .x; u; t/ 62 Rb, a contradiction. Let ' D �R1.x; y; z; t/. Assume Mb; vb ˆ
�R1.x; y; z; t/, that is for all u 2 U b , either .x; y; u/ 62 Rb or .u; z; t/ 62 Rb .
Suppose �R1.x; y; z; t/ 2 b. Then, by the completion condition Cpl(�R1), for
some u 2 U b , both .x; y; u/ 2 Rb and .u; z; t/ 2 Rb , a contradiction.

Now, assume that the required condition holds for formulas built with relational
terms S and T and their complements. By way of example, we show that it holds
for :S.x; y; z/, and .S ! T /.x; y; z/.

Let ' D :S.x; y; z/. Assume that Mb; vb ˆ :S.x; y; z/. Then we have
.x�; y; z/ 62 mb.S/. Suppose :S.x; y; z/ 2 b. Then, by the completion condi-
tion Cpl(:), �S.x�; y; z/ 2 b and then, by the induction hypothesis, Mb; vb 6ˆ
�S.x�; y; z/. Thus, .x�; y; z/ 2 mb.S/, a contradiction.

Let ' D .S ! T /.x; y; z/. Assume Mb; vb ˆ .S ! T /.x; y; z/, that is
.x; y; z/ 2 mb.S ! T /. Thus, for all object terms t and w, if .x; t;w/ 2 Rb

and .t; y; z/ 2 mb.S/, then .w; y; z/ 2 mb.T /. Then, by the induction hypothe-
sis, if R.x; t;w/ 62 b and S.t; y; z/ 62 b, then T .w; y; z/ 62 b. Suppose .S ! T /

.x; y; z/ 2 b. By the completion condition Cpl(!), there are object variables t
and w such that �R.x; t;w/ 2 b and �S.t; y; z/ 2 b, and T .w; y; z/ 2 b, a con-
tradiction.

The proofs of the remaining cases are similar. ut
Due to Propositions 9.4.1–9.4.3, we obtain:

Theorem 9.4.1 (Soundness and Completeness of RLRLV). Let ' be an RLRLV�
formula. Then the following conditions are equivalent:

1. ' is RLRLV-valid;
2. ' is RLRLV-provable.



9.5 Relational Dual Tableaux for Axiomatic Extensions of Logic RLV 189

.P ! P/.O; x; y/

�
.!/ with new variables t and u

�R.O; t; u/;�P.t; x; y/; P.u; x; y/
��� 		
(rM2’ii) with t

�R.O; t; u/; R.O; t; u/; : : :
closed

P.t; x; y/;�P.t; x; y/; : : :
closed

Fig. 9.1 An RLRLV-proof of RLV-formula p! p

Due to the above theorem and Theorem 9.3.1, we have:

Theorem 9.4.2 (Relational Soundness and Completeness of RLV-logic). Let '
be an RLV-formula. Then for all object variables x and y, the following conditions
are equivalent:

1. ' is RLV-valid;
2. �.'/.O; x; y/ is RLRLV-provable.

Example. Consider the following RLV-formulas:

' D p ! p;

 D .p ! :q/! .q ! :p/:

Let � 0.p/ D P and � 0.q/ D Q. By Theorem 9.4.2, for all object variables x and y,
RLV-validity of formulas' and is equivalent to RLRLV-provability of the formulas
�.'/.O; x; y/ and �. /.O; x; y/, respectively. Figures 9.1 and 9.2 present RLRLV-
proofs of these formulas, respectively.

9.5 Relational Dual Tableaux for Axiomatic Extensions of Logic
RLV

In this section we present dual tableaux for logics which are obtained from the logic
RLV by assuming that its models satisfy some of the conditions (M5), . . . , (M12).
In order to construct dual tableaux for these axiomatic extensions we add to RLRLV-
dual tableau the specific rules corresponding to the chosen constraints. In what
follows, rule (rMi) corresponds to condition (Mi), for i 2 f5; : : : ; 8; 10; : : : ; 12g.

For all object terms x; y; z, and t ,

(rM5)
R1.x; y; z; t/ j �R2.x; y; z; t/ (rM6)

R1.x; y; z; t/ j �R2.y; x; z; t/

(rM7)
R1.x; y; z; t/ j �R1.x; z; y; t/ (rM8)

R.x; y; z/ j �R1.x; y; y; z/



190 9 Dual Tableaux for Relevant Logics

Œ.P !:Q/! .Q!:P/�.O; x; y/

�
.!/ with new variables t and u

�R.O; t; u/;�.P !:Q/.t; x; y/; .Q!:P/.u; x; y/

�
.!/ with new variables z and w

�R.O; t; u/;�.P !:Q/.t; x; y/;�R.u; z;w/;�Q.z; x; y/;:P.w; x; y/

�
.:/

�R.O; t; u/;�.P !:Q/.t; x; y/;�R.u; z;w/;�Q.z; x; y/;�P.w�; x; y/

���� .�!/ with w� and z�

�R.O; t; u/; R.t;w�; z�/;

�R.u; z;w/; : : :
��� (rM2i) with u

�R.O; t; u/;
R.O; t; u/; : : :

closed

�� 
R.u;w�; z�/;�R.u; z;w/; : : :

�
(rM3)

R.u; z;w/;�R.u; z;w/; : : :
closed

�
P.w�; x; y/;

�P.w�; x; y/; : : :

closed

			

�:Q.z�; x; y/;�Q.z; x; y/; : : :

�.�:/
Q.z��; x; y/;�Q.z; x; y/; : : :
�

��
�
��

(rM2’ii) with z

R.O; z; z��/; : : :

closed

Q.z; x; y/;
�Q.z; x; y/; : : :

closed

Fig. 9.2 An RLRLV-proof of RLV-formula .p!:q/! .q!:p/

Condition (M9) leads to an axiomatic set:

(AxM9) any set including a formula R.x; x�; x/ is an axiomatic set.

(rM10)
R.O; x; z/; R.O; y; z/

R.x; y; z/; R.O; x; z/; R.O; y; z/

(rM11)
R.O; x; z/

R.x; y; z/; R.O; x; z/
y is any object term

(rM12)
R.x; y; z/ j �R2.z; x; y; z/

The rules (rM5), (rM6), (rM7), (rM8), and (rM12) are specialized cut rules. In the
presence of the ordinary cut rule they could be replaced by the rules with a non-
empty premise. This issue is discussed in detail in Sect. 25.9.

Let K be a class of RLRLV-models. A finite set X of RLRLV-formulas is said to
be a K-set whenever for every model M of K and for every valuation v in M there
exists a formula ' 2 X such that M; v ˆ '. Then, K-correctness of a rule is defined
in a similar way as RLRLV-correctness in Sect. 9.4.

Theorem 9.5.1 (Correspondence). Let K be a class of RLRLV-models and let i 2
f5; : : : ; 8; 10; : : : ; 12g. Then, the condition (Mi) is true in all K-models iff the rule
(rMi) is K-correct.



9.5 Relational Dual Tableaux for Axiomatic Extensions of Logic RLV 191

Proof.

.!/ By way of example, we prove the statement for i D 5.
(M5) Assume that (M5) is true in all K-models. Let X be a finite set of

formulas. Clearly, if X is a K-set, then so are X [ fR1.x; y; z; t/g and X [
f�R2.x; y; z; t/g. Let X [ fR1.x; y; z; t/g and X [ f�R2.x; y; z; t/g be K-sets.
Suppose X is not a K-set. Then there exist a K-model M and a valuation v in
M such that .v.x/; v.y/; v.z/; v.t// 2 R1, but .v.x/; v.y/; v.z/; v.t// 62 R2, which
contradicts condition (M5).
. / By way of example, we prove the statement for i D 10.

(M10) Assume that the rule (rM10) is K-correct. Then for every finite set X ,
X [ fR.O; x; z/; R.O; y; z/g is a K-set iff X [ fR.x; y; z/; R.O; x; z/; R.O; y; z/g
is a K-set. Since f�R.x; y; z/; R.x; y; z/; R.O; x; z/; R.O; y; z/g is a K-set,
f�R.x; y; z/; R.O; x; z/; R.O; y; z/g is also a K-set. Therefore, for every
K-model M and for every valuation v in M, if .v.x/; v.y/; v.z// 2 R, then
.O; v.x/; v.z// 2 R or .O; v.y/; v.z// 2 R, hence condition (M10) is satisfied. ut
Completion conditions determined by the above rules are:

For all object terms x; y; z, and t ,

Cpl(rM5) Either R1.x; y; z; t/ 2 b or �R2.x; y; z; t/ 2 b, obtained by an applica-
tion of the rule (rM5);

Cpl(rM6) Either R1.x; y; z; t/ 2 b or �R2.y; x; z; t/ 2 b, obtained by an applica-
tion of the rule (rM6);

Cpl(rM7) Either R1.x; y; z; t/ 2 b or �R1.x; z; y; t/ 2 b, obtained by an applica-
tion of the rule (rM7);

Cpl(rM8) Either R.x; y; z/ 2 b or �R1.x; y; y; z/ 2 b, obtained by an application
of the rule (rM8);

Cpl(rM10) If R.O; x; z/ 2 b and R.O; y; z/ 2 b, then R.x; y; z/ 2 b, obtained by
an application of the rule (rM10);

Cpl(rM11) IfR.O; x; z/ 2 b, then for every object term y, R.x; y; z/ 2 b, obtained
by an application of the rule (rM11);

Cpl(rM12) Either R.x; y; z/ 2 b or �R2.z; x; y; z/ 2 b, obtained by an application
of the rule (rM12).

Let Li be an axiomatic extension of RLV such that all Li -models satisfy con-
dition (Mi), for some i 2 f5; : : : ; 12g. Then the corresponding RLLi

-models are
RLRLV-models satisfying all the specific conditions assumed in Li -models and RLLi

-
dual tableau consists of the rules and axiomatic sets of RLRLV-dual tableau and in
addition:

� The rule (rMi), if i 2 f5; : : : ; 8; 10; : : : ; 12g;
� Axiomatic set (AxM9), if i D 9.

Consider an open branch of an RLLi
-proof tree. We define the branch structure

Mb D .U b; Ob;	b; Rb; Rb1 ; Rb2 ; mb/ as in the completeness proof of RLRLV-dual
tableau (see p. 187).



192 9 Dual Tableaux for Relevant Logics

Proposition 9.5.1 (Branch Model Property). Let b be an open branch of an
RLLi

-proof tree and let i 2 f5; : : : ; 12g. The branch structure Mb D .U b; Ob;	b;
Rb; Rb1; R

b
2 ; m

b/ is an RLLi
-model.

Proof. Let b be an open branch of an RLLi
-proof tree. In order to show that the

branch structure Mb D .U b; Ob;	b; Rb; Rb1; Rb2 ; mb/ is an RLLi
-model, it suffices

to show that Mb satisfies the condition (Mi). By way of example, we prove the
statement for i 2 f6; 10g.

(M6) By the completion condition Cpl(rM6), for all object terms x; y; z, and
t , either R1.x; y; z; t/ 2 b or �R2.y; x; z; t/ 2 b. By the completion condi-
tion Cpl(R1), for every u 2 U b either .x; y; u/ 62 Rb or .u; z; t/ 62 Rb, hence
.x; y; z; t/ 62 Rb1 . On the other hand, by the completion condition Cpl(�R2), for
some u 2 U b both .x; z; u/ 2 Rb and .y; u; t/ 2 Rb, hence .y; x; z; t/ 2 Rb2 . There-
fore, if .x; y; z; t/ 2 Rb1 , then .y; x; z; t/ 2 Rb2 , hence condition (M6) is satisfied.

(M10) Assume that .x; y; z/ 2 Rb, that is R.x; y; z/ 62 b. Suppose that
.O; x; z/ 62 Rb and .O; y; z/ 62 Rb . Then R.O; x; z/ 2 b and R.O; y; z/ 2 b,
and by the completion condition Cpl(rM10), R.x; y; z/ 2 b, a contradiction. ut

Now, the satisfaction in branch model property can be proved in exactly the same
way as in RLRLV-dual tableau (see Proposition 9.4.3). Thus, we have:

Proposition 9.5.2 (Satisfaction in Branch Model Property). Let i 2 f5; : : : ; 12g.
For every open branch b of an RLLi

-proof tree and for every RLLi
-formula ', if

Mb; vb ˆ ', then ' 62 b.

Finally, we obtain:

P ! .Q! P/.O; x; y/

�
.!/ with new variables t and u

�R.O; t; u/;�P.t; x; y/; .Q! P/.u; x; y/

�
.!/ with new variables z and w

�R.O; t; u/;�R.u; z;w/;�P.t; x; y/;�Q.z; x; y/; P.w; x; y/
�

��
(rM2’ii) with t �

��
�R.O; t; u/;�R.u; z;w/; R.O; t;w/; : : :

�
(rM11) with z

�R.O; t; u/;�R.u; z;w/; R.t; z;w/; : : :
���� (rM2i) with u

			

�R.O; t; u/; R.O; t; u/; : : :

closed

�R.u; z;w/; R.u; z;w/; : : :
closed

�P.t; x; y/; P.t; x; y/; : : :
closed

Fig. 9.3 An RLL11 -proof of the formula p! .q! p/



9.5 Relational Dual Tableaux for Axiomatic Extensions of Logic RLV 193

Theorem 9.5.2 (Soundness and Completeness of RLLi
). Let i 2 f5; : : : ; 12g. For

every RLLi
-formula ', the following conditions are equivalent:

1. ' is RLLi
-valid;

2. ' is RLLi
-provable.

By the above theorem and Theorem 9.3.1, we obtain:

.P ˇQ! T /! .P ! .Q! T //.O; x; y/

�
.!/ with new variables t and u

�R.O; t; u/;�.P ˇQ! T /.t; x; y/; P ! .Q! T /.u; x; y/

�
.!/ with new variables z and w

�R.O; t; u/;�R.u; z;w/;�P.z; x; y/; .Q! T /.w; x; y/;�.P ˇQ! T /.t; x; y/

�
.!/ with new variables r and s

�R.O; t; u/;�R.u; z;w/;�R.w; r; s/;
�P.z; x; y/;�Q.r; x; y/; T .s; x; y/;�.P ˇQ! T /.t; x; y/

(rM5) with t; z; r; s
�����

				

R1.t; z; r; s/;�R.O; t; u/;
�R.u; z;w/;�R.w; r; s/; : : :

�
.R1/ with w

				


�R2.t; z; r; s/;�.P ˇQ! T /.t; x; y/

�P.z; x; y/;�Q.r; x; y/; T .s; x; y/; : : :

R.w; r; s/;
�R.w; r; s/ : : :

closed

�

.�R2/ with a new variable v

�R.z; r; v/;�R.t; v; s/;�.P ˇQ! T /.t; x; y/

�P.z; x; y/;�Q.r; x; y/; T .s; x; y/; : : :
�������!

�R.t; v; s/
R.t; v; s/; : : :

closed

				

�T .s; x; y/
T .s; x; y/; : : :

closed

�

.�!/ with v; s

�R.z; r; v/; P ˇQ.v; x; y/;
�P.z; x; y/;�Q.r; x; y/; : : :������!

�R.z; r; v/
R.z; r; v/; : : :

closed

�
.ˇ/ with z; r

�P.z; x; y/
P.z; x; y/; : : :

closed

			

�Q.r; x; y/
Q.r; x; y/; : : :

closed

R.t; z;w/;�R.O; t; u/;
�R.u; z;w/; : : :
�

��
�
��(rM2i) with u

R.O; t; u/;
�R.O; t; u/; : : :

closed

R.u; z;w/;
�R.u; z;w/; : : :

closed

Fig. 9.4 An RLL5 -proof of the formula .pˇ q! t /! .p! .q! t //



194 9 Dual Tableaux for Relevant Logics

Theorem 9.5.3 (Relational Soundness and Completeness of Li ). Let i 2 f5; : : : ;
12g. For every Li -formula ' and for object variables x and y, the following condi-
tions are equivalent:

1. ' is Li -valid;
2. �.'/.O; x; y/ is RLLi

-provable.

Example. Consider the following RLV-formulas:

' D p ! .q ! p/;

 D .p ˇ q ! t/! .p ! .q ! t//:

The formula ' is RLL11
-valid, while the formula  is RLL5

-valid. Let � 0.p/ D P ,
� 0.q/ D Q, and � 0.t/ D T . By Theorem 9.5.3, for all object variables x and y,
L11-validity of  is equivalent to RLL11

-provability of the formula �. /.O; x; y/,
and L5-validity of ' is equivalent to RLL5

-provability of the formula �.'/.O; x; y/.
Figures 9.3 and 9.4 present relational proofs of the formulas �.'/.O; x; y/ and
�. /.O; x; y/, which show L11-validity and L5-validity of formulas ' and  ,
respectively.



Chapter 10
Dual Tableaux for Many-Valued Logics

10.1 Introduction

The development of multiple-valued logic in its modern form began with the work
of Jan Łukasiewicz [Łuk20] and Emil Post [Pos20, Pos21]. Since the emergence
of computer science as an independent discipline, there have been an extensive in-
terplay and mutual inspiration between the two fields. Apart from its logical and
philosophical motivation, multiple-valued logic has applications, among others, in
hardware design and artificial intelligence. In the field of hardware design classi-
cal propositional logic is used as a tool for specification and analysis of electrical
switching circuits with two stable voltage levels. A generalization to a finitely-
valued logic allows the analogous applications with possibly many stable states.
In artificial intelligence multiple-valued logic provides models of vagueness or un-
certainty of information and contributes to the development of formal methods
simulating commonsense reasoning. Some recent developments and applications
of multiple-valued logics can be found e.g., in [Mal93, Got00, Häh01, FO03].

In this chapter we develop a method of designing a dual tableau for an arbitrary
finite-valued propositional logic. We follow a relational approach, however, in this
case the relational logic appropriate for the translation of formulas of an n-valued
logic is not RL.1; 10/, a logic of n-ary relations is employed, where n� 2. The rela-
tional operations of the logic include n specific unary relational operators such that
kth operator, k � n, applied to a relation selects, in a sense, the kth components of
the n-tuples belonging to that relation and represents them as an n-ary relation. We
apply the method to three multiple-valued logics: Rosser and Turquette logic, RT
[RT52], symmetric Heyting logic of order n, n � 2, SHn [Itu83, IO06], and a finite
poset-based generalization of Post logic, LT [Ras91]. Decidability of the logic RT
follows from the developments in [Got00, Häh03]. Decidability of the logic SHn
follows from the results presented in [Itu82]. Decidability of logic LT is proved
in [Nou99]. The present chapter is based on the developments in [KMO98]. Dual
tableaux for many-valued modal logics can be found in [KO01].

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 10,
c� Springer Science+Business Media B.V. 2011

195



196 10 Dual Tableaux for Many-Valued Logics

10.2 Finitely Many-Valued Logics

In this chapter we consider nL-valued, nL� 2, propositional logics, L, whose lan-
guages are built from the following pairwise disjoint sets of symbols:

� V – a countable infinite set of propositional variables;
� foj W 1 � j � jLg – a set of propositional operations where jL � 1 and the arity

of oj is a.j / � 1.

The set of L-formulas is generated from the propositional variables with the proposi-
tional operations. The standard many-valued semantics for L is based on a semantic
range SRL D f0; 1; : : : ; s; : : : ; nL � 1g consisting of nL logical values indexed by
integers, where 0 < s � nL � 1. We assume that the values fs; : : : ; nL � 1g are
designated, and all the other ones undesignated. Though in notation we identify the
values with their natural number indices, in general we do not assume any kind
of ordering, in particular, any linear ordering corresponding to that of the natural
indices is not necessarily assumed in the set of the logical values.

With the family of propositional operations fo1; : : : ; oiLg, we associate a family

of semantic functions ffoj
W j D 1; : : : ; iLg, where foj

maps SRa.j /
L into SRL.

An L-model is a structure of the form M D .U;m; fmk W k 2 SRLg/, where U
is a non-empty set of states, mWV �U ! SRL, and fmk W k 2 SRLg is a family of
meaning functions such that:

� mk.p/ D fw 2 U W m.p;w/ D kg, for p 2 V ;
� mk.oj .'1; : : : ; 'a.j /// D

S
foj

.k1;:::;ka.j //Dk.mk1
.'1/\ : : : \mka.j /

.'a.j ///.

Intuitively,mk.'/ is the set of states at which formula ' takes value k.
The standard notions of satisfaction of a formula at a state in a model, truth in a

model, and validity are defined as follows. An L-formula ' is satisfied in a model M
at a state w, written M;w ˆ ', whenever w 2 mk.'/ for some k 2 fs; : : : ; nL�1g;
' is true in a model M, written M ˆ ', if and only if M;w ˆ ', for all w 2 U ,
and it is L-valid whenever it is true in all L-models.

Along these lines we present three examples of multiple-valued logics.

Rosser-Turquette Logic

Rosser-Turquette logic RT is an nRT-valued logic with SRRT D f0; : : : ; n � 1g,
designated values are s; : : : ; n � 1, where 0 < s � n � 1, and the logical values
are linearly ordered consistently with the order of their natural indices. The propo-
sitional operations of RT include the family fJk W k 2 SRRTg of unary operations.
The operations Jk play a special role. Namely, Jk is a unary operation ‘selecting’
the logical value k. Other propositional operations are _, ^, and :.

The respective semantic functions are defined as follows:

� f_.k; l/ D max.k; l/;
� f^.k; l/ D min.k; l/;



10.2 Finitely Many-Valued Logics 197

� fJk
.k/ D n � 1, and for l ¤ k, fJk

.l/ D 0;
� f:.l/ D max.fJ0

.l/; : : : ; fJs�1
.l//.

An RT-model is a structure of the form M D .U;m; fmk W k 2 SRRTg/, where U
is a non-empty set of states, mWV �U ! SRRT, and fmk W k 2 SRRTg is a family
of meaning functions such that:

� mk.p/ D fw 2 U W m.p;w/ D kg, for every k 2 SRRT;
� mk.' _  / D

Sk
iD0..mk.'/ \mi . // [ .mi .'/ \mk. ///;

� mk.' ^  / D
Sn�1
iDk..mk.'/ \mi . // [ .mi .'/ \mk. ///;

� mn�1.Jl .'// D ml.'/, m0.Jl .'// D
S
i¤l mi .'/, and mk.Jl.'// D ;, for

k ¤ 0; n � 1;
� mn�1.:'/ D Ss�1

iD0mi .'/, m0.:'/ D
Sn�1
iDs mi .'/, and mk.:'/ D ;, for

k ¤ 0; n � 1.

Symmetric Heyting Logic of Order n, SHn

The formulas of logic SHn, n � 2, are constructed from propositional variables with
the operations ^;_;!;:;�, and with a family f�igiD1;:::;n�1 of unary operations.
The semantic range for logic SHn is:

SRSHn
D

�
.x; y/ W x; y 2

�
0;

1

n � 1 ;
2

n � 1 ; : : : ; 1
��

:

We can treat the set
˚
0; 1
n�1 ;

2
n�1 ; : : : ; 1

�
as a symmetric Heyting algebra

..n/;_;^;!;:;�; 0; 1/;

where .n/ D ˚
0; 1
n�1 ;

2
n�1 ; : : : ; 1

�
, and

x _ y D max.x; y/ x ^ y D min.x; y/ � x D 1 � x

x ! y D
�
1 if x � y
y otherwise

:x D
�
1 if x D 0
0 if x > 0

We define the unary operations f�igiD1;:::;n�1 in this algebra by:

�i

� x

n � 1
�
D

�
1 if x � n � i
0 otherwise

Then the semantic functions for the propositional operations in SRSHn
are given by:

� f_..x; y/; .x0; y0// D .x _ x0; y _ y0/;
� f^..x; y/; .x0; y0// D .x ^ x0; y ^ y0/;
� f!..x; y/; .x0; y0// D .x ! x0; y ! y0/;
� f:..x; y// D .x ! 0; y ! 0/;



198 10 Dual Tableaux for Many-Valued Logics

� f�..x; y// D .1 � y; 1 � x/;
� f�i

..x; y// D .�i .x/; �i .y//.
An SHn-model is a structure of the form MD .U;m; fm.k;l/ W .k; l/2SRSHn

g/,
where U is a non-empty set of states, mWV � U ! SRSHn

, and fm.k;l/ W .k; l/ 2
SRSHn

g is a family of meaning functions reflecting the intended interpretation of
the operations. For example, the functions for the implication and negation � are
defined as follows:

� m.1;1/.' !  / D S
x	x0; y	y0 .m.x;y/.'/ \m.x0;y0/. //;

� m.1;l/.' !  / D S
x	x0; y>l .m.x;y/.'/ \m.x0;l/. //;

� m.k;1/.' !  / DS
x>k; y	y0 .m.x;y/.'/ \m.k;y0/. //;

� m.k;l/.' !  / D S
x>k; y>l .m.x;y/.'/ \m.x0;y0/. //, where k; l ¤ 1;

� m.k;l/.� '/ D m.1�l;1�k/.'/.

The Logic LT

The logic LT is a certain version of the logics introduced in [CH73], see also
[Ras91]. The logic is based on a generalization of Post algebras investigated in
[CHR89] where a chain of Post constants is replaced by a finite partially ordered
set. The elements of this set are the indices of the unary Post operations but, in
contrast with the classical Post logic, they do not have syntactic counterparts in the
language.

LT is a propositional logic whose formulas are built from propositional variables
with the operations _;^;!;:, and a family fdtgt2T of unary operations, where T
is a finite set partially ordered by a relation �. The semantic range for the logic LT

is the set of all the increasing subsets of T, that is:

SRLT D fs � T W for all x; y; x 2 s and x � y imply y 2 sg [ f;g:

The semantic functions providing meaning of the propositional operations are
defined as follows:

� f_.s; s0/ D s [ s0;
� f^.s; s0/ D s \ s0;
� f!.s; s0/ DSfu 2 SRLT W s \ u � s0g;
� f:.s/ D s ! ;;

� fdt
.s/ D

�
T if t 2 s;
; otherwise:

The only distinguished element of SRLT is the set T.
In an LT-model M D .U;m; fmk W k 2 SRLTg/, the meaning functions for

operations dt are defined as follows, for l 2 SRLT :

� mT.dt .'// DS
t2l ml.'/;

� m;.dt .'// DS
t 62l ml.'/;

� ml.dt .'// D ;; for l ¤ ;;T.



10.3 Relational Formalization of Finitely Many-Valued Logics 199

10.3 Relational Formalization of Finitely Many-Valued Logics

In the relational formalization of many-valued logics we apply the standard method
of interpreting formulas of an nL-valued logic L as nL-ary relations. The vocabulary
of the language of relational logic RLL adequate for logic L consists of symbols
from the following pairwise disjoint sets:

� RV RLL – a countable infinite set of relational variables representing nL-ary rela-
tions;

� foj W 1 � j � iLg [ fJt W 0 � t � nL � 1g – the set of relational operations,
where oj is of the arity a.j /, for j D 1; : : : ; iL, and every Jt is unary.

We slightly abuse the notation here by denoting the relational operations of RLL

with the same symbols as the operations of L.
The set RT RLL of relational terms is the smallest set that includes RV RLL and

is closed with respect to all the relational operations. The set of formulas is simply
the set of relational terms RT RLL . An RLL-formula is said to be indecomposable
whenever it is of the form Jt .P /, for some t 2 f0; : : : ; nL � 1g and P 2 RV RLL .
A finite set of RLL-formulas is indecomposable whenever all of its formulas are
indecomposable.

An RLL-model is a structure M D .U [ f;g; m; fmk W k 2 SRLg/ such that
U is a non-empty set, mWRT RLL ! P..U [ f;g/nL�1/ and for every k 2 SRL,
mkWRT RLL ! P.U[f;g/ are meaning functions such that the following conditions
are satisfied:

� mk.P / � U [ f;g and m.P / D m0.P / � � � � �mnL�1.P /, for P 2 RV RLL ;
� If m.P / D P0 � � � � � PnL�1, then:

(1) For any i; 0 � i � nL � 1, Pi 2 P.U [ f;g/ n f;g, i.e., Pi is a non-empty
subset of U [ f;g,

(2) If i ¤ j , then Pi \Pj 2 f;; f;gg, i.e., Pi \Pj is either empty or equals f;g,
(3) U �SnL�1

kD0 Pk ;

� For any j and t the operations oj and Jt are interpreted as functions on relations
on .U [ f;g/nL�1 such that:

(i) For all termsP 1; : : : ; P a.j / such thatm
	
P l


D	
m0

	
P l


� � � � �mnL�1
	
P l




,

we have:
m

�
oj

�
P 1; : : : ; P a.j /

��
D Q0 � � � � �QnL�1;

where

Qk D
[

foj
.g1;:::;ga.j //Dk

mg1

	
P 1


 \ � � � \mga.j /

�
P a.j /

�

if the above union is non-empty, andQk D f;g otherwise;



200 10 Dual Tableaux for Many-Valued Logics

(ii) For any relational term P such that m.P / D m0.P / � � � � � mnL�1.P / we
have:

m.Jt .P // D Q0 � � � � �QnL�1;

where

QnL�1 D mt .P /; Q0 D
[
l¤t

ml.P /; andQi D f;g for i ¤ 0; nL � 1:

Note that m.Jt .P // partitions the set U into the sets mt .P / and U �mt .P /.
An RLL-formula P is said to be true in an RLL-model M, written M ˆ P ,

whenever
SnL�1
iDs .mi .P // D U [f;g. A formula P is RLL-valid whenever it is true

in all RLL-models.

Proposition 10.3.1. RLL-models are well-defined.

Proof. We have to show that P..U [ f;g/nL�1/ is closed under the interpretations
of operations oj and Jt , that is for all relational terms P;P 1; : : : ; P a.j /, the
relations m

	
oj

	
P 1; : : : ; P a.j /




and m.Jt .P // satisfy the conditions (1), (2),

and (3). The preservation of condition (1) is quite obvious, so we concentrate on
conditions (2) and (3).

Assumem.P r / D m0.P r /�� � ��mnL�1.P r / satisfy the conditions (1), (2), and
(3), for r D 1; : : : ; a.j /. LetQ D m 	

oj
	
P 1; : : : ; P a.j /




, whereQ D Q0 � � � � �

QnL�1. Let 0 � l , k � nL� 1, and l ¤ k. Then either at least one ofQk ,Ql is f;g,
and then obviouslyQk \Ql is either ; or f;g or

Qk D
[

foj
.g1;:::;ga.j //Dk

mg1

	
P 1


 \ : : : \mga.j /

�
P a.j /

�
;

Ql D
[

foj
.h1;:::;ha.j //Dl

mh1

	
P 1


 \ : : : \mha.j /

�
P a.j /

�
;

hence

Qk \Ql D
[

foj
.g1;:::;ga.j //Dk

[
foj

.g1;:::;ga.j //Dl
mg1

	
P 1


\ : : :\mga.j /

�
P a.j /

�
\

\mh1

	
P 1


 \ : : : \mha.j /

�
P a.j /

�
:

By our assumption aboutm.P r/’s we havems.P r /\mt .P r / D ; or f;g, for s ¤ t .
On the other hand, in each of the summands above gr D hr , for r D 1; : : : ; a.j /

would imply

k D foj
.g1; : : : ; ga.j // D foj

.h1; : : : ; ha.j // D l



10.3 Relational Formalization of Finitely Many-Valued Logics 201

which is a contradiction. Thus gr ¤ hr , for some r , so mgr
.P r / \ mhr

.P r / 2
f;; f;gg. Obviously, this means that the same holds for each summand in Qk \Ql ,
and in consequence for the latter intersection, thereforeQ satisfies the condition (2).

To prove that Q satisfies condition (3), consider any u 2 U . Since all the P r ’s
satisfy condition (3), then for each r , 1 � r � a.j /, there exists kr , 0 � kr � nL�1
such that u 2 mkr

.P r /. Obviously, u 2 mk1
.P 1/\ : : :\mka.j /

.P a.j //. Therefore,
for k D foj

.k1; : : : ; ka.j //, we obtain:

u 2
[

foj
.g1;:::;ga.j //Dk

mg1
.P 1/\ : : : \mga.j /

�
P a.j /

�
:

Since u is in the above union, the union is non-empty. Thus, by the definition it
equals Qk. Therefore, u 2 SnL�1

lD0 Ql . Since u is an arbitrary element of U , Q
satisfies condition (3).

Assume that m.P / D m0.P / � � � � � mnL�1.P / satisfies conditions (1), (2),
and (3). Let Q D m.JtP/, where Q D Q0 � � � � � QnL�1. Then obviously, Q
satisfies condition (2), because Q1 D f;g for l ¤ 0; nL � 1 and Q0 \ QnL D
.
S
l¤t ml.P // \mt .P /. Since for l ¤ t the intersection ml.P / \mt .P / is either

; or f;g by the assumption on m.P /, the same holds for the union representing
Q0 \QnL . Finally, Q satisfies also condition (3), since:

nL[
iD0

Qi D
[
l¤k

ml.P / [ f;g [mt .P / �
nL�1[
iD0

mi .P / � U;

by the assumption on m.P /. ut
The translation of L-formulas into relational terms starts with a one-to-one assign-
ment � 0WV ! RV RLL of relational variables to the propositional variables. Then,
the translation � of formulas is defined by:

�.oj .'1; : : : ; 'a.j /// D oj .�.'1/; : : : ; �.'a.j ///:

Proposition 10.3.2. For every L-formula ' and for every L-model M there exists
an RLL-model M0 such that M ˆ ' iff M0 ˆ �.'/.
Proof. Let ' be an L-formula and let M D .U;m; fmk W k 2 SRLg/ be an L-model.
We define the corresponding RLL-model M0 D .U 0[ f;g; m0; fm0

k
W k 2 SRLg/ as

follows:

� U 0 D U ;
� For a relational variableP such that � 0.p/ D P we definem0

k
.P / D mk.p/[f;g

andm0.P / D m00.P / � � � � �m0nL�1.P /;� m0 extends to all the compound relational terms as in RLL-models.

We show that for every L-formula ', condition .1/m0
k
.�.'// D mk.'/[f;g holds.

Then, models M and M0 clearly satisfy the proposition.



202 10 Dual Tableaux for Many-Valued Logics

We prove .1/ by induction on the complexity of formulas. If ' D p, for p 2 V ,
then .1/ holds by the definition of m0

k
.�.p//. Let ' D oj .p

1; : : : ; pa.j //. Then
m0
k
.�.'// D m0

k
.oj .�.p

1/; : : : ; �.pa.j ////. By the definition of the model M0,
m0
k
.oj .�.p

1/; : : : ; �.pa.j //// equals:

[
foj

.k1;:::;ka.j //Dk
.m0k1

.�.p1//\ : : : \m0ka.j /
.�.pa.j ////

if the union is non-empty, otherwise it equals f;g. If the latter holds, then
mk.'/D;, hencem0

k
.�.'// D f;g D mk.'/[f;g. If the union is non-empty, then

by the induction hypothesis, we obtain:

[
foj

.k1;:::;ka.j //Dk
.m0k1

.�.p1//\ : : : \m0ka.j /
.�.pa.j ////

D
[

foj
.k1;:::;ka.j //Dk

..mk1
.p1/[ f;g/\ : : : \ .mka.j /

.pa.j ///[ f;g/

D

0
B@ [
foj

.k1;:::;ka.j //Dk
.mk1

.p1/\ : : : \mka.j /
.pa.j ///

1
CA [ f;g D mk.'/[ f;g:

Thereforem0
k
.�.'// D mk.'/ [ f;g. ut

In a similar way we can prove:

Proposition 10.3.3. For every L-formula ' and for every RLL-modelM there exists
an L-model M0 such that M0 ˆ ' iff M ˆ �.'/.
The above two propositions lead to:

Theorem 10.3.1. Let ' be an L-formula. Then the following conditions are
equivalent:

1. ' is L-valid;
2. �.'/ is RLL-valid.

Relational Formalization of Rosser–Turquette Logic RT

The vocabulary of the language of the relational logic RLRT consists of the set of
relational variables, two binary operations _ and ^, and unary operations: and Jt ,
for t D 0; : : : ; nRT � 1.

In RLRT-models we define the meaning functions in a standard way with the
following clauses for the compound terms:

� mk.P _ Q/ D
Sk
lD0.mk.P / \ ml.Q/ \ ml.P / \ mk.Q// if this union is

non-empty, and mk.P _Q/ D f;g otherwise;
� mk.P ^ Q/ D

SnRT�1
lDk .mk.P / \ ml.Q/ \ ml.P / \ mk.Q// if this union is

non-empty, and mk.P ^Q/ D f;g otherwise;



10.3 Relational Formalization of Finitely Many-Valued Logics 203

� m0.:P/ D SnRT�1
lDs ml.P /, mnRT�1.:P/ D

Ss�1
lD0ml.P /, and for l ¤ 0;

nRT � 1, ml.:P/ D f;g;
� For any relational term P such thatm.P / D m0.P /�� � ��mnRT�1.P / we have:

m.Jk.P // D Q0 � � � � �QnRT�1;

where

QnRT�1 D mk.P /; Q0 D
[
l¤k

ml.P /; and Qi D f;g for i ¤ 0; nRT � 1:

Relational Formalization of Symmetric Heyting Logics SHn

The vocabulary of the relational logic RLSHn
consists of relational variables and the

relational operations which are the direct counterparts to the propositional opera-
tions of the SHn logics. RLSHn

-models are defined so that the meaning of compound
relational terms reflects properties of the corresponding propositional operations.
For example, for any relational term P such that:

m.P / D �.k;l/2SRSHn
m.k;l/.P /

we have
m.�i .P // D �.k;l/2SRSHn

R.k;l/;

where�iAi denotes the direct product of sets Ai and:

R.k;l/ D f;g if either k ¤ 0; 1 or l ¤ 0; 1;
R.1;1/ D

S
x
n�i; y
n�i m. x

n�1 ;
y

n�1 /
.P /

if the above union is non-empty, and R.1;1/ D f;g otherwise,

R.1;0/ D
S
x
n�i; y<n�i m. x

n�1
; y

n�1
/.P /

if the above union is non-empty, and R.1;0/ D f;g otherwise,

R.0;1/ D
S
x<n�i; y
n�i m. x

n�1 ;
y

n�1 /
.P /

if the above union is non-empty, and R.0;1/ D f;g otherwise,

R.0;0/ D
S
x<n�i; y<n�i m. x

n�1
; y

n�1
/.P /

if the above union is non-empty, and R.0;0/ D f;g otherwise.

Relational Formalization of the Logic LT

The formulas of relational logic RLLT are built from relational variables with
the relational operations which are the direct counterparts of the propositional



204 10 Dual Tableaux for Many-Valued Logics

operations of the logic LT. RLLT -models are defined in a standard way, so that
the meaning of compound relational terms reflects properties of the correspond-
ing propositional operations. For example, if R D P ! Q, and m.Z/ D�k2SRLT

mk.Z/, for Z D P;Q;R, then we have:

mk.R/ D
[

Sfu2SRLT W l\u�tgDk
ml.P / \mt .Q/;

if the above union is non-empty, and mk.R/ D f;g otherwise.

10.4 Dual Tableaux for Finitely Many-Valued Logics

Let L be a finitely many-valued logic. A relational dual tableau for L consist of
axiomatic sets of formulas and decomposition rules that apply to finite sets of for-
mulas. The notion of a rule is defined as in Sect. 2.4.

Decomposition rules have the following forms:

(J�in)
R

Js.R/; : : : ; JnL�1.R/

where R is not of the form Jl.Q/

for any l 2 SRL and for any RLL-formulaQ

.oj /1
K; Jt .oj .R1; : : : ; Ri //

K;H; Jt1.R1/ j : : : jK;H; Jti .Ri /
for all t1; : : : ; ti such that foj

.t1; : : : ; ti / D t , where

i D a.j /, H D Jt .oj .R1; : : : ; Ri //, and

for some l 2 f1; : : : ; ig sequenceK of formulas

does not contain Jtl .Rl /

.oj /2
K; Jt .oj .R1; : : : ; Ri //

K

whereK D Jt1.R1/; : : : ; Jti .Ri / and foj
.t1; : : : ; ti / D t

.J0.Jl //
J0.Jl.R//

J0.R/; : : : ; Jl�1.R/; JlC1.R/; : : : ; JnL�1.R/

for any l 2SRL such that l ¤ 0

.J0.J0//
J0.J0.R//

J1.R/; : : : ; JnL�1.R/



10.4 Dual Tableaux for Finitely Many-Valued Logics 205

.JnL�1.Jl//
JnL�1.Jl .R//

Jl.R/
, for any l 2 SRL

.Jt .Jl//
K; Jt .Jl.R//

K

for any l 2 SRL and for any t ¤ 0; nL � 1,

and for any sequenceK of RLL-formulas.

A set of RLL-formulas is said to be an RLL-axiomatic set whenever it includes
either of the following sets:

For any relational term R,

� fJ0.R/; : : : ; JnL�1.R/g;
� fJ0.Jt .Jl.R///g, for t ¤ 0; nL � 1.

A finite set X D fP1; : : : ; Png of RLL-formulas is said to be RLL-set whenever for
every RLL-model M,

Sn
jD1

SnL�1
iDs mi .Pj / D U [ f;g. Correctness of a rule is

defined in a similar way as in the relational logics of classical algebras of binary
relations (see Sect. 2.4).

Proposition 10.4.1.

1. The RLL-rules are RLL-correct;
2. The RLL-axiomatic sets are RLL-sets.

Proof. By way of example, we prove RLL-correctness of the rule .JnL�1.Jl//. First,
note that by the definition of RLL-models we have:

mnL�1.JnL�1.Jl.R/// D mnL�1.Jl.R// D ml.R/;

mi .JnL�1.Jl .R/// D mi .Jl.R// D f;g; for any i ¤ 0; nL � 1:
Therefore,

SnL�1
kDs mk.JnL�1.Jl .R/// D

SnL�1
kDs mk.Jl .R// D f;g [ml.R/. Thus,

for every RLL-model M, M ˆ JnL�1.Jl.R// iff M ˆ Jl .R/. Hence, the correct-
ness follows. ut
The notions of an RLL-proof tree and RLL-provability of an RLL-formula are defined
as in Sect. 2.4.

Theorem 10.4.1 (Soundness and Completeness of RLL). Let ' be an RLL-
formula. Then, the following conditions are equivalent:

1. ' is RLL-valid;
2. ' is RLL-provable.

Proof. The implication 2. ! 1. follows from Proposition 10.4.1, hence RLL-dual
tableau is sound. Moreover, it can be easily proved that every RLL-proof tree is
finite. Assume that ' is RLL-valid. Suppose ' does not have a closed RLL-proof tree.
Let us consider a non-closed RLL-proof tree for '. This tree has to contain a branch
b which ends with a non-axiomatic set � of RLL-formulas. By the construction
of the tree, each element of � is of the form Jt .P /, for some P 2 RV RLL and



206 10 Dual Tableaux for Many-Valued Logics

t 2 f0; : : : ; nL � 1g, since otherwise we could apply to � one of the rules. Define
the branch structure Mb D .U b [ f;g; mb; fmb

k
W k 2 SRLg/ as follows:

� U b D fwg;
� For any relational variable P ,

mbk.P / D
� fwg if k D minfl W Jl .P / 62 �g,
f;g otherwise;

� mb
k

extends to all compound relational terms as in RLL-models.

Since � is not an axiomatic set, fl W Jl.P / 62 �g ¤ ;. Therefore, for every P 2
RV RLL , there exists exactly one i 2 f0; : : : ; nL�1g such thatmi .P / D fwg. Hence,
it can be easily proved that Mb is an RLL-model. Moreover, if Jl .P / 2 � for some
l 2 f0; : : : ; nL � 1g, then by the definition of the branch structure ml.P / D f;g.
Therefore, if Jl .P / 2 �, then

SnL�1
kDs mk.Jl.P // D f;g, so Mb 6ˆ Jl .P /. Hence,

� is not RLL-valid. Since every node of the branch b is obtained from its predecessor
node by means of some RLL-rule, and the rule preserves and reflects validity, and
since � is not RLL-valid, the formula ' 2 b is not RLL-valid, a contradiction. ut
Finally, by the above theorem and Theorem 10.3.1, we obtain:

Theorem 10.4.2 (Relational Soundness and Completeness of L). Let ' be an
L-formula. Then, the following conditions are equivalent:

1. ' is L-valid;
2. �.'/ is RLL-provable.

Dual Tableaux for Rosser–Turquette Logics

RLRT-dual tableau consists of the rules (J -in), .J0.Jl//, .JnRT�1.Jl//, .Jk.Jl //,
and the rules of introduction and elimination of disjunction, conjunction, and
negation:

(_�in/1
Jt .P _Q/

Jt .P _Q/; Jt .P / j Jt .P _Q/; Jl.Q/
for 0 � l � t

(_�in/2
Jt .P _Q/

Jt .P _Q/; Jl.P / j Jt .P _Q/; Jt .Q/
for 0 � l � t

(_�el/
K; Jt .P _Q/

K

K D J0.P /; J0.Q/; : : : ; Jt .P /; Jt .Q/

(^�in/1
Jt .P ^Q/

Jt .P ^Q/; Jt .P / j Jt .P ^Q/; Jl.Q/
for t � l � nRT � 1



10.4 Dual Tableaux for Finitely Many-Valued Logics 207

(^�in/2
Jt .P ^Q/

Jt .P ^Q/; Jl.P / j Jt .P ^Q/; Jt .Q/
for t � l � nRT � 1

(^�el/
K; Jt .P ^Q/

K

K D Jt .P /; Jt .Q/; : : : ; JnRT�1.P /; JnRT�1.Q/

.:�in/
Jt .:R/

Ji .R/; : : : ; JnRT�1�t .R/

for t D 0; nRT � 1, where i D
�
s; if t D 0
s � 1; if t D nRT � 1

.:�el/
K; Jt .:R/

K

K D
8<
:

any set of RLRT-formulas; if t ¤ 0; nRT � 1
J0.R/; : : : ; Js�1.R/; if t D nRT � 1
Js.R/; : : : ; JnRT�1.R/; if t D 0

Dual Tableaux for Symmetric Heyting Logics SHn

We present RLSHn
-rules for the operations �i , i D 1; : : : ; n � 1:

For any sequenceK of RLSHn
-formulas,

.J.k;l/�i�el/1
K; J.k;l/.�i .R//

K
, if either k ¤ 0; 1 or l ¤ 0; 1

.J.k;l/�i�in/1
K; J.1;1/.�i .R//

K; J.1;1/.�i .R//; J. x
n�1 ;

y
n�1 /

.R/

for x � n � i , y � n � i , if J. x
n�1

; y
n�1

/.R/ 62 K

.J.k;l/�i�in/2
K; J.1;0/.�i .R//

K; J.1;0/.�i .R//; J. x
n�1

; y
n�1

/.R/

for x � n � i , y < n � i , if J. x
n�1

;
y

n�1
/.R/ 62 K

.J.k;l/�i�in/3
K; J.0;1/.�i .R//

K; J.0;1/.�i .R//; J. x
n�1

; y
n�1

/.R/

for x < n � i , y � n � i , if J. x
n�1 ;

y
n�1 /

.R/ 62 K



208 10 Dual Tableaux for Many-Valued Logics

.J.k;l/�i�in/4
K; J.0;0/.�i .R//

K; J.0;0/.�i .R//; J. x
n�1 ;

y
n�1 /

.R/

for x < n � i , y < n � i , if J. x
n�1

; y
n�1

/.R/ 62 K

.J.k;l/�i�el/2
K; J.k;l/.�i .R//

K

for .k; l/ 2 f0; 1g2, if for any x; y, J. x
n�1

; y
n�1

/.R/ 2 K

Dual Tableaux for Logics LT

We present RLLT-rules for the operations dt :
For any sequenceK of RLLT-formulas,

.Jl .dt /�el/1
K; Jl.dt .R//

K
, for l ¤ ;;T

.Jl .dt /�in/1
K; JT.dt .R//

K; JT.dt .R//; Jl.R/

for l 2 SRLT such that t 2 l , if Jl .R/ 62 K

.Jl .dt /�in/2
K; J;.dt .R//

K; J;.dt .R//; Jl.R/

for l 2 SRLT such that t 62 l , if Jl .R/ 62 K

.Jl .dt /�el/2
K; Jk.dt .R//

K

for k 2 f;;Tg, if Jl .R/ 2 K for every l 2 SRLT

10.5 Three-Valued Logics

In this section we present examples of dual tableau proofs in three-valued instances
of Rosser–Turquette logic, symmetric Heyting logic, and logic LT.

Consider a three-valued Rosser–Turquette logic RT.3;1/ with SRRT.3;1/
D

f0; 1; 2g where 1 and 2 are the designated values. Let ' be the following RT.3;1/-
formula:

' D :J1.:p/:
Its translations into RLRT.3;1/

-term is:

�.'/ D :J1.:P/;



10.5 Three-Valued Logics 209

:J1.:P/

�
.J�in/

J1.:J1.:P//; J2.:J1.:P//

�
.:�in/

J0.J1.:P//; : : :

�
.J0.J1//

J0.:P/; J2.:P/; : : :

�
.:�in/

J2.P /; J2.:P/; : : :

�
.:�in/

J2.P /; J0.P /; J1.P /; : : :

closed

Fig. 10.1 An RLRT.3;1/ -proof of RT.3;1/-formula :J1.:p/

where � 0.p/ D P . RT.3;1/-validity of this formula is equivalent with RLRT.3;1/
-

provability of its translation. Figure 10.1 presents an RLRT.3;1/
-proof of �.'/.

Now, consider a three-valued Rosser–Turquette logic RT.3;2/ with SRRT.3;2/
D

f0; 1; 2g, where 2 is the only designated value. Let  be the following RT.3;2/-
formula:

 D J0.p/ _ J1.p/ _ J2.p/:
Its translation into RLRT.3;2/

-term is:

�. / D J0.P / _ J1.P / _ J2.P /;
where � 0.p/ D P . Figure 10.2 presents an RLRT.3;2/

-proof of �. / which shows
RT.3;2/-validity of the formula  .

Now, consider symmetric Heyting logic of order 3, SH3, with .1; 1/ as the
only designated value. The semantic range for the logic SH3 is SRSH3

D˚
.x; y/ W x; y 2 ˚

0; 1
2
; 1

��
. Among the rules of RLSH3

-dual tableau are the rules
of the form:

.!/SH3

J.1;1/.R! Q/

J.t1;t2/.R/; J.1;1/.R! Q/ j J.t 0
1
;t 0

2
/.Q/; J.1;1/.R! Q/

for any t1; t2; t 01; t 02 2 SRSH3
such that t1 � t 01 and t2 � t 02

.�/SH3

J.k;l/.�R/
J.1�l;1�k/.R/

for any k; l 2 SRSH3



210 10 Dual Tableaux for Many-Valued Logics

J0.P /_ J1.P / _ J2.P /

�
.J�in/

J2.J0.P /_ J1.P /_ J2.P //
���� ._�in/1 with l D 0 			


J2.J0.P //; T

�
.J2.J0//

J0.P /; T

�
˘1

J0.J1.P /_ J2.P //; T
���� ._�in/2

			

J0.J1.P //; T; : : :

�
.J0.J1//

J0.P /; T; : : :

�
˘1

J0.J2.P //; T; : : :

�
.J0.J1//

J0.P /; T; : : :

�
˘1T

dfD J2.J0.P / _ J1.P /_ J2.P //
˘1 is in Figure 10.3

Fig. 10.2 An RLRT.3;2/ -proof of RT.3;2/-formula J0.p/_ J1.p/_ J2.p/.

J0.P /; J2.J0.P / _ J1.P / _ J2.P //; : : :
���� ._�in/2 with l D 0 			


J0.P /; J0.J0.P //; : : :

�
.J0.J0//

J0.P /; J1.P /; J2.P /; : : :

closed

J0.P /; J2.J1.P / _ J2.P //; : : :
���� ._�in/1, l D 2 			


J0.P /; J2.J1.P //; S; : : :

�
.J2.J1//

J0.P /; J1.P /; S; : : :

�
˘2

J0.P /; J2.J2.P //; S; : : :

�
.J2.J2//

J0.P /; J2.P /; S; : : :

�
˘3S

dfD J2.J1.P /_ J2.P //
˘2 is presented in Figure 10.4

˘3 is presented in Figure 10.5

Fig. 10.3 A subtree ˘1

J0.P /; J1.P /; J2.J1.P /_ J2.P //; : : :
�����
._�in/2, l D 0 				


J0.P /; J1.P /; J0.J1.P //; : : :

�
.J0.J1//

J0.P /; J1.P /; J2.P /; : : :

closed

J0.P /; J1.P /; J2.J2.P //; : : :

�
.J2.J2//

J0.P /; J1.P /; J2.P /; : : :

closed

Fig. 10.4 A subtree ˘2



10.5 Three-Valued Logics 211

J0.P /; J2.P /; J2.J1.P /_ J2.P //; : : :
�����
._�in/1, l D 0 				


J0.P /; J2.P /; J2.J1.P //; : : :

�
.J2.J1//

J0.P /; J2.P /; J1.P /; : : :

closed

J0.P /; J2.P /; J0.J2.P //; : : :

�
.J0.J2//

J0.P /; J2.P /; J1.P /; : : :

closed

Fig. 10.5 A subtree ˘3

P !�� P

�
.J�in/

J.1;1/.P !�� P/

�
.� .k; l// for all .k; l/ 2 SRSH3

J.0;0/.P /; J.0; 12 /
.P /; J.0;1/.P /; J. 12 ;0/

.P /,

J. 12 ;
1
2 /
.P /; J. 12 ;1/

.P /; J.1;0/.P /; J.1; 12 /
.P /; J.1;1/.P /; : : :

closed

� .k; l/ is the derived rule of the form:
J.1;1/ .P!��P /

J.k;l/.P /;J.1;1/ .P! ��P /

The proof of � .k; l/ is presented in Figure 10.7.

Fig. 10.6 An RLSH3 -proof of SH3-formula p!�� p

These rules are the instances of the scheme .oj /1 presented in Section 10.4. Note
that the result of an application of the rule .�/SH3

to the formula J.k;l/.�� R/ is
the formula J.1�l;1�k/.� R/, while the result of an application of the rule .�/SH3

to J.1�l;1�k/.� R/ is the formula J.k;l/.R/. Thus, we can introduce the derived rule
of the form:

.��/SH3

J.k;l/.�� R/
J.k;l/.R/

for any k; l 2 SRSH3

Let ' be an SH3-formula p !�� p. The translation of ' into RLSH3
-term is

�.'/ D P !�� P , where � 0.p/ D P . Figure 10.6 presents an RLSH3
-proof of

�.'/ that shows SH3-validity of '.
Observe that in a diagram of Fig. 10.7 an application of a derived rule .��/SH3

to J.k;l/.�� P/ results in the node which has the same formulas as those obtained
by an application of rule .!/SH3

to formula J.1;1/.P !�� P/. Therefore, we
identify the two nodes.

As the last example, consider logic LT with T D f0; 1g. The semantic range for
this logic is SRLT D f;; f1g; f0; 1gg.



212 10 Dual Tableaux for Many-Valued Logics

J.1;1/.P !�� P/; : : :

�

			
.!/SH3

J.k;l/.�� P/; J.1;1/.P !�� P/; : : :
�������
.��/SH3

J.k;l/.P /; J.1;1/.P !�� P/; : : :

Fig. 10.7 An RLSH3 -proof of a derived rule � .k; l/D J.1;1/.P!��P /

J.k;l/.P /;J.1;1/.P! ��P /
.

d1.P /_:d1.P /

�
.J�in/

JT.d1.P /_:d1.P //
			

J;.:d1.P //; JT.d1.P /_:d1.P //

��������
.:2/LT

�

._/LT

JT.d1.P //; JT.d1.P / _:d1.P //

�
.Jl .dt/�in/1

Jf1g.P /; JT.d1.P //; JT.d1.P /_:d1.P //

�
.Jl .dt/�in/1

Jf1g.P /; JT.P /; JT.d1.P / _:d1.P //; : : :
���� ._/LT

			

Jf1g.P /; JT.P /; JT .:d1.P //; : : :

�
.:1/LT

Jf1g.P /; JT.P /; J;.d1.P //; : : :

�
.Jl .dt /�in/2

Jf1g.P /; JT.P /; J;.P /; : : :

closed

Jf1g.P /; JT.P /; J;.d1.P //; : : :

�
.Jl .dt/�in/2

Jf1g.P /; JT.P /; J;.P /; : : :

closed

Fig. 10.8 An RLLT -proof of LT-formula d1.p/ _:d1.p/

Among the rules of RLLT-dual tableau are the rules of the form:

._/LT

Jt .R _Q/
Jt1.R/; Jt .R _Q/ j Jt2.Q/; Jt .R _Q/
for any t; t1; t2 2 SRLT such that t1 [ t2 D t

.:1/LT

JT.:R/
J;.R/

.:2/LT

J;.:R/
JT.R/



10.5 Three-Valued Logics 213

These rules follow the scheme .oj /1 presented in Sect. 10.4.
Let ' be the following LT-formula:

' D d1.p/ _ :d1.p/:

The translation of ' into RLLT -term is:

�.'/ D d1.P / _ :d1.P /;

where � 0.p/DP . Figure 10.8 presents RLLT -proof of �.'/, which proves LT-
validity of '.



Part IV
Relational Reasoning in Logics of

Information and Data Analysis



Chapter 11
Dual Tableaux for Information Logics
of Plain Frames

11.1 Introduction

Information logics considered here and in the following chapter originated in
connection with representation and analysis of data structures known as informa-
tion systems with incomplete information, introduced in [Lip76], see also [Lip79].
Any such system consists of a collection of objects described in terms of their
properties. A property is specified as a pair ‘an attribute, a subset of values of this
attribute’. Such a form of properties is a manifestation of incompleteness of infor-
mation. Instead of a single value of an attribute assigned to an object, as is the case
in relational database model, here we have a range of values. A disjunctive inter-
pretation of a set of values admits an interpretation that a value is not sufficiently
specified, it is only estimated to be in some range. Clearly, also a conjunctive in-
terpretation may be meaningful for some objects. A characterization of objects in
terms of attributes and their values induces some relationships among the objects.
Typically, they have a form of binary relations and are referred to as information
relations derived from an information system. Several families of information re-
lations have been studied in the literature, an extensive catalogue can be found in
[DO02]. There are two major classes of these relations: indistinguishability relations
and distinguishability relations. The indistinguishability relations reflect degrees of
similarity or sameness of objects and distinguishability relations correspond to de-
grees of dissimilarity or distinctness. Each of these relations is defined in terms of a
subset of the attributes of the objects. Thus a distinguishing feature of the relations
is that they indicate both which objects are related and also with respect to which of
their attributes they are related. In this way the information relations capture a qual-
itative degree of having a property. Relations of that kind are referred to as relative
relations.

Information logics are modal logics where the modal operators are determined
by information relations. Depending on a type of the relation, the operators receive
various specific, application oriented interpretations. For example, if we consider
an indiscernibility relation determined by an attribute i.e., it holds between two ob-
jects whenever their sets of values of this attribute are equal, then the necessity

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 11,
c� Springer Science+Business Media B.V. 2011

217



218 11 Dual Tableaux for Information Logics of Plain Frames

and possibility operators determined by that relation are the lower and the upper
approximation operations, respectively, as considered in rough set theory (see
[Paw82, Paw91, DO02]).

In this chapter, first, we recall the fundamental notions concerning information
systems with incomplete information, information relations, and operators deter-
mined by these relations. Next, we develop relational dual tableaux for some typical
information logics with modal operators determined by the information relations
both from the group of indistinguishability relations and from the group of distin-
guishability relations. The models of the logics considered in this chapter are based
on what are called plain frames where each of the information relations is deter-
mined by the whole set of attributes of an information system. In the following
chapter we deal with logics of relative frames, consisting of the families of relations
determined by all the finite subsets of the set of attributes of an information system.

11.2 Information Systems

In a formal model of an information system with incomplete information, as
introduced by Lipski, information systems are collections of information items that
have the form of descriptions of some objects in terms of their properties. An infor-
mation system is a structure of the form S D .OB;AT ; .V ALa/a2AT ; f / where:

� OB is a non-empty set of objects;
� AT is a non-empty set of attributes;
� V ALa is a non-empty set of values of the attribute a;
� f is a total function OB�AT !S

a2AT P.V ALa/ such that for every .x; a/ 2
OB �AT , f .x; a/ � V ALa; f is referred to as an information function.

Usually, instead of .OB;AT ; .V ALa/a2AT ; f / the more concise notation, namely
.OB;AT /, is used. With that short notation, each attribute a 2 AT is considered as
a mapping aWOB ! P.V ALa/ that assigns subsets of values to objects. An infor-
mation system .OB;AT / is total (resp. deterministic) whenever for every a 2 AT
and for every x 2 OB, f .x; a/ ¤ ; (resp. card.f .x; a// � 1, in that case x is said
to be a deterministic object). If an information system is not deterministic, then it is
said to be nondeterministic. In nondeterministic information systems descriptions of
objects are tuples consisting of subsets of values of attributes. Such a representation
is also used in symbolic data analysis, see e.g., [Did87, Did88, Pre97], and in rough
set-based data analysis, see e.g., [Orł97a, WDB98, WDG00].

Any set a.x/ can be viewed as a set of properties of an object x determined by
attribute a. Any such property is referred to as a-property. Set V ALa na.x/ will be
referred to as a set of negative a-properties. For example, if attribute a is ‘colour’
and a.x/ D green, then x possesses the property of ‘being green’; if a is ‘languages
spoken’, and if a person x speaks Polish (Pl), German (D), and French (F), then
a.x/ D fPl, D, Fg. If both the set of objects and the set of attributes are finite, then



11.2 Information Systems 219

we regard such a system as a data table with rows labeled by objects, and columns
labeled by attributes; the entry .x; a/ contains the value set a.x/ of attribute a for
object x.

Any information system S D .OB;AT / contains also some implicit information
about relationships among its objects. These relationships are determined by the
properties of objects. Usually, they have the form of binary relations. They are re-
ferred to as information relations derived from an information system. There are two
groups of information relations. The relations that reflect various kinds of ‘same-
ness’ or ‘similarity’ of objects are referred to as indistinguishability relations. The
relations that indicate ‘differences’ or ‘dissimilarity’ of objects are referred to as dis-
tinguishability relations. Below we present a list of the classes of atomic relations
that generate a whole family of information relations.

Indistinguishability Relations

Let S D .OB;AT / be an information system. For every A � AT and for all
x; y 2 OB we consider the following binary indistinguishability relations on OB:

� The strong (weak) indiscernibility relation ind.A/ (resp. wind.A/):
.x; y/ 2 ind.A/ (resp. .x; y/ 2 wind.A/) iff for all (resp. for some) a 2 A,
a.x/ D a.y/;

� The strong (weak) similarity relation sim.A/ (resp. wsim.A/):
.x; y/ 2 sim.A/ (resp. .x; y/ 2 wsim.A/) iff for all (resp. for some) a 2 A,
a.x/ \ a.y/ ¤ ;;

� The strong (weak) forward inclusion relation fin.A/ (resp. wfin.A/):
.x; y/ 2 fin.A/ (resp. .x; y/ 2 wfin.A/) iff for all (resp. for some) a 2 A,
a.x/ � a.y/;

� The strong (weak) backward inclusion relation bin.A/ (resp. wbin.A/):
.x; y/ 2 bin.A/ (resp. .x; y/ 2 wbin.A/) iff for all (resp. for some) a 2 A,
a.y/ � a.x/;

� The strong (weak) negative similarity relation nim.A/ (resp. wnim.A/):
.x; y/ 2 nim.A/ (resp. .x; y/ 2 wnim.A/) iff for all (resp. for some) a 2 A,
�a.x/ \�a.y/ ¤ ;, where � is the complement with respect to V ALa;

� The strong (weak) incomplementarity relation icom.A/ (resp. wicom.A/):
.x; y/ 2 icom.A/ (resp. .x; y/ 2 wicom.A/) iff for all (resp. for some) a 2 A,
a.x/ ¤ �a.y/.

If A is a singleton set, then the respective strong and weak relations coincide.
Intuitively, two objects are strongly A-indiscernible whenever all of their sets of
a-properties determined by the attributes a 2 A are the same. Objects are weakly
A-indiscernible whenever their properties determined by some members of A are
the same. Objects are strongly A-similar (resp. weakly A-similar) whenever all
(resp. some) of the sets of their properties determined by the attributes from A are
not disjoint, in other words the objects share some properties. Strong (resp. weak)
information inclusions hold between the objects whenever their all (resp. some)
corresponding sets of properties are included in each other. Strong (resp. weak) neg-
ative similarity relation holds between objects whenever they share some negative



220 11 Dual Tableaux for Information Logics of Plain Frames

properties with respect to all (resp. some) attributes. Strong (resp. weak) incomple-
mentarity relation holds between objects whenever a-properties of one object do not
coincide with negative a-properties of the other one, for all (resp. some) attributes.

Important applications of the information relations from the indiscernibility
group are related to the representation of approximations of subsets of objects in
information systems. If R.A/ is one of these relations, where A is a subset of AT
and X is a subset of OB, then the lower R.A/-approximation of X , LR.A/.X/, and
the upper R.A/-approximation of X , UR.A/.X/, are defined as follows:

LR.A/.X/ D fx 2 OB W for all y 2 OB; .x; y/ 2 R.A/ implies y 2 Xg;
UR.A/.X/ D fx 2 OB W there exists y 2 OB; .x; y/ 2 R.A/ and y 2 Xg.

In the rough set theory (see [Paw91]), where a relation R.A/ is a strong indiscerni-
bility relation, we obtain the following hierarchy of definability of sets. A subset X
of OB is said to be:

� A-definable iff Lind.A/.X/ D X D Uind.A/.X/;
� Roughly A-definable iff Lind.A/.X/ ¤ ; and Uind.A/.X/ ¤ OB;
� Internally A-indefinable iff Lind.A/.X/ D ;;
� Externally A-indefinable iff Uind.A/X D OB;
� Totally A-indefinable iff it is internally and externally A-indefinable.

The other application of the above information relations is related to modeling
uncertain knowledge acquired from information about objects collected in an in-
formation system. Let X be a subset of OB. The sets of A-positive (POSA.X/), A-
borderline (BORA.X/), and A-negative (NEGA.X/) instances of X are as follows:

POSA.X/ D Lind.A/.X/I
BORA.X/ D Uind.A/.X/ �Lind.A/.X/I
NEGA.X/ D OB � Uind.A/.X/:

The elements of POSA.X/ can be seen as the members of X up to properties from
A. The elements of NEGA.X/ are not the members of X up to properties from A.

Knowledge about a set X of objects that can be discovered from an informa-
tion system can be modelled as KA.X/ D POSA.X/ [ NEGA.X/. Intuitively,
A-knowledge about X consists of those objects that are either A-positive instances
of X or A-negative instances of X .

We say that A-knowledge aboutX is:

� Complete if KA.X/ D OB, otherwise incomplete;
� Rough if POSA.X/, BORA.X/, and NEGA.X/ are non-empty;
� Pos-empty if POSA.X/ D ;;
� Neg-empty if NEGA.X/ D ;;
� Empty if it is pos-empty and neg-empty.



11.2 Information Systems 221

Distinguishability Relations

Let S D .OB;AT / be an information system. For every A � AT and for all
x; y 2 OB we consider the following binary distinguishability relations on OB:

� The strong (weak) diversity relation div.A/ (resp. wdiv.A/):
.x; y/ 2 div.A/ (resp. .x; y/ 2 wdiv.A/) iff for all (resp. for some) a 2 A,
a.x/ ¤ a.y/;

� The strong (weak) right orthogonality relation rort.A/ (resp. wrort.A/):
.x; y/ 2 rort.A/ (resp. .x; y/ 2 wrort.A/) iff for all (resp. for some) a 2 A,
a.x/ � �a.y/;

� The strong (weak) left orthogonality relation lort.A/ (resp. wlort.A/):
.x; y/ 2 lort.A/ (resp. .x; y/ 2 wlort.A/) iff for all (resp. for some) a 2 A,
�a.x/ � a.y/;

� The strong (weak) right negative similarity relation rnim.A/ (respectively
wrnim.A/): .x; y/ 2 rnim.A/ (resp. .x; y/ 2 wrnim.A/) iff for all (resp. for
some) a 2 A, a.x/ \ �a.y/ ¤ ;;

� The strong (weak) left negative similarity relation lnim.A/ (respectively
wlnim.A/): .x; y/ 2 lnim.A/ (resp. .x; y/ 2 wlnim.A/) iff for all (resp. for
some) a 2 A, �a.x/ \ a.y/ ¤ ;;

� The strong (weak) complementarity relation com.A/ (resp. wcom.A/):
.x; y/ 2 com.A/ (resp. .x; y/ 2 wcom.A/) iff for all (resp. for some) a 2 A,
a.x/ D �a.y/.

Intuitively, objects are strongly A-diverse (resp. weakly A-diverse) if all (resp.
some) of the sets of their properties determined by members of A are different. The
objects are strongly A-right orthogonal (resp. weakly A-right orthogonal) when-
ever all (resp. some) of the sets of their properties determined by attributes from
A are disjoint. The objects are strongly A-left orthogonal (resp. weakly A-left or-
thogonal) whenever all (resp. some) of their a-properties, for a 2 A, are exhaustive
i.e., a.x/ [ a.y/ D V ALa. Two objects are right or left strongly (resp. weakly)
A-negatively similar whenever some properties of one of them are not the prop-
erties of the other, for all (resp. some) attributes from A. The objects are strongly
(resp. weakly) A-complementary whenever their respective sets of properties are
complements of each other, for all (resp. some) attributes from A.

Distinguishability relations can be applied to a non-numerical modelling of
degrees of dissimilarity. Diversity relations are applied, among others, in the algo-
rithms for finding cores of sets of attributes. Let an information system .OB;AT /
be given and let A be a subset of AT . We say that an attribute a 2 A is indis-
pensable in A whenever ind.A/ ¤ ind.A�fag/, that is there are some objects such
that a is the only attribute from A that can distinguish between them. A reduct
of A is a minimal subset A0 of A such that every a 2 A0 is indispensable in
A0 and ind.A0/ D ind.A/. The core of A is defined as CORE.A/ D TfA0 �
AT W A0 is a reduct of Ag. For any pair x; y of objects we define the discerni-
bility set Dxy D fa 2 AT W .x; y/ 2 div.fag/g. It is proved in [SR92] that
CORE.A/ D fa 2 A W there are x; y 2 OB such that Dxy D fagg.



222 11 Dual Tableaux for Information Logics of Plain Frames

In the proposition below some of the properties satisfied by information relations
derived from an information system are listed. We recall that a binary relation R on
a set U is:

� A weakly reflexive relation whenever for all x; y 2 U , .x; y/ 2 R implies
.x; x/ 2 R;

� A tolerance relation whenever it is reflexive and symmetric;
� A 3-transitive relation whenever for all x; y; z; t 2 U , if .x; z/ 2 R, .z; t/ 2 R,

and .t; y/ 2 R, then .x; y/ 2 R.

For any property ˛ ofR by property co-˛ ofR we mean that�R has the property ˛.

Proposition 11.2.1. For every information system S D .OB;AT /, for every
A � AT , the following hold:

1. ind.A/ is an equivalence relation;
2. sim.A/ and nim.A/ are weakly reflexive and symmetric;
3. if S is total, then sim.A/ is a tolerance relation;
4. fin.A/ and bin.A/ are reflexive and transitive;
5. icom.A/ is symmetric and if A ¤ ;, then icom.A/ is reflexive; for every a 2

AT , icom.a/ is co-3-transitive;
6. wind.A/ is a tolerance relation and for every a 2 AT , wind.a/ is transitive;
7. wsim.A/ is a tolerance relation;
8. wnim.A/ is weakly reflexive and symmetric;
9. wicom.A/ is reflexive, symmetric and co-3-transitive;

10. wfin.A/ and wbin.A/ are reflexive; for every a 2 AT , wfin.a/ and wbin.a/ are
transitive;

11. div.A/ is symmetric; if A ¤ ;, then div.A/ is irreflexive; for every a 2 AT ,
div.a/ is co-transitive;

12. rort.A/ is symmetric; if A ¤ ;, then rort.A/ is irreflexive;
13. lort.A/ is co-weakly reflexive and symmetric;
14. com.A/ is symmetric and 3-transitive; if A ¤ ;, then com.A/ is irreflexive;
15. rnim.A/ and lnim.A/ are irreflexive, for every A ¤ ;; for every a 2 AT ,

rnim.a/ and lnim.a/ are co-transitive;
16. wdiv.A/ is irreflexive, symmetric and co-transitive;
17. wrort.A/ is symmetric; if S is total, then wrort.A/ is irreflexive;
18. wlort.A/ is co-weakly reflexive and symmetric;
19. wcom.A/ is irreflexive and symmetric; for every a 2 AT , wcom.a/ is

3-transitive;
20. wrnim.A/ and wlnim.A/ are irreflexive and co-transitive.

The following proposition states some relationships between information relations
of different kinds:

Proposition 11.2.2. For every information system S D .OB;AT /, for every
A � AT , and for all x; y; z 2 OB, the following hold:

1. .x; y/ 2 sim.A/ and .x; z/ 2 fin.A/ imply .z; y/ 2 sim.A/;



11.3 Information Logics NIL and IL 223

2. .x; y/ 2 ind.A/ implies .x; y/ 2 fin.A/;
3. .x; y/ 2 fin.A/ and .y; x/ 2 fin.A/ imply .x; y/ 2 ind.A/.

Observe that definitions of information relations include both an information on
which objects are related and with respect to which attributes they are related.
Relations of that kind are referred to as relative relations, they are relative to a
subset of attributes. It follows that the formal systems for reasoning about these
relations should refer to the structures with relative relations. For that purpose we
define a class of relative frames which have the form:

.U; .R1P /P2Pfin.Par/; : : : ; .R
n
P /P2Pfin.Par//;

where the relations in each family .RiP /P2Pfin.Par/ are indexed with finite subsets of a
non-empty set Par of parameters. Intuitively, the elements of Par are representations
of the attributes of an information system. A plain frame is the frame where all the
relations are understood as being determined by the whole set of attributes of an
information system.

A modal approach to reasoning about incomplete information resulted in various
modal systems which are now called information logics. The first logics of that fam-
ily are defined in [Orł82] published later as [Orł83] and in [Orł84, OP84, Orł85a].
We refer the reader to [DO02] for a comprehensive survey of information logics and
to [DG00a, DG00b, DS02b, Bal02, DO07] for some more recent developments. In
information logics the elements of the universes of the models are thought of as ob-
jects in an information system. This interpretation is quite different from the usual
interpretation postulated in modal logics, where the elements of a model represent
states (or possible worlds) in which formulas may be true or false.

11.3 Information Logics NIL and IL

The languages of most popular information logics with semantics of plain frames
are multimodal languages whose symbols are included in the following pairwise
disjoint sets:

� V – a set of propositional variables possibly including also a propositional con-
stant D interpreted as a set of deterministic objects;

� f�;�; �;�g – a set of relational constants, where �;�; �;� are the abstract
counterparts to the relations of inclusions, similarity, and indiscernibility derived
from an information system, respectively;

� f:;_;^; Œ��; Œ��; Œ��; Œ��g – a set of propositional operations.

The set of formulas of a given logic L based on such a language is defined as usual in
modal logics (see Sect. 7.3). An L-frame is a modal frame of the formF D .U;Rel/,
where Rel � f�;�; �;�g. As usual, relations in a frame are denoted with the same
symbols as the corresponding relational constants in the language. The relations
from Rel are referred to as the accessibility relations. In various information logics



224 11 Dual Tableaux for Information Logics of Plain Frames

the frames satisfy some postulates. Typical conditions on relations in the frames of
logics associated with information systems with incomplete information are among
the following:

(I1) �D��1;
(I2) � is reflexive and transitive;
(I3) � is weakly reflexive and symmetric;
(I4) � is reflexive and symmetric;
(I5) � is an equivalence relation;

For all x; x0; y; y0 2 U ,

(I6) If .x; y/ 2 � , .x; x0/ 2� and .y; y0/ 2�, then .x0; y0/ 2 � ;
(I7) If .x; y/ 2 � and .x; z/ 2�, then .z; y/ 2 � ;
(I8) If y 2 D and .x; y/ 2�, then x 2 D;
(I9) If x 2 D and .x; y/ 2 � , then .x; y/ 2�;
(I10) If .x; y/ 2�, then .x; y/ 2�;
(I11) If x; y 2 D and .x; y/ 2 � , then .x; y/ 2�;
(I12) If .x; y/ 2� and .y; x/ 2�, then .x; y/ 2�;
(I13) If x 62 D, then there is y 2 U such that .x; y/ 62 �.

We consider two information logics with semantics of plain frames: the logic NIL
introduced in [OP84, Vak87] and the logic IL introduced in [Vak89].

The set of relational constants of NIL is f�;�; �g. V consists of propositional
variables. The set of propositional operations is f:;_;^; Œ��; Œ��; Œ��g. The set of
NIL-formulas is defined as described in Sect. 7.3.

The NIL-models are the structures .U;�;�; �;m/ satisfying the conditions of the
definition of models from Sect. 7.3 and conditions (I1), (I2), (I4), and (I6), for all
x; y; z 2 U .

The satisfaction of NIL-formulas by states in a model is defined as in Sect. 7.3,
in particular, for formulas built with modal operations we have:

For T 2 f�;�; �g,

M; s ˆ ŒT �' iff for all s0 2 U; .s; s0/ 2 T implies M; s0 ˆ ':

In [Dem00] the following theorem is proved:

Theorem 11.3.1.

1. The logic NIL is decidable;
2. NIL-satisfiability is PSPACE-complete.

Moreover, in [Vak87] the following is proved:

Theorem 11.3.2 (Informational representability of NIL). For every NIL-model
.U;�;�; �;m/, there is a total information system S such that the relations of
forward inclusion, backward inclusion, and similarity derived from S coincide with
�;�, and � , respectively.



11.4 Relational Formalization of Logics NIL and IL 225

The logic IL is intended to be a tool for reasoning about indiscernibility, similarity,
and forward inclusion, and about relationships between them. The set of relational
constants of IL is f�;�; �g. V is a countably infinite set including propositional
variables and the propositional constantD which is intuitively interpreted as a set of
deterministic objects of an information system. The set of propositional operations
is f:;_;^; Œ��; Œ��; Œ��g. The set of IL-formulas is defined as usual.

The IL-models are the structures of the form .U;�;�; �;D;m/ satisfying the
conditions of the definition of models from Sect. 7.3 and such that m.D/ D D

and the conditions (I2), (I3), (I5), and (I7), . . . , (I13) are satisfied. Satisfaction of
IL-formulas by states in a model is defined as in Sect. 7.3.

The following theorem can be found in [DO02].

Theorem 11.3.3.

1. The logic IL is decidable;
2. IL-satisfiability problem is PSPACE-hard.

11.4 Relational Formalization of Logics NIL and IL

Let L be a logic with semantics of plain frames. The language of relational log-
ics RLL appropriate for expressing L-formulas is RL.1; 10/-language with relational
constants representing the accessibility relations from L-models and with propo-
sitional constants of L which will be interpreted appropriately as relations (see
Sect. 7.4). For the sake of simplicity, we denote these relational constants with the
same symbols as in L. An RLL-structure is of the form .U; fT W T 2 RCRLL n
f1; 10gg; m/, where .U;m/ is an RL.1; 10/-model and T is a binary relation on U
such that m.T / D T , for every T 2 RCRLL n f1; 10g. An RLL-model is an RLL-
structure that satisfies all the constraints posed on the relational constants in the
L-models. The translation of modal formulas of information logics into relational
terms is defined as in Sect. 7.4.

More precisely, the language of the relational logic RLNIL appropriate for
a relational representation of logic NIL is RL.1; 10/-language with the set of
relational constants RCRLNIL D f�;�; �; 1; 10g. An RLNIL-structure is of the
form M D .U;�;�; �;m/, where .U;m/ is an RL.1; 10/-model and for every
T 2 f�;�; �g, T is a binary relation on U such that m.T / D T . An RLNIL-model
is an RLNIL-structure such that the relations �, �, and � satisfy the conditions (I1),
(12), (I4), and (I6).

The language of the relational logic RLIL appropriate for a relational repre-
sentation of logic IL is RL.1; 10/-language with RCRLIL D f�;�; �;D; 1; 10g.
An RLIL-structure is of the form M D .U;�;�; �;D;m/, where .U;m/ is an
RL.1; 10/-model and for every T 2 f�;�; �;Dg, T is a binary relation on U such
that m.T / D T . An RLIL-model is an RLIL-structure such that the relations �, �,
� , and D satisfy the conditions (I2), (I3), (I5), (I7), (I10), (12), and the following:

(I8’) If .y; z/ 2 D and .x; y/ 2�, then .x; z/ 2 D;
(I9’) If .x; z/ 2 D and .x; y/ 2 � , then .x; y/ 2�;



226 11 Dual Tableaux for Information Logics of Plain Frames

(I11’) If .x; z/; .y; z/ 2 D and .x; y/ 2 � , then .x; y/ 2�;
(I13’) If .x; z/ 62 D, then there is y 2 U such that .x; y/ 62 �.

Observe that according to the convention established in Sect. 7.4 constant D in
RLIL-logic represents a right ideal relation which is a counterpart to the constant
D of IL. Note also that in RLL-models we list explicitly all relations corresponding
to accessibility relations from L-models and we denote them with the same symbols
as the corresponding constants in the language.

The models of RLL such that 10 is interpreted as identity are referred to as stan-
dard RLL-models.

By Theorem 7.4.1, we get:

Theorem 11.4.1. Let L be a logic with semantics of plain frames. Then for every
L-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is L-valid;
2. x�.'/y is RLL-valid.

Dual tableaux for the logics NIL and IL in their relational formalizations are
constructed as follows. We add to RL.1; 10/-dual tableau the rules correspond-
ing to the constraints on relations that are assumed in the models of these logics.
In the following list the rule (rI#) corresponds to the condition (I#), for # 2
f1; 6; 7; 80; 90; 10; 110; 12; 130g:

For all object variables x and y,

(wref �)
x�x

x�z; x�x
z is any object variable

(rI1 �)
x � y

y � x; x � y (rI1 �)
x � y

y � x; x � y

(rI6)
x�y

z�t; x�y j z � x; x�y j t � y; x�y z; t are any object variables

(rI7)
x�y

z�y; x�y j z � x; x�y z is any object variable

(rI8’)
xDy

zDy; xDy j x � z; xDy
z is any object variable

(rI9’)
x � y

xDz; x � y j x�z; x � y z is any object variable

(rI10)
x � y

x � y; x � y (rI12)
x � y

x � y; x � y j y � x; x � y



11.4 Relational Formalization of Logics NIL and IL 227

(rI11’)
x � y

xDz; x � y j yDz; x � y j x�y; x � y z is any object variable

(rI13’)
xDy

x � z; xDy
z is a new object variable

The specific NIL-rules are (ref�), (tran�), (ref �), (sym �), which are the instances
of the corresponding rules presented in Sect. 6.6 (see also Sect. 7.4), and in addition
(rI1�), (rI1�), and (rI6).

The specific IL-rules are (ref �), (tran �), (wref �), (sym �), (ref �), (sym �),
(tran�), (rI7), (rI8’), (rI9’), (rI10), (rI11’), (rI12), and (rI13’).

As in RL-logic, an RLL-set is a finite set of RLL-formulas such that the first-
order disjunction of its members is true in all RLL-models. If K is a class of RLL-
structures, then the notion of a K-set is defined in a similar way. Correctness of a
rule is defined as in the logic RL (see Sects. 2.4 and 2.5).

Theorem 11.4.2 (Correspondence). Let L be an information logic satisfying some
of the conditions (I1), . . . , (I13) and let K be a class of RLL-structures M D
.U;Rel; m/, for Rel � f�;�; �;�g. Then:

1. A relation R 2 Rel is reflexive (resp. weakly reflexive, symmetric, transitive) if
and only if the rule (ref R) (resp. (wref R), (sym R), (tran R)) is K-correct;

2. Every RLL-structure of K satisfies the condition (I#) iff the rule (rI#) is K-correct,
where # 2 f1; 6; 7; 80; 90; 10; 110; 12; 130g.

Proof. 1. can be proved in a similar way as Theorem 6.6.1. By way of example, we
show 2. for the condition (I6).

Assume that every structure of K satisfies this condition. Then preservation of
validity from the upper set to the bottom sets is obvious. Let X be any finite set
of RLL-formulas. Assume X1 D X [ fz�t; x�yg, X2 D X [ fz � x; x�yg, and
X3 D X [ft � y; x�yg are K-sets. SupposeX [fx�yg is not a K-set, that is there
exist an RLL-structure M and a valuation v in M such that M; v 6ˆ x�y. Since
X1; X2; X3 are K-sets, the model M and the valuation v satisfy .v.z/; v.t// 2 � ,
.v.z/; v.x// 2�, and .v.t/; v.y// 2�. By the condition (I6), .v.x/; v.y// 2 � , a
contradiction.

Now, assume the rule (rI6) is K-correct. Let X
dfD fz��t; z�� x; t�� yg. Then

X [ fz�t; x�yg, X [fz � x; x�yg, andX [ft � y; x�yg are K-sets. Thus, by the
assumption, X [ fx�yg is a K-set. Therefore, for every RLL-structure M in K and
for every valuation v in M, if M; v ˆ z�t , M; v ˆ z � x, and M; v ˆ t � y, then
M; v ˆ x�y. ut
The above proposition implies that all the specific rules of RLL-dual tableau are
RLL-correct. Correctness of all the remaining rules can be proved as in RL.1; 10/-
dual tableau (see Sects. 2.5 and 2.7), thus we get:

Proposition 11.4.1.

1. The NIL-rules are RLNIL-correct;
2. The IL-rules are RLIL-correct.



228 11 Dual Tableaux for Information Logics of Plain Frames

It is known that conditions (I12) and (I13) are not expressible in the language of
logic IL, hence the completeness proof for its Hilbert-style axiomatization requires
a special technique referred to as copying (see [Vak89]). As it is shown above, in
the case of relational formalization the rules corresponding to (I12) and (I13) can be
explicitly given. They enable us to prove constraints (I12) and (I13), respectively,
directly from their representation in the language of RLIL.

The notions of an RLL-proof tree, a closed branch of such a tree, a closed
RLL-proof tree, and RLL-provability are defined as in Sect. 2.4. A branch b of an
RLL-proof tree is complete whenever it is closed or it satisfies the completion con-
dition of RL.1; 10/-dual tableau adjusted to the language of RLL and the completion
conditions corresponding to the rules that are specific for RLL.

The completion conditions determined by the rules (ref R) for R 2 f�; �;�g,
(sym R) for R 2 f�;�g, and (tran R) for R 2 f�;�g are the instances of the
completion conditions presented in Sect. 6.6.

For all object variables x and y,

Cpl(wref �) If x�x 2 b, then for every object variable z, x�z 2 b, obtained by an
application of the rule (wref �);

Cpl(rI1 �) If x � y 2 b, then y � x 2 b, obtained by an application of the rule
(rI1 �);

Cpl(rI1 �) If x � y 2 b, then y � x 2 b, obtained by an application of the rule
(rI1 �);

Cpl(rI6) If x�y 2 b, then for all object variables z and t , either z�t 2 b or z � x 2 b
or t � y 2 b, obtained by an application of the rule (rI6);

Cpl(rI7) If x�y 2 b, then for every object variable z, either z�y 2 b or z � x 2 b,
obtained by an application of the rule (rI7);

Cpl(rI8’) If xDy 2 b, then for every object variable z, either zDy 2 b or x � z 2 b,
obtained by an application of the rule (rI8’);

Cpl(rI9’) If x � y 2 b, then for every object variable z, either xDz 2 b or x�z 2 b,
obtained by an application of the rule (rI9’);

Cpl(rI10) If x � y 2 b, then x � y 2 b, obtained by an application of the rule
(rI10);

Cpl(rI11’) If x � y 2 b, then for every object variable z, either xDz 2 b, yDz 2 b
or x�y 2 b, obtained by an application of the rule (rI11’);

Cpl(rI12) If x � y 2 b, then either x � y 2 b or y � x 2 b, obtained by an
application of the rule (rI12);

Cpl(rI13) If xDy 2 b, then for some object variable z, x � z 2 b, obtained by an
application of the rule (rI13).

Let L be an information logic. The notions of a complete branch of an RLL-proof
tree, a complete RLL-proof tree, and an open branch of an RLL-proof tree are defined
as in RL-logic (see Sect. 2.5). In order to prove completeness, we need to define a
branch model and to show the three theorems of Table 7.1.

All the rules listed above (see p. 226) guarantee that whenever a branch of an
RLL-proof tree contains two formulas one of which is built with an atomic term
and the other with its complement, then the branch can be closed. Thus, the closed
branch property can be proved as the Proposition 2.8.1.



11.4 Relational Formalization of Logics NIL and IL 229

Let b be an open branch of an RLL-proof tree. The branch structure has the form
Mb D .U b; .#b/#2f	;
;�;�;Dg; mb/, where U b D OV RLL , for every relational
constant R, mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, #b D mb.#/ for every
# 2 f�;�; �;�;Dg, and mb extends to all the compound relational terms as in
RL.1; 10/-models. To prove that branch structures satisfy all the conditions that are
assumed in the models of a given logic, we employ the corresponding completion
conditions.

Proposition 11.4.2 (Branch Model Property). Let L be an information logic that
satisfies some of the conditions among (I1), . . . , (I13). The branch structure Mb

determined by an open branch b of an RLL-proof tree is an RLL-model.

Proof. By way of example, we prove that the branch structure Mb D .U b;�b;�b;
�b ; mb/ determined by an open branch b of an RLIL-proof tree satisfies the condition
(I12). Assume .x; y/ 2�b and .y; x/ 2�b , that is x � y 62 b and y � x 62 b.
Suppose .x; y/ 62�b . Then x � y 2 b. By the completion condition Cpl(rI12),
either x � y 2 b or y � x 2 b, a contradiction. ut

Since the branch models are defined in a standard way, that is for any relational
constantR,mb.R/ is defined as in the completeness proof of RL.1; 10/-dual tableau
(see Sects. 2.5 and 2.7), the satisfaction in branch model property can be proved as
in RL.1; 10/-logic. Thus, we get:

Theorem 11.4.3 (Soundness and Completeness of RLNIL and RLIL).

1. RLNIL-dual tableau is sound and complete;
2. RLIL-dual tableau is sound and complete.

Finally, by the above theorem and Theorem 11.4.1, we obtain:

Theorem 11.4.4 (Relational Soundness and Completeness of NIL and IL). Let
L 2 fNIL; ILg. Then for every L-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is L-valid;
2. x�.'/y is RLL-provable.

Example. Let us consider the NIL-formula ' and IL-formula  :

' D p ! Œ��h�ip;
 D Œ��p ! Œ��p:

The formula ' (resp.  ) is true in a modal frame .U;�;�/ (resp. .U;�;�/)
provided that ��1�� (resp.���).



230 11 Dual Tableaux for Information Logics of Plain Frames

For the sake of simplicity, let us denote �.p/ by P . According to the
translation presented in Sect. 7.4 (see p. 147), the relational representations of these
formulas are:

�.'/ D �P [ �.� I�.� IP//;
�. / D ��.� I�P/ [ �.� I�P/:

Figure 11.1 presents an RLNIL-proof of the formula x�.'/y which shows NIL-
validity of ', and Fig. 11.2 presents an RLIL-proof of the formula x�. /y that shows
IL-validity of  .

As in standard modal logics, the relational logic RL.1; 10/ can be used for verifi-
cation of entailment, model checking in finite models, and verification of satisfaction
of a given formula by some objects in a finite model (see Sects. 7.6, 7.7, and 7.8).

Let L be a logic with semantics of plain frames. In order to verify entailment
we apply the method presented in Sect. 2.11, that is, first, we translate L-formulas

x.�P [�.	 I�.
 IP///y

�
.[/

x�Py; x�.	 I�.
 IP//y

�
.�I / with a new z and .�/

x�Py; x� 	 z; z.
 IP/y
����

			
.I / with x

x� 	 z; z 
 x; : : :

�
(rI1 �)

x� 	 z; x 	 z; : : :
closed

x�Py; xPy; : : :
closed

Fig. 11.1 A relational proof of p! Œ	�h
ip

x��.	 I�P/[�.� I�P/y

�
.[/ and .�/

x.	 I�P/y; x�.� I�P/y

�
.�I / with a new z and .�/

x.	 I�P/y; x� � z; zPy
����

			
.I / with z

x 	 z; x�� z; : : :

�
(rI10)

x � z; x� � z; : : :
closed

z�Py; zPy; : : :
closed

Fig. 11.2 A relational proof of Œ	�p! Œ��p



11.5 Information Logic CI and Its Relational Formalization 231

xŒ.1 I�P I 1/[�.
 I��.� I��.	 I�P///�y

�
.[/

x.1 I�P I 1/y; x�.
 I��.� I��.	 I�P///y

�
.�I / � 3 with new variables z; v; t and .�/

x.1 I�P I 1/y; x�
z; z��v; v�	 t; tPy
����

			

x1t; : : :

closed

y1y; : : :

closed�

.I / twice with t; y

t�Py; x�
z; z��v; v�	 t; tPy; : : :
closed

Fig. 11.3 An RLNIL-proof showing that p entails Œ
�Œ��Œ	�p

in question into terms of the relational logic RLL, and then we use the method of
verification of entailment for RLL-logic as it is shown in Sect. 2.11.

For example, in NIL-logic the formula p entails Œ��Œ��Œ��p. For the sake of
simplicity, denote �.p/ by P . Then:

�.Œ��Œ��Œ��p/ D �.� I��.� I ��.� I�P///:

We need to show that P D 1 implies�.� I��.� I ��.� I�P/// D 1. According
to Proposition 2.2.1 (7.), it suffices to show that the formula:

xŒ.1 I �P I 1/[�.� I��.� I ��.� I�P///�y

is RLNIL-provable. Figure 11.3 presents an RLNIL-proof of this formula.

11.5 Information Logic CI and Its Relational Formalization

The logic presented in this section and its dual tableau originated in [DO00a]. The
language of the logic CI of complementarity and incomplementarity is a multimodal
language with symbols from the following pairwise disjoint sets:

� V – a countable infinite set of propositional variables;
� fR;Sg – a set of relational constants;
� f:;_;^; ŒR�; ŒŒS��g – a set of propositional operations.

A CI-frame is a structure .U;R; S/ such that:

� U is a non-empty set;
� R is a symmetric and 3-transitive relation on U ;



232 11 Dual Tableaux for Information Logics of Plain Frames

� S is a reflexive relation on U ;
� R [ S D U � U and R \ S D ;.

Models based on CI-frames are defined as usual (see Sect. 7.3).
Satisfaction of a formula is defined as in Sect. 7.3, that is the clauses for formulas

with modal operations are:

� M; s ˆ ŒR�' iff for every s0 2 U , if .s; s0/ 2 R, then M; s0 ˆ ';
� M; s ˆ ŒŒS��' iff for every s0 2 U , if M; s0 ˆ ', then .s; s0/ 2 S .

Observe that although neither irreflexivity of R nor symmetry of S are assumed
explicitly, irreflexivity of R is guaranteed by reflexivity of S , and symmetry of S is
guaranteed by symmetry ofR, sinceR D �S . Irreflexivity ofR is not expressible in
a modal language with a single accessibility relation. The relational dual tableau for
CI will enable us to prove 10 � �R. The proof is presented in Fig. 11.5. Symmetry
of S is expressible with formulap ! ŒŒS�� ŒŒS��p. Its proof is presented in Fig. 11.6.

The language of the relational logic corresponding to CI is RL.1; 10/-language
endowed with the relational constants R and S . RLCI-models are structures of the
form M D .U;R; S;m/, where .U;m/ is an RL.1; 10/-model and R and S are
binary relations on U that provide the interpretation of the corresponding relational
constants and satisfy the above conditions assumed in CI-frames.

The translation of CI-formulas into relational terms of the logic RLCI is defined
as in Sect. 7.4, that is the translation of formulas with modal operations is:

� �.ŒR�'/
dfD �.R I ��.'//;

� �.ŒŒS��'/
dfD �.�S I �.'//.

By Theorem 7.4.1, we obtain:

Theorem 11.5.1. For every CI-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is CI-valid;
2. x�.'/y is RLCI-valid.

RLCI-dual tableau includes the rules and axiomatic sets of RL.1; 10/-dual tableau
adjusted to RLCI-language, rules (ref S ) and (sym R) which are the instances of
the rules presented in Sect. 6.6 and, in addition, it contains the specific rules and
axiomatic sets of the following forms:

For all object variables x; y; z; and t ,

(dis R;S )
xRy j xSy

(3-tran R)
xRy

xRz; xRy j zRt; xRy j tRy; xRy z; t are any object variables

The rule (dis R;S ) is a specialized cut rule. An alternative deterministic form of
such rules is discussed in Sect. 25.9.

Specific RLCI-axiomatic sets are those that include the subset fxRy; xSyg, for
any object variables x and y.



11.5 Information Logic CI and Its Relational Formalization 233

Proposition 11.5.1.

1. The RLCI-rules are RLCI-correct;
2. The RLCI-axiomatic sets are RLCI-sets.

Proof. The proof of correctness of the rules (ref S ), (symR), and (3-tranR) follows
the proof of Theorem 6.6.1. Now, we show correctness of the rule (disR;S ). Let X
be a finite set of RLCI-formulas. The preservation of validity from the upper set to
the bottom sets is obvious. Assume that X [ fxRyg and X [ fxSyg are RLCI-sets.
SupposeX is not RLCI-set. Then there exist an RLCI-model M D .U;R; S;m/ and
a valuation v in M such that for every ' 2 X , M; v 6ˆ '. Thus, by the assumption,
M; v ˆ xRy and M; v ˆ xSy, hence .v.x/; v.y// 2 R and .v.x/; v.y// 2 S .
Therefore, R \ S ¤ ;. However, in all RLCI-models, R and S are disjoint, a
contradiction.

Since in every RLCI-model M D .U;R; S;m/, R [ S D U � U , for every
valuation v in M, M; v ˆ xRy or M; v ˆ xSy, hence X [ fxRy; xSyg is an
RLCI-set, for every set X of RLCI-formulas. ut
An alternative representation of the constraint R [ S D U � U can be provided
by a rule in the RLCI-dual tableau. This issue is discussed in Sect. 25.9, see also
Sect. 25.6.

The completion conditions corresponding to the specific RLCI-rules (dis R;S ) and
(3-tran R) are:

For all object variables x; y; z; and t ,

Cpl(dis R;S ) Either xRy 2 b or xSy 2 b;
Cpl(3-tranR) If xRy 2 b, then for all object variables z and t , either xRz 2 b or

zRt 2 b or tRy 2 b.

It can be proved that the rules specific for RLCI-dual tableau do not violate the closed
branch property.

The branch structure Mb D .U b; Rb; Sb; mb/ determined by an open branch of
an RLCI-proof tree is defined as usual, that is U b D OV RLCI , m

b.T / D f.x; y/ 2
U b � U b W xTy 62 bg, T b D mb.T /, for T 2 fR;Sg, and mb extends to all the
compound relational terms as in RL.1; 10/-models.

Proposition 11.5.2 (Branch Model Property). Let b be an open branch of an
RLCI-proof tree. Then the branch structure Mb D .U b; Rb; Sb; mb/ is an RLCI-
model.

Proof. We need to show that Rb is a symmetric and 3-transitive relation on U b , Sb

is a reflexive relation on U b , andRb[Sb D U b�U b andRb\Sb D ;. Symmetry
of Rb and reflexivity of Sb can be proved in a similar way as those properties
of relation mb.10/ in the completeness proof of RL.1; 10/-logic in Sect. 2.7. The
proof of 3-transitivity ofRb is analogous to the proof of transitivity ofmb.10/. Now,
suppose that Rb [ Sb ¤ U b � U b , that is there are object variables x and y such
that .x; y/ 62 Rb and .x; y/ 62 Sb . Then xRy 2 b and xSy 2 b. Since fxRy; xSyg



234 11 Dual Tableaux for Information Logics of Plain Frames

is an axiomatic set and all the rules preserve formulas built with atomic relational
terms, b is closed, a contradiction. Suppose that Rb \ Sb ¤ ;, that is there are
object variables x and y such that .x; y/ 2 Rb and .x; y/ 2 Sb . Then xRy 62 b and
xSy 62 b. By the completion condition Cpl(dis R;S ), for all object variables x and
y, either xRy 2 b or xSy 2 b, a contradiction. ut
Since the branch model is defined in a standard way, the satisfaction in branch model
property can be proved as in RL.1; 10/-logic. Therefore, we obtain:

Theorem 11.5.2 (Soundness and Completeness of RLCI). For every RLCI-
formula ', the following conditions are equivalent:

1. ' is RLCI-valid;
2. ' is true in all standard RLCI-models;
3. ' is RLCI-provable.

By the above theorem and Theorem 11.5.1, we get:

Theorem 11.5.3 (Relational Soundness and Completeness of CI). For every
CI-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is CI-valid;
2. x�.'/y is RLCI-provable.

Example. Consider a CI-formula:

' D ŒŒS��:p ! ŒR�p:

This formula is true in a CI-frame .U;R; S/ because R � �S . For the sake of sim-
plicity, let us denote �.p/ by P . Then the relational translation of the formula ' is:

�.'/ D .�S I �P/ [ �.R I �P/:

Figure 11.4 presents an RLCI-proof of the formula x.�S I �P/ [ �.R I �P//y
which shows CI-validity of '.

Figure 11.5 presents an RLCI-proof of relational formula x.�10 [ �R/y which
according to Proposition 2.2.1(1.) reflects irreflexivity of relation R.

Now, we consider formula

' D p ! ŒŒS�� ŒŒS��p

which reflects symmetry of relation S . Its translation into a relational term is:

�.'/ D �P [ �.�S I �.�S IP//:

Figure 11.6 depicts an RLCI-proof of x�.'/y.



11.5 Information Logic CI and Its Relational Formalization 235

x.�S I�P/[�.R I�P//y

�
.[/

x.�S I�P/y; x�.R I�P//y

�
.�I / with a new z and .�/

x.�S I�P/y; x�Rz; zPy
����

			
.I / with z

x�Sz; x�Rz; : : :
���� (dis R;S) with x; z

			

x�Rz; xRz; : : : x�Sz; xSz; : : :

closed closed

z�Py; zPy; : : :
closed

Fig. 11.4 A relational proof of �S�:p! ŒR�p

x.�10 [�R/y

�
.[/

x�10y; x�Ry
����

			
(dis R;S) with x;y

xRy; x�Ry; : : :
closed

xSy; x�10y; : : :

�
(ref S)

x10y; x�10y; : : :

closed

Fig. 11.5 A relational proof of irreflexivity of relation R

x.�P [�.�S I�.�S IP///y

�
.[/

x�Py; x�.�S I�.�S IP//y

�
.�I / with a new z and .�/ � 2

x�Py; xSz; x.�S IP/y
����

			
.I / with x

z�Sx; xSz; : : :

�
��

�
��

(disR;S)
with z; x

zRx; xSz; : : :

�
(symR)

xRz; xSz; : : :
closed

zSx; z�Sx; : : :
closed

xPy; x�Py; : : :
closed

Fig. 11.6 A relational proof of symmetry of relation S



Chapter 12
Dual Tableaux for Information Logics
of Relative Frames

12.1 Introduction

In the preceding chapter in Sect. 11.3 we demonstrated that a specification of
information relations which would be meaningful for information systems with in-
complete information requires an explicit reference to a set of attributes with respect
to which the relations are defined. In order to incorporate in a logical formalism the
sets of attributes which determine the relations, the notions of a relative relation
and a relative frame i.e., the frame whose relations are relative, were introduced in
[Orł88], see also [DO02]. More precisely, a relative frame consists of a family, or
several families of relations such that the relations within the family are indexed
with subsets of a set of parameters, intuitively understood as attributes of an infor-
mation system. Apart from the ordinary properties of relations such as, for example,
symmetry or transitivity, relative relations may have some properties which refer to
the family of relations as a whole. These properties are collectively named global
properties of relations. For example, one of the typical global property says that a
relation indexed with the union of two sets equals intersection of relations indexed
with the components of the union. Such an assumption is relevant, among others,
when the family consists of equivalence relations. Assuming that the equivalence
of objects is established whenever they have the same features corresponding to the
set of attributes declared in the definition of this relation, then clearly taking more
attributes into account we get a finer granulation of the set of objects than in the case
of any smaller number of attributes.

In a full generality, relative frames have families of relations indexed by elements
from any level of the powerset hierarchy of a set of parameters. The relative frames
of that kind are a convenient tool for specification of hierarchical information such
as, for example, a subject classification system. A discussion of these applications
of relative frames can be found in [DO02], Chaps. 7–9. Relative frames and their
logics are studied, among others, in [DS02b, Bal02, DO07].

In this chapter we confine ourselves to a simple case of indices which are finite
subsets of parameters. We present relative versions of the frames considered in the
preceding chapter and information logics based on those frames. We construct dual
tableaux for these logics focusing on the treatment of global conditions assumed in

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 12,
c� Springer Science+Business Media B.V. 2011

237



238 12 Dual Tableaux for Information Logics of Relative Frames

the models of the logics. The method of construction of those dual tableaux can be
extended to the theories of relative frames determined by a powerset hierarchy of
sets of attributes.

12.2 Relative Frames

Let Par be a non-empty set of parameters intuitively interpreted as a set of attributes
of an information system. A relative frame is a structure:

F D .U; .R1P /P2Pfin.Par/; : : : ; .R
n
P /P2Pfin.Par//;

where relations from .RiP /P2Pfin.Par/, i 2 f1; : : : ; ng, are indexed with finite subsets
of a non-empty set Par.

Typically, these relations satisfy either of the following postulates:
For all P;Q 2 Pfin.Par/,

(S1) RP[Q D RP \RQ;
(W1) RP[Q D RP [ RQ.

These conditions are referred to as global conditions, because they refer to a family
of relations as a whole. The properties of relations listed in Proposition 11.2.1 will
be called local conditions.

The characterization of a family of relative relations often requires special
postulates for the relations indexed with the empty set. The typical condition for
the relation R; is either of the following:

(S2) R; D U 2;
(W2) R; D ;.

Conditions (S1) and (S2) reflect the behaviour of strong relations derived from an
information system, and conditions (W1) and (W2) reflect the behaviour of weak
relations.

Typically, information logics of relative frames are based on the following classes
of frames:

� FS – the class of relative frames in which the families of relative relations satisfy
conditions (S1) and (S2). The members of FS are called FS-frames or relative
frames with strong relations;

� FW – the class of relative frames in which the families of relative relations satisfy
conditions (W1) and (W2). The members of FW are called FW-frames or relative
frames with weak relations.

Frames with indistinguishability and distinguishability relations listed below
provide examples of members of the FS and FW families.



12.2 Relative Frames 239

Frames with Indistinguishability Relations:

� FS�IND is the class of FS-frames .U; .RP /P�Par/ such that for every p 2 Par,
Rfpg is an equivalence relation. Consequently, for every P � Par, RP is an
equivalence relation, since reflexivity, symmetry, and transitivity are preserved
under intersection. The members of FS�IND are called strong indiscernibility
frames;

� FS�SIM is the class of FS-frames .U; .RP /P�Par/ such that for every p 2 Par,
Rfpg is weakly reflexive and symmetric. Consequently, for every P � Par, RP
is weakly reflexive and symmetric. The members of FS�SIM are called strong
similarity frames;

� FS�ICOM is the class of FS-frames .U; .RP /P�Par/ such that for every p 2
Par, Rfpg is reflexive, symmetric, and co-3-transitive. Consequently, for every
P � Par, RP is reflexive and symmetric. The property of co-3-transitivity is
not preserved under intersection. The members of FS�ICOM are called strong
incomplementarity frames;

� FS�IN is the class of FS-frames .U; .RP /P�Par; .QP /P�Par/ with two families
of relative relations such that for every p 2 Par, Rfpg and Qfpg are reflexive and
transitive, and Rfpg D Q�1fpg. Consequently, for every P � Par, RP and QP

are reflexive and transitive, and RP D Q�1P . The members of FS�IN are called
strong inclusion frames;

� FW�IND is the class of FW-frames .U; .RP /P�Par/ such that for every p 2 Par,
Rfpg is an equivalence relation. Consequently, for every non-empty P � Par,
RP is reflexive and symmetric. Transitivity is not preserved under union. The
members of FW�IND are called weak indiscernibility frames;

� FW�SIM is the class of FW-frames .U; .RP /P�Par/ such that for every p 2 Par,
Rfpg is weakly reflexive and symmetric. Consequently, for every P � Par, RP
is weakly reflexive and symmetric. The members of FW�SIM are called weak
similarity frames;

� FW�ICOM is the class of FW-frames .U; .RP /P�Par/ such that for every p 2
Par, Rfpg is reflexive, symmetric, and co-3-transitive. Consequently, for every
non-empty P � Par, RP is reflexive, symmetric, and co-3-transitive, since all
these properties are preserved under union. The members of FW�ICOM are
called weak incomplementarity frames;

� FW�IN is the class of FW-frames .U; .RP /P�Par; .QP /P�Par/with two families
of relative relations such that for every p 2 Par, Rfpg and Qfpg are reflexive and
transitive, and Rfpg D Q�1fpg. Consequently, for every P � Par, RP D Q�1P
and if P ¤ ;, then RP andQP are reflexive. Transitivity is not preserved under
union. The members of FW�IN are called weak inclusion frames.

Frames with Distinguishability Relations:

� FS�DIV is the class of FS-frames .U; .RP /P�Par/ such that for every p 2
Par, Rfpg is irreflexive, symmetric, and co-transitive. Consequently, for every



240 12 Dual Tableaux for Information Logics of Relative Frames

P � Par, RP is symmetric, and if P ¤ ;, then RP is irreflexive. Co-transitivity
is not preserved under intersection. The members of FS�DIV are called strong
diversity frames;

� FS�RORT is the class of FS-frames .U; .RP /P�Par/ such that for every p 2
Par, Rfpg is co-weakly reflexive and symmetric. Consequently, for every P �
Par, RP is co-weakly reflexive and symmetric. The members of FS�RORT are
called strong right orthogonality frames;

� FS�COM is the class of FS-frames .U; .RP /P�Par/ such that for every p 2 Par,
Rfpg is irreflexive, symmetric, and 3-transitive. Consequently, for everyP � Par,
RP is symmetric and 3-transitive, and if P ¤ ;, then RP is irreflexive. The
members of FS�COM are called strong complementarity frames;

� FW�DIV is the class of FW-frames .U; .RP /P�Par/ such that for every p 2 Par,
Rfpg is irreflexive, symmetric, and co-transitive. Consequently, for every P �
Par, RP is irreflexive, symmetric, and co-transitive. Co-transitivity is preserved
under union. The members of FW�DIV are called weak diversity frames;

� FW�RORT is the class of FW-frames .U; .RP /P�Par/ such that for every p 2
Par, Rfpg is co-weakly reflexive and symmetric. Consequently, for every P �
Par, RP is co-weakly reflexive and symmetric. The members of FW�RORT are
called weak right orthogonality frames;

� FW�COM is the class of FW-frames .U; .RP /P�Par/ such that for every p 2
Par,Rfpg is irreflexive, symmetric, and 3-transitive. Consequently, for everyP �
Par, RP is irreflexive and symmetric. 3-transitivity is not preserved under union.
The members of FW�COM are called weak complementarity frames.

The languages of information logics with semantics of relative frames, referred to
as Rare-logics, are the multimodal languages with modal operations determined by
relations indexed with finite subsets of a set Par.

12.3 Relational Formalizations of the Logics of Strong
and Weak Relative Frames

As a first case study we present logics LFS and LFW based on FS-frames and FW-
frames, respectively. The choice of modal operations usually depends on the global
conditions assumed in the models. Typically, logic LFS has the sufficiency oper-
ations in its language and logic LFW the necessity operations determined by the
relational constants. We recall that satisfaction of a formula built with the suffi-
ciency operation, ŒŒT ��', by a state s in a model M is defined as:

� M; s ˆ ŒŒT ��' iff for every s0 2 U , if M; s0 ˆ ', then .s; s0/ 2 T .

Let L 2 fLFS;LFWg. An L-model is a structure M D .U; .RP /P2Pfin(Par); m/ such
that U is a non-empty set, RP are binary relations on U indexed with finite subsets
of a set Par, and m is a meaning function such that:



12.3 Relational Formalizations of the Logics of Strong and Weak Relative Frames 241

� m.p/ � U , for any propositional variable p;

� R; D
�
U � U; if L D LFS;

;; if L D LFWI
� Rfpg � U � U , for every p 2 Par;

� for all P;Q 2 Pfin(Par):

RP[Q D
�
RP \ RQ; if L D LFS;

RP [ RQ; if L D LFW.

If a Rare-logic L is based on any of the subclasses of FS or FW of frames listed
in Sect. 12.2, then the appropriate local conditions should be assumed in the corre-
sponding L-models.

The relational language corresponding to an L-language is an RL.1; 10/-language
endowed with the set fRP gP2Pfin.Par/ of relational constants. The set of relational
terms and formulas are defined as in RL.1; 10/-logic (see Sect. 2.3).

The RLL-models are structures of the form:

M D .U; .RP /P2Pfin.Par/; m/;

where .U;m/ is an RL.1; 10/-model and RP D m.RP / are binary relations on U
satisfying the same conditions as in L-models. As usual, we denote relations in the
language and in the models with the same symbols.

The translation of L-formulas into relational terms of the logic RLL starts, as
usual, with a one-to-one assignment of relational variables to the propositional
variables and then the translation � is defined inductively as in Sect. 7.4. As in clas-
sical modal logics, we can prove that for L 2 fLFS;LFWg and for every L-formula,
L-validity is equivalent to RLL-validity (see Theorem 7.4.1):

Theorem 12.3.1. For every L-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is L-valid;
2. x�.'/y is RLL-valid.

Dual tableau systems for Rare-logics are constructed in a similar way as those for
information logics of plain frames. Namely, to the RL.1; 10/-dual tableau we add
the rules corresponding to the global conditions assumed in a given logic. The rules
corresponding to conditions (S1) and (W1) have the following forms:

For all object variables x and y,

(rS1�)
xRP[Qy

xRP y j xRQy (rS1�)
x�RP[Qy

x�RPy; x�RQy

(rW1�)
xRP[Qy

xRP y; xRQy
(rW1�)

x�RP[Qy
x�RPy j x�RQy



242 12 Dual Tableaux for Information Logics of Relative Frames

The rule corresponding to the condition (S2) has the following form:

(rS2)
x�R;y x; y are any object variables

The rule corresponding to the condition (W2) is:

(rW2)
xR;y

x; y are any object variables

If some of the local conditions are assumed in L-models, then we add the rules
reflecting them. The examples of the rules corresponding to the local conditions can
be found in Sect. 11.3.

The specific rules of relational proof systems for the logics LFS and LFW are:

� The specific RLLFS -rules: (rS2), (rS1�), and (rS1�/;
� The specific RLLFW -rules: (rW2), (rW1�), and (rW1�/;
The notions of an RLLFS -set, an RLLFW -set, and correctness of a rule are defined as
in Sect. 2.4. Then, the following holds:

Proposition 12.3.1.

1. The specific RLLFS -rules are RLLFS -correct;
2. The specific RLLFW-rules are RLLFW -correct.

Proof. By way of example, we prove RLLFS -correctness of the rule (rS2). Let X be
any set of RLLFS -formulas. Assume X [ fx�R;yg is an RLLFS -set. Suppose that X
is not an RLLFS -set, that is there exist an RLLFS -model M and a valuation v in M
such that for every ' 2 X , M; v 6ˆ '. By the assumption, M; v ˆ x�R;y, thus
.v.x/; v.y// 62 R;. However, in all RLLFS -models, R; D U � U , a contradiction.
The preservation of validity from the upper set to the bottom set is obvious. ut
Let L 2 fLFS;LFWg. The notions of an RLL-proof tree, a closed branch of such a
tree, a closed RLL-proof tree, and RLL-provability are defined as in Sect. 2.4.

A branch b of an RLL-proof tree is complete whenever it is closed or it satisfies
the completion conditions of RL.1; 10/-dual tableau adjusted to the language of RLL

and the following completion conditions corresponding to the rules (rS1�), (rS1�/,
(rW1�), (rW1�/, (rS2), and (rW2):

For all object variables x and y,

Cpl(rS1�) If xRP[Qy 2 b, then either xRPy 2 b or xRQy 2 b, obtained by an
application of the rule (rS1�);

Cpl(rS1�) If x�RP[Qy 2 b, then both x�RPy 2 b and x�RQy 2 b, obtained
by an application of the rule (rS1�);

Cpl(rW1�) If xRP[Qy 2 b, then both xRP y 2 b and xRQy 2 b, obtained by an
application of the rule (rW1�);

Cpl(rW1�) If x�RP[Qy 2 b, then either x�RPy 2 b or x�RQy 2 b, obtained
by an application of the rule (rW1�);



12.3 Relational Formalizations of the Logics of Strong and Weak Relative Frames 243

Cpl(rS2) For all objects variables x and y, x�R;y 2 b, obtained by an application
of the rule (rS2);

Cpl(rW2) For all objects variables x and y, xR;y 2 b, obtained by an application
of the rule (rW2).

The notions of a complete RLL-proof tree and an open branch of an RLL-proof tree
are defined as in RL-logic (see Sect. 2.5).

The following form of the closed branch property holds:

Fact 12.3.1 (Closed Branch Property). For every branch b of an RLL-proof tree,
if xRfpgy 2 b and x�Rfpgy 2 b, for p 2 Par, or xR;y 2 b and x�R;y 2 b, then
branch b is closed.

Although, it does not concern relational constants indexed with P [Q, for P;Q �
Par, it is sufficient for proving satisfaction in branch model property (Proposition
12.3.3). The reason being that the rules for these constants reflect their corresponding
definitions in logic L.

Let L 2 fLFS;LFWg. The branch structure determined by an open branch of an
RLL-proof tree is a structure Mb D .U b; .RbP /P2Pfin.Par/; m

b/ satisfying the fol-
lowing conditions:

� U b D OV RLL ;
� mb.S/ D f.x; y/ 2 U b � U b W xSy 62 bg, for every S 2 RV RLL [ f1; 10g;
� Rb; D mb.R;/ D f.x; y/ 2 U b � U b W xR;y 62 bg;
� Rbfpg D mb.Rfpg/ D f.x; y/ 2 U b � U b W xRfpgy 62 bg, for any p 2 Par;
� For all P;Q 2 Pfin(Par):

RbP[Q D mb.RP[Q/ D
(
RbP \ RbQ; if L D LFS

RbP [ RbQ; if L D LFW;

� mb extends to all the compound relational terms as in RL.1; 10/-models.

As usual, valuation vb in Mb is the identity valuation.

Proposition 12.3.2 (Branch Model Property). Let L 2 fLFS;LFWg and let b be a
complete branch of an RLL-proof tree. Then Mb is an RLL-model.

Proof. By way of example, we show that if L-models satisfy the condition (Si) (resp.
(Wi)), i 2 f1; 2g, then the branch model satisfies this condition as well. If conditions
(S1) or (W1) are assumed, then these properties are satisfied due to the definition of
the branch model. Assume that L-models satisfy the condition (S2). By the comple-
tion condition Cpl(rS2), for all object variables x; y 2 U b , x�R;y 2 b. Therefore,
for all object variables x; y 2 U b , xR;y 62 b, thus .x; y/ 2 Rb;. Hence, the branch
model satisfies the condition (S2). The proof for condition (W2) is similar. All the
remaining conditions of RLL-models are clearly satisfied by Mb . ut
If any local condition is assumed in RLL-models, then we also need to show that
Mb satisfies them.



244 12 Dual Tableaux for Information Logics of Relative Frames

Next, we show:

Proposition 12.3.3 (Satisfaction in Branch Model Property). Let L 2 fLFS;LFWg
and let Mb be the branch model determined by an open branch b of an RLL-proof
tree. Then, for every RLL-formula ', if Mb; vb ˆ ', then ' 62 b.

Proof. By way of example, consider logic LFS. Assume that the branch model
satisfies a formula xRP[Qy. By the definition of the branch model, .x; y/ 2 RbP
and .x; y/ 2 RbQ. Suppose xRP[Qy 2 b. Then, by the completion condition
Cpl(rS1�), either xRPy 2 b or xRQy 2 b. By the induction hypothesis, either
.x; y/ 62 RbP or .x; y/ 62 RbQ, a contradiction. ut
Thus, we obtain:

Theorem 12.3.2 (Soundness and Completeness of RLLFS and RLLFW ). Let
L 2 fLFS;LFWg and let ' be an RLL-formula. Then, the following conditions are
equivalent:

1. ' is RLL-valid;
2. ' is true in all standard RLL-models;
3. ' is RLL-provable.

Recall that an RLL model is standard whenever 10 is interpreted as the identity. By
the above theorem and Theorem 12.3.1, we get:

Theorem 12.3.3 (Relational Soundness and Completeness of Logics LFS and
LFW). Let L 2 fLFS;LFWg and let ' be an L-formula. Then for all object variables
x and y, the following conditions are equivalent:

1. ' is L-valid;
2. x�.'/y is RLL-provable.

Example. Consider an LFS-formula ' and an LFW-formula  :

' D hhRP[Qiip ! .hhRP iip _ hhRQiip/;
 D ŒR;�.p ^ :p/:

The translations of these formulas into relational terms are:

�.'/ D �.�RP[Q I �T / [ .�RP I �T / [ .�RQ I �T /;
�. / D �.R; I �.T \�T //;

where for simplicity of notation �.p/ D T . LFS-validity of ' is equivalent to RLLFS -
provability of the formula x�.'/y. Its RLLFS -proof is presented in Fig. 12.1. LFW-
validity of  is equivalent to RLLFW -provability of the formula x�. /y. Its proof is
presented in Fig. 12.2.



12.4 Relational Formalization of the Logic Rare-NIL 245

xŒ�.�RP[Q I�T /[ .�RP I�T /[ .�RQ I�T /�y

�
.[/ twice

x�.�RP[Q I�T /y; x.�RP I�T /y; x.�RQ I�T /y

�
.�I / with a new variable z and .�/

xRP[Qz; zTy; x.�RP I�T /y; x.�RQ I�T /y
����

			
(rS1�)

xRP z; zTy; x.�RP I�T /y; : : :
����

			
.I / with z

xRP z; x�RP z; : : :
closed

zTy; z�Ty; : : :
closed

xRQz; zTy; x.�RQ I�T /y; : : :
����

			
.I / with z

xRQz; x�RQz; : : :
closed

zTy; z�Ty; : : :
closed

Fig. 12.1 A relational proof of LFS-formula hhRP[Qiip! .hhRP iip _ hhRQiip/

x�.R; I�.T \�T //y

�
.�I / with a new variable z and .�/

x�R;z; z.T \�Ty/

�
(rW2) with x and z

x�R;z; xR;z; : : :
closed

Fig. 12.2 A relational proof of LFW-formula ŒR;�.p ^:p/

12.4 Relational Formalization of the Logic Rare-NIL

The second case study of Rare-logics is a relative version of the logic NIL, Rare-NIL.
Let Par be a non-empty set of parameters. The vocabulary of the language of Rare-
NIL consists of symbols from the following pairwise disjoint sets:

� V – a countable infinite set of propositional variables;
� f�P gP2Pfin.Par/, f�P gP2Pfin.Par/, f�P gP2Pfin.Par/ – three families of relational

constants;
� f:;_;^g [ fŒT � W T is a relational constantg – a set of propositional operations.

A Rare-NIL-model is a structure

M D .U; .�P /P2Pfin.Par/; .�P /P2Pfin.Par/; .�P /P2Pfin.Par/; m/;



246 12 Dual Tableaux for Information Logics of Relative Frames

such that .U; .#P /P2Pfin.Par/; m/ is an LFS-model, for every # 2 f�;�; �g, and the
following conditions are satisfied:

For every P 2 Pfin.Par/ and for all x; y; z 2 U ,

� �PD .�P /�1;
� �P is reflexive and transitive;
� �P is reflexive and symmetric;
� if .x; y/ 2 �P and .y; z/ 2�P , then .x; z/ 2 �P .

Observe that the relations in Rare-NIL-models are constrained in two ways. The
three families of relations satisfy the global conditions (S1) and (S2) and the local
conditions analogous to the conditions in NIL-models.

In [DO07] it is shown that Rare-NIL-satisfiability (possibly) differs from NIL-
satisfiability, namely we have:

Theorem 12.4.1.

1. Satisfiability problem of Rare-NIL is decidable;
2. Rare-NIL satisfiability is EXPTIME-complete.

The relational language corresponding to Rare-NIL-language is the RL.1; 10/-
language endowed with the set frP gP2Pfin.Par/, r 2 f�;�; �g of relational con-
stants. RLRare-NIL-models are structures of the form

M D .U; .�P /P2Pfin.Par/; .�P /P2Pfin.Par/; .�P /P2Pfin.Par/; m/;

such that .U;m/ is an RL.1; 10/-model, rP D m.rP /, for r 2 f�;�; �g, are binary
relations on U indexed with finite subsets of the set Par, and moreover, relations rP
satisfy all the constraints assumed in Rare-NIL-models.

A dual tableau for Rare-NIL is constructed as in the case of the previous logics.
Namely, to the RL.1; 10/-dual tableau we add the rules corresponding to the global
and local conditions assumed in this logic. More precisely, we add the following
rules:

For r 2 f�;�; �g, and for all P;Q 2 Pfin(Par), the rules of the forms (rS1�),
(rS1�), and (rS2) for the relational constants rP[Q and r;, respectively;

For r 2 f�; �g, and for every P 2 Pfin(Par), the rules (rI1�), (rI1�), (ref R),
(tran R) for the relational constants �P and �P , and (ref R), (sym R), (rI6) for
the relational constants �P ; these rules can be found in Sect. 11.4.

By Theorem 11.4.2 and Proposition 12.3.1, it can be easily proved that all the
specific RLRare-NIL-rules are RLRare-NIL-correct. Completeness can be proved in a
similar way to completeness of RLNIL-dual tableau and RLLFS -dual tableau. Thus,
we obtain:



12.5 Relational Formalization of the Logic Rare-CI 247

Theorem 12.4.2 (Soundness and Completeness of RLRare-NIL). For every
RLRare-NIL-formula ', the following conditions are equivalent:

1. ' is RLRare-NIL-valid;
2. ' is true in all standard RLRare-NIL-models;
3. ' is RLRare-NIL-provable.

By the above theorem and Theorems 11.4.1 and 12.3.1, we have:

Theorem 12.4.3 (Relational Soundness and Completeness of Rare-NIL). For
every Rare-NIL-formula ' and for all object variables x and y, the following
conditions are equivalent:

1. ' is Rare-NIL-valid;
2. x�.'/y is RLRare-NIL-provable.

12.5 Relational Formalization of the Logic Rare-CI

Now, we consider a relational formalization of the logic of relative complementar-
ity and incomplementarity, Rare-CI. The language of this logic is the multimodal
language with the symbols from the following pairwise disjoint sets:

� V – a countable infinite set of propositional variables;
� fRP W P 2 Pfin(Par)g [ fSP W P 2 Pfin(Par)g – the set of relational constants;
� f:;_;^g [ fŒRP �; ŒŒSP �� W P 2 Pfin(Par)g – the set of propositional operations.

A Rare-CI-model is a structure:

M D .U; .RP /P2Pfin.Par/; .SP /P2Pfin.Par/; m/;

such that U is a non-empty set, RP and SP are binary relations on U indexed with
finite subsets of Par, m is a meaning function such that for every P 2 Pfin.Par/ the
following conditions are satisfied:

� m.p/ � U , for every propositional variable p;
� relations RP satisfy the conditions (S1) and (S2), and relations SP satisfy the

conditions (W1) and (W2);
� RP are symmetric and 3-transitive; these relations are counterparts to the strong

complementarity relations derived from an information system;
� SP are reflexive; these relations are counterparts to the weak incomplementarity

relations derived from an information system;
� RP [ SP D U � U and RP \ SP D ;.

It follows that relationsRP are strong relations and relations SP are weak relations.
The relational language corresponding to Rare-CI-language is the RL.1; 10/-

language endowed with relational constants RP and SP , for P 2Pfin.Par/g.
RLRare-CI-models are structures of the form:

M D .U; .RP /P2Pfin.Par/; .SP /P2Pfin.Par/; m/;



248 12 Dual Tableaux for Information Logics of Relative Frames

such that .U;m/ is an RL.1; 10/-model,RP D m.RP / and SP D m.SP / are binary
relations on U indexed with finite subsets of a non-empty set Par, and moreover,
relations RP and SP satisfy all the conditions assumed in Rare-CI-models.

A dual tableau for Rare-CI is constructed from the RL.1; 10/-proof system. We
add to it the rules corresponding to the global and local conditions assumed in Rare-
CI-logic. Thus, the rules corresponding to the global conditions for relations RP ,
P 2 Pfin.Par/, are the instances of the rules of logic RLLFS , and the rules for re-
lations SP , P 2 Pfin.Par/, are the instances of the rules of logic RLLFW . The rules
reflecting the local conditions posed on relationsRP and SP are those presented in
Sect. 11.5 in the models of logic RLCI.

RLRare-CI-axiomatic sets are those that include either of the following subsets:

For all object symbols x and y, and for every relational term T ,

(Ax1) fxTy; x�Tyg;
(Ax2) fxSPxg;
(Ax3) fxRPy; xSP yg.
By Propositions 11.5.1 and 12.3.1, we obtain:

Proposition 12.5.1.

1. The RLRare-CI-rules are RLRare-CI-correct;
2. The RLRare-CI-axiomatic sets are RLRare-CI-sets.

The completion conditions determined by the rules reflecting the global conditions
are the instances of those presented in Sect. 12.3. The completion conditions de-
termined by the rules that reflect the local conditions are the instances of those
presented in Sect. 11.5.

The completeness proof is based on the same ideas as the completeness proofs of
RLCI, RLLFS , and RLLFW dual tableaux. Namely, by Propositions 11.5.2 and 12.3.2,
the branch model property holds. The satisfaction in branch model property is due
to Proposition 12.3.3. Finally, by Theorems 11.5.2 and 12.3.2, we get:

Theorem 12.5.1 (Soundness and Completeness of RLRare-CI). Let ' be an
RLRare-CI-formula. Then the following conditions are equivalent:

1. ' is RLRare-CI-valid;
2. ' is true in all standard RLRare-CI-models;
3. ' is RLRare-CI-provable.

By the above theorem and Theorems 11.5.1 and 12.3.1, we have:

Theorem 12.5.2 (Relational Soundness and Completeness of Rare-CI). For ev-
ery Rare-CI-formula ' and for all object variables x and y, the following conditions
are equivalent:

1. ' is Rare-CI-valid;
2. x�.'/y is RLRare-CI-provable.



12.6 Relational Formalization of the Logic of Strong Complementarity Frames 249

12.6 Relational Formalization of the Logic of Strong
Complementarity Frames

Now, we present the relational formalization of the multimodal logic LFS�COM based
on a family FS�COM of complementarity frames. The logic LFS�COM is defined
as the LFS-logic with the following additional semantic conditions:Rfpg is irreflex-
ive, symmetric, and 3-transitive, for every parameter p 2 Par. The same conditions
are assumed in the models of the corresponding relational logic RLFS�COM. A dual
tableau for RLLFS�COM includes all the rules and the axiomatic sets of the dual tableau
for LFS-logic presented in Sect. 12.3 and in addition the rules reflecting irreflexivity,
symmetry, and 3-transitivity, for every relational constant Rfpg. The rule for sym-
metry can be found in Sect. 6.6 and the rule for 3-transitivity in Sect. 11.5. The rule
reflecting irreflexivity of relation R has the following form:

For all object variables x and y,

.irref R/
xRy

Example. It is easy to show that in LFS�COM-models a relation RP is symmetric,
for every P 2Pfin.Par/. Therefore, the formula x.�RP [ R�1P /y is valid in all
RLLFS�COM-models, for every P 2Pfin.Par/. By way of example, in Fig. 12.3
we present an RLLFS�COM-proof of the formula x.�Rfpg[fqg [ R�1fpg[fqg/y, for
p; q 2 Par.

x.�Rfpg[fqg [R�1
fpg[fqg

/y

�
.[/, (rS1�/, and .�1/

x�Rfpgy; x�Rfqgy; yRfpg[fqgx

��� 		
(rS1�)

x�Rfpgy; yRfpgx; : : : x�Rfqgy; yRfqgx; : : :

�
(sym Rfpg)

�
(sym Rfqg)

x�Rfpgy; xRfpgy; : : :

closed

x�Rfqgy; xRfqgy; : : :

closed

Fig. 12.3 An RLLFS�COM -proof of symmetry of the relation Rfpg[fqg



Chapter 13
Dual Tableau for Formal Concept Analysis

13.1 Introduction

In this chapter we show that an extension of the relational logic RL.1; 10/ can be
applied to verification of some logical problems in formal concept analysis, FCA,
which originated in [Wil82]. A comprehensive exposition of FCA can be found
in [GW99]. A basic data structure in formal concept analysis is a context. It is a
two-sorted relational system consisting of a set whose elements are interpreted as
objects, a set of features of these objects and a binary relation which holds between
an object and a feature whenever the feature is attributed to the object. In the orig-
inal formulation of FCA the term ‘attribute’ is used instead of ‘feature’, although
they are only single-valued attributes. In the more recent developments, FCA dis-
tinguishes between single-valued and many-valued attributes. Our terminology is in
agreement with that established in relational databases and information systems with
incomplete information: an attribute (e.g., color) may have multiple values (e.g.,
blue, red, etc.), and a feature is a pair ‘attribute-value’ (e.g., being of blue color).

With the class of contexts a modal logic, referred to as a context logic, FCL, can
be associated. This logic is based on sufficiency algebras [DO01, DO04] such that
the two sufficiency operations of the logic correspond to the mappings of extent
and intent determined by a context. Consequently, various problems dealt with in
FCA can be represented in logic FCL. We present a relational dual tableau for the
logic FCL and we illustrate with examples how it can be applied to the verifica-
tion of various tasks relevant for FCA. The present chapter is based on [GPO07a].
In [OR08] context algebras associated with the context logic are introduced and a
discrete duality for these algebras is presented.

13.2 Basic Notions of Formal Concept Analysis

In this section we recall basic notions of formal concept analysis, i.e., a context, a
concept, and the extent and the intent of a concept. Then, we introduce the notion
of context frame, and we show how context frames and contexts are related.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 13,
c� Springer Science+Business Media B.V. 2011

251



252 13 Dual Tableau for Formal Concept Analysis

A context is a triple CD .G;M; I /, whereG andM are non-empty sets of objects
and features, respectively, and I � G � M . The expression gIm is read as ‘the
object g has the feature m’. A concept is determined by its extent and its intent:
the extent consists of all objects belonging to the concept, while the intent is the
collection of all features shared by the objects.

For A � G and B �M we define:

i.A/
dfD fm 2 M W 8g; g 2 A implies gImgI

e.B/
dfD fg 2 G W 8m; m 2 B implies gImg:

Then a concept of the context .G;M; I / is defined as a pair .A;B/ such thatA � G,
B � M , A D e.B/, and B D i.A/. The sets i.A/ and e.B/ are called the intent
and the extent of the concept .A;B/, respectively.

Fact 13.2.1.

1. A � G is an extent of some concept iff A D e.i.A//;
2. The unique concept of which A is an extent is .A; i.A//.

Fact 13.2.2.

1. B �M is an intent of some concept iff B D i.e.B//;
2. The unique concept of which B is an intent is .e.B/; B/.

An implication of a context .G;M; I / is a pair of subsets P;Q of M , written as
P ! Q. An implication P ! Q holds in the context whenever e.P / � e.Q/.
Intuitively, it means that each object from G having all the features from P has also
the features fromQ.

A context frame is a structure .X;R; S/, where X is a non-empty set, R;S �
X � X , and S D R�1. The sufficiency operations determined by a context frame
are defined for every A � X and T 2 fR;Sg as in Sect. 7.3, that is:

ŒŒT ��A
dfD fx 2 X W 8y 2 X; y 2 A implies xTyg:

Given a context C D .G;M; I /, a frame derived from C, FC , is a structure FC D
.XC; RC; SC/ such that XC D G [M , RC D I , and SC D I�1.

Proposition 13.2.1. The mappings of extent and intent determined by a context C D
.G;M; I / are the sufficiency operations determined by the frame FC , that is:

1. e D ŒŒRC ��;
2. i D ŒŒSC ��.
Given a context frame F D .X;R; S/, we define a context CF as a structure
.GF ;MF ; IF / such that GF D Dom.R/ is the domain of the relation R, MF D
Rng.R/ is the range of the relation R, and IF D R.



13.3 Context Logic and Its Dual Tableau 253

Proposition 13.2.2. The sufficiency operations determined by a frame F D
.X;R; S/ are the operations of extent and intent determined by the context CF ,
that is:

1. ŒŒR�� D eF ;
2. ŒŒS�� D iF .

Proposition 13.2.3. If a context C D .G;M; I / satisfies G D Dom.I / and M D
Rng.I /, then C D CFC .

Proposition 13.2.4. If a context frame F D .X;R; S/ satisfies X D Dom.R/ [
Rng.R/, then F D FCF .

13.3 Context Logic and Its Dual Tableau

The vocabulary of the language of the modal logic FCL appropriate for reason-
ing in FCA consists of propositional variables from a non-empty set V , rela-
tional constants R and S , and propositional operations of negation (:), disjunction
(_), conjunction (^), and the sufficiency operations ŒŒR�� and ŒŒS��. The set of
FCL-formulas is generated from propositional variables with the propositional
operations.

An FCL-model is a structure of the form M D .X;R; S;m/ such that .X;R; S/
is a context frame and a meaning functionmWV ! X provides meanings of propo-
sitional variables. The satisfaction of formulas in a model is defined as in modal
logics (see Sect. 7.3). We recall that satisfaction of formulas built with sufficiency
operations is defined as in Sect. 7.3, that is:

For T 2 fR;Sg,

M; s ˆ ŒŒT ��' iff for every s0 2 X; if M; s0 ˆ '; then sT s0:

As usual, an FCL-formula ' is said to be true in the FCL-modelM D .X;R; S;m/,
M ˆ ' for short, whenever for every s 2 X , M; s ˆ '. An FCL-formula ' is said
to be FCL-valid whenever ' is true in all the FCL-models.

By the definition of FCL-models and due to the relationship between contexts
and context frames presented in the previous section, we obtain:

Proposition 13.3.1 (Informational Representability).

1. For every FCL-model M there exists a context C such that M is based on a
context frame FC derived from C;

2. For every context C there exists an FCL-model M such that C is a context derived
from the frame which determines M.



254 13 Dual Tableau for Formal Concept Analysis

The relational logic RLFCL appropriate for expressing FCL-formulas as relational
terms is obtained in a standard way, i.e., we expand the language of RL.1; 10/
with relational constants R and S representing the accessibility relations from the
FCL-models. The relational terms and formulas are defined as in RL-logic (see
Sect. 2.3).

An RLFCL-structure is of the form M D .U;R; S;m/, where .U;m/ is an
RL.1; 10/-model and R and S are binary relations on U . An RLFCL-model is
an RLFCL-structure such that S DR�1. As usual, we use the same symbols for
constants in the language and for the relations in a structure, and we postulate
m.R/ D R and m.S/ D S .

The translation � of FCL-formulas into relational terms is defined as in standard
modal logics (see Sect. 7.4). We recall that the translation of the formulas built with
the sufficiency operations is:

�.ŒŒT ��'/
dfD �.�T I �.'//; for T 2 fR;Sg:

The translation is defined so that it preserves validity of formulas. Due to
Theorem 7.4.1, we have:

Theorem 13.3.1. For every FCL-formula ' and for all object variables x and y,
the following conditions are equivalent:

1. ' is FCL-valid;
2. x�.'/y is RLFCL-valid.

A dual tableau for the logic RLFCL is based on the RL.1; 10/-dual tableau. We add
to the RL.1; 10/-system the specific rules that reflect the fact S D R�1:

For all object symbols x and y,

.S/
xSy

yRx; xSy
.R/

xRy

ySx; xRy

The alternative forms of the rules above are discussed in Sect. 25.9.
We prove soundness and completeness of RLFCL following the method presented

in Sect. 7.5. The notions of an RLFCL-set and correctness of a rule are defined as in
Sect. 2.4. The following can be proved in a similar way as Theorem 6.6.1:

Theorem 13.3.2 (Correspondence). Let K be a class of RLFCL-structures. Then,
K is a class of RLFCL-models iff the rules .S/ and .R/ are K-correct.

Proof.

.!/ Let K be a class of RLFCL-models, that is in every model of K, S D R�1.
By way of example, we prove correctness of the rule .S/. Let X be a finite set of
RLFCL-formulas. Assume X [ fxSyg is a K-set and suppose X [ fyRxg is not a
K-set. Then, there exist an RLFCL-model M D .U;R; S;m/ in K and a valuation



13.3 Context Logic and Its Dual Tableau 255

v in M such that .v.x/; v.y// 2 S and .v.y/; v.x// 62 R. Since S � R�1 holds in
M, .v.y/; v.x// 2 R, a contradiction. The other direction can be proved in a similar
way.
. / Now, let K be a class of RLFCL-structures. We show that K-correctness of

the rules .S/ and .R/ implies that S D R�1 is true in all K-models.

For S � R�1, note that fy�Sx; ySxg is a K-set. Thus, by correctness of the
rule .R/, fxRy; y�Sxg is also a K-set. Therefore, for every K-model and for all
x; y 2 U , if .x; y/ 2 S , then .x; y/ 2 R�1.

For R�1 � S , note that fy�Rx; yRxg is a K-set. Thus, by correctness of the
rule .S/, fxSy; y�Rxg is also a K-set. Therefore, for every K-model and for all
x; y 2 U , if .x; y/ 2 R�1, then .x; y/ 2 S . ut
The above theorem implies that the rules .S/ and .R/ are RLFCL-correct. Correct-
ness of the remaining rules can be proved as in RL.1; 10/-dual tableau (see Sects. 2.5
and 2.7), thus we get:

Proposition 13.3.2.

1. The RLFCL-rules are RLFCL-correct;
2. The RLFCL-axiomatic sets are RLFCL-sets.

The notions of an RLFCL-proof tree, a closed branch of such a tree, a closed RLFCL-
proof tree, and RLFCL-provability are defined as in Sect. 2.4.

A branch b of an RLFCL-proof tree is complete whenever it is closed or it satisfies
the completion conditions of RL.1; 10/-dual tableau adjusted to RLFCL-language and
the following which are specific for the RLFCL-dual tableau:

For all object symbols x and y,

Cpl(S ) If xSy 2 b, then yRx 2 b, obtained by an application of the rule .S/;
Cpl(R) If xRy 2 b, then ySx 2 b, obtained by an application of the rule .R/.

The notions of a complete RLFCL-proof tree and an open branch of an RLFCL-proof
tree are defined as in RL-logic (see Sect. 2.5).

Observe that the rules of RLFCL-dual tableau, in particular the specific rules (S )
and (R), guarantee that for every branch b of an RLFCL-proof tree, if xTy 2 b and
x�Ty 2 b for some atomic relational term T , then there is a node in the branch
which contains both of these formulas, and hence branch b is closed. Therefore, the
closed branch property holds.

The branch structure Mb D .U b; Rb; Sb; mb/ is defined in a standard way (see

Sect. 2.6, p. 44), in particular T b
dfD f.x; y/ 2 U b � U b W xTy 62 bg and mb.T / D

T b , for T 2 fR;Sg.
Proposition 13.3.3 (Branch Model Property). Let b be an open branch of an
RLFCL-proof tree. Then the branch structure Mb is an RLFCL-model.

Proof. It suffices to show that Sb D .Rb/�1. Assume .x; y/ 2 Sb , that is xSy 62 b.
Suppose .y; x/ 62 Rb . Then yRx 2 b and by the completion condition Cpl(R),
xSy 2 b, a contradiction. The remaining case can be proved in a similar way. ut



256 13 Dual Tableau for Formal Concept Analysis

Since the branch model Mb is defined in a standard way and the closed branch
property holds, the satisfaction in branch model property can be proved as in
RL.1; 10/-logic (see Sects. 2.5 and 2.7).

Proposition 13.3.4 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLFCL-proof tree. Then for every RLFCL-formula ', if Mb; vb ˆ ',
then ' 62 b.

Hence, completeness of RLFCL-dual tableau follows.

Theorem 13.3.3 (Soundness and Completeness of RLFCL). Let ' be an RLFCL-
formula. Then the following conditions are equivalent:

1. ' is RLFCL-valid;
2. ' is true in all standard RLFCL-models;
3. ' is RLFCL-provable.

Moreover, by Theorems 13.3.1 and 13.3.3, we obtain:

Theorem 13.3.4 (Relational Soundness and Completeness of FCL). Let ' be an
FCL-formula. Then for all object variables x and y, the following conditions are
equivalent:

1. ' is FCL-valid;
2. x�.'/y is RLFCL-provable.

The following example illustrates application of RLFCL-dual tableau to verification
of properties of contexts. In this example RLFCL-dual tableau is applied as a validity
checker.

Example. Consider the following property of contexts:

(˛) For every context C D .G;M; I / and for any A � G, A � e.i.A//.
Let p be propositional variable representing set A. The representation of (˛) in
FCL is:

(ˇ) the formula p ! ŒŒR��ŒŒS��p is FCL-valid.

Denote �.p/ by P and let x; y be object variables. Relational representation of
(ˇ) is:

xŒ�P [�.�R I �.�S IP//�y is RLFCL-valid.

Figure 13.1 presents an RLFCL-proof of this formula. Recall that in each node of
the proof tree we underline the formula to which a rule has been applied during the
construction of the proof tree, and we write only those formulas in the nodes which
are essential for this construction.



13.4 Entailment, Model Checking, and Satisfaction in Context Logic 257

xŒ�P [�.�R I�.�S IP//�y
�
.[/

x�Py; x�.�R I�.�S IP//y
�
.�I / with a new z; .�/

x�Py; xRz; z.�S IP/y
��� 		
.I / with x

xRz; z�Sx
�
.R/

zSx; z�Sx
closed

x�Py; xPy
closed

Fig. 13.1 An RLFCL-proof of A � e.i.A//

13.4 Entailment, Model Checking, and Satisfaction
in Context Logic

The methods presented in Sects. 7.6–7.8 can be applied to verification of entailment,
model checking, and satisfaction in context logic FCL.

Entailment in FCL

In the following example, the relational method of proving entailment presented in
Sect. 7.6 is applied to an inference of implications in the contexts.

Example. Consider the following property of contexts:

(˛) For every context C D .G;M; I / and for all sets of features P;Q � M , if
P ! Q holds in C, then the implication P [ P0 ! Q holds in C, for every
P0 �M .

To represent (˛) in FCL, let p, q, and p0 be propositional variables representing sets
P, Q, and P0, respectively. Then, in view of the definition of implications in a context
and due to Proposition 13.3.1, (˛) can be represented as:

(ˇ) for every FCL-model M, truth of ŒŒR��p ! ŒŒR��q in M implies truth of
ŒŒR��.p _ p0/! ŒŒR��q in M, for every propositional variable p0.

Denote �.p/, �.q/, and �.p0/ by P , Q, and P 0, respectively. Let x and y be object
variables. A relational representation of (ˇ) is:

xŒ1 I �.��.�R IP/ [ �.�R IQ// I 1 [ .��.�R I .P [ P 0// [ �.�R IQ//�y
is RLFCL-valid.

Figure 13.2 presents RLFCL-proof of this formula.



258 13 Dual Tableau for Formal Concept Analysis

xŒ1 I�.��.�R IP/[�.�R IQ// I 1[ .��.�R I .P [ P 0//[�.�R IQ//�y

�
.[/; .�/; .�I / with a new z

xŒ1 I�.��.�R IP/[�.�R IQ// I 1�y; x.�R I .P [ P 0//y; xRz; z�Qy
���

x1x
closed

		

y1y
closed

.I / twice with x;y and .�/
�

xŒ�.��.�R IP/[�.�R IQ//�y; x.�R I .P [ P 0//y; xRz; z�Qy; : : :
�����

.�[/ and .�/ 		


x�.�R IP/y; x.�R I .P [ P 0//y; : : :

x.�R IQ/y; xRz; z�Qy; : : :
��� .I / with z 		


x�Rz; xRz; : : :
closed

zQy; z�Qy; : : :
closed�

.�I / with a new v and .�/
xRv; v�Py; x.�R I .P [ P 0//y; : : :

��� .I / with v 		

xRv; x�Rv; : : :

closed
v�Py; v.P [ P 0/y; : : :

�
.[/

v�Py; vPy; : : :
closed

Fig. 13.2 An RLFCL-proof showing that P! Q implies .P[ P0/! Q

Model Checking and Satisfaction in FCL

Assume we are given a finite context and its property such that they can be repre-
sented with a formula, say ', and a finite model, say M, of logic FCL. In order to
apply the RLFCL-dual tableau to the problem of checking whether ' is true in M, we
translate this problem to model checking problem in the relational logic RLFCL (see
Sect. 7.7). We extend the RLFCL-dual tableau with rules and axiomatic sets which
express the given property and a relevant part of the context in question. Then we
apply this proof system to verification of the property in the context. Similarly, we
can apply the method of verification of satisfaction of FCL-formulas by a valuation
in a given finite model. The following example illustrates the main steps of this
procedure.

Example. Let CD .G;M; I / be a context such that GDfa;bg, M Dfm1;m2g,
and I Df.a;m1/; .a;m2/; .b;m2/g. Consider the following property of this con-
text: .˛/ if ADfag, then e.i.A// � A. Note that this property does not hold for
every subset of G, e.g., it does not hold for the set fbg. The representation of .˛/
in FCL is:

.ˇ/ ŒŒR��ŒŒS��p ! p is true in the model M D .X;R; S;m/ such that X D
fa;b;m1;m2g, R D I , S D I�1, and m.p/ D fag.

Denote �.p/ by P and let x; y be object variables. Then, the relational representa-
tion of .ˇ/ is:



13.4 Entailment, Model Checking, and Satisfaction in Context Logic 259

.�/  
dfD x.��.�R I �.�S IP//[ P/y is true in RLFCL-model N D .U;R; S; n/

such that U D X , R D n.R/, S D n.S/, and n.P / D f.a;s/ W s 2 U g.
For the latter we apply the method of model checking presented in Sect. 7.7. We con-
sider an instance RLN ; of logic RLFCL. The vocabulary of its language consists of
a countable infinite set of object variables, the set fca; cb; cm1 ; cm2g of object con-
stants, the set fR;S; P; 1; 10g of relational constants, and the usual set of relational
operations. The RLN ; -model is an RLFCL-model N 0 D .U 0; R; S; n0/ such that:

� U 0 D fa;b;m1;m2g D X ;
� n0.ca/ D a, n0.cb/ D b, n0.cm1/ D m1, and n0.cm2/ D m2;
� R D n0.R/ D f.a;m1/; .a;m2/; .b;m2/g;
� S D n0.S/ D f.m1;a/; .m2;a/; .m2;b/g;
� n0.P / D n.P / D f.a;a/; .a;b/; .a;m1/; .a;m2/g.
Thus, truth of  in N is equivalent to its RLN ; -validity.

The rules of RLN ; -dual tableau specific for the problem .�/ have the following
forms:

x.��.�R I�.�S IP//[ P/y
�.[/; .�/

x.R I�.�S IP//y; xPy
���� 			
.I / with cm1

x�Rcm1 ; xPy; : : :
����

			
.102/ with ca

x10ca; x�Rcm1 ; : : : caPy; : : :

�
˘1

��� 		
.�Rbm1/
x10ca; x1

0cb;

x�Rcm1 ; : : :
cm11

0cm1 ; : : :

closed

����
			
.�Rm1m1/

x10ca; x1
0cb;

x10cm1 ; x�Rcm1 ; : : :
cm11

0cm1 ; : : :

closed

�

.�Rm2m1/			

cm11

0cm1 ; : : :

closed
x10ca; x1

0cb;

x10cm1 ; x1
0cm2 ; : : :

���
x10ca;

x�10ca; : : :

closed

.10/ with x
�

x10cb;

x�10cb; : : :

closed

����
x10cm1 ;

x�10cm1 ; : : :

closed

"""""#
x10cm2 ;

x�10cm2 ; : : :

closed

cm1�.�S IP/y; : : :

�
.�I / with a new z, .�/

cm1Sz; z�Py; : : :
����

			
.101/ with ca

cm1Sca; : : :

closed

z10ca; z�Py; : : :
�����

z10ca;

z�10ca; : : :

closed

�
�

�
�

��
z�10cb; z�Py; : : :

�
˘2.z; y; cb/

.10/ with z

�
z�10cm1 ; z�Py; : : :

�
˘2.z; y; cm1/

���
z�10cm2 ;

z�Py; : : :
�

˘2.z; y; cm2/

Fig. 13.3 An RLN ; -proof showing the truth of formula  in model N



260 13 Dual Tableau for Formal Concept Analysis

caPy; : : :

����
			
.101/ with ca

caPca; : : :

closed

caPy; y1
0ca; : : :

����
			
.101/ with cb

caPcb; : : :

closed

caPy; y1
0ca; y1

0cb; : : :

����
			
.101/ with cm1

caPcm1 ; : : :

closed

caPy; y1
0ca; y1

0cb; y1
0cm1 ; : : :

����
			
.101/ with cm2

caPcm2 ; : : :

closed

y10ca; y1
0cb; y1

0cm1 ; y1
0cm2 ; : : :

������
y10ca; y�10ca; : : :

closed �
y10cb; y�10cb; : : :

closed

.10/ with y

�
y10cm1 ; y�10cm1 ; : : :

closed

������
y10cm2 ; y�10cm2 ; : : :

closed

Fig. 13.4 The subtree ˘1

z�10ci; z�Py; : : :
����

			
.�Pia/
z�10ci;
z10ci; : : :
closed

z�10ci; z�Py; y10ca; : : :

����
			
.�Pib/

z�10ci;
z10ci; : : :
closed

z�10ci; z�Py; y10ca; y1
0cb; : : :

����
			
.�Pim1/

z�10ci;
z10ci; : : :
closed

z�10ci; z�Py; y10ca; y1
0cb; y1

0cm1 ; : : :

����
			
.�Pim2/

z�10ci;
z10ci; : : :
closed

y10ca; y1
0cb; y1

0cm1 ; y1
0cm2 ; : : :

������
y10ca; y�10ca; : : :

closed �
y10cb; y�10cb; : : :

closed

.10/ with y

�
y10cm1 ; y�10cm1 ; : : :

closed

������
y10cm2 ; y�10cm2 ; : : :

closed

Fig. 13.5 The subtree ˘2.z; y; ci/, where i 2 fb;m1;m2g

For all object symbols x and y,

.�Rij/ x�Ry
x10ci; x�Ry j y10cj; x�Ry

for every .i;j/ 2 U 0 � U 0 such that .i;j/ 62 R;



13.4 Entailment, Model Checking, and Satisfaction in Context Logic 261

.�Pij/ x�Py
x10ci; x�Py j y10cj; x�Py

for every .i;j/ 2 U 0 � U 0 such that .i;j/ 62 n0.P /;

.�Sij/ x�Sy
x10ci; x�Sy j y10cj; x�Sy

for every .i;j/ 2 U 0 � U 0 such that .i;j/ 62 S ;

.10/
x�10ca j x�10cb j x�10cm1 j x�10cm2

x is any object symbol

.i ¤ j/
ci10cj

for any i;j 2 fa;b;m1;m2g;i ¤ j

The RLN ; -axiomatic sets specific for the problem .�/ are:

� fciRcjg, for every .i;j/ 2 f.a;m1/; .a;m2/; .b;m2/g;
� fci�Rcjg, for every.i;j/ 2 U � U 0 n f.a;m1/; .a;m2/; .b;m2/g;
� fciPcjg, for every .i;j/ 2 f.a;a/; .a;b/; .a;m1/; .a;m2/g;
� fci�Pcjg, for every .i;j/ 2 U 0 � U 0 n f.a;a/; .a;b/; .a;m1/; .a;m2/g;
� fciScjg, for every .i;j/ 2 f.m1;a/; .m2;a/; .m2;b/g;
� fci�Scjg, for every .i;j/ 2 U 0 � U 0 n f.m1;a/; .m2;a/; .m2;b/g.
Due to Theorem 7.7.1 the truth of  in N is equivalent to its RLN ; -provability.
Figure 13.3 presents RLN ; -proof of  . The subtrees ˘1 and ˘2.z; y; ci/, i 2
fb;m1;m2g, are presented in Figs. 13.4 and 13.5, respectively.



Chapter 14
Dual Tableau for a Fuzzy Logic

14.1 Introduction

Monoidal triangular norm logic, MTL, was introduced in [EG01]. From the
perspective of substructural logics it is the logic of full Lambek calculus endowed
with the rules of exchange and weakening, FLew, with the additional axiom
.' !  /_. ! '/ referred to as prelinearity. From the perspective of fuzzy logics
it is a logic of left-continuous triangular norms, t-norms for short (see [KM00]).

The t-norms originated in [SS63] (see also [SS83]) to model distances in prob-
abilistic metric spaces. For a modern study of t-norms see [KM00]. A t-norm is a
binary operation on the closed real interval Œ0; 1� which is commutative, associative,
non-decreasing in both arguments, and 1 is its neutral element. The classical ex-
amples of t-norms which are applied to modelling logical operation of conjunction
include Łukasiewicz t-norm x ˇ y D max.0; x C y � 1/, product t-norm defined
as multiplication of reals, and Gödel t-norm x ˇ y D min.x; y/. All those t-norms
are continuous. A t-norm ˇ is left-continuous if and only if it has a residuum,!,
i.e., the two operations satisfy z � x ! y if and only if x ˇ z � y. The residua
of the three t-norms mentioned above play the role of implications: Łukasiewicz
implication x ! y D min.1; 1 � x C y/, Gougen implication x! y D 1 if x � y
and y=x otherwise, and Gödel implication x ! yD 1 if x � y and y otherwise,
respectively.

Algebraic semantics of logic MTL is provided by the class of MTL-algebras.
They are abstract counterparts to the standard structures .Œ0; 1�;�;ˇ;!/, whereˇ
is a left-continuous t-norm and ! is its residuum. A completeness of logic MTL
with respect to the semantics determined by those standard structures is presented
in [JM02]. In [MO02b] a Kripke-style semantics for a first-order version of logic
MTL is presented, defined along the lines of semantics for substructural logics pre-
sented in [Ono85, Ono93]. In that semantics an algebraic structure is assumed in the
universes of the models.

Decidability of fuzzy logics, in particular of MTL and its axiomatic extensions,
is discussed in [MOG09]. Decidability of MTL is proved in [Ono].

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 14,
c� Springer Science+Business Media B.V. 2011

263



264 14 Dual Tableau for a Fuzzy Logic

In this chapter, first, we present MTL-algebras which provide an algebraic
semantics of the logic MTL. Next, we present logic MTL with a purely relational
semantics developed in [CC08, ORR10]. Based on this semantics a relational dual
tableau for the logic is developed (see [GPO10]).

14.2 MTL-Algebras

A t-norm is a binary operation on the closed real interval ˇW Œ0; 1�2 ! Œ0; 1�, such
that for all x; y; z 2 Œ0; 1�, the following hold:

� ˇ is associative and commutative;
� 1 is the neutral element ofˇ;
� If x � y, then x ˇ z � y ˇ z.

Let .xi /i2J be an indexed family of elements of Œ0; 1�. A t-norm is said to be left-
continuous whenever .supxi /ˇ y D sup.xi ˇ y/ for every y 2 Œ0; 1�.

The abstract structures which capture the properties of left-continuous t-norms
are the MTL-algebras. An MTL-algebra is a structure of the form A D .A;_;^;ˇ;
!; 0; 1/ such that:

� .A;_;^; 0; 1/ is a bounded, distributive lattice;
� .A;ˇ; 1/ is a commutative monoid, i.e., for all a; b; c 2 A, the following condi-

tions are satisfied:

aˇ .b ˇ c/ D .aˇ b/ˇ c,
aˇ b D b ˇ a,
1ˇ a D a;

� ! is a residuum of ˇ, i.e., a ˇ b � c iff a � b ! c, where � is the lattice

ordering defined by: a � b df” a D a ^ b (or equivalently b D a _ b);
� .a! b/ _ .b ! a/ D 1.

Observe that monoid .A;ˇ; 1/ is integral, i.e., its neutral element coincides with the
greatest element of the lattice.

14.3 The Logic MTL

The vocabulary of the language of the logic MTL consists of symbols from the
following pairwise disjoint sets:

� V – a countable infinite set of propositional variables;
� f0; 1g – the set of propositional constants;
� f_;^;ˇ;!g – the set of propositional operations of disjunction, conjunction,

product, and implication, respectively.



14.3 The Logic MTL 265

The set of MTL-formulas is the smallest set including V [ f0; 1g and closed with
respect to the propositional operations.

A classical formalization of MTL is based on its algebraic semantics defined in
terms of MTL-algebras. Here we present a Kripke-style semantics obtained from
a discrete duality for MTL-algebras developed in [ORR10]. This semantics differs
from the semantics presented in [MO02b] in that it is a purely relational semantics
not assuming any monoid structure on the universes of the models.

An MTL-model is a structure M D .U;�; R;m/ such that U is a non-empty set,
� is a reflexive and transitive relation on U , m is a meaning function satisfying the
following conditions:

� m.p/ � U , for every propositional variable p;
� m.1/ D U andm.0/ D ;;
� (her) If x � y and x 2 m.p/, then y 2 m.p/, for all x; y 2 U and for every

propositional variable p.

R is a ternary relation onU satisfying the following conditions, for all x; y; z; x0; y0;
z0; t;w 2 U :

(MTL1) If .x; y; z/ 2 R, x0 � x, y0 � y, and z � z0, then .x0; y0; z0/ 2 R;
(MTL2) If .x; y; z/ 2 R, then .y; x; z/ 2 R;
(MTL3) If .x; y; z/ 2 R and .z; y0; z0/ 2 R, then there exists u 2 U such that
.y; y0; u/ 2 R and .x; u; z0/ 2 R;

(MTL4) There exists u 2 U such that .u; x; x/ 2 R;
(MTL5) If .x; y; z/ 2 R, then y � z;
(MTL6) If .x; y; z/ 2 R and .x; t;w/ 2 R, then y � w or t � z.

Let M D .U;�; R;m/ be an MTL-model and let s 2 U . Satisfaction of an MTL-
formula ' in model M by s, M; s ˆ ' for short, is defined as:

� M; s ˆ p iff s 2 m.p/, for every p 2 V [ f0; 1g;
� M; s ˆ ' _  iff M; s ˆ ' or M; s ˆ  ;
� M; s ˆ ' ^  iff M; s ˆ ' and M; s ˆ  ;
� M; s ˆ ' ˇ  iff there exist x; y 2 U such that .x; y; s/ 2 R and M; x ˆ '

and M; y ˆ  ;
� M; s ˆ ' !  iff for all x; y 2 U , if .s; x; y/ 2 R and M; x ˆ ', then

M; y ˆ  .

A formula ' is said to be true in an MTL-model M if and only if it is satisfied in M
for every s 2 U . A formula ' is MTL-valid whenever ' is true in all MTL-models.

As shown in [ORR10], algebraic and Kripke-style semantics of MTL are related
according to the principle of duality via truth (see [OR07]). In particular, the con-
dition (MTL2) reflects commutativity of ˇ; the condition (MTL3) corresponds to
associativity of ˇ; (MTL4) expresses the condition a � a ˇ 1, while (MTL5)
expresses the condition 1 ˇ a � a, (MTL6) reflects prelinearity. It follows that
a Hilbert-style axiomatization of MTL corresponding to its algebraic semantics is
complete with respect to the Kripke-style semantics.



266 14 Dual Tableau for a Fuzzy Logic

Since both logic MTL and the relevant logics presented in Chap. 9 are substruc-
tural logics, their algebraic semantics is based on residuated lattices. Therefore these
logics have the propositional operations_, ^,ˇ, and! in common, interpreted as
join, meet, product, and its left residuum, respectively. As a consequence the satis-
faction relation for formulas built with_,^,ˇ, and!, as well as the decomposition
rules for these operations and their completion conditions in the dual tableaux, are
the same in all these logics. The differences are manifested with specific assump-
tions on the accessibility relations in the models of the logics which reflect specific
assumptions on the operations of the underlying residuated lattices. Similarly, dual
tableaux for these logics will differ only in specific rules. There is also a difference
in the treatment of negation. Since in logic MTL product is commutative, its left and
right residuum coincide, and negation is definable as :a D a ! 0, while in logic
RLV it is an operation independent of the others.

14.4 Relational Formalization of Logic MTL

To define the relational logic RLMTL corresponding to MTL-logic we follow the
method applied to relevant logics presented in Sect. 9.3. As usual, formulas of
RLMTL, interpreted as ternary relations, are intended to represent formulas of the
logic MTL and the accessibility relation from its models. The vocabulary of the lan-
guage of RLMTL consists of the symbols from the following pairwise disjoint sets:

� OV RLMTL – a countable infinite set of object variables;
� RV RLMTL – a countable infinite set of ternary relational variables;
� f�g – the set consisting of binary relational constant;
� fR; 1; 0g – the set of ternary relational constants, where 0 is the empty relation

and 1 is the universal relation;
� f�;[;\;ˇ;!g – the set of relational operations.

The set of ternary relational terms is the smallest set including RV RLMTL [ fR; 1; 0g
and closed on the relational operations. The set of RLMTL-terms consists of ternary
relational terms and the relational constant �. RLMTL-formulas are of the form
T .x; y; z/ or x � y, where T is a ternary relational term and x; y; z are object
variables.

An RLMTL-model is a structure M D .U;�; R;m/ such that U is a non-empty
set and the following conditions are satisfied:

� m.P / D X � U � U , where X � U , for P 2 RV RLMTL ;
� m.1/ D U 3 and m.0/ D ;;
� � is a reflexive and transitive relation on U that provides the interpretation of the

relational constant�;
� (her’) If t � x and .t; y; z/ 2 m.P /, then .x; y; z/ 2 m.P /, for all t; x; y; z 2 U

and for every relational variable P ;
� R is a ternary relation on U providing the interpretation of the relational constant
R and satisfying the conditions (MTL1), . . . , (MTL6) of MTL-models;



14.4 Relational Formalization of Logic MTL 267

� m extends to all the relational terms as follows:

m.�S/ D U 3�m.S/,
m.S [ T / D m.S/ [m.T /,
m.S \ T / D m.S/ \m.T /,
m.S ˇ T / D f.x; y; z/ 2 U 3 W 9t;w 2 U; .t;w; x/ 2 R&

.t; y; z/ 2 m.S/& .w; y; z/ 2 m.T /g,
m.S ! T / D f.x; y; z/ 2 U 3 W 8t;w 2 U; if .x; t;w/ 2 R&

.t; y; z/ 2 m.S/; then .w; y; z/ 2 m.T /g.
As usual, we use the same symbols for operations and constants in the language

and for the corresponding entities in the models. In analogy to binary right ideal
relations, the ternary relations on U which are of the form X � U � U , for some
X � U , will be referred to as ideal relations.

Let M be an RLMTL-model. A valuation in M is a function assigning elements
of U to object variables. An RLMTL-formula T .x; y; z/ (resp. x � y) is satisfied in a
model M by a valuation v whenever .v.x/; v.y/; v.z// 2 m.T / (resp. v.x/ � v.y/)
and it is true in M whenever it is satisfied in M by all the valuations. A formula is
RLMTL-valid if and only if it is true in all RLMTL-models.

Now, we define a translation function � from formulas of the logic MTL into
ternary relational terms of RLMTL. Let � 0WV ! RV RLMTL be a one-to-one mapping
assigning relational variables to propositional variables. Then, we define:

� �.0/ D 0 and �.1/ D 1;
� �.p/ D � 0.p/, for every p 2 V ;
� �.' _  / D �.'/ [ �. /;
� �.' ^  / D �.'/ \ �. /;
� �.' ˇ  / D �.'/ˇ �. /;
� �.' !  / D �.'/! �. /.

As in relevant logics, given an RLMTL-model M D .U;�; R;m/, the set of
ideal relations on U is closed with respect to the relational operations (see
Proposition 9.3.1). Therefore, for every MTL-formula ' and for every RLMTL-
model M D .U;�; R;m/, m.�.'// is an ideal relation.

Proposition 14.4.1. For every MTL-model M D .U;�; R;m/ there is an RLMTL-
model M0 D .U 0;�0; R0; m0/ such that for every MTL-formula ' and for all
s; t; u 2 U , M; s ˆ ' iff .s; t; u/ 2 m0.�.'//.
Proof. Let M D .U;�; R;m/ be an MTL-model. We define an RLMTL-model
M0 D .U 0;�0; R0; m0/ as follows:

� U 0 D U , �0D�, and R0 D R;
� m0.P / D m.p/ � U 2, for every P 2 RV RLMTL [ f0; 1g, where p is such that
P D �.p/;

� m0 extends to all the compound terms as in RLMTL-models.



268 14 Dual Tableau for a Fuzzy Logic

Clearly, M0 defined above is an RLMTL-model. We show the required condition by
induction on the complexity of formulas.

For p 2 V [ f0; 1g the condition of the proposition holds by definition ofm0.
Assume that the condition holds for formulas ' and  . By way of example, we

prove it for formulas of the form ' !  . The remaining cases can be proved as in
relevant logics.

By the definition, M; s ˆ ' !  iff for all x; y 2 U if .s; x; y/ 2 R and
M; x ˆ ', then M; y ˆ  iff by the induction hypothesis, for all x; y 2 U if
.s; x; y/ 2 R0 and .x; t; u/ 2 m0.�.'//, then .y; t; u/ 2 m0.�. // iff .s; t; u/ 2
m0.�.'/! �. // D m0.�.' !  //. ut
Proposition 14.4.2. For every RLMTL-model M0 D .U 0;�0; R0; m0/ there is an
MTL-model M D .U;�; R;m/ such that for every MTL-formula ' and for all
s; t; u 2 U , M; s ˆ ' iff .s; t; u/ 2 m0.�.'//.
Proof. The required MTL-model is constructed as follows:

� U D U 0, �D�0, and R D R0;
� m.p/ D fx 2 U W there are y; z 2 U such that .x; y; z/ 2 m.P /g, for every
p 2 V [ f0; 1g, where P is such that �.p/ D P .

The model defined above is an MTL-model and the proof of the proposition is sim-
ilar to the proof of Proposition 14.4.1. ut
Propositions 14.4.1 and 14.4.2 lead to the following theorem:

Theorem 14.4.1. For every MTL-formula ' and for all object variables x; y; and
z, the following conditions are equivalent:

1. ' is MTL-valid;
2. �.'/.x; y; z/ is RLMTL-valid.

A dual tableau for logic RLMTL consists of the following decomposition rules:
For all object variables x; y, z and for all ternary relational terms S and T ,

(�)
��S.x; y; z/
S.x; y; z/

([)
.S [ T /.x; y; z/

S.x; y; z/; T .x; y; z/
(�[)

�.S [ T /.x; y; z/
�S.x; y; z/ j �T .x; y; z/

(\)
.S \ T /.x; y; z/

S.x; y; z/ jT .x; y; z/ (�\)
�.S \ T /.x; y; z/

�S.x; y; z/;�T .x; y; z/

(ˇ)
.S ˇ T /.x; y; z/

R.t;w; x/; ' jS.t; y; z/; ' jT .w; y; z/; '

t;w are any object variables and ' D .S ˇ T /.x; y; z/



14.4 Relational Formalization of Logic MTL 269

(�ˇ)
�.S ˇ T /.x; y; z/

�R.t;w; x/;�S.t; y; z/;�T .w; y; z/

t;w are new object variables such that t ¤ w

(!)
.S ! T /.x; y; z/

�R.x; t;w/;�S.t; y; z/; T .w; y; z/

t;w are new object variables such that t ¤ w

(� !)
�.S ! T /.x; y; z/

R.x; t;w/; ' jS.t; y; z/; ' j �T .w; y; z/; '

t;w are any object variables and ' D �.S ! T /.x; y; z/

The specific rules are of the form:
For every relational variable P and for all object variables x; y; z; x0; y0; z0; t ,

and w,

(ideal)
P.x; y; z/

P.x; t;w/; P.x; y; z/
t;w are any object variables

(0)
0.x; y; z/

x; y; z are any object variables

(tran �)
x � y

x � z; x � y j z � y; x � y z is any object variable

(rher’)
P.x; y; z/

t � x; P.x; y; z/ jP.t; y; z/; P.x; y; z/ t is any object variable

(rMTL1)
R.x; y; z/

R.x0; y0; z0/; ' j x � x0; ' j y � y0; ' j z0 � z; '

x0; y0; z0 are any object variables and ' D R.x; y; z/

(rMTL2)
R.x; y; z/

R.y; x; z/

(rMTL3)
R.x; y; z/ jR.z; y0; z0/ j �R.y; y0; u/;�R.x; u; z0/

x; y; z; y0; z0 are any object variables

u is a new object variable such that fug \ fx; y; z; x0; y0; z0g D ;



270 14 Dual Tableau for a Fuzzy Logic

(rMTL4) �R.u; x; x/

x is any object variable,

u is a new object variable such that u ¤ x

(rMTL5)
y � z

R.x; y; z/; y � z

x is any object variable

(rMTL6)
y � w; t � z

R.x; y; z/; y � w; t � z jR.x; t;w/; y � w; t � z

x is any object variable

The rules (rMTL3) and (rMTL4) are specialized cut rules. An alternative deter-
ministic form of such rules is discussed in Sect. 25.9.

A set of RLMTL-formulas is said to be an RLMTL-axiomatic set whenever it
includes a subset of either of the following forms:

For all object variables x; y and z, and for every relational term S ,

(Ax1) fx � xg;
(Ax2) f1.x; y; z/g;
(Ax3) fS.x; y; z/;�S.x; y; z/g.
The notion of an RLMTL-set and the notion of RLMTL-correctness of a rule are
defined in a similar way as in Sect. 2.4.

Proposition 14.4.3.

1. The RLMTL-rules are RLMTL-correct;
2. The RLMTL-axiomatic sets are RLMTL-sets.

Proof. By way of example, we prove correctness of the rules .ˇ/, .!/, and
(rMTL4).

.ˇ / Let X be a finite set of RLMTL-formulas. If X [f.S ˇ T /.x; y; z/g is an
RLMTL-set, then so are sets X [fR.t;w; x/; .S ˇ T /.x; y; z/g, X [fS.t; y; z/;
.S ˇ T /.x; y; z/g, and X [fT .w; y; z/; .S ˇ T /.x; y; z/g. Now, assume that
X [fR.t;w; x/; .S ˇT /.x; y; z/g, X [fS.t; y; z/; .S ˇT /.x; y; z/g, and X [
fT .w; y; z/; .S ˇT /.x; y; z/g are RLMTL-sets, and suppose that X [f.S ˇ T /
.x; y; z/g is not an RLMTL-set. Then there exist an RLMTL-model M D .U;�; R;m/
and a valuation v in M such that for ' 2 X [f.S ˇT /.x; y; z/g, M; v 6ˆ '. There-
fore, for all a; b 2 U , .a; b; v.x// 62 R or .a; v.y/; v.z// 62 m.S/ or .b; v.y/; v.z/ 62
m.T /. By the assumption, .v.t/; v.w/; v.x// 2 R, .v.t/; v.y/; v.z// 2 m.S/, and
.v.w/; v.y/; v.z// 2 m.T /, a contradiction.



14.4 Relational Formalization of Logic MTL 271

.!/ LetX be a finite set of RLMTL-formulas and let t;w be variables that do not
occur inX and such that t ¤ w and ft;wg\ fx; y; zg D ;. Assume that X [f.S !
T /.x; y; z/g is an RLMTL-set. Suppose X [ f�R.x; t;w/;�S.t; y; z/; T .w; y; z/g
is not an RLMTL-set. Then there exist an RLMTL-model M D .U;�; R;m/ and a
valuation v in M such that for every ' 2 X [f�R.x; t;w/;�S.t; y; z/; T .w; y; z/g,
M; v 6ˆ '. Therefore, .v.x/; v.t/; v.w//2R, .v.t/; v.y/; v.z// 2 m.S/, and
.v.w/; v.y/; v.z// 62 m.T /. Thus, by the definition of m.S ! T /, .v.x/; v.y/; v.z//
62 m.S ! T /. However, by the assumption, .v.x/; v.y/; v.z//2 m.S ! T /, a
contradiction. Now, assume that X [ f�R.x; t;w/;�S.t; y; z/; T .w; y; z/g is an
RLMTL-set. Then, by the assumption on variables t and w, for every RLMTL-model
M D .U;�; R;m/ and for every valuation v in M either there exists ' 2 X such
that M; v ˆ ' or for all a; b 2 U , if .v.x/; a; b/ 2 R and .a; v.y/; v.z// 2 m.S/,
then .b; v.y/; v.z// 2 m.T /, in which case .v.x/; v.y/; v.z// 2 m.S ! T /. Hence,
X [ f.S ! T /.x; y; z/g is an RLMTL-set.

(rMTL4) Let X be a finite set of RLMTL-formulas and let x and u be object
variables such that u does not occur in X and u ¤ x. Clearly, if X is an RLMTL-
set, then so is X [ f�R.u; x; x/g. Now, assume X [ f�R.u; x; x/g is an RLMTL-
set. Then, due to the assumption on the variables x and u, for every RLMTL-model
M D .U;�; R;m/ and for every valuation v in M either there is ' 2 X such
that M; v ˆ ' or for every a 2 U , .a; v.x/; v.x// 62 R. Observe that due to
condition (MTL4), there exists a 2 U such that .a; v.x/; v.x// 2 R, hence X is an
RLMTL-set.

Correctness of the remaining rules can be proved in a similar way. The easy proof
of 2. is omitted. ut
The notions of an RLMTL-proof tree, a closed branch of such a tree, a closed RLMTL-
proof tree, and RLMTL-provability are defined as in Sect. 2.4.

A branch b of an RLMTL-proof tree is said to be complete whenever it is closed
or it satisfies the following completion conditions:

For all object variables x; y; z; x0; y0; z0; t and w, for all ternary relational terms
S and T , and for every relational variable P ,

Cpl(�) If ��S.x; y; z/ 2 b, then S.x; y; z/ 2 b, obtained by an application of the
rule .�/;

Cpl([) (resp. Cpl(�\)) If .S [ T /.x; y; z/ 2 b (resp. �.S \ T /.x; y; z/ 2 b),
then both S.x; y; z/ 2 b and T .x; y; z/ 2 b (resp. both �S.x; y; z/ 2 b and
�T .x; y; z/ 2 b), obtained by an application of the rule .[/ (resp. .�\/);

Cpl(\) (resp. Cpl(�[)) If .S \ T /.x; y; z/ 2 b (resp. �.S [ T /.x; y; z/ 2 b),
then either S.x; y; z/ 2 b or T .x; y; z/ 2 b (resp. either �S.x; y; z/ 2 b or
�T .x; y; z/ 2 b), obtained by an application of the rule .\/ (resp. .�[/);

Cpl(ˇ) If .S ˇ T /.x; y; z/ 2 b, then for all object variables t and w either
R.t;w; x/ 2 b or S.t; y; z/ 2 b or T .w; y; z/ 2 b, obtained by an application
of the rule .ˇ/;



272 14 Dual Tableau for a Fuzzy Logic

Cpl(�ˇ) If �.S ˇ T /.x; y; z/ 2 b, then for some object variables t and w,
�R.t;w; x/ 2 b, �S.t; y; z/ 2 b, and �T .w; y; z/ 2 b, obtained by an
application of the rule .�ˇ/;

Cpl(!) If .S! T /.x; y; z/ 2 b, then for some object variables t and w,
�R.x; t;w/ 2 b, �S.t; y; z/ 2 b, and T .w; y; z/ 2 b, obtained by an appli-
cation of the rule .!/;

Cpl(�!) If �.S!T /.x; y; z/ 2 b, then for all object variables t and w either
R.x; t;w/ 2 b or S.t; y; z/ 2 b or �T .w; y; z/ 2 b, obtained by an application
of the rule .� !/;

Cpl(ideal) If P.x; y; z/ 2 b, then for all object variables t and w, P.x; t;w/ 2 b,
obtained by an application of the rule .P /;

Cpl(0) For all object variables x; y, and z, 0.x; y; z/ 2 b, obtained by an application
of the rule .0/;

Cpl(tran �) If x � y 2 b, then for every object variable z either x � z 2 b or
z � y 2 b, obtained by an application of the rule (tran �);

Cpl(her’) If P.x; y; z/ 2 b, then for every object variable t either t � x 2 b or
P.t; y; z/ 2 b, obtained by an application of the rule (her’);

Cpl(rMTL1) If R.x; y; z/ 2 b, then for all object variables x0; y0, and z0 either
R.x0; y0; z0/ 2 b or x � x0 2 b or y � y0 2 b or z0 � z 2 b, obtained by an
application of the rule (rMTL1);

Cpl(rMTL2) If R.x; y; z/ 2 b, then R.y; x; z/ 2 b, obtained by an application of
the rule (rMTL2);

Cpl(rMTL3) For all object variables x; y; z; y0; z0 either R.x; y; z/ 2 b or
R.z; y0; z0/ 2 b or there is an object variable u such that both �R.y; y0; u/ 2 b
and �R.x; u; z0/ 2 b, obtained by an application of the rule (rMTL3);

Cpl(rMTL4) For every object variable x there exists an object variable u such that
�R.u; x; x/ 2 b, obtained by an application of the rule (rMTL4);

Cpl(rMTL5) If y � z 2 b, then for every object variable x,R.x; y; z/ 2 b, obtained
by an application of the rule (rMTL5);

Cpl(rMTL6) If y � w 2 b and t � z 2 b, then for every object variable x either
R.x; y; z/ 2 b orR.x; t;w/ 2 b, obtained by an application of the rule (rMTL6).

The notion of a complete RLMTL-proof and the notion of an open branch of an
RLMTL-proof tree are defined as in Sect. 2.5.

Although, the rule (rMTL2) does not preserve the formulas of the form
R.x; y; z/, we can show that the closed branch property holds. The proof is similar
to the proof of Proposition 2.8.1.

Let b be an open branch of an RLMTL-proof tree. We define a branch structure
Mb D .U b;�b; Rb; mb/ as follows:

� U b D OV RLMTL ;
� �bD f.x; y/ 2 .U b/2 W x � y 62 bg andmb.�/ D�b;
� mb.T / D f.x; y; z/ 2 .U b/3 W T .x; y; z/ 62 bg, for every T 2 RV RLMTL [
fR; 1; 0g;

� mb extends to all the compound relational terms as in the RLMTL-models.



14.4 Relational Formalization of Logic MTL 273

Proposition 14.4.4 (Branch Model Property). Let Mb be a branch structure de-
termined by an open branch b of an RLMTL-proof tree. Then Mb is an RLMTL-model.

Proof. We show that for every relational variable P , mb.P / D X � U � U for
some X � U , the relation �b is reflexive and transitive, mb satisfies the heredity
condition, and the relation Rb satisfies the conditions (MTL1), . . . , (MTL6).

Let P be a relational variable. Assume that for some x; y; z 2 U b, .x; y; z/ 2
mb.P /. Suppose that for some t;w 2 U b , .x; t;w/ 62 mb.P /. Then P.x; t;w/ 2 b
and by the completion condition Cpl(ideal), P.x; y; z/ 2 b. Thus, by the definition
of mb, .x; y; z/ 62 mb.P /, a contradiction. Hence, mb.P / is a right ideal relation
on U b .

Since for every object variable x, the set fx � xg is an axiomatic set, �b is
reflexive. Transitivity of �b follows from the completion condition Cpl(tran �),
while the heredity condition follows from the completion condition Cpl(her’).

By way of example, we show that Rb satisfies the condition (MTL3). By the
completion condition Cpl(rMTL3), for all x; y; z; y0; z0 2U b either R.x; y; z/ 2 b
or R.z; y0; z0/2 b or there exists u2U b such that both �R.y; y0; u/2 b and
�R.x; u; z0/ 2 b. Thus, if .x; y; z/ 2 Rb and .z; y0; z0/ 2 Rb, then there exists
u 2 U b such that both .y; y0; u/ 2 Rb and .x; u; z0/ 2 Rb , hence the condition
(MTL3) is satisfied. ut
Let vb be a valuation in Mb such that vb.x/ D x, for every object variable x.

Proposition 14.4.5 (Satisfaction in Branch Model Property). For every open
branch b of an RLMTL-proof tree and for every RLMTL-formula ', if Mb; vb ˆ ',
then ' 62 b.

Proof. Let ' be an RLMTL-formula. The proof is by induction on the complexity of
formulas. If ' is an atomic formula, then the condition of the proposition holds by
the definition. Let ' D �S.x; y; z/ for an atomic term S . If Mb; vb ˆ �S.x; y; z/,
then S.x; y; z/ 2 b. By the closed branch property, �S.x; y; z/ 62 b. For binary
atomic relational terms the proof is similar. Assume that the condition of the propo-
sition holds for relational termsS and T and their complements. By way of example,
we show that it holds for �.S ! T /.

Assume Mb; vb ˆ �.S ! T /.x; y; z/. Then there are t;w 2 U b such that
.x; t;w/ 2 Rb , .t; y; z/ 2 mb.S/, and .w; y; z/ 62 mb.T /. Suppose �.S !
T /.x; y; z/ 2 b. By the completion condition Cpl(�!), for all t;w 2 U b either
R.x; t;w/ 2 b or S.t; y; z/ 2 b or �T .w; y; z/ 2 b, that is either �R.t;w; x/ 62 b
or �S.t; y; z/ 62 b or T .w; y; z/ 62 b. Therefore, by the induction hypothesis, either
.t;w; x/ 62 Rb or .t; y; z/ 62 mb.S/ or .w; y; z/ 2 mb.T /, a contradiction.

The remaining cases can be proved in a similar way. ut
Hence, completeness of RLMTL-dual tableau follows.

Theorem 14.4.2 (Soundness and Completeness of RLMTL). Let ' be an RLMTL-
formula. Then the following conditions are equivalent:

1. ' is RLMTL-valid;
2. ' is RLMTL-provable.



274 14 Dual Tableau for a Fuzzy Logic

..P ! Q/[ .Q! P//.x; y; z/

�
.[/

.P ! Q/.x; y; z/; .Q! P/.x; y; z/

�
.!/ with new variables t and w

�R.x; t;w/;�P.t; y; z/;Q.w; y; z/; .Q! P/.x; y; z/

�
.!/ with new variables t 0 and w0

�R.x; t;w/;�P.t; y; z/;Q.w; y; z/;�R.x; t 0;w0/;�Q.t 0; y; z/; P.w0; y; z/
�����

(rher’) with t 0
				
�R.x; t;w/;�P.t; y; z/;

�R.x; t 0;w0/; P.w0; y; z/; t 0 	 w; : : :
���� (rher’) with t

			

�R.x; t;w/;�R.x; t 0;w0/;

t 0 	 w; t 	 w0; : : :

���� (rMTL6)
			


R.x; t;w/;
�R.x; t;w/; : : :

closed

R.x; t 0;w0/;

�R.x; t 0;w0/; : : :

closed

P.t; y; z/;�P.t; y; z/ : : :
closed

Q.t 0; y; z/;�Q.t 0; y; z/ : : :
closed

Fig. 14.1 An RLMTL-proof of the formula .p! q/_ .q! p/

..P ˇQ/! P/.x; y; z/

�
.!/ with new variables t and w

�R.x; t;w/;�.P ˇQ/.t; y; z/; P.w; y; z/

�
.�ˇ/ with new variables t 0 and w0

�R.x; t;w/;�R.t 0;w0; t /;�P.t 0; y; z/; P.w; y; z/; : : :
���� (rher’) with t 0

			

�R.x; t;w/;�R.t 0;w0; t /; t 0 	 w; : : :

�����
(rMTL3) with a new variable u

�

				


R.t; x;w/;�R.x; t;w/; : : :

�
(rMTL2)

R.x; t;w/;�R.x; t;w/; : : :
closed

�R.t 0; u;w/; t 0 	 w; : : :

�

(rMTL5) with u
and (rMTL2)

�R.t 0; u;w/; R.t 0; u;w/; : : :
closed

R.t 0;w0; t /;

�R.t 0;w0; t / : : :

closed

P.t 0; y; z/;�P.t 0; y; z/ : : :
closed

Fig. 14.2 An RLMTL-proof of the formula .pˇ q/! p



14.4 Relational Formalization of Logic MTL 275

Furthermore, by Theorems 14.4.1 and 14.4.2, we get:

Theorem 14.4.3 (Relational Soundness and Completeness of MTL). Let ' be an
MTL-formula. Then for all object variables x; y, and z, the following conditions are
equivalent:

1. ' is MTL-valid;
2. �.'/.x; y; z/ is RLMTL-provable.

Example. Consider the following MTL-formulas ' and  :

' D .p ! q/ _ .q ! p/;  D .p ˇ q/! p:

The translations of ' and  into RLMTL-terms are:

�.'/ D .P ! Q/[ .Q! P/; �. / D .P ˇQ/! P;

where �.p/ D P and �.q/ D Q. MTL-validity of ' and  is equivalent to
RLMTL-provability of the formulas �.'/.x; y; z/ and �. /.x; y; z/, respectively.
Figures 14.1 and 14.2 present their RLMTL-proofs.



Chapter 15
Dual Tableaux for Logics of Order of Magnitude
Reasoning

15.1 Introduction

Order of magnitude reasoning is a reasoning in terms of qualitative ranges of
variables instead of their precise values. More precisely, the order of magnitude ap-
proach enables us the reasoning in terms of relative magnitudes of variables obtained
by comparisons of the sizes of quantities. In a sense, order of magnitude methods
of reasoning are situated midway between numerical methods and qualitative for-
malisms.

The logical approaches to order of magnitude reasoning can be found in [BOO04,
BOA05, BMVOA06]. These approaches are based on a system with two landmarks
and with relations of comparability and negligibility. The intuitive representation
of the underlying models can be illustrated with the linearly ordered set of real
numbers, where two landmarks �˛ andC˛ are considered.

OBS� INF OBSC

�˛ C˛
In the picture, �˛ and C˛ represent the greatest negative observable and the least
positive observable, respectively, partitioning the real line into classes of positive ob-
servable numbers, OBSC, negative observable numbers, OBS�, and non-observable
(also called infinitesimal) numbers, INF. This choice makes sense, in particular,
when considering physical metric spaces in which we always have a smallest unit
which can be measured; however, it is not possible to identify a least or a greatest
non-observable number.

Consider the following example which illustrates a concept of comparability.
Assume one aims at specifying the behavior of a device for automatic control of the
speed of a car; assume the system has to maintain the speed close to some speed
limit v. For practical purposes, any value in an interval Œv � "; v C "� for small " is
admissible. The extreme points of this interval can then be considered as the land-
marks �˛ and C˛; furthermore, the sets OBS�, INF, and OBSC can be interpreted
as SLOW, ADEQUATE, and HIGH speed.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 15,
c� Springer Science+Business Media B.V. 2011

277



278 15 Dual Tableaux for Logics of Order of Magnitude Reasoning

Regarding negligibility, the representation capabilities of a pocket calculator
provide an illustrative example of a relation of that kind. In such a device, it is not
possible to present any number whose absolute value is less than 10�99. Therefore,
it makes sense to consider �˛ D �10�99 and C˛ D C10�99 since any number
between �10�99 and 10�99 cannot be observed or presented. On the other hand,
a number x can be said to be negligible with respect to y provided that the differ-
ence y � x cannot be distinguished from y. Numerically, and assuming 8C2 (digits
and mantissa) display, this amounts to stating that x is negligible with respect to y
if and only if y � x > 108. Furthermore, this example suggests a real-life model
in which, for instance, �1000 is negligible with respect to �1. This is even more
suggestive if we interpret the numbers as exponents, since 10�1000 certainly can be
considered negligible with respect to 10�1.

In this chapter we consider a logic OMR of order of magnitude reasoning intro-
duced in [BOO04] and we present a relational dual tableau for this logic based on
the developments in [BMVOA06]. In the logic we deal with the comparability and
negligibility relations. They determine modal operators which enable us to specify
statements about properties of physical systems within the ranges of values of vari-
ables. The deduction tool of dual tableau for OMR provides a means for verifying
these statements. Decidability of the logic OMR is an open problem.

15.2 A Multimodal Logic of Order of Magnitude Reasoning

The language of the logic OMR of order of magnitude reasoning is a multimodal
propositional language with three types of modal operations, each of which is asso-
ciated with a certain relation: Œ<� and Œ<�1� to deal with an ordering of the elements
of a system, the operations Œ@� and Œ@�1� to deal with a comparability relation @,
and the operations Œ�� and Œ��1� to deal with a negligibility relation �.

The intuitive meaning of the modal operations is as follows:

Œ<�' – ' is true for all numbers which are greater than the current one;
Œ<�1�' – ' is true for all numbers which are less than the current one;
Œ@�' – ' is true for all numbers which are greater than and comparable with the

current one;
Œ@�1�' – ' is true for all numbers which are less than and comparable with the

current one;
Œ��' – ' is true for all numbers with respect to which the current one is negligible;
Œ��1�' – ' is true for all numbers which are negligible with respect to the current

one.

Formulas of the language are constructed with symbols from the following pairwise
disjoint sets:

� V – a set of propositional variables;
� fc�; cCg – the set of object constants representing the landmarks;



15.2 A Multimodal Logic of Order of Magnitude Reasoning 279

� f<;@;�g – the set of relational constants representing ordering, comparability,
and negligibility, respectively;

� f:;_;^g – the set of classical propositional operations;
� fŒ<�; Œ<�1�; Œ@�; Œ@�1�; Œ��; Œ��1�g – the set of unary modal operations.

OMR-formulas are generated from the elements of V [ fc�; cCg with the proposi-
tional operations.

An OMR-model is a structure M D .U;<;@;�; c�; cC; m/, where U is a non-
empty set, c� and cC are designated elements ofU which, for the sake of simplicity,
are denoted with the same symbols as the constants of the language, and m is a
meaning function satisfying the following conditions:

� m.p/ � U , for every p 2 V ;
� < is a strict linear ordering on U , that is for all x; y; z 2 U , the following condi-

tions are satisfied:

(irref <) .x; x/ 62 <,
(tran <) If .x; y/ 2 < and .y; z/ 2 <, then .x; z/ 2 <,
(con <) .x; y/ 2 < or .y; x/ 2 < or x D y;

� m.c�/ D c�, m.cC/ D cC and .c�; cC/ 2 <; then the sets OBSC, INF, and
OBS� are defined by:

OBS� dfD fx 2 U W .x; c�/ 2 < or x D c�g,
INF

dfD fx 2 U W .c�; x/ 2 < and .x; cC/ 2 <g,
OBSC dfD fx 2 U W .cC; x/ 2 < or cC D xg;

� @ is a binary relation on U called the comparability relation:

@ dfD < \ 	
.OBS� � OBS�/ [ .INF � INF/ [ .OBSC � OBSC/



, that is for any

x; y 2 U , .x; y/ 2 @ iff either of the following conditions is satisfied:

(i@) .x; y/ 2 <, (.x; c�/ 2 < or x D c�), and (.y; c�/ 2 < or y D c�),
(ii@) .x; y/ 2 <, .c�; x/ 2 <, .x; cC/ 2 <, .c�; y/ 2 <, and .y; cC/ 2 <,
(iii@) .x; y/ 2 <, (cC; x/ 2 < or cC D x), and .cC; y/ 2 < or cC D y);

� � is a binary relation on U called the negligibility relation and satisfying the
following conditions:

(i�) � � <,
(ii�) If .x; y/ 2 � and .y; z/ 2 <, then .x; z/ 2 �,
(iii�) If .x; y/ 2 < and .y; z/ 2 �, then .x; z/ 2 �,
(iv�) If .x; y/ 2 �, then either x … INF or y … INF.

Note that as a consequence of items (ii�) and (iii�), the relation � is transitive;
item (iv�) states that two non-observable elements cannot be compared by the neg-
ligibility relation.



280 15 Dual Tableaux for Logics of Order of Magnitude Reasoning

Let ' be an OMR-formula and let M D .U;<;@;�; m/ be an OMR-model.
The satisfaction of ' in M by a state s 2 U , M; s ˆ ' for short, is defined as
follows:

� M; s ˆ p iff s 2 m.p/, for every p 2 V ;
� M; s ˆ c# iff s D c#, for # 2 f�;C g;
� M; s ˆ :' iff not M; s ˆ ';
� M; s ˆ .' _  / iff M; s ˆ ' or M; s ˆ  ;
� M; s ˆ .' ^  / iff M; s ˆ ' and M; s ˆ  ;

For T 2 f<;@;�g,
� M; s ˆ ŒT �' iff for all s0 2 U , .s; s0/ 2 T implies M; s0 ˆ ';
� M; s ˆ ŒT �1�' iff for all s0 2 U , .s; s0/ 2 T �1 implies M; s0 ˆ '.

15.3 Dual Tableau for the Logic of Order of Magnitude
Reasoning

A relational logic for representation of OMR-formulas, RLOMR, is an instance of
the relational logic RLdf .C/ presented in Sect. 3.3. The vocabulary of its language
consists of symbols from the following pairwise disjoint sets:

� OV RLOMR – a set of object variables;
� OCRLOMR D fc�; cCg – the set of object constants corresponding to the distin-

guished elements from the OMR-models;
� RV RLOMR – a set of binary relational variables;
� RCRLOMR D f1; 10; <;@;�; C�; CCg – the set of relational constants where C�

and CC are intended to be point relations representing the landmarks;
� f�;[;\; I ;�1g – the set of relational operations.

The set of RLOMR-relational terms and the set of RLOMR-formulas are defined in a
standard way (see Sect. 3.3).

An RLOMR-model is a structureM D .U;<;@;�; c�; cC; m/, whereU is a non-
empty set, c� and cC are designated elements of U , and m is a meaning function
satisfying the following conditions:

� m.c�/ D c�, m.cC/ D cC;
� m.R/ � U � U , for everyR 2 RARLOMR ;
� m.10/ andm.1/ are defined as in RL.1; 10/-models;
� m.</ D < is irreflexive, transitive, and it satisfies the following condition for all
x; y 2 U :

(con’) Either .x; y/ 2 < or .y; x/ 2 < or .x; y/ 2 m.10/I



15.3 Dual Tableau for the Logic of Order of Magnitude Reasoning 281

� .c�; cC/ 2 <; as in OMR-models, the linearity of < enables us to partition U
into the classes OBS�, OBSC, and INF which are defined as in OMR-models
with a difference that equality is replaced by m.10/ that may not be the identity
(for a discussion of that issue see Sect. 2.7);

� m.@/ D @ D <\ 	
.OBS��OBS�/[ .INF� INF/[ .OBSC�OBSC/



, that

is for any x; y 2 U , .x; y/ 2 @ iff either of the following conditions is satisfied:

(i’@) .x; y/ 2 <, (.x; c�/ 2 < or .x; c�/ 2 m.10/), and (.y; c�/ 2 < or
.y; c�/ 2 m.10/),

(ii’@) .x; y/ 2 <, .c�; x/ 2 <, .x; cC/ 2 <, .c�; y/ 2 <, and .y; cC/ 2 <,
(iii’@) .x; y/ 2 <, (.cC; x/ 2 < or .cC; x/ 2 m.10//, and .cC; y/ 2 < or

.cC; y/ 2 m.10//;

� m.�/ D � satisfies all the constraints posed on the relation � in OMR-models;
� m.C #/ D fx 2 U W .x; c#/ 2 m.10/g � U , for # 2 f�;C g;
� m extends to all the compound relational terms as in RL.1; 10/-logic.

As in RL.1; 10/-logic, an RLOMR-model in whichm.10/ is interpreted as the identity
is called a standard RLOMR-model. Note that if m.10/ is the identity on U , then
m.C #/ D fc#g�U , # 2 f�;C g, that is it is a point relation whose domain represents
a landmark.

The validity preserving translation assigning relational terms to modal formulas
is defined as in the classical modal logic (see Sect. 7.4) with the following additional
clauses:

For # 2 f�;C g,
� �.c#/ D C # I 1.

For T 2 f<;@;�g,
� �.ŒT �'/ D �.T I ��.'//;
� �.ŒT �1�'/ D �.T �1 I ��.'//.
By Theorem 7.4.1, in a similar way as in the classical modal logics, we obtain:

Theorem 15.3.1. For every OMR-formula ' and for all object symbols x and y,
the following conditions are equivalent:

� ' is OMR-valid;
� x�.'/y is RLOMR-valid.

A relational dual tableau for RLOMR consists of axiomatic sets and decomposition
and specific rules of RL.1; 10/-dual tableau adjusted to the language of RLOMR and
the rules specific for RLOMR listed below.

The rule that reflects irreflexivity of < is an instance of the rule (irref R) pre-
sented in Sect. 12.6. The rule reflecting transitivity of < is presented in Sect. 6.6
(see also Sect. 7.4). Recall that these rules have the following forms:



282 15 Dual Tableaux for Logics of Order of Magnitude Reasoning

For all object symbols x and y,

(irref <)
x < x

(tran <)
x < y

x < z; x < y j z < y; x < y
for every object symbol z

The rules for the comparability relation @ that express its properties have the fol-
lowing forms:

For all object symbols x and y,

(r(i’@// x @ y

x < y; x @ y j x < c�; x10c�; x @ y jy < c�; y10c�; x @ y

(r(ii’@/) x @ y

x < y; x @ y j c�<x; x @ y j x < cC; x @ y j c�<y; x @ y jy < cC; x @ y

(r(iii’@// x @ y

x < y; x @ y j cC<x; cC10x; x @ y j cC<y; cC10y; x @ y

.�@/ x�@ y

H1 jH2 jH3 , where:

H0 D fy < x; x10yg;
H1DH0 [ fc�<x; c�<y; x�@ yg;
H2DH0[fx < c�; x10c�; cC<x; cC10x; y < c�; y10c�; cC<y; cC10y; x�@ yg;
H3DH0 [ fx < cC; y < cC; x�@yg.
The rules for the negligibility relation � reflecting its properties have the following
forms:

For all object symbols x and y,

(r(i�// x < y

x � y; x < y

(r(ii�// x � y
x � z; x � y j z < y; x � y for every object symbol z

(r(iii�// x � y
x < z; x � y j z � y; x � y for every object symbol z

(r(iv�// x < c�; x10c�; cC<x; cC10x; y < c�; y10c�; cC<y; cC10y
x � y; x < c�; x10c�; cC<x; cC10x; y < c�; y10c�; cC<y; cC10y

The rules for the relational constants C #, # 2 f�;C g are:
For all object symbols x and y,

.C #/
xC #y

x10c#; xC #y
.�C #/

x�C #y

x�10c#; x�C #y



15.3 Dual Tableau for the Logic of Order of Magnitude Reasoning 283

Note that applications of the rules of RLOMR-dual tableau, in particular applications
of the specific rules listed above, preserve the formulas built with atomic terms or
their complements. Thus, the closed branch property holds.

The specific RLOMR-axiomatic sets are those including either of the following
sets:

(Ax1) fc�<cCg;
(Ax2) fx < y; y < x; x10yg, for any object symbols x and y.

An alternative representation of the connectivity condition from the OMR-models
can be provided by a rule in the RLOMR-dual tableau. This issue is discussed in
Sect. 25.9, see also Sect. 25.6.

The notions of an RLOMR-set and RLOMR-correctness of a rule are defined as in
Sect. 2.4.

Proposition 15.3.1.

1. The RLOMR-decomposition rules are RLOMR-correct;
2. The RLOMR-specific rules are RLOMR-correct;
3. The RLOMR-axiomatic sets are RLOMR-sets.

Proof. The proof of 1. follows the proof of RL-correctness of the decomposition
rules (see Proposition 2.5.1).

For 2., by way of example, we prove RLOMR-correctness of the rule (r(iv�)). Let
X be a finite set of RLOMR-formulas.

(r(iv�)) Assume that X[fx�y; x < c�; x10c�; cC<x; cC10x; y < c�; y10c�,
cC<y; cC10yg is an RLOMR-set. SupposeX[fx < c�; x10c�; cC<x; cC10x; y <
c�; y10c�; cC<y; cC10yg is not an RLOMR-set. Then there exist an RLOMR-model
M and valuation v in M such that for every ' 2 X , M; v 6ˆ '. Hence, by linear-
ity of <, all the following conditions are satisfied: .c�; v.x//2< , .v.x/; cC/2<,
.c�; v.y//2<, and .v.y/; cC/ 2 <. These conditions imply that v.x/; v.y/ 2 INF,
thus by the condition (iv�), .v.x/; v.y// 62 �. However, by the assumption,
.v.x/; v.y// 2 �, a contradiction. Preservation of validity from the upper set to
the lower set is obvious.

Correctness of the remaining specific rules follows from the corresponding as-
sumption in the RLOMR-models.

For 3., note that for every RLOMR-model M, .c�; cC/ 2 <, thus the sets in-
cluding fc�<cCg are RLOMR-sets. Similarly, by connectivity of <, sets of the form
X [fx < y; x�<y; x10yg are RLOMR-sets. ut
The notions of an RLOMR-proof tree, a closed branch of such a tree, a closed RLOMR-
proof tree, and RLOMR-provability are defined as in Sect. 2.4.

The completion conditions determined by the rules (irref <) and (tran <) are the
instances of the completion conditions presented in Sects. 12.6 and 6.6, respectively.
The completion conditions determined by the rules that are specific for RLOMR-dual
tableau have the following forms:



284 15 Dual Tableaux for Logics of Order of Magnitude Reasoning

For all object symbols x and y,

Cpl(r(i’@)) If x @ y 2 b, then either x < y 2 b or (x < c� 2 b and x10c� 2 b) or
(y < c� 2 b and y10c� 2 b), obtained by an application of the rule (r(i’@));

Cpl(r(ii’@)) If x @ y 2 b, then either x < y 2 b or c�<x 2 b or x < cC 2 b or
c�<y 2 b or y < cC 2 b, obtained by an application of the rule (r(ii’@));

Cpl(r(iii’@)) If x @ y 2 b, then either x < y 2 b or (cC<x 2 b and cC10x 2 b)
or (cC<y 2 b and cC10y 2 b), obtained by an application of the rule (r(iii’@));

Cpl(�@) If x�@y 2 b, then either of the following conditions is satisfied:

� y < x 2 b, x10y 2 b, c�<x 2 b, and c�<y 2 b,
� y < x 2 b, x10y 2 b, x < c� 2 b, x10c� 2 b, cC<x 2 b, cC10x 2 b,
y < c� 2 b, y10c� 2 b, cC<y 2 b, and cC10y 2 b,

� y < x 2 b, x10y 2 b, x < cC 2 b, and y < cC 2 b,

obtained by an application of the rule (�@);
Cpl(r(i�)) If x < y 2 b, then x � y 2 b, obtained by an application of the rule

(r(i�));
Cpl(r(ii�)) If x � y 2 b, then for every object symbol z, either x � z 2 b or

z < y 2 b, obtained by an application of the rule (r(ii�));
Cpl(r(iii�)) If x � y 2 b, then for every object symbol z, either x < z 2 b or

z � y 2 b, obtained by an application of the rule (r(iii�));
Cpl(r(iv�)) If x < c� 2 b, x10c� 2 b, cC<x 2 b, cC10x 2 b, y < c� 2 b,
y10c� 2 b, cC<y 2 b, and cC10y 2 b, then x � y 2 b, obtained by an
application of the rule (r(iv�));

Cpl(C #) If xC #y 2 b, then x10c# 2 b, obtained by an application of the rule (C #);
Cpl(�C #) If x�C #y 2 b, then x�10c# 2 b, obtained by an application of the rule

(�C #).

The notions of a complete branch of an RLOMR-proof tree, a complete RLOMR-proof
tree, and an open branch of an RLOMR-proof tree are defined as in RL-logic (see
Sect. 2.5).

Let b be an open branch of an RLOMR-proof tree. A branch structure Mb D
.U b; <b;@b;�b; .c�/b; .cC/b; mb/ is defined as follows:

� U b D OV RLOMR [ fc�; cCg;
� .c#/b D mb.c#/ D c#, for # 2 f�;C g;
� mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for R 2 RARLOMR n f@; C�; CCg;
� <bD mb.</ and �bD mb.�/;
� @bD mb.@/, mb.C�/, andmb.CC/ are defined as in RLOMR-models;
� mb extends to all the relational terms as in RL.1; 10/-models.

Proposition 15.3.2 (Branch Model Property). Let b be an open branch of an
RLOMR-proof tree. The branch structureMb D .U b; <b;@b;�b; .c�/b; .cC/b; mb/
is an RLOMR-model.



15.3 Dual Tableau for the Logic of Order of Magnitude Reasoning 285

Proof. Obviously, c# 2 U b , for # 2 f�;C g. Moreover, since fc�<cCg is an
axiomatic set, c�<cC 62 b, hence ..c�/b; .cC/b/ 2 <b .

Now, it suffices to show that �b satisfies all the conditions assumed in RLOMR-
models.

By Cpl(irref <), for every x 2 U b , x < x 2 b, that is .x; x/ 62 <b . Hence, <b

is irreflexive. Assume that for some x; y; z 2 U b , .x; y/ 2 <b , .y; z/ 2 <b , but
.x; z/ 62 <b . Then x < y 62 b, y < z 62 b, and x < z 2 b. By Cpl(tran <) and
since x < z 2 b, either x < y 2 b or y < z 2 b, a contradiction. Therefore, <b is
transitive. Since fx < y; y < x; x10yg is an axiomatic set, for all x; y 2 U b , either
x < y 62 b or y < x 62 b or x10y 62 b. Thus, for all x; y 2 U b , either .x; y/ 2 <b
or .y; x/ 2 <b or .x; y/ 2 mb.10/. Hence, <b is linear.

The linearity of <b enables us to partition U b into classes .OBS�/b , .OBSC/b ,
and INFb as defined on p. 279. Then, conditions (i�), (ii�), and (iii�) follow
directly from the completion conditions Cpl(r(i�)), Cpl(r(ii�)), and Cpl(r(iii�)),
respectively.

Now, we prove that�b satisfies the condition (iv�). Assume that for some x; y 2
U b , .x; y/ 2 �b , but x 2 INFb and y 2 INFb . Due to irreflexivity and transitivity
of <b and extensionality property of mb.10/ (see the proof of Proposition 2.7.5) it
is easy to prove that for all x; y 2 U b, if .x; y/ 2 <b , then .y; x/ 62 <b [mb.10/.
Thus, since x 2 INFb and y 2 INFb , we obtain .x; c�/ 62 <b [mb.10/, .cC; x/ 62
<b [ mb.10/, .y; c�/ 62 <b [ mb.10/, and .cC; y/ 62 <b [ mb.10/. Thus all the
following formulas belong to b: x < c�, x10c�, cC<x, cC10x, y < c�, y10c�,
cC<y, and cC10y. Then, by the completion condition Cpl(r(iv�)), x � y 2 b, so
.x; y/ 62 �b , a contradiction. Therefore, the condition (iv�) is satisfied. ut
A valuation vb in Mb is defined in a standard way, that is vb.x/ D x, for every
x 2 U b .

Proposition 15.3.3 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLOMR-proof tree. Then for every RLOMR-formula ', if Mb; vb ˆ ',
then ' 62 b.

Proof. Let b be an open branch of an RLOMR-proof tree. The proof is by induction
on the complexity of formulas. For a formula ' of the form xRy or x�Ry, where
R 2 RARLOMR n f@; C�; CCg, the proof is as in RL-logic and it uses the closed
branch property (see the proof of Proposition 2.5.5). Now, it suffices to show that
the proposition holds for formulas of the form xRy and formulas of the form x�Ry,
for R 2 f@; C�; CCg. By way of example, we prove it for R D �@.

Assume Mb; vb ˆ x�@ y, i.e., .x; y/ 62 @b . Suppose x�@ y 2 b. Then by
the completion condition Cpl(�@) and symmetry of mb.10/, either of the following
conditions is satisfied:

� .y; x/ 62 <b [mb.10/, .c�; x/ 62 <b , and .c�; y/ 62 <b;
� .y; x/ 62 <b[mb.10/, .x; c�/ 62 <b[mb.10/, .cC; x/ 62 <b[mb.10/, .y; c�/ 62
<b [mb.10/, and .cC; y/ 62 <b [mb.10/;

� .y; x/ 62 <b [mb.10/, .x; cC/ 62 <b , and .y; cC/ 62 <b .



286 15 Dual Tableaux for Logics of Order of Magnitude Reasoning

Thus, by the linearity of <b, either of the following conditions is satisfied:

� .x; y/ 2 <b , .x; c�/ 2 <b [mb.10/, and .y; c�/ 2 <b [mb.10/;
� .x; y/ 2 <b , .c�; x/ 2 <b , .x; cC/ 2 <b , .c�; y/ 2 <b , and .y; cC/ 2 <b;
� .x; y/ 2 <b , .cC; x/ 2 <b [mb.10/, and .cC; y/ 2 <b [mb.10/.
Therefore, .x; y/ 2 @b , a contradiction. For the compound relational terms the
proofs are similar to those in RL-logic. ut
Finally, we obtain:

Theorem 15.3.2 (Soundness and Completeness of RLOMR). For every RLOMR-
formula ', the following conditions are equivalent:

1. ' is RLOMR-valid;
2. ' is true in all standard RLOMR-models;
3. ' is RLOMR-provable.

By the above theorem and Theorem 15.3.1, we have:

Theorem 15.3.3 (Relational Soundness and Completeness of OMR). For every
OMR-formula ' and for all object symbols x and y, the following conditions are
equivalent:

1. ' is OMR-valid;
2. x�.'/y is RLOMR-provable.

xŒ�C� [�.@ I�P/�y
�
.[/

x�C�y; x�.@ I�P/y
�
.�C�/

x�10c�; x�.@ I�P/y; : : :

�
.�I / with a new variable z and .�/

x�10c�; x�@ z; zPy; : : :
����

x�10c�; z < x; x10z; c�< z; : : :

�
��
.102/ with x

x�10c�; c�10x; : : :

�
���
.101/ with c�

�
�� 

�
�
� 

c�10c�

closed

x�10c�; x10c�; : : :

closed

x < z; z < x; x10z; : : :
closed

.� @/
�

x�10c�; x10c�; : : :

closed

		

x�10c�; x < cC; : : :

�
��
.102/ with c� �

� 
x�10c�; x10c�; : : :

closed

c�<cC; : : :

closed

Fig. 15.1 An RLOMR-proof of the formula :c� _ Œ@�p



15.3 Dual Tableau for the Logic of Order of Magnitude Reasoning 287

Example. Consider an OMR-formula:

' D :c� _ Œ@�p:

The translation of ' to an RLOMR-relational term is:

�.'/ D �C� [ �.@ I �P/;

where for simplicity of notation, �.p/ D P . By Theorem 15.3.3, for all object
symbols x and y, OMR-validity of ' is equivalent to RLOMR-provability of the
formula x�.'/y. Figure 15.1 presents an RLOMR-proof of this formula.



Part V
Relational Reasoning about Time, Space,

and Action



Chapter 16
Dual Tableaux for Temporal Logics

16.1 Introduction

The first attempts to create a tense logic are the investigations of A. N. Prior pub-
lished in [Pri57, Pri67]. Temporal logics are modal logics whose modal operations
are determined by two relations on a set of time points expressing earlier-later or
past-future relationships between instants of time. The relations are ordering re-
lations possibly satisfying various axioms such as strict ordering, linear ordering,
branching time, ordering with or without endpoints, discrete, etc. If P is a relation
such that holding of tPt0 is interpreted as t precedes t 0, then the modal operator hP i
means ‘it will at some time be the case that’ and ŒP � is interpreted as ‘it will always
be the case that’. Similarly, if F is a relation such that tFt0 means t follows t 0, then
hF i says ‘it has at some time been the case that’ and ŒF � is intuitively interpreted as
‘it has always been the case that’. Often some other temporal operations are included
in languages of temporal logics. The binary operations Since and Until introduced in
[Kam68] and the unary operation Next, introduced in [vW65], are among the most
popular. If ' and  are formulas, then the formula ‘' Since ’ says that  has been
true since a time point when ' was true. The formula ‘' Until ’ means that there
is a future time point at which  is true, with ' true at all time points between now
and then. The formula ‘Next '’ is meaningful whenever the ordering of time points
is discrete. Then it says that ' is true at the immediate successor of a present time
moment.

The problem of representing time-varying information and reasoning with such
information arises in a wide range of disciplines including logic, computer science,
psychology, linguistics, and philosophy. Applications of temporal logic in computer
science have been initiated by J. Bubenko in [Bub77] for applications in the theory
of databases and by A. Pnueli in [Pnu77] for applications in the theory of programs.
Since then temporal logics have become an important issue in artificial intelligence,
in the specification and verification of programs, and in reasoning about actions and
events. In Chap. 19 we discuss, among others, a temporal logic for the specifica-
tion and verification of concurrent programs. Surveys of temporal logics and their
applications can be found in [Bur79, vB83, vB95, Gol87, AHK02, HR06]. There
are many results on decidability of temporal logics. It was proved that the temporal

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 16,
c� Springer Science+Business Media B.V. 2011

291



292 16 Dual Tableaux for Temporal Logics

theories of arbitrary linear orders, of every elementary class of linear orders, of well
orders, and of complete orders are decidable. A comprehensive survey of decidabil-
ity of temporal logics can be found in [BG85].

In this chapter we present relational dual tableaux for a number of point-based
temporal structures.

16.2 Basic Temporal Logic

Temporal logics belong to the family of modal logics. In their models the elements
of the universes are interpreted as moments of time and the accessibility relation
reflects earlier-later relationship. To get access to both past and future moments,
in temporal frames we usually include the accessibility relation and its converse,
denoted by P and F , respectively. Modal operations determined by these relational
constants refer to past and future moments of time, respectively. The logics with
these operations as the only modal operations are referred to as the standard tem-
poral logics. We obtain various classes of standard temporal logics by assuming
specific properties of the accessibility relations.

The common language of standard temporal logics is a modal language as
defined in Sect. 7.3 with relational constants F and P . In this chapter we con-
sider the basic temporal logic TL whose models are structures of the form M D
.U; F; P;m/ as defined in Sect. 7.3 (see p. 146) such that F and P are transitive re-
lations on U satisfying F D P�1. Relations F and P may satisfy some additional
conditions, for example linearity or density, as presented in the next section.

The language of temporal logics with operations determined by relations F and
P is more expressive than the ordinary modal language with operations determined
by one of these relations, for example, continuity of a strict linear ordering is ex-
pressible only in the presence of both past and future operations.

In order to obtain a relational representation of the logic TL, we follow the
method presented in Sect. 7.4. We define logic RLTL whose language is appro-
priate for expressing formulas of TL as relations. It is an RL.1; 10/-language
such that RCRLTL Df1; 10; F; P g and OCRLTL D;. An RLTL-model is a struc-
ture MD .U; F; P;m/ such that .U;m/ is an RL.1; 10/-model, F and P are binary
relations on U that provide the interpretation of relational constants F and P ,
respectively, and satisfy all the properties of relations F and P that are assumed
in TL-models. The translation of TL-formulas into relational terms is defined as in
Sect. 7.4 (see p. 147). Due to Theorem 7.4.1, we have:

Theorem 16.2.1. For every TL-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is TL-valid;
2. x�.'/y is RLTL-valid.



16.2 Basic Temporal Logic 293

RLTL-dual tableau is an extension of RL.1; 10/-dual tableau with the specific rules
that reflect properties of the relations F and P . The rule reflecting transitivity
is presented in Sect. 6.6 (see also Sect. 7.4). We recall that this rule has the following
form:

For all object variables x and y and for every R 2 fF;P g,

.tran R/
xRy

xRz; xRy j zRy; xRy z is any object variable

The rules that reflect the conditions P�1 � F and F � P�1 have the following
forms, respectively:

For all object variables x and y,

.F /
xFy

yPx; xFy
.P /

xPy

yFx; xPy

Alternative forms of rules .F / and .P / are discussed in Sect. 25.9.
The notions of an RLTL-set and correctness of a rule are defined as in Sect. 2.4.

Following the proof of correspondence for the RLFCL-rules .S/ and .R/ in
Theorem 13.3.2, it can be shown that the rules .F / and .P / are correct if and
only if the conditions P�1 � F and F � P�1, respectively, hold in all RLTL-
structures. Thus, based on correctness of RL.1; 10/-rules and on correctness of the
rule (tran R) proved in Sect. 6.6, we get:

Proposition 16.2.1.

1. The RLTL-rules are RLTL-correct;
2. The RLTL-axiomatic sets are RLTL-sets.

The notions of an RLTL-proof tree, a closed branch of such a tree, a closed RLTL-
proof tree, and RLTL-provability are defined as in Sect. 2.4.

A branch b of an RLTL-proof tree is complete whenever it is closed or it satisfies
the completion conditions of RL.1; 10/-dual tableau adjusted to RLTL-language and
the following conditions specific for the RLTL-dual tableau:

For all object variables x and y and for every R 2 fF;P g,
Cpl(tranR) If xRy 2 b, then for every object variable z, either xRz 2 b or zRy 2 b,

obtained by an application of the rule (tran R);
Cpl(F ) If xFy 2 b, then yPx 2 b, obtained by an application of the rule (F );
Cpl(P ) If xPy 2 b, then yFx 2 b, obtained by an application of the rule (P ).

The rules of RLTL-dual tableau, in particular the specific rules listed above, guar-
antee that for every branch b of an RLTL-proof tree, if xTy 2 b and x�Ty 2 b, for
some atomic relational term T , then there is a node in the branch which contains
both of these formulas, which implies that branch b is closed. Therefore, the closed
branch property holds.

The notions of a complete RLTL-proof tree and an open branch of an RLTL-proof
tree are defined as in RL-logic (see Sect. 2.5).



294 16 Dual Tableaux for Temporal Logics

Let b be an open branch of an RLTL-proof tree. The branch structure Mb D
.U b; F b; P b ; mb/ is defined in a standard way (see Sect. 2.6), i.e., .U b; mb/ is an
RL.1; 10/-branch model and mb.R/ D f.x; y/2U b � U b W xRy 62 bg, for every
R2 fF;P g. Following the proof of the branch model property in the completeness
proof of RLEQ-dual tableau and RLFCL-dual tableau (see Sects. 6.6 and 13.3,
respectively), the branch model property for RLTL-dual tableau can be proved. Since
the branch model Mb is defined in a standard way and the closed branch property
holds, the satisfaction in branch model property can be proved as in RL.1; 10/-logic
(see Sects. 2.5 and 2.7). Hence, completeness of RLTL-dual tableau follows.

Theorem 16.2.2 (Soundness and Completeness of RLTL). Let ' be an RLTL-
formula. Then the following conditions are equivalent:

1. ' is RLTL-valid;
2. ' is true in all standard RLTL-models;
3. ' is RLTL-provable.

The above theorem and Theorem 16.2.1 imply:

Theorem 16.2.3 (Relational Soundness and Completeness of TL). Let ' be a
TL-formula. Then for all object variables x and y, the following conditions are
equivalent:

1. ' is TL-valid;
2. x�.'/y is RLTL-provable.

16.3 Semantic Restrictions on Basic Temporal Logic

Various temporal logics are obtained from TL by assuming some properties of the
time ordering F and P . Let R 2 fF;P g. The following conditions on R are among
the most typical:

For all x; y; and z,

� R is irreflexive: .x; x/ 62 R;
� R is serial: there exists y such that .x; y/2R;
� R is unbound from below: R�1 is serial;
� R is discrete: .x; y/2R implies (1) there exists z such that .x; z/2R and for all
t if .x; t/2R, then .z; t/2R, and (2) there exists z such that .z; y/2R and for
all t if .t; y/2R, then .t; z/2R;

� R is weakly connected: .x; y/2R and .x; z/2R imply .y; z/2R or .z; y/2R
or y D z;

� R is connected: either .x; y/2R or .y; x/2R or x D y;
� R is dense: .x; y/2R implies there exists z such that .x; z/2R and .z; y/2R;
� R is weakly directed: .x; y/2R and .x; z/2R imply there exists t such that
.y; t/2R and .z; t/2R;

� R is Euclidean: .x; y/2R and .x; z/2R imply .y; z/2R;
� R is partially functional: .x; y/2R and .x; z/2R imply y D z;
� R is functional: there exists exactly one y such that .x; y/2R.



16.3 Semantic Restrictions on Basic Temporal Logic 295

These properties of temporal ordering are of great importance in temporal reasoning.
The adequate modelling of time scale should guarantee that any time moment does
not precede itself. It seems that the most appropriate model for linear time scales
is a strict total order which is irreflexive and connected. In several applications we
need to distinguish between discrete and dense time scales, for example to model
execution of computer programs, a discrete time is appropriate.

In what follows, any logic whose models are TL-models such that the relation
R possibly satisfies some constraints from the above list is referred to as a standard
temporal logic and is denoted by LTL. It is always specified semantically in terms of
a class of models.

The relational logic for an LTL-logic is defined as in the previous section with
the minor change of notation. We will write R and R�1 instead of F and P (or P
and F ), respectively, both in the language, in the structures, and in the models. An
RLLTL -structure is an RLTL-model M D .U;R;R�1; m/. An RLLTL -model is an
RLLTL -structure such that the relation R satisfies all the conditions assumed in the
LTL-models.

As usual, we can prove the following:

Theorem 16.3.1. Let LTL be a standard temporal logic. Then for every LTL-formula
' and for all object variables x and y, the following conditions are equivalent:

1. ' is LTL-valid;
2. x�.'/y is RLLTL -valid.

RLLTL -dual tableaux are extensions of RLTL-dual tableau with the specific rules
and/or axiomatic sets that reflect properties of the relation R. Below we present
the rules and axiomatic sets that reflect the properties of relations from the above
list.

Connectivity of R leads to the following axiomatic set:

(Ax) fxRy; yRx; x10yg:
Alternatively, connectivity can be expressed with a rule (see Sect. 25.9).

The rule that reflects irreflexivity can be found in Sect. 12.6. We recall that this
rule has the following form:

.irref R/
xRx

x is any object variable

The rules for the remaining properties have the following forms:

(ser R)
x�.R I 1/x x is any object variable

(un R)
x�.R�1 I 1/x x is any object variable

(dis1 R)
xRy j x�.�.R I �R�1/ IR�1/x x; y are any object variables



296 16 Dual Tableaux for Temporal Logics

(dis2 R)
xRy j y�.�.R�1 I �R/ IR/y x; y are any object variables

(wcon R)
yRz; zRy; y10z

xRy; yRz; zRy; y10z j xRz; yRz; zRy; y10z

x is any object variable

(den R)
xRy j x�.R IR/y x; y are any object variables

(wdir R)
xRy j xRz j y�.R IR�1/z x; y; z are any object variables

(Euc R)
yRz

xRy; yRz j xRz; yRz
x is any object variable

(pfunR)
y10z

xRy; y10z j xRz; y10z
x is any object variable

(fun R)
xRy; x�.R I 1/x j xRz; x�.R I 1/x j y�10z; x�.R I 1/x
x; y; z are any object variables

Many of these rules have the form of a specialized cut rule. Some of them could
be replaced by rules with a non-empty premise, and then an ordinary cut rule must
be introduced to the dual tableau in question. This issue is discussed in detail in
Sect. 25.9.

The rules (ser R), (dis1 R), (dis2 R), (wcon R), (den R), (wdir R), (Euc R),
(pfun R), (fun R), and (un R) reflect that the relation R is serial, discrete, weakly
connected, dense, weakly directed, Euclidean, partially functional, functional, and
unbound from below, respectively. Introduction of any of these rules to the RLLTL -
dual tableau does not violate the closed branch property which can be proved as in
Proposition 2.5.3.

Let LTL be a standard temporal logic and let K be a class of LTL-structures. The
notion of a K-set and the notion of K-correctness are defined as in Sect. 2.4.

Theorem 16.3.2 (Correspondence). Let LTL be a standard temporal logic and let
K be a class of RLLTL -structures. A condition (c) is true in the class K iff its corres-
ponding rule(s) is(are) K-correct.

Proof. By way of example, we prove the statement for a logic where relation R is
dense and for a logic where R is discrete.

(den R) Let LTL be a logic where relation R is dense. Assume that R is dense in
every K-structure. Let X be a finite set of RLLTL -formulas. Preservation of validity
from the upper set to the lower sets is obvious. Now, assume that X [ fxRyg and
X [ fx�.R IR/yg are K-sets and suppose X is not a K-set. Then, by the assump-
tion, there exist a K-structure M and a valuation v in M such that .v.x/; v.y//2R



16.3 Semantic Restrictions on Basic Temporal Logic 297

and for every z2U either .v.x/; z/ 62 R or .z; v.y// 62 R, a contradiction with den-
sity of R. Hence, the rule (den R) is K-correct. Now, assume the rule (den R) is

K-correct. Let X
dfD fx�Ry; x.R IR/yg. Then X [ fxRyg and X [ fx�.R IR/yg

are K-sets. Thus, by the assumption, fx�Ry; x.R IR/yg is a K-set, which means
that for every K-structure M and for all x; y 2U if .x; y/2R, then there exists
z2U such that .x; z/2R and .z; y/2R. Hence, R is dense.

(disR) Let LTL be a logic where relationR is discrete. Assume thatR is discrete
in every K-structure. Let X be a finite set of RLLTL -formulas. Assume that X [
fxRyg andX[fx�.�.R I �R�1/ IR�1/xg are K-sets and supposeX is not a K-set.
Then, by the assumption, there exist a K-structure M and a valuation v in M such
that .v.x/; v.y//2R and for all z2U either .v.x/; z/ 62 R or there exists t 2U such
that .v.x/; t/2R and .z; t/ 62 R, which contradicts discreteness of R. Preservation
of validity from the upper set to the lower sets is obvious. Therefore, the rule (dis1
R) is K-correct. Correctness of the rule (dis2 R) can be proved in a similar way.
Now, assume that the rules (dis1 R) and (dis2 R) are K-correct. We show that R

is discrete in every K-structure. Let X
dfD fx�Ry; x.�.R I �R�1/ IR�1/xg. Then,

in every K-structure the sets X [ fxRyg and X [ fx�.�.R I �R�1/ IR�1/xg are
K-sets. Thus, by K-correctness of the rule (dis1 R), X is a K-set, that is for all
x; y 2U , if .x; y/2R, then there exists z2U such that .x; z/2R and for all t 2U ,
if .x; t/2R, then .z; t/2R. Therefore, the part (1) of discreteness holds. In a similar
way, correctness of the rule (dis2 R) implies part (2) of discreteness. ut
The above theorem leads to the following:

Proposition 16.3.1. Let LTL be a standard temporal logic. Then:

1. The RLLTL -rules are RLLTL -correct;
2. The RLLTL -axiomatic sets are RLLTL -sets.

A branch b of an RLLTL-proof tree is complete whenever it is closed or it satisfies the
completion conditions of RLLTL -dual tableau and the following conditions specific
for the RLLTL -dual tableau:

For all object variables x; y; z,

Cpl(irref R) xRx 2 b, obtained by an application of the rule (irref R);
Cpl(ser R) x�.R I 1/x 2 b, obtained by an application of the rule (ser R);
Cpl(un R) x�.R�1 I 1/x 2 b, obtained by an application of the rule (un R);
Cpl(dis1 R) Either xRy 2 b or x�.�.R I �R�1/ IR�1/x 2 b, obtained by an appli-

cation of the rule (dis1 R);
Cpl(dis2 R) Either xRy 2 b or y�.�.R�1 I �R/ IR/y 2 b, obtained by an applica-

tion of the rule (dis2 R);
Cpl(wcon R) If yRz2 b, zRy 2 b, and y10z2 b, then either xRy 2 b or xRz2 b,

obtained by an application of the rule (wcon R);
Cpl(den R) Either xRy 2 b or x�.R IR/y 2 b, obtained by an application of the

rule (den R);



298 16 Dual Tableaux for Temporal Logics

Cpl(wdir R) Either xRy 2 b or xRz2 b or y�.R IR�1/z2 b, obtained by an
application of the rule (wdir R);

Cpl(Euc R) If yRz2 b, then either xRy 2 b or xRz2 b, obtained by an application
of the rule (Euc R);

Cpl(pfunR) If y10z2 b, then for every object variable x, either xRy 2 b or xRz2 b,
obtained by an application of the rule (pfunR);

Cpl(fun R) x�.R I 1/x 2 b and either xRy 2 b or xRz2 b or y�10z2 b, obtained
by an application of the rule (fun R).

The notions of a complete RLLTL -proof tree and an open branch of an RLLTL -proof
tree are defined as in RL-logic (see Sect. 2.5).

Let b be an open branch of an RLLTL -proof tree. The branch structure Mb D
.U b; Rb; .R�1/b; mb/ is defined as in the completeness proof of RLTL-dual tableau,

in particular Rb D mb.R/
dfD f.x; y/2U b � U b W xRy 62 bg and .R�1/b dfD

.Rb/�1.

Proposition 16.3.2 (Branch Model Property). Let LTL be a standard tempo-
ral logic. For every open branch b of an RLLTL -proof tree, the branch structure
Mb D .U b; Rb; .R�1/b; mb/ is an RLLTL -model.

Proof. It suffices to show that if a condition is true in all models of a logic RLLTL ,
then it is true in Mb .

By way of example, we show that this holds for a logic LTL whose mod-
els have a discrete relation R. Then, the dual tableau for RLLTL contains rules
(dis1 R) and (dis2 R). By the completion condition Cpl(dis1 R), for all x; y 2U b ,
either xRy 2 b or x�.�.R I �R�1/ IR�1/x 2 b. Thus, by the completion condi-
tions Cpl(�I), Cpl(�), and Cpl(��1), for all x; y 2U b , either xRy 2 b or for some
z2U b , x.R I �R�1/z2 b and x�Rz2 b. Thus, by the completion conditions Cpl(I)
and Cpl(��1), if .x; y/2Rb , then there exists z2U b such that .x; z/2Rb and
if .x; t/2Rb , then .z; t/2Rb. On the other hand, by the completion condition
Cpl(dis2 R), it can be proved that if .x; y/2Rb , then there exists z2U b such that
.z; y/2Rb and if .t; y/2Rb , then .t; z/2Rb . Therefore,Rb is discrete. ut
The satisfaction in branch model property can be proved as in RLTL-logic. There-
fore, we get:

Theorem 16.3.3 (Soundness and Completeness of RLLTL ). Let LTL be a standard
temporal logic and let ' be an RLLTL -formula. Then the following conditions are
equivalent:

1. ' is RLLTL -valid;
2. ' is true in all standard RLLTL -models;
3. ' is RLLTL -provable.



16.3 Semantic Restrictions on Basic Temporal Logic 299

The above theorem and Theorem 16.3.1 imply:

Theorem 16.3.4 (Relational Soundness and Completeness of LTL). Let LTL be a
standard temporal logic and let ' be an LTL-formula. Then for all object variables
x and y, the following conditions are equivalent:

1. ' is LTL-valid;
2. x�.'/y is RLLTL -provable.

Example. Let L1TL be a standard temporal logic whose models have an Euclidean
relation R. Figure 16.1 presents an RLL1

TL
-proof of the formula:

' D hRip! ŒR�hRip;

which reflects this property.
Let L2TL be a standard temporal logic whose models have a dense relation R.

Figure 16.2 presents an RLL2
TL

-proof of the formula

 D ŒR�ŒR�p ! ŒR�p:

For simplicity, we write P instead of �.p/. The relational translation of ' and  
are:

�.'/ D �.R IP/ [ �.R I �.R IP//;
�. / D ��.R I ��.R I �P// [�.R I �P/:

In the following sections we present some signature extensions of the basic
temporal logic.

x.�.R IP/[�.R I�.R IP///y

�
.[/

x�.R IP/y; x�.R I�.R IP//y

�
.�I / twice with new variables z; v and .�/

x�Rz; z�Py; x�Rv; v.R IP/y
����

			
.I / with z

x�Rz; x�Rv; vRz; : : : z�Py; zPy; : : :
closed���� (EucR) with x

			

xRv; x�Rv; : : :

closed

xRz; x�Rz; : : :
closed

Fig. 16.1 An RLL1TL
-proof of the formula hRip! ŒR�hRip



300 16 Dual Tableaux for Temporal Logics

x.��.R I��.R I�P//[�.R I�P//y

�
.[/ and .�/

x.R I��.R I�P//y; x�.R I�P/y

�
.�I / with a new variable z and .�/

x.R I��.R I�P//y; x�Rz; zPy
����

			
(den R) with x; z

xRz; x�Rz; : : :
closed

x�.R IR/z; x.R I��.R I�P//y; zPy; : : :

�
.�I / with a new variable t

x�Rt; t�Rz; x.R I��.R I�P//y; zPy; : : :
���� .I / with t , .�/ 			


x�Rt; xRt; : : :
closed

t�Rz; t .R I�P/y; zPy; : : :
���� .I / with z

			

t�Rz; tRz; : : :

closed

z�Py; zPy; : : :
closed

Fig. 16.2 An RLL2TL
-proof of the formula ŒR�ŒR�p! ŒR�p

16.4 Temporal Logics with Since and Until

In languages of temporal logics we often admit binary operations Since and Until
with the following semantics. Let R be a temporal ordering, then:

� M; s ˆ ' Since iff there exists s0 2U such that .s0; s/2R and M; s0 ˆ  

and for all u2U , if .s0; u/2R and .u; s/2R, then M; u ˆ ';
� M; s ˆ ' Until iff there exists s0 2U such that .s; s0/2R and M; s0 ˆ  and

for all u2U , if .s; u/2R and .u; s0/2R, then M; u ˆ '.

A formula ' Since  means that there is a past moment s0 at which  is satisfied
and at all moments between s0 and now ' is satisfied. Similarly, ' Until  says
that there is a future moment s0 at which  is satisfied and ' is satisfied at all
moments between now and s0. In the presence of Until the next-state operation,
Next, is definable in the modal language:

� M; s ˆ Next ' iff M; s ˆ .' ^ :'/Until'.

Let TLSU denote a temporal logic with a time ordering R and operations Since,
Until, and Next. To define a relational representation of TLSU-formulas, we extend
the set of relational terms of TL by admitting relational counterparts of logical
operations Since, Until, and Next among the relational operations. For the sake



16.4 Temporal Logics with Since and Until 301

of simplicity, they are denoted in the same way as the respective propositional
operations. Namely, the vocabulary of the language of logic RLTLSU is the
RL.1; 10/-language such that:

� OCRLTLSU
D ;;

� RCRLTLSU
D f1; 10; Rg, where R is the relational constant representing the time

ordering;
� fSince;Until;Nextg is included in the set of relational operations.

The set of relational terms is obtained from RV RLTLSU
[ f1; 10; Rg by making its

closure with respect to the standard relational operations and the operations Since,
Until, and Next.

RLTLSU -structures are of the form M D .U;R;R�1; m/, where .U;m/ is an
RL.1; 10/-model, R D m.R/ is a binary relation on U satisfying all the conditions
assumed in TLSU-logic, and the relational operations Since, Until, and Next are inter-
preted as operations on binary relations on U . RLTLSU -models are RLTLSU-structures
M D .U;R;R�1; m/ such that the relational operations Since, Until, and Next are
interpreted as follows. Let T;Q be relational terms, then:

� m.T SinceQ/
dfD f.x; y/ W 9t Œ.t; x/2R ^ .t; y/2m.Q/ ^ 8u ..t; u/2R ^

.u; x/2R! .u; u/2m.T /�g;
� m.T UntilQ/

dfD f.x; y/ W 9t Œ.x; t/2R ^ .t; y/2m.Q/ ^ 8u ..x; u/2R ^
.u; t/2R! .u; u/2m.T /�g;

� m.Next T /
dfD f.x; y/ W 9t Œ.x; t/2R ^ .t; y/2m.T / ^ :9u ..x; u/2R ^

.u; t/2R/�g.
This interpretation of the operations Since, Until, and Next is motivated with the role
that they play in the representation of TLSU-formulas which are interpreted as right
ideal relations (see translation function defined on p. 302 and Theorem 16.4.1).

The next proposition shows that operations Since, Until, and Next are definable in
the logic RL.1; 10/. It is due to the fact that their relational definitions involve implic-
itly the information that the relations to which they apply are meant to be right ideal
relations. For the reasons of readability, we will identify symbols of the language
with the corresponding entities in the models, if it does not lead to a confusion. In
particular, we will omit the symbol of a meaning function.

Proposition 16.4.1. For every RLTLSU -model M D .U;R;R�1; m/ and for all
relations T andQ on U the following hold:

1. T SinceQ D .R \ �.R I .�T \ 10/ IR//�1 IQ;
2. T UntilQ D .R \�.R�1 I .�T \ 10/ IR�1/�1/ IQ;
3. Next T D .R \ �.R IR// IT .

Proof. Let M D .U;R;R�1; m/ be an RLTLSU -model, let T and Q be relations on
U , and let x; y 2U . First, note that the following holds: .	/ .t; x/2R I .�T\10/ IR
iff there exists u2U such that .t; u/2R and .u; x/2R and .u; u/ 62 T . Indeed,
.t; x/2R I .�T \ 10/ IR iff there exist u; v2U such that .t; v/2R, .v; u/ 62 T ,



302 16 Dual Tableaux for Temporal Logics

.v; u/2 10, and .u; x/2R. Therefore, if the left side of .	/ holds, then it can be
easily proved, by the extensionality property of RL.1; 10/-models (see Sect. 2.7),
that the right side of .	/ also holds. Conversely, if the right side of .	/ holds, then
taking v WD u the left side also holds.

To prove 1., note that .x; y/2 .R \ �.R I .�T \ 10/ IR//�1 IQ/ iff there exists
t 2U such that .t; x/2R and .t; y/2Q and .t; x/ 62 R I .�T \ 10/ IR. By .	/,
the latter is equivalent to: there exists t 2U such that .t; x/2R and .t; y/2Q
and for all u2U if .t; u/2R and .u; x/2R, then .u; u/2T , which is equivalent
to .x; y/2 T SinceQ.

2. and 3. can be proved in a similar way. ut
The translation of TLSU-formulas into relational terms is defined by an extension of
the function � defined in Sect. 7.4 with the following clauses:

� �.' Since / D �.'/ Since �. /;
� �.' Until / D �.'/Until �. /;
� �.Next '/ D Next �.'/.

In view of Proposition 7.4.1, it is easy to check that the relational terms, obtained
from temporal formulas built with operations Since, Until, and Next, represent
right ideal relations. Therefore, the following can be proved in a similar way as
Theorem 7.4.1:

Theorem 16.4.1. For every TLSU-formula ' and for all object variables x and y,
the following conditions are equivalent:

1. ' is TLSU-valid;
2. x�.'/y is RLTLSU -valid.

Proof. It suffices to show that Propositions 7.4.2 and 7.4.3 are true for all
TLSU-formulas. For that purpose, we need to show:

(1) For every TLSU-model M D .U;R;R�1; m/ there exists an RLTLSU -model
M0 D .U;R;R�1; m0/ with the same universe and the same relationR as those
in M, and such that for all s; s0 2U and for every TLSU-formula ' of the form
 Since# ,  Until# , and Next , the following holds:

.	/M; s ˆ ' iff .s; s0/2m0.�.'//I

(2) For every standard RLTLSU-model M0 D .U;R;R�1; m0/ there exists a TLSU-
model M D .U;R;R�1; m/ with the same universe and the same relationR as
those in M0, and such that for all s; s0 2U and for every TLSU-formula ' of the
form  Since# ,  Until# , and Next , .	/ holds.

Then, the rest of the proof is similar to the proof of Theorem 7.4.1.
By way of example, we prove (1). Let M D .U;R;R�1; m/ be a

TLSU-model. Then we define RLTLSU -model M0 D .U;R;R�1; m0/ as in the
proof of Proposition 7.4.2, namely:

� m0.1/ D U � U ;
� m0.10/ is the identity on U ;
� m0.�.p// D f.x; y/2U � U W x 2m.p/g, for every propositional variable p;



16.4 Temporal Logics with Since and Until 303

� m0.R/ D R;
� m0 extends to all the compound terms as in RLTLSU -models.

Let ' D  Since# and let s; s0 2U . Assume that M; s ˆ ', that is there ex-
ists t 2U such that .t; s/2R, M; t ˆ # , and for all u2U , if .t; u/2R and
.u; s/2R, then M; u ˆ  . Then, by the induction hypothesis, this is equiva-
lent to: there exists t 2U such that .t; s/2R and .t; s0/2m0.�.#// and for all
u2U , if .t; u/2R and .u; s/2R, then .u; s0/2m0.�. //. Since �. / is a right
ideal relation, by Proposition 7.4.1, .u; s0/2m0.�. // iff .u; u/2m0.�. //. Hence,
.s; s0/2m0.�. /Since �.#//.

In a similar way we can prove that .	/ holds for the formulas of the form
 Until# and Next . ut
RLTLSU -dual tableau is an extension of RL.1; 10/-dual tableau with the rules and the
axiomatic sets reflecting properties of the relation R and with the rules correspond-
ing to the new relational operations Since, Until, and Next. These rules have the
following forms:

For all object variables x; y and for all relational terms T and Q,

.Since/
x.T SinceQ/y

tRx;K j tQy;K j t�.R I .�T \ 10/ IR/x;K

K D x.T SinceQ/y, t is any object variable

.�Since/
x�.T SinceQ/y

t�Rx; t�Qy; t.R I .�T \ 10/ IR/x

t is a new object variable

.Until/
x.T UntilQ/y

xRt;K j tQy;K j t�.R�1 I .�T \ 10/ IR�1/x;K

K D x.T UntilQ/y, t is any object variable

.�Until/
x�.T UntilQ/y

x�Rt; t�Qy; t.R�1 I .�T \ 10/ IR�1/x

t is a new object variable

.Next/
x.Next T /y

xRt; x.Next T /y j tTy; x.Next T /y j x�.R IR/t; x.Next T /y

t is any object variable

.�Next/
x�.Next T /y

x�Rt; t�Ty; x.R IR/t

t is a new object variable



304 16 Dual Tableaux for Temporal Logics

Theorem 16.4.2 (Correspondence). Let K be a class of RLTLSU-structures. Then
K is a class of RLTLSU -models iff the rules .#/ and .�#/ are K-correct for every
#2fSince;Until;Nextg.
Proof. .!/ Assume that K is a class of RLTLSU -models. We need to show that
for every #2 fSince;Until;Nextg, the rules .#/ and .�#/ are K-correct. By way of
example, we show it for the operation Since.

Let X be a finite set of RLTLSU -formulas. Clearly, if the upper set of for-
mulas in the rule .Since/ is a K-set, then all the lower sets of formulas
in the rule are also K-sets. Now, assume that X [ ftRx; x.T SinceQ/yg,
X [ ftQy; x.T SinceQ/yg, and X [ ft�.R I .�T \ 10/ IR/x; x.T SinceQ/yg
are K-sets and suppose that X [ fx.T SinceQ/yg is not a K-set. Then there exist
an RLTLSU -model M D .U;R;R�1; m/ in K and a valuation v in M such that
.v.x/; v.y// 62 m.T SinceQ/. By the assumption, there exists t 2U such that
.v.t/; v.x//2R and .v.t/; v.y//2m.Q/ and .v.t/; v.x// 62 m.R I .�T \ 10/ IR/.
By Proposition 16.4.1, .v.x/; v.y//2m.T SinceQ/, a contradiction.

Now, we prove that the rule .�Since/ is K-correct. Let X be a finite set of
RLTLSU -formulas. Let t be a variable that does not occur in X and let x; y ¤ t .
Assume that X [ft�Rx; t�Qy; t.R I .�T \ 10/ IR/xg is a K-set and suppose that
X [ fx�.T SinceQ/yg is not a K-set. Then there exist an RLTLSU -model M D
.U;R;R�1; m/ in K and a valuation v in M such that .v.x/; v.y//2m.T SinceQ/.
By the assumption and since t does not occur in X [ fx�.T SinceQ/yg, for all
t 2U either .t; v.x// 62 R or .t; v.y// 62 m.Q/ or .t; v.x//2m.R I .�T \ 10/ IR/.
By Proposition 16.4.1, .v.x/; v.y// 62 m.T SinceQ/, a contradiction.
. / Let K be a class of RLTLSU -structures. Assume that for every #2fSince;

Until;Nextg the rules .#/ and .�#/ are K-correct. We show that K is a class of
RLTLSU -models, that is that the meaning of the operations Since, Until, and Next is
as in RLTLSU -models defined on p. 301. By way of example, we show it for Until.
By Proposition 16.4.1, we need to show that K-correctness of the rules .Until/ and
.�Until/ implies m.T UntilQ/ D m..R \ �.R�1 I .�T \ 10/ IR�1//�1 IQ/.
.�/ Let X

dfD fx�Rt; t�Qy; t.R�1 I .�T \ 10/ IR�1/xg. Then, clearly
all the sets X [ fxRt; x.T UntilQ/yg, X [ ftQy; x.T UntilQ/yg, and X [
ft�.R�1 I .�T \ 10/ IR�1/x; x.T UntilQ/yg are K-sets. By K-correctness
of the rule .Until/, X [ fx.T UntilQ/yg is a K-set, which means that if
.x; y/2m..R \ �.R�1 I .�T \ 10/ IR�1//�1 IQ/, then .x; y/2m.T UntilQ/.

.�/ Let X
dfD fx.R \ �.R�1 I .�T \ 10/ IR�1//�1 IQyg and let x; y ¤ t .

Then, X [ fx�Rt; t�Qy; t.R�1 I .�T \ 10/ IR�1/xg is a K-set. Thus, by K-
correctness of the rule .�Until/,X[fx�.T UntilQ/yg is a K-set, which means that
if .x; y/2m.T UntilQ/, then .x; y/2m..R \�.R�1 I .�T \ 10/ IR�1//�1 IQ/.

ut
By the above theorem and since correctness of the remaining rules can be proved as
in RLLTL -logics (see Proposition 16.2.1 and Theorem 16.3.2), we have:

Proposition 16.4.2.

1. The RLTLSU-rules are RLTLSU -correct;
2. The RLTLSU-axiomatic sets are RLTLSU -sets.



16.4 Temporal Logics with Since and Until 305

The completion conditions determined by the rules for operations Since, Until, and
Next are:

For all object variables x; y and for all relational terms T and Q,

Cpl(Since) If x.T SinceQ/y 2 b, then for every object variable t , either tRx 2 b or
tQy 2 b or t�.R I .�T \ 10/ IR/x 2 b, obtained by an application of the rule
.Since/;

Cpl(�Since) If x�.T SinceQ/y 2 b, then for some object variable t , t�Rx 2 b and
t�Qy 2 b and t.R I .�T \ 10/ IR/x 2 b, obtained by an application of the rule
.�Since/;

Cpl(Until) If x.T UntilQ/y 2 b, then for every object variable t , either xRt 2 b or
tQy 2 b or t�.R�1 I .�T \ 10/ IR�1/x 2 b, obtained by an application of the
rule .Until/;

Cpl(�Until) If x�.T UntilQ/y 2 b, then for some object variable t , x�Rt 2 b and
t�Qy 2 b and t.R�1 I .�T \ 10/ IR�1/x 2 b, obtained by an application of the
rule .�Until/;

Cpl(Next) If x.Next T /y 2 b, then for every object variable t , either xRt 2 b or
tTy 2 b or x�.R IR/t 2 b, obtained by an application of the rule .Next/;

Cpl(�Next) If x�.Next T /y 2 b, then for some variable t , x�Rt 2 b and t�Ty 2 b
and x.R IR/t 2 b, obtained by an application of the rule .�Next/.

As in RLLTL -logics, every branch that contains formulas xTy and x�Ty, for some
atomic relational term T , is closed. Thus, the closed branch property holds.

Let b be an open branch of an RLTLSU -proof tree. The branch structure Mb D
.U b; Rb; .R�1/b; mb/ is defined in a standard way, namely:

� U b D OV RLTLSU
;

� Rb D mb.R/ and .R�1/b D .Rb/�1;
� mb.P / D f.x; y/2U b � U b W xPy 62 bg, for every atomic relational term P ;
� mb extends to all the compound relational terms as in RLTLSU -models.

It follows from this definition that Mb is an RLTLSU -model, so the branch model
property is satisfied. Actually, we only need to prove that the time ordering Rb

satisfies all the conditions assumed in RLTLSU -models. This can be done as in the
completeness proof of RLTLL-dual tableaux presented in the previous section.

Proposition 16.4.3 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLTLSU-proof tree. Then for every RLTLSU -formula ', Mb; vb ˆ '

implies ' 62 b.

Proof. Let b be an open branch of an RLTLSU -proof tree. The proof is by induction
on the complexity of formulas. If ' is of the form xTy or x�Ty for some atomic
relational term T , we prove the above condition as in RL-logic (see the proof of
Proposition 2.5.5). Then, we show that the condition holds for the compound rela-
tional terms. By way of example, we show it for Next.

Assume Mb; vb ˆ x.Next T /y, Then, by Proposition 16.4.1, .x; y/2mb..R \
�.R IR// IT /. Suppose x.Next T /y 2 b. Then, by the completion condition



306 16 Dual Tableaux for Temporal Logics

Cpl(Next), for every t 2U b , either xRt 2 b or tTy 2 b or x�.R IR/t 2 b. By the
completion condition Cpl(�I), for every t 2U b , either xRt 2 b or tTy 2 b or for
some u2U b both x�Ru2 b and u�Rt 2 b. By the induction hypothesis, for every
t 2U b , either .x; t/ 62 Rb or .t; y/ 62 mb.T / or for some u2U b both .x; u/2Rb
and .u; t/2Rb . Therefore, .x; y/ 62 mb..R \ �.R IR// IT /, a contradiction.

Assume Mb; vb ˆ x�.Next T /y, Then, .x; y/ 62 mb..R \�.R IR// IT /. Sup-
pose x�.Next T /y 2 b. Then, by the completion condition Cpl(�Next), for some
t 2U b the following hold: xRt 62 b, tTy 62 b, and x.R IR/t 2 b. By the com-
pletion condition Cpl(I), there exists t 2U b such that xRt 62 b and tTy 62 b and
for all u2U b , either xRu2 b or uRt 2 b. Thus, by the induction hypothesis, there
exists t 2U b such that .x; t/2Rb and .t; y/2mb.T / and for all u2U b , either
.x; u/ 62 Rb or .u; t/ 62 Rb. Therefore, .x; y/2mb..R \ �.R IR// IT /, a contra-
diction. ut
Therefore, we have:

Theorem 16.4.3 (Soundness and Completeness of RLTLSU). For every RLTLSU -
formula ', the following conditions are equivalent:

1. ' is RLTLSU -valid;
2. ' is true in all standard RLTLSU -models;
3. ' is RLTLSU -provable.

The theorem above and Theorem 16.4.1 imply:

Theorem 16.4.4 (Relational Soundness and Completeness of TLSU). For every
TLSU-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is TLSU-valid;
2. x�.'/y is RLTLSU -provable.

Example. Let ' be the following formula:

' D .p ^ hRi.p ^ ŒR�1/:q/�! :qUntilp:

Its relational translation is:

�.'/ D �..P I 1/\ .R I ..P I 1/\�.R�1 I ��.Q I 1/////[ .�.Q I 1/Until.P I 1//;

where �.p/ D P I 1 and �.q/ D Q I 1. TLSU-validity of ' is equivalent to RLTLSU -
provability of the formula x�.'/y. Figure 16.3 presents an RLTLSU -proof of '.

16.5 Standard Temporal Logics with Nominals

Temporal logics with nominals were considered by Arthur Prior [Pri67] and Robert
Bull [Bul70] in the late 1960s. Nominals are propositional constants interpreted as
singleton sets. In computer science nominals were introduced to the dynamic logic



16.5 Standard Temporal Logics with Nominals 307

x.�..P I 1/\ .R I ..P I 1/\�.R�1 I��.Q I 1///// [ .�.Q I 1/Until.P I 1///y

�
.[/

x�..P I 1/\ .R I ..P I 1/\�.R�1 I��.Q I 1/////y; x.�.Q I 1/Until.P I 1//y

�
.�\/

x�.P I 1/y; x�.R I ..P I 1/\�.R�1 I��.Q I 1////y; x.�.Q I 1/Until.P I 1//y

�
.�I / with a new variable z

x�.P I 1/y; x�Rz; z�..P I 1/\�.R�1 I��.Q I 1///y; x.�.Q I 1/Until.P I 1//y

�
.�\/ and .�/

x�.P I 1/y; x�Rz; z�.P I 1/y; z.R�1 I��.Q I 1//y; x.�.Q I 1/Until.P I 1//y
����

xRz; x�Rz; : : :
closed

�
z�.P I 1/y; z.P I 1/y; : : :

closed

.Until/ with z �
�
�
���

z.R�1 I��.Q I 1//y; z�.R�1 I .��.Q I 1/\ 10/ IR�1/x; : : :

�
.�I / with a new variable w and .��1/

z.R�1 I��.Q I 1//y;w�Rz;w�..��.Q I 1/\ 10/ IR�1/x; : : :

�
.�I / with a new variable u

z.R�1 I��.Q I 1//y;w�Rz;w�.��.Q I 1/\ 10/u; u�R�1x; : : :

�
.�\/ and .�/

z.R�1 I��.Q I 1//y;w�Rz;w�.Q I 1/u;w�10u; : : :

�
.�I / with a new variable t

z.R�1 I��.Q I 1//y;w�Rz;w�Qt; t�1u; : : :
����

wRz;w�Rz; : : :
closed

.I / with w, .�1/, .�/ 			

w.Q I 1/y;w�Qt; : : :
���� .I / with t

			

wQt;w�Qt; : : :

closed

t1y; : : :

closed

Fig. 16.3 An RLTLSU -proof of Œp ^ hRi.p ^ ŒR�1�:q/�!:q Untilp

in [Pas84] and then studied in [PT85]. In temporal languages both nominals and
propositional variables are considered as atomic formulas.

Given a model M D .U;R;R�1; m/, we define the satisfaction of nominals:

� M; s ˆ c iff m.c/ D fsg:
An extensive study of nominals can be found in [Bla90].

Nominals increase drastically expressiveness of modal languages. Below we list
examples of classes of relations which are not definable in a modal language with



308 16 Dual Tableaux for Temporal Logics

a single accessibility relation, unless the language contains the nominals (see e.g.,
[Bla90]).

� R is irreflexive: c ! :hRic;
� R is antisymmetric: c ! ŒR�.hRic ! c/;
� R is directed: hRihR�1ic;
� R is connected: hR�1ic _ c _ hRic;
� R is discrete: c ! .hRi.' _ :'/! hRiŒR�1�ŒR�1�:c/.
Let a logic TL.C/ be obtained from the temporal logic TL by extending its lan-
guage with a set C of nominals. Its models are TL-models M D .U; F; P;m/ such
that m.c/2U , for every c 2C (see Sect. 7.3). In analogy to logics considered in
Sect. 16.3, we consider standard temporal logics with nominals, LTL.C/, based on
TL.C/. The corresponding relational logics are based on the relational logic with
point relations introduced with axioms. The logic is defined in Sect. 3.2.

Let LTL.C/ be a standard temporal logic with the set C of nominals. With every
nominal c 2C, we associate a relational constant Cc . Then, a relational logic ap-
propriate for expressing LTL.C/-formulas, RLLTL.C/

, is based on logic RLax.fCc W
c 2Cg/ which is an instance of the logics considered in Sect. 3.2. The set of rela-
tional constants of RLLTL.C/

is f1; 10; Rg[fCc W c 2Cg, whereR represents the time
ordering and fCc W c 2Cg is the set of relational constants representing nominals
from C.

RLLTL.C/
-models are structures M D .U;R;R�1; m/ such that .U;m/ is an

RLax.fCc W c 2Cg/-model, as defined in Sect. 3.2, and R D m.R/ is the relation
on U that satisfies all the conditions assumed in LTL.C/-models.

The translation of LTL.C/-formulas into relational terms is defined as in Sect. 7.4
(p. 147), that is �.c/ D Cc I 1. As usual, the translation is defined so that it preserves
the validity of formulas. Due to Theorem 7.4.1, we have:

Theorem 16.5.1. Let LTL.C/ be a standard temporal logic with nominals. For every
LTL.C/-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is LTL.C/-valid;
2. x�.'/y is RLLTL.C/

-valid.

RLLTL.C/
-dual tableau is an extension of RLax.fCc W c 2Cg/-dual tableau with the

rules reflecting the properties of the time ordering R. We recall that the specific
rules of RLax.fCc W c 2Cg/-dual tableau are (see Sect. 3.2):

For all object symbols x and y and for every c 2C,

.C1/
z�Cc t z; t are new object variables and z ¤ t

(C2/
xCcy

xCcz; xCcy
z is any object symbol

(C3/
x10y

xCcz; x10y j yCcz; x10y z is any object symbol



16.5 Standard Temporal Logics with Nominals 309

Soundness and completeness of RLLTL.C/
-dual tableau follow from soundness and

completeness of RLax.fCc W c 2Cg/-dual tableau (see Theorem 3.2.1) and RLLTL -
dual tableaux for standard temporal logics (see Theorem 16.3.3). Hence, we have:

Theorem 16.5.2 (Soundness and Completeness of RLLTL.C/
). Let LTL.C/ be a

standard temporal logic with nominals. Then, for every RLLTL.C/
-formula ', the

following conditions are equivalent:

1. ' is RLLTL.C/
-valid;

2. ' is true in all standard RLLTL.C/
-models;

3. ' is RLLTL.C/
-provable.

By the above and Theorem 16.5.1, we obtain:

Theorem 16.5.3 (Relational Soundness and Completeness of LTL.C/). Let LTL.C/

be a temporal logic with nominals. Then, for every LTL.C/-formula ' and for all
object variables x and y, the following conditions are equivalent:

1. ' is LTL.C/-valid;
2. x.�.'//y is RLLTL.C/

-provable.

Example. The formula:
' D c ! :hRic

defines irreflexivity of relation R, hence it is true in all LTL.C/-structures in which
R is irreflexive. The translation of ' is:

�.'/ D �.Cc I 1/[�.R I .Cc I 1//;

where �.c/ D Cc I 1. Then, ' is valid in all irreflexive LTL.C/-structures iff x�.'/y
is provable in RLLTL.C/

-dual tableau with the rule (irref R) presented in Sect. 16.3.
Figure 16.4 presents an RLLTL.C/

-proof of x�.'/y which shows that ' is true in all
irreflexive LTL.C/-structures.

The formula:
 D hR�1ic _ c _ hRic

defines connectivity of relation R, thus  is true in all LTL.C/-structures in which R
is connected. The translation of  is:

�. / D .R�1 I .Cc I 1//[ .Cc I 1/[ .R I .Cc I 1//;

where �.c/ D Cc I 1. Then, validity of in all connected LTL.C/-structures is equiv-
alent to RLLTL.C/

-provability of x�. /y. RLLTL.C/
-dual tableau includes axiomatic

sets (Ax), presented in Sect. 16.3 (p. 295), that reflect connectivity ofR. Figure 16.5
presents an RLLTL.C/

-proof of x�. /y.



310 16 Dual Tableaux for Temporal Logics

x�.Cc I 1/[�.R I .Cc I 1//y

�
.[/

x�.Cc I 1/y; x�.R I .Cc I 1//y

�
.�I / with a new variable z

x�.Cc I 1/y; x�Rz; z�.Cc I 1/y

�
(irref R) with x

x�.Cc I 1/y; x�Rz; z�.Cc I 1/y; xRx
���� .101/ with z

			

xRz; x�Rz; : : :

closed

x10z; x�.Cc I 1/y; z�.Cc I 1/y; : : :

�
.�I / twice with new variables w and t

x10z; x�Ccw; z�Cct; : : :
���� .C3/ with w

			

xCcw; x�Ccw; : : :

closed

zCcw; z�Cct; : : :

�
.C2/ with t

zCct; z�Cct; : : :
closed

Fig. 16.4 An RLLTL.C/
-proof showing that c!:hRic is true in all irreflexive LTL.C/-structures

x..R�1 I .Cc I 1//[ .Cc I 1/[ .R I .Cc I 1///y

�
.[/

x.R�1 I .Cc I 1//y; x.Cc I 1/y; x.R I .Cc I 1//y

�
.C1/ with new variables z and t

z�Cct; x.R�1 I .Cc I 1//y; x.Cc I 1/y; x.R I .Cc I 1//y
���� (I) with z and .�1/

			

z�Cct; z.Cc I 1/y; : : :

����
			
.I / with t

z�Cct; zCct; : : :
closed

t1y; : : :

closed

z�Cct; zRx; x.Cc I 1/y; x.R I .Cc I 1//y; : : :
�����

.I / with z �
�
�
�
��

z�Cct; zRx; x.Cc I 1/y; xRz; : : :
���� .I / with t

			

t1y; : : :

closed

z�Cct; zRx; xCct ; xRz; : : :
���� .102/ with z

			

zRx; x10z; xRz; : : :

closed

z�Cct; zCct; : : :
closed

z�Cct; z.Cc I 1/y; : : :
����

			
.I / with t

z�Cct; zCct; : : :
closed

t1y; : : :

closed

Fig. 16.5 An RLLTL.C/
-proof showing that hR�1ic _ c _ hRic is true in all connected LTL.C/-

structures



16.6 Temporal Information Logics 311

16.6 Temporal Information Logics

Temporal information logic TIL considered in the present section was developed
to provide a means of reasoning in temporal databases where properties of objects
change with the lapse of time. In logic TIL we intend to represent data that have
the form of a description of time varying properties of objects. For example, we
are interested in such attributes as Height, Temperature, Blood Pressure, usually
at given moments of time. Further, their change in a given time interval may be
of essential importance too. For that purpose, we include in information systems a
parameter which represents the moment to which an information about values of
attributes applies.

By a dynamic information system (see [Orł82]) we mean a system of the form
S D .OB;T ; R;AT ; fV ALa W a2AT g; f /, where OB is a non-empty set of
objects, T is a non-empty set of moments of time, R is an ordering on a set T , AT
is a non-empty set of attributes, V ALa, for a2AT , is a non-empty set of values of
attribute a, f is a function f WOB � T � AT ! SfV ALa W a2AT g, such that
f .x; t; a/2V ALa, for all x 2OB, t 2T , and a2AT .

As an example, consider Table 16.1 containing partial results of photoelectric
observations of stars, presented in the Astrophysical Journal.

The table can be treated as a dynamic information system such that the set
OB of objects consists of the stars, that is OBDfS Canis Minoris, R Caneri,
R Leonis, T Centaurig, the set T of moments of time consists of non-negative
real numbers representing Julian Days given in the second column of the table,
relation R is the natural order in the set of real numbers restricted to the set T ,
the set AT of attributes consists of two wavelength regions of spectrum, AT D
fvisual.V /; blue�visual.B�V /g, the set V AL of values of attributes consists of
the magnitudes of a star in the given wavelength regions.

The language of logic TIL is a language of basic temporal logic with specific
atomic formulas. An atomic piece of information in an information system is a state-
ment of the form: an object x assumes a value v of an attribute a. Hence, instead
of propositional variables, we admit structured atomic formulas built with syntactic
components of three types. Let OV , AV , and AV V be sets of object variables,
attribute variables, and attribute value variables, respectively. They are arbitrary,
pairwise disjoint, countable sets. Then, the atomic formulas of the language are

Table 16.1 A dynamic information system

JD V B-V

S Cmi 1688.788 11:12 1.97
1798.538 9:28 1.76

R Cnc 1719.750 3:38 1.47
1800.558 9:51 2.02

R Leo 1688.821 6:27 1.62
1833.481 9:91 2.87

T Cen 1687.826 6:05 1.44
1717.816 6:12 1.73



312 16 Dual Tableaux for Temporal Logics

of the form .o; a; v/, for o2OV , a2AV , and v2AV V . The compound formulas
are built from atomic formulas with the usual propositional operations of temporal
logics.

We define semantics of the logic TIL by means of notion of a model determined
by a dynamic information system. By a TIL-model we mean any pair M D .S; m/,
where S D .OB;T ; R;AT ; fV ALa W a2AT g; f / is a dynamic information
system, and m is a meaning function which assigns objects to object variables, at-
tributes to attribute variables, and values of attributes to attribute value variables:
m.o/2OB, m.a/2AT , m.v/2 SfV ALa W a2AT g. We define satisfaction of
formulas in a moment of time in the usual way (see Sect. 7.3), with the exception
that for atomic formulas we have:

� M; t ˆ .o; a; v/ iff f .m.o/; t; m.a// D m.v/.
The relational logic RLTIL corresponding to the logic TIL is similar to the relational
logic for the basic temporal logic. The minor difference is that the relational vari-
ables are indexed with triples of the form .o; a; v/. Models of the relational logic
for TIL are determined by dynamic information systems in the same way as the re-
spective TIL-models. As usual, the translation starts with a one-to-one assignment
of relational variables P.o;a;v/ to the atomic TIL-formulas .o; a; v/. Let � 0 be such an
assignment. Then the translation � of TIL-formulas into RLTIL-terms is defined as

in Sect. 7.4 with the following clause for atomic formulas: �.o; a; v/
dfD P.o;a;v/ I 1.

In view of Proposition 7.4.1, it is easy to check that the relational terms obtained
from TIL-formulas represent right ideal relations. Therefore, the following can be
proved in a similar way as Theorem 7.4.1:

Theorem 16.6.1. For every TIL-formula ' and for all object variables x and y, the
following conditions are equivalent:

1. ' is TIL-valid;
2. x�.'/y is RLTIL-valid.

Proof. It suffices to show that Propositions 7.4.2 and 7.4.3 are true for all TIL-
formulas. Thus, we need to show that for every TIL-modelM there exists a standard
RLTIL-model M0 that satisfies the same TIL-formulas as model M, and that for
every RLTIL-model M0 there exists a TIL-model M that satisfies the same TIL-
formulas as M0. If a TIL-model M is given, then the model M0 is defined as a
standard RLTIL-model such that the interpretation of a relational variable P.o;a;v/ is
a right ideal relation whose domain is the set of the form fx W f .m.o/; x;m.a//
D m.v/g. If an RLTIL-model M0 is given, then the model M is defined as a
TIL-model such that the interpretation of an atomic formula .o; a; v/ is the domain
of the relation P.o;a;v/. The rest of the proof is similar to the proof of Theorem 7.4.1.

ut
RLTIL-dual tableau is an RLTLL -dual tableau adjusted to the RLTIL-language and
extended with the rule of the following form:



16.6 Temporal Information Logics 313

For all object variables x and y,

(TIL)
xP.o;a;v/y

xP.o0;a0;v0/y; xP.o;a;v/y j xP.o0;a0;v/y; xP.o;a;v/y j xP.o;a;v0/y; xP.o;a;v/y

for any o0 2OV , a0 2AV , and v0 2AV V

The rule (TIL) reflects the following property of relations P.o;a;v/: in an underlying
information system, given an object, a moment of time, and an attribute, the function
f assigns a unique value of the attribute to this triple.

The completion condition determined by this rule is:
For all object variables x and y,

Cpl(TIL) If xP.o;a;v/y 2 b, then for all o0 2OV , a0 2AV , and v0 2AV V , either
xP.o0;a0;v0/y 2 b or xP.o0;a0;v/y 2 b or xP.o;a;v0/y 2 b.

Proofs of all the propositions needed for proving soundness and completeness of
RLTIL follow the analogous proofs in the logics RLTL and RLLTL presented in the
previous sections of this chapter. Thus, we have:

Theorem 16.6.2 (Soundness and Completeness of RLTIL). For every RLTIL-
formula ', the following conditions are equivalent:

1. ' is RLTIL-valid;
2. ' is true in all standard RLTIL-models;
3. ' is RLTIL-provable.

By the above and Theorem 16.6.1, we get:

Theorem 16.6.3 (Relational Soundness and Completeness of TIL). For every
TIL-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is TIL-valid;
2. x.�.'//y is RLTIL-provable.



Chapter 17
Dual Tableaux for Interval Temporal Logics

17.1 Introduction

The representation of time by means of intervals rather than points was initiated in
philosophical logic, see e.g., [Hum79, Röp80, Bur82, vB83]. In computer science
the interval structure of time was adopted by James Allen [All83] for use in solv-
ing some artificial intelligence problems such as planning and by Ben Moszkowski
[Mos83] for reasoning about periods of time found in a formal description of
hardware and software systems. Since then interval temporal logics have been exten-
sively studied both in logic and computer science, and they are successfully applied
to the specification and verification of properties of real time systems.

A calculus of time intervals in a linearly ordered time structure was introduced
by Allen in [All83]. In [LM87] (see also [LM94]), this calculus was presented and
studied as a relation algebra, called an interval algebra. In the literature various
propositional and first-order interval temporal logics have been proposed; a com-
prehensive survey can be found in [GMS04]. The most popular propositional logics
are Halpern and Shoham’s HS [HS91, Ven90], Venema’s CDT logic [GMS03a,
GMSS06, Ven91], Moszkowski’s Propositional Interval Temporal Logic PITL (see
[Mos83]), and Goranko, Montanari, and Sciavicco’s Propositional Neighborhood
Logic PNL [BM05, BMS07, GMS03b].

Propositional interval temporal logics are very expressive. It is known that both
HS and CDT are strictly more expressive than every point-based temporal logic
on linear orders: they enable us to express properties of pairs of time points rather
than single time points. In a linearly ordered set 13 different binary relations be-
tween intervals are possible (see [All83]): equals (10), ends (E), during (D), begins
(B), overlaps (O), meets (M ), precedes (P ) together with their converses (see
Table 17.1). Propositional interval temporal logics are usually characterized by
modalities of the form hRi and hR�1i, where R is any of these relations.

In this chapter we present relational dual tableaux for several interval temporal
logics: for the Halpern–Shoham logic, for some of its axiomatic and signature exten-
sions, and also for its proper fragment without the converses of the interval relations.
The extensions are chosen so that they reflect some characteristics of intervals or
properties of the ordering of time points. The content of this chapter is based on
[BGPO06].

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 17,
c� Springer Science+Business Media B.V. 2011

315



316 17 Dual Tableaux for Interval Temporal Logics

Table 17.1 Allen’s interval relations

current interval:
ends :

during :
begins :

overlaps :

meets:
precedes (or before):

17.2 Halpern–Shoham Logic

Halpern–Shoham logic, HS, is a propositional interval logic characterized by four
temporal modalities that correspond to Allen’s relations begins and ends, and their
converses [HS91, Ven90]. These four modalities suffice to define all unary modali-
ties corresponding to Allen’s relations. Hence, the logic HS is the most expressive
interval temporal logic. It is undecidable as shown in [HS91]. HS-language is a
modal language with four basic modal operations hBi, hEi, hB�1i, and hE�1i. The
other propositional operations, such as ^, !, and the propositional constants >
(true) and ? (false), as well as the necessity modalities ŒB�, ŒE�, ŒB�1�, and ŒE�1�
are defined as in Sect. 7.3.

Given a strict linear ordering .D;</, a non-strict interval on D is a pair Œc; d �
such that c� d . We denote the set of all non-strict intervals on D by I.D/C. An
HS-model is a structure MC D .D; I.D/C; <;m/, where .D;</ is a strict linear
ordering and m is a meaning function assigning a set of intervals to every propo-
sitional variable p 2 V , with the intuition that p is true in these intervals. The
semantics of HS is defined in terms of the satisfaction relation ˆ as follows. Let
MC D .D; I.D/C; <;m/ be an HS-model and let Œc; d � 2 I.D/C:

� MC; Œc; d � ˆ p iff Œc; d � 2 m.p/, for every propositional variable p 2 V ;
� MC; Œc; d � ˆ :' iff MC; Œc; d � 6ˆ ';
� MC; Œc; d � ˆ ' _  iff MC; Œc; d � ˆ ' or MC; Œc; d � ˆ  ;
� MC; Œc; d � ˆ hBi' iff 9c0 2 D such that c0 < d and MC; Œc; c0� ˆ ';
� MC; Œc; d � ˆ hEi' iff 9c0 2 D such that c < c0 and MC; Œc0; d � ˆ ';
� MC; Œc; d � ˆ hB�1i' iff 9c0 2 D such that d < c0 and MC; Œc; c0� ˆ ';
� MC; Œc; d � ˆ hE�1i' iff 9c0 2 D such that c0 < c and MC; Œc0; d � ˆ '.

The notions of the truth and HS-validity are defined as usual.
Note that I.D/C includes also intervals of the form Œc; c�. They are called point

intervals. Since point intervals have no intervals that begin and/or end them, they
can be distinguished by the formulas ŒB�? and ŒE�?. Namely, ŒB�? is satisfied in
a model MC by Œc; d � iff d is the beginning of this interval. Similarly, ŒE�? is
satisfied in a model MC by Œc; d � iff c is the end point of this interval. This allows



17.3 Relational Logic for Halpern–Shoham Logic 317

us to define two derived operations, ŒBP � and ŒEP �, that express properties holding
on the begin point and on the end point of the current interval, respectively:

ŒBP �'
dfD .ŒB�? ^ '/ _ hBi.ŒB�? ^ '/I

ŒEP �'
dfD .ŒE�? ^ '/ _ hEi.ŒE�?^ '/:

In the presence of point intervals, the modalities corresponding to the other Allen’s
relations are definable in logic HS:

hDi' dfD hBihEi'; hD�1i' dfD hB�1ihE�1i';

hOi' dfD hBihE�1i'; hO�1i' dfD hB�1ihEi';

hM i' dfD ŒBP �hE�1i'; hM�1i' dfD ŒEP �hB�1i';

hP i' dfD hM ihM i'; hP�1i' dfD hM�1ihM�1i'.

17.3 Relational Logic for Halpern–Shoham Logic

In this section we define a relational logic RLHS associated with logic HS. The
vocabulary of the language of the logic RLHS consists of the pairwise disjoint sets
listed below:

� IV D fi; j; k; : : : g – a countable infinite set of interval variables;
� PV Dfi1; i2 W i 2 IV g – a countable infinite set of point variables; since intervals

are meant to be certain pairs of points, to every interval variable i we associate
two point variables denoted i1 and i2, with the intuition that i D Œi1; i2�;

� IRV – a countable infinite set of interval relational variables;
� PRC D f10; <g – the set of point relational constants;
� IRC D f1; B;Eg – the set of interval relational constants;
� f�;[;\; I ;�1g – the set of relational operations.

The constant< is intended to represent an ordering on the set of time points. The set
of point relational terms, PRT , is the smallest set of expressions that includes PRC
and is closed with respect to the relational operations. The set of interval relational
terms, IRT , is the smallest set of expressions that includes IRA D IRV [ IRC
and is closed with respect to the relational operations. The set of point relational
formulas consists of expressions of the form xRy, where x; y 2PV andR 2PRT .
The set of interval relational formulas consists of expressions of the form iRj , where
i; j 2 IV and R 2 IRT . RLHS-formulas are point formulas or interval formulas.
R is said to be an atomic relational term whenever R 2 PRC [ IRA. A formula
xRy is said to be atomic wheneverR is an atomic relational term.

An RLHS-model is a structure M D .U; I.U /C; <;B;E;m/, where U and
I.U /C are non-empty sets andmWPRT [ IRT ! P.U�U /[P.I.U /C�I.U /C/



318 17 Dual Tableaux for Interval Temporal Logics

is a meaning function which assigns binary relations on U � U to point relational
terms and binary relations on I.U /C�I.UC/ to interval relational terms as follows:

� m.10/ is the relation on U defined as in RL.1; 10/-models;
� < D m.</ is a strict linear ordering onU , that is for all c; d; e 2U , the following

hold:

(irref <) .c; c/ 62<,
(tran <) if .c; d / 2< and .d; e/ 2<, then .c; e/ 2<,
(con <) .c; d / 2< or .d; c/ 2< or .c; d / 2 m.10/;

� m extends to all the compound relational terms R 2 PRT as in RL-models;
� I.U /C D fŒc; d � 2 U � U W .c; d / 2< [m.10/g;
� m.1/ D I.U /C � I.U /C;
� B D m.B/ D f.Œc; d �; Œc0; d 0�/ 2 m.1/ W .c; c0/ 2 m.10/ and .d 0; d / 2<g;
� E D m.E/ D f.Œc; d �; Œc0; d 0�/ 2 m.1/ W .c; c0/ 2< and .d; d 0/ 2 m.10/g;
� m extends to all the compound interval relational terms R 2 IRT in a similar

way as in RL-models with the appropriate understanding of relational operations
as the operations on I.U /C. Accordingly,m.�R/ D .I.U /C� .I.U /C/nm.R/.

RLHS-models such that m.10/ is the identity on U are referred to as standard
RLHS-models. A valuation in an RLHS-model M D .U; I.U /C; <;B;E;m/ is any
function vWPV [ IV ! U [ I.U /C such that:

� If x 2 PV , then v.x/ 2 U ;
� If i 2 IV , then v.i/ D Œv.i1/; v.i2/� 2 I.U /C.

An RLHS-formula xRy is said to be satisfied in a modelM by a valuation v, M; v ˆ
xRy for short, whenever .v.x/; v.y// 2 m.R/. A formula is true in M whenever it
is satisfied in M by every valuation v. A formula is RLHS-valid whenever it is true
in all RLHS-models.

17.4 Translation of Halpern–Shoham Logic
into a Relational Logic

In this section we define the translation of HS-formulas into relational terms of the
logic RLHS that enables us to represent the validity problem of an HS-formula as
the validity problem of the corresponding relational formula. Let � 0 be a one-to-one
assignment of interval relational variables to the propositional variables. Then the
translation � that maps HS-formulas to RLHS-relational terms is defined as follows:

� �.p/ D � 0.p/ I 1, for every propositional variable p 2 V ;
� �.:'/ D ��.'/;
� �.' _  / D �.'/ [ �. /;
� �.hRi'/ D R I �.'/, for every R 2 fB;E;B�1; E�1g.



17.4 Translation of Halpern–Shoham Logic into a Relational Logic 319

Proposition 17.4.1. For every HS-model MC and for every HS-formula ', there
exists a standard RLHS-model M such that for all interval variables i and j , ' is
true in MC iff i�.'/j is true in M.

Proof. Let ' be an HS-formula and let MC D .D; I.D/C; <;m/ be an HS-model.
Then the corresponding standard RLHS-model M D .U; I.U /C; <0; B;E;m0/ is
defined as follows:

� U D D;
� I.U /C D I.D/C;
� <0D<;
� m0.1/ D I.U /C � I.U /C andm0.10/ D IdU ;
� m0.P / D f.Œc; d �; Œc0; d 0�/ 2 m0.1/ W Œc; d � 2 m.p/g, for every interval relational

variable P such that � 0.p/ D P ;
� B D f.Œc; d �; Œc0; d 0�/ 2 m0.1/ W c D c0 and d 0 < d g;
� E D f.Œc; d �; Œc0; d 0�/ 2 m0.1/ W c < c0 and d 0 D d g.
Given a valuation v in a model MC, we show by induction on the complexity of '
that for all interval variables i and j , the following holds:

MC; v.i/ ˆ ' iff M; v ˆ i�.'/j:

From that, we can conclude that ' is true in MC iff i�.'/j is true in M. By way
of example, we prove the required condition for the formulas of the form:  _ # ,
hBi , and hE�1i .

If ' D  _ # , then MC; v.i/ ˆ  _ # iff MC; v.i/ ˆ  or MC; v.i/ ˆ #

iff, by the induction hypothesis, M; v ˆ i�. /j or M; v ˆ i�.#/j iff M; v ˆ
i.�. / [ �.#//j iff M; v ˆ i�. _ #/j .

If ' D hBi , then MC; v.i/ ˆ hBi iff there exists c0 < v.i2/ such that
MC; Œv.i1/; c0� ˆ  iff, by the induction hypothesis and by the definition of
M, .v.i/; Œv.i1/; c0�/ 2 B and .Œv.i1/; c0�; Œv.j1/; v.j2/�/ 2 m0.�. // iff M; v ˆ
i.B I �. //j iff M; v ˆ i�.hBi /j .

Finally, if ' D hE�1i , then MC; v.i/ ˆ hE�1i iff there exists c0 < v.i1/
such that MC; Œc0; v.i2/� ˆ  iff, by the induction hypothesis and by the defini-
tion of M, .v.i/; Œc0; v.i2/�/ 2 E�1 and .Œc0; v.i2/�; Œv.j1/; v.j2/�/ 2 m0.�. // iff
M; v ˆ i.E�1 I �. //j iff M; v ˆ i�.hE�1i /j . ut
The following proposition can be proved in a similar way:

Proposition 17.4.2. For every standard RLHS-model M and for every HS-formula
', there exists an HS-model MC such that for all interval variables i and j , ' is
true in MC iff i�.'/j is true in M.

From the above propositions we obtain:

Theorem 17.4.1. For every HS-formula ' and for all interval variables i and j ,
the following conditions are equivalent:

1. ' is HS-valid;
2. i�.'/j is true in all standard RLHS-models.



320 17 Dual Tableaux for Interval Temporal Logics

17.5 Dual Tableau for Halpern–Shoham Logic

In this section we present a dual tableau for the logic RLHS and we show how it can
be used for verification of validity in HS.

RLHS-dual tableau contains the decomposition and specific rules of RL.1; 10/-
dual tableau (see Sect. 2.7) adjusted to RLHS-language. In particular, the rules .[/,
.\/, .�[/, .�\/, .�/, .�1/, .��1/, .I /, and .�I / are assumed both for point
relations and for interval relations, i.e., either x; y; z appearing in the rules are point
variables and R;S are point relational terms or x; y; z are interval variables and
R;S are interval relational terms. The rules .101/ and .102/ are assumed for point
relational constants, i.e., x and y appearing in the rules are point variables and R
is a point relational constant. Furthermore, RLHS-dual tableau contains the rules of
the following forms:

Decomposition Rules from Interval Relations to Point Relations:

For all i; j; k 2 IV and for every R 2 IRA,

(R1)
iRj

i110k1; iRj j i210k2; iRj j kRj; iRj
(R2)

iRj

j110k1; iRj j j210k2; iRj j iRk; iRj

For all i; j 2 IV ,

(B)
iBj

i110j1; iBj j j2 < i2; iBj (�B)
i�Bj

i1�10j1; j2�<i2; i�Bj
(E)

iEj

i210j2; iEj j i1 < j1; iEj (�E)
i�Ej

i2�10j2; i1�<j1; i�Ej

Specific Rules:

For all x; y; z 2 PV ,

(irref <)
x < x

(tran <)
x < y

x < z; x < y j z < y; x < y
An RLHS-axiomatic set is a set including a subset of either of the following forms:

For all x; y 2 PV , i; j 2 IV , R 2 PRT , and T 2 IRT ,

(Ax1) fxRy; x�Ryg;
(Ax1’) fiTj; i�Tj g;
(Ax2) fx10xg;
(Ax3) fx < y; x10y; y < xg;
(Ax4) fi1j g;
(Ax5) fi1 < i2; i110i2g.



17.5 Dual Tableau for Halpern–Shoham Logic 321

The axiomatic sets of the form (Ax3) and (Ax5) can be replaced by a rule as dis-
cussed in Sect. 25.9.

Observe that any application of the rules of RLHS-dual tableau, in particular
an application of the specific rules listed above, preserves the formulas built with
atomic terms or their complements. Thus, the closed branch property holds.

The notion of an RLHS-set is defined in a similar way as in the relational log-
ics of classical algebras of binary relations (see Sect. 2.4), that is a finite set of
RLHS-formulas is an RLHS-set whenever the first-order disjunction of its members
is valid in every RLHS-model. Also RLHS-correctness is defined in a similar way as
in Sect. 2.4.

Proposition 17.5.1.

1. The RLHS-rules are RLHS-correct;
2. The RLHS-axiomatic sets are RLHS-sets.

Proof. By way of example, we show that the rules (B) and (�E) are RLHS-correct.
The proofs of the correctness of the remaining rules are similar. Let X be any finite
set of RLHS-formulas.
.B/ It is easy to see that if X [ fiBj g is an RLHS-set, then so are X [

fi110j1; iBj g andX [fj2 < i2; iBj g. Now, assume thatX [fi110j1; iBj g andX [
fj2 < i2; iBj g are RLHS-sets, whileX [fiBj g is not an RLHS-set. Then there exist
an RLHS-model M and a valuation v in M such that M; v 6ˆ iBj . However, by
the assumption, M; v ˆ i110j1 and M; v ˆ j2 < i2, that is .v.i1/; v.j1// 2 m.10/,
and .v.j2/; v.i2// 2<. By the definition of B , we obtain .v.i/; v.j // 2 B , thus
M; v ˆ iBj , a contradiction.

The proof of correctness of the rule (�E) is analogous. Namely, if X [ fi�Ej g
is an RLHS-set, then so is X [ fi2�10j2; i1�<j1; i�Ej g. Now, assume that X [
fi2�10j2; i1�<j1; i�Ej g is an RLHS-set, while X [ fi�Ej g is not an RLHS-
set. Then there exist an RLHS-model M and a valuation v in M such that
M; v 6ˆ i�Ej . However, by the assumption, M; v ˆ i2�10j2 or M; v ˆ
i1�<j1, that is .v.i2/; v.j2// 62 m.10/ or .v.i1/; v.j1// 62<. By the definition of E ,
.v.i/; v.j // 62 E , thus M; v ˆ i�Ej , a contradiction. ut
The notions of an RLHS-proof tree, a closed branch of such a tree, a closed RLHS-
proof tree, and RLHS-provability are defined as in Sect. 2.4.

A branch b of an RLHS-proof tree is complete whenever it is closed or it satisfies
the usual completion conditions determined by the rules .[/, .�[/, .\/, .�\/, .�/,
.�1/, .��1/, .I /, and .�I / listed in Sect. 2.5 adapted both for point relations and for
interval relations and, in addition:

For all x; y 2 PV and R 2 PRC,

Cpl(101) If xRy 2 b then, for every z 2 PV , xRz 2 b or y10z 2 b, obtained by an
application of the rule .101/;

Cpl(102) If xRy 2 b then, for every z 2 PV , z10x 2 b or zRy 2 b, obtained by an
application of the rule .102/;



322 17 Dual Tableaux for Interval Temporal Logics

For all x; y 2 PV ,

Cpl(irref <) x < x 2 b, obtained by an application of the rule (irref <);
Cpl(tran <) If x < y 2 b, then for every z 2 PV , x < z 2 b or z < y 2 b, obtained

by an application of the rule (tran <);

For all i; j 2 IV ,

Cpl(R1) If iRj 2 b, then for every k 2 IV either i110k1 2 b, i210k2 2 b, or
kRj 2 b, obtained by an application of the rule .R1/;

Cpl(R2) If iRj 2 b, then for every k 2 IV either j110k1 2 b, j210k2 2 b, or iRk 2 b,
obtained by an application of the rule .R2/;

Cpl(B) If iBj 2 b, then either i110j1 2 b or j2 < i2 2 b, obtained by an application
of the rule .B/;

Cpl(�B) If i � Bj 2 b, then i1�10j1; j2� < i2 2 b, obtained by an application of
the rule .�B/;

Cpl(E) If iEj 2 b, then either i210j2 2 b or i1 < j1 2 b, obtained by an application
of the rule .E/;

Cpl(�E) If i�Ej 2 b, then i2�10j2; i1� < j1 2 b, obtained by an application of
the rule .�E/.

The notions of a complete RLHS-proof tree and an open branch of an RLHS-proof
tree are defined as in RL-logic (see Sect. 2.5).

Let b be an open branch of an RLHS-proof tree. The branch structure Mb D
.U b; I.U b/C; <b; Bb; Eb; mb/ is defined as follows:

� U b D PV ;
� mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for every R 2 PRC;
� mb extends to all the compound relational terms R 2 PRT as in RLHS-models;
� I.U b/C D fŒc; d � 2 U b � U b W .c; d / 2<b [mb.10/g;
� mb.R/ D f.i; j / 2 I.U b/C � I.U b/C W iRj 62 bg, for every R 2 IRV ;
� mb.1/ D I.U b/C � I.U b/C;
� Bb D mb.B/ D f.Œc; d �; Œc0; d 0�/ 2 I.U b/C � I.U b/C W .c; c0/ 2 mb.10/ and
.d 0; d / 2<bg;

� EbDmb.E/Df.Œc; d �; Œc0; d 0�/2 I.U b/C � I.U b/C W .c; c0/2<b and .d; d 0/ 2
mb.10/g;

� mb extends to all the compound interval relational terms as in RLHS-models.

Proposition 17.5.2 (Branch Model Property). Let b be an open branch of an
RLHS-proof tree. The branch structure Mb is an RLHS-model.

Proof. We show that<b satisfies the conditions (irref<), (tran<), and (con<). All
the remaining conditions are satisfied by the definition of the branch structure.

By the completion condition Cpl(irref<), for every x 2 U b , we have x < x 2 b,
which means that .x; x/ 62<b for every x 2 U b , therefore<b is irreflexive. To prove
transitivity, assume .x; y/ 2<b and .y; z/ 2<b , that is x < y 62 b and y < z 62 b.
Suppose .x; z/ 62<b . Then x < z 2 b. By the completion condition Cpl(tran <),
x < y 2 b or y < z 2 b, a contradiction. Therefore <b satisfies the condition
(tran <). Since b is open, for all x; y 2 U b, x < y 62 b or y < x 62 b or x10y 62 b.



17.5 Dual Tableau for Halpern–Shoham Logic 323

Otherwise, since the rules preserve formulas built with atomic relational terms or
their complements, all of these formulas eventually appear in a node of b and then
b would be closed. Thus, .x; y/ 2<b or .y; x/ 2<b or .x; y/ 2 mb.10/, therefore
<b satisfies the condition (con <). ut
Given a branch model Mb D .U b; I.U b/C; <b; Bb; Eb; mb/, let vb WPV [ IV !
U b [ I.U b/C be a function such that vb.x/ D x, for every x 2 PV , and v.i/ D
Œi1; i2�, for every i 2 IV .

Proposition 17.5.3. Let b be an open branch of an RLHS-proof tree. Then the func-
tion vb is a valuation in the branch model Mb .

Proof. By the definition of vb, if x 2 PV then vb.x/ 2 U b , and if i 2 IV then
vb.i/ D Œvb.i1/; vb.i2/�. It remains to show that for every i 2 IV , .vb.i1/; vb.i2// 2
<b [mb.10/. Suppose that there exists i 2 IV such that .vb.i1/; vb.i2// 62<b
[mb.10/. Then .vb.i1/; vb.i2// 62<b and .vb.i1/; vb.i2// 62 mb.10/. By the defini-
tion ofmb , this implies that i1 < i2 2 b and i110i2 2 b. Due to (Ax5), b is closed, a
contradiction. ut
Proposition 17.5.4 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLHS-proof tree. Then for every RLHS-formula ', if Mb; vb ˆ ',
then ' 62 b.

Proof. Let ' be an RLHS-formula. If ' is a point formula, than the proposition
can be proved as in the logic RL.1; 10/ (see Sects. 2.5 and 2.7). Let ' D iRj be an
interval formula. The proof is by induction on the complexity ofR. IfR is an interval
relational variable or its complement, the required condition can be proved as in
Proposition 2.5.5. Now, we show that the proposition holds for interval relational
constants and their complements.

For R D 1, it holds trivially, since every set including i1j is axiomatic.
Let R D B . Assume .i; j / 2 Bb , that is .i1; j1/ 2 mb.10/ and .j2; i2/ 2<b .

Then i110j1 62 b and j2 < i2 62 b. Suppose iBj 2 b. By the completion condition
Cpl(B), either i110j1 2 b or j2 < i2 2 b, a contradiction.

Similarly, forR D �B (resp.E;�E) we use the completion conditions Cpl(�B)
(resp. Cpl(E), Cpl(�E)).

Therefore, the proposition holds for all formulas built with an atomic term or
its complement. For the formulas built with compound terms it can be proved in a
similar way as in RL-logic (see Sect. 2.5). ut
Following the general method of proving completeness presented in Sect. 2.6, the
above propositions imply:

Theorem 17.5.1 (Soundness and Completeness of RLHS). For every RLHS-
formula ', the following conditions are equivalent:

1. ' is RLHS-valid;
2. ' is true in all standard RLHS-models;
3. ' is RLHS-provable.



324 17 Dual Tableaux for Interval Temporal Logics

Finally, due to the above theorem and Theorem 17.4.1, we get:

Theorem 17.5.2 (Relational Soundness and Completeness of HS). For every
HS-formula ' and for all interval variables i and j , the following conditions are
equivalent:

1. ' is HS-valid;
2. i�.'/j is RLHS-provable.

Example. Consider the HS-formula:

' D hBihBip! hBip;

which reflects transitivity of relation B . The translation of ' into an RLHS-term is:

�.'/ D �.B I .B IP// [ .B IP/;

where for simplicity �.p/ is denoted by P . By Theorem 17.4.1, RLHS-dual tableau
can be used for verification of validity of '. Figure 17.1 presents an RLHS-proof of
the relational formula i�.'/j from which HS-validity of ' follows.

i.�.B I .B IP//[ .B IP//j

�
.[/

i.�.B I .B IP///j ; i.B IP/j

�
.�I / with a new variable k

i�Bk; k�.B IP/j ; i.B IP/j

�
.�I / with a new variable l

i�Bk; k�Bl; l�Pj; i.B IP/j
����

			

.I / with l

l�Pj; lPj; : : :
closed

i�Bk; k�Bl; iBl; : : :

�
.�B/ twice

i1�10k1; k2�<i2; k1�10l1; l2�<k2; iBl; : : :
����

			
.B/

i1�10k1; k1�10l1; i11
0l1; : : :

����
			
.101/ with k1

i11
0k1; i1�10k1; : : :

closed

k11
0l1; k1�10l1; : : :

closed

k2�<i2; l2�<k2; l2 < i2; : : :
����

			
(tran <) with k2

l2�<k2;
l2 < k2; : : :

closed

k2�<i2;
k2 < i2; : : :

closed

Fig. 17.1 An RLHS-proof of the formula hBihBip! hBip



17.6 Dual Tableaux for Other Interval Temporal Logics 325

17.6 Dual Tableaux for Other Interval Temporal Logics

In this section we exploit the modularity of the relational approach, and we show
how to extend HS-dual tableau to cope with other interval relations and other mean-
ingful temporal domains.

Logics Based on Strict Intervals

In the previous sections we considered the non-strict semantics of HS where, given
a strict ordering .D;</, the set of non-strict intervals I.D/C is defined as the set
of all Œc; d � such that c � d . As a consequence, the set of intervals includes the
point intervals of the form Œc; c�. In the literature an alternative semantics for in-
terval logics is considered, namely the strict semantics, where the point intervals
are excluded. Given a strict ordering .D;</, a strict interval is a pair Œc; d � where
c < d . The set of all strict intervals on D is denoted by I.D/�. The models based
on strict intervals are defined in a way analogous to the non-strict case.

In what follows, we show how to modify the dual tableau for RLHS in the case of
the strict semantics. To this end, we define the relational logic RL�HS (strict RLHS),
having the same syntax as non-strict RLHS, but a different semantics.

An RL�HS-model is a structure M� D .U; I.U /�; <;B;E;m/, where .U;m/ is
an RL.1; 10/-model,<,B , andE are defined as in RLHS-models, I.U /� D fŒc; d � 2
U � U W .c; d / 2<g and m.1/ D I.U /� � I.U /�. An RL�HS-valuation is any
function vWPV [ IV ! P.U /[ P.I.U /� � I.U /�/ such that:

� If x 2 PV , then v.x/ 2 U ;
� If i 2 IV , then v.i/ D Œv.i1/; v.i2/� 2 I.U /�.

The notions of satisfaction and validity of a formula are defined as in logic RLHS.
A dual tableau for RL�HS is obtained from the RLHS-dual tableau by replacing the

axiomatic set (Ax5) with:

(Ax5�) i1 < i2, for i 2 IV .

RL�HS-dual tableau is sound and complete; it can be proved in a similar way as for
RLHS-dual tableau.

Other Interval Temporal Logics

Now, we show how to modify the relational logic RLHS and its dual tableau to obtain
a relational logic and a corresponding dual tableau for any interval logic based on
relations chosen from the 13 Allen’s relations. Let I � fE;E�1;D;D�1; B; B�1;
O;O�1;M;M�1; P; P�1g. A language of a logic LI is obtained from the HS-
language by replacing the set of relational constants fB;E;B�1; E�1g with the set
I and the set of modal operations with fhRi W R 2 I g. Given an interval logic LI , the
corresponding relational logic RLLI

differs from RLHS only in the choice of the set
of interval relational constants, that is IRC D f1g[ I . Models of RLLI

are defined
as those of RLHS with the assumption that the semantics of the relational constants



326 17 Dual Tableaux for Interval Temporal Logics

from I is defined in accordance with the semantics of the chosen primitive interval
relations. A validity preserving translation � of LI -formulas into RLLI

-formulas is
obtained from the translation presented in Sect. 17.4 by assuming R 2 I .

A dual tableau for RLLI
can be obtained from RLHS-dual tableau (in the case of

the non-strict semantics for intervals) or from RL�HS-dual tableau (in the case of the
strict semantics), by replacing the rules .B/, .E/, .�B/, and .�E/ with the rules
appropriate for the choice of basic relations. The rules for the relations D, M , P ,
and O have the following forms:

For all i; j 2 IV ,

(D)
iDj

i1 < j1; iDj j j2 < i2; iDj (�D)
i�Dj

i1�<j1; j2�<i2; i�Dj
(M )

iMj

j210i1; iMj
(�M )

i�Mj
j2�10i1; i�Mj

(P )
iPj

j2 < i1; iPj
(�P )

i�Pj
j2�<i1; i�Pj

(O)
iOj

j1 < i1; iOj j i1 < j2; iOj j j2 < i2; iOj
(�O)

i�Oj
j1�<i1; i1 < j2; j2 < i2; i�Oj

The rules presented in Sect. 17.5 allow us to easily adapt RLHS-dual tableau to any
propositional interval temporal logic that is a proper fragment of HS. Here we show
two examples of such a modification.

The logic with relations B and B�1 and the logic with relations E and E�1
are decidable (see [GMS04]). The logic BE is obtained from HS by deleting the
operations hB�1i and hE�1i. It was studied in [Lod00], where its undecidability
was proved. Since BE does not have modal operations determined by converses of
relations B and E , the relational logic RLBE appropriate for representation of BE-
formulas is the logic RLHS without the converse operation �1. A dual tableau for
RLBE can be obtained from that of RLHS by deleting the rules (�1) and (��1).

Interval logics based on the relation meet, M , and its converse are usually called
neighborhood logics. First-order neighborhood logics were first introduced and
studied in [CH97]. Their propositional variant, called Propositional Neighborhood
Logic, PNL, was proposed and investigated recently in [GMS03b].

In [GMS03b] the authors studied logic PNL both with the non-strict and strict
semantics over linear orderings. Let PNLC and PNL� be the respective logics. The
relational logic RLPNLC is obtained from logic RLHS by taking the interval relational
constant M in place of B and E . A dual tableau for RLPNLC can be obtained from
that of RLHS by replacing the rules (B), (�B), (E), and (�E) with the rules (M )
and (�M ). In the case of the strict semantics, the relational logic RLPNL� can be
obtained from RL�HS in the same way.

In all the relational systems RLL presented above, the strict ordering< is consid-
ered to be linear, without any further assumption. We can modify this constraint by



17.6 Dual Tableaux for Other Interval Temporal Logics 327

requiring that the order of point intervals in the models is, for example, unbounded
from below, serial, dense, or discrete. Then, in order to obtain a dual tableau for
such a restriction, we replace the rules and axiomatic sets that reflect strict linearity
of < by the rules corresponding to the appropriate properties of < assumed in the
models, as presented in Sect. 16.3.



Chapter 18
Dual Tableaux for Spatial Reasoning

18.1 Introduction

Qualitative spatial reasoning is concerned with the qualitative aspects of
representation and reasoning about spatial entities as opposed to one-dimensional
situations. It aims to express non-numerical relationships among spatial regions.
The basic concepts in most of these theories are ‘part of’ and ‘connection’ relations
which are the typical examples of a more general notion of a ‘contact’ relation.

The formalization of ‘part of’ relationship goes back to the mereological systems
of Stanisław Leśniewski developed from 1916 onwards [Leś16, Leś29, Leś31].
Next, based on an earlier work of de Laguna [dL22], Whitehead [Whi29] intro-
duced a kind of connection relation as a basic relation between regions. His system
includes Leśniewski’s mereology. Later, Grzegorczyk [Grz60] and Clarke [Cla81]
presented an axiomatization of Whitehead’s relation.

One of the more recent spatial theories is the Region Connection Calculus, RCC,
introduced in [RCC92]. The primitive concept of this theory is a binary relation of
‘connection’ between regions. Intuitively, in terms of points incident in regions, two
regions are connected whenever they share a common point. With the connection
relation a set of the other spatial relations is defined. These relations describe dif-
ferent connections between regions such as being externally connected, partially
overlapping, being a tangential part of, and so on. In the theory RCC all meaningful
degrees of connection are formally defined. The fundamental structure considered
in the theory is a Boolean algebra endowed with a contact relation satisfying certain
axioms.

Spatial theories having as a basic concept a proximity relation, first considered in
[Efr52], are investigated in [NW70, DV07, VDDB02, VDB01], among others. The
proximity relation is a binary relation between subsets of a non-empty set, which
holds between the two sets whenever, intuitively, they are near in some sense. The
proximity relation satisfies axioms which are among the typical axioms of the con-
nection relation. The spatial intuition of proximity is also formalized in terms of
nearness spaces as presented in [BdRV01]. A natural counterpart to the proximity
and nearness spaces are the apartness spaces introduced in [BD03]. In [DO08] the
apartness algebras and apartness frames are defined which lead to an intuitionistic

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 18,
c� Springer Science+Business Media B.V. 2011

329



330 18 Dual Tableaux for Spatial Reasoning

logic with a sufficiency operation. Consequently, a dual tableau for such a logic can
be developed based on the dual tableau for intuitionistic logic presented in Sect. 8.2
and on the developments of Sect. 11.5 where the rules for a sufficiency operation are
discussed.

Qualitative spatial reasoning from a philosophical perspective is discussed in
[Sim87] and from a relation algebraic perspective in [Dün05].

In this chapter we consider four types of spatial theories: theories based on a
plain contact relation, theories based on Boolean algebras additionally equipped
with a contact relation, theories of region connection calculus, and theories based
on a proximity relation. All of these theories, except for those from the first group
that are based on logic RL.1; 10/, are presented as first-order theories of appropriate
classes of relations, following the developments in [Dün01b, DWM99, DOW01,
DWM01, Ste00, VDDB02]. This enables us to construct their proof systems in a
uniform way.

18.2 Dual Tableaux for Spatial Theories Based on a Plain
Contact Relation

Typically, the most basic notion of theories for spatial reasoning is that of a con-
tact relation [Cla81, Dün01b]. In this section we consider theories of the class of
relation algebras generated by a binary relation C interpreted as a contact relation.
This class is denoted by CRA. Each of these theories has some specific axioms that
characterize relation C . One of them has the following axioms (see [DO00b]):

(C1) C is reflexive;
(C2) C is symmetric;
(C3) If C.a/ D C.b/, then a D b, where C.x/ D fy W xCyg.
Axiom (C3) is referred to as the extensionality axiom.

In terms of a contact relation, several mereological relations can be defined. In
Table 18.1 we list some typical relations of that kind.

Table 18.1 Mereological relations definable from the contact
relation C
P D �.C I�C/ part of
PP D P \�10 proper part of
O D P�1 IP overlap
PO D O \�.P [ P�1/ partial overlap
EC D C \�O external contact
TPP D PP \ .EC IEC/ tangential proper part
NTPP D PP \�TPP non-tangential proper part
DC D �C disconnected
DR D �O discrete



18.2 Dual Tableaux for Spatial Theories Based on a Plain Contact Relation 331

The language of the relational logic RLCRA, adequate for reasoning in relation
algebras generated by a contact relation, is RL.1; 10/-language with:

� RV RLCRA D ;;
� RCRLCRA D f1; 10; C g.
An RLCRA-model is a structure M D .U; C;m/ such that .U;m/ is an RL.1; 10/-
model, C is a reflexive and symmetric relation on U such that m.C/ D C and, in
addition:

(ext C ) If fz 2 U W .x; z/ 2 C g D fz 2 U W .y; z/ 2 C g, then .x; y/ 2 m.10/.
Note that the above condition is a counterpart to the extensionality axiom (C3)
although the meaning of 10 may not be the identity. RLCRA-models in which 10
is interpreted as the identity relation are referred to as standard models.

An RLCRA-dual tableau consists of the rules and the axiomatic sets of the logic
RL.1; 10/ and the following specific rules reflecting the axioms of contact relationC .

For any object symbols x and y,

(ref C )
xCy

x10y; xCy
(sym C )

xCy

yCx

(ext C )
x�C z; yC zjy�C z; xC zjx�10y
x and y are any object symbols, z is a new variable, and z ¤ x; y

We can prove soundness and completeness of RLCRA following the method
developed for RL.1; 10/-logic. As usual, RLCRA-sets of formulas are defined as
in Sect. 2.4, i.e., the first-order disjunction of their members is valid. Correctness of
a rule is defined as in Sect. 2.4.

Proposition 18.2.1. The rules (ref C ), (sym C ), and (ext C ) are RLCRA-correct.

Proof. The rules (refC ) and (symC ) reflect reflexivity and symmetry of the relation
C , respectively, as it is shown in Theorem 6.6.1. Now, we prove correctness of the
rule (extC ). LetX be a finite set of RLCRA-formulas. Let x; y be any object symbols
and let z be an object variable that does not occur in X and such that z ¤ x; y.
Clearly, if X is an RLCRA-set, then so are X [ fx�C z; yC zg, X [ fy�C z; xC zg,
and X [ fx�10yg. Now, assume that X [ fx�C z; yC zg, X [ fy�C z; xC zg, and
X [ fx�10yg are RLCRA-sets. Suppose X is not an RLCRA-set, that is there exist
an RLCRA-model M D .U; C;m/ and a valuation v in M such that M; v 6ˆ ', for
every ' 2 X . It follows from the assumption that model M and valuation v satisfy:

M; v ˆ x�C z or M; v ˆ yC zI
M; v ˆ y�C z or M; v ˆ xC zI
M; v ˆ x�10y:



332 18 Dual Tableaux for Spatial Reasoning

By the assumption on variable z, for every a 2 U the following hold:

If .v.x/; a/ 2 C , then .v.y/; a/ 2 C ;
If .v.y/; a/ 2 C , then .v.x/; a/ 2 C ;
.v.x/; v.y// 62 m.10/.
Thus fz 2 U W .v.x/; z/ 2 C g D fz 2 U W .v.y/; z/ 2 C g and .v.x/; v.y// 62 m.10/.
However, the condition (ext C ) implies .v.x/; v.y// 2 m.10/, a contradiction. ut
By the above proposition and since correctness of all the remaining rules can be
proved as in RL.1; 10/-logic (see Sects. 2.5 and 2.7), we get:

Proposition 18.2.2.

1. The RLCRA-rules are RLCRA-correct;
2. The RLCRA-axiomatic sets are RLCRA-sets.

The notions of an RLCRA-proof tree, a closed branch of such a tree, a closed RLCRA-
proof tree, and RLCRA-provability are defined as in Sect. 2.4.

A branch b of an RLCRA-proof tree is complete whenever it is closed or it satisfies
the completion conditions of RL.1; 10/-dual tableau and the following conditions
specific for the RLCRA-dual tableau:

For any object symbols x and y,

Cpl(ref C ) If xCy 2 b, then x10y 2 b, obtained by an application of the rule
(ref C );

Cpl(sym C ) If xCy 2 b, then yCx 2 b, obtained by an application of the rule
(sym C );

Cpl(ext C ) Either x�10y 2 b or there exists an object variable z such that either
(x�C z 2 b and yC z 2 b) or (y�C z 2 b and xC z 2 b), obtained by an
application of the rule (ext C ).

The notions of a complete RLCRA-proof tree and an open branch of an RLCRA-proof
tree are defined as in RL-logic (see Sect. 2.5). Observe that the rules of RLCRA-dual
tableau, in particular the specific rules (ref C ), (sym C ), and (ext C ), guarantee that
whenever a branch of an RLCRA-proof tree contains formulas xRy and x�Ry, for
an atomic term R, then the branch can be closed. Thus, the closed branch property
can be proved as in Proposition 2.8.1.

The branch structure Mb D .U b; C b; mb/ is defined in the standard way (see
Sect. 2.6, p. 44), in particularmb.C / D C b D f.x; y/ 2 U b � U b WxCy 62 bg.
Proposition 18.2.3 (Branch Model Property). Let b be an open branch of an
RLCRA-proof tree. Then, the branch structure Mb D .U b; C b; mb/ is an RLCRA-
model.

Proof. It suffices to show that C b is reflexive, symmetric, and it satisfies the con-
dition (ext C ). By the completion conditions Cpl(ref C ) and Cpl(sym C ), it easily
follows that C b is reflexive and symmetric. To prove the extensionality property of
C b , let x; y 2 U b be such that fz 2 U b W .x; z/ 2 C bg D fz 2 U b W .y; z/ 2 C bg.



18.2 Dual Tableaux for Spatial Theories Based on a Plain Contact Relation 333

By the completion condition Cpl(ext C ), either x�10y 2 b or there exists an object
variable z, such that either (x�C z 2 b and yC z 2 b) or (y�C z 2 b and xC z 2 b).
If x�10y 2 b, then x10y 62 b, since otherwise, by the closed branch property, b
would be closed. Hence, .x; y/ 2 mb.10/. If for some z 2 U b, x�C z 2 b and
yC z 2 b, then .x; z/ 2 C b and .y; z/ 62 C b . Thus, fz 2 U b W .x; z/ 2 C bg ¤ fz 2
U b W .y; z/ 2 C bg, a contradiction. If there is z 2 U b such that y�C z 2 b and
xC z 2 b, then .y; z/ 2 C b and .x; z/ 62 C b , which also contradicts the assumption.

ut
Sincemb.C / is defined in a standard way, the satisfaction in branch model property
can be proved as in RL.1; 10/-logic (see Sects. 2.5 and 2.7). Hence, completeness of
RLCRA-dual tableau follows.

Theorem 18.2.1 (Soundness and Completeness of RLCRA). For every RLCRA-
formula ', the following conditions are equivalent:

1. ' is RLCRA-valid;
2. ' is true in all standard RLCRA-models;
3. ' is RLCRA-provable.

In order to reason directly about the mereological relations definable from the
contact relation C , we can develop the relational logic RLMer which is obtained
from RLCRA by adding to its language the set of relational constants Mer D
fP;PP;O;PO;EC; TPP; NTPP;DC;DRg. An RLMer-structure is a system
M D .U; C; f# W # 2 Merg; m/, where .U; C;m/ is an RLCRA-model and
m.#/ D # � U � U , for every relational constant # 2 Mer. An RLMer-model is
an RLMer-structure M D .U; C; f# W # 2 Merg; m/ such that relations from Mer are
defined by conditions given in Table 18.1. We slightly abuse the notation here by
identifying symbols of the language with the corresponding entities in the models.

A dual tableau for RLMer consists of the rules and the axiomatic sets of RLCRA-
dual tableau, and the following specific rules that reflect the definitions of mereo-
logical relations in terms of the contact relation C :

For all object symbols x and y,

(P )
xPy

x�C z; zCy
(�P )

x�Py
xC z; x�Py j z�Cy; x�Py

z is a new object variable z is any object symbol

(PP )
xPPy

xPy; xPPy j x�10y; xPPy (�PP )
x�PPy

x�Py; x10y; x�PPy

(O)
xOy

zPx; xOy j zPy; xOy (�O)
x�Oy

z�Px; z�Py
z is any object symbol z is a new object variable



334 18 Dual Tableaux for Spatial Reasoning

(PO)
xPOy

xOy; xPOy j x�Py; xPOy j y�Px; xPOy

(�PO)
x�POy

x�Oy; xPy; yPx; x�POy

(EC )
xECy

xCy; xECy j x�Oy; xECy (�EC )
x�ECy

x�Cy; xOy; x�ECy

(TPP )
xTPPy

xPPy; xTPPy j xEC z; xTPPy j zECy; xTPPy
z is any object symbol

(�TPP )
x�TPPy

x�PPy; x�EC z; z�ECy z is a new object variable

(NTPP )
xNT TPy

xPPy; xNTPPy j x�TPPy; xNTPPy

(�NTPP )
x�NTPPy

x�PPy; xTPPy; x�NTPPy

(DC )
xDCy

x�Cy; xDCy (�DC )
x�DCy

xCy; x�DCy

(DR)
xDRy

x�Oy; xDRy (�DR)
x�DRy

xOy; x�DRy
The alternative forms of the rules above are discussed in Sect. 25.9.

Let K be a class of RLMer-structures. The notion of a K-set and the notion of
K-correctness of a rule are defined as in Sect. 2.4.

Theorem 18.2.2 (Correspondence). Let K be a class of RLMer-structures and let
# 2 Mer D fP;O; PO;PP; EC; TPP; NTPP; DC; DRg. Then, the following
conditions are equivalent:

1. K is the class of RLMer-models;
2. For every # 2 Mer, the rules .#/ and .�#/ are K-correct.

Proof.

.1:! 2:/ Assume that K is the class of RLMer-models. By way of example, we
prove correctness of the rules .P / and .�P/.
.P / Let X be a finite set of RLMer-formulas and let z be a variable that does

not occur in X and z ¤ x; y. Assume X [ fxPyg is an RLMer-set and suppose
that X [ fx�C z; zCyg is not an RLMer-set. It follows that there is an RLMer-
model M and a valuation v in M such that for every ' 2 X , M; v 6ˆ '



18.2 Dual Tableaux for Spatial Theories Based on a Plain Contact Relation 335

and, moreover, .v.x/; v.z// 2 C and .v.z/; v.y// 62 C , that is .v.x/; v.y// 2
.C I �C/. However, by the assumption, .v.x/; v.y// 2 P , which by the condition
P � �.C I �C/ implies .v.x/; v.y// 62 .C I �C/, a contradiction. Now, assume
that X [ fx�C z; zCyg is an RLMer-set. Then, by the assumption on variable z, for
every RLMer-model M and for every valuation v in M, either there exists ' 2 X
such that M; v ˆ ' or for every z 2 U , .v.x/; z/ 62 C or .z; v.y// 2 C , that is
.v.x/; v.y// 62 .C I �C/. Suppose X [ fxPyg is not an RLMer-set. Then, there ex-
ist an RLMer-model M and a valuation v such that .v.x/; v.y// 62 P . Thus, by the
condition�P � .C I �C/, .v.x/; v.y// 2 .C I �C/, a contradiction. Therefore, the
rule .P / is RLMer-correct.
.�P/ Let X be a finite set of RLMer-formulas. Clearly, if X [ fx�Pyg is an

RLMer-set, then so are X [ fxC z; x�Pyg and X [ fz�Cy; x�Pyg. Now, assume
that X [ fxC z; x�Pyg and X [ fz�Cy; x�Pyg are RLMer-sets. Suppose X [
fx�Pyg is not an RLMer-set. Then, there exist an RLMer-model M and a valuation
v in M such that for every ' 2 X , M; v 6ˆ ' and .v.x/; v.y// 2 P . It follows
that for every w 2 U , either .v.x/;w/ 62 C or .w; v.y// 2 C . However, by the
assumption there exists w 2 U such that .v.x/;w/ 2 C and .w; v.y// 62 C , a
contradiction. Therefore, the rule .�P/ is RLMer-correct.
.2:! 1:/ Assume that for every # 2 Mer, the rules .#/ and .�#/ are K-correct.

We need to show that relations from Mer satisfy equations given in Table 18.1. By
way of example, we show that P D �.C I �C/.
.�/ By correctness of the rule .�P/, for every finite set X of RLMer-formulas,

X [fx�Pyg is a K-set iffX [fxC z; x�Pyg andX [fz�Cy; x�Pyg are K-sets.

Let X
dfD fx�C z; zCyg. By the assumption, fx�Py; x�C z; zCyg is a K-set. Thus,

for every K-structure M and for every valuation v in M, if .v.x/; v.z// 2 C and
.v.z/; v.y// 62 C , then .v.x/; v.y// 62 P . Thus, if .v.x/; v.y// 2 .C I �C/, then
.v.x/; v.y// 62 P , and hence P � �.C I �C/.
.�/ By correctness of the rule .P /, for every finite set X of RLMer-formulas and

for every variable z that does not occur in X and such that z ¤ x; y, X [ fxPyg
is a K-set iff X [ fx�C z; zCyg is a K-set. Let X

dfD fx.C I �C/yg. Then, by the
assumption on variable z, X [ fx�C z; zCyg is a K-set. Thus, by K-correctness of
the rule .�P/, fxPy; x.C I �C/yg is a K-set. Hence, �.C I �C/ � P . ut
The above theorem implies:

Proposition 18.2.4.

1. The RLMer-rules are RLMer-correct;
2. The RLMer-axiomatic sets are RLMer-sets.

In order to prove completeness, we need to define the completion conditions corre-
sponding to the rules specific for RLMer-dual tableau, i.e., the rules .P /, .�P/, .O/,
.�O/, .PP/, .�PP/, .EC/, .�EC/, .DR/, and .�DR/.

For all object symbols x and y,

Cpl(P ) If xPy 2 b, then for some object variable z, both x�Cz 2 b and zCy 2 b,
obtained by an application of the rule .P /;



336 18 Dual Tableaux for Spatial Reasoning

Cpl(�P ) If x�Py 2 b, then for every object symbol z, either xCz 2 b or
z�Cy 2 b, obtained by an application of the rule .�P/;

Cpl(PP) If xPPy 2 b, then either xPy 2 b or x�10y 2 b, obtained by an application
of the rule .PP/;

Cpl(�PP) If x�PPy 2 b, then both x�Py 2 b and x10y 2 b, obtained by an
application of the rule .�PP/;

Cpl(O) If xOy 2 b, then for every object symbol z, either zPx 2 b or zPy 2 b,
obtained by an application of the rule .O/;

Cpl(�O) If x�Oy 2 b, then for some object variable z, both z�Px 2 b and z�Py 2
b, obtained by an application of the rule .�O/;

Cpl(PO) If xPOy 2 b, then either xOy 2 b or x�Py 2 b or y�Px 2 b, obtained by
an application of the rule .PO/;

Cpl(�PO) If x�POy 2 b, then x�Oy 2 b and xPy 2 b and yPx 2 b, obtained by
an application of the rule .�PO/;

Cpl(EC) If xECy 2 b, then either xCy 2 b or x�Oy 2 b, obtained by an application
of the rule .EC/;

Cpl(�EC) If x�ECy 2 b, then both x�Cy 2 b and xOy 2 b, obtained by an
application of the rule .�EC/;

Cpl(TPP) If xTPPy 2 b, then either xPPy 2 b or for every object symbol z, xECz 2
b or zECy 2 b, obtained by an application of the rule .TPP/;

Cpl(�TPP) If x�TPPy 2 b, then xPPy 2 b and for some object variable z, both
x�ECz 2 b and z�ECy 2 b, obtained by an application of the rule .�TPP/;

Cpl(NTPP) If xNTPPy 2 b, then either xPPy 2 b or x�TPPy 2 b, obtained by an
application of the rule .NTPP/;

Cpl(�NTPP) If x�NTPPy 2 b, then both x�PPy 2 b and xTPPy 2 b, obtained by
an application of the rule .�NTPP/;

Cpl(DC) If xDCy 2 b, then x�Cy 2 b, obtained by an application of the rule .DC/;
Cpl(�DC) If x�DCy 2 b, then xCy 2 b, obtained by an application of the rule
.�DC/;

Cpl(DR) If xDRy 2 b, then x�Oy 2 b, obtained by an application of the rule .DR/;
Cpl(�DR) If x�DRy 2 b, then xOy 2 b, obtained by an application of the rule
.�DR/.

The notions of a complete RLMer-proof tree and an open branch of an RLMer-proof
tree are defined as in RL-logic (see Sect. 2.5).

The following form of the closed branch property holds:

Fact 18.2.1 (Closed Branch Property). For every branch of an RLMer-proof tree,
if xRy and x�Ry, for an atomicR 2 MernfP;�O;�TPP g, belong to the branch,
then the branch is closed.

Although it does not concern the relational constants P , �O , and �TPP , it is
sufficient for proving satisfaction in branch model property, see Proposition 18.2.5.
The reason is that the rules for these constants reflect their corresponding definitions
in logic RLMer.



18.2 Dual Tableaux for Spatial Theories Based on a Plain Contact Relation 337

Let b be an open branch of an RLMer-proof tree. The branch structure MbD
.U b; C b; f#b W # 2 Merg; mb/ is defined as in the completeness proof of RLCRA-
dual tableau with the following additional clauses:

� For every # 2 Mer, #b is defined according to Table 18.1; for example, Ob
dfD

.P�1/b IP b .
� mb.#/ D #b .

By the above definition, Mb is an RLMer-model, hence the branch model property
holds. Now, we prove the satisfaction in branch model property.

Proposition 18.2.5 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLMer-proof tree. Then, for every RLMer-formula ', if Mb; vb ˆ ',
then ' 62 b.

Proof. We need to show that the proposition holds for every relational constant
# and its complement, for # 2 Mer. By way of example, we prove the required
condition for the relational constant O and for �EC .

.�O/ Assume that Mb and vb satisfy a formula x�Oy, that is .x; y/ 62 Ob. By
the definition of Ob, for every z 2 U b , either .z; x/ 62 P b or .z; y/ 62 P b . Suppose
x�Oy 2 b. By the completion condition Cpl(�O), there exists z 2 U b such that
z�Px 2 b and z�Py 2 b. By the completion condition Cpl(�P ), there exists
z 2 U b such that for every u 2 U b , either zCu 2 b or u�Cx 2 b, and for every
t 2 U b , either zC t 2 b or t�Cy 2 b. Thus, by the induction hypothesis, there
exists z 2 U b such that for every u 2 U b , either .z; u/ 62 C b or .u; x/ 2 C b, and
for every t 2 U b , either .z; t/ 62 C b or .t; y/ 2 C b. Therefore, there exists z 2 U b
such that .z; x/ 62 .C b I �C b/ and .z; y/ 62 .C b I �C b/. Hence, .z; x/ 2 P b and
.z; y/ 2 P b , a contradiction.
.�EC/ Assume Mb; vb ˆ x�ECy, that is .x; y/ 62 EC b. Then, either

.x; y/ 62 C b or .x; y/ 2 Ob . Suppose x�ECy 2 b. By the completion condition
Cpl(�EC ), x�Cy 2 b and xOy 2 b. By the induction hypothesis, .x; y/ 2 C b
and .x; y/ 62 Ob, a contradiction.

The proofs of the remaining cases are similar. ut
Finally, we obtain:

Theorem 18.2.3 (Soundness and Completeness of RLMer). For every RLMer-
formula ', the following conditions are equivalent:

1. ' is RLMer-valid;
2. ' is true in all standard RLMer-models;
3. ' is RLMer-provable.

Example. In Figs. 18.1–18.3 we present examples of RLMer-proofs of some proper-
ties of mereological relations. We show that P \DC D ; by showing that �P [
�DC is the universal relation (Fig. 18.1). Then we show that .PP IPP/ � PP

by constructing an RLMer-proof of the formula x.�.PP IPP/[PP/y (Fig. 18.2).
Finally, we prove that P is antisymmetric, i.e., P \ P�1 � 10, by constructing an
RLMer-proof of the formula x.�.P \ P�1/ [ 10/y (Fig. 18.3).



338 18 Dual Tableaux for Spatial Reasoning

x.�P [�DC/y
�.[/

x�Py; x�DCy
�.�DC/

x�Py; xCy; x�DCy
�����

�����.�P/ with x

xCx; : : : x�Cy; xCy; : : :
closed

�
.ref C/

x10x; : : :

closed

Fig. 18.1 An RLMer-proof of P \DC D ;

x.�.PP IPP/[ PP/y

�
.[/

x�.PP IPP/y; xPPy
�
.�I / with a new variable z

x�PP z; z�PPy; xPPy
�.�PP/ twice

x�P z; x10z; z�Py; z10y; xPPy

����
			


(ext C ) with x and z
and a new variable w

x�Cw; zCw; x�P z; : : :
����

			
(�P ) with w

x�Cw; xCw; : : :
closed

zCw;w�C z; : : :

�
(sym C )

wC z;w�C z; : : :
closed

x�10z; x10z : : :
closed

�
z�Cw; xCw; x�P z; z�Py; xPPy; : : :
�

�
�

�
�

��

�
��

.PP/

x�10y; z�Cw; xCw; z�Py; : : :
���� .�P/ with w 			


zCw; z�Cw; : : :
closed

x�10y; xCw;w�Cy; : : :
����

			
.102/ with y

x10y; x�10y; : : :

closed

yCw;w�Cy; : : :

�
(sym C )

wCy;w�Cy; : : :
closed

xPy; x�P z; z�Py; : : :

�
.P / with a new variable u

x�Cu; uCy; x�P z; z�Py; : : :
���� .�P/ with u 			


xCu; x�Cu; : : :
closed

uCy; u�C z; z�Py; : : :
���� .�P/ with u 			


zCu; u�C z; : : :

�
(sym C )

uC z; u�C z; : : :
closed

uCy; u�Cy; : : :
closed

Fig. 18.2 An RLMer-proof of PP IPP � PP



18.3 Dual Tableaux for Spatial Theories Based on a Contact Relation on a Boolean Algebra 339

x.�.P \ P�1/[ 10/y

�.[/
x�.P \ P�1/y; x10y

�.�\/ and .�1/

x�Py; y�Px; x10y

����
�

			
(ext C ) with x;y and a new z

x�10y; x10y; : : :

closed

x�C z; yC z; x�Py; : : :
y�C z; xC z; y�Px; : : :

� �
(sym C )

(sym C )

x�C z; zCy; x�Py; : : :
y�C z; zCx; y�Px; : : :��� �.�P/ with z ��� .�P/ with z

		

x�C z;
xC z; : : :
closed

zCy;
z�Cy; : : :
closed

y�C z;
yC z; : : :

closed

zCx;
z�Cx; : : :

closed

Fig. 18.3 An RLMer-proof of antisymmetry of the ‘part of’ relation P

18.3 Dual Tableaux for Spatial Theories Based on a Contact
Relation on a Boolean Algebra

In this section we present a first-order theory of Boolean algebras with a contact
relation. Such structures are considered, for example, in [Ste00, DW08].

The language of the first-order theory of Boolean algebras, FBAfun, is a first-
order language with the identity and function symbols (cf. Sect. 1.2) representing
the Boolean operations from fun D f�;_;^g and the Boolean constants 0 and 1.
The language of the first-order theory of Boolean algebras with a contact relation,
FBACfun, is an FBAfun-language endowed with the relational constant C . FBACfun-
models are Boolean algebras with a contact relation C satisfying some of the
following conditions.

Let .U;�;_;^; 0; 1/ be a Boolean algebra, let C be a binary relation on U , let
a; b; c 2 U , and let � be the Boolean ordering on U .

(C0) If aCb, then a; b ¤ 0;
(C1) If a ¤ 0, then aCa.

Sometimes, a stronger axiom is postulated instead of (C1):

(C2) If a ^ b ¤ 0, then aCb.

Further axioms include:

(C3) C is symmetric;
(C4) C is reflexive;
(C5) If aCb and b � c, then aCc;
(C6) If aC.b _ c/, then aCb or aCc;
(C7) If C.a/ � C.b/, then a � b.



340 18 Dual Tableaux for Spatial Reasoning

Observe that (C7) follows from (C3) and (C5). The other typical axioms are:

(C8) If not aCb, then there is c such that not aCc and not .�c/Cb;
(C9) If a; b ¤ 0 and a _ b D 1, then aCb;
(C10) If a ¤ 1, then there exists b ¤ 0 such that not bCa.

In the presence of the axioms (C0), : : : ; (C6) axiom (C9) is equivalent to:

(C11) If a ¤ 0; 1, then aC.�a/.
The primitive notions of FBAfun and FBACfun can be equivalently presented in purely
relational terms by elimination of function symbols. The binary Boolean opera-
tions _ and ^ are represented as ternary relations R_ and R^, respectively, and the
Boolean complement� as a binary relationR�. RelationsR�; R_; R^ are intended
to reflect the following intuitions:

R�.x; y/ iff y D �x;
R_.x; y; z/ iff z D x _ y;
R^.x; y; z/ iff z D x ^ y.

Then the formalism appropriate for reasoning in the spatial theories involving these
relations is a first-order theory of binary relations C and R�, and ternary relations
R_ and R^. It will be denoted by FBAC. Similarly, FBA denotes a first-order lan-
guage, without function symbols, of the theory of Boolean algebras.

An FBA-model is a structure M D .U;R�; R_; R^; 0; 1;m/ such that .U;m/ is
an F-model defined in Sect. 1.2, R� is a binary relation on U interpreting the rela-
tional constantR�,R_ andR^ are ternary relations on U interpreting the relational
constants R_ and R^, respectively, and 0; 1 are distinguished elements of U inter-
preting object constants from the language. An FBA-model is standard whenever the
interpretation ofD is the identity. As usual, we slightly abuse the notation using the
same symbols for the relational constants in the language and for the corresponding
relations in the models.

A valuation in a model M D .U;R�; R_; R^; 0; 1;m/ is a function vWOV FBA [
f0; 1g ! U [ f0; 1g such that v.1/ D 1 and v.0/ D 0. The satisfaction relation,
truth in a model, and validity are defined as in F-logic in Sect. 1.2.

FBA-models are assumed to satisfy the following semantic conditions reflecting the
role of the axioms of Boolean algebras:

For # 2 f_;^g and for all x; y; z,

(ReBA0) There is z such that R�.x; z/;
(ReBA1) R�.z; x/ and R�.z; y/ imply x D y;
(ReBA2#) There is z such that R#.x; y; z/;
(ReBA3#) R#.z; t; x/ and R#.z; t; y/ imply x D y.

The above conditions encode the fact that R� and R#, for # 2 f_;^g, are functions.

(ReBA4#) R#.x; y; z/ iff R#.y; x; z/;
(ReBA5#) There are t; u such that R#.x; y; t/ andR#.t; z; u/ iff there are t 0; u0 such

that R#.y; z; t 0/ and R#.x; t
0; u0/;



18.3 Dual Tableaux for Spatial Theories Based on a Contact Relation on a Boolean Algebra 341

(ReBA6) There are t; u such thatR_.x; y; t/ andR^.t; z; u/ iff there are t 0; u0 such
that R^.x; z; t 0/ and R^.y; z; u0/ and R_.t 0; u0; u/;

(ReBA7) There are t; u such thatR^.x; y; t/ andR_.t; z; u/ iff there are t 0; u0 such
that R_.x; z; t 0/ and R_.y; z; u0/ and R^.t 0; u0; u/.

These conditions encode the properties of join and meet, namely commutativity
(ReBA4), associativity (ReBA5), and distributivity ((ReBA6) and (ReBA7)).

Boolean constants 0 and 1 are characterized with the conditions:

(ReBA8) R_.x; 0; x/;
(ReBA9) R^.x; 1; x/;
(ReBA10) There is y such that R�.x; y/, R_.x; y; 1/, and R^.x; y; 0/.

FBAC-models are the structures M D .U;R�; R_; R^; C; 0; 1;m/ such that
.U;R�; R_; R^; 0; 1;m/ is an FBA-model and C is a binary relation on U . The
relation C may satisfy some of the conditions (ReC0), . . . , (ReC11) which corre-
spond to the conditions (C0), . . . , (C11), respectively.

Let x; y; z; t 2 U . Then:

(ReC0) If C.x; y/, then x ¤ 0 and y ¤ 0;
(ReC1) If x ¤ 0, then C.x; x/;
(ReC2) If R^.x; y; 0/, then C.x; y/;
(ReC3) If C.x; y/, then C.y; x/;
(ReC4) If x D y, then C.x; y/;
(ReC5) If C.x; z/ and R_.z; y; y/, then C.x; y/;
(ReC6) If C.x; t/ and R_.y; z; t/, then C.x; y/ or C.x; z/;
(ReC7) If for all z 2 U , C.x; z/ implies C.y; z/, then R_.x; y; y/;
(ReC8) If C.x; y/, then there are z; t such that not C.x; z/ andR�.z; t/ and not

C.t; y/;
(ReC9) If x ¤ 0, y ¤ 0, and R_.x; y; 1/, then C.x; y/;
(ReC10) If x ¤ 1, then there exists z such that z ¤ 0 and :C.z; x/;
(ReC11) If x ¤ 0 and x ¤ 1, then there exists z such that C.x; z/ and R�.x; z/.

Observe that R_.x; y; y/ iff x � y.

Theorem 18.3.1. For every FBACfun-formula ', there is an FBAC-formula ' 0 such
that ' is true in all FBACfun-models satisfying some of the axioms from f(C0), . . . ,
(C11)g iff ' 0 is true in all FBAC-models satisfying the corresponding conditions from
f(ReC0), . . . , (ReC11)g.
In order to prove the above theorem, it suffices to show: (1) for every FBACfun-model
M there exists an FBAC-model M0 such that .	/ ' is true in M iff ' 0 is true in
M0, and (2) for every standard FBAC-model M0 there exists an FBACfun-model M
such that .	/ holds. We construct the models M and M0 so that they satisfy: (Ci)
is true in M iff (ReCi) is true in M0, for i 2 f0; : : : ; 11g, and the same holds for
the axioms of Boolean algebras and the conditions (ReBA0), (ReBA1), (ReBA2#),
(ReBA3#), (ReBA4#), (ReBA5#), for # 2 f_;^g, and (ReBA7), . . . , (ReBA10).



342 18 Dual Tableaux for Spatial Reasoning

FBAC-dual tableau contains the axiomatic sets and the rules of F-dual tableau
adjusted to FBAC-language (see Sect. 1.3). In the rules .9/ and .:8/, z is any object
variable or constant, and in the rules .8/ and .:9/, z is a new variable. Furthermore,
we admit specific rules that reflect properties of relational constants that are specific
for FBAC.

The rules and the axiomatic sets reflecting the properties of relations presented
above have the following forms:

For # 2 f_;^g and for all object symbols x and y,

(rReBA0) :R�.x; z/ z is a new object variable and z ¤ x

(rReBA1)
x D y

R�.z; x/; x D y jR�.z; y/; x D y
z is any object symbol

(rReBA2#) :R#.x; y; z/
z is a new object variable and z ¤ x; y

(rReBA3#)
x D y

R#.z; t; x/; x D y jR#.z; t; y/; x D y
z; t are any object symbols

(rReBA4#)
R#.x; y; z/

R#.y; x; z/
z is any object symbol

The rule corresponding to the implication from left to right of the condition
(ReBA5#) has the following form:

(rReBA5#(!))
R#.x; y; t/ jR#.t; z; u/ j :R#.y; z; t 0/;:R#.x; t 0; u0/

x; y; z; t; u are any object symbols, t 0; u0 are new object variables such that t 0 ¤ u0
and ft 0; u0g \ fx; y; z; t; ug D ;

The implication from right to left is reflected by the rule of the form:

(rReBA5#( ))
R#.y; z; t 0/ jR#.x; t 0; u0/ j :R#.x; y; t/;:R#.t; z; u/

x; y; z; t 0; u0 are any object symbols, t; u are new object variables such that t ¤ u
and ft; ug \ fx; y; z; t 0; u0g D ;



18.3 Dual Tableaux for Spatial Theories Based on a Contact Relation on a Boolean Algebra 343

Similarly, the rules corresponding to the conditions (ReBA6) and (ReBA7) have the
following forms:

(rReBA6(!))
R_.x; y; t/ jR^.t; z; u/ j :R^.x; z; t 0/;:R^.y; z; u0/;:R_.t 0; u0; u/

x; y; z; t; u are any object symbols, t 0; u0 are new object variables such that t 0 ¤ u0
and ft 0; u0g \ fx; y; z; t; ug D ;
(rReBA6( ))

R^.x; z; t 0/ jR^.y; z; u0/ jR_.t 0; u0; u/ j :R_.x; y; t/;:R^.t; z; u/

x; y; z; t 0; u0 are any object symbols, t; u are new object variables such that t ¤ u
and ft; ug \ fx; y; z; t 0; u0g D ;
(rReBA7(!))

R^.x; y; t/ jR_.t; z; u/ j :R_.x; z; t 0/;:R_.y; z; u0/;:R^.t 0; u0; u/

x; y; z; t; u are any object symbols, t 0; u0 are new object variables such that t 0 ¤ u0
and ft 0; u0g \ fx; y; z; t; ug D ;
(rReBA7( ))

R_.x; z; t 0/ jR_.y; z; u0/ jR^.t 0; u0; u/ j :R^.x; y; t/;:R_.t; z; u/

x; y; z; t 0; u0 are any object symbols, t; u are new object variables such that t ¤ u
and ft; ug \ fx; y; z; t 0; u0g D ;.

The conditions (ReBA8) and (ReBA9) lead to the following axiomatic sets:

(AxReBA8) fR_.x; 0; x/g; (AxReBA9) fR^.x; 1; x/g:
The condition (ReBA10) is reflected by the rule of the form:

(rReBA10) :R�.x; y/;:R_.x; y; 1/;:R^.x; y; 0/
x is any object symbol, y is a new object variable and y ¤ x

The rules corresponding to the axioms characterizing the conditions (ReCi) have the
following forms:

For all object symbols x and y,

(rReC0)
C.x; y/ j x D 0; y D 0

(rReC1)
C.x; x/

x ¤ 0; C.x; x/ (rReC2)
C.x; y/

:R^.x; y; 0/; C.x; y/

(rReC3)
C.x; y/

C.y; x/
(rReC4)

C.x; y/

x D y; C.x; y/



344 18 Dual Tableaux for Spatial Reasoning

(rReC5)
C.x; y/

C.x; z/; C.x; y/ jR_.z; y; y/; C.x; y/ z is any object symbol

(rReC6)
C.x; y/; C.x; z/

C.x; t/; C.x; y/; C.x; z/ jR_.y; z; t/; C.x; y/; C.x; z/
z; t are any object symbols

(rReC7)
R_.x; y; y/

:C.x; z/; C.y; z/; R_.x; y; y/ z is a new object variable

(rReC8)
C.x; y/ jC.x; z/;:R�.z; t/; C.t; y/

z; t are new object variables such
that z ¤ t and fz; tg \ fx; yg D ;

(rReC9)
C.x; y/

x ¤ 0; C.x; y/ j y ¤ 0; C.x; y/ jR_.x; y; 1/; C.x; y/

(rReC10)
x ¤ 1 j z D 0; C.z; x/

z is a new object variable such that z ¤ x

(rReC11)
x ¤ 0 j x ¤ 1 j :C.x; z/;:R�.x; z/

z is a new object variable such that z ¤ x

FBAC-dual tableau includes specialized cut rules. As mentioned in Sect. 16.3, in the
presence of the ordinary cut rule they could be replaced by the rules with a non-
empty premise (see Sect. 25.9).

Let K be a class of FBAC-models. The notions of a K-set and K-correctness of
a rule are defined in a similar way as in the logic F (see Sect. 1.3). Recall, that a
finite set X of FBAC-formulas is a K-set whenever the disjunction of its formulas is
K-valid.

Theorem 18.3.2 (Correspondence). Let K be a class of FBAC-models. Then for
every i 2 f0; : : : ; 11g, the following conditions are equivalent:

1. (ReCi) is true in all models of K;
2. The rule (rReCi) is K-correct.

Proof. By way of example, we prove the statement for the condition (ReC10).

Let K be a class of FBAC-models satisfying the condition (ReC10). LetX be a finite
set of FBAC-formulas. Let z be a variable that does not occur in X and such that



18.3 Dual Tableaux for Spatial Theories Based on a Contact Relation on a Boolean Algebra 345

z ¤ x. Assume that X [ fx ¤ 1g and X [ fz D 0; C.z; x/g are K-sets. Then, by
the assumption on variable z, for every K-model M and for every valuation v in M,
either there exists ' 2 X such that M; v ˆ ' or both v.x/ ¤ 1 and for every z 2 U ,
either z D 0 or C.z; v.x//. Suppose X is not a K-set. Then, by the assumption,
there exist a K-model M and a valuation v in M such that v.x/ ¤ 1 and for every
z 2 U , either z D 0 or C.z; v.x//. Since v.x/ ¤ 1, by the condition (ReC8), there
exists z 2 U such that z ¤ 0 and :C.z; v.x//, a contradiction. Therefore, the rule
(rReC10) is K-correct.

Assume the rule (rReC10) is K-correct. Let X
dfD fx D 1; 9t.t ¤ 0 ^ C.t; x//g

and let z be a variable such that z ¤ x and z ¤ t . Then, X [ fx ¤ 1g and X [
fz D 0; C.z; x/g are K-sets. Thus, by the assumption, X is a K-set, that is in every
K-model M, either x D 1 or there exists t 2 U such that t ¤ 0 and C.t; x/, which
means that the condition (ReC10) holds.

The proofs of the remaining cases are similar. ut
From now on, throughout this section, by an FBAC-model we mean a model
.U;R�; R_; R^; C; 0; 1;m/ satisfying all the conditions (ReBA0), (ReBA1),
(ReBA2#), . . . , (ReBA5#), for # 2 f_;^g, (ReBA6), . . . , (ReBA10), and all
the conditions (ReC0), . . . , (ReC11). Theorem 18.3.2 implies:

Proposition 18.3.1.

1. The FBAC-rules are FBAC-correct;
2. The FBAC-axiomatic sets are FBAC-sets.

The notions of an FBAC-proof tree, a closed branch of such a tree, a closed FBAC-
proof tree, and FBAC-provability are defined as in the logic F (see Sect. 1.3).

A branch b of an FBAC-proof tree is complete whenever it is closed or it satisfies
the completion conditions of the dual tableau for the logic F (see Sect. 1.3) and the
completion conditions corresponding to the specific rules of the FBAC-dual tableau:

For every # 2 f_;^g,
Cpl(rReBA0) For every object symbol x, there exists an object variable z such that
:R�.x; z/ 2 b, obtained by an application of the rule (rReBA0);

Cpl(rReBA1) For all object symbols x and y, if x D y 2 b, then for every object
symbol z, either R�.z; x/ 2 b or R�.z; y/ 2 b, obtained by an application of the
rule (rReBA1);

Cpl(rReBA2#) For all object symbols x and y, there exists an object variable z such
that :R#.x; y; z/ 2 b, obtained by an application of the rule (rReBA2#);

Cpl(rReBA3#) For all object symbols x and y, if x D y 2 b, then for all object sym-
bols z and t , either R#.z; t; x/ 2 b or R#.z; t; y/ 2 b, obtained by an application
of the rule (rReBA3#);

Cpl(rReBA4#) For all object symbols x; y, and z, if R#.x; y; z/2 b, then
R#.y; x; z/ 2 b, obtained by an application of the rule (rReBA4#);

Cpl(rReBA5#(!)) For all object symbols x; y; z; t; u, either R#.x; y; t/ 2 b or
R#.t; z; u/ 2 b or for some object variables t 0 and u0 both :R#.y; z; t 0/ 2 b
and :R#.x; t

0; u0/ 2 b, obtained by an application of the rule (rReBA5#(!));



346 18 Dual Tableaux for Spatial Reasoning

Cpl(rReBA5#( )) For all object symbols x; y; z; t 0; u0, either R#.y; z; t 0/ 2 b or
R#.x; t

0; u0/ 2 b or for some object variables t and u both :R#.x; y; t/ 2 b and
:R#.t; z; u/ 2 b, obtained by an application of the rule (rReBA5#( ));

Cpl(rReBA6(!)) For all object symbols x; y; z; t; u, either R_.x; y; t/ 2 b or
R^.t; z; u/ 2 b or there are object variables t 0; u0 such that :R^.x; z; t 0/ 2 b
and :R^.y; z; u0/ 2 b and :R_.t 0; u0; u/, obtained by an application of the rule
(rReBA6(!));

Cpl(rReBA6( )) For all object symbols x; y; z; t 0; u0, either R^.x; z; t 0/ 2 b or
R^.y; z; u0/ 2 b or R_.t 0; u0; u/ or there are object variables t and u such that
both :R_.x; y; t/ 2 b and :R^.t; z; u/ 2 b, obtained by an application of the
rule (rReBA6( ));

Cpl(rReBA7(!)) For all object symbols x; y; z; t; u, either R^.x; y; t/ 2 b or
R_.t; z; u/ 2 b or there are object variables t 0; u0 such that :R_.x; z; t 0/ 2 b
and :R_.y; z; u0/ 2 b and :R^.t 0; u0; u/, obtained by an application of the rule
(rReBA7(!));

Cpl(rReBA7( )) For all object symbols x; y; z; t 0; u0, either R_.x; z; t 0/ 2 b or
R_.y; z; u0/ 2 b or R^.t 0; u0; u/ or there are object variables t and u such that
both :R^.x; y; t/ 2 b and :R_.t; z; u/ 2 b, obtained by an application of the
rule (rReBA7( ));

Cpl(rReBA10) For every object symbol x, there exists an object variable y such
that :R�.x; y/ 2 b and :R_.x; y; 1/ 2 b, and :R^.x; y; 0/, obtained by an
application of the rule (rReBA10);

Cpl(rReC0) For all object symbols x and y, either C.x; y/ 2 b or both x D 0 2 b
and y D 0 2 b, obtained by an application of the rule (rReC0);

Cpl(rReC1) For all object symbols x and y, if C.x; x/ 2 b, then x ¤ 0 2 b,
obtained by an application of the rule (rReC1);

Cpl(rReC2) For all object symbols x; y, if C.x; y/ 2 b, then :R^.x; y; 0/ 2 b,
obtained by an application of the rule (rReC2);

Cpl(rReC3) For all object symbols x and y, if C.x; y/ 2 b, then C.y; x/ 2 b,
obtained by an application of the rule (rReC3);

Cpl(rReC4) For all object symbols x and y, if C.x; y/ 2 b, then x D y 2 b,
obtained by an application of the rule (rReC4);

Cpl(rReC5) For all object symbols x and y, if C.x; y/ 2 b, then for every object
symbol z, either C.x; z/ 2 b or R_.z; y; y/ 2 b, obtained by an application of
the rule (rReC5);

Cpl(rReC6) For all object symbols x; y, and z, if C.x; y/ 2 b and C.x; z/ 2 b, then
for every object symbol t , either C.x; t/ 2 b or R_.y; z; t/ 2 b, obtained by an
application of the rule (rReC6);

Cpl(rReC7) For all object symbols x and y, ifR_.x; y; y/ 2 b, then for some object
variable z both :C.x; z/ 2 b and C.y; z/ 2 b, obtained by an application of the
rule (rReC7);

Cpl(rReC8) For all object symbols x and y either C.x; y/ 2 b or there are object
variables z and t such that C.x; z/ 2 b and :R�.z; t/ 2 b, and C.t; y/ 2 b,
obtained by an application of the rule (rReC8);



18.3 Dual Tableaux for Spatial Theories Based on a Contact Relation on a Boolean Algebra 347

Cpl(rReC9) For all object symbols x and y, if C.x; y/ 2 b, then either x ¤ 0 2 b
or y ¤ 0 or R_.x; y; 1/ 2 b, obtained by an application of the rule (rReC9);

Cpl(rReC10) For every object symbol x, either x ¤ 1 2 b or for some object
variable z, both z D 0 2 b and C.z; x/ 2 b, obtained by an application of the
rule (rReC10);

Cpl(rReC11) For every object symbol x, either x ¤ 0 2 b or x ¤ 1 2 b or for
some object variable z, both :C.x; z/ 2 b and :R�.x; z/ 2 b, obtained by an
application of the rule (rReC11).

The notions of a complete FBAC-proof tree and an open branch of an FBAC-proof tree
are defined as in F-logic (see Sect. 1.3). Observe that all the rules considered in this
section guarantee that whenever a branch of an FBAC-proof tree contains an atomic
FBAC-formula ' and its negation, then the branch can be closed, which enables us
to prove the closed branch property.

Let b be an open branch of an FBAC-proof tree. The branch structure MbD
.U b; Rb�; Rb_; Rb^; C b; 0b; 1b; mb/ is defined as follows:

� U b D OSFBAC ;
� 0b D mb.0/ D 0 and 1b D mb.1/ D 1;
� Rb D mb.R/ D f.x; y/ 2 .U b/2 W R.x; y/ 62 bg, for R 2 fR�; C;Dg;
� Qb D mb.Q/ D f.x; y; z/ 2 .U b/3 W Q.x; y; z/ 62 bg, forQ 2 fR_; R^g.
Proposition 18.3.2 (Branch Model Property). Let b be an open branch of
an FBAC-proof tree. Then the branch structure MbD .U b; Rb�; Rb_; Rb^; C b; 0b;
1b; mb/ is an FBAC-model.

Proof. Let b be an open branch of an FBAC-proof tree. It suffices to show that
Mb satisfies the conditions (ReBA0), (ReBA1), (ReBA2#), . . . , (ReBA5#), for
# 2 f_;^g, (ReBA6), . . . , (ReBA10), (ReC0), . . . , (ReC11). By way of example,
we show that Mb satisfies the conditions (ReBA2#) and (ReC7).

(ReBA2#) Note that by the completion condition Cpl(rReBA2#), for all x; y 2
U b there exists z 2 U b such that :R#.x; y; z/ 2 b. Thus, R#.x; y; z/ 62 b. Hence,
for all x; y 2 U b there exists z 2 U b such that Rb# .x; y; z/.

(ReC7) Let x; y 2 U b . Assume that for all z 2 U b , C b.x; z/ implies C b.y; z/,
that is for all object symbols z, either C.x; z/ 2 b or C.y; z/ 62 b. Suppose
Rb_.x; y; y/ is not satisfied in Mb . Then, R_.x; y; y/ 2 b, and by the comple-
tion condition Cpl(rReC7), there exists z 2 U b such that both :C.x; z/ 2 b and
C.y; z/ 2 b, a contradiction.

The proofs of the remaining conditions are similar. In each case we use the corre-
sponding completion condition. ut
Since the interpretation of atomic formulas in the branch model is defined in the
standard way, i.e., as in the completeness proof of F-dual tableau (see Sect. 1.3),
the satisfaction in branch model property holds and the completeness of FBAC-dual
tableau can be proved as in the logics F and RL.1; 10/.



348 18 Dual Tableaux for Spatial Reasoning

Theorem 18.3.3 (Soundness and Completeness of FBAC). Let ' be an FBAC-
formula. Then the following conditions are equivalent:

1. ' is FBAC-valid;
2. ' is true in all standard FBAC-models;
3. ' is FBAC-provable.

18.4 Dual Tableau for Region Connection Calculus

The first-order theory of region connection calculus (see [RCC92]), FRCCfun, is
obtained from FBAfun by endowing its language with a relational constant C rep-
resenting a contact relation, relational constants DC , EC , PO , TPP , NTPP ,
TPP�1, andNTPP�1 representing the mereological relations defined in Sect. 18.2,
and the relational constant EQ representing equality of regions. The mereological
relations provide a partition of the universe of regions, that is they are pairwise dis-
joint and their union is the universal relation. Such a theory is, in fact, based on the
contact relation (see Table 18.1). A relation algebra generated by these relations is
investigated in [LM94]. In [DSW01] it is shown that the basic RCC relations cannot
be the atoms of any relation algebra.

The models of FRCCfun satisfy the conditions (RCC1), (RCC2), and (RCC3) that
coincide with (C3), (C4), and (C6), respectively, and the following:

(RCC4) aC1;
(RCC5) b ¤ 1 implies: [aC.�b/ iff a�NTPPb] and [aO.�b/ iff a�Pb];
(RCC6) aC.b ^ c/ iff there exists d such that dPb; dPc, and aCd ;
(RCC7) a ^ b ¤ 0 iff aOb;
(RCC8) syq.C; C / � 10,
where syq is the operation of symmetric quotient defined as:

syq.R; P /
dfD .RnP/ \ .R�1=P�1/;

and operations n and = of the right and left residual of the composition of relations,
respectively, are defined by the following conditions, for all relations P and R:

PnR dfD �.�R IP�1/;
P=R

dfD �.R�1 I �P/:

By FRCC we mean the theory obtained from FRCCfun by elimination of function sym-
bols. FRCC-structures are FBA-models with binary relations C , DC, EC, PO, TPP,
and NTPP that interpret the specific relational constants of the region connection
calculus according to their definitions in Table 18.1.

FRCC-models are the FRCC-structures that satisfy the conditions which are
function-free representations of the RCC-axioms. (ReRCC1), (ReRCC2), and
(ReRCC3) coincide with (ReC3), (ReC4), and (ReC6), respectively.



18.4 Dual Tableau for Region Connection Calculus 349

(ReRCC4) C.x; 1/;
(ReRCC5) y ¤ 1 implies:

(1) There exists z such that C.x; z/ and R�.y; z/ iff :NT TP.x; y/,
(2) There exists z such that O.x; z/ and R�.y; z/ iff :P.x; y/;
(ReRCC6) There is t such that C.x; t/ and R^.y; z; t/ iff there is w such that
P.w; y/; P.w; z/, and C.x;w/;

(ReRCC7) There is z such that R^.x; y; z/ and z ¤ 0 iff O.x; y/;
(ReRCC8) If for all z C.x; z/ or not C.z; y/ and for all w not C.x;w/ or C.w; y/,

then x D y.

The following theorem states the relationship between the theory of region connec-
tion calculus and the FRCC-models.

Theorem 18.4.1. For every FRCCf un-formula ' there exists an FRCC-formula ' 0
such that ' is true in all algebras of RCC iff ' 0 is true in all FRCC-models.

FRCC-dual tableau is obtained from the F-dual tableau by endowing it with the
specific rules and the axiomatic sets reflecting the conditions (ReBA0), (ReBA1),
(ReBA2#), . . . , (ReBA5#), for # 2 f_;^g, (ReBA6), . . . , (ReBA10), and the rules
(rReRCC1), (rReRCC2), (rReRCC3) which coincide with (rReC3), (rReC4), and
(rReC6), respectively. All these rules and axiomatic sets are presented in the pre-
vious section. FRCC-dual tableau contains also the rules (#) and .�#/, for every
# 2 Mer, presented in Sect. 18.2 with a minor syntactic transformation which adapts
the rules to their first-order presentation. Namely, instead of xRy and x�Ry we
write R.x; y/ and :R.x; y/, respectively, and instead of 10 we write D. Moreover,
in the rules which introduce arbitrary variable, now we allow any object symbol,
i.e., an object variable or 0 or 1. We also include the axiomatic sets and the specific
rules that reflect conditions (ReRCC5), . . . , (ReRCC8).

Condition (ReRCC4) leads to the following axiomatic set:

(AxReRCC4) fC.x; 1/g, for any object symbol x.

The two implications of the first part of (ReRCC5) have the following rules:

(r1ReRCC5.!/)
y ¤ 1 jC.x; z/ jR�.y; z/ jNTTP.x; y/

x; y; z are any object symbols

(r1ReRCC5. /)
y ¤ 1 j :NTTP.x; y/ j :C.x; z/;:R�.y; z/
x; y are any object symbols
z is a new object variable, z ¤ x; y



350 18 Dual Tableaux for Spatial Reasoning

The rules for the second part of (ReRCC5) are:

(r2ReRCC5.!/)
y ¤ 1 jO.x; z/ jR�.y; z/ jP.x; y/
x; y; z are any object symbols

(r2ReRCC5. /)
y ¤ 1 j :P.x; y/ j :O.x; z/;:R�.y; z/
x; y are any object symbols
z is a new object variable, z ¤ x; y

The remaining rules are:

(rReRCC6.!/)
C.x; t/ jR^.y; z; t/ j :P.w; y/;:P.w; z/;:C.x;w/
x; y; z; t are any object symbols
w is a new object variable, w ¤ x; y; z; t

(rReRCC6. /)
P.w; y/ jP.w; z/ jC.x;w/ j :C.x; t/;:R^.y; z; t/
x; y; z;w are any object symbols
t is a new object variable, t ¤ x; y; z;w

(rReRCC7.!/)
R^.x; y; z/ j z ¤ 0 j :O.x; y/
x; y; z are any object symbols

(rReRCC7. /)
O.x; y/ j :R^.x; y; z/; z D 0
x; y are any object symbols
z is a new object variable, z ¤ x; y

(rReRCC8)
x D y

C.x; z/;:C.z; y/; x D y j :C.x;w/; C.w; y/; x D y
x; y are any object symbols
z;w are new object variables such that fz;wg \ fx; yg D ;

The rules above are specialized cut rules. A discussion of the alternative determin-
istic forms of specialized cut rules can be found in Sect. 25.9.

Theorem 18.4.2 (Correspondence). Let K be a class of FRCC-structures. Then, the
following hold:

1. The condition (ReRCC4) is valid in K iff the axiomatic sets (AxReRCC4) are
K-sets;

2. The condition (ReRCC5) is valid in K iff for every i 2 f1; 2g, the rules
(riReRCC5(!)) and (riReRCC5( )) are K-correct;



18.4 Dual Tableau for Region Connection Calculus 351

3. For every C 2 f(ReRCC6), (ReRCC7)g, the condition C is valid in K iff the rules
(rC(!)) and (r C( )) are K-correct;

4. The condition (ReRCC8) is valid in K iff the rule (rReRCC8) is K-correct.

Proof. By way of example, we prove the proposition for the condition (ReRCC8).
Assume (ReRCC8) is true in all K-structures. We show that the rule (rReRCC8)

is K-correct. Let X be a finite set of FRCC-formulas, let x; y be object sym-
bols, and let z and w be variables that do not occur in X and such that z ¤ w
and fz;wg \ fx; ygD;. Assume that X [ fC.x; z/;:C.z; y/; xDyg and X [
f:C.x;w/; C.w; y/; x D yg are K-sets. Suppose X [ fx D yg is not a K-set.
Then, there exist a K-structure M and a valuation v in M such that v.x/ ¤ v.y/
and, due to the assumption on variables z and w, for all z 2 U , either C.v.x/; z/ or
not C.z; v.y// and for all w 2 U either not C.v.x/;w/ or C.w; v.y//. Thus, by the
condition (ReRCC8), v.x/ D v.y/, a contradiction. Therefore, the rule (rReRCC8)
is K-correct.

Now, assume that the rule (rReRCC8) is K-correct. Let X
dfD f9z0.:C.x; z0/ ^

C.z0y//; 9w0.C.x;w0/ ^ :C.w0; y//g. Let z;w be object variables such that z ¤ w
and fz;wg \ fx; y; z0;w0g D ;. Then, X[ fC.x; z/; :C.z; y/; x D yg and X[
f:C.x;w/, C.w; y/, x D yg are K-sets. Thus, by the assumption, X [ fx D yg is
also K-set, which means that for every K-structure M, if x ¤ y is true in M, then
either there exists z0 2 U such that not C.x; z0/ and C.z0; y/ or there exists w0 2 U
such that C.x;w0/ and not C.w0; y/. Hence, the condition (ReRCC8) holds. ut
The above theorem implies:

Proposition 18.4.1.

1. The FRCC-rules are FRCC-correct;
2. The FRCC-axiomatic sets are FRCC-sets.

The completion conditions determined by the rules specific for FRCC are:

Cpl(r1ReRCC5.!/) For all object symbols x; y, and z, either y ¤ 1 2 b or
NTTP.x; y/ 2 b or C.x; z/ 2 b or R�.y; z/ 2 b, obtained by an application of
the rule (r1ReRCC5.!/);

Cpl(r1ReRCC5. /) For all object symbols x and y, either y ¤ 1 2 b or
:NTTP.x; y/ 2 b or for some object variable z both :C.x; z/ 2 b and
:R�.y; z/ 2 b, obtained by an application of the rule (r1ReRCC5. /);

Cpl(r2ReRCC5.!/) For all object symbols x; y, and z, either y ¤ 1 2 b or
P.x; y/ 2 b or O.x; z/ 2 b or R�.y; z/ 2 b, obtained by an application of
the rule (r2ReRCC5.!/);

Cpl(r2ReRCC5. /) For all object symbols x and y, either y ¤ 1 2 b or
:P.x; y/ 2 b or there exists an object variable z such that both :O.x; z/ 2 b
and :R�.y; z/ 2 b, obtained by an application of the rule (r2ReRCC5. /);

Cpl(rReRCC6.!/) For all object symbols x; y; z, and t , either C.x; t/ 2 b or
R^.y; z; t/ 2 b or there exists an object variable w such that :P.w; y/ 2 b,
:P.w; z/ 2 b, and :C.x;w/ 2 b, obtained by an application of the rule
(rReRCC6.!/);



352 18 Dual Tableaux for Spatial Reasoning

Cpl(rReRCC6. /) For all object symbols x; y; z, and w, either P.w; y/ 2 b or
P.w; z/ 2 b or C.x;w/ 2 b, or for some object variable t both :C.x; t/ 2 b and
:R^.y; z; t/ 2 b, obtained by an application of the rule (rReRCC6. /);

Cpl(rReRCC7.!/) For all object symbols x; y, and z, either :O.x; y/ 2 b or
R^.x; y; z/ 2 b or z ¤ 0, obtained by an application of the rule (rReRCC7.!/);

Cpl(rReRCC7. /) For all object symbols x and y, either O.x; y/ 2 b or for some
object variable z, both :R^.x; y; z/ 2 b and z D 0 2 b, obtained by an applica-
tion of the rule (rReRCC7. /);

Cpl(rReRCC8) For all object symbols x and y, if x D y 2 b, then for some object
variables z and w, either both C.x; z/ 2 b and :C.z; y/ 2 b or both :C.x;w/ 2
b and C.w; y/ 2 b, obtained by an application of the rule (rReRCC8).

The rules of FRCC-dual tableau guarantee that whenever a branch of an FRCC-proof
tree contains an atomic FRCC-formula ' and its negation, then the branch can be
closed. Thus, the closed branch property can be proved.

Let b be an open branch of an FRCC-proof tree. The branch structure Mb D
.U b; Rb�; Rb_; Rb^; C b; f#b W # 2 Merg; 0b; 1b; mb/ is defined as follows:

� U b D OSFRCC ;
� 0b D mb.0/ D 0 and 1b D mb.1/ D 1;
� Rb D mb.R/ D f.x; y/ 2 .U b/2 W R.x; y/ 62 bg, for R 2 fR�; C;Dg;
� Qb D mb.Q/ D f.x; y; z/ 2 .U b/3 W Q.x; y; z/ 62 bg, forQ 2 fR_; R^g;
� For every # 2 Mer, #b is defined according to Table 18.1; for example, P b

dfD
�.C b I �C b/;

� mb.#/ D #b .

Proposition 18.4.2 (Branch Model Property). Let b be an open branch of an
FRCC-proof tree. Then, the branch structure Mb is an FRCC-model.

Proof. Let b be an open branch of an FRCC-proof tree. It suffices to show that Mb

satisfies the conditions (ReRCC1), . . . , (ReRCC8). By way of example, we show
that Mb satisfies the condition (ReRCC6).

.!/ By the completion condition Cpl(rReRCC6.!/), for all x; y; z; t 2 U b ,
either C.x; t/ 2 b or R^.y; z; t/ 2 b or there exists an object variable w such that
:P.w; y/ 2 b and :P.w; z/ 2 b, and :C.x;w/ 2 b. Thus, by the definition of
Mb and the completion condition Cpl(:P ) (see the proof of Proposition 18.2.5),
either not C b.x; t/ or not Rb^.y; z; t/ or there exists w 2 U b such that P b.w; y/
and P b.w; z/, and C b.x;w/. Hence, if C b.x; t/ and Rb^.y; z; t/, then there exists
w 2 U b such that P b.w; y/ and P b.w; z/, and C b.x;w/.
. / By the completion condition Cpl(rReRCC6. /), for all x; y; z;w 2 U b ,

either P.w; y/ 2 b or P.w; z/ 2 b or C.x;w/ 2 b or there exists an object variable
t such that both :C.x; t/ 2 b and :R^.y; z; t/ 2 b. By the definition of Mb and
the completion condition Cpl(P ) (see Proposition 18.2.5), if P b.w; y/, P b.w; z/,
and C b.x;w/ hold, then there exists t 2 U b such that C b.x; t/ and Rb^.y; z; t/.
Therefore, Mb satisfies the condition (ReRCC6).

The proofs of the remaining conditions are similar. ut



18.4 Dual Tableau for Region Connection Calculus 353

The satisfaction in branch model property for FRCC follows from Proposition 18.2.5.
In this way, we get:

Theorem 18.4.3 (Soundness and Completeness of FRCC). Let ' be an FRCC-
formula. Then, the following conditions are equivalent:

1. ' is FRCC-valid;
2. ' is true in all standard FRCC-models;
3. ' is FRCC-provable.

Example. Consider the following property holding in RCC:

aOb implies 0 Œ .a ^ b/:

This property is represented by the following FRCC-formula:

' D 8x8yŒ:O.x; y/ _ 9w.R^.x; y;w/ ^ :R_.w; 0; 0/ ^ R_.0;w;w//�:

Figure 18.4 presents an FRCC-proof of ' which shows that the property in question
holds in RCC.

8x8yŒ:O.x; y/_ 9w.R^.x; y;w/^:R_.w; 0; 0/^R_.0;w;w//�

�
.8/ twice with new variables u; t and ._/

:O.u; t /; 9w.R^.u; t;w/^:R_.w; 0; 0/^R_.0;w;w//

��$
O.u; t /;:O.u; t /; : : :

closed

(rReRCC7. /) with u; t and a new variable z

�
:R^.u; t; z/; zD 0; 9w.R^.u; t;w/^:R_.w; 0; 0/^R_.0;w;w//; : : :

�
.9/ with z

:R^.u; t; z/; zD 0; .R^.u; t; z/^:R_.z; 0; 0/ ^R_.0; z; z//; : : :

��
:R^.u; t; z/; R^.u; t; z/; : : :

closed

��
R_.0; z; z/; : : :

�
(rReBA4_)

R_.z; 0; z/; : : :
closed

�

.^/ twice

z D 0;:R_.z; 0; 0/; : : :
�����

�

(rReBA3_)
with 0 and zR_.0; z; z/; : : :

�
(rReBA4_)

R_.z; 0; z/; : : :
closed

R_.0; z; 0/;:R_.z; 0; 0/ : : :

�
(rReBA4_)

R_.z; 0; 0/;:R_.z; 0; 0/ : : :
closed

Fig. 18.4 An FRCC-proof of ‘aOb implies 0 Œ .a ^ b/’



354 18 Dual Tableaux for Spatial Reasoning

18.5 Dual Tableaux for Spatial Theories of Proximity Relation

A proximity relation is a binary relation ı on a Boolean algebra satisfying the
following axioms:

.ı1/ aıb implies a; b ¤ 0;

.ı2/ cı.a _ b/ iff cıa or cıb;

.ı3/ .a _ b/ıc iff aıc or bıc.

Development of a dual tableau for the theory of proximity follows the lines of
Sect. 18.3. We consider the first-order theory FBAı of binary relations ı and R�,
and ternary relations R_ and R^.

FBAı -models are structures M D .U;R�; R_; R^; ı; 0; 1;m/ satisfying condi-
tions (ReBA0), (ReBA1), (ReBA2#), . . . , (ReBA5#), for # 2 f_;^g, (ReBA6), . . . ,
(ReBA10) presented in Sect. 18.3, and for all x; y; t 2 U :

(Reı1/ ı.x; y/ implies x ¤ 0 and y ¤ 0;
(Reı2/ There exists z such that R_.x; y; z/ and ı.t; z/ iff ı.t; x/ or ı.t; y/;
(Reı3/ There exists z such that R_.x; y; z/ and ı.z; t/ iff ı.x; t/ or ı.y; t/.

FBAı -dual tableau is the F-dual tableau endowed with the specific rules and ax-
iomatic sets corresponding to the conditions (ReBA0), (ReBA1), (ReBA2#), . . . ,
(ReBA5#), for # 2 f_;^g, (ReBA6), . . . , (ReBA10) presented in Sect. 18.3, and
the specific rules corresponding to the conditions (Reı1), (Reı2), (Reı3). The latter
rules have the following forms:

For all object symbols x; y, and t ,

(rReı1)
ı.x; y/ j x D 0; y D 0

(rReı2.!/) ı.t; x/; ı.t; y/

R_.x; y; z/; ı.t; x/; ı.t; y/ j ı.t; z/; ı.t; x/; ı.t; y/
z is any object symbol

(rReı2. /) :R_.x; y; z/;:ı.t; z/ j ı.t; x/; ı.t; y/
z is a new object variable such that z ¤ x; y; t

(rReı3.!/) ı.x; t/; ı.y; t/

R_.x; y; z/; ı.x; t/; ı.y; t/ j ı.z; t/; ı.x; t/; ı.y; t/
z is any object symbol

(rReı3. /) :R_.x; y; z/;:ı.z; t/ j ı.x; t/; ı.y; t/
z is a new object variable, z ¤ x; y; t



18.5 Dual Tableaux for Spatial Theories of Proximity Relation 355

Alternative forms of rules (rReı1), (rReı2. /), and (rReı3. /) are discussed in
Sect. 25.9.

The following can be proved:

Proposition 18.5.1.

1. The FBAı -rules are FBAı -correct;
2. The FBAı -axiomatic sets are FBAı -sets.

The completion conditions determined by the rules (rReı1), (rReı2.!/),
(rReı2. /), (rReı3.!/), and (rReı3. /) are:

For all object symbols x; y, and t ,

Cpl(rReı1) Either ı.x; y/ 2 b or both x D 0 2 b and y D 0 2 b, obtained by an
application of the rule (rReı1);

Cpl(rReı2.!/) If ı.t; x/ 2 b and ı.t; y/ 2 b, then for every object symbol z, either
R_.x; y; z/ 2 b or ı.t; z/ 2 b, obtained by an application of the rule (rReı2.!/);

Cpl(rReı2. /) Either both ı.t; x/ 2 b and ı.t; y/ 2 b or for some object variable
z both :R_.x; y; z/ 2 b and :ı.t; z/ 2 b, obtained by an application of the rule
(rReı2. /);

Cpl(rReı3.!/) If ı.x; t/ 2 b and ı.y; t/ 2 b, then for every object symbol z, either
R_.x; y; z/ 2 b or ı.z; t/ 2 b, obtained by an application of the rule (rReı3.!/);

Cpl(rReı3. /) Either both ı.x; t/ 2 b and ı.y; t/ 2 b or for some object variable
z both :R_.x; y; z/ 2 b and :ı.z; t/ 2 b, obtained by an application of the rule
(rReı3. /).

The rules of FBAı -dual tableau guarantee that whenever a branch of an FBAı -proof
tree contains an atomic FBAı -formula ' and its negation, then the branch can be
closed. Thus, the closed branch property can be proved.

The branch structure is defined as in the completeness proof of FBAC-dual tableau
(see p. 347), where C is replaced by ı.

Proposition 18.5.2 (Branch Model Property). Let b be an open branch of an
FBAı -proof tree. Then, the branch structureMbD .U b; Rb�; Rb_; Rb^; ıb; 0b; 1b; mb/
is an FBAı -model.

Proof. It suffices to show that Mb satisfies the conditions (Reı1), (Reı2), (Reı3).
By way of example, we show that Mb satisfies the condition (Reı2).

Assume that there exists z 2 U b such that Rb_.x; y; z/ and ıb.t; z/, that is
R_.x; y; z/ 62 b and ı.t; z/ 62 b. Suppose ıb.t; x/ and ıb.t; y/ do not hold in Mb .
Then, ı.t; x/ 2 b and ı.t; y/ 2 b. By the completion condition Cpl(rReı2.!)), for
every z 2 U b , either R_.x; y; z/ 2 b or ı.t; z/ 2 b, a contradiction.

On the other hand, by the completion condition Cpl(rReı2. )), either ı.t; x/ 2
b or ı.t; y/ 2 b or for some z 2 U b both :R_.x; y; z/ 2 b and :ı.t; z/ 2 b.
Thus, if ıb.t; x/ and ıb.t; y/, then there exists z 2 U b such that Rb_.x; y; z/ and
ıb.t; z/ 2 b. Therefore, the condition (Reı2) is true in Mb . ut



356 18 Dual Tableaux for Spatial Reasoning

Since the interpretation of atomic formulas in the branch model is defined in the
standard way, the satisfaction in branch model property can be proved as for FBAC-
dual tableau. Thus, we obtain:

Theorem 18.5.1 (Soundness and Completeness of FBAı ). For every FBAı -formula
', the following conditions are equivalent:

1. ' is FBAı -valid;
2. ' is true in all standard FBAı -models;
3. ' is FBAı -provable.

Various types of proximity relations, defined by adding specific axioms to the basic
axioms .ı1/, .ı2/, and .ı3/, are considered in the literature. Some of these axioms
are among the following:

.ı4/ aıb implies a D b (separated proximity);

.ı5/ If not aıb, then there exists c such that not aıc and not .�c/ıb (Efremovic
proximity);

.ı6/ ı is symmetric;

.ı7/ a ^ b ¤ 0 implies aıb.

In order to reason about a proximity relation ı satisfying additional conditions
(ı4), . . . , (ı7), we develop logics FBA.ıi/, i 2 f4; : : : ; 7g, based on the logic FBAı .
FBA.ıi/-models are FBAı -models that satisfy the condition (Reıi ), for all x; y 2 U :

(Reı4/ ı.x; y/ implies x D y;
(Reı5/ If not ı.x; y/, then there are z; t 2 U such that not ı.x; z/ and R�.z; t/

and not ı.t; y/;
(Reı6/ ı.x; y/ implies ı.y; x/;
(Reı7/ If there exists z 2 U such that R^.x; y; z/ and z ¤ 0, then ı.x; y/.

A dual tableau for logic FBA.ıi/ is FBAı -dual tableau endowed with the specific
rule corresponding to the condition (Reıi ), for i 2 f4; : : : ; 7g. The rules have the
following forms:

For all object symbols x and y,

(rReı4)
x D y

ı.x; y/; x D y

(rReı5)
ı.x; y/

ı.x; z/;:R�.z; t/; ı.t; y/; ı.x; y/
z; t are new object variables, z ¤ t and fz; tg \ fx; yg D ;

(rReı6)
ı.x; y/

ı.y; x/



18.5 Dual Tableaux for Spatial Theories of Proximity Relation 357

(rReı7)
ı.x; y/

R^.x; y; z/; ı.x; y/ j z ¤ 0; ı.x; y/
z is any object symbol

Theorem 18.5.2 (Correspondence). Let K be a class of FBAı -models. Then for
every i 2 f4; : : : ; 7g, the following conditions are equivalent:

1. The condition (Reıi ) is true in all K-models;
2. The rule (rReıi ) is K-correct.

Proof. By way of example, we prove the theorem for (Reı5).
Assume that the condition (Reı5) is true in all K-models. Let X be a finite

set of FBAı -formulas. Let x; y be object symbols and let z; t be object variables
that do not occur in X and such that z ¤ t , fz; tg \ fx; yg D ;. Assume
X[fı.x; z/;:R�.z; t/; ı.t; y/; ı.x; y/g is a K-set and supposeX [fı.x; y/g is not
a K-set. Then, there exist a K-model M and a valuation v in M such that M; v 6ˆ
ı.x; y/. By the assumption on variables z and t , for all z; t 2 U , either ı.v.x/; z/
or not R�.z; t/ or ı.t; v.y//. Then, by the condition (Reı5), M; v ˆ ı.x; y/, a
contradiction. Therefore, the rule (rReı5) is K-correct.

Assume that the rule (rReı5) is K-correct. Let X
dfD f9z09t 0.:ı.x; z0/ ^

R�.z0; t 0/ ^ :ı.t 0; y//g. Let z; t be object variables such that z ¤ t and
fz; tg \ fx; y; z0; t 0g D ;. Then, X [ fı.x; z/;:R�.z; t/; ı.t; y/; ı.x; y/g is a
K-set, so by the assumption X [ fı.x; y/g is also a K-set. Therefore, the following
is true in every K-model: if not ı.x; y/, then there exist z0 and t 0 such that not
ı.x; z0/ and R�.z0; t 0/ and not ı.t 0; y/. Hence, the condition (Reı5) is true in all
K-models. ut
The above theorem implies:

Proposition 18.5.3. Let i 2 f4; : : : ; 7g. Then:

1. The FBA.ıi/-rules are FBA.ıi/-correct;
2. The FBA.ıi/-axiomatic sets are FBA.ıi/-sets.

The completion conditions determined by the rules (rReı4), . . . , (rReı7) are:
For all object symbols x and y,

Cpl(rReı4) If x D y 2 b, then ı.x; y/ 2 b, obtained by an application of the rule
(rReı4);

Cpl(rReı5) If ı.x; y/ 2 b, then there are object variables z and t such that ı.x; z/ 2
b and :R�.z; t/ 2 b, and ı.t; y/ 2 b, obtained by an application of the rule
(rReı5);

Cpl(rReı6) If ı.x; y/ 2 b, then ı.y; x/ 2 b, obtained by an application of the rule
(rReı6);

Cpl(rReı7) If ı.x; y/ 2 b, then for every object symbol z, either R^.x; y; z/ 2 b
or z ¤ 0 2 b, obtained by an application of the rule (rReı1).



358 18 Dual Tableaux for Spatial Reasoning

The closed branch property, the branch model property and the satisfaction in branch
model property can be proved as for FBAı -dual tableau. Hence, we get:

Theorem 18.5.3 (Soundness and Completeness of FBA.ıi/). Let i 2 f4; : : : ; 7g.
For every FBAı -formula ', the following conditions are equivalent:

1. ' is FBA.ıi/-valid;
2. ' is true in all standard FBA.ıi/-models;
3. ' is FBA.ıi/-provable.



Chapter 19
Dual Tableaux for Logics of Programs

19.1 Introduction

Dynamic logic is a framework suitable for specification and verification of dynamic
properties of systems. It is a multimodal logic with the modal operations of necessity
and possibility determined by binary relations understood as state transition re-
lations or input-output relations associated with computer programs. The logic
evolved from the early ideas of J. Yanov [Yan59], E. Engeler [Eng67], and C. Hoare
[Hoa69], through the algorithmic logic of A. Salwicki [Sal70, MS87], and finally it
was formulated by V. Pratt [Pra76] in the form which emphasizes a modal nature
of interactions between programs and assertions (see also [FL79]). A number of
interesting variants of propositional dynamic logic, PDL, obtained by restricting
or extending it in various ways, have been studied including deterministic PDL,
automata PDL, programs with restrictions on allowable tests, programs with com-
plementation and intersection, programs with a converse operation, and logics with
well-foundness and halting predicates; for a comprehensive survey see [HKT00].

In this chapter we present, first, a relational dual tableau for logic PDL. It in-
cludes an infinitary rule reflecting the behaviour of an iteration operation modelled
in the logic with the reflexive and transitive closure of a relation. Next, we consider
an extension of PDL with the operations of postspecification and prespecification
of a program modelled with the residuals of the composition of programs (see
[Orł93]). Furthermore, following [DO96] a dual tableau is presented for PDL en-
dowed with the demonic union and the demonic composition operations relevant
for nondeterministic programs. Some versions of the iteration operation adequate
for nondeterministic programs are also discussed in this section. A relational model
of demonic nondeterministic programs is considered in [Ngu91]. Finally, a logic of
event structures is presented and its relational dual tableau is developed following
[Orł95]. Event structures considered here are based on the developments in [Win80]
and [Win86], and the logic of event structures is presented in [Pen88]. All the logics
considered in this chapter are decidable.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 19,
c� Springer Science+Business Media B.V. 2011

359



360 19 Dual Tableaux for Logics of Programs

19.2 Relational Formalization of Propositional Dynamic Logic

The formulas of a propositional dynamic logic, PDL, are generated with the opera-
tions relevant for binary relations and for modal formulas, respectively.

The vocabulary of the language of PDL consists of symbols from the following
pairwise disjoint sets:

� V – a countably infinite set of propositional variables;
� RCPDL – a countably infinite set of relational constants interpreted as atomic

programs;
� f[; I ; ‹;� g – the set of relational operations, where [ is interpreted as a nonde-

terministic choice, I is interpreted as a sequential composition of programs, ‹ is
the test operation, and � is interpreted as a nondeterministic iteration;

� f:;_;^;!; Œ �; hig – the set of propositional operations of negation, disjunction,
conjunction, implication, necessity, and possibility respectively.

The set of PDL-relational terms interpreted as compound programs and the set of
PDL-formulas are the smallest sets containing RCPDL and V , respectively, and sat-
isfying the following conditions:

� If S and T are PDL-relational terms, then so are S [ T , S IT , and T �;
� If ' is a PDL-formula, then '‹ is a PDL-relational term;
� If ' and  are PDL-formulas, then so are :'; ' _  ; ' ^  , and ' !  ;
� If ' is a PDL-formula and T is a PDL-relational term, then ŒT �' and hT i' are

PDL-formulas.

Let R be a binary relation on a set U . Then, we define:

R0 is the identity relation on U ,

RiC1 dfD .Ri IR/,
R� dfDS

i
0Ri .

A PDL-model is a structure M D .U; frRgR2RCPDL ; m/, where U is a non-empty
set interpreted as a set of states of a computation, rR are binary relations on U , and
m is a meaning function satisfying the following conditions:

� m.p/ � U for p 2 V ,
� m.R/ D rR for R 2 RCPDL,

m extends to all the compound PDL-relational terms:

� m.T �/ D m.T /� DS
i
0m.T /i ,

� m.S [ T / D m.S/ [m.T /,
� m.S IT / D m.S/ Im.T /,
� m.'‹/ D f.s; s/ 2 U � U WM; s ˆ 'g.



19.2 Relational Formalization of Propositional Dynamic Logic 361

The satisfaction of a PDL-formula ' in a PDL-model M by a state s 2 U , M; s ˆ
', is defined as:

� M; s ˆ p iff s 2 m.p/, for p 2 V ;
� M; s ˆ :' iff M; s 6ˆ ';
� M; s ˆ ' _  iff M; s ˆ ' or M; s ˆ  ;
� M; s ˆ ' ^  iff M; s ˆ ' and M; s ˆ  ;
� M; s ˆ ' !  iff M; s ˆ :' _  ;

and for every PDL-relational term T ,

� M; s ˆ ŒT �' iff for all s0 2 U , if .s; s0/ 2 m.T /, then M; s0 ˆ ';
� M; s ˆ hT i' iff there exists s0 2 U such that .s; s0/ 2 m.T / and M; s0 ˆ '.

A PDL-formula ' is true in a PDL-model M whenever it is satisfied in M by every
s 2 U , and it is PDL-valid if and only if it is true in all PDL-models.

Intuitively, .s; s0/ 2 m.R/ means that there exists a computation of program R

starting in the state s and terminating in the state s0. Program S [ T performs S or
T nondeterministically; program S IT performs first S and then T . Expression '‹
is a command to continue if ' is true, and fail otherwise. Program T � performs T
zero or more times sequentially.

Theorem 19.2.1.

1. PDL has the finite model property;
2. Model checking problem for PDL is P-complete and solvable in linear time;
3. Satisfiability problem for PDL is EXPTIME-complete.

The proofs of the above theorem can be found in [FL79, Pra78, Pra79, HKT00,
KP81, Seg77].

The language of the relational logic RLPDL appropriate for expressing PDL-
formulas is an extension of RL.1; 10/-language such that:

� RCRLPDL D f1; 10g [RCPDL;
� The set of relational operations includes the operation �.

The set of RLPDL-terms is the smallest set containing relational variables and con-
stants and closed on all the relational operations. As usual, RLPDL-formulas are of
the form xTy, where T is an RLPDL-relational term and x; y are object variables.

An RLPDL-model is a structure M D .U; frRgR2RCPDL ; m/ such that .U;m/ is
an RL.1; 10/-model that satisfies:

� m.R/ D rR, for every R 2 RCPDL;
� m.T �/ D m.T /�, for every relational term T , where the operation 	 is defined

as in PDL-models.



362 19 Dual Tableaux for Logics of Programs

Let vWOV RLPDL ! U be a valuation in an RLPDL-model M and let ' be an
RLPDL-formula. The satisfaction of ' in M by v, the truth of ' in M, and RLPDL-
validity of ' are defined as in Sect. 2.3.

Let � 0 be a one-to-one mapping that assigns relational variables to propositional
variables. We extend � 0 to relational constants of PDL in such a way that � 0.R/ D R,
for every R 2 RCPDL. The translation � of PDL-terms and PDL-formulas into
RLPDL-relational terms is defined as follows:

� �.R/ D � 0.R/, for R 2 RCPDL;

and for all relational terms T and S ,

� �.T �/ D �.T /�,
� �.T [ S/ D �.T /[ �.S/,
� �.T IS/ D �.T / I �.S/,
� �.'‹/ D 10 \ �.'/,
� �.p/ D � 0.p/ I 1, for p 2 V ,
� �.' _  / D �.'/ [ �. /,
� �.' ^  / D �.'/ \ �. /,
� �.' !  / D �.:' _  /,
� �.hT i'/ D �.T / I �.'/,
� �.ŒT �'/ D �.�.T / I ��.'//.
Relational terms obtained from formulas of the dynamic logic include both declar-
ative information and procedural information provided by these formulas. The
declarative part which represents static facts about a domain is represented by means
of a Boolean reduct of algebras of relations, and the procedural part, which is in-
tended to model dynamics of the domain, requires the relational operations. In the
relational terms which represent the formulas after the translation the two types of
information receive a uniform representation and the process of reasoning about
both statics and dynamics, and about relationships between them can be performed
within the framework of a single uniform formalism.

As in the standard modal logics (see Theorem 7.4.1), we have:

Theorem 19.2.2. For every PDL-formula and for all object variables x and y, the
following conditions are equivalent:

1. ' is PDL-valid;
2. x�.'/y is RLPDL-valid.

Proof. It suffices to show that Propositions 7.4.2 and 7.4.3 are true for all PDL-
formulas. Thus, we need to show:

(1) For every PDL-model M D .U; frRgR2RCPDL ; m/, there exists an RLPDL-
model M0D .U; frRgR2RCPDL ; m

0/ with the same universe and the same
relations rR, R 2 RCPDL, as those in M and such that for all s; s0 2 U ,
for every PDL-formula ', and for every PDL-term T , the following hold:

.a/ .s; s0/ 2 m.T / iff .s; s0/ 2 m0.�.T //;

.b/M; s ˆ ' iff .s; s0/ 2 m0.�.'//:



19.2 Relational Formalization of Propositional Dynamic Logic 363

(2) For every standard RLPDL-model M0 D .U; frRgR2RCPDL ; m
0/, there exists a

PDL-model M D .U; frRgR2RCPDL ; m/ with the same universe and the same
relations rR, R 2 RCPDL, as those in M0, such that .a/ and .b/ hold.

By way of example, we prove (1). Let M D .U; frRgR2RCPDL ; m/ be a PDL-model.
We define an RLPDL-model M0 D .U; frRgR2RCPDL ; m

0/ in a similar way as in the
proof of Proposition 7.4.2, namely:

� m0.1/ D U � U ;
� m0.10/ is the identity on U ;
� m0.�.p// D f.x; y/ 2 U � U W x 2 m.p/g, for every propositional variable p;
� m0.R/ D rR, for every R 2 RCPDL;
� m0 extends to all the compound terms as in RLPDL-models.

The proof of .a/ and .b/ is by mutual induction. By the definition of M0, .a/ holds
for every PDL-relational constant. For atomic PDL-formulas, .b/ can be proved as
in the standard modal logics (see Proposition 7.4.2). Now, assume that .a/ and .b/
hold for PDL-relational terms S and T and PDL-formulas ' and  . We need to
show that condition .a/ holds for T �, S [ T , S I T , '‹, and the condition .b/ holds
for formulas ' _  , ' ^  , ' !  , hT i', and ŒT �'.

By way of example, we prove .a/ for T � and '‹. Let s; s0 2 U . Then:

.s; s0/ 2 m.T �/ iff there exists i � 0 such that .s; s0/ 2 m.T /i iff s D s0
or there exist i > 0 and t1; : : : ; ti 2 U such that s D t1, .t1; t2/ 2 m.T /, . . . ,
.ti ; s

0/ 2 m.T / iff, by the induction hypothesis, .s; s0/ 2 m0.10/ or there exists
i > 0 and there are t1; : : : ; ti 2 U such that .s; t1/ 2 m0.10/, .t1; t2/ 2 m0.�.T //,
. . . , .ti ; s0/ 2 m0.�.T // iff .s; s0/ 2 m0.�.T //� iff .s; s0/ 2 m0.�.T �//.
.s; s0/ 2 m.'‹/ iff s D s0 and M; s ˆ ' iff, by the induction hypothesis, .s; s0/ 2

m0.10/ and .s; s0/ 2 m0.�.'// iff .s; s0/ 2 m0.10 \ �.'// iff .s; s0/ 2 m0.�.'‹//.
The condition .b/ can be proved in a similar way as in Proposition 7.4.2. By way of
example, we show it for a formula of the form hT i'. Let s; s0 2 U . Then:

M; s ˆ hT i' iff there exists t 2 U such that .s; t/ 2 m.T / and M; t ˆ ' iff,
by the induction hypothesis, there exists t 2 U such that .s; t/ 2 m0.�.T // and
.t; s0/ 2 m0.�.'// iff .s; s0/ 2 m0.�.hT i'//. ut

RLPDL-dual tableau is an extension of RL.1; 10/-dual tableau with the decomposi-
tion rules for the operation � and its complement:

For all object symbols x; y and for every relational term T ,

.�/
xT �y

xT iy; xT �y
.��/ x�.T �/y

x�.T 0/y j : : : j x�.T i /y j : : :

for any i � 0 where T 0 D 10, T iC1 D T IT i

Observe that the rule .��/ is an infinitary rule.
As usual, an RLPDL-set is a finite set of RLPDL-formulas such that the first-order

disjunction of its members is true in all RLPDL-models. Correctness of finitary rules



364 19 Dual Tableaux for Logics of Programs

is defined in a similar way as in the relational logics of classical algebras of binary
relations (see Sect. 2.4). Correctness of an infinitely branching rule is a natural ex-
tension of the definition of correctness of finitary rules, namely, a rule ˚

˚1 j ::: j˚n j ::: is
RLPDL-correct whenever for every setX of RLPDL-formulas,X[˚ is an RLPDL-set
if and only if for every i 2 !; X [˚i is an RLPDL-set.

Proposition 19.2.1.

1. The RLPDL-rules are RLPDL-correct;
2. The RLPDL-axiomatic sets are RLPDL-sets.

Proof. By way of example, we show correctness of the rules .�/ and .��/. Let X
be a finite set of RLPDL-formulas.
.�/ Clearly, if X [ fxT �yg is an RLPDL-set, then so are X [ fxT iy; xT �yg,

for every i � 0. Let i � 0. Assume that X [ fxT iy; xT �yg is an RLPDL-set and
suppose thatX[fxT �yg is not an RLPDL-set. Then there exist an RLPDL-model M
and a valuation v in M such that for every ' 2 X , M; v 6ˆ ' and M; v 6ˆ xT �y.
By the assumption, M; v ˆ xT iy, hence .v.x/; v.y// 2 m.T i /, for some i � 0.
Thus, by the definition of m.T �/, .v.x/; v.y// 2 m.T �/, so M; v ˆ xT �y, a
contradiction. Therefore, the rule .�/ is RLPDL-correct.
.��/ Assume X [ fx�.T �/yg is an RLPDL-set. Then for every RLPDL-model

M and for every valuation v in M, either there exists ' 2 X such that M; v ˆ
' or for every i � 0, M; v ˆ x�.T i /y. Thus, for every RLPDL-model M, for
every valuation v in M, and for every i � 0, either there exists ' 2 X such that
M; v ˆ ' or M; v ˆ x�.T i /y. Hence, for every i � 0, X [ fx�.T i /yg is an
RLPDL-set. Now, assume that for every i � 0, X [ fx�.T i /yg is an RLPDL-set.
Suppose X [ fx�.T �/yg is not an RLPDL-set, that is there exist an RLPDL-model
M and a valuation v in M such that for every ' 2 X M; v 6ˆ ' and M; v ˆ xT �y.
However, by the assumption, for every i � 0, M; v ˆ x�.T i /y, hence M; v ˆ
x�.T �/y, a contradiction.

Correctness of the remaining rules can be proved as in the relational logics of
classical algebras of binary relations in Sect. 2.5. ut
An RLPDL-proof tree for ' is defined as in logic RL (see Sect. 2.4); however, here
it is not necessarily finitely branching tree. The notions of a closed branch of an
RLPDL-proof tree, a closed RLPDL-proof tree, and RLPDL-provability are defined as
in Sect. 2.4.

A branch b of an RLPDL-proof tree is complete whenever it is closed or it satisfies
the completion conditions of RL.1; 10/-dual tableau and in addition the completion
conditions which are specific for the RLPDL-dual tableau:

For all object symbols x; y and for every relational term T ,

Cpl(�) If xT �y 2 b, then for every i � 0, xT iy 2 b, obtained by an application
of the rule .�/;

Cpl(��) If x�.T �/y 2 b, then for some i � 0, x�.T i /y 2 b, obtained by an
application of the rule .��/.



19.2 Relational Formalization of Propositional Dynamic Logic 365

The notions of a complete RLPDL-proof tree and an open branch of an RLPDL-
proof tree are defined as in RL-logic (see Sect. 2.5). Observe that any application
of the rules of RLPDL-dual tableau, in particular an application of the rules .�/ and
.��/, preserves the formulas built with atomic terms or their complements. Thus,
the closed branch property holds.

Let b be an open branch of an RLPDL-proof tree. The branch structure Mb D
.U b; frbRgR2RCPDL ; m

b/ is defined in a similar way as in RL.1; 10/-logic, that is:

� U b D OSRLPDL ;
� rbR D mb.R/ D f.x; y/ 2 U b � U b W xRy 62 bg, for every R 2 RCRLPDL ;
� mb extends to all the compound relational terms as in RLPDL-models.

Clearly, the branch model property holds, that is Mb is an RLPDL-model.

Proposition 19.2.2 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLPDL-proof tree. Then for every RLPDL-formula ', if Mb; vb ˆ ',
then ' 62 b.

Proof. The proof is by induction on the complexity of formulas. The atomic case
can be proved as in Sect. 2.5, due to the closed branch property. By way of example,
we prove the proposition for the formulas built with T � or its complement.

First, we prove:

(1) If the proposition holds for a formula built with a relational term T (resp. �T ),
then for every i � 0, it holds for the formula built with T i (resp. �.T i /).

The proof is by induction on i . Assume Mb; vb ˆ xT 0y, that is .x; y/ 2 mb.10/.
Directly from the definition of Mb , x10y 62 b. Assume Mb; vb ˆ x�.T 0/y, that
is .x; y/ 62 mb.10/. Thus x10y 2 b, hence x�10y 62 b, by the closed branch prop-
erty. Assume the proposition holds for k� 0. We prove that it holds for k C 1.
Let Mb; vb ˆ xT kC1y. Then there exists z 2 U b such that .x; z/ 2 mb.T /

and .z; y/ 2 mb.T k/. Suppose xT kC1y 2 b. Then by the completion condi-
tion Cpl(I), for every z 2 U b, either xT z 2 b or zT ky 2 b. By the induction
hypothesis, for every z 2 U b , either .x; z/ 62 mb.T / or .z; y/ 62 mb.T k/, a contra-
diction. Let Mb; vb ˆ x�.T kC1/y. Then for all z 2 U b , either .x; z/ 62 mb.T /
or .z; y/ 62 mb.T k/. Suppose x�.T kC1/y 2 b. Then by the completion condi-
tion Cpl(�I), for some z 2 U b , x�T z 2 b and z�.T k/y 2 b. By the induction
hypothesis, for some z 2 U b , .x; z/ 2 mb.T / and .z; y/ 2 mb.T k/, a contradiction.

Now, we prove that the proposition holds for formulas built with terms of the
form T � and �.T �/.

Assume Mb; vb ˆ xT �y. Then .v.x/; v.y// 2 mb.T �/, that is there is i � 0
such that .v.x/; v.y// 2 mb.T i /. Suppose xT �y 2 b. Then, by the completion
condition Cpl(�), for every j � 0, xT jy 2 b. Thus, by .1/, .v.x/; v.y// 62 mb.T i /,
a contradiction.

Assume Mb; vb ˆ x�.T �/y. Then .v.x/; v.y// 62 mb.T �/, so for all i � 0,
.v.x/; v.y// 62 mb.T i /. Suppose x�.T �/y 2 b. Then, by the completion condition
Cpl(��), for some i � 0, x�.T i /y 2 b. Thus, by .1/, .v.x/; v.y// 2 mb.T i /,
a contradiction. ut



366 19 Dual Tableaux for Logics of Programs

Following the general method of proving soundness and completeness described in
Sect. 2.6 (p. 44), we obtain:

Theorem 19.2.3 (Soundness and Completeness of RLPDL). For every RLPDL-
formula ', the following conditions are equivalent:

1. ' is RLPDL-valid;
2. ' is true in all standard RLPDL-models;
3. ' is RLPDL-provable.

The above theorem and Theorem 19.2.2 imply:

Theorem 19.2.4 (Relational Soundness and Completeness of PDL). For every
PDL-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is PDL-valid;
2. x�.'/y is RLPDL-provable.

Example. Consider the following PDL-formulas:

' D ŒR��p ! .p ^ ŒR�p/;

 D .p ^ ŒR��.p ! ŒR�p//! ŒR��p:

Translations of these formulas into RLPDL-relational terms are:

�.'/ D ��.R� I �P/ [ .P \�.R I �P//;
�. / D �.P \ �.R� I �.�P [�.R I �P//// [ �.R� I �P/;

respectively, where for simplicity �.p/ D P . Figures 19.1 and 19.2 present RLPDL-
proofs of x�.'/y and x�. /y, respectively, which, by Theorem 19.2.4, show PDL-
validity of ' and  , respectively.

19.3 Relational Formalization of Dynamic Logic
with Program Specifications

In this section we consider the propositional dynamic logic with program speci-
fications, PDLS, which is an extension of PDL-logic with program constructors
that cover a wide spectrum of command formation rules from various programming
languages.

The language of PDLS-logic is a PDL-language endowed with the propositional
operation if-then-else and with the relational operations n and = representing the
weakest prespecification and the weakest postspecification, respectively.



19.3 Relational Formalization of Dynamic Logic with Program Specifications 367

x.��.R� I�P/[ .P \�.R I�P//y

�
([) and .�/

x.R� I�P/y; x.P \�.R I�P//y
����

			
(\)

x.R� I�P/y; xPy
����

			
(I) with x

xR�x; : : :

�
(�) with i D 0

x10x; : : :

closed

x�Py; xPy; : : :
closed

x.R� I�P/y; x�.R I�P/y

�
(�I) with a new variable z and .�/

x.R� I�P/y; x�Rz; zPy
����

			
(I) with z

z�Py; zPy; : : :
closed

xR�z; x�Rz; : : :

�
(�) with i D 1

x.10 IR/z; x�Rz; : : :
����

			
(I) with x

x10x : : :

closed

xRz; x�Rz; : : :
closed

Fig. 19.1 An RLPDL-proof of the formula ŒR��p! .p ^ ŒR�p/

The set of PDLS-relational terms and the set of PDLS-formulas are defined as
in PDL-logic (see Sect. 19.2) with the following additional clauses:

� SnT and S=T are PDLS-relational terms, for all PDLS-terms S and T ;
� If' thenS elseT is a PDLS-relational term, for every PDLS-formula ' and for

all PDLS-terms S and T .

A PDLS-model is a PDL-model M D .U; frRgR2RCPDLS ; m/ such that the fol-
lowing conditions are satisfied for all PDLS-relational terms S; T and for every
PDLS-formula ':

� m.SnT / D m.S/nm.T /;
� m.S=T / D m.S/=m.T /;
� m.if' thenS elseT / D m.'‹/ Im.S/ [m..:'/‹/ Im.T /.
We recall that the operations n and = of the right and left residual of the composition
of relations, respectively, are defined as in Sect. 18.4:

SnT dfD �.�T IS�1/;
S=T

dfD �.T �1 I �S/.
Intuitively,SnT is the weakest prespecification of S to achieveT , that is the greatest
program such that .SnT / IS � T . Similarly, S=T is the weakest postspecification



368 19 Dual Tableaux for Logics of Programs

x�.P \�.R� I�.�P [�.R I�P////[�.R� I�P/y

�
.[/

x�.P \�.R� I�.�P [�.R I�P////y; x�.R� I�P/y

�
.�\/ and .�/

x�Py; x.R� I�.�P [�.R I�P///y; x�.R� I�P/y

�
.�I / with a new variable z and .�/

x�Py; x.R� I�.�P [�.R I�P///y; x�.R�/z; zPy
����

			
.I / with x

xR�x; : : :

�
.�/, i D 0

x10x; : : :

closed

x�Py; x�.�P [�.R I�P//y; x�.R�/z; zPy;

x.R� I�.�P [�.R I�P///y
����

			
.�[/ and .�/
x�Py; xPy; : : :

closed

x�Py; x.R I�P/y; x�.R�/z; zPy;

x.R� I�.�P [�.R I�P///y
����

			
.I / with z

z�Py; zPy; : : :
closed

x�Py; xRz; x�.R�/z; zPy;

x.R I�P/y; x.R� I�.�P [�.R I�P///y
���� � � �

.��/ 			

: : : : : :˘0.z/ ˘1.z/ ˘i .z/

˘i .z/
dfD x�Py; xRz; x�.Ri /z; zPy; x.R I�P/y; x.R� I�.�P [�.R I�P///y
z is any variable distinct from x and y

In Fig. 19.3 we show, by induction on i , that for any i 
 0 and for any z ¤ x; y,

all the branches with the node ˘i.z/ will close.

Fig. 19.2 An RLPDL-proof of the formula .p ^ ŒR��.p! ŒR�p//! ŒR��p

of T to achieve S , that is the greatest program such that T I .S=T / � S . Program
if ' then S else T performs S whenever an input state satisfies ', and performs T
otherwise.

The satisfaction, truth in a model, and validity of a PDLS-formula are defined as
in PDL-logic.

The relational logic appropriate for expressing PDLS-formulas is an RLPDL-
logic defined in Sect. 19.2. The translation of PDLS-formulas into PDL-relational
terms is defined as in the previous section and extended with the clauses:

� �.SnT / dfD �.��.T / I �.S/�1/;
� �.S=T /

dfD �.�.T /�1 I ��.S//;
� �.if' thenS elseT /

dfD �.'‹/ I �.S/ [ �..:'/‹/ I �.T /.



19.3 Relational Formalization of Dynamic Logic with Program Specifications 369

For i D 0 we have:

x�Py; xRz; x�10z; zPy; x.R I�P/y; x.R� I�.�P [�.R I�P///y
���� .102/ with x

			

z10x; x�10z; : : :
���� .101/ with z			


z10z; : : : x10z; x�10z; : : :
closed closed

xPy; x�Py; : : :
closed

For i D 1 we have:

x�Py; xRz; x�.10 IR/z; zPy; x.R I�P/y; x.R� I�.�P [�.R I�P///y

�
.�I / with a new variable t

xRz; x�10t; t�Rz; : : :
���� .102/ with t

			

x10t; x�10t; : : :

closed

tRz; t�Rz; : : :
closed

For i D n > 1 we have:

x�Py; xRz; x�.Rn�1 IR/z; zPy; x.R I�P/y; x.R� I�.�P [�.R I�P///y

�
.�I / with a new variable w

x�Py; xRz; x�.Rn�1/w;w�Rz; zPy; x.R I�P/y; x.R� I�.�P [�.R I�P///y
���� .I / with w 			


x�.Rn�1/w; xR�w; : : :

�
.�/, i D n� 1

x�.Rn�1/w; xRn�1w; : : :
closed

x�Py; xRz; x�.Rn�1/w;w�Rz; zPy;

x.R I�P/y;w�.�P [�.R I�P//y;
x.R� I�.�P [�.R I�P///y

������

.�[/ and .�/ 			

w.R I�P/y;w�Rz; zPy; : : :
���� .I / with z

			

wRz;w�Rz; : : :

closed

z�Py; zPy; : : :
closed

x�Py; xRz; x�.Rn�1/w;w�Rz; zPy;wPy;

x.R I�P/y; x.R� I�.�P [�.R I�P///y
�

�
��

.I / with w 			

wPy;w�Py; : : :

closed

X

�
x�Py; x�.Rn�1/w;wPy; x.R I�P/y;
xRw; x.R� I�.�P [�.R I�P///y; : : :

X includes ˘n�1.t / for t ¤ x; y. Thus, by the induction hypothesis,

every branch with the node X will close, and hence a tree for ˘n.z/ is closed.

Fig. 19.3 The inductive proof of ˘i.z/



370 19 Dual Tableaux for Logics of Programs

Following the proof of Theorem 19.2.2, we can prove that the translation � preserves
validity of formulas:

Theorem 19.3.1. For every PDLS-formula and for all object variables x and y,
the following conditions are equivalent:

1. ' is PDLS-valid;
2. x�.'/y is RLPDL-valid.

Proof. As in the proof of Theorem 19.2.2, it suffices to show:

(1) For every PDLS-model M D .U; frRgR2RCPDLS ; m/, there exists an RLPDL-
model M0D .U; frRgR2RCPDLS ; m

0/ with the same universe and the same
relations rR, R 2 RCPDLS, as those in the model M and such that for all
s; s0 2 U , for every PDLS-formula ', and for every PDLS-term T , the follow-
ing hold:

.a/ .s; s0/ 2 m.T / iff .s; s0/ 2 m0.�.T //;

.b/M; s ˆ ' iff .s; s0/ 2 m0.�.'//:

(2) For every standard RLPDL-model M0D .U; frRgR2RCPDLS ; m
0/, there exists a

PDLS-model MD .U; frRgR2RCPDLS ; m/ with the same universe and the same
relations rR, R 2 RCPDLS, as those in the model M0 and such that for all
s; s0 2 U , for every PDLS-formula ', and for every PDLS-term T , conditions
.a/ and .b/ hold.

By way of example, we prove (2). Let M0 D .U; frRgR2RCPDLS ; m
0/ be a standard

RLPDL-model. Then we define a PDLS-model M D .U; frRgR2RCPDLS ; m/ in a
similar way as in the proof of Proposition 7.4.3, namely:

� m.p/Dfx 2U W 9y 2U; .x; y/2m0.�.p//g, for every propositional variable p;
� m.R/ D rR, for every R 2 RCPDLS;
� m extends to all the compound PDLS-terms as in PDLS-models.

As in the proof of Theorem 19.2.2, the proof of .a/ and .b/ is by mutual induction.
For the PDLS-constants, the condition .a/ holds by the definition of M. For propo-
sitional variables, the condition .b/ can be proved in a similar way as in the standard
modal logics (see Propositions 7.4.2 and 7.4.3). Now, assume that .a/ and .b/ hold
for PDLS-relational terms S and T and a PDLS-formula '. By way of example,
we show that .a/ holds for SnT . Let s; s0 2 U . Then:

.s; s0/ 2 m.SnT / iff for every u 2 U , either .s; u/ 2 m.T / or .s0; u/ 62 m.S/
iff, by the induction hypothesis, for every u 2 U either, .s; u/ 2 m0.�.T // or
.s0; u/ 62 m0.�.S// iff .s; s0/ 2 �m0.��.T / I �.S/�1/ iff .s; s0/ 2 m0.�.SnT //.ut

The above theorem implies that a dual tableau for PDLS-logic is just the PDL-dual
tableau. Therefore, we have:



19.4 Relational Formalization of Logics of Demonic Nondeterministic Programs 371

Theorem 19.3.2 (Relational Soundness and Completeness of PDLS). For every
PDLS-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is PDLS-valid;
2. x�.'/y is RLPDL-provable.

19.4 Relational Formalization of Logics of Demonic
Nondeterministic Programs

The main motivation for introducing demonic program constructors can be ex-
pressed as a principle that possible nontermination implies definite nontermination.
To incorporate this principle in the relational semantics of programs, the classi-
cal operations of nondeterministic choice and the sequential composition should be
modified appropriately:

� If two commands of a nondeterministic program ˛ can be executed nondetermin-
istically, and if an execution of one of them does not terminate, then the execution
of ˛ does not terminate.

� If a sequence of commands of a nondeterministic program ˛ can be executed
sequentially, and if an execution of one of them does not terminate, then the
execution of ˛ does not terminate.

The above postulates reflect Murphy’s law: ‘If it can go wrong, it will’. Non-
determinism modelled according to these postulates is referred to as demonic
nondeterminism, as opposed to angelic nondeterminism [BZ86].

The calculus of binary relations with operations of demonic union (jj) and de-
monic composition (I I) of relations was studied in [Ngu91]. An extension of the
calculus with the demonic iteration operation d.	/ has been proposed in [DO96].
The demonic iteration is motivated by the following postulate:

If a command of a nondeterministic program ˛ is executed nondeterminis-
tically any finite number of times and if one of these executions does not
terminate, then the execution of ˛ does not terminate.

In this section we consider the propositional logic of demonic nondeterministic pro-
grams, PDLd , which deals with the three demonic operations. The language of the
logic PDLd is a PDL-language endowed with the relational operations jj, I I, and
d.	/ interpreted as the program operations of demonic union, demonic composi-
tion, and demonic iteration, respectively.

The set of PDLd -relational terms and the set of PDLd -formulas are defined in a
similar way as in PDL-logic (see p. 360) with the following additional clause:

� If R and S are PDLd -relational terms, then so are R jjS , R I IS , and Rd.�/.



372 19 Dual Tableaux for Logics of Programs

Let R and S be binary relations on U . The demonic union, demonic composition,
and demonic iteration are defined by:

R jjS dfD f.x; y/ W 9t .x; t/ 2 R and 9t 0 .x; t 0/ 2 S and .x; y/ 2 R [ Sg,
R I IS dfD f.x; y/ W 8z ..x; z/ 2 R implies 9t.z; t/ 2 S/ and .x; y/ 2 R ISg,
Rd.�/ dfD jji2!Rd.i/, where

Rd.0/
dfD 10 and Rd.iC1/ dfD R I IRd.i/.

Since the demonic composition is associative, Rd.iC1/ D Rd.i/ I IR, for every i �
0. Moreover, if the relations R and S are serial, i.e., .R I 1/ D 1 and .S I 1/ D 1,
then the demonic union (resp. composition) collapses to the classical union (resp.
composition).

Proposition 19.4.1. Let R and S be relations on a set U . Then:

1. R jjS D .R [ S/ \ .R I .U � U //\ .S I .U � U //,
2. R I IS D .R IS/\ �.R I �.S I .U � U ///,
3. .x; y/ 2 Rd.�/ iff .x; y/ 2 R� and for all i � 0, .x; y/ 2 .Rd.i/ I .U � U //.
Items 1. and 2. follow from the definition of the operations jj and I I, respectively.
The inductive proof of 3. can be found in [DO96].

A PDLd -model is a PDL-model M D .U; frgR2RC
PDLd

; m/ such that for all

PDLd -relational terms S and T , the following conditions are satisfied:

� m.R jjS/ D m.R/ jjm.S/,
� m.R I IS/ D m.R/ I Im.S/,
� m.Rd.�// D m.R/d.�/.
As usual, we use the same symbols for the operations in the language and for the
corresponding operations in the semantics.

The satisfaction, truth in a model, and validity of a PDLd -formula are defined as
in PDL-logic.

In [DO96] the following is proved:

Theorem 19.4.1.

The logic PDLd has the finite model property.

It follows that the logic PDLd is decidable.
The language of the relational logic RLPDLd appropriate for expressing PDLd -

formulas is the language of RLPDL-logic defined in Sect. 19.2, endowed with the
binary relational operations jj and I I, and the unary operation d.	/. The set of
RLPDLd -terms is the smallest set containing all the atomic relational terms and
closed on all the relational operations. RLPDLd -formulas are defined as usual (see
Sect. 2.3).

An RLPDLd -model is an RLPDL-model M D .U; frRgR2RC
PDLd

; m/ such that m

extends to all RLPDLd -relational terms built with the operations jj, I I, and d.�/ as in



19.4 Relational Formalization of Logics of Demonic Nondeterministic Programs 373

PDLd -models. The satisfaction, truth, and validity of RLPDLd -formulas are defined
in a standard way (see Sect. 2.3).

The translation of PDLd -formulas into PDL-relational terms is defined as in the
logic PDL (see Sect. 19.2, p. 362) with the following additional clauses for formulas
built with demonic operations:

� �.R jjS/ D �.R/ jj �.S/,
� �.R I IS/ D �.R/ I I �.S/,
� �.Rd.�// D �.R/d.�/.
Translation function � is defined so that it preserves validity of formulas.

Theorem 19.4.2. For every PDLd -formula and for all object variables x and y,
the following conditions are equivalent:

1. ' is PDLd -valid;
2. x�.'/y is RLPDLd -valid.

The above theorem can be proved in a similar way as Theorem 19.2.2.
A dual tableau for the logic RLPDLd is an extension of RLPDL-dual tableau with

the decomposition rules for formulas built with demonic operations. These rules
have the following forms:

For all relational terms R;S and for all object symbols x and y,

.jj/ x.R jjS/y
xRz; x.R jjS/y j xSt; x.R jjS/y j xRy; xSy; x.R jjS/y
z; t are any object symbols

.�jj/ x�.R jjS/y
x�Rz; x�St; x�Ry j x�Rz; x�St; x�Sy
z; t are new object variables such that z ¤ t

.I I / x.R I IS/y
x�Rz; z.S I 1/y j x.R IS/y z is a new object variable

.�I I / x�.R I IS/y
x�Rz; z�Sy; x.R I �.S I 1//y z is a new object variable

.d.�//
xRd.�/y

xR�y j x.Rd.0/ I 1/y j : : : j x.Rd.i/ I 1/y j : : : i 2 !

.�d.�// x�.Rd.�//y
x�.R�/y; x�.Rd.i/ I 1/y; x�.Rd.�//y for any i 2 !

The notions of an RLPDLd -set and correctness of RLPDLd -rule are defined as in
RLPDL-logic (see Sect. 19.2).



374 19 Dual Tableaux for Logics of Programs

Proposition 19.4.2.

1. The RLPDLd -rules are RLPDLd -correct;
2. The RLPDLd -axiomatic sets are RLPDLd -sets.

Proof. In view of Proposition 19.2.1, we need to prove correctness of the rules
specific for RLPDL-dual tableau. By way of example, we show correctness of the
rules .I I / and .�d.�//. Let X be a finite set of RLPDLd -formulas.
.I I / Let z be an object variable which does not occur inX and z ¤ x; y. Assume

X [ fx.R I IS/yg is an RLPDLd -set and suppose that X [ fx�Rz; zS I 1yg or X [
fx.R IS/yg is not an RLPDLd -set. Then either there exist an RLPDLd -model M
and a valuation v in M such that for every ' 2 X , M; v 6ˆ ' and .v.x/; v.y// 2
m.R I �.S I 1// or there exist an RLPDLd -model M0 and a valuation v0 in M0 such
that for every ' 2 X , M0; v0 6ˆ ' and .v0.x/; v0.y// 62 m0.R IS/. However, by
the assumption and by Proposition 19.4.1(2.), for every RLPDLd -model M and for
every valuation v in M, either there exists ' 2 X such that M; v ˆ ' or both
.v.x/; v.y// 2 m.R IS/ and .v.x/; v.y// 62 m.R I �.S I 1//, a contradiction.

Now, assume thatX[fx�Rz; zS I 1yg andX[fx.R IS/yg are RLPDLd -sets. By
the assumption on variable z, for every RLPDLd -model M and for every valuation v
in M, either there exists ' 2 X such that M; v ˆ ' or both .v.x/; v.y// 2 m.R IS/
and for every z 2 U , if .v.x/; v.z// 2 m.R/, then .v.z/; v.y// 2 .S I 1/. Hence, by
Proposition 19.4.1(2.),X [fx.R I IS/yg is an RLPDLd -set. Therefore, the rule .I I /
is RLPDLd -correct.
.�d.�// Clearly, if X [ fx�.Rd.�//yg is an RLPDLd -set, then so are X [

fx�.R�/y, x�.Rd.i/ I 1/y, x�.Rd.�//yg, for every i � 0. Let i � 0. Assume
that X[ fx�.R�/y, x�.Rd.i/ I 1/y, x�.Rd.�//yg is an RLPDLd -set and suppose
that X [ fx�.Rd.�//yg is not an RLPDLd -set. Then, there exist an RLPDLd -model
M and a valuation v in M such that for every ' 2 X , M; v 6ˆ ' and .v.x/; v.y// 2
m.Rd.�//. Then, by the assumption, .v.x/; v.y// 62 m.R�/ or .v.x/; v.y// 62
m.Rd.i/ I 1/. Thus, by Proposition 19.4.1(3.), .v.x/; v.y// 62 m.Rd.�//, a contra-
diction. ut

The notion of an RLPDLd -proof tree is defined as in Sect. 19.2 for RLPDL-logic and
the notions of a closed branch, a closed RLPDLd -proof tree, and RLPDLd -provability
are defined as in Sect. 2.4.

A branch b of an RLPDLd -proof tree is complete whenever it is closed or it satis-
fies the completion conditions of RLPDL-dual tableau and the completion conditions
specific for the RLPDLd -dual tableau:

For all object symbols x; y and for all relational terms R;S ,

Cpl(jj) If x.R jjS/y 2 b, then for all object symbols z and t , either xRz 2 b or
xSt 2 b or both xRy 2 b and xSy 2 b, obtained by an application of the
rule (jj);

Cpl(�jj) If x�.R jjS/y 2 b, then there are object variables z and t such that
x�Rz 2 b and x�St 2 b and either x�Ry 2 b or x�Sy 2 b, obtained by
an application of the rule (�jj);



19.4 Relational Formalization of Logics of Demonic Nondeterministic Programs 375

Cpl(I I) If x.R I IS/y 2 b, then either x.R IS/y 2 b or there exists an object
variable z such that both x�Rz 2 b and z.S I 1/y 2 b, obtained by an application
of the rule (I I);

Cpl(�I I) If x�.R I IS/y 2 b, then x.R I �.S I 1//y 2 b and there exists an object
variable z such that x�Rz 2 b and z�Sy 2 b, obtained by an application of the
rule (�I I);

Cpl(d.�/) If xRd.�/y 2 b, then either xR�y 2 b or there exists i � 0 such that
x.Rd.i/ I 1/y 2 b, obtained by an application of the rule (d.�/);

Cpl(�d.�/) If x�.Rd.�//y 2 b, then x�.R�/y 2 b and for every i � 0,
x�.Rd.i/ I 1/y 2 b, obtained by an application of the rule (�d.�/).

The notions of a complete RLPDLd -proof tree and an open branch of an RLPDLd -

proof tree are defined as in Sect. 2.5. Observe that the PDLd -rules, in particular the
decomposition rules for the operations jj, I I, d.�/ and the rules for their comple-
ments, preserve formulas built with atomic relational terms or their complements.
Thus, the closed branch property holds.

Let b be an open branch of an RLPDLd -proof tree. The branch structure Mb D
.U b; frbRgR2RC

PDLd
; mb/ is defined as in the proof of completeness of RLPDL-dual

tableau with the assumption that mb extends to all the RLPDLd -terms built with the
operations jj; I I, and d.�/ as in RLPDLd -models. Thus, for every open branch b of
an RLPDLd -proof tree, Mb is an RLPDLd -model, hence the branch model property
holds.

Proposition 19.4.3 (Satisfaction in Branch Model Property). Let b be an open
branch of an RLPDLd -proof tree. Then for every RLPDLd -formula ', if Mb; vb ˆ ',
then ' 62 b.

Proof. The proof is by induction on the complexity of formulas. By way of example,
we show the proposition for formulas built with terms of the form R I IS .

Assume Mb; vb ˆ x.R I IS/y. Then, by Proposition 19.4.1(2.), .v.x/; v.y// 62
mb.R I �.S I 1// and .v.x/; v.y// 2 mb.R IS/. Suppose x.R I IS/y 2 b. By the
completion condition Cpl(I I), either x.R IS/y 2 b or there exists z 2 U b such that
x�Rz 2 b and z.S I 1/y 2 b. Hence, by the completion condition Cpl(I) and due to
the induction hypothesis, either .x; y/ 62 mb.R IS/ or there exists z 2 U b such that
.x; z/ 2 mb.R/ and .z; y/ 62 mb.S I 1/, a contradiction. ut
Therefore, we have:

Theorem 19.4.3 (Soundness and Completeness of RLPDLd ). For every RLPDLd -
formula ', the following conditions are equivalent:

1. ' is RLPDLd -valid;
2. ' is true in all standard RLPDLd -models;
3. ' is RLPDLd -provable.



376 19 Dual Tableaux for Logics of Programs

x.��.R� I�P/[�.Rd.�/ I�P//y

�
([) and .�/

x.R� I�P/y; x�.Rd.�/ I�P//y

�
(�I) with a new variable z and .�/

x.R� I�P/y; x�.Rd.�//z; zPy

�
(�d.�/) with i D 0

x.R� I�P/y; x�.R�/z; x�.Rd.0/I 1/z; zPy; : : :
����

			
(I) with z

xR�z; x�R�z; : : :
closed

z�Py; zPy; : : :
closed

Fig. 19.4 An RLPDLd -proof of the formula ŒR��p! ŒRd.�/�p

Theorem 19.4.4 (Relational Soundness and Completeness of PDLd ). For every
PDLd -formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is PDLd -valid;
2. x�.'/y is RLPDLd -provable.

Example. Consider the following PDLd -formula:

' D ŒR��p ! ŒRd.�/�p:

Its translation into an RLPDLd -relational term is:

�.'/ D ��.R� I �P/ [ �.Rd.�/ I �P/;

where for simplicity �.p/ D P . Figure 19.4 presents an RLPDLd -proof of x�.'/y

which, by Theorem 19.4.4, shows PDLd -validity of '.

19.5 Relational Formalization of Event Structure Logics

The notion of an event structure was introduced in [Win80] and investigated in
[NPW81, Win86, LT87], among others. A logic ESL for event structures was in-
troduced and studied in [Pen88]. An event structure is intended to model behavior
of a distributed system in terms of a set of event occurrences, a causality relation,
which is a partial order in a set of event occurrences, and a conflict relation, which



19.5 Relational Formalization of Event Structure Logics 377

determines forbidden successions of events. Two event occurrences which are
neither comparable with respect to the causality relation nor in conflict, may occur
concurrently.

An event structure is a system ES D .E; csl; cnf / such that E is a non-empty
set of events, csl and cnf are binary relations on E called causality relation and
conflict relation, respectively, such that the following conditions are satisfied:

(E1) csl is reflexive, antisymmetric, and transitive;
(E2) cnf is irreflexive and symmetric;
(E3) cnf I csl � cnf .

Condition (E3) is referred to as conflict inheritance. Conditions (E2) and (E3) imply
that relations csl and cnf are disjoint.

Let X be a subset of E . We define:

X is conflict free iff for all e; e0 2 E , if e 2 X and .e; e0/ 2 cnf , then e0 62 X ;
X is backward closed iff for all e; e0 2 E , if e 2 X and .e0; e/ 2 csl , then e0 2 X ;
X is a run in structure ES iff X is a maximal (with respect to inclusion) conflict

free and backward closed subset of E .

In [Pen88] the following is proved:

Proposition 19.5.1. Let ES D .E; csl; cnf / be an event structure and let X � E .
Then the following conditions are equivalent:

1. X is a run in ES;
2. x 2 X iff for every y 2 E , .x; y/ 2 cnf implies y 62 X .

The language of logic ESL is a modal language (see Sect. 7.3) with relational con-
stants csl , csl�1, and cnf and with the propositional constant run. An ESL-model
is a system M D .U; csl; cnf; run/ such that .U; csl; cnf / is an event structure,
and run � U is a run in that structure. The satisfaction of formulas in ESL-models
is defined as usual (see Sect. 7.3), with the following clause for the propositional
constant run:

� M; s ˆ run iff s 2 run.

Truth in a model and validity of an ESL-formula are defined as in Sect. 7.3.
In [Pen88] the following has been proved:

Theorem 19.5.1.

1. Logic ESL does not have the finite model property;
2. Logic ESL is decidable.

The language of the relational logic RLESL appropriate for expressing ESL-
formulas is an RL.1; 10/-language such that its set of relational constants is



378 19 Dual Tableaux for Logics of Programs

fcsl; cnf; rung. An RLESL-model is a structure .U; csl; cnf; run;m/ such that
.U;m/ is an RL.1; 10/-model, .U; csl; cnf / is an event structure, and run D X�U ,
for some X � U such that X is a run in this event structure.

Proposition 19.5.1 implies:

Proposition 19.5.2. .U; csl; cnf; run;m/ is an RLESL-model iff .U; csl; cnf / is an
event structure and run D �.cnf I run/.

The translation of ESL-formulas into relational terms of RLESL-logic is defined as
in the standard modal logics with the additional clause for the propositional constant
run:

� �.run/
dfD run.

As in the standard modal logics (see Theorem 7.4.1), we have:

Theorem 19.5.2. For every ESL-formula and for all object variables x and y, the
following conditions are equivalent:

1. ' is ESL-valid;
2. x�.'/y is RLESL-valid.

RLESL-dual tableau is an extension of RL.1; 10/-dual tableau with the rules reflect-
ing all the constraints posed on the accessibility relations in ESL-models: reflexivity,
antisymmetry, and transitivity of causality relation, irreflexivity and symmetry of
conflict relation, conflict inheritance, and properties of run. The rules (ref csl) and
(tran csl) reflecting reflexivity and transitivity of csl , respectively, and the rule (sym
cnf ) reflecting symmetry of cnf are analogous to those presented in Sect. 6.6 (see
also Sect. 7.4). We recall that these rules have the following forms:

For all object symbols x and y,

(ref csl)
xcsly

x10y; xcsly
(sym cnf )

xcnfy

ycnfx

(tran csl)
xcsly

xcslz; xcsly j zcsly; xcsly
z is any object symbol

The rule (irref cnf ) that reflects irreflexivity of cnf is analogous to the rule
(irref Rp) presented in Sect. 12.6.

For every object symbol x,

.irref cnf /
xcnf x

The remaining rules specific for RLESL-dual tableau have the following forms:
For all object symbols x and y,

.asym csl/
x10y

xcsly; x10y j ycslx; x10y



19.5 Relational Formalization of Event Structure Logics 379

(inh)
xcnfy

xcnf z; xcnfy j zcsly; xcnfy
z is any object symbol

(run1)
xruny

x�cnf z; z�runy
z is a new object variable

(run2)
x�runy

xcnf z; x�runy j zruny; x�runy
z is any object symbol

(run3)
xruny jx�runy

(run4)
xruny

xrunz; xruny
z is any object variable

Proposition 19.5.3.

1. The RLESL-rules are RLESL-correct;
2. The RLESL-axiomatic sets are RLESL-sets.

Proof. We show correctness of the rules that are specific for RLESL-dual tableau.
Correctness of the rules (ref csl), (asym csl), and (tran csl) follows from reflexivity,
asymmetry, and transitivity of the relation csl , respectively. Correctness of the rules
(irref cnf ) and (sym cnf ) follows from irreflexivity and symmetry of the relation
cnf , respectively. Correctness of these rules can be proved in a similar way as in
Theorem 6.6.1. The rule (inh) reflects the condition cnf I csl � cnf . The rules
(run1) and (run2) reflect the condition run D �.cnf I run/. The rule .run3/ is a
cut-like rule needed in the proof of completeness. The rule (run4) reflects that the
relation run is a right ideal relation. ut
The notions of an RLESL-proof tree, a closed branch of such a tree, a closed RLESL-
proof tree, and RLESL-provability are defined as in Sect. 2.4.

A branch b of an RLESL-proof tree is complete whenever it is closed or it satis-
fies the completion conditions of RL.1; 10/-dual tableau, the completion conditions
determined by the rules (ref csl), (tran csl), (sym cnf ), and (irref cnf ) which are
the instances of the completion conditions presented in Sects. 6.6 and 12.6, and the
following completion conditions specific for the RLESL-dual tableau:

For all object symbols x and y,

Cpl(asym csl) If x10y 2 b, then either xcsly 2 b or ycslx 2 b, obtained by an
application of the rule (asym csl);

Cpl(inh) If xcnfy 2 b, then for every object symbol z, either xcnf z 2 b or
zcsly 2 b, obtained by an application of the rule (inh);

Cpl(run1) If xruny 2 b, then for some object variable z both x�cnf z 2 b and
z�runy 2 b, obtained by an application of the rule (run1);

Cpl(run2) If x�runy 2 b, then for every object symbol z, either xcnf z 2 b or
zruny 2 b, obtained by an application of the rule (run2);



380 19 Dual Tableaux for Logics of Programs

Cpl(run3) Either xruny 2 b or x�runy 2 b, obtained by an application of the rule
(run3);

Cpl(run4) If xruny 2 b, then for every object variable z, xrunz 2 b, obtained by
an application of the rule (run4).

The notions of a complete RLESL-proof tree and an open branch of an RLESL-proof
tree are defined as in RL-logic (see Sect. 2.5). As in Proposition 2.8.1, it can be
proved that for every branch of an RLESL-proof tree, if xRy and x�Ry for an
atomic termR belong to the branch, then the branch can be closed. Thus, the closed
branch property holds.

Let b be an open branch of an RLESL-proof tree. The branch structure
Mb D .U b; cslb ; cnf b; runb; mb/ is defined in a standard way (see Sect. 2.6),

in particular T b
dfD f.x; y/ 2 U b � U b W xTy 62 bg and mb.T /

dfD T b , for every
T 2 fcsl; cnf; rung.
Proposition 19.5.4 (Branch Model Property). For every open branch b of an
RLESL-proof tree, Mb is an RLESL-model.

Proof. By way of example, we show that runb satisfies all the required properties.
By the completion condition Cpl(run4), runb is a right ideal relation. Hence, by
Proposition 19.5.2, it suffices to show that runb D �.cnf b I runb/.

For runb � �.cnf b I runb/, assume that .x; y/ 2 runb . Then, xruny 62 b.
By the completion condition Cpl(run3), x�runy 2 b. Thus, by the completion
condition Cpl(run2), for every z 2 U b , either xcnf z 2 b or zruny 2 b. Suppose
.x; y/ 62 �.cnf b I runb/. Then, there exists z 2 U b such that xcnf 62 b and
zruny 62 b, a contradiction. The other inclusion can be proved in a similar way. ut
Since the branch model Mb is defined in a standard way and the closed branch
property holds, the satisfaction in branch model property can be proved as in
RL.1; 10/-logic (see Sects. 2.5 and 2.7). Hence, completeness of RLESL-dual tableau
follows:

Theorem 19.5.3 (Soundness and Completeness of RLESL). For every RLESL-
formula ', the following conditions are equivalent:

1. ' is RLESL-valid;
2. ' is true in all standard RLESL-models;
3. ' is RLESL-provable.

By Theorems 19.5.2 and 19.5.3, we get:

Theorem 19.5.4 (Relational Soundness and Completeness of ESL). For every
ESL-formula ' and for all object variables x and y, the following conditions are
equivalent:

1. ' is ESL-valid;
2. x�.'/y is RLESL-provable.



19.5 Relational Formalization of Event Structure Logics 381

x.�run[�.csl I�run//y

�
.[/

x�runy; x�.csl I�run/y

�
.�I / with a new variable z, .�/, .��1/

x�runy; z�cslx; zruny;

�
.run1/ with a new variable w

x�runy; z�cslx; z�cnf w;w�runy
����

			
.run2/ with w

wruny;w�runy; : : :
closed

xcnf w; zcslx; z�cnf w; : : :

�
(sym cnf )

wcnfx; zcslx; z�cnf w; : : :
����

			
(inh) with z

zcslx; z�cslx; : : :
closed

wcnf z; z�cnf w; : : :

�
(sym cnf )

zcnf w; z�cnf w; : : :
closed

Fig. 19.5 An RLESL-proof of the formula run! Œcsl�1�run

x.��.cnf I��run/[ run/y

�
([) and .�/

x.cnf I��run/y; xruny

�
(run1) with a new variable z

x.cnf I��run/y; x�cnf z; z�runy
����

			
(I) with z and .�/
xcnf z; x�cnf z; : : :

closed

zruny; z�runy; : : :
closed

Fig. 19.6 An RLESL-proof of the formula Œcnf �:run! run

Example. Consider the following ESL-formulas:

' D run! Œcsl�1�run;

 D Œcnf �:run! run:



382 19 Dual Tableaux for Logics of Programs

The translations of these formulas into relational terms are:

�.'/ D �run[ �.csl I �run/;

�. / D ��.cnf I ��run/[ run:

Figures 19.5 and 19.6 present RLESL-proofs of x�.'/y and x�. /y, respectively.
By Theorem 19.5.4 formulas ' and  are ESL-valid.



Part VI
Beyond Relational Theories



Chapter 20
Dual Tableaux for Threshold Logics

20.1 Introduction

Threshold logics are a tool for specification, design, and verification of switching
circuits constructed from electronic gates. One of the first ideas in this direction
can be found in [PM60]; see also [Der65]. Threshold logics developed as a circuit
design paradigm alternative to the classical Boolean logic. A threshold element is
a generalization of a conventional gate. A single threshold element can represent a
number of switching functions obtained through various combinations of weights
and a threshold. The concept of threshold provides a representation of a level and
switching states below or above the level. A survey of the development and appli-
cations of threshold logics can be found in [BQA03, Mur71].

In this chapter we consider a class of first-order threshold logics such that the
weights and the thresholds are elements of a commutative group. We develop dual
tableaux for this class of logics and we prove their completeness. Next, we show
that the standard threshold logic based on the additive group of integers is mutually
interpretable with the classical first-order logic. In the above mentioned applica-
tions the propositional calculus of this standard threshold logic is used. The dual
tableaux presented in this chapter originated in [Orł74, Orł76]. Their generalization
to threshold logics based on arbitrary groups was developed in [Cie80].

20.2 Threshold Logics

Let G be the set of elements of the non-zero commutative group .G;C; 0/ with the
relation < of linear ordering satisfying the following conditions:

For all a; b; c; d 2 G,

(1g) If a < b and c � d , then aC c < b C d ;
(2g) If a < b, then �b < �a.

Since G is non-zero and by (2g), we can distinguish an element g0 2 G such that
g0 > 0.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 20,
c� Springer Science+Business Media B.V. 2011

385



386 20 Dual Tableaux for Threshold Logics

Let an element 1 be defined as:

.3g/ 1
dfD

�
minfg 2 G W g > 0g if this minimum exists
g0 otherwise.

By this definition, we have:

.4g/ 1 > 0.

The terms and formulas of the threshold logic, TLG , determined by a group G are
constructed with the symbols from the following pairwise disjoint sets:

� OV TLG
– a countable set of individual variables;

� FTLG
– a countable set of function symbols;

� PTLG
– a countable set of predicate symbols;

� G – the set of elements of the group;
� f8; 9g – the set of quantifiers.

The set TTLG
of terms is defined in the usual way as in the first-order logic (see

Sect. 5.5). The set of formulas of logic TLG is the smallest set that satisfies the
following conditions:

� If P is a k-ary predicate symbol, k � 1, and �1; : : : ; �k 2 TTLG
, then

P.�1; : : : ; �k/ is a TLG-formula; formulas of that form are referred to as atomic
formulas;

� If '1; : : : ; 'l are TLG-formulas and n1; : : : ; nl 2 G n f0g and t 2 G, then
.n1; : : : ; nl ; t/.'1; : : : ; 'l/ is a TLG-formula, for l � 1;

� If '.x/, x 2 OV TLG
, is a TLG-formula, then 8x'.x/ and 9x'.x/ are TLG-

formulas.

In the formula .n1; : : : ; nl ; t/.'1; : : : ; 'l/ the elements n1; : : : ; nl are called the
weights of the formulas '1; : : : ; 'l , respectively. The element t is called its thresh-
old. Strings .n1; : : : ; nl ; t/ play the role of propositional operations.

A TLG-model is a triple M D .U;G;m/ such that:

� U is a non-empty set;
� m is a meaning function which assigns:

– k-ary relations on U to k-ary predicate symbols, that is m.P / � U k , for
every k-ary predicate symbol P , k � 1;

– k-ary functions on U to k-ary function symbols, that is m.f /WU k ! U , for
every k-ary function symbol f , k � 1.

Any function vWOV TLG
! U is a valuation in a TLG-model M D .U;G;m/. The

meaning function m extends to all terms so that for any term � , m.�/ is a function
from the set of valuations into U :

� If � D x, for x 2 OV TLG
, then m.�/.v/ D v.x/;

� If � D f .�1; : : : ; �k/, thenm.�/.v/ D m.f /.m.�1/.v/; : : : ; m.�k/.v//, for every
k-ary function symbol f , k � 1.



20.2 Threshold Logics 387

Let M D .U;G;m/ be a TLG-model and let v be a valuation in M. The
satisfaction of a TLG -formula ' in model M by valuation v, M; v ˆ ', is defined
inductively as:

� M; v ˆ P.�1; : : : ; �k/ iff .m.�1/.v/; : : : ; m.�k/.v// 2 m.P /;
� M; v ˆ .n1; : : : ; nk ; t/.'1; : : : ; 'k/ iff

Pk
iD1 hM;v.ni ; 'i / < t ,

where hM;v is the function assigning elements of G to pairs .n; '/, for n 2 G
and a TLG-formula ':

hM;v.n; '/
dfD

8<
:
n if M; v ˆ '

0 otherwiseI

� M; v ˆ 8x'.x/ iff for every valuation v0 in M such that v and v0 coincide on
OV TLG

n fxg, M; v0 ˆ '.x/;
� M; v ˆ 9x'.x/ iff for some valuation v0 as above, M; v0 ˆ '.x/.
It follows that M; v 6ˆ .n1; : : : ; nk ; t/.'1; : : : ; 'k/ iff

Pk
iD1 hM;v.ni ; 'i / � t .

A TLG-formula ' is true in a TLG-model M if and only if M; v ˆ ' for every
valuation v in M, and it is TLG-valid whenever it is true in all TLG-models.
A formula ' is unsatisfiable if and only if for every TLG-model M and for every
valuation v in M, M; v 6ˆ '.

Proposition 20.2.1. Let ' be a TLG -formula, let M be a TLG-model, and let v be
a valuation in M. Then:

1. If n � t and t � 0, then .n; t/' is unsatisfiable;
2. M; v ˆ ' iff M; v 6ˆ .1; 1/'.

Proof. For 1., let n � t and t � 0, and let ' be a TLG-formula. Observe that
for every TLG-model M and for every valuation v in M, M; v ˆ .n; t/' iff
hM;v.n; '/ < t . The assumptions of the proposition enable us to conclude that
for every TLG-model M and for every valuation v in M, hM;v.n; '/ � t , hence
M; v 6ˆ .n; t/'. Therefore .n; t/' is unsatisfiable.

For 2., assume that M; v ˆ .1; 1/'. Then hM;v.1; '/ < 1, which means
that hM;v.1; '/ D 0, hence M; v 6ˆ '. Assume that M; v 6ˆ .1; 1/'. Then
hM;v.1; '/ � 1, that is hM;v.1; '/ D 1, hence M; v ˆ ', which completes the
proof. ut

Note that the above proposition implies that the operation .1; 1/ behaves like the
classical negation.



388 20 Dual Tableaux for Threshold Logics

20.3 Dual Tableaux for Threshold Logics

A dual tableau for the logic TLG consists of the rules of the following forms:
For all TLG-formulas '; '1; : : : ; 'k , k � 1, and for all n1; : : : ; nk ; n; t 2 G,

(TL1)
.n1; : : : ; nk ; t/.'1; : : : ; 'k/

'k;  j .n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1/;  
where k > 1, nk < 0, and  D .n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/

(TL2)
.n1; : : : ; nk ; t/.'1; : : : ; 'k/

.1; 1/'k;  j .n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/;  
where k > 1, nk > 0, and  D .n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1/

(TL3)
.n; t/.'/

'
for n < t and t � 0

(TL4)
.n; t/.'/

.1; 1/.'/
for 0 < t � n and not .n D t D 1/

(TL5)
.1; 1/..n1; : : : ; nk ; t/.'1; : : : ; 'k//

.�n1; : : : ;�nk ; ".n1; : : : ; nk ; t/ � t/.'1; : : : ; 'k/
where ".n1; : : : ; nk ; t/ D min.f1g [ S.n1; : : : ; nk ; t// and

S.n1; : : : ; nk ; t/ D fg 2 G W g > 0 and g D t �Pk
iD1 �Q.i/ forQ � f1; : : : ; kgg,

where

�Q.i/
dfD

�
ni for i 2 Q
0 for i 62 Q for everyQ � f1; : : : ; kg.

(TL6)
.1; 1/.8x'.x//
9x.1; 1/.'.x//

(TL7)
.1; 1/.9x'.x//
8x.1; 1/.'.x//

(TL8)
8x'.x/
'.z/

z is a new individual variable

(TL9)
9x'.x/

'.�/; 9x'.x/ � is any term

A finite set X of TL-formulas is said to be TL-axiomatic whenever it includes either
of the subsets of the following forms:



20.3 Dual Tableaux for Threshold Logics 389

For any TLG-formula ',

(Ax1) f'; .1; 1/'g;
(Ax2) f.n; t/'g, for n < t; t > 0.

The notions of a TLG-set and TLG-correctness of a rule are defined in a similar way
as in F-logic in Sect. 1.3.

Proposition 20.3.1.

1. The TLG-axiomatic sets are TLG-sets;
2. The TLG- rules are TLG-correct.

Proof.

1. Let ' be a TLG-formula, let M be a TLG-model, and let v be a valuation in M.
Note that if M; v 6ˆ ', then hM;v.1; '/ D 0 < 1, hence M; v ˆ .1; 1/'. Therefore
for every TLG-model and for every valuation v in M, M; v ˆ ' or M; v ˆ .1; 1/',
hence every finite set X of TLG-formulas including ' and .1; 1/' is a TLG-set. Let
n > t and t > 0. Then hM;v.n; '/ < t , for every TLG-modelM, for every valuation
v in M, and for every TLG-formula '. Therefore M; v ˆ .n; t/', hence f.n; t/'g
is a TLG-set.

2. By way of example, we prove correctness of the rules (TL1), (TL3), and (TL5).
Let X be a finite set of TLG-formulas.

(TL1) Let k > 1 and nk < 0. Then, hM;v.nk ; 'k/ � 0 for every TLG -model
M and for every valuation v in M. Assume X [ f.n1; : : : ; nk ; t/ .'1; : : : ; 'k/g is
a TLG-set, that is for every TLG-model M and for every valuation v in M, either
there exists # 2 X such that M; v ˆ # or

Pk
iD1 hM;v.ni ; 'i / < t . Let M be a

TLG-model and let v be a valuation in M. If M; v ˆ 'k , then hM;v.nk; 'k/ D
nk < 0, hence

Pk�1
iD1 hM;v.ni ; 'i / < t � nk . Therefore, M; v ˆ 'k and M; v ˆ

.n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k/. If M; v 6ˆ 'k , then hM;v.nk; 'k/ D 0, hencePk�1
iD1 hM;v.ni ; 'i / < t . Thus, either there exists # 2 X such that M; v ˆ #

or both M; v ˆ 'k and M; v ˆ .n1; : : : ; nk�1; t/.'1; : : : ; 'k/. Therefore, sets
X[f'k;  g andX[f.n1; : : : ; nk�1; t�nk/.'1; : : : ; 'k�1/;  g are TLG-sets, where
 D .n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/.

Assume that X [ f'k;  g and X [ f.n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1/;  g
are TLG-sets, where  D .n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/. Suppose that X [
f.n1; : : : ; nk ; t/ .'1; : : : ; 'k/g is not a TLG-set, that is there exist a TLG-model M
and a valuation v in M such that

Pk
iD1 hM;v.ni ; 'i / � t . Suppose that M; v ˆ 'k

which implies hM;v.nk ; 'k/ D nk < 0. If M; v ˆ .n1; : : : ; nk�1; t � nk/
.'1; : : : ; 'k�1/, then

Pk�1
iD1 hM;v.ni ; 'i / < t � nk . Thus:

kX
iD1

hM;v.ni ; 'i / D
k�1X
iD1

hM;v.ni ; 'i /C hM;v.nk ; 'k/ < .t � nk/C nk D t;

a contradiction.



390 20 Dual Tableaux for Threshold Logics

If M; v 6ˆ .n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1/, then by the assumption
M; v ˆ  . Therefore, we obtain

Pk�1
iD1 hM;v.ni ; 'i / < t , which impliesPk

iD1 hM;v.ni ; 'i / < t C nk < t , a contradiction.
If M; v 6ˆ 'k , then by the assumption hM;v.nk ; 'k/ D 0 and M; v ˆ  .

Then
Pk
iD1 hM;v.ni ; 'i / < t C 0 D t , a contradiction. Hence, the rule (TL1) is

TLG-correct.
(TL3) Let n < t and t � 0. AssumeX [f.n; t/.'/g is a TLG-set. Then for every

TLG-model M and for every valuation v in M, either there exists # 2 X such that
M; v ˆ # or hM;v.n; '/ < t . SupposeX [ f'g is not a TLG-set. Then there exist a
TLG-model M and a valuation v in M such that M; v 6ˆ '. Thus hM;v.n; '/ D 0.
However, by the assumption, model M and valuation v satisfy hM;v.n; '/ < t .
Hence t > 0, a contradiction. Now, assume X [ f'g is a TLG-set, that is for every
TLG-model M and for every valuation v in M, either there exists # 2X such that
M; v ˆ # or M; v ˆ '. Suppose X [ f.n; t/.'/g is not a TLG-set. Then there
exist a TLG-model M and a valuation v in M such that hM;v.n; '/ � t . By the
assumption, hM;v.n; '/ D n, which implies n � t , a contradiction. Hence the rule
(TL3) is TLG-correct.
.TL5/ For simplicity, in the following we will write " instead of ".n1; : : : ;

nk ; t/ and S instead of S.n1; : : : ; nk ; t/. Note that ">0. Assume that
X [ f.1; 1/..n1; : : : ; nk ; t/.'1; : : : ; 'k//g is a TLG-set. Then for every TLG-
model M and for every valuation v in M, either there exists # 2X such that
M; v ˆ # or M; v ˆ .1; 1/..n1; : : : ; nk ; t/.'1; : : : ; 'k//, which implies that
.n1; : : : ; nk ; t/.'1; : : : ; 'k/ is not satisfied in M by valuation v, and hencePk
iD1 hM;v.ni ; 'i / � t . Suppose that X [ f.�n1; : : : ;�nk ; " � t/.'1; : : : ; 'k/g is

not a TLG-set. Then there exist a TLG-model M and a valuation v in M such that
M; v 6ˆ .�n1; : : : ;�nk; " � t/.'1; : : : ; 'k/, that is

Pk
iD1 hM;v.�ni ; 'i / � " � t .

Therefore
Pk
iD1�hM;v.ni ; 'i / � "�t . By the assumption,

Pk
iD1�hM;v.ni ; 'i / �

�t . Thus " � 0, a contradiction.
Now, assume X [ f.�n1; : : : ;�nk ; " � t/.'1; : : : ; 'k/g is a TLG-set. Note

that the formula .�n1; : : : ;�nk ; " � t/.'1; : : : ; 'k// is satisfied in a TLG -model
M by a valuation v in M whenever

Pk
iD1 hM;v.�ni ; 'i / < "� t , that is t �Pk

iD1 hM;v.ni ; 'i /< ". Suppose X [ f.1; 1/..n1; : : : ; nk ; t/.'1; : : : ; 'k//g is
not a TLG-set. Then there exist a TLG-model M and a valuation v in M such
that M; v 6ˆ .1; 1/..n1; : : : ; nk ; t/.'1; : : : ; 'k//, which implies that M; v ˆ
.n1; : : : ; nk ; t/.'1; : : : ; 'k/. Thus,

Pk
iD1 hM;v.ni ; 'i / < t , so t �Pk

iD1 hM;v

.ni ; 'i /> 0. Then, by the definition of S , t �Pk
iD1 hM;v.ni ; 'i / 2 S , and hence

t �Pk
iD1 hM;v.ni ; 'i /� ". However, by the assumption, M; v ˆ .�n1; : : : ;�nk;

" � t/.'1; : : : ; 'k//, thus t �Pk
iD1 hM;v.ni ; 'i / < ", a contradiction.

Correctness of rules (TL6) and (TL7) follows easily from Proposition 20.2.1.
The proofs of correctness of the remaining rules are similar. ut
A TLG-proof tree for a TLG-formula ' is a finitely branching tree defined as in
Sect. 1.3. The notions of a closed branch of a TLG-proof tree, a closed TLG-proof
tree, and TLG-provability are defined as in Sect. 1.3. The rules guarantee that when-
ever ' and .1; 1/', for an atomic formula ', belong to a branch b of a TLG-proof
tree, then they eventually will appear in the same node of b. Hence, we obtain:



20.3 Dual Tableaux for Threshold Logics 391

Proposition 20.3.2 (Closed Branch Property). For every branch b of a TLG-proof
tree, if both ' 2 b and .1; 1/' 2 b, for some atomic formula ', then branch b is
closed.

A branch b of a TLG-proof tree is complete whenever it is closed or it satisfies the
following completion conditions:

For all TLG-formulas '; '1; : : : ; 'k , k � 1, and for all n1; : : : ; nk ; n; t 2 G,

Cpl(TL1) If .n1; : : : ; nk ; t/.'1; : : : ; 'k/ 2 b, for k > 1 and nk < 0, then either
'k 2 b and .n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/ 2 b or .n1; : : : ; nk�1; t � nk/
.'1; : : : ; 'k�1/ 2 b and .n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/ 2 b, obtained by an
application of the rule (TL1);

Cpl(TL2) If .n1; : : : ; nk ; t/.'1; : : : ; 'k/ 2 b, for k > 1 and nk > 0, then
either .1; 1/.'k/ 2 b and .n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1/ 2 b or
.n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1/ 2 b and .n1; : : : ; nk�1; t/.'1; : : : ;
'k�1/ 2 b, obtained by an application of the rule (TL2);

Cpl(TL3) If .n; t/.'/ 2 b, for n < t and t � 0, then ' 2 b, obtained by an
application of the rule (TL3);

Cpl(TL4) If .n; t/.'/ 2 b, for n � t , t > 0, and not .n D t D 1/, then .1; 1/.'/ 2 b,
obtained by an application of the rule (TL4);

Cpl(TL5) If .1; 1/..n1; : : : ; nk ; t/.'1; : : : ; 'k// 2 b, then .�n1; : : : ;�nk ; ".n1;
: : : ; nk; t/ � 1/.'1; : : : ; 'k/ 2 b, obtained by an application of the rule (TL5);

Cpl(TL6) If .1; 1/.8x'.x// 2 b, then 9x.1; 1/.'.x// 2 b, obtained by an applica-
tion of the rule (TL6);

Cpl(TL7) If .1; 1/.9x'.x// 2 b, then 8x.1; 1/.'.x// 2 b, obtained by an applica-
tion of the rule (TL7);

Cpl(TL8) If 8x'.x/ 2 b, then for some individual variable z, '.z/ 2 b, obtained by
an application of the rule (TL8);

Cpl(TL9) If 9x'.x/ 2 b, then for every term � , '.�/ 2 b, obtained by an application
of the rule (TL9).

The notion of a complete TLG-proof tree and the notion of an open branch of a
TLG-proof tree are defined as in F-logic (see Sect. 1.3).

The branch structure is a structure Mb D .U b; G;mb/ satisfying the following
conditions:

� U b D TTLG
;

� mb is a meaning function such that:

– mb.P / D f.�1; : : : ; �k/ 2 U b � : : : � U b W P.�1; : : : ; �k/ 62 bg, for every
k-ary predicate symbol P , k � 1;

– mb.f / D f , for every k-ary function symbol f , k � 1;

� mb extends to all terms as in TLG-models.

It is easy to see that the structure defined above is a TLG-model, and hence the
branch model property holds.

Let vb WOV TLG
! U b be defined as vb.x/ D x, for every x 2 OV TLG

. It
follows that mb.�/.vb/ D � , for every term � .



392 20 Dual Tableaux for Threshold Logics

Proposition 20.3.3 (Satisfaction in Branch Model Property). Let Mb be a
TLG-model determined by an open branch b of a TLG-proof tree. For every
TLG-formula ', if Mb; vb ˆ ', then ' 62 b.

Proof. The proof is by induction on the complexity of formulas. For formulas of the
form 'D P.�1; : : : ; �k/ the theorem holds by the definition of Mb .

Let ' D .1; 1/.P.�1; : : : ; �k//. Assume that Mb; vb ˆ .1; 1/.P.�1; : : : ; �k//.
Then hMb ;vb.1; P.�1; : : : ; �k// < 1, hence Mb; vb 6ˆ P.�1; : : : ; �k/, for otherwise
hMb ;vb .1; P.�1; : : : ; �k// D 1. Therefore, by the definition of satisfaction,
.�1; : : : ; �k/ 62 mb.P /. By the definition of Mb , P.�1; : : : ; �k/ 2 b. Hence,
.1; 1/.P.�1; : : : ; �k// 62 b, for otherwise, by the closed branch property, b would be
closed.

Let ' D .n1; : : : ; nk ; t/.'1; : : : ; 'k/, where k > 1 and nk < 0. Assume
Mb; vb ˆ ', which implies

Pk
iD1 hMb ;vb .ni ; 'i / < t . Suppose that ' 2 b.

Then, by the completion condition Cpl(TL1), either 'k 2 b and .n1; : : : ;

nk�1; t/.'1; : : : ; 'k�1/ 2 b or .n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1/ 2 b and
.n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/ 2 b. Consider the first case. Then, by the
induction hypothesis, we get Mb; vb 6ˆ 'k and Mb; vb 6ˆ .n1; : : : ; nk�1; t/
.'1; : : : ; 'k�1/. Therefore, hMb ;vb .nk ; 'k/ D 0 and

Pk�1
iD1 hMb ;vb .ni ; 'i / � t .

Hence
Pk
iD1 hMb ;vb .ni ; 'i / � t , a contradiction. Now, consider the second

case. Then Mb; vb 6ˆ .n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k/ and Mb; vb 6ˆ
.n1; : : : ; nk�1; t/.'1; : : : ; 'k�1/. Thus, we obtain

Pk�1
iD1 hMb ;vb .ni ; 'i / � t andPk�1

iD1 hMb ;vb .ni ; 'i / � t � nk , which implies
Pk
iD1 hMb ;vb .ni ; 'i / � t , a

contradiction.
Let ' D .n; t/. /, n � t > 0, and not .n D t D 1/. Assume Mb; vb ˆ '. Then

hMb ;vb .n;  / < t . This implies Mb; vb 6ˆ  , for otherwise n < t . Suppose ' 2 b.
By the completion condition Cpl(TL4), .1; 1/. / 2 b. By the induction hypothesis,
Mb; vb 6ˆ .1; 1/. /. So hMb ;vb .1;  / � 1. Since Mb; vb 6ˆ  , hMb ;vb.1;  / D
0 � 1, a contradiction.

Let ' D .1; 1/.8x .x//. Assume Mb; vb ˆ '. Then hMb ;vb .1;8x .x// < 1,
hence Mb; vb 6ˆ 8x .x/. Suppose ' 2 b. By the completion condition Cpl(TL6),
9x.1; 1/. .x// 2 b. By the induction hypothesis,Mb; vb 6ˆ 9x.1; 1/. .x//. Since
Mb; vb 6ˆ 8x .x/, there exists � 2 U b such that Mb; v0 6ˆ  .x/, where v0.x/ D
� and v0.z/ D vb.z/, for every z ¤ x. Hence, by Proposition 20.2.1, Mb; v0 ˆ
.1; 1/ .x/. Therefore, Mb; vb ˆ 9x.1; 1/. .x//, a contradiction.

The proofs of the remaining cases are similar. ut
Proposition 20.3.4. Let ' be a TLG-formula. If ' is TLG-valid, then there is a
closed TLG-proof tree for it.

Proof. Assume ' is TLG-valid. Suppose there is no any closed TLG-proof tree
for '. Then there exists a complete TLG-proof tree for ' with an open branch, say
b. By Proposition 20.3.3, since ' 2 b, Mb; vb 6ˆ '. Since Mb is a TLG-model, '
is not TLG-valid, a contradiction ut



20.4 Mutual Interpretability of a Threshold Logic and Classical First-Order Logic 393

Propositions 20.3.1 and 20.3.4 yield:

Theorem 20.3.1 (Soundness and Completeness of TLG). Let ' be a TLG-
formula. Then the following conditions are equivalent:

1. ' is TLG-valid;
2. ' is TLG-provable.

Observe that the reduct of TLG-dual tableau consisting of the rules TL1, TL2, TL3,
TL4, and TL5 is a decision procedure for the propositional threshold logic.

20.4 Mutual Interpretability of a Threshold Logic
and Classical First-Order Logic

Let Z be an additive group of integers. Let TLZ and FOL be a threshold logic
and the first-order logic as defined in Sect. 5.5, respectively, with the same sets of
predicate symbols and function symbols. Then threshold logic TLZ and the first-
order logic FOL are mutually interpretable.

Theorem 20.4.1.

1. There exists a translation � of terms and formulas of logic FOL into terms and
formulas of logic TLZ , respectively, such that for every FOL-formula ', ' is
FOL-valid iff �.'/ is TLZ-valid;

2. There exists a translation � 0 of terms and formulas of logic TLZ into terms and
formulas of logic FOL, respectively, such that for every TLZ-formula ', ' is
TLZ-valid iff � 0.'/ is FOL-valid.

Proof.

1. Let � be the mapping from the set of terms and formulas of logic FOL into the
set of terms and formulas of logic TLZ defined as:

� �.�/ D � , for any term � of logic FOL;
� �.P.�1; : : : ; �k// D P.�1; : : : ; �k/, for all terms �1; : : : ; �k and for every k-ary

predicate symbol P 2 PFOL, k � 1;
� If ' and  are FOL-formulas, then:

�.:'/ D .1; 1/.�.'//;
�.' _  / D .�1;�1; 0/.�.'/; �. //;
�.' ^  / D .�1;�1;�1/.�.'/; �. //;
�.' !  / D .1;�1; 1/.�.'/; �. //;
�.9x'/ D 9x.�.'//;
�.8x'/ D 8x.�.'//.



394 20 Dual Tableaux for Threshold Logics

Now, it suffices to show that for every FOL-formula ', the following hold:

(a) For every FOL-model M and for every valuation v in M, there exist a TLZ-
model M0 and a valuation v0 in M0 such that M; v ˆ ' iff M0; v0 ˆ �.'/;

(b) For every TLZ-model M0 and for every valuation v0 in M0, there exist an FOL-
model M and a valuation v in M such that M; v ˆ ' iff M0; v0 ˆ �.'/.

For (a), let M D .U;m/ be an FOL-model and let v be a valuation in M. We
construct a TLZ-model M0 D .U 0; G;m0/ setting U 0 D U , m0.P / D m.P /, and
m0.f / D m.f /, for every predicate symbol P and for every function symbol f .
Let v0 be a valuation in M0 such that v0 D v. Then we prove the required condition
by induction on the complexity of formulas. Directly from the definition of � , it
holds for the atomic formulas.

Let ' D : . Assume M; v ˆ '. Then M; v 6ˆ  . By the induction
hypothesis M0; v0 6ˆ �. /. Thus hM0;v0.1; �. // D 0, and hence M0; v0 ˆ
.1; 1/.�. //. Assume that M0; v0 ˆ �.'/, that is hM0;v0.1; �. // < 1. Thus hM0;v0

.1; �. // D 0, and hence M0; v0 6ˆ �. /. Suppose M; v 6ˆ '. Then by the
induction hypothesis, M; v 6ˆ  , hence M; v ˆ '.

Let ' D  _ # . Assume M; v ˆ '. Then M; v ˆ  or M; v ˆ # . By the
induction hypothesis, M0; v0 ˆ �. / or M0; v0 ˆ �.#/. Thus hM0;v0.�1; �. //C
hM0;v0.�1; �.#// < �1 < 0, hence M0; v0 ˆ .�1;�1; 0/.�. /; �.#//. There-
fore, M0; v0 ˆ �.'/. Assume M0; v0 ˆ �.'/. Then hM0;v0.�1; �. // C
hM0;v0.�1; �.#// < 0, hence M0; v0 ˆ �. / or M0; v0 ˆ �.#/. By the induction
hypothesis, M; v ˆ  or M; v ˆ # . Thus M; v ˆ '.

The proofs of the remaining cases are similar.
For (b), let M0 D .U 0; G;m0/ be a TLZ-model and let v0 be a valuation in M0.

Then let M D .U;m/ be a FOL-model such that U D U 0, m.P / D m0.P /, and
m.f / D m0.f /, for every predicate symbol P and for every function symbol f .
Let v be a valuation in M such that v D v0. Then the required condition can be
proved by induction on the complexity of formulas in a similar way as in (a).

2. Let � 0 be the mapping from the set of terms and formulas of logic TLZ into the
set of terms and formulas of logic FOL, respectively, defined as follows:

� � 0.�/ D � , for any term � of logic TLZ ;
� � 0.P.�1; : : : ; �k// D P.�1; : : : ; �k/, for all terms �1; : : : ; �k and for every k-ary

predicate symbol P 2 PTLZ
, k � 1;

� If ' is a TLZ-formula, then:

� 0..n; t/.'// D :� 0.'/, if 0 < t � n;
� 0..n; t/.'// D � 0.'/, if n < t � 0;
� 0..n; t/.'// D ' ^ :', if n > 0 and t < 0 or n < 0 and t > 0;
� 0..n; t/.'// D ' _ :', if 0 < n < t ;
� 0.9x'/ D 9x.� 0.'//;
� 0.8x'/ D 8x.� 0.'//;



20.4 Mutual Interpretability of a Threshold Logic and Classical First-Order Logic 395

� If n1; : : : ; nk 2 Z n f0g; t 2 Z, and '1; : : : ; 'k are TLZ-formulas, k > 0, then

� 0..n1; : : : ; nk ; t/.'1; : : : ; 'k// D � 0..n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1// _
.:� 0.'k/ ^ � 0..n1; : : : ; nk�1; t/.'1; : : : ; 'k�1///, for nk > 0;

� 0..n1; : : : ; nk ; t/.'1; : : : ; 'k// D � 0..n1; : : : ; nk�1; t/.'1; : : : ; 'k�1//_
.� 0.'k/ ^ � 0..n1; : : : ; nk�1; t � nk/.'1; : : : ; 'k�1///, for nk < 0.

The preservation of validity by � 0 can be proved in a similar way as in the
case of � . ut

.�1;�1; 0/..1; 1/.8x.�1;�1; 0/.';  .x///; .�1;�1; 0/.';8x .x///
��������

			
(TL1)

.�1; 1/.1; 1/.8x.�1;�1; 0/.';  .x//; : : :
closed

.�1;�1; 0/.';8x .x//; .�1; 0/.1; 1/.8x.�1;�1; 0/.';  .x///
��������

(TL1)
		

.�1; 1/.'/; : : :

closed

8x .x/; .�1; 0/.'/; .�1; 0/.1; 1/.8x.�1;�1; 0/.';  .x///

�
(TL3)

8x .x/; '; .�1; 0/.1; 1/.8x.�1;�1; 0/.';  .x///

�
(TL3)

8x .x/; '; .1; 1/.8x.�1;�1; 0/.';  .x///

�
(TL6)

8x .x/; '; 9x.1; 1/.�1;�1; 0/.';  .x//

�
(TL8) with a new variable z

 .z/; '; 9x.1; 1/.�1;�1; 0/.';  .x//

�
(TL9) with z

 .z/; '; .1; 1/.�1;�1; 0/.';  .z//; : : :

�
(TL5) with ".�1;�1; 0/ D 1

 .z/; '; .1; 1; 1/.';  .z//; : : :
�����

				

(TL2)

 .z/; .1; 1/ .z/; : : :
closed

'; .1; 1/'; : : :

closed

Fig. 20.1 A TLZ -proof of the formula 8x.' _  .x//! .' _8x .x//



396 20 Dual Tableaux for Threshold Logics

Example. Consider the following FOL-formula:

8x.' _  .x//! .' _ 8x .x//:

Its equivalent form is:

˛ D :8x.' _  .x// _ .' _ 8x .x//:

By Theorem 20.4.1 (1.), FOL-validity of ˛ is equivalent to TLZ-provability of �.˛/,
where the translation � is defined in the proof of Theorem 20.4.1. For the sake of
simplicity, we write ' and  .x/ instead of �.'/ and �. .x//, respectively:

�.˛/ D .�1;�1; 0/..1; 1/.8x.�1;�1; 0/.';  .x///; .�1;�1; 0/.';8x .x///:

Figure 20.1 presents a TLZ-proof of the formula �.˛/.



Chapter 21
Signed Dual Tableau for Gödel–Dummett Logic

21.1 Introduction

In 1933 Kurt Gödel [Göd33] introduced a family of finitely many-valued
propositional logics. His goal was to show that the intuitionistic logic cannot
be characterized by a finite matrix. Dummett in [Dum59] generalized them to
infinite-valued logics and presented their complete Hilbert-style axiomatization.
It consists of the axioms of the intuitionistic propositional logic and the linearity
axiom .' !  / _ . ! '/. It is known that the set of tautologies of these logics
is the same for any infinite set of truth values. Kripke-style semantics for these
logics is determined by the intuitionistic Kripke models which are linearly ordered.
The logic LC is an intersection of the sets of tautologies of all finite-valued Gödel
logics. Gödel–Dummett logics have many applications both in logic and in com-
puter science. Logic LC is employed in the investigations of the provability logic
of the intuitionistic arithmetic [Vis82] and relevant logics [DM71]. It is applied to
the foundations of logic programming [Pea99] and also it is considered as one of
the most important fuzzy logics [Háj98].

This chapter presents a signed dual tableau decision procedure for logic LC
developed in [AK01]. Two signs T (True) and F (False) are used. There is an
analogy between signed dual tableaux and relational dual tableaux. In relational
dual tableaux there are decomposition rules determined by all the relational opera-
tions and by their Boolean complements. In signed dual tableaux every operation of
a logic in question determines two rules applicable to formulas built with that oper-
ation and endowed with signs T and F, respectively. They are the counterparts to the
positive and complemented occurrence of the term in a relational formula which is
a translation of the formula from the original language of the logic. The method of
proving completeness of signed dual tableaux is also analogous to the completeness
proofs of relational dual tableaux. It involves constructing a branch structure and
proving the branch model property and the satisfaction in branch model property.
However, in the case of signed formulas the satisfaction in branch model property
involves two cases, namely, satisfaction of formulas signed with T and F, respec-
tively. Following this method, completeness for the LC-dual tableau is proved in the
present chapter.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 21,
c� Springer Science+Business Media B.V. 2011

397



398 21 Signed Dual Tableau for Gödel–Dummett Logic

21.2 Gödel–Dummett Logic

The language of the logic LC is that of the intuitionistic logic, that is its vocabulary
consists of symbols from the following pairwise disjoint sets:

� V – a countable set of propositional variables;
� f_;^;!g – the set of propositional operations;
� f?g – the set consisting of the propositional constant interpreted as falsity.

The set of LC-formulas is the smallest set including V[f?g and closed with respect
to all the propositional operations.

An LC-model is a structure:

M D .N [ f!g;�; v/

such that N is the set of natural numbers, ! 62 N , ! is the greatest element of
N [ f!g, � is the natural ordering of N , and vWV [ f?g ! N [ f!g is a valuation
such that:

� v.p/ 2 N [ f!g, for every propositional variable p;
� v.?/ D 0;

Valuation v extends to all the LC-formulas as follows:

� v.' _  / D max.v.'/; v. //;
� v.' ^  / D min.v.'/; v. //;

� v.' !  / D
�
! if v.'/ � v. /
v. / otherwise

As usual in the intuitionistic logic, negation is definable as :' dfD ' !?.
An LC-formula ' is said to be true in an LC-model M D .N [ f!g;�; v/,

M ˆ ', whenever v.'/ D !, and it is LC-valid whenever it is true in all LC-
models.

21.3 Signed Dual Tableau Decision Procedure
for Gödel–Dummett Logic

Rules of the dual tableau for Gödel–Dummett logic apply to signed formulas which
are obtained from LC-formulas by prefixing them with the signs T or F. We extend
valuations in LC-models to signed formulas as follows:

� v.T.'// D ! iff v.'/ D !;
� v.F.'// D ! iff v.'/ ¤ !.



21.3 Signed Dual Tableau Decision Procedure for Gödel–Dummett Logic 399

Decomposition rules have the following forms:
For all LC-formulas '; ; '1; '2;  1 and  2,

.T_/ T.' _  /
T.'/;T. /

.F_/ F.' _  /
F.'/ jF. /

.T^/ T.' ^  /
T.'/ jT. / .F^/ F.' ^  /

F.'/;F. /

.T_ !/ T..'1 _ '2/!  /

T.'1 !  / jT.'2 !  /
.F_ !/ F..'1 _ '2/!  /

F.'1!  /;F.'2 !  /

.T! _/ T.' ! . 1 _  2//
T.' !  1/;T.' !  2/

.F! _/ F.' ! . 1 _  2//
F.' !  1/ jF.' !  2/

.T^ !/ T..'1 ^ '2/!  /

T.'1 !  /;T.'2 !  /
.F^ !/ F..'1 ^ '2/!  /

F.'1!  / jF.'2 !  /

.T! ^/ T.' ! . 1 ^  2//
T.' !  1/ jT.' !  2/

.F! ^/ F.' ! . 1 ^  2//
F.' !  1/;F.' !  2/

.T! .!// T.' ! . 1 !  2//

T. 1 !  2/;T.' !  2/

.F! .!// F.' ! . 1 !  2//

F. 1 !  2/ jF.' !  2/

.T.!/!/ T..'1 ! '2/!  /

T.'2 !  / jT. /;F.'1 ! '2/

.F.!/!/ F..'1 ! '2/!  /

T.'1 ! '2/;F.'2 !  / jF. /

The specific rules have the following forms:
For all propositional variables p; q, and r ,

(tran)
F.p ! q/;F.q ! r/

F.p ! r/;F.p ! q/;F.q ! r/

(lmax)
F.p ! q/;F.p/

F.q/;F.p ! q/;F.p/
(rmax)

T.p ! q/

T.q/;T.p ! q/

(lin)
T.p ! q/

F.q ! p/;T.p ! q/
(min?)

F.p !?/
F.? ! p/;F.p ! ?/



400 21 Signed Dual Tableau for Gödel–Dummett Logic

A finite set X of signed LC-formulas is said to be LC-axiomatic whenever it
includes a subset of either of the following forms:

(Ax1) fF.?/g;
(Ax2) fT.'/;F.'/g, for any LC-formula '.

A finite set f'1; : : : ; 'ng of signed LC-formulas is said to be an LC-set whenever
for every LC-model M there exists i 2 f1; : : : ; ng such that 'i is true in M. LC-
correctness of a rule is defined as in F-logic in Sect. 1.3.

Proposition 21.3.1.

1. The LC-decomposition rules are LC-correct;
2. The LC-specific rules are LC-correct;
3. The LC-axiomatic sets are LC-set.

Proof. Let X be a finite set of LC-formulas. By way of example, we prove correct-
ness of the rules (T_), (F_ !), (T! ^), (T.!/!), (tran), (rmax), and (lin).

.T_/ AssumeX[fT.'_ /g is an LC-set. Then, for every LC-modelM, either
there exists # 2 X such that M ˆ # or M ˆ T.'_ /, that is v.'_ / D !. Thus,
for every LC-model M, either M ˆ # or v.'/ D ! or v. / D !, which means
that either M ˆ # or M ˆ T.'/ or M ˆ T. /, and hence X [ fT.'/;T. /g
is an LC-set. Assume X [ fT.'/;T. /g is an LC-set. Then, for every LC-model
M, either there exists # 2 X such that M ˆ # or M ˆ T.'/ or M ˆ T. /,
which means that either M ˆ # or v.'/ D ! or v. / D !. Thus, either M ˆ # or
max.v.'/; v. // D !, so either M ˆ # or M ˆ T.'_ /. Hence,X[fT.'_ /g
is an LC-set.

(F_ !) Since for every LC-modelM, v..'1_'2/!  / ¤ ! iff v.'1/ > v. /
or v.'2/ > v. /, correctness of the rule (F_ !) follows.

(T! ^) Correctness of the rule (T! ^) follows from the property: for every
LC-model M, v.' ! . 1 ^  2// ¤ ! iff v.'/ � v. 1/ and v.'/ � v. 2/.
.T.!/ !/ Assume X [ fT..'1 ! '2/ !  /g is an LC-set. Then, for every

LC-model M, either there exists # 2 X such that M ˆ # or v.'1 ! '2/ �
v. /, which implies v.'2/ � v. /. Suppose that either X [ fT.'2 !  /g or
X [ fT. /;F.'1 ! '2/g is not an LC-set. The former implies that there exists an
LC-model M such that v.'2/ > v. /, a contradiction. The latter implies that there
exists an LC-model M such that v. / ¤ ! and v.'1 ! '2/ D !. Hence, v.'1 !
'2/ > v. /, a contradiction. Assume X [ fT.'2 !  /g and X [ fT. /;F.'1 !
'2/g are LC-sets. Then, for every LC-model M, either there exists # 2 X such that
M ˆ # or:

.	/ v.'2/ � v. / and .v. / D ! or v.'1 ! '2/ ¤ !/:

Let M be an LC-model. If v.'1 ! '2/ D !, then by .	/ we get v. / D !, and
thus v.'1 ! '2/ � v. /. Hence, X [ fT..'1 ! '2/ !  /g is an LC-set. If
v.'1 ! '2/ ¤ !, then v.'1 ! '2/ D v.'2/. By .	/, we get v.'1 ! '2/ D
v.'2/ � v. /. Hence, X [ fT..'1 ! '2/!  /g is an LC-set.



21.3 Signed Dual Tableau Decision Procedure for Gödel–Dummett Logic 401

(tran) Assume X [ fF.p ! q/;F.q ! r/;F.p ! r/g is an LC-set. Then for
every LC-model M, either there exists # 2 X such that M ˆ # or v.p/ > v.q/ or
v.q/ > v.r/ or v.p/ > v.r/. SupposeX [ fF.p ! q/;F.q ! r/g is not an LC-set.
Then there exists an LC-model M such that v.p/ � v.q/ and v.q/ � v.r/. This
implies v.p/ � v.r/, a contradiction. Clearly, if X [ fF.p ! q/;F.q ! r/g is an
LC-set, then so is X [ fF.p ! q/;F.q ! r/;F.p ! r/g.
Correctness of the rules (rmax) and (lin) follow from the following properties of
LC-models, respectively:

v.p/ � v.q/ iff v.p/ � v.q/ or v.q/ D !I
v.p/ � v.q/ iff v.p/ � v.q/ or v.q/ > v.p/:

The proofs of correctness of the remaining rules are similar.
For 3., note that in every LC-model M, v.?/ D 0, so v.F.?// D !. Therefore

M ˆ F.?/, hence X [ fF.?/g is an LC-set. Since in every LC-model M, either
v.'/ D ! or v.'/ ¤ !, we get M ˆ T.'/ or M ˆ F.'/, and hence X [
fT.'/;F.'/g is an LC-set. ut
An application of a rule ˚

˚1
(resp. ˚

˚1 j˚2
) to a finite set X of signed LC-formulas is

said to be essential whenever the result of an application of the rule toX includes at
least one formula which does not appear in X , that is .X n˚/[˚i ¤ X , for some
i 2 f1; 2g.

Let ' be an LC-formula. An LC-proof tree for ' is a tree with the following
properties:

� The formula T.'/ is at the root of this tree;
� Each node except the root is obtained by an essential application of an LC-rule

to its predecessor node;
� A node does not have successors whenever it is an LC-axiomatic set of formulas

or no rule introducing any new signed formula is applicable to its signed
formulas.

Observe that every LC-proof tree is finite.
As usual, a branch of an LC-proof tree is said to be closed whenever it ends with

an axiomatic set of formulas. An LC-proof tree for ' is said to be an LC-proof of '
whenever all of its branches are closed. A formula ' is LC-provable whenever there
exists an LC-proof for it.

A branch b of an LC-proof tree is complete whenever it is closed or it satisfies
the following completion conditions:

For all LC-formulas '; ; '1; '2;  1 and  2,

Cpl(T_) (resp. Cpl(F^)) If T.'_ / 2 b (resp. F.'^ / 2 b), then both T.'/ 2 b
and T. / 2 b (resp. F.'/ 2 b and F. / 2 b), obtained by an application of the
rule (T_) (resp. (F^));

Cpl(T^) (resp. Cpl(F_)) If T.'^ / 2 b (resp. F.'_ / 2 b), then either T.'/ 2 b
or T. / 2 b (resp. F.'/ 2 b or F. / 2 b), obtained by an application of the
rule (T^) (resp. (F_));



402 21 Signed Dual Tableau for Gödel–Dummett Logic

Cpl(T_ !) (resp. Cpl(F^ !)) If T..'1 _ '2/ !  // 2 b (resp. F..'1 ^ '2/ !
 / 2 b), then either T.'1 !  / 2 b or T.'2 !  / 2 b (resp. F.'1 !  / 2 b
or F.'2 !  / 2 b), obtained by an application of the rule (T_ !) (resp.
(F^ !));

Cpl(T ! _) (resp. Cpl(F ! ^)) If T.' ! . 1 _  2// 2 b (resp. F.' !
. 1 ^  2// 2 b), then both T.' !  1/ 2 b and T.' !  2/ 2 b (resp.
F.' !  1/ 2 b and F.' !  2/ 2 b), obtained by an application of the rule
(T! _) (resp. (F! ^));

Cpl(T^ !) (resp. Cpl(F_ !)) If T..'1 ^ '2/ !  / 2 b (resp. F..'1 _ '2/ !
 / 2 b), then both T.'1 !  / 2 b and T.'2 !  / 2 b (resp. F.'1 !  / 2 b
and F.'2 !  / 2 b), obtained by an application of the rule (T^ !) (resp.
(F_ !));

Cpl(T ! ^) (resp. Cpl(F ! _)) If T.' ! . 1 ^  2// 2 b (resp. F.' !
. 1 _  2// 2 b), then either T.' !  1/ 2 b or T.' !  2/ 2 b (resp.
F.' !  1/ 2 b or F.' !  2/ 2 b), obtained by an application of the rule
(T! ^) (resp. (F! _));

Cpl(T ! .!/) If T.' ! . 1 !  2// 2 b , then both T. 1 !  2/ 2 b and
T.' !  2/ 2 b, obtained by an application of the rule (T! .!/);

Cpl(F ! .!/) If F.' ! . 1 !  2// 2 b , then either F. 1 !  2/ 2 b or
T.' !  2/ 2 b, obtained by an application of the rule (F! .!/);

Cpl(T.!/ !) If T..'1 ! '2/ !  / 2 b , then either T.'2 !  / 2 b or
both T. / 2 b and F.'1 ! '2/ 2 b, obtained by an application of the rule
(T.!/!);

Cpl(F.!/!) If F..'1 ! '2/!  / 2 b , then either both T.'1 ! '2/ 2 b and
F.'2!  / 2 b or F. / 2 b, obtained by an application of the rule (F.!/!);

For all propositional variables p; q, and r ,

Cpl(tran) If F.p ! q/ 2 b and F.q ! r/ 2 b, then F.p ! r/ 2 b, obtained by an
application of the rule (tran);

Cpl(lmax) If F.p ! q/ 2 b and F.p/ 2 b, then F.q/ 2 b, obtained by an applica-
tion of the rule (lmax);

Cpl(rmax) If T.p ! q/ 2 b, then T.q/ 2 b, obtained by an application of the rule
(rmax);

Cpl(lin) If T.p ! q/ 2 b, then F.q ! p/ 2 b, obtained by an application of the
rule (lin);

Cpl(min ?) If F.p ! ?/ 2 b, then F.? ! p/ 2 b, obtained by an application of
the rule (min ?).

The notions of a complete LC-proof tree and an open branch of an LC-proof tree are
defined as in F-logic (see Sect. 1.3). Note that the rules of LC-dual tableau guarantee
that if b is a complete branch of an LC-proof tree and both T.p ! q/ 2 b and
F.p ! q/ 2 b, then there is a node in b containing these two formulas. Therefore,
we obtain:

Proposition 21.3.2 (Closed Branch Property). Let b be an open branch of an
LC-proof tree. Then for all p; q 2 V [ f?g, T.p ! q/ 2 b iff F.p ! q/ 62 b.



21.3 Signed Dual Tableau Decision Procedure for Gödel–Dummett Logic 403

Proposition 21.3.3. For every open branch b of an LC-proof tree, there are no
p1; : : : ; pn 2 V [ f?g, n � 1, such that all the following conditions are satisfied:

� p1 D pn;
� For every i 2 f1; : : : ; n � 1g, F.pi ! piC1/ 2 b or T.piC1 ! pi / 2 b;
� For some i; j 2 f1; : : : ; ng, T.pi ! pj / 2 b.

Proof. Suppose there are p1; : : : ; pn 2 V [ f?g such that p1 D pn, and for
every i 2 f1; : : : ; n � 1g, F.pi ! piC1/ 2 b or T.piC1 ! pi / 2 b, and for
some i; j 2 f1; : : : ; ng, T.pi ! pj / 2 b. Then, by the completion condition
Cpl(lin), for every i 2 f1; : : : ; n � 1g, F.pi ! piC1/ 2 b, and by the comple-
tion condition Cpl(tran), for all i; j 2 f1; : : : ; ng, F.pi ! pj / 2 b. Since for
some i; j 2 f1; : : : ; ng, T.pi ! pj / 2 b, there exists i; j 2 f1; : : : ; ng such that
F.pi ! pj / 2 b and T.pi ! pj / 2 b, which contradicts Proposition 21.3.2. ut
Let q1; : : : ; ql ; p 2 V [ f?g, l � 1, and let n � 0. A sequence q1; : : : ; ql is said to
be n-sequence for p whenever the following conditions are satisfied:

� p D ql ;
� For every i 2 f1; : : : ; l � 1g, F.qi ! qiC1/ 2 b or T.qiC1! qi / 2 b;
� For n different i ’s, T.qiC1 ! qi / 2 b.

By Proposition 21.3.3, for every p 2 V [ f?g, there exists a maximal n for which
there is an n-sequence for p.

Let b be an open branch of an LC-proof tree. The branch structure is a sys-
tem Mb D .N [ f!g;�; vb/ such that for every p 2 V [ f?g, vb.p/ D ! if
F.p/ 2 b, otherwise vb.p/ D maxfn W there exists n-sequence for pg. Valuation vb

extends to all the LC-formulas as in LC-models.

Proposition 21.3.4 (Branch Model Property). For every open branch b of an LC-
proof tree, Mb is an LC-model.

Proof. We will show that vb.?/ D 0. Since b is an open branch, F.?/ 62 b. There-
fore, vb.?/ ¤ !. Now, let q1; : : : ; ql be an n-sequence for ?. Since for every
i 2 f1; : : : ; l � 1g, F.qi ! qiC1/ 2 b or T.qiC1 ! qi / 2 b, by the completion
condition Cpl(lin), for every i 2 f1; : : : ; l � 1g, F.qi ! qiC1/ 2 b. By the comple-
tion conditions Cpl(min?) and Cpl(tran), for all i; j 2 f1; : : : ; lg, F.qi ! qj / 2 b.
By Proposition 21.3.3, the only n for which an n-sequence for ? exists is n D 0.
Hence, vb.?/ D 0. ut
Proposition 21.3.5 (Satisfaction in Branch Model Property). For every open
branch b and for every LC-formula ', the following hold:

1. If T.'/ 2 b, then Mb 6ˆ ';
2. If F.'/ 2 b, then Mb ˆ '.

Proof. The proof is by induction on the complexity of formulas.
Let ' D p 2 V . Then, F.p/ 2 b iff vb.p/ D ! iff Mb ˆ p. Since b is an open

branch, if F.p/ 2 b, then T.p/ 62 b. Therefore, if Mb ˆ p, then F.p/ 2 b, and
hence T.p/ 62 b.



404 21 Signed Dual Tableau for Gödel–Dummett Logic

Let ' D .p ! q/. Assume T.p ! q/ 2 b. By the completion condition
Cpl(lin), F.q ! p/ 2 b. By the completion condition Cpl(rmax), T.q/ 2 b, and by
the induction hypothesis vb.q/ ¤ !. Let q1; : : : ; ql , l � 1, be an n-sequence for q.
Note that for every i 2 f1; : : : ; lg, qi ¤ p, because otherwise F.p ! q/ 2 b
and hence b would be closed. On the other hand, since F.q ! p/ 2 b

and T.p ! q/ 2 b, a sequence q1; : : : ; ql ; p is an nC 1-sequence for p. Therefore
vb.p/ > vb.q/, and hence Mb 6ˆ '. Now, assume F.p ! q/ 2 b. If F.p/ 2 b, then
by the completion condition Cpl(lmax), we get F.q/ 2 b, so vb.p/ D vb.q/ D !.
Therefore,Mb ˆ '. If F.p/ 62 b, then vb.p/ ¤ !. Let p1; : : : ; pl be an n-sequence
for p. Then p1; : : : ; pl ; q is an n-sequence for q, hence vb.p/ � vb.q/. Therefore,
Mb ˆ '.

Now, we prove 1: or 2: for some exemplary formulas.
Let ' D .'1 ^ '2/. Assume T.'1 ^ '2/ 2 b. By the completion condition

Cpl(T^), either T.'1/ 2 b or T.'2/ 2 b. By the induction hypothesis, vb.'1/ ¤ !
or vb.'2/ ¤ !. Thus, min.vb.'1/; vb.'2// ¤ !, and hence Mb 6ˆ '1 ^ '2.

Let ' D ..'1 _ '2/!  /. Assume that F.'/ 2 b. By the completion condition
Cpl(F_ !), both F.'1 !  / 2 b and F.'2 !  / 2 b. By the induction hypoth-
esis, vb.'1/ � vb. / and vb.'2/ � vb. /. Thus, max.vb.'1/; vb.'2// � vb. /,
and hence Mb ˆ '.

Let ' D .# ! . 1 ^ 2//. Assume that T.'/ 2 b. By the completion condition
Cpl(T! ^), either T.# !  1/ 2 b or T.# !  2/ 2 b. By the induction hypothe-
sis, vb.#/ > vb. 1/ or vb.#/ > vb. 2/. Thus, vb.#/ > max.vb. 1/; vb. 2//, and
hence Mb 6ˆ '.

Let ' D .# ! . 1 !  2//. Assume that F.'/ 2 b. By the completion condi-
tion Cpl(F! .!/), either F. 1 !  2/ 2 b or F.# !  2/ 2 b. By the induction
hypothesis, vb. 1 !  2/ D ! or vb.#/ � vb. 2/. Note that vb.'/ equals ! or
vb. 2/. Therefore vb.#/ � vb. 1 !  2/, and hence Mb ˆ '.

Let ' D ..'1 ! '2/ !  /. Assume that F.'/ 2 b. Then, by the completion
condition Cpl(F.!/ !), either both T.'1 ! '2/ 2 b and F.'2 !  / 2 b or
F. / 2 b. If both T.'1 ! '2/ 2 b and F.'2 !  / 2 b, then by the induction
hypothesis, Mb 6ˆ '1 ! '2 and Mb ˆ '2 !  . Thus, vb.'1 ! '2/ D vb.'2/
and vb.'2/ � vb. /. Therefore, vb.'1 ! '2/ � vb. /, and hence Mb ˆ '. If
F. / 2 b, then by the induction hypothesis,Mb ˆ  . Thus, vb. / D t . Therefore,
vb.'1 ! '2/ � vb. /, and hence Mb ˆ '.

The proofs of the remaining cases are similar. ut
Proposition 21.3.6. Let ' be an LC-formula. If ' is LC-valid, then ' is LC-
provable.

Proof. Assume ' is LC-valid. Suppose there is no any closed LC-proof tree for '.
Then there exists a complete LC-proof tree for ' with an open branch, say b. Since
T.'/ 2 b, by Proposition 21.3.4, Mb 6ˆ '. Hence, by Proposition 21.3.5 ' is not
LC-valid, a contradiction. ut



21.3 Signed Dual Tableau Decision Procedure for Gödel–Dummett Logic 405

T.p! ..p!?/!?//
�.T! .!//

T..p!?/!?/;T.p!?/
����
.T.!/!/ 			


T.?! ?/; : : :
�(lin)

T.?! ?/;F.?! ?/; : : :
closed

T.?/;F.p!?/;T.p!?/; : : :
closed

Fig. 21.1 An LC-proof of the formula p! ..p!?/!?/

.p! q/! Œ.q! r/! .p! r/�

�
.T! .!//

T..q! r/! .p! r//;T..p! q/! .p! r//

�
.T! .!//

T.p! r/;T..q! r/! r/;T..p! q/! .p! r//

�
.T! .!//

T.p! r/;T..q! r/! r/;T..p! q/! r/

���� T.!/! 			

T.r ! r/

�
(lin)

T.r ! r/;F.r ! r/

closed

T.r/;T.p! r/;T..p! q/! r/;F.q! r/; : : :

���� .T.!/!/

�

T.q! r/;F.q! r/; : : :

closed

T.r/;T.p! r/;F.q! r/;F.p! q/; : : :

�
(tran)

T.p! r/;F.p! r/; : : :

closed

Fig. 21.2 An LC-proof of the formula .p! q/! Œ.q! r/! .p! r/�

p! .q! .p ^ q//
�
.T! .!//

T.q! .p ^ q//;T.p! .p ^ q//
���� .T!^/ 			


T.q! p/;T.p! .p ^ q//
���� .T!^/ 			


T.p! p/; : : :

�
(lin)

T.p! p/;F.p! p/; : : :

closed

T.q! p/;T.p! q/

�
(lin)

F.p! q/;T.p! q/; : : :

closed

T.q! q/; : : :

�
(lin)

T.q! q/;F.q! q/; : : :

closed

Fig. 21.3 An LC-proof of the formula p! .q! .p ^ q//



406 21 Signed Dual Tableau for Gödel–Dummett Logic

By Propositions 21.3.1 and 21.3.6, we get:

Theorem 21.3.1 (Soundness and Completeness of LC). For every LC-formula ',
the following conditions are equivalent:

1. ' is LC-valid;
2. ' is LC-provable.

Since every LC-proof tree is finite and the rules of LC-dual tableau preserve and
reflect validity of LC-formulas, LC-dual tableau is a decision procedure for the
logic LC.

Example. Consider the following LC-formulas:

' D p ! ..p ! ?/! ?/;
 D .p ! q/! Œ.q ! r/! .p ! r/�;

# D p ! .q ! .p ^ q//:

Their LC-proofs are presented in Figs. 21.1–21.3, respectively.



Chapter 22
Dual Tableaux for First-Order Post Logics

22.1 Introduction

Emil Post’s doctoral dissertation [Pos21] included a description of an n-valued,
functionally complete algebra, for a finite n � 2. The notion of Post algebra was
introduced in [Ros42]. The first algebraic formulation of Post algebras with a family
of unary disjoint operations was presented in [Eps60]. In [Rou69, Rou70] an equiva-
lent formulation of the class of Post algebras was given where monotone operations
instead of disjoint operations were used. It became a starting point of extensive
research and since then various generalizations of Post algebras have been devel-
oped, see e.g., [Ras73, Ras85, ER90, ER91]. Post algebras were also applied to a
multiple-valued formalization of some logics of programs, see [Ras94].

In this chapter we present a dual tableau for the class of first-order Post logics
based on Post algebras of order n � 2, along the lines of [Sal72, Orł85b].

22.2 Post Algebras of Order n

A Post algebra of order n � 2 is a structure of the form:

Pn D .P;�;_;^;!; d1; : : : ; dn�1; e0; : : : ; en�1/;

where for all a; b 2 P the following conditions are satisfied:

(P1) .P;_;^/ is a distributive lattice;
(P2) e0; : : : ; en�1 are distinguished elements of P such that e0 is the smallest

element and en�1 is the greatest element of the lattice;
(P3) .P;�;_;^;!; e0; en�1/ is a Heyting algebra;
(P4) di .a _ b/ D dia _ dib;
(P5) di .a ^ b/ D dia ^ dib;
(P6) di .a! b/ D .d1a! d1b/ ^ : : : ^ .dia! dib/;
(P7) di .�a/ D �d1a;
(P8) didja D dja;

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 22,
c� Springer Science+Business Media B.V. 2011

407



408 22 Dual Tableaux for First-Order Post Logics

(P9) diej D en�1 if i � j , and diej D e0 if i > j ;
(P10) a D .d1a ^ e1/ _ : : : _ .dn�1a ^ en�1/;
(P11) d1a _ �d1a D en�1.

Proposition 22.2.1. Let � be the ordering in the lattice .P;_;^/. Then in any Post
algebra of order n, the following hold for all i; j 2 f1; : : : ; n � 1g and for all
a; b 2 P :

1. e0 � e1 � : : : � en�1;
2. dia � dja, for j � i ;
3. Operations di are monotone, i.e., if a � b, then dia � dib;
4. The set BP of elements of the form dia is closed with respect to operations�;_;

and ^ and the algebra BPn
D .BP ;�;_;^/ is a Boolean algebra;

5. di .a! b/ D
î

kD1
.�dka _ dkb/;

6. �di .a! b/ D d1a ^
i�1̂

kD1
.dkC1a _ �dkb/ ^ �dib.

Infinite meets and joins in Pn are denoted by
TPn and

SPn , respectively. Sim-
ilarly,

TBPn and
SBPn denote the infinite meet and join, respectively, in the

Boolean algebra BPn
determined by Pn. In [Eps60] the following was proved:

Proposition 22.2.2. For every element a 2 Pn and for any indexed family fatgt2T
of elements of Pn, the infinite meets and joins satisfy the following conditions:

1. a D
[
t2T

Pn

at iff dia D
[
t2T

BPn
diat ;

2. a D
\
t2T

Pn

at iff dia D
\
t2T

BPn
diat .

The disjoint operations ci , i 2 f0; : : : ; n� 1g, introduced in [Eps60], can be defined
in terms of the monotone operations di as:

c0a
dfD �d1a D �aI

cia
dfD dia ^ �diC1a; for i 2 f1; : : : ; n � 2gI

cn�1a
dfD dn�1a:

Then, cia ^ cja D e0, for all i; j 2 f0; : : : ; n � 1g such that i ¤ j . Furthermore,
ci .ej / D en�1 if i D j , and otherwise ci .ej / D e0.

22.3 First-Order n-Valued Post Logic

The language of an n-valued Post logic, Pn, is a first-order language whose formulas
are constructed with the symbols from the following pairwise disjoint sets:

� OV Pn
– a countable infinite set of individual (object) variables;

� fE0; : : : ; En�1g – the set of propositional constants;



22.3 First-Order n-Valued Post Logic 409

� PkPn
– a countable set of predicate symbols, where k � 1;

� f:;D1; : : : ;Dn�1g – the set of unary propositional operations;
� f_;^;!g – the set of binary propositional operations;
� f8; 9g – the set of quantifiers.

As usual, we slightly abuse the notation using the symbols :;_;^;! both for the
operations in Post algebras and in the language of the logic.

Atomic Pn-formulas are of the formEi , for i 2 f0; : : : ; n�1g, orR.x1; : : : ; xk/,
where x1; : : : ; xk 2 OV Pn

and R is a k-ary predicate symbol, k � 1. The set of
Pn-formulas is the smallest set including the set of atomic formulas and closed with
respect to propositional operations and quantifiers.

Algebraic semantics of Pn-language is provided by the class of complete Post
algebras of order n, Pn D .P;�;_;^;!; d1; : : : ; dn�1; e0; : : : ; en�1/. Elements
e0; : : : ; en�1 of Pn play the role of truth values. Propositional operations correspond
to the respective algebraic operations, and quantifiers 8 and 9 correspond to infinite
meet and join in Pn, respectively. Intuitively, a formula Di' says that the value of
' is not less than ei . A Pn-model is a structure M D .U;Pn; m/, whereU is a non-
empty set, Pn is a complete Post algebra of order n, and m is a meaning function
such that:

� m.Ei/ D ei , for i 2 f0; : : : ; n � 1g;
� m.R/ 2 fe0; : : : ; en�1gUk

, for every k-ary predicate symbol R 2 PPn
, k � 1.

Thus,m assigns functions from U k into fe0; : : : ; en�1g to k-ary predicate symbols.
It follows that the meaning of a k-ary predicate is an n-ary characteristic function
of a k-ary relation.

Let M be a Pn-model. A valuation in M is a function vWOV Pn
! U assigning

elements of the universe to individual variables. Given a Pn-model M and a val-
uation v in M, we define function valM;v that assigns elements of algebra Pn to
formulas:

� valM;v.Ei / D ei , for every i 2 f0; : : : ; n � 1g;
� valM;v.R.x1; : : : ; xk// D m.R/.v.x1/; : : : ; v.xk//, for every k-ary predicate

symbol R 2 PPn
, k � 1, and for all x1; : : : ; xk 2 OV Pn

;
� valM;v.:'/ D �valM;v.'/;
� valM;v.' _  / D valM;v.'/ _ valM;v. /;
� valM;v.' ^  / D valM;v.'/ ^ valM;v. /;
� valM;v.' !  / D valM;v.'/! valM;v. /;
� valM;v.Di'/ D divalM;v.'/;

� valM;v.8x'.x// D
\
u2U

Pn

valM;vu.'.x//;

� valM;v.9x'.x// D
[
u2U

Pn

valM;vu.'.x//;

where vu is the valuation in M such that vu.x/ D u and vu.z/ D v.z/, for all z ¤ x.



410 22 Dual Tableaux for First-Order Post Logics

The function valM;v extends to finite sets of formulas. Let X D f'1; : : : ; 'lg,
l � 1, be a finite set of Pn-formulas. We define:

valM;v.X/
dfD valM;v.'1 _ : : : _ 'l/:

A Pn-formula ' is said to be true in a model M whenever for every valuation v in
M, valM;v.'/ D en�1, and it is said to be es-valid, s 2 f1; : : : ; n � 1g, if for every
Pn-model M and for every valuation v in M, valM;v.'/ � es. A formula ' is Pn-
valid whenever it is en�1-valid. The definition of semantics leads to the following
observation:

Proposition 22.3.1. For every Pn-formula ' and for every s 2 f1; : : : ; n � 1g, the
following conditions are equivalent:

1. ' is es-valid;
2. Ds' is Pn-valid.

22.4 Dual Tableaux for Post Logics

Dual tableaux for Post logics consist of the decomposition rules of the following
forms:

For all Pn-formulas ' and  , for every individual variable x, and for all i; j 2
f1; : : : ; n � 1g,

Decomposition Rules for Propositional Operations

._/ Di .' _  /
Di';Di 

.:_/ :Di .' _  /
:Di' j :Di 

.^/ Di .' ^  /
Di' jDi .:^/ :Di .' ^  /:Di';:Di 

.!/ Di .' !  /

:D1';D1 j : : : j :Di';Di 

.: !/ :Di .' !  /

D1' jD2';:D1 j : : : j :Di';:Di�1 j :Di 

.:/ Di .:'/
:D1' .::/ :Di .:'/

D1'

.ij /
DiDj .'/

Dj'
.:ij / :DiDj .'/:Dj'



22.4 Dual Tableaux for Post Logics 411

Decomposition Rules for Quantifiers

.8/ Di8x'.x/
Di'.z/

z is a new individual variable

.:8/ :Di8x'.x/
:Di'.z/;:Di8x'.x/ z is any individual variable

.9/ Di9x'.x/
Di'.z/;Di9x'.x/ z is any individual variable

.:9/ :Di9x'.x/:Di'.z/ z is a new individual variable

We observe that any application of the rules of Pn-dual tableau preserves the atomic
formulas and their negations.

A set of Pn-formulas is said to be Pn-axiomatic whenever it includes either of
the following sets of formulas:

For every Pn-formula ',

(Ax1) fDi .Ej /g, for 1 � i � j ;
(Ax2) f:Di .Ej /g, for i > j � 0;
(Ax3) fDi';:Dj'g, for 1 � i � j .

Proposition 22.4.1. LetX D f'1; : : : ; 'lg, l � 1, be a finite set of Pn-formulas, let
M be a Pn-model, and let v be a valuation in M. Then, for every Pn-decomposition
rule for a propositional operation of the form ˚

˚1 j::: j˚t
, t � 1, the following holds:

valM;v.X/ _ valM;v.˚/ D
t̂

iD1
.valM;v.X/ _ valM;v.˚i //:

Proof. By way of example, we prove the statement for the rules .:_/, .!/, .:ij /.
.:_/ By axioms (P1) and (P4) of Post algebras and since BPn

is a Boolean algebra,
we obtain:

.valM;v.X/ _ valM;v.:Di'// ^ .valM;v.X/ _ valM;v.:Di //
D valM;v.X/ _ .valM;v.:Di'/ ^ valM;v.:Di //
D valM;v.X/ _ .�divalM;v.'/ ^ �divalM;v. //

D valM;v.X/ _ �.divalM;v.'/ _ divalM;v. //

D valM;v.X/ _ �divalM;v.' _  /
D valM;v.X/ _ valM;v.:Di .' _  //:



412 22 Dual Tableaux for First-Order Post Logics

.!/ By the axiom (P1) and the condition 5. of Proposition 22.2.1, we have:

valM;v.X/ _ valM;v.Di .' !  //

D valM;v.X/ _
î

kD1
.�dkvalM;v.'/ _ dkvalM;v. //

D
î

kD1
.valM;v.X/ _ �dkvalM;v.'/ _ dkvalM;v. //:

.:ij / By axiom (P8) we have:

valM;v.X/ _ valM;v.:DiDj'/ D valM;v.X/ _ �dj valM;v.'/

D valM;v.X/ _ valM;v.:Dj'/:

The proofs for the remaining rules are similar. ut
Proposition 22.2.1 (1.) and (4.) imply:

Proposition 22.4.2. Let ' and  be Pn-formulas and let i; j 2 f1; : : : ; n � 1g.
Then, for every Pn-model M and for every valuation v in M, the following hold:

1. valM;v.Di'_Di / D en�1 iff valM;v.Di'/ D en�1 or valM;v.Di / D en�1;
2. If i � j , then valM;v.Di'/ _ valM;v.:Dj'/ D en�1.

Proof. For 1., note that for every i 2 f1; : : : ; n� 1g and for every formula ', either
valM;v.Di'/ D en�1 or valM;v.Di'/ D e0, hence by the definition of semantics,
1. follows.

For 2., observe that:

valM;v.Di'/ _ valM;v.:Dj'/ D di .valM;v.'// _ �dj .valM;v.'//:

If valM;v.'/ D ek , for some k 2 f1; : : : ; ng such that 1 � k < i � j , then
di .valM;v.'//_�dj .valM;v.'// D diek _ .�dj ek/ D e0_ .�e0/ D e0_ en�1 D
en�1. If valM;v.'/ D ek for some k 2 f1; : : : ; ng such that 1 � i � k < j , then
di .valM;v.'// _ �dj .valM;v.'// D diek _ .�dj ek/ D en�1 _ .�e0/ D en�1 _
en�1 D en�1. If valM;v.'/ D ek for some k 2 f1; : : : ; ng such that 1 � i � j � k,
then di .valM;v.'// _ �dj .valM;v.'// D diek _ .�dj ek/ D en�1 _ .�en�1/ D
en�1 _ e0 D en�1. ut
As usual, a Pn-set is a finite set of Pn-formulas such that the disjunction of its
members is true in all Pn-models. Pn-correctness of a rule is defined in a similar
way as in the logic F (see Sect. 1.3), i.e., a rule is Pn-correct whenever it preserves
and reflects Pn-validity.



22.4 Dual Tableaux for Post Logics 413

Proposition 22.4.3.

1. The Pn-rules are Pn-correct;
2. The Pn-axiomatic sets are Pn-sets.

Proof. For 1., observe that correctness of decomposition rules for propositional op-
erations follows from Proposition 22.4.1. Correctness of decomposition rules for
quantifiers follows from Proposition 22.2.2 and Proposition 22.4.2(1.).

2. follows from Proposition 22.4.2(2.). ut
In order to prove es-validity of a Pn-formula ', we built a Pn-decomposition tree
for the formulaDs'. As usual, each node of the tree includes all the formulas of its
predecessor node, possibly except for those which have been transformed by a rule.
A node of the tree does not have successors whenever its set of formulas includes a
Pn-axiomatic subset or none of the rules is applicable to it. The notions of a closed
branch of a Pn-proof tree, a closed Pn-proof tree, and Pn-provability are defined as
in Sect. 1.3.

Proposition 22.4.4 (Closed Branch Property). Let ' be an atomic Pn-formula
and let 1 � i � j . For every branch b of a Pn-proof tree, ifDi' 2 b andDj' 2 b,
then b is closed.

Proof. Let ' be an atomic Pn-formula, let 1 � i � j , and let b be a branch of a
Pn-proof tree. Observe that the rules of Pn-dual tableau, in particular the specific
rules, guarantee that if formulas Di' and Dj' belong to the branch b, then there
is a node of that branch which includes both of them. Thus, branch b contains an
axiomatic set of formulas, hence it is closed. ut
A branch b of a Pn-proof tree is complete whenever it is closed or it satisfies the
following completion conditions:

For all Pn-formulas ' and  , for every individual variable x, and for all i; j 2
f1; : : : ; n � 1g,
Cpl(_) (resp. Cpl(:_)) If Di .' _  / 2 b (resp. :Di .' _  / 2 b), then both
Di' 2 b and Di 2 b (resp. :Di' 2 b and :Di 2 b), obtained by an
application of the rule (_) (resp. (:_));

Cpl(^) (resp. Cpl(:^)) If Di .' ^  / 2 b (resp. :Di .' ^  / 2 b), then either
Di' 2 b or Di 2 b (resp. :Di' 2 b or :Di 2 b), obtained by an applica-
tion of the rule (^) (resp. (:^));

Cpl(!) If Di .' !  / 2 b, then there exists k 2 f1; : : : ; ig such that both
:Dk' 2 b and Dk 2 b, obtained by an application of the rule (!);

Cpl(: !) If :Di .' !  / 2 b, then either D1' 2 b or :Di 2 b or there
exists k 2 f2; : : : ; ig such that both Dk' 2 b and :Dk�1 2 b, obtained by an
application of the rule (: !);

Cpl(:) IfDi .:'/ 2 b, then :D1' 2 b, obtained by an application of the rule (:);
Cpl(::) If :Di .:'/ 2 b, then D1' 2 b, obtained by an application of the

rule (::);



414 22 Dual Tableaux for First-Order Post Logics

Cpl(ij ) IfDiDj .'/ 2 b, thenDj' 2 b, obtained by an application of the rule (ij );
Cpl(:ij ) If :DiDj .'/ 2 b, then :Dj' 2 b, obtained by an application of the

rule (:ij );
Cpl(8) (resp. Cpl(:9)) If Di8x'.x/ 2 b (resp. :Di9x'.x/ 2 b), then for some

individual variable z, Di'.z/ 2 b (resp. :Di'.z/ 2 b), obtained by an applica-
tion of the rule (8) (resp. :9));

Cpl(9) (resp. Cpl(:8)) If Di9x'.x/ 2 b (resp. :Di8x'.x/ 2 b), then for every
individual variable z, Di'.z/ 2 b (resp. :Di'.z/ 2 b), obtained by an applica-
tion of the rule (9) (resp. (:8)).

The notions of a complete Pn-proof tree and an open branch of a Pn-proof tree are
defined as in F-logic (see Sect. 1.3).

Let b be an open branch of a Pn-proof tree. We define a branch structure Mb D
.U b;Pn; m

b/ as follows:

� U b D OV Pn
;

� mb.Ei / D ei ;
� For all x1; : : : ; xk 2 OV Pn

and for every k-ary predicate symbol R 2 PPn
,

k � 1:

mb.R/.x1; : : : ; xk/ D

8̂
<̂
ˆ̂:

ei�1 if i is the smallest element of f1; : : : ; n � 1g
such that DiR.x1; : : : ; xk/ 2 b

en�1 if for all i < n, DiR.x1; : : : ; xk/ 62 b.

Clearly, a branch structureMb is a Pn-model. Therefore, the branch model property
holds. Let vb be the identity valuation in Mb . Now, we show the satisfaction in
branch model property:

Proposition 22.4.5 (Satisfaction in Branch Model Property). Let b be an
open branch of a Pn-proof tree. Then, for every Pn-formula ' and for every
i 2 f1; : : : ; n � 1g, the following hold:

1. If Di' 2 b, then valMb;vb .Di'/ < en�1;
2. If :Di' 2 b, then valMb;vb .:Di'/ < en�1.

Proof. The proof is by induction on the complexity of formulas. First, we prove that
1. and 2. hold for atomic Pn-formulas.

If Di .Ej / 2 b, then i > j , since otherwise b would be closed. Thus,
valMb ;vb .Di .Ej // D e0<en�1. Assume that DiR.x1; : : : ; xk/2 b, for some
predicate symbol R and for some individual variables x1; : : : ; xk . Then, we
have valMb ;vb .DiR.x1; : : : ; xk//DdivalMb ;vb .R.x1; : : : ; xk// and, by the
definition of mb.R/, valMb ;vb.R.x1; : : : ; xk// D ej , for some j < i . Thus,
divalMb ;vb .R.x1; : : : ; xk// D diej D e0 < en�1.

If :Di .Ej / 2 b, then i � j , since otherwise b would be closed. Thus,
valMb ;vb .:Di .Ej // D �en�1 D e0 < en�1. Assume :DiR.x1; : : : ; xk/ 2 b,



22.4 Dual Tableaux for Post Logics 415

for some predicate symbol R and for some individual variables x1; : : : ; xk . Then,
by the closed branch property, for all j � i , DjR.x1; : : : ; xk/ 6 2 b. Thus, by
the definition of mb.R/, valMb ;vb .R.x1; : : : ; xk// D ej , for some j � i . Hence,
valMb ;vb .:DiR.x1; : : : ; xk// D �diej D �en�1 D e0 < en�1.

Now, we prove that 1. and 2. hold for negations of atomic Pn-formulas. Let ' be
an atomic Pn-formula.

Observe that valMb;vb .Di .:'// D �d1valMb ;vb .'/ D valMb ;vb .:D1'/,
due to axiom (P7). Assume that Di .:'/ 2 b. Then, by the completion condition
Cpl(:), :D1' 2 b. By the induction hypothesis, valMb ;vb.:D1'/ < en�1, there-
fore valMb ;vb .Di .:'// < en�1. The statement 2. can be proved in a similar way.

Now, we prove that 1. and 2. hold for compound Pn-formulas. Assume that 1.
and 2. hold for formulas  ; 1;  2, and their negations.

Let ' D Dj . AssumeDiDj 2 b. Then, by the completion condition Cpl(ij ),
Dj 2 b. By the induction hypothesis, valMb ;vb .Dj / < en�1. By axiom (P8) of
Post algebras, valMb ;vb .DiDj / D valMb ;vb .Dj / < en�1.

Let ' D  1 ^  2. Assume Di . 1 ^  2/ 2 b. Then, by the comple-
tion condition Cpl(^), either Di 1 2 b or Di 2 2 b. By the induction
hypothesis, valMb ;vb.Di . 1// < en�1 or valMb ;vb .Di 2/ < en�1. Suppose
that valMb ;vb .Di . 1 ^  2// D en�1. Then, valMb ;vb .Di 1/ D en�1 and
valMb ;vb .Di 2/ D en�1, a contradiction.

Let ' D  1! 2. Assume Di . 1! 2/ 2 b. Then, by the completion
condition Cpl(!), there exists k 2 f1; : : : ; ig such that both :Dk 1 2 b

and Dk 2 2 b. By the induction hypothesis, �dkvalMb ;vb . 1/ < en�1 and
dkvalMb ;vb . 2/ < en�1. Thus, �dkvalMb;vb . 1/ _ dkvalMb ;vb . 2/ < en�1.
Suppose that valMb ;vb.Di . 1 !  2// D en�1. Note that the following holds:

valMb ;vb .Di . 1 !  2// DVi
kD1.dkvalMb ;vb . 1/! dkvalMb ;vb . 2// D en�1

iff for every k 2 f1; : : : ; ig, dkvalMb;vb . 1/ ! dkvalMb ;vb . 2/ D en�1.
Hence, by Proposition 22.2.1(5.), �dkvalMb ;vb. 1/ _ dkvalMb ;vb . 2/ D en�1, a
contradiction.

Let ' D 8x .x/. Assume Di .8x .x// 2 b. Then, by the completion condi-
tion Cpl(8), for some individual variable z, Di .z/ 2 b. Thus, by the induction
hypothesis, divalMb ;vb . .z// < en�1. Suppose valMb ;vb .Di .8x .x/// D en�1.
Then, by the axiom (P9) and Proposition 22.2.2, for every individual variable z,
divalMb ;vb . .z// D en�1, a contradiction.

The proofs of the remaining cases are similar. ut
Theorem 22.4.1 (Soundness and Completeness of Pn). For every Pn-formula '
and for every s 2 f1; : : : ; n � 1g, the following conditions are equivalent:

1. ' is es-valid;
2. Ds' is Pn-provable.

Proof. Assume ' is es-valid. Thus, by Proposition 22.3.1, Ds' is Pn-valid. Then,
it must exist a closed Pn-decomposition tree forDs', since otherwise there is a tree
with an open branch, and then, by Proposition 22.4.5(1.), Ds' would not be Pn-
valid. Hence, Ds' is Pn-provable. Now, assume that Ds' is Pn-provable, that is



416 22 Dual Tableaux for First-Order Post Logics

there exists a closed Pn-decomposition tree for Ds'. Then, Proposition 22.4.3,
enables us to prove that Ds' is Pn-valid. Thus, by Proposition 22.3.1, ' is
es-valid. ut
Observe that the reduct of Pn-dual tableau consisting of the decomposition rules for
propositional operations is a decision procedure for the propositional Post logic.

Example. Consider the following Pn-formula:

� D .' !  / _ . ! '/:

In order to prove Pn-validity of �, we show thatDn�1� is Pn-provable. Figure 22.1
presents its Pn-proof. In this tree all branches end with the sets of the following
form: H.i; j / D f:Di';Di ;:Dj ;Dj 'g, for i; j 2 f1; : : : ; n � 1g. It is easy
to prove that H.i; j / is a Pn-axiomatic set, for all i; j 2 f1; : : : ; n � 1g. Indeed,
if i � j , then fDi ;:Dj g is axiomatic, and if i > j , then fDj';:Di'g is
axiomatic.

Dn�1Œ.' !  /_ . ! '/�

�._/
Dn�1.' !  /;Dn�1. ! '/
�����

�����
				


�����
�

.!/
:D1';D1 ;

Dn�1. ! '/

:Di';Di ;

Dn�1. ! '/
. . .

. . .
:Dn�1';Dn�1 ;

Dn�1. ! '/

�
��

. . .
�
��

.!/
H.1; 1/

closed

. . .

. . .
H.1; n� 1/

closed

. . .

�
�

��

. . .�
�
��

.!/
H.i; 1/

closed

. . .

. . .
H.i; n� 1/

closed

. . .

�
��

. . .
�
��.!/

H.n� 1; 1/
closed

. . .

. . .
H.n� 1; n� 1/

closed

H.i; j /
dfD :Di';Di ;:Dj ;Dj', for i; j 2 f1; : : : ; n� 1g

Fig. 22.1 A Pn-proof of the formula .' !  /_ . ! '/



Chapter 23
Dual Tableau for Propositional Logic
with Identity

23.1 Introduction

In this chapter we consider propositional logic with identity, referred to as SCI
(Sentential Calculus with Identity) introduced in [Sus68]. It is two-valued as the
classical logic, but it rejects the main assumption of Frege’s philosophy that the
meaning of a sentence is its logical value. Non-fregean logics are based on the prin-
ciple that denotations of sentences of a given language are different from their truth
values. SCI is obtained from the classical propositional logic by endowing its lan-
guage with an operation of identity, �, and the axioms which say that formula
' �  is interpreted as ‘' has the same denotation as  ’. Identity axioms together
with two-valuedness imply that the set of denotations of sentences has at least two
elements. Any other assumptions about the range of sentences or properties of the
identity operation lead to axiomatic extensions of SCI. In general, the identity op-
eration is different from the equivalence operation, that is two sentences with the
same truth values may have different denotations. If we add .' $  / � .' �  /

to the set of SCI axioms, then we obtain the classical propositional logic, where the
identity and equivalence operations are indistinguishable. In this way the Fregean
axiom can be formulated in SCI. Some extensions of SCI are known to correspond
to modal logics S4 and S5 and to the three-valued Łukasiewicz logic (see [Sus71a]).
Decidability of the logic SCI is proved in [Sus71c].

Non-fregean logics were an inspiration for some other logical systems. In the
paper [BS73] it is indicated that Lindenbaum algebras, obtained by the Tarski–
Lindenbaum method and further developed by Rasiowa and Sikorski, are too weak
for studying some logical systems. For example, propositional logics with identity
and the first-order non-fregean logics are not algebraizable in the Rasiowa–Sikorski
style. This fact inspired an introduction of abstract logics in [BS73], aimed at gener-
alizing of the concept of a logical system. Many ideas from the paper [BS73] have
been studied within the theory of abstract algebraic logics.

Basic definitions and main results concerning non-fregean logics can be found in
[Sus71b, Sus71c, BS72, Sus73, Sus72, GPH05], among others.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 23,
c� Springer Science+Business Media B.V. 2011

417



418 23 Dual Tableau for Propositional Logic with Identity

23.2 A Propositional Logic with Identity

The vocabulary of the language of the non-fregean propositional logic, SCI, consists
of the symbols from the following pairwise disjoint sets:

� V – a countable infinite set of propositional variables;
� f:;_;^;!;$;�g – the set of propositional operations of negation:, disjunc-

tion _, conjunction ^, implication!, equivalence$, and identity�.

The set of SCI-formulas is the smallest set including V and closed with respect to
all the propositional operations.

An SCI-model is a structure M D .U;�;t;u;);,; ı;D/, where U is a non-
empty set, D is any non-empty subset of U , and �;t;u;);,; ı are operations
on U with arities 1, 2, 2, 2, 2, 2, respectively, such that:

For all a; b 2 U ,

(SCI1) �a 2 D iff a 62 D;
(SCI2) a t b 2 D iff a 2 D or b 2 D;
(SCI3) a u b 2 D iff a 2 D and b 2 D;
(SCI4) a) b 2 D iff a 62 D or b 2 D;
(SCI5) a, b 2 D iff a 2 D iff b 2 D;
(SCI6) a ı b 2 D iff a D b.

Let M be an SCI-model. A valuation in M is any mapping vWV ! U . A valuation
v extends homomorphically to all the formulas:

v.:'/ D �v.'/;
v.' _  / D v.'/ t v. /;
v.' ^  / D v.'/ u v. /;
v.' !  / D v.'/) v. /;
v.' $  / D v.'/, v. /;
v.' �  / D v.'/ ı v. /.

Let v be a valuation in an SCI-model M. An SCI-formula ' is satisfied by v in M,
M; v ˆ ', whenever v.'/ 2 D. An SCI-formula ' is true in M if it is satisfied by
all valuations in M. A formula is SCI-valid if it is true in all SCI-models.

The logic SCI is two valued. We may define the logical value of a formula ' in
a model M as:

valM.'/
dfD

�
true if for every v in M; v.'/ 2 D
false otherwise.

The following proposition shows that SCI is extensional in the sense that any sub-
formula  of an SCI-formula ' can be replaced with another formula # such that
its denotation is the same as  without affecting the denotation of '.



23.2 A Propositional Logic with Identity 419

Proposition 23.2.1. Let M be an SCI-model, let v be a valuation in M, let ' be
an SCI-formula containing a subformula  , and let ' 0 be the result of replac-
ing some occurrences of  in ' by a formula # . Then, M; v ˆ  � # implies
M; v ˆ ' � ' 0.
Proof. The proof is by induction on the complexity of formulas. Let ' be a propo-
sitional variable p and let # be an SCI-formula. Then p is the only subformula
of ' and, clearly, if v.p/ D v.#/, then the proposition holds. In what follows
'. / denotes a formula ' with a subformula  , # denotes any formula such
that v. / D v.#/, and ' 0 denotes a formula resulting from ' by replacing some
occurrences of  with # .

Let '. / D :�. Then  is a subformula of � and v.:�. // D �v.�. //.
By the induction hypothesis, v.�. // D v.�.#//, hence �v.�. // D �v.�.#//.
Therefore v.'/ D v.' 0/.

Let '. / D .�1 _ �2/. Then  is a subformula of �1 or �2. Without loss of
generality, we may assume that  is a subformula of �1. Then, v.�1. / _ �2/ D
v.�1. // t v.�2/. By the induction hypothesis, v.�1. // D v.�1.#//, hence
v.�1. // t v.�2/ D v.�1.#// t v.�2/. Therefore, v.'/ D v.' 0/.

Let '. / D .�1 � �2/. Then,  is a subformula of �1 or �2. Without loss
of generality, we may assume that  is a subformula of �1. Then, v.�1. / �
�2/ D v.�1. //ı v.�2/. By the induction hypothesis, v.�1. // D v.�1.#//, hence
v.�1. // ı v.�2/ D v.�1.#// ı v.�2/ D v.�1.#/ � �2/. Therefore v.'/ D v.' 0/.

The proofs of the remaining cases are similar. ut
A Hilbert-style axiomatization of SCI consists of the axioms of the classical
propositional logic PC, which characterize the operations :;_;^;!;$, and the
following axioms for the identity operation�:

(�1) ' � ';
(�2) .' �  /! .:' � : /;
(�3) .' �  /! .' !  /;
(�4) Œ.' �  / ^ .# � /�! Œ.'##/ � . #/�, for # 2 f_;^;!;$;�g.
The only rule of inference is modus ponens. It can be shown that all the SCI-axioms
are true in every SCI-model. It is known that they provide a complete axiomatization
of logic SCI.

Fact 23.2.1. For every PC-formula ', the following conditions are equivalent:

1. ' is PC-valid;
2. ' is SCI-valid.

Note also that the reduct .U;�;t;u/ of an SCI-model is not necessarily a Boolean
algebra, for example au b D b u a is not true in all SCI-models. Consider an SCI-
model M D .U;�;t;u;);,; ı;D/, where U D f0; 1; 2g, D D f1; 2g, and the
operations�;t;u;);,; ı are defined by:



420 23 Dual Tableau for Propositional Logic with Identity

� a dfD
�
0 if a ¤ 0
1 otherwise

a t b dfD
�
0 if a D 0 and b D 0
1 otherwise

a u b dfD
8<
:
0 if a D 0 or b D 0
1 if b D 2 and a ¤ 0
2 otherwise

a) b
dfD

�
0 if a ¤ 0 and b D 0
1 otherwise

a, b
dfD

�
0 if a ¤ 0; b D 0 or a D 0; b ¤ 0
1 otherwise

a ı b dfD
8<
:
0 if a ¤ b
a if a D b and a ¤ 0
1 otherwise.

This structure is an SCI-model. Indeed, the following hold:

� a 2 D iff a D 0 iff a 62 DI
a t b 2 D iff a ¤ 0 or b ¤ 0 iff a 2 D or b 2 DI
a u b 2 D iff a ¤ 0 and b ¤ 0 iff a 2 D and b 2 DI
a) b 2 D iff a D 0 or b ¤ 0 iff a 62 D or b 2 DI

a, b 2 D iff either a D b D 0 or a ¤ 0 ¤ b iff a 2 D iff b 2 DI
a ı b 2 D iff a D b:

However, we have 2 u 1 D 2, while 1 u 2 D 1. Hence, a u b D b u a is not true in
this model.

23.3 Axiomatic Extensions of the Propositional Logic
with Identity

The class of all different SCI-theories is uncountable. Therefore, the question of
natural extensions of SCI arises. Let X be a set of SCI-formulas. The axiomatic
extension of SCI, SCIX , is the logic obtained from SCI by adding formulas ofX to
SCI-axioms. There are three natural and extensively studied axiomatic extensions
of SCI, the logics SCIB, SCIT, and SCIH.



23.3 Axiomatic Extensions of the Propositional Logic with Identity 421

Logic SCIB

The specific axioms of this logic are:

(B1) Œ.' ^  / _ #� � Œ. _ #/ ^ .' _ #/�;
(B2) Œ.' _  / ^ #� � Œ. ^ #/ _ .' ^ #/�;
(B3) Œ' _ . ^ : /� � ';
(B4) Œ' ^ . _ : /� � ';
(B5) .' !  / � .:' _  /;
(B6) .' $  / � Œ.' !  / ^ . ! '/�.

An SCIB-model is an SCI-model M D .U;�;t;u;);,; ı;D/ such thatD is an
ultrafilter on .U;�;t;u/ and for all a; b 2 U , a ı b 2 D iff a D b. Any axiomatic
extension of SCI which includes SCIB is referred to as a Boolean SCI-logic.

In [Sus71a] the following was proved:

Theorem 23.3.1. For every SCI-formula', the following conditions are equivalent:

1. ' is true in all SCIB-models;
2. ' is provable in SCIB.

Logic SCIT

The logic SCIT is an extension of SCIB with the following axiom:

(T) ' �  , for all formulas ' and  such that ' $  is provable in SCI.

This logic has many interesting properties (see [Sus71a]). Below we list some of
them:

Proposition 23.3.1.

1. The set of all SCIT-provable formulas is the smallest set of SCIB-provable
formulas closed on the Gödel rule:

.G/
';  

' �  

2. The set of all SCIT-provable formulas is the smallest set of SCI-provable
formulas closed on the quasi-Fregean rule:

.QF /
.' $  /

' �  :

An SCIT-model is an SCIB-model M D .U;�;t;u;);,; ı;D/ such that:
For all a; b; c; d; e 2 U ,

� a ı a D et � e;
� Œ.a ı b/) .a, b/� D et � e;
� ŒŒ.a ı b/ u .c ı d/�) Œ.a#c/ ı .b#d/�� D et � e, for # 2 ft;u; ıg.



422 23 Dual Tableau for Propositional Logic with Identity

In [Sus71c] the following was proved:

Theorem 23.3.2. For every SCI-formula ', the following conditions are equivalent:

1. ' is true in all SCIT-models;
2. ' is provable in SCIT.

Furthermore, the following was observed:

Theorem 23.3.3.

1. Let M D .U;�;t;u;);,; ı;D/ be an SCIT -model. Then, the structure

.U;�;t;u; I /, where a unary operation I on U is defined as I.a/
dfD a ı

.at � a/, for every a 2 U , is a topological Boolean algebra, i.e., I is an
interior operation;

2. Let T D .U;�;t;u; I / be a topological Boolean algebra. Then, the struc-
ture M D .U;�;t;u;);,; ı;D/ such that ) and , are operations on
U satisfying the conditions of SCI-models and, in addition, for all a; b 2 U ,

a ı b dfD I.a, b/ andD is an ultrafilter on U such that a ı b 2 D iff a D b, is
an SCIT -model.

Logic SCIH

The logic SCIH is an extension of SCIB with the following axioms:

(H1) 1 � .' _ :'/;
(H2) 0 � .' ^ :'/;
(H3) .' �  / � Œ.' �  / � 1�;
(H4) :.' �  / � Œ.' �  / � 0�,
where 1 and 0 are propositional constants defined as p _ :p and p ^ :p,
respectively.

An SCIH-model is an SCIB-model MD .U;�;t;u;);,; ı;D/ such that
1 and 0 are the greatest and the smallest element, respectively, of the Boolean alge-
bra .U;�;t;u/, and the following is satisfied:

a ı b D
(
1 if a D b
0 otherwise.

It is easy to see that the operation I defined as I.a/
dfD a ı 1 has the property:

I.a/ D
(
1 if a D 1
0 otherwise.



23.3 Axiomatic Extensions of the Propositional Logic with Identity 423

Theorem 23.3.4.

1. Let M D .U;�;t;u;);,; ı;D/ be an SCIH-model. Then, the structure
.U;�;t;u; I /, where I is an interior operation on U defined as above, is a
topological Boolean algebra with only two open elements;

2. Let H D .U;�;t;u; I / be a topological Boolean algebra with only two open
elements. Then, the structure M D .U;�;t;u;);,; ı;D/ such that) and
, are operations on U satisfying the conditions of SCI-models and, in addition,

for all a; b 2 U , a ı b dfD
�
1 if I.a/ D I.b/
0 otherwise

, and D is an ultrafilter on U

such that a ı b 2 D iff a D b, is an SCIH-model.

Theorem 23.3.5. For every SCI-formula ', the following conditions are equivalent:

1. ' is true in all SCIH-models;
2. ' is provable in SCIH.

There are some relationships between logics SCIT and SCIH and the modal logics
S4 and S5, respectively (see Sect. 7.3).

Let � be a mapping from the set of SCI-formulas into the set of modal formulas
defined inductively as follows:

� �.p/ D p, for every propositional variable p;
� �.'/ D ', if � does not occur in ';
� �.' �  / D ŒR�.�.'/ $ �. //, where R is an accessibility relation of modal

logics.

The following is known (see [Sus71a]):

Proposition 23.3.2. For every SCI-formula ', the following hold:

1. ' is true in all SCIT-models iff �.'/ is S4-valid;
2. ' is true in all SCIH-models iff �.'/ is S5-valid.

Now, consider a mapping � 0 from the set of modal formulas into the set of SCI-
formulas. The function � 0 is defined inductively as follows:

� � 0.p/ D p, for every propositional variable p;
� � 0.'/ D ', if ŒR� does not occur in ';
� � 0.ŒR�'/ D .� 0.'/ � .� 0.'/ _ :� 0.'///.
The following was proved in [Sus71a]:

Proposition 23.3.3. For every modal formula ', the following hold:

1. ' is S4-valid iff � 0.'/ is true in all SCIT-models;
2. ' is S5-valid iff � 0.'/ is true in all SCIH-models.



424 23 Dual Tableau for Propositional Logic with Identity

23.4 Dual Tableau for the Propositional Logic with Identity

A dual tableau for the logic SCI, developed in [GP07], consists of decomposition
rules ._/, .^/, .:_/, .:^/, .!/, .: !/, .$/, .: $/, .:/ of F-dual tableau (see
Sect. 1.3) adjusted to the SCI-language and, in addition, the specific rule:

.�/ '. /

 � #; '. / j '.#/; '. /
where ' and # are SCI-formulas, is a subformula of ', and '.#/ is obtained from
'. / by replacing some occurrences of  with # .

Observe that any application of the rules of SCI-dual tableau, in particular an
application of the specific rule (�), preserves atomic formulas and their negations.
Thus, the closed branch property holds.

A finite set of formulas is SCI-axiomatic whenever it includes either of the sets
of the following forms:

For any SCI-formula ',

(Ax1) f' � 'g;
(Ax2) f';:'g.
A finite set X of SCI-formulas is said to be an SCI-set whenever for every SCI-
model M and for every valuation v in M there exists ' 2 X such that M; v ˆ '.
Correctness of a rule is defined in a similar way as in F-logic in Sect. 1.3.

Proposition 23.4.1.

1. The SCI-rules are SCI-correct;
2. The SCI-axiomatic sets are SCI-sets.

Proof. By way of example, we prove correctness of the rule (�). Let X be a finite
set of SCI-formulas and let '. / be an SCI-formula. Clearly, if X [ f'. /g is
an SCI-set, then so are X [ f � #; '. /g and X [ f'.#/; '. /g. Assume that
X[f � #; '. /g andX[f'.#/; '. /g are SCI-sets. SupposeX[f'. /g is not
an SCI-set. Then there exist an SCI-model M and a valuation v in M such that for
every formula � 2 X [f'. /g, M; v 6ˆ �. By the assumption, M; v ˆ  � # and
M; v ˆ '.#/, that is v. / D v.#/ and v.'.#// 2 D. Hence, by Proposition 23.2.1,
v.'. // 2 D. Thus M; v ˆ '. /, a contradiction. ut
The notions of an SCI-proof tree, a closed branch of such a tree, a closed SCI-proof
tree, and SCI-provability are defined in a similar way as in Sect. 1.3.

A branch b of an SCI-proof tree is complete whenever it satisfies the completion
conditions that correspond to decomposition rules (see Sect. 1.3) and the completion
condition that correspond to the rule (�) specific for SCI-dual tableau:

Cpl(�) If ' 2 b and  is a subformula of ', then for every SCI-formula # , either
 � # 2 b or '.#/ 2 b, obtained by an application of the rule .�/.



23.4 Dual Tableau for the Propositional Logic with Identity 425

The notions of a complete SCI-proof tree and an open branch of an SCI-proof tree
are defined as in Sect. 1.3.

We define inductively a depth of SCI-formulas as:
For all SCI-formulas ' and  ,

� d.p/ D d.' �  / D 0, for every p 2 V ;
� d.:'/ D d.'/C 1;
� d.' _  / D d.' ^  / D d.' !  / D d.' $  / D max.d.'/; d. //C 1.

Let FRSCI be a set of all SCI-formulas and let n � 0. By FRn
SCI we denote the set

of all SCI-formulas of the depth n.
Let b be an open branch of an SCI-proof tree. We define a branch structure

Mb D .U b;�b;tb;ub;)b ;,b; ıb;Db/ as:

� U b D FRSCI;
� Db DS

n2! Db
n , where:

Db
0 D f 2 FR0

SCI W  62 bg,
Db
nC1 D X1 [ : : : [X5, where:

X1 D f: 2 FRnC1
SCI W  62 Db

ng,
X2 D f _ � 2 FRnC1

SCI W  2
S
k	nDb

k
or � 2 S

k	nDb
k
g,

X3 D f ^ � 2 FRnC1
SCI W  ; � 2

S
k	nDb

k
g;

X4 D f ! � 2 FRnC1
SCI W  62

S
k<nD

b
k

or � 2S
k	nDb

k
g;

X5 D f $ � 2 FRnC1
SCI W  ; � 2

S
k	nDb

k
or  ; � 62S

k	nDb
k
g;

� �b D : ;
�  tb � D . _ �/;
�  ub � D . ^ �/;
�  )b � D . ! �/;
�  ,b � D . $ �/;
�  ıb � D . � �/.
Fact 23.4.1. Let  be an SCI-formula and let d. / D n, for some n � 0. Then,
 2 Db iff  2 Db

n .

Let vb be a valuation in Mb such that vb.p/ D p, for all p 2 V . By the definition
of Mb , vb.'/ D ', for every SCI-formula '.

Proposition 23.4.2. Let b be an open branch of an SCI-proof tree. Then, for every
SCI-formula  , if  2 Db , then  62 b.

Proof. The proof is by induction on the depth of formulas. For formulas of the
depth 0, the proposition holds by the definition of the set Db . Let  D :� , for
some formula � such that d.�/ D 0. Assume  2 Db

1 . By the definition of Db ,
� 62 Db

0 , thus � 2 b. Hence, :� 62 b, and so  62 b.
Suppose the proposition holds for all formulas of depth not greater than n and

their negations. Assume d. / D nC 1 and  2 Db
nC1.



426 23 Dual Tableau for Propositional Logic with Identity

Let D �_� for some formulas � and � such that max.d.�/; d.�// D n. Since
 2 Db

nC1, � 2 S
k	nDb

k
or � 2S

k	nDb
k

. By the induction hypothesis, � 62 b or
� 62 b. Suppose  2 b. The completion condition Cpl(_) implies both  2 b and
� 2 b, a contradiction.

Let  D ::�. Then :� 62 Db
n . Suppose  2 b. By the completion condition

Cpl(:), � 2 b. By the induction hypothesis, � 62 Db
n�1. By the definition of the

set Db , if a formula � of the depth n � 1 satisfies � 62 Db
n�1, then :� 2 Db

n , a
contradiction.

Let D :.�_�/. Then .�_�/ 62 Db
n . Suppose:.�_�/ 2 b. By the completion

condition Cpl(:_), either :� 2 b or :� 2 b. By the induction hypothesis, either
:� 62 Db or :� 62 Db . Therefore, either � 2 Db or � 2 Db . So by the construction
of the set Db , we have .� _ �/ 2 Db

n , a contradiction.

The proofs of the remaining cases are similar. ut
Let us define the relation Rı on the set of SCI-formulas as:

. ; �/ 2 Rı df” . ı �/ 2 Db :

Proposition 23.4.3. For every open branch b of an SCI-proof tree, Rı is an
equivalence relation on the set U b .

Proof. If for some 2 U b , . ; / 62 Rı, then  �  2 b, which would mean that
b is closed, a contradiction. Let . ; �/ 2 Rı and suppose that .�;  / 62 Rı. Then
. � �/ 62 b and .� �  / 2 b. By the completion condition Cpl(�), . � �/ 2 b
or .� � �/ 2 b. The first case contradicts . � �/ 62 b, the second one implies that
the branch is closed, a contradiction. Let . ; �/ 2 Rı, .�; �/ 2 Rı, and suppose
that . ; �/ 62 Rı. Then, . � �/ 62 b, .� � �/ 62 b, and . � �/ 2 b. By the
completion condition Cpl(�), either . � �/ 2 b or .� � �/ 2 b, a contradiction.

ut
Let b be an open branch of an SCI-proof tree. We define the quotient structure
Mb

q D .U bq ;�bq ;tbq;ubq ; ıbq;Db
q / as:

� U bq D fk k W  2 U bg, where k k is the equivalence class of Rı generated
by  ;

� Db
q D fk k W  2 Dbg;

� �bqk k D k�b k;
� k k tbq k�k D k tb �k;
� k k ubq k�k D k ub �k;
� k k )b

q k�k D k )b �k;
� k k ,b

q k�k D k ,b �k;
� k k ıbq k�k D k ıb �k.
Let vbq be a valuation such that vbq.p/ D kpk, for every p 2 V .



23.4 Dual Tableau for the Propositional Logic with Identity 427

Proposition 23.4.4 (Branch Model Property).

1. The structure Mb
q is an SCI-model;

2. For every SCI-formula ', vb.'/ 2 Db iff vbq.'/ 2 Db
q .

Proof. We show that the model Mb
q satisfies all the conditions of SCI-models.

Db
q is a non-empty subset of U bq , since Db is a non-empty subset of U b . Indeed,

Db is non-empty, since for every SCI-formula  , a formula  �  62 b, hence
 �  2 Db .

Let  ; � 2 U b and let max.d. /; d.'// D n, n � 0. Then, the following hold:

�b 2 Db iff : 2 Db iff for some n; 62 Db
n iff  62 Db;

 tb � 2 Db iff . _ �/ 2 Db iff  2 S
k	nDb

k
or � 2 S

k	nDb
k

iff  2
Db or � 2 Db;

 ub � 2 Db iff . ^ �/ 2 Db iff  ; � 2S
k	nDb

k
iff  2 Db and � 2 Db;

 )b � 2 Db iff . ! �/ 2 Db iff  62 S
k<nD

b
k

or � 2 S
k	nDb

k
iff  62

Db or � 2 Db;
 ,b � 2 Db iff . $ �/ 2 Db iff  ; � 2 S

k	nDb
k

or  ; � 62 S
k	nDb

k

iff  2 Db iff � 2 Db .

The above properties together with the definition of Mb
q and Proposition 23.4.3

imply:

�bqk k 2 Db
q iff �b 2 Db iff  62 Db iff k k 62 Db

q ;

k k tbq k�k 2 Db
q iff  2 Db or � 2 Db iff k k 2 Db

q or k�k 2 Db
q ;

k k ubq k�k 2 Db
q iff  2 Db and � 2 Db iff k k 2 Db

q and k�k 2 Db
q ;

k k )b
q k�k 2 Db

q iff  62 Db or � 2 Db iff k k 62 Db
q or k�k 2 Db

q ;

k k ,b
q k�k 2 Db

q iff  62 Db iff � 2 Db iff k k 2 Db
q iff k�k 2 Db

q ;

k k ıbq k�k 2 Db
q iff k ıb �k 2 Db

q iff  ıb � 2 Db iff . ; �/ 2 Rı iff
k k D k�k.

Thus, Mb
q is an SCI-model.

2. follows directly from the definition of Db
q . ut

By Propositions 23.4.2 and 23.4.4, we have:

Proposition 23.4.5. Let b be an open branch of an SCI-proof tree. Then, for every
SCI-formula ', if Mb

q; v
b
q ˆ ', then ' 62 b.

Theorem 23.4.1 (Soundness and Completeness of SCI). Let ' be an SCI-
formula. Then the following conditions are equivalent:

1. ' is SCI-valid;
2. ' is SCI-provable.



428 23 Dual Tableau for Propositional Logic with Identity

.' �  /! .:' � : /
�(!)

:.' �  /;:' � : 
����
			
(�)

:.' �  /; ' �  ; : : :

closed

: � : ; : : :
closed

Fig. 23.1 An SCI-proof of SCI-axiom (�2)

.' �  /! .'!  /

�(!)

:.' �  /; ' !  

�(!)

:.' �  /;:';  
����
			
(�)

:.' �  /; ' �  ; : : :

closed

: ; ; : : :
closed

Fig. 23.2 An SCI-proof of SCI-axiom (�3)

Proof. The implication 1: ! 2: holds by Proposition 23.4.1. Now, assume that
' is SCI-valid. Suppose there is no any closed SCI-proof tree for '. Then, there
exists a complete SCI-proof tree for ' with an open branch, say b. Since ' 2 b,
by Proposition 23.4.5, we get Mb

q 6ˆ '. Hence, by Proposition 23.4.4, ' is not
SCI-valid, a contradiction. ut
Example. We show that all SCI-axioms characterizing� are SCI-provable. Clearly,
the axiom .�1/ of the form ' � ' is SCI-provable, since f' � 'g is an SCI-
axiomatic set. In Figs. 23.1 and 23.2 we present SCI-proofs of axiom .�2/ and
axiom .�3/, respectively.

Figure 23.3 presents an SCI-proof of (�4), for any # D f_;^;!;$;�g.

23.5 Dual Tableaux for Axiomatic Extensions
of the Propositional Logic with Identity

In Sect. 23.3 axiomatic extensions SCIT and SCIH of the logic SCI were presented.
By Proposition 23.3.2, an SCI-formula ' is true in all SCIT-models (resp. SCIH-
models) if and only if �.'/ is S4-valid (resp. S5-valid), where � is the translation
of SCI-formulas into modal formulas defined in Sect. 23.3.

On the other hand, in Sects. 7.4 and 7.5 we showed that S4-validity (resp.
S5-validity) of a modal formula  is equivalent to RLS4-provability (resp. RLS5-



23.5 Dual Tableaux for Axiomatic Extensions of the Propositional Logic with Identity 429

Œ.' �  /^ .# � /�! Œ.'##/ � . #/�

�(!)

:Œ.' �  /^ .# � /�; Œ.'##/� . #/�

�(:^)

:.' �  /;:.# � /; .'##/ � . #/
����
			
(�)

:.' �  /; ' �  ; : : :

closed

:.# � /; . ##/ � . #/; : : :
����
			
(�)

:.# � /; # � ; : : :

closed

. #/ � . #/; : : :
closed

Fig. 23.3 An SCI-proof of SCI-axiom (�4)

provability) of the translation of  , �. /, into a relational formula defined in
Sect. 7.4 (see Theorem 7.4.1, p. 147).

We can define a translation of SCI-formulas into relational terms of standard
modal logics by �.'/

dfD �.�.'//. Let �0 be a one-to-one assignment of relational
variables to the propositional variables. Then, the translation � of SCI-formulas
satisfies:

� �.p/ D �0.p/ I 1, for any propositional variable p 2 V ;
� �.:'/ D ��.'/;
� �.' _  / D �.'/ [ �. /;
� �.' ^  / D �.'/ \ �. /;
� �.' !  / D ��.'/[ �. /;
� �.' $  / D .��.'/[ �. // \ .��. / [ �.'///;
� �.' �  / D �.R I ��.' $  //.

By Proposition 23.3.2 and Theorem 7.4.1, an SCI-formula ' is true in all SCIT-
models (resp. SCIH-models) iff �.'/ is RLS4-provable (resp. RLS5-provable).

Theorem 23.5.1. For every SCI-formula ' and for all object variables x and y,
the following conditions are equivalent:

1. ' is true in all SCIT-models (resp. SCIH-models);
2. x�.'/y is RLS4-provable (resp. RLS5-provable).

It follows that RLS4-dual tableau (resp. RLS5-dual tableau) can be used to verify
SCIT-validity (resp. SCIH-validity) of SCI-formulas.

Example. Consider SCI-formulas ' and  :

' D .p _ :p/ � .q _ :q/I  D .p ^ :p/ � .q ^ :q/:



430 23 Dual Tableau for Propositional Logic with Identity

xŒ�.R I�..�.P [�P/[ .Q [�Q//\ .�.Q [�Q/[ .P [�P////�y
�(�I) with a new variable z and .�/

x�Rz; zŒ.�.P [�P/[ .Q [�Q//\ .�.Q [�Q/[ .P [�P//�y
����

			

(\)

z.�.P [�P/[ .Q [�Q//y; : : :
�

([)

z.Q [�Q/y; : : :
�

([)

zQy; z�Qy; : : :
closed

z.�.Q [�Q/[ .P [�P//y; : : :
�

([)

z.P [�P/y; : : :
�

([)

zPy; z�Py; : : :
closed

Fig. 23.4 An RLS5-proof of SCIH-validity of SCI-formula .p _:p/ � .q _:q/

xŒ�.R I�..�.P \�P/[ .Q \�Q//\ .�.Q \�Q/[ .P \�P////�y
�(�I) with a new variable z and .�/

x�Rz; zŒ.�.P \�P/[ .Q \�Q//\ .�.Q \�Q/[ .P \�P//�y
����

			

(\)

z.�.P \�P/[ .Q \�Q//y; : : :
�

([)

z�.P \�P/y; : : :
�

(�\) and .�/
z�Py; zPy; : : :

closed

z.�.Q \�Q/[ .P \�P//y; : : :
�

([)

z�.Q \�Q/y; : : :
�

(�\) and .�/
z�Qy; zQy; : : :

closed

Fig. 23.5 An RLS5-proof of SCIH-validity of SCI-formula .p ^:p/ � .q ^:q/

These formulas are not SCI-valid. Indeed, let MD.U;�;t;u;);,; ı;D/, be
an SCI-model such that UDf0; 1; 2; 3g,DDf2; 3g, and the operations �;t;u;);
,; ı are defined as:

� a dfD

8̂̂
<
ˆ̂:

0 if a D 2
1 if a D 3
2 if a D 0
3 if a D 1

a ı b dfD
�
0 if a ¤ b
3 otherwise

a t b dfD max.a; b/ a u b dfD min.a; b/

a) b
dfD max.� a; b/ a, b

dfD min.max.� a; b/;max.� b; a//:



23.5 Dual Tableaux for Axiomatic Extensions of the Propositional Logic with Identity 431

This structure is an SCI-model. Let v be a valuation in M such that v.p/ D 0 and
v.q/ D 3. Then:

v.p _ :p/ D 2 and v.p ^ :p/ D 0I
v.q _ :q/ D 3 and v.q ^ :q/ D 1:

Therefore, v..p_:p/ � .q_:q// D 0 and v..p^:p/ � .q^:q// D 0. Hence,
' and are not true in M. However, by Theorem 23.3.4, formulas ' and are true
in all SCIH-models. The translations of these formulas into relational terms are:

�.'/
dfD �.R I �..�.P [ �P/ [ .Q [ �Q//\ .�.Q [�Q/[ .P [�P////;

�. /
dfD �.R I �..�.P \�P/ [ .Q \�Q//\ .�.Q \ �Q/[ .P \ �P////,

where �0.p/ D P and �0.q/ D Q. Figures 23.4 and 23.5 present an RLS5-proof of
�.'/ and �. /, respectively, which by Theorem 23.5.1 show that ' and  are true

in all SCIH-models.



Chapter 24
Dual Tableaux for Logics of Conditional
Decisions

24.1 Introduction

The roots of the logics and algebras of conditional decisions can be traced back to
the work by Claude Elwood Shanon in [Sha38] and his information theory [Sha48].

Logics of conditional decisions are the formalisms for the specification of n � 2
alternative decisions that depend on a condition which holds in a degree. In the
binary case the formulas of the logic may be viewed as binary decision trees or
if-then-else statements which represent branching in algorithms; they are the basic
statements in most of the programming languages. The paper [McC63] is one of the
foundations of that research. Binary decision diagrams were introduced in [Lee59]
as a compact representation of binary decision trees used for a representation of
Boolean functions; see also [Ake78]. They are extensively applied to the synthesis of
combinatorial circuits and in the implementation and formal verification of systems.
Interest in multiple-valued branching was inspired by observations in [Dij68].

A propositional logic of binary decisions presented in this chapter was introduced
in [EO67], and it was extended to the class of 89-formulas of classical first-order
logic in [Orł69], see also [PS95]. The algebras of conditional decisions named as
B-actions were investigated in [Ber91]. A further study of these algebras can be
found, e.g., in [Man93, Sto98].

In this chapter we present, first, a logic of conditional decisions, where the con-
ditions are specified in the form of formulas of the classical propositional logic. In
this case a condition may hold or not. We present a dual tableau decision procedure
for this logic following [EO67]. The rules of the system satisfy stronger semantic
property than the usual correctness, namely they preserve values of formulas under
a valuation. We also present an algebraic version of the logic with an equational
axiomatization which can be derived directly from the dual tableau rules. We show
a relationship of the logic with the algebras of B-action introduced in [Ber91] and
with the axiomatization of if-then-else presented in [BT83, GM87].

In high level programming languages three-valued conditions are often used,
where a third value intuitively corresponds to the situation, when testing of the
condition does not halt, and then the if-then-else statement diverges. Therefore, we
extend the binary case to a family of n-ary, n� 2, logics of conditional decisions,

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 24,
c� Springer Science+Business Media B.V. 2011

433



434 24 Dual Tableaux for Logics of Conditional Decisions

where the conditions are specified as formulas of the Rosser–Turquette logic
discussed in Sect. 10.2, with an operation of implication added to the language. We
present a dual tableau decision procedure for that class of logics.

24.2 Logic of Conditional Decisions and Its Dual Tableau
Decision Procedure

The formulas of a logic of conditional decisions, LCD, are built from expressions
representing conditions and decisions. Conditions are PC-formulas (see Sect. 7.2)
endowed with propositional constants 0 and 1 which represent elements of a
two-element Boolean algebra. We will refer to them as PC-formulas as well. LCD-
formulas represent decisions. They are defined by:

� 0 and 1 are LCD-formulas;
� If ' is a condition and ˛0; ˛1 are LCD-formulas, then '˛0˛1 is an LCD-formula.

It follows that the symbols of the LCD-language are those of PC and 0 and 1.
The set of subformulas of an LCD-formula ˛, Sub.˛/, is defined as:

� If ˛ D 0 or ˛ D 1, then Sub.˛/ D f˛g;
� If ˛ D '˛0˛1, then Sub.˛/ D f˛g [ Sub.˛0/[ Sub.˛1/.

Hence, Sub.˛/ consists of all the decisions occurring in ˛.
An LCD-model is a PC-model M D .f0; 1g; v/ such that f0; 1g is a two-element

Boolean algebra and valuation v is extended to LCD-formulas as:

� v.0/ D 0 and v.1/ D 1;

� v.'˛0˛1/ D
�

v.˛0/ if v.'/ D 0
v.˛1/ if v.'/ D 1.

As usual, we use symbols 0 and 1 both in the language and in the models.
An LCD-formula ˛ is said to be true in M D .f0; 1g; v/whenever v.˛/ D 1, and

it is LCD-valid if it is true in all LCD-models.
Rules of LCD-dual tableau are of the form ˙1˛˙2

˙1ˇ˙2
, where ˙1 and ˙2 are strings

of symbols of the LCD-language such that ˙1˛˙2 and ˙1ˇ˙2 are LCD-formulas
and ˛ and ˇ are their subformulas, respectively. An application of such a rule to a
formula � of the form˙1˛˙2 results in a formula obtained from � by replacing an
occurrence of ˛ indicated in the string ˙1˛˙2 with formula ˇ.

Fact 24.2.1. Let ˙1˛˙2

˙1ˇ˙2
be a rule as above. Then, for every LCD-model M D

.f0; 1g; v/, if v.˛/ D v.ˇ/, then v.˙1˛˙2/ D v.˙1ˇ˙2/.

Let ' and  be conditions and let ˛0; ˛1 be LCD-formulas. Decomposition rules of
LCD-dual tableau are:



24.2 Logic of Conditional Decisions and Its Dual Tableau Decision Procedure 435

._/ ˙1.' _  /˛0˛1˙2
˙1' ˛0˛1˛1˙2

.^/ ˙1.' ^  /˛0˛1˙2
˙1'˛0 ˛0˛1˙2

.!/ ˙1.' !  /˛0˛1˙2

˙1'˛1 ˛0˛1˙2
.:/ ˙1.:'/˛0˛1˙2

˙1'˛1˛0˙2

Let ' be a condition, let p be a propositional variable, let ˛0; ˛1; ˇ be LCD-
formulas, and let ˙3p˛0˛1˙4 be an LCD-formula such that p˛0˛1 is its
subformula. Simplification rules of LCD-dual tableau are:

.0/
˙10˛0˛1˙2

˙1˛0˙2
.1/

˙11˛0˛1˙2

˙1˛1˙2

.S1/
˙1'˛˛˙2

˙1˛˙2

.S2/
˙1.p˙3p˛0˛1˙4ˇ/˙2

˙1.p˙3˛0˙4ˇ/˙2
.S3/

˙1.pˇ˙3p˛0˛1˙4/˙2

˙1.pˇ˙3˛1˙4/˙2

The rules satisfy the stronger semantic property than that of preserving and
reflecting validity, which typically holds in the dual tableaux presented in the
book. Namely, they preserve values of formulas under a valuation. More precisely,
we have:

Proposition 24.2.1. Let M D .f0; 1g; v/ be an LCD-model. Then, for every LCD-
rule ˙1˛˙2

˙1ˇ˙2
, v.˙1˛˙2/ D v.˙1ˇ˙2/.

Proof. By way of example, we prove the statement for the rules: ._/, (S1), and
.S2/. Recall that, by Fact 24.2.1, for all LCD-formulas ˙1˛˙2 and ˙1ˇ˙2 such
that ˛ and ˇ are their subformulas, respectively, if v.˛/ D v.ˇ/, then v.˙1˛˙2/ D
v.˙1ˇ˙2/. Therefore, in order to prove the statement, we need to show that
v.˛/ D v.ˇ/.

._/ By the definition of valuation:

v.'. ˛0˛1/˛1/ D
�

v. ˛0˛1/ if v.'/ D 0
v.˛1/ if v.'/ D 1

where v. ˛0˛1/ D
�

v.˛0/ if v. / D 0
v.˛1/ if v. / D 1

Thus, we obtain:

v.'. ˛0˛1/˛1/ D
�

v.˛0/ if v.'/ D v. / D 0
v.˛1/ if v.'/ D 1 or v. / D 1 D v..' _  /˛0˛1/.

.S1/ Directly from the definition of valuation we have: v.'˛˛/ D v.˛/.



436 24 Dual Tableaux for Logics of Conditional Decisions

.S2/ In view of Fact 24.2.1, we may assume that ˙3 and ˙4 are empty. If
v.p/ D 0, then v.p.p˛0˛1/ˇ/ D v.p˛0˛1/ D v.˛0/. Similarly, if v.p/ D 1,
then v.p.p˛0˛1/ˇ/ D v.˛1/. Hence, v.p.p˛0˛1/ˇ/ D v.p˛0˛1/. ut
An LCD-proof sequence for an LCD-formula˛ is a sequence of LCD-formulas with
the following properties:

� The first element of the sequence is ˛;
� Each formula of the sequence except the first one is obtained from its predecessor

formula by an application of an LCD-rule;
� A formula of the sequence does not have a successor whenever none of the rules

is applicable to it.

It is easy to see that every LCD-proof sequence is finite. An LCD-formula ˛ is
said to be LCD-provable whenever there exists an LCD-proof sequence for ˛ such
that the last formula of the sequence is 1; such a sequence is then referred to as an
LCD-proof of ˛.

Now, we define some notions that will be useful in the completeness proof.
Operation free LCD-formulas are defined as follows:

� 0; 1 are operation free formulas;
� '˛0˛1 is an operation free formula if and only if ' is a propositional variable

and ˛0; ˛1 are operation free formulas.

An operation free formula p˛0˛1 has a unique condition wheneverp occurs neither
in ˛0 nor in ˛1.

An LCD-formula ˛ is said to be indecomposable whenever it satisfies the
following conditions:

� ˛ is an operation free formula;
� p11 and p00 are not subformulas of ˛, for any propositional variable p;
� Every subformula of ˛ has a unique condition.

Note that a formula p˛0˛1 is indecomposable if and only if both ˛0 and ˛1 are
indecomposable and if ˛i 2 f1; 0g, then ˛i ¤ ˛j , for all i; j 2 f0; 1g such that
i ¤ j .

Proposition 24.2.2. For every indecomposable LCD-formula ˛ such that ˛ ¤ 1,
there exists an LCD-model M D .f0; 1g; v/ such that v.˛/ D 0.

Proof. The proof is by the induction on the complexity of ˛. If ˛ D 0, then the
proposition holds. Let ˛ D p0ˇ, for some propositional variable p and for some
indecomposable formula ˇ such that p does not occur in ˇ and ˇ ¤ 0. Let v be
any valuation such that v.p/ D 0. Then v.p0ˇ/ D 0, hence the proposition holds.
Similarly, if ˛ D pˇ0, then we take a valuation such that v.p/ D 1. Now, we show
that if the proposition holds for indecomposable formulas ˛0 ¤ 1 and ˛1 ¤ 1 such
that p occurs neither in ˛0 nor in ˛1, then it holds for p˛0˛1. By the induction
hypothesis, there is a valuation v0 such that v0.˛0/ D 0. We define the required
valuation v as: v.p/ D 0 and v.q/ D v0.q/, for every propositional variable q



24.2 Logic of Conditional Decisions and Its Dual Tableau Decision Procedure 437

occurring in ˛0. Then, v.p˛0˛1/ D v0.˛0/ D 0. If ˛0 D 1, then ˛1 ¤ 1. Thus,
by the induction hypothesis, there is a valuation v1 such that v1.˛1/ D 0. Then, we
define v.p/ D 1 and v.q/ D v1.q/, for every propositional variable q occurring
in ˛1. Hence, v.p˛0˛1/ D v1.˛1/ D 0. If ˛1 D 1, then ˛0 ¤ 1, and we define
valuation v in a way analogous to the previous case. ut
Proposition 24.2.3. For every LCD-formula ˛, there exists an LCD-proof sequence
such that its last formula is indecomposable.

Proof. Let ˛ be an LCD-formula. Let ˇ be the last formula in an LCD-proof
sequence for ˛. Then none of the rules is applicable to ˇ. Clearly, if ˇ D 0 or
ˇ D 1, then the proposition holds. Let ˇ D '˛0˛1. If ˇ is not an operation free
formula, then ' 2 f0; 1g or either its condition or a condition of some of its subfor-
mula is a compound PC-formula. But then either of the rules ._/, .^/, .!/, .:/,
.0/, or .1/ can be applied to ˇ, a contradiction. If p11 or p00 is a subformula of
ˇ, for some propositional variable p, then the rule .S1/ can be applied to ˇ, a con-
tradiction. If some of the subformulas of ˇ does not have a unique condition, then
the rule .S2/ or .S3/ can be applied to ˇ, a contradiction. Therefore, ˇ must be an
indecomposable LCD-formula. ut
Theorem 24.2.1 (Soundness and Completeness of LCD). For every LCD-
formula ˛, the following conditions are equivalent:

1. ˛ is LCD-valid;
2. ˛ is LCD-provable.

Proof. .1:! 2:/ Let ˛ be LCD-valid. Suppose ˛ is not LCD-provable, that is there
is no any LCD-proof sequence for ˛ which ends with 1. By Proposition 24.2.3, there
exists an LCD-proof sequence for ˛ such that its last formula, say ˇ, is indecom-
posable. By Proposition 24.2.2, there exists an LCD-model M D .f0; 1g; v/ such
that v.ˇ/ D 0. By Proposition 24.2.1, v.˛/ D 0, a contradiction.

.2: ! 1:/ Now, assume that ˛ is LCD-provable, that is there exists an LCD-proof
sequence for ˛ such that its last formula is 1. By Proposition 24.2.1, for every LCD-
model M D .f0; 1g; v/, v.˛/ D 1. ut
As a corollary, we obtain:

Theorem 24.2.2. For every PC-formula ', the following conditions are equivalent:

1. ' is PC-valid;
2. '01 is LCD-provable.

Thus, since every LCD-proof tree is finite and the rules of LCD-dual tableau
preserve and reflect validity of LCD-formulas, LCD-dual tableau is a decision
procedure for the logic LCD as well as for the logic PC.

Example. We consider an LCD-formula:

˛ D pp:.q ^ :q/01:.:q _ q/101;



438 24 Dual Tableaux for Logics of Conditional Decisions

pp:.q ^:q/01:.:q _ q/101

�
.:/

pp.q ^:q/10:.:q _ q/101

�
.:/

pp.q ^:q/10.:q _ q/011

�
.^/

ppq1:q10.:q _ q/011

�
._/

ppq1:q10:qq0111

�
.:/ twice

pp.q1q01/ .q1q01/1

�
.S3/ twice

pp.q11/.q11/1

�
.S1/ twice

pp111

�
.S2/

p11

�
.S1/

1

Fig. 24.1 An LCD-proof of LCD-formula pp:.q ^:q/01:.:q _ q/101

and a PC-formula:

' D .p ^ :.p _ q//! q:

Figures 24.1 and 24.2 present LCD-proofs of ˛ and '01, respectively. Due to
Theorems 24.2.1 and 24.2.2, respectively, ˛ is LCD-valid and ' is PC-valid.

24.3 Algebras of Conditional Decisions

The logic LCD of conditional decisions determines in a natural way the class ACD
of algebras of conditional decisions of the form: A D .B; A; f /, where B D
.B;�;C; �; 0; 1/ is a Boolean algebra,A is a non-empty set, and f WB �A�A! A

is a ternary operation satisfying the following axioms:
For all b; b1; b2 2 B and for all a; a0; a1; a2 2 A,

� f .0; a0; a1/ D a0;
� f .1; a0; a1/ D a1;



24.3 Algebras of Conditional Decisions 439

..p ^:.p _ q//! q/01

�
.!/

.p ^:.p _ q//1q01

�
.^/

p1:.p _ q/1q01

�
.:/

p1.p _ q/q011

�
._/

p1pqq0111

�
.S2/

p1pq011

�
.S3/

p11

�
.S1/

1

Fig. 24.2 An LCD-proof of PC-formula .p ^:.p _ q//! q

� f .�b; a0; a1/ D f .b; a1; a0/;
� f .b1 C b2; a0; a1/ D f .b1; f .b2; a0; a1/; a1/;
� f .b1 � b2; a0; a1/ D f .b1; a1; f .b2; a0; a1//;
� f .b; f .b; a0; a1/; a2/ D f .b; a0; a2/;
� f .b; a0; f .b; a1; a2// D f .b; a0; a2/;
� f .b; a; a/ D a.

It is easy to see that the terms f .b; a0; a1/ of A are the direct counterparts to the
LCD-formulas and the axioms correspond to the rules of LCD-dual tableau.

Alternatively, we may define the algebras of the form .A; .fb/b2B/ with a fam-
ily of binary operations fb WA � A ! A on a non-empty set A, each of which
is determined by an element of a Boolean algebra B. For simplicity, we may write
b.a0; a1/ instead of fb.a0; a1/. In [Ber91] these algebras are referred to as algebras
with B-action, see also [Sto98].

It is easy to see that terms f .b; a0; a1/ of the language of an LCD-algebra may be
understood as the LCD-formulas, where Boolean terms b play the role of conditions
and elements a0 and a1 of set A play the role of decisions. With this reformulation
in mind, the following theorem shows a relationship between LCD-logic and ACD-
algebras.

Theorem 24.3.1. For all b; b0 2 B and for all a0; a1; a00; a01 2 A, if there exists an
LCD-proof sequence starting with the formula ba0a1 and ending with the formula
b0a00a01, then the equation f .b; a0; a1/ D f .b0; a00; a01/ is true in all ACD-algebras.



440 24 Dual Tableaux for Logics of Conditional Decisions

In order to get the converse theorem, we have to add one more rule to the LCD-rules:

.c/
' ˛0˛1 ˛

0
0˛
0
1

 '˛0˛
0
0'˛1˛

0
1

It is easy to verify that rule .c/ satisfies the condition of Proposition 24.2.1.

Example. Consider an ACD-equation:

f .b � c C�b � d; a0; a1/ D f .b; f .d; a0; a1/; f .c; a0; a1//:

The terms:

t0
dfD f .b � c C�b � d; a0; a1/ and t1

dfD f .b; f .d; a0; a1/; f .c; a0; a1//

correspond to formulas:

˛0
dfD Œ.b ^ c/ _ .:b ^ d/�a0a1 and ˛1

dfD b.da0a1/.ca0a1/;

respectively. Figure 24.3 presents an LCD-proof starting with ˛0 and ending with
˛1. By Theorem 24.3.1, it shows that t1 D t2 is true in every ACD-algebra.

Œ.b ^ c/_ .:b ^ d/�a0a1

�
._/

.b ^ c/.:b ^ d/a0a1a1

�
.^/

b.:b ^ d/a0a1c.:b ^ d/a0a1a1

�
.^/

b.:ba0.da0a1//c.:b ^ d/a0a1a1

�
.:/

b.b.da0a1/a0/c.:b ^ d/a0a1a1

�
.^/

b.b.da0a1/a0/c.:ba0.da0a1//a1

�
.:/

b.b.da0a1/a0/c.b.da0a1/a0/a1

�
.S2/

b.da0a1/c.bda0a1a0/a1

�
.S3/

b.da0a1/.ca0a1/

Fig. 24.3 An LCD-proof of an equation true in all ACD-algebras



24.4 Relational Interpretation of the Logic of Conditional Decisions 441

In [BT83] an axiomatization of a more general class C of one-sorted algebras of
if-then-else is presented. The algebras are of the form A D .A;T;F;?; f /, where
A is a non-empty set, T, F, and? are distinguished elements of A, and f is a ternary
operation f WA3 ! A defined by:

f .x; y; z/ D
8<
:

z if x D F
y if x D T
? otherwise.

Viewing T and F as Boolean constants 1 and 0, respectively, this operation
represents if-then-else statements, where verification of the condition may not
halt. In [BT83] a set Ax of equational axioms is presented from which all the
equations true in all the algebras of C can be proved.

The set Ax of axioms consists of:

� f .T; x; y/ D x;
� f .F; x; y/ D y;
� f .x; x; y/ D f .x;T; y/;
� f .x; y; x/ D f .x; y;F/;
� f .?; x; y/ D ?;
� f .x;?;?/ D ?;
� f .x; f .y; z; u/; f .y; v;w// D f .y; f .x; z; v/; f .x; u;w//;
� f .x; f .x; y; z/;w/ D f .x; y;w/;
� f .x; y; f .x; z;w// D f .x; y;w/.
The following completeness theorem is proved in [BT83]:

Theorem 24.3.2. For all terms t and t 0 of the language of C, the following condi-
tions are equivalent:

1. t D t 0 is true in all algebras of C;
2. t D t 0 is provable from Ax with equational deduction.

It is easy to see that a decision logic based on the algebras of class C can be defined
in the style of LCD-logic of Sect. 24.2.

24.4 Relational Interpretation of the Logic
of Conditional Decisions

In this section we show that RL.1; 10/-dual tableau, presented in Sect. 2.7, can
be used for proving validity of LCD-formulas. First, we define a translation of
LCD-formulas into relational terms of the logic RL.1; 10/. Let � 0 be a one-to-one
assignment of relational variables to the propositional variables. Then the transla-
tion � is defined inductively as:



442 24 Dual Tableaux for Logics of Conditional Decisions

� �.p/ D � 0.p/ I 1, for every propositional variable p;
� �.1/ D 1 (the universal relation);
� �.0/ D �1 (the empty relation);

Let ' and  be LCD-conditions. Then:

� �.' _  / D �.'/ [ �. /;
� �.' ^  / D �.'/ \ �. /;
� �.' !  / D ��.'/[ �. /;
� �.:'/ D ��.'/;
Let ˛0 and ˛1 be LCD-formulas and let ' be an LCD-condition. Then:

� �.'˛0˛1/ D .��.'/\ 10/ I �.˛0/[ .�.'/\ 10/ I �.˛1/.
The following can be easily proved:

Fact 24.4.1. If ˙1˛˙2 and ˙1ˇ˙2 are LCD-formulas such that ˛ and ˇ are their
subformulas, then for every RL.1; 10/-model M D .U;m/, if m.�.˛// D m.�.ˇ//,
then m.�.˙1˛˙2// D m.�.˙1ˇ˙2//.
Proposition 24.4.1. For every LCD-rule ˙1˛˙2

˙1ˇ˙2
and for every RL.1; 10/-model

M D .U;m/,m.�.˙1˛˙2// D m.�.˙1ˇ˙2//.
Proof. By way of example, we show the required equality for the rules ._/ and
.1/. In view of Fact 24.4.1, it is sufficient to show that m.�..' _  /˛0˛1// D
m.�.'. ˛0˛1/˛1// and m.�.1˛0˛1// D m.�.˛1//.

Let �.'/ D R' , �. / D R , �.˛0/ D R˛0
, and �.˛1/ D R˛1

. For simplicity
of presentation, we will identify R' ; R ; R˛0

; R˛1
with their interpretations in the

model.
First, recall that the following are true for all binary relationsR;S , and T :

(0) .R[S/\T D .R\T /[ .S \T / and�.R[S/\T D .�R\T /\ .�S \T /I
(1) .R [ S/ IT D R IT [ S IT ;
(2) .R \ 10/[ .S \ 10/ D .R \ 10/[ ..�R \ 10/ \ .S \ 10//;
(3) ..R \ 10/\ .S \ 10// IT D .R \ 10/ I ..S \ 10/ IT /.
Now, we have:

m.�..' _  /˛0˛1// D
.�.R' [ R /\ 10/ IR˛0

[ ..R' [R / \ 10/ IR˛1

.0/D
..�R' \ 10/\ .�R \ 10// IR˛0

[ ..R' \ 10/ [ .R \ 10// IR˛1

.2/D
..�R' \10/\ .�R \10// IR˛0

[ ..R' \10/[ ..�R' \10/\ .R \10/// IR˛1

.1/D
..�R'\10/\.�R \10// IR˛0

[..�R'\10/\.R \10// IR˛1
[.R'\10/ IR˛1

.3/D
..�R'\10/ I ..�R \10/ IR˛0

/[.�R'\10/ I ..R \10/ IR˛1
/[.R'\10/ IR˛1

.1/D
.�R' \ 10/ I ..�R \ 10/ IR˛0

[ .R \ 10/ IR˛1
/ [ .R' \ 10/ IR˛1

D
m.�.'. ˛0˛1/˛1//:



24.4 Relational Interpretation of the Logic of Conditional Decisions 443

Hence, the rule ._/ preserves the meaning of the translations of its formulas. The
same holds for the rule .1/:

m.�.1˛0˛1// D .�1 \ 10/ IR˛0
[ .1 \ 10/ IR˛1

D 10 IR˛1
D R˛1

D m.�.˛1//:

The proofs for the other LCD-rules are similar. ut
Theorem 24.4.1. For every LCD-formula ˛ and for all object variables x and y,
the following conditions are equivalent:

1. ˛ is LCD-valid;
2. x�.˛/y is RL.1; 10/-valid.

Proof. .1:! 2:/ Assume ˛ is LCD-valid. Then, by Theorem 24.2.1, there exists an
LCD-proof sequence for ˛ such that its last formula is 1. Recall that m.�.1// is the
universal relation in every RL.1; 10/-model. Therefore, since by Proposition 24.4.1
the LCD-rules preserve the meaning of the corresponding relational terms,m.�.˛//
is the universal relation in every RL.1; 10/-model. Hence, x�.˛/y is RL.1; 10/-valid.

.2:! 1:/ Assume x�.˛/y is RL.1; 10/-valid and suppose that ˛ is not LCD-valid.
Then, there exists an LCD-model M D .f0; 1g; v/ such that v.˛/ D 0. Let M0 D
.U;m/ be a standard RL.1; 10/-model such that:

� U D f0; 1g;
� m.1/ D U � U andm.10/ D IdU ;

For every propositional variable p,

� m.�.p// D
�
U � U if v.p/ D 1
; if v.p/ D 0.

We show that the latter extends to all the LCD-conditions, i.e., for every condition
', we have:

.a/ m.�.'// D
�
U � U if v.'/ D 1
; if v.'/ D 0.

The proof of .a/ is by induction on the complexity of conditions.
Clearly, .a/ holds for ' D i , i 2 f0; 1g, and for ' D p, for any propositional

variable p.
Let ' D :p. Then v.'/ D 1 iff v.p/ D 0 iff m.�.p// D ; iff �m.�.p// D

U � U iff m.�.'// D U � U .
Let ' D  _ # . Then v.'/ D 1 iff v. / D 1 or v.#/ D 1 iff, by the induction

hypothesis,m.�. // D U � U or m.�.#// D U � U iff m.�.'// D U � U .
The remaining cases can be proved in a similar way.
Now, we prove, that for every LCD-formula ˇ, we have:

.b/ M ˆ ˇ iff M0 ˆ x�.ˇ/y:



444 24 Dual Tableaux for Logics of Conditional Decisions

The proof is by induction on the complexity of formulas. If ˇ D i , i 2 f0; 1g, then
condition .b/ holds. Let ˇ D 'ˇ0ˇ1 and let us assume that .b/ holds for ˇ0 and ˇ1.

Assume v.ˇ/ D 1. If v.'/ D 0, then v.ˇ0/ D 1. By condition .a/,m.�.'// D ;,
so �m.�.'// \ m.10/ D 10. By the induction hypothesis, m.�.ˇ0// D U � U , so
.�m.�.'//\m.10// Im.�.ˇ0// D U �U . Hence,m.�.ˇ// D U �U . If v.'/ D 1,
then v.ˇ1/ D 1. By condition .a/, m.�.'// D U � U , so m.�.'// \ 10 D 10. By
the induction hypothesis,m.�.ˇ1// D U � U , so .m.�.'//\m.10// Im.�.ˇ1// D
U � U . Hence, m.�.ˇ// D U � U .

Assume m.�.ˇ// D U � U . Since m.�.'// is either the universal relation
or the empty relation and m.�.ˇ0// and m.�.ˇ1// are right ideal relations,
m.�.ˇ// D U � U iff either .�m.�.'// \ m.10// Im.�.ˇ0// D U � U or
.m.�.'// \ m.10// Im.�.ˇ1// D U � U . If .�m.�.'// \ m.10// Im.�.ˇ0// D
U � U , thenm.�.'// D ; and m.�.ˇ0// D U � U . Thus, by condition .a/ and by
the induction hypothesis, v.'/ D 0 and v.ˇ0/ D 1, hence v.'/ D 1. The proof of
the remaining case is similar.

Now, since M 6ˆ ˛, by condition .b/M0 6ˆ x�.˛/y. However, this contradicts
the assumption of RL.1; 10/-validity of x�.˛/y. ut
Thus, the dual tableau of the logic RL.1; 10/ can be used for verification of validity
of LCD-formulas.

24.5 Logics of Conditional Decisions of Order n and Their
Dual Tableau Decision Procedures

In this section we present a logic of conditional decisions of order n, LCDn, for
n � 2, where the conditions are specified as formulas of the Rosser–Turquette logic
RT discussed in Sect. 10.2, with an operation of implication added to the language.

LCDn-symbols are those of logic RT together with the constants 0, . . . , n � 1.
As in LCD-logic, the formulas of the logic LCDn are built from expressions rep-
resenting conditions and decisions. Conditions are generated from propositional
variables and propositional constants 0; : : : ; n � 1 with the operations _, ^, !,
and Ji , i 2 f0; : : : ; n� 1g. We will identify propositional constants with their inter-
pretations as natural numbers in the models.

Formulas are defined by:

� 0; : : : ; n � 1 are LCDn-formulas;
� If ' is an LCDn-condition and ˛0; : : : ; ˛n�1 are LCDn-formulas, then
'˛0 : : : ˛n�1 is an LCDn-formula.

The set of subformulas of an LCDn-formula ˛ is defined in a similar way as in
LCD-logic (see Sect. 24.2).

An LCDn-model is a structure M D .f0; : : : ; n� 1g; v/ such that v is a valuation
of propositional variables into elements of f0; : : : ; n � 1g and it extends to all the
conditions and to the LCDn-formulas as:



24.5 Logics of Conditional Decisions of Order n and Their Dual Tableau Decision Procedures 445

� v.i/ D i , for every i 2 f0; : : : ; n � 1g;
� v.' _  / D max.v.'/; v. //;
� v.' ^  / D min.v.'/; v. //;

� v.' !  / D
�
0 if v.'/ > v. /
n � 1 if v.'/ � v. /I

� v.Ji'/ D
�
0 if v.'/ ¤ i
n � 1 if v.'/ D i for every i 2 f0; : : : ; n � 1g;

� v.'˛0 : : : ˛n�1/ D v.˛i /, if v.'/ D i , for i 2 f0; : : : ; n � 1g.
Thus, an LCDn-formula represents n alternatives each of which holds depending an
a degree of satisfaction of the condition in the formula.

An LCDn-formula ˛ is .n; s/-valid, 0 < s � n � 1, whenever for every LCDn-
model M D .f0; : : : ; n � 1g; v/ v.˛/ � s. A formula which is .n; n � 1/-valid
is referred to as an LCDn-valid formula. Observe that if n D 2, then v.J0'/ D
1� v.'/ and v.J1'/ D v.'/, so logic LCD2 coincides with logic LCD presented in
Sect. 24.2.

As in the LCD-dual tableau, the rules of an LCDn-dual tableau are of the form
˙1˛˙2

˙1ˇ˙2
, where ˙1 and ˙2 are strings of symbols of the LCDn-language such

that ˙1˛˙2 and ˙1ˇ˙2 are LCDn-formulas and ˛ and ˇ are their subformulas,
respectively. The following holds:

Fact 24.5.1. Let ˙1˛˙2

˙1ˇ˙2
be an LCDn-rule. Then for every LCDn-model M D

.f0; : : : ; n � 1g; v/, if v.˛/ D v.ˇ/, then v.˙1˛˙2/ D v.˙1ˇ˙2/.

Let ' and  be LCDn-conditions and let ˛0; : : : ; ˛n�1 be LCDn-formulas. In what
follows C kjD0˛j denotes the concatenation of formulas ˛0 : : : ˛k .

Decomposition rules of LCDn-dual tableau have the following forms:

._/ ˙1.' _  /C n�1jD0˛j˙2
˙1'C

n�1
jD0. C n�1kD0˛max.j;k//˙2

.^/ ˙1.' ^  /C n�1jD0˛j˙2
˙1'C

n�1
jD0. C n�1kD0˛min.j;k//˙2

.!/ ˙1.' !  /C n�1jD0˛j˙2
˙1'C

n�1
jD0. C n�1kD0ˇ

j

k
/˙2

where ˇj
k
D

�
˛0 if k < j
˛n�1 if k � j

.Ji /
˙1Ji'C

n�1
jD0˛j˙2

˙1'C
n�1
jD0�

j
i ˙2

where �ji D
�
˛0 if i ¤ j
˛n�1 if i D j

Let ' be an LCDn-condition, let p be a propositional variable, let ˛0; . . . , ˛n�1, ˇ0,
. . . , ˇn�1 be LCDn-formulas, and let ˙3p C n�1kD0ˇk˙4 be an LCDn-formula such
that p C n�1

kD0ˇk is its subformula. Let i 2 f0; : : : ; n � 1g.



446 24 Dual Tableaux for Logics of Conditional Decisions

Simplification rules of LCDn-dual tableau are:

.i/
˙1iC

n�1
jD0˛j˙2

˙1˛i˙2

.S1/
˙1'C

n�1
jD0˛j˙2

˙1˛˙2
where ˛j D ˛ for all j 2 f0; : : : ; n � 1g

.S2/
˙1.p C

l�1
jD0˛j .˙3p C n�1kD0ˇk˙4/C

n�1
jDlC1˛j /˙2

˙1.p C
l�1
jD0˛j˙3ˇl˙4C n�1jDlC1˛j /˙2

l 2 f0; : : : ; n � 1g

Observe that if l D 0, then the rule .S2/ has the form:

˙1.p .˙3p C
n�1
kD0ˇk˙4/C

n�1
jD1˛j /˙2

˙1.p ˙3ˇ0˙4C
n�1
jD1˛j /˙2

Similarly, if l D n � 1, then the rule .S2/ has the form:

˙1.p C
n�2
jD0˛j .˙3p C n�1kD0ˇk˙4/˙2

˙1.p C
n�2
jD0˛j˙3ˇn�1˙4/˙2

Proposition 24.5.1. Let M D .f0; : : : ; n � 1g; v/ be an LCDn-model. Then for
every LCDn-rule ˙1˛˙2

˙1ˇ˙2
, v.˙1˛˙2/ D v.˙1ˇ˙2/.

Proof. By way of example, we prove the statement for the rules ._/ and .S2/. Due
to Fact 24.5.1, it suffices to show v.˛/ D v.ˇ/.

._/ Without loss of generality, we may assume that v.'/ � v. /. Let v.'/ D i

and let v. / D l , for i; l 2 f0; : : : ; n � 1g. By the definition of valuation:

v..' _  /˛0 : : : ˛n�1/ D v.˛l /:

On the other hand:

v.'C n�1jD0. C n�1kD0˛max.j;k/// D v. C n�1kD0˛max.i;k// D v.˛l /:

Hence, v..' _  /˛0 : : : ˛n�1/ D v.'C n�1jD0. C n�1kD0˛max.j;k///.

.S2/ In view of Proposition 24.5.1, we may assume that ˙3 and ˙4 are
empty. Assume that v.p/ D s ¤ l . Then, v.p C l�1jD0˛j .p C n�1kD0ˇk/C

n�1
jDlC1˛j / D

v.˛s/ D v.p C l�1jD0˛jˇjC n�1jDlC1˛j /. On the other hand, if v.p/ D s D l , then

we have: v.p C l�1jD0˛j .p C n�1kD0ˇk/C
n�1
jDlC1˛j / D v.p C n�1

kD0ˇk/ D v.ˇl/ which is

equal to v.p C l�1jD0˛jˇlC n�1jDlC1˛j /. Hence, v.p C l�1jD0˛j .p C n�1kD0ˇk/C
n�1
jDlC1˛j / =

v.p C l�1jD0˛jˇlC n�1jDlC1˛j /. ut



24.5 Logics of Conditional Decisions of Order n and Their Dual Tableau Decision Procedures 447

An LCDn-proof sequence for an LCDn-formula is defined as in LCD-logic in
Sect. 24.2. An LCDn-formula ˛ is said to be LCDn-provable whenever there exists
an LCDn-proof sequence for ˛ such that the last formula of the sequence is n � 1.
Such a proof sequence is then referred to as an LCDn-proof of ˛.

Completeness of LCDn-dual tableau can be proved in a similar way as complete-
ness of LCD-dual tableau. The notions which are used in the completeness proof
are direct extensions of the corresponding notions for logic LCD.

Operation free LCDn-formulas are defined as:

� 0; : : : ; n � 1 are operation free formulas;
� '˛0 : : : ˛n�1 is an operation free formula if and only if ' is a propositional vari-

able and ˛0; : : : ; ˛n�1 are operation free formulas.

An operation free formula p˛0 : : : ˛n�1 has a unique condition whenever p does
not occur in ˛i , for any i 2 f0; : : : ; n � 1g.

An LCDn-formula ˛ is said to be indecomposable whenever it satisfies the fol-
lowing conditions:

� ˛ is an operation free formula;
� p i : : : i„ƒ‚…

n times

is not a subformula of ˛, for any propositional variable p and i 2

f0; : : : ; n � 1g;
� Every subformula of ˛ has a unique condition.

Note that if a formulap˛0 : : : ˛n�1 is indecomposable, then every ˛i is indecompos-
able and, moreover, if ˛i 2 f0; : : : ; n� 1g, then there exists j 2 f0; : : : ; n� 1g n fig
such that ˛i ¤ ˛j .

Proposition 24.5.2. For every indecomposable LCDn-formula ˛ such that
˛ ¤ n � 1, there exists an LCDn-model M D .f0; : : : ; n � 1g; v/ such that
v.˛/ ¤ n � 1.

Proof. The proof is by induction on the complexity of indecomposable LCDn-
formulas. If ˛ D i , for some i 2 f0; : : : ; n�2g, then the proposition holds. Let ˛ D
pi0 : : : in�1, for some propositional variable p and i0; : : : ; in�1 2 f0; : : : ; n � 1g.
Since ˛ is indecomposable, there exists k 2 f0; : : : ; n�1g such that ik ¤ n�1. Let
v be any valuation such that v.p/ D ik . Then v.pi0 : : : in�1/ D ik ¤ n � 1, hence
the proposition holds. Now, consider an indecomposable formula p˛0 : : : ˛n�1 such
that p does not occur in ˛i for any i 2 f0; : : : ; n � 1g. Clearly, there exists
i 2 f0; : : : ; n � 1g such that ˛i ¤ n � 1, for otherwise formula p˛0 : : : ˛n�1 is
not indecomposable. By the induction hypothesis, there is a valuation v0 such that
v0.˛i / ¤ n � 1. Consider a valuation v satisfying: v.p/ D i and v.q/ D v0.q/, for
every propositional variable q occurring in ˛i . Then, v.p˛0 : : : ˛n�1/ D v0.˛i / ¤
n � 1, and hence the proposition holds. ut
Proposition 24.5.3. For every LCDn-formula ˛, there exists an LCDn-proof
sequence such that its last formula is indecomposable.



448 24 Dual Tableaux for Logics of Conditional Decisions

Proof. Let ˛ be an LCDn-formula. Let ˇ be the last formula in an LCDn-proof
sequence for ˛. Then none of the rules is applicable to ˇ. Clearly, if ˇ D i for some
i 2 f0; : : : ; n � 1g, then the proposition holds. Let ˇ D '˛0 : : : ˛n�1. If ˇ is not
an operation free formula, then ' 2 f0; : : : ; n � 1g or its condition or a condition
of some of its subformula is a compound LCDn-formula. But then either of the
rules ._/, .^/, .!/, .Ji /, or .i/ can be applied to ˇ, a contradiction. If pi : : : i is a
subformula of ˇ, for some propositional variable p and i 2 f0; : : : ; n� 1g, then the
rule .S1/ can be applied to ˇ, a contradiction. If some of the subformulas of ˇ does
not have a unique condition, then the rule .S2/ can be applied to ˇ, a contradiction.
Therefore, ˇ must be an indecomposable LCDn-formula. ut
Theorem 24.5.1 (Soundness and Completeness of LCDn). For every LCDn-
formula ˛, the following conditions are equivalent:

1. ˛ is LCDn-valid;
2. ˛ is LCDn-provable.

Proof. .1: ! 2:/ Let ˛ be LCDn-valid. Suppose ˛ is not LCDn-provable, that
is there is no any LCDn-proof sequence for ˛ that ends with n � 1. Then, by
Proposition 24.5.3, there exists an LCD-proof sequence for ˛ such that its last for-
mula, say ˇ, is indecomposable. By Proposition 24.5.2, there exists an LCDn-model
M D .f0; : : : ; n�1g; v/ such that v.ˇ/ ¤ n�1. By Proposition 24.5.1, v.˛/ ¤ n�1,
a contradiction.

.2:! 1:/ Now, assume that ˛ is LCDn-provable, that is there exists an LCDn-proof
sequence for ˛ such that its last formula is n � 1. By Proposition 24.5.1, for every
LCDn-model M D .f0; : : : ; n � 1g; v/, v.˛/ D n � 1. ut
As in the case of LCD-dual tableau, we conclude that LCDn-dual tableau is a de-
cision procedure for the logic LCDn. Note also that ACD-algebras presented in
Sect. 24.3 can be generalized to the algebras of order n on the basis of logics LCDn.

Observe that for every LCDn-formula ', v.'01 : : : n � 1/ D v.'/. Therefore,
.n; s/-validity of ' in the Rosser–Turquette logic RT is equivalent to .n; s/-validity
of '01 : : : n � 1 in logic LCDn, n � 1. Hence, by Theorem 24.5.1, the following
holds:

Theorem 24.5.2. For every RT-formula ', the following conditions are equivalent:

1. ' is RT-valid;
2. '01 : : : n � 1 is LCDn-provable.

Now, we show how to obtain an .n; s/-dual tableau which will enable us verification
of .n; s/-validity of LCDn-formulas, 0 < s � n � 1. An indecomposable LCDn-
formula ˛ of the form˙1.pi0 : : : in�1/˙2, where˙1 and˙2 are strings of symbols
of the LCDn-language, pi0 : : : in�1 is a subformula of ˛, and ik 2 f0; : : : ; n � 1g,
for every k 2 f0; : : : ; n � 1g, will be referred to as a simple formula. It follows that
simple formulas are those indecomposable formulas which are not propositional
constants.



24.5 Logics of Conditional Decisions of Order n and Their Dual Tableau Decision Procedures 449

The .n; s/-dual tableau includes all the rules of LCDn-dual tableau and the rule
of the form:

For every simple formula˙1.pi0 : : : in�1/˙2,

.S3/
˙1.pi0 : : : in�1/˙2

˙1ik˙2
ik D minfi0; : : : ; in�1g:

Proposition 24.5.4. Let 0 < s � n � 1. Rule .S3/ preserves and reflects .n; s/-
validity, i.e., the following conditions are equivalent:

1. ˙1.pi0 : : : in�1/˙2 is .n; s/-valid;
2. ˙1ik˙2 is .n; s/-valid, where ik D minfi0; : : : ; in�1g.
Proof. First, observe that if ˛ is an indecomposable LCDn-formula, then it is
.n; s/-valid iff all of its subformulas are .n; s/-valid. Note also that if ik¤ 0, then
pi0 : : : in�1 is ik-valid. Let us assume that˙1.pi0 : : : in�1/˙2 is .n; s/-valid. Then,
pi0 : : : in�1 is .n; s/-valid, so ik � s. Hence, ˙1ik˙2 is .n; s/-valid. Now, as-
sume that ˙1ik˙2 is .n; s/-valid. Then, ik � s, which implies .n; s/-validity of
pi0 : : : in�1. Hence, ˙1.pi0 : : : in�1/˙2 is .n; s/-valid. ut
Observe that the rule .S3/ does not have the property of preserving values of its
premise and conclusion in a model under a valuation, as the rules of LCDn-dual
tableau do. For example, consider an LCD4-model M D .f0; : : : ; 3g; v/ such that
v.p/ D 0. Then v.p2111/ D 2, while v.1/ D 1. However, by Proposition 24.5.4,
formula p2111 is .3; 1/-valid.

Propositions 24.5.1 and 24.5.4 imply:

Proposition 24.5.5. The .n; s/-rules preserve and reflect .n; s/-validity.

The notion of an .n; s/-proof sequence is defined in an analogous way as in
LCDn-dual tableau. Observe that the last formula of an .n; s/-proof sequence is
i 2 f0; : : : ; n � 1g. Indeed, if none of the rules of LCDn-dual tableau can be ap-
plied to a formula ˛ in a sequence, then either ˛ 2 f0; : : : ; n � 1g or ˛ is a simple
formula to which the rule .S3/ can be applied. As the result of an application of
the rule .S3/ we obtain a formula ˛0 which is either i 2 f0; : : : ; n � 1g or a simple
formula or p i : : : i„ƒ‚…

n times

is a subformula of ˛0 for some propositional variable p and

for some i 2 f0; : : : ; n � 1g. If the latter holds, we apply to ˛0 the rule .S1/. If
˛0 is a simple formula, then we apply the rule .S3/. In both cases we obtain either
i 2 f0; : : : ; n � 1g or a simple formula or a formula with a subformula p i : : : i„ƒ‚…

n times

.

It is easy to see that this process of applications of .n; s/-rules is finite and the last
formula in the sequence is i 2 f0; : : : ; n � 1g.

Let 0 < s � n � 1. An LCDn-formula ˛ is said to be .n; s/-provable whenever
there exists an .n; s/-proof sequence for ˛ such that the last formula of the sequence
is i 2 f1; : : : ; n � 1g such that i � s.



450 24 Dual Tableaux for Logics of Conditional Decisions

Theorem 24.5.3. For every LCDn-formula ˛ and for every s 2 f1; : : : ; n � 1g, the
following conditions are equivalent:

1. ˛ is .n; s/-valid;
2. ˛ is .n; s/-provable.

Proof. Let ˛ be an LCDn-formula. Consider an .n; s/-proof sequence for ˛. Such a
sequence is finite and its last formula is i 2 f0; : : : ; n � 1g. If ˛ is .n; s/-valid, then
by Proposition 24.5.5, the last formula, say i , is .n; s/-valid, so i � s. Hence, ˛ is
.n; s/-provable. On the other hand, if ˛ is .n; s/-provable, then the last formula in
its proof sequence is i such that i � s, which is an .n; s/-valid formula. Therefore,
by Proposition 24.5.5, ˛ is .n; s/-valid. ut
Example. Consider the logic of conditional decisions of order 3. The rules of
LCD3-dual tableau are as follows. Let ' and  be conditions and let ˛0; ˛1; ˛2
be LCD3-formulas. Decomposition rules of LCD3-dual tableau are instances of the
decomposition rules of LCDn-dual tableau with n D 3:

._/ ˙1.' _  /˛0˛1˛2˙2
˙1'.. ˛0˛1˛2/. ˛1˛1˛2/˛2/˙2

.^/ ˙1.' ^  /˛0˛1˛2˙2
˙1'.˛0. ˛0˛1˛1/. ˛0˛1˛2//˙2

.!/ ˙1.' !  /˛0˛1˛2˙2

˙1'.˛2. ˛0˛2˛2/. ˛0˛0˛2//˙2

.J0/
˙1J0'˛0˛1˛2˙2

˙1'˛2˛0˛0˙2
.J1/

˙1J1'˛0˛1˛2˙2

˙1'˛0˛2˛0˙2
.J2/

˙1J2'˛0˛1˛2˙2

˙1'˛0˛0˛2˙2

Let ' be an LCD3-condition, let p be a propositional variable, let ˛, ˛0, ˛1, ˛2, ˇ0,
ˇ1, ˇ2 be LCD3-formulas, and let ˙3pˇ0ˇ1ˇ2˙4 be an LCD3-formula such that
pˇ0ˇ1ˇ2 is its subformula. Simplification rules of LCD3-dual tableau are instances
of LCDn-simplification rules with n D 3:

.0/
˙10˛0˛1˛2˙2

˙1˛0˙2
.1/

˙11˛0˛1˛2˙2

˙1˛1˙2
.2/

˙12˛0˛1˛2˙2

˙1˛2˙2

.S1/
˙1'˛˛˛˙2

˙1˛˙2

.S2/ for l D 0 ˙1.p.˙3pˇ0ˇ1ˇ2˙4/˛1˛2/˙2

˙1.p˙3ˇ0˙4˛1˛2/˙2

.S2/ for l D 1 ˙1.p˛0.˙3pˇ0ˇ1ˇ2˙4/˛2/˙2

˙1.p˛0˙3ˇ1˙4˛2/˙2



24.5 Logics of Conditional Decisions of Order n and Their Dual Tableau Decision Procedures 451

.S2/ for l D 2 ˙1.p˛0˛1.˙3pˇ0ˇ1ˇ2˙4//˙2

˙1.p˛0˛1˙3ˇ2˙4/˙2

.S3/
˙1.pi0i1i2/˙2

˙1ik˙2
ik D minfi0; i1; i2g

Let ' be the formula of the three-valued Rosser–Turquette logic:

' D J0.p _ q/! .J0p _ J0q/:
Figure 24.4 presents an LCD3-proof of '012, which in view of Theorem 24.5.2
shows that ' is valid in the three-valued Rosser–Turquette logic.

Consider an LCD3-formula:

 D J1.q _ p/.p121/21:

.J0.p _ q/! .J0p _ J0q//012

�
.!/

J0.p _ q/2.J0p _ J0q/022.J0p _ J0q/002

�
.J0/

.p _ q/..J0p _ J0q/002/22

�
._/

p.q..J0p _ J0q/002/22/q2222

�
.S1/

p.q..J0p _ J0q/002/22/22

�
._/

p.q.J0p.J0q002/.J0q002/2/22/22

�
.J0/ twice

p.q.J0p.q200/.q200/2/22/22

�
.J0/

p.q.p2q200q200/22/22

�
.S2/ twice

p.q.p222/22/22

�
.S1/

p.q222/22

�
.S1/

p222

�
.S1/

2

Fig. 24.4 An LCD3-proof of an RT-formula J0.p _ q/! .J0p _ J0q/



452 24 Dual Tableaux for Logics of Conditional Decisions

It is easy to check that this formula is not LCD3-valid. However,  is .3; 1/-
provable, hence, by Theorem 24.5.3, it is .3; 1/-valid. Figure 24.5 presents its
.3; 1/-proof.

J1.q _ p/.p212/22
�.J1/

.q _ p/.p212/2.p212/
�._/

q.p.p212/2.p212//.p22.p212//.p212/

�.S2/ for l D 0 and l D 2
q.p222/.p222/.p212/

�.S1/ + .S3/
q221

�.S3/

1

Fig. 24.5 A .3; 1/-proof of an LCD3-formula J1.q _ p/.p121/21



Part VII
Conclusion



Chapter 25
Methodological Principles of Dual Tableaux

25.1 Introduction

Dual tableaux for theories considered in the book operate either on a relational
language or a first-order language associated with the theories.

In this chapter we discuss general principles of defining a relational logic for a
given theory, the methods of construction of dual tableaux for relational logics and
first-order logics, and the method of proving completeness of dual tableaux.

In Sect. 25.2 the major steps leading to relational formalization of theories in
relation to their presentation are listed. In Sect. 25.3 a general relational logic is
presented such that most of the theories considered in the book are interpretable
in some instance of that logic. In Sect. 25.4 the problem of translation between
relational languages and first-order languages is discussed. In Sect. 25.5 a general
format of dual tableaux is presented. In Sects. 25.6 and 25.7 a correspondence theory
for dual tableaux is developed. The methods of constructing dual tableau rules re-
flecting constraints on the models of relational logics and definitions of relational
operations are presented. In Sect. 25.8 a method of proving completeness of dual
tableaux is discussed. The method is applied to all the dual tableau systems for rela-
tional logics considered in the book. In Sect. 25.9 a variety of forms of dual tableau
rules is brought into attention. Depending on implementation requirements some
of them may be more efficient than the others. In Sect. 25.10 the existing imple-
mentations of dual tableaux are briefly presented. In Sect. 25.11 some directions for
developing decision procedures are outlined. The contents of Sects. 25.5–25.8 are
based on [MO02a].

Dual tableaux not considered in this book include the systems for: a fragment
of set theory presented in [OOP04]; some substructural logics, different from the
logics dealt with in Chaps. 9 and 14, presented in [Mac97, Mac98, Mac99]; some
information logics with semantics of relative frames presented in [Kon87, Kon97,
DO02], Chaps. 7–9; a logic of nondeterministic program specifications presented
in [BK99]; the implication problem for association rules presented in [Mac01]; the
many-valued modal logics presented in [KO01].

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology,
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5 25,
c� Springer Science+Business Media B.V. 2011

455



456 25 Methodological Principles of Dual Tableaux

25.2 Theories Interpreted Relationally

A relational interpretation of a theory consists in providing relational semantics
and/or relational proof system for the theory. In this section we outline the suc-
cessive steps leading to the construction of relational proof systems for the theories
presented in this book. The construction depends in an essential way on a presen-
tation of the theory in question. In each case the goal is to associate with a given
theory T a relational theory T0 such that T is interpretable in T0. Following [TMR68]
interpretability of T in T0 means that there is a truth preserving translation from the
language of T into the language of T0.

Case 1

A theory is presented in the form of a class of algebras of relations, say T. Then the
steps leading to a relational proof system for T are:

� The construction of a relational logic RLT such that T is interpretable in RLT.
� The construction of a proof system for RLT.

The algebras and their relational logics presented in Part II are examples of this
procedure.

Case 2

A theory T is presented in the form of a class of algebras (not necessarily algebras
of relations). Then the development of a relational proof system for T consists of:

� The construction of a class of relational systems Re.T/ for T such that the first-
order theory of T is interpretable in the first-order theory of Re.T/, FRe.T/.

� The construction of a proof system for FRe.T/.

Relational proof systems obtained in this way are presented in Chap. 18.

Case 3

A theory has the form of a non-classical logic, say L. Then we obtain a relational
proof system for L following the steps below:

� The construction of a relational logic RLL such that L is interpretable in RLL.
� The construction of a proof system for RLL.

Relational proof systems obtained in this way are presented in Parts III, IV, and
Chaps. 16, 17, and 19.

The main step in this construction consists of defining validity preserving trans-
lation function � from formulas of the logic L into relational terms of the logic RLL

and proving the following property:



25.2 Theories Interpreted Relationally 457

Translation preserves and reflects validity
For every L-formula ', if RLL is a logic of n-ary relations, then for all object vari-
ables x1; : : : ; xn, the following conditions are equivalent:

1. ' is L-valid;
2. �.'/.x1; : : : ; xn/ is RLL-valid.

Relational logics enable us to represent within a uniform formalism the three basic
components of any logical system: syntax, semantics, and deduction.

Syntax: With the formal language of a logic L there is associated a language of
relational terms.

Semantics and model theory: With a logic L there is associated a class of relational
models for L, and in these models the formulas from L are interpreted as relations.
Each relational model determines an algebra of relations. The class of algebras
derived from the underlying class of relational models for L provides a relation-
algebraic semantics for L.

Proof theory: With a logic L there is associated a relational logic for L, RLL, such
that its proof system provides a deduction method for L.

In relational representation of formulas we articulate explicitly information about
both their syntactic structure and semantic satisfaction conditions. Generally speak-
ing, formulas are represented as terms over a class of algebras of relations, and
validity of a formula is reflected by an equation over this class. Each of the proposi-
tional operations becomes a relational operation and in this way an original syntactic
form of formulas is preserved. Semantic information about a formula which is pro-
vided by a satisfaction condition consists of the two basic parts: first, we say which
states satisfy the subformulas of the given formula, and second, how those states are
related to each other via the accessibility relation. Those two ingredients of semantic
information are interrelated and inseparable. In relational representation of formu-
las the terms representing accessibility relations appear explicitly in the respective
relational terms corresponding to the formulas. They become the arguments of the
relational operations in a term in the same way as the other of its subterms, obtained
from subformulas of the given formula. In this way in the relational term corre-
sponding to a formula both syntactic and semantic information about the formula
are integrated into a single information item.

One of the advantages of the relational representation of formulas is that we
gain compositionality. In most of the non-classical logics their formulas that are
built with intensional propositional operations, for example with modal or temporal
operations, are not compositional. The meaning of a compound formula is not nec-
essarily a function of the meanings of its subformulas. In the relational formalism
the counterparts of these operations become compositional. In several applications
of logics there is a need to distinguish between information about static facts and
dynamic transitions between states in a domain which a given logic is intended
to model. In relational logics these two types of information interact in a uniform
framework.



458 25 Methodological Principles of Dual Tableaux

Relational proof theory enables us to build proof systems for non-classical logics
in a systematic modular way. First, deduction rules applicable to relational terms
built with Boolean operations are defined, they are the common relational core of
the logics. These rules constitute a basis of all the relational proof systems. Next,
for any particular logic some specific rules are designed and adjoined to the core
set of rules. Hence, we need not implement each deduction system from scratch, we
should only extend the core system with a module corresponding to a specific part
of a logic under consideration.

From the algebraic perspective relational formalization of non-classical logics
leads to what might be called non-classical algebras of relations. In these alge-
bras the relational operations are admitted which are relational counterparts of
intensional propositional operations. They are not always expressible in terms of
the standard relational operations. Examples of such operations can be found in
Sects. 9.3 and 16.4.

25.3 Relational Logics

Among the languages considered in this book, the most expressive relational lan-
guage is the language of typed relations presented in Sect. 6.2. However, since the
majority of theories considered in the book are based on simpler languages, in this
section we present a family of relational languages which includes the languages
of those theories as its instances. Only few languages dealt with in the book are
not captured in that family. In Chap. 5 the language of the relational logic of fork
algebras is expanded with object terms so that an internal structure of objects can
be reflected in the syntax (see Sect. 5.3). In the language presented in Chap. 6 the
relational symbols are interpreted as heterogenous relations and it is reflected in the
syntax through introduction of types (see Sect. 6.2). Finally, in Chap. 10 the seman-
tics of the relational language for presentation of many-valued logics is based on
models with a family of meaning functions determined by the range of truth values
assumed in the logic under consideration. None of these three features is attributed
to the language of this section. All the remaining relational languages presented in
the book are instances of this language.

Expressions of relational languages are constructed from symbols of the follow-
ing pairwise disjoint sets:

� OV – a countable infinite set of object variables;
� OC – a countable (possibly empty) set of object constants;
� RV – a countable (possibly empty) set of relational variables representing rela-

tions of various finite arities;
� RC – a countable (possibly empty) set of relational constants representing rela-

tions of various finite arities;
� A set of relational operations, including set operations [, \, and �.



25.3 Relational Logics 459

Relational constants and object constants are usually those from the languages of
the theories in question. Some relational operations may act on relations of different
arities. Examples of such operations can be found in Chap. 6. Set operations always
act on relations of the same arities.

Sets OS D OV [OC and RA D RV [RC are called the set of object symbols
and the set of atomic relational terms, respectively. The set of relational terms, RT ,
is the smallest set including atomic relational terms and closed with respect to the
relational operations. We say that a term is n-ary whenever it represents an n-ary
relation. The set of relational formulas consists of expressions of the form T .x/,
where T is a relational term and x is a finite sequence of object symbols.

Let L be a relational logic based on a relational language. If X is any of the syn-
tactic categories defined above, then we write XL for its instance in L. Moreover, if
Y is a term or a formula of logic L, thenXL.Y / denotes the set of symbols of the cat-
egoryXL appearing in Y . For example, OCL.Y / is the set of object constants in Y .

An L-structure is a pair M D .U;m/, where U is a non-empty set and m is a
meaning function which:

� Assigns elements of U to object constants, so that for each object constant c,
m.c/ 2 U ;

� Assigns n-ary relations on U , n � 1, to the atomic relational terms, so that for
each n-ary atomic relational term R, m.R/ � U n;

� Assigns relational operations on U to the symbols of relational operations of
the language and preserves [, \, and �, i.e., m.T [ T 0/ D m.T / [ m.T 0/,
m.T \ T 0/ D m.T / \ m.T 0/, m.�T / D U n n m.T /, for all n-ary relational
terms T and T 0;

� Extends to compound relational terms as follows: for each k-ary relational op-
eration symbol # and for all terms Ti , i D 1; : : : ; k, m.#.T1; : : : ; Tk// D
m.#/.m.T1/; : : : ; m.Tk//.

Usually, the same symbols are used for the operations in the syntax and for their
assignment underm.

Given a logic L, L-models are L-structures such that the meaning function m
satisfies all the conditions specific for L. The conditions concern interpretation of
relational operations specific for a given logic and/or interpretation of specific rela-
tional and/or object constants of the logic. For example, in a logic of binary relations
we may assume that relational variables represent equivalence relations. Often these
constraints are expressed in a first-order language and the operations are first-order
definable.

Most often relational variables and relational constants in a language are of the
same arity. In few cases they are of the different arities: in Chap. 9 there is a ternary
relational constant and two quaternary relational constants; in Chap. 6 relational
variables are of any finite arity.

A valuation in an L-structure M is a function vWOS! U assigning elements of
U to object symbols such that v.c/ D m.c/, for every object constant c.

If x D x1; : : : ; xn is a sequence of n object symbols, then we write v.x/ to denote

the sequence v.x1/; : : : ; v.xn/. We also define set.x/
dfD fx1; : : : ; xng.



460 25 Methodological Principles of Dual Tableaux

Satisfaction of an L-formula in an L-model M by a valuation v is defined as:

M; v ˆ T .x/ iff v.x/ 2 m.T /:

The relational formula T .x/ is true in M if and only if it is satisfied by all valu-
ations in M. Consequently, if set.x/ � OV L, then T .x/ is true in M whenever
m.T / D U n. The formula T .x/ is L-valid whenever it is true in every L-model.

25.4 Relational Languages Versus First-Order Languages

There is a natural relationship between relational languages and the first-order lan-
guages. If we assume that the set of object variables (resp. object constants) in the
relational language is the set of individual variables (resp. individual constants) in
the first-order language, and the set of atomic relational terms coincides with the
set of predicate symbols, then there is a natural translation � from relational for-
mulas into first-order formulas: if R is a symbol of n-ary relation and x1; : : : ; xn
are object symbols, then �.R.x1; : : : ; xn// D R.x1; : : : ; xn/. If all the relational
operations are first-order definable, then the image under � of a compound term is
obtained by replacing the relational operations by their first-order definitions. For
example, in logic RL presented in Sect. 2.5 the translation of terms built with the
operation of composition, I, is:

�..R IP/.x; y// D 9z.�.R.x; z// ^ �.P.z; y///;

where R and P are terms of RL denoting binary relations, z is an object variable,
and x; y are object symbols.

Every relational model M determines a first-order model M� . The models share
the universe and the meaning functions in both models act on object constants and
atomic relational terms in the same way. In model M the extension of meaning
functionm to all the relational terms is determined by its action on relational opera-
tions, while in M� the extension of m on the compound formulas is determined by
its standard action on propositional operations and quantifiers. Furthermore, every
valuation in M is at the same time a valuation in M� .

Lemma 25.4.1. Let L be a relational logic. For every L-formula T .x/, for every
L-model M, and for every valuation v in M:

M; v ˆ T .x/ iff M� ; v ˆ �.T .x//:

In this way every logic of relations with first-order definable relational operations
determines a first-order theory.

By a relational literal we mean an atomic relational term or a complemented
atomic relational term. For the sake of simplicity, any expression R.x/, such that R



25.5 Dual Tableaux 461

is a relational literal and x is a sequence of object symbols, is also referred to as a
literal. If a literalA is R.x/, whereR is a relational literal, then we denote the literal
�R.x/ by :A as in the first-order languages. A literal is positive (resp. negative) if
it is of the form R.x/ (resp. �R.x/) for some atomic relational term R and for a
sequence x of object symbols.

On the other hand, some first-order formulas are definable in relational lan-
guages. Let ' D  .R1; : : : ; Rm/.x; z/ be a first-order formula built with predicates
Ri such that the elements of set.x/ are the free variables in ', the elements of set.z/
are the bound variables in ', and set.x/ \ set.z/ D ;. If there is a relational logic
L and an L-term T such that for every L-model M and for every valuation v in M,
M� ; v ˆ ' iff M; v ˆ T .x/, then ' is said to be L-definable.

Example. Let ' D 9y.xRy/. The formula ' is definable in the logic RL (see
Sect. 2.5) by x.R I .R [ �R//x. Indeed, for every RL-model MD .U;m/ and for
every valuation v in M, M; v ˆ x.R I .R[�R//x iff there exists y 2 U such that
.v.x/; y/ 2 m.R/ and .y; v.x// 2 m.R/ [ �m.R/ iff there exists y 2 U such that
.v.x/; y/ 2 m.R/ iff ' is satisfied in M� by v.

Applications of relational definability of first-order formulas are discussed in
Sects. 25.6 and 25.7.

It is known that not every formula of the first-order language with identity and
with only binary predicates, F2, is definable in the language of logic RL.1; 10/ of
Sect. 2.7. One such formula is presented in [TG87]:

8x8y8z9u.u ¤ x ^ u ¤ y ^ u ¤ z/:

It is also proved there that the three-variable fragment of the logic F2 is equivalent to
the Tarski calculus of relations (see [Tar41]). However, as it is presented in Chap. 5,
first-order logic with function symbols is interpretable in the relational logic based
on fork algebras.

25.5 Dual Tableaux

Typically, a dual tableau for a relational logic L consists of the rules which apply
to finite sets of relational formulas and of the axiomatic sets of formulas. The ax-
iomatic sets take the place of axioms. The rules reflect properties of operations and
constants of the language under consideration. As in the classical logic presented
in Chap. 1, there are two groups of rules: decomposition rules and specific rules.
Decomposition rules enable us to decompose formulas into some simpler formulas.
Decomposition rules are designed in such a way that they encode semantics of the
operations assumed in the language of the given logic. As a result of decomposi-
tion we usually obtain finitely many new sets of formulas (although systems with
infinitary rules are also in use, see Sect. 19.2). The specific rules enable us to modify
formulas which they are applied to. These rules are intended to reflect constraints



462 25 Methodological Principles of Dual Tableaux

placed on constants. In other words, the rules reflect the restrictions that we place
on the meaning function in the models of the logic.

All the rules mentioned above have the following general form:

.rule/
˚.x/

˚1.x1; y1; z1/ j : : : j˚j .xj ; yj ; zj / j : : :

where j 2J for some set J of indices, ˚.x/ is a finite (possibly empty) set
of formulas whose object variables are among the elements of set.x/; every
˚j .xj ; yj ; zj / is a finite non-empty set of formulas, whose object variables are
among the elements of set.xj / [ set.yj / [ set.zj /; set.xj / � set.x/; set.yj / con-
sists of the variables that may be instantiated to arbitrary object symbols, usually to
the object symbols that appear in the set to which the rule is being applied; set.zj /
consists of variables that must be instantiated to new, i.e., not appearing in the
formulas of the set to which the rule is being applied, pairwise different variables
distinct from all object variables from set.yj /. If the cardinality of the set J is
n � 2, then (rule) is the n-fold branching rule. The set of formulas above the line is
referred to as the premise of (rule) and the set(s) below the line is (are) its conclu-
sion(s). As usual, we write premises and conclusions of the rules as sequences of
formulas rather than sets.

A rule is said to be applicable to a finite set of formulas,X , whenever˚.x/ � X .
The result of an application of a rule of the form (rule) to the set X are the sets of
the form .X n ˚.x// [ ˚j .xj ; yj ; zj /, for j 2 J . Note that ˚j .xj ; yj ; zj / may
include the set ˚.x/. In cut-like rules which are discussed in Sect. 25.9 the set ˚.x/
is empty.

Let L be a relational logic. We extend the notion of validity to finite sets of for-
mulas in the following way. A finite set X of L-formulas is an L-set whenever for
every L-model M and for every valuation v in M, there is a formula in X satisfied
by v in M. This is equivalent to the F-validity of the universally quantified first-
order disjunction of the translations of the formulas of X into first-order formulas
obtained as described in the previous section. If K is a class of L-structures (not nec-
essarily L-models), then a finite set X of L-formulas is said to be a K-set whenever
for every L-structure M of K and for every valuation v in M, there exists a formula
in X satisfied by v in M.

A rule of the form (rule) is L-correct whenever for every finite set X of
L-formulas, X [ ˚.x/ is an L-set iff for each j 2 J , X [ ˚j .xj ; yj ; zj / is
an L-set. If K is a class of L-structures, then we define K-correctness in a similar
way, that is a rule of the form (rule) is K-correct whenever for every finite set X
of L-formulas, X [ ˚.x/ is a K-set iff for each j 2 J , X [ ˚j .xj ; yj ; zj / is a
K-set. Every relational proof system for logic L includes the two decomposition
rules denoted by .#/ and .�#/, respectively, for every relational operation symbol #
of the language of L. These rules reflect semantics of formulas built with #.

If ' is an L-formula whose validity is in question, we construct a proof tree for
'. We place ' at the root and generate a tree by applying deduction rules each of
which yields a set of formulas or branches to yield several sets of formulas. A branch



25.6 Constraint–Rule Correspondence 463

of a proof tree closes whenever it contains a node with an axiomatic set. A tree is
closed whenever all of its branches are closed. A complete branch of a proof tree
is a branch b which is either closed or satisfies the following completion condition,
(Cpl rule), for every rule of the form (rule) of the proof system in question. As usual,
if b is a branch of a proof tree, the notation ' 2 b means that the formula ' appears
in a node of the branch b.

(Cpl rule) If every formula from ˚.x/ appears in some node of b, then there
exists k 2 J such that for every formula ' in ˚k , the following conditions are
satisfied:

� If
Sfset.yj / W j 2 J g ¤ ; and

Sfset.zj / W j 2 J g D ;, then for every y 2Sfset.yj / W j 2 J g and for every t 2 OS, if y appears in ', then '.y=t/ 2 b;
� If

Sfset.zj / W j 2 J g ¤ ; and
Sfset.yj / W j 2 J g D ;, then for every

z 2 Sfset.zj / W j 2 J g there is t 2 OV such that if z appears in ', then
'.z=t/ 2 b;

� If
Sfset.yj / W j 2 J g ¤ ; and

Sfset.zj / W j 2 J g ¤ ;, then for all y 2Sfset.yj / W j 2 J g, z 2Sfset.zj / W j 2 J g, and for every t1 2 OS there exists
t2 2 OV such that if y or z appear in ', then '.y=t1; z=t2/ 2 b;

� If
Sfset.yj / W j 2 J g D

Sfset.zj / W j 2 J g D ;, then ' 2 b.

In the first item of the above condition '.y=t/ denotes the formula obtained from '

by substituting t for every occurrence of y, and similarly in the remaining items.
A branch of a proof tree is open whenever it is complete and does not close.

Intuitively, a branch is open whenever all of the rules that can be applied to formulas
on the branch have been applied and the branch does not close. A complete proof tree
is a proof tree such that all of its branches are complete. The completion conditions
must guarantee that for every formula there exists a complete proof tree for it.

We say that a formula is L-provable whenever there is a closed proof tree for
it. As usual, soundness of a dual tableau is a property saying that if a formula is
provable, then it is valid. To prove soundness it is sufficient to show that each of
the rules is L-correct and all the axiomatic sets are L-valid. Completeness of a dual
tableau is a property saying that if a formula is valid, then it is provable. To prove
completeness it is sufficient to show that every complete L-proof tree of an L-valid
formula can be closed. A discussion of the details of the completeness proofs of
dual tableaux is presented in Sect. 25.8.

25.6 Constraint–Rule Correspondence

In this section we present correspondences which show how to define a rule, given a
constraint. Our approach will be to look at first-order formulas or relational formulas
expressing constraints and develop corresponding correct rules.

If x D x1; : : : ; xn is a sequence of object variables, then by 8x we mean
8x1:::8xn, and similarly for the quantifier 9.



464 25 Methodological Principles of Dual Tableaux

Constraints Defined in a First-Order Language

The condition (c1)

The condition (c1) is of the form:

(c1) 8x.A! B/,

where A D A1 ^ : : : ^ As , s � 1, A1, . . . , As are literals, B D B1 _ : : : _ B i ,
i � 1, and for every j 2 f1; : : : ; ig, Bj D B

j
1 ^ : : : ^ Bjkj

, kj � 1, Bj1 , . . . , Bj
kj

are literals, OV .A/ D set.x/ ¤ ;, ; ¤ OV .B/ � OV .A/.
Then the corresponding rule is an s C i -fold branching rule:

.rc1/
A1 j : : : jAs j :B11 ; : : : ;:B1k1

j : : : j :B i1; : : : ;:B iki

where the variables that appear in A or B may be instantiated to any object symbol.

Examples of rules corresponding to conditions of type (c1) are:

� Rules (rM5), . . . , (rM8), and (rM12) for conditions (M5), . . . , (M8), and (M12),
respectively, in relevant logics in Sect. 9.3 and in Sect. 9.4;

� Rule (dis R;S ) for condition R \ S D ; in logic RLCI in Sect. 11.5;
� Rule (rReC0) of FBAC-dual tableau presented in Sect. 18.3;
� Rule (rReı1) of FBAı -dual tableau presented in Sect. 18.5.

The condition (c2)

If a constraint has the form:

(c2) 8xB
where B is as in the constraint (c1) and OV .B/ D set.x/, then the relational coun-
terpart of (c2) is provided by a rule of the form:

.rc2/ :B11 ; : : : ;:B1k1
j : : : j :B i1; : : : ;:B iki

where the variables that appear in B may be instantiated to any object symbol.

Examples of rules corresponding to conditions of type (c2):

� Rule (rS2) for conditionR; D U � U in logic RLLFS in Sect. 12.3;
� Rule (rW2) for condition R; D ; in logic RLLFW in Sect. 12.3;
� Rule .0/ for the empty relation condition in logic RLMTL in Sect. 14.4;
� Rule (irref <) for irreflexivity of < in logic RLOMR in Sect. 15.3.

The condition (c3)

The condition (c3) is of the form:

(c3) 8x9zB
where B is as in the constraint (c1) and OV .B/ D set.x/ [ set.z/, set.x/ ¤ ;,
set.z/ ¤ ;, and set.x/ \ set.z/ D ;.



25.6 Constraint–Rule Correspondence 465

The corresponding rule is an i -fold branching rule:

.rc3/ :B11 ; : : : ;:B1k1
j : : : j :B i1; : : : ;:B iki

where each of the variables from set.x/ may be instantiated to any object symbol
and all variables from set.z/must be instantiated to new pairwise different variables
that are distinct from the variables of set.x/.

Examples of rules corresponding to conditions of type (c3) are:

� Rule (rMTL4) for condition (MTL4) in logic RLMTL in Sect. 14.4;
� Rules (rReBA0), (rReBA2#), and (rReBA10) of FBAC-dual tableaux for spatial

theories based on a Boolean algebra presented in Sect. 18.3.

The condition (c4)

The condition (c4) is of the form:

(c4) 8x.A! 9zB/
where A and B are as in the constraint (c1), x and z are finite sequences of object
variables, not necessarily of the same length, OV .A/ D set.x/ ¤ ;, OV .B/ ¤ ;,
.OV .B/ n set.z// � OV .A/, and set.x/ \ set.z/ D ;.

The corresponding rule is an s C i -fold branching rule:

.rc4/
A1 j : : : jAs j :B11 ; : : : ;:B1k1

j : : : j :B i1; : : : ;:B iki

where each of the variables from set.z/ occurring in any B lm must be instantiated
to a new variable distinct from the variables in set.x/, for l 2 f1; : : : ; ig and m 2
f1; : : : ; ki g.
Examples of rules corresponding to conditions of type (c4) are:

� The rule (rMTL3) for condition (MTL3) in logic RLMTL in Sect. 14.4;
� The rule (ext C ) for extensionality axiom in spatial theories based on a plain

contact relation in Sect. 18.2;
� The rules (rReC8), (rReC10), and (rReC11) of FBAC-dual tableaux for spatial

theories based on a Boolean algebra presented in Sect. 18.3;
� The rules (r1ReRCC5(!)), (r1ReRCC5( )), (r2ReRCC5(!)), and the rules

(r2ReRCC5( )), (rReRCC7(!)), and (rReRCC7( )) of FRCC-dual tableaux
for spatial theories based on a Boolean algebra presented in Sect. 18.4.

In many dual tableaux presented in the book, we admit another form of the rules
corresponding to conditions (c3) and (c4). Assume that formula 9zB appearing in
the conditions (c3) and (c4) is definable in a relational language with a formula
T9zB .x/. Then the rule corresponding to the condition (c4) is:

.rc4/’
A1 j : : : jAs j �T9zB.x/

where each of the variables from set.x/ may be instantiated to any object symbol.



466 25 Methodological Principles of Dual Tableaux

Example. Let LTL be a basic temporal logic presented in Sect. 16.2 such that the
relation R is dense in all LTL-models, i.e.:

.den R/ 8x8y.xRy ! 9z.xRz ^ zRy//:

The relational representation of 9z.xRz ^ zRy/ is:

T9z.xRz^zRy/.x; y/ D x.R IR/y:

Then the rule corresponding to condition (den R) is:

.den R/
xRy j x�.R IR/y for all object symbols x and y

In much the same way, we can obtain the rules corresponding to conditions of type
(c3) and (c4). Examples of the rules corresponding to these conditions are:

� Rule (rL2) for condition (L2) in logic RLL2
in Sect. 8.4;

� Rules (un R), (ser R), and (wdir R) for the condition of unboundness, seriality,
and directness of R, respectively, in logic RLLTL in Sect. 16.3.

Constraints Defined in a Relational Language

The condition (c5)

The condition (c5) is of the form:

(c5) 8x.A! T /

where x is a finite sequence of object variables, A is a conjunction of relational
literals, OV .A/ D set.x/ ¤ ;, and T is a relational formula such that all of its
object variables are in set.x/. The rule corresponding to condition (c5) has the form:

.rc5/
A1 j : : : jAs j �T

where each of the variables from set.x/ may be instantiated to any object symbol.

After the translation of T into a first-order formula, some instances of condition
(c5) are neither of the form (c1) nor (c4) as the following example shows.

Example. In Sect. 16.3 the relational logic RLLTL for the basic temporal logic with
discrete models is considered. Discreteness is expressed as follows:

(dis R) .x; y/ 2 R implies (1) there exists z such that .x; z/ 2 R and for all t if
.x; t/ 2 R, then .z; t/ 2 R, and (2) there exists z such that .z; y/ 2 R and for all t if
.t; y/ 2 R, then .t; z/ 2 R.

In the relational logic the above condition is equivalent to:

.x; y/ 2 R implies:



25.6 Constraint–Rule Correspondence 467

(1) .x; y/ 2 .�.RI �R�1/IR�1/, and
(2) .y; y/ 2 .�.R�1I �R/IR/.
Hence, the corresponding rules are:

(dis1 R)
xRy j x�.�.RI �R�1/IR�1/x
x; y are any object variables

(dis2 R)
xRy j y�.�.R�1I �R/IR/y
x; y are any object variables

In much the same way, the rule (fun R) for the condition of functionality of R in
logic RLLTL in Sect. 16.3 is obtained.

Theorem 25.6.1. Let L be a relational logic and let K be a class of L-structures.
Then, the following hold:

1. The rule (rci) is K-correct iff condition (ci) is satisfied in every K-structure, for
every i 2 f1; 2g;

2. If the subformula 9zB appearing in the constraint (ci) has a relational represen-
tation in the logic L, then the rule (rci) is K-correct iff condition (ci) is satisfied
in every K-structure, for every i 2 f3; 4g;

3. If the subformula B appearing in the constraint (c5) has a relational represen-
tation in the logic L, then the rule (rc5) is K-correct iff condition (c5) is satisfied
in every K-structure.

Proof. Let L be a relational logic and let K be a class of L-structures. By way of
example, we prove 2:.!/ for (rc3) and 2:. / for (rc4).
2:.!/ Assume that the rule (rc3) is K-correct. Since set.z/ \ set.x/ D ; and

all the variables from set.z/ are new, K-correctness of (rc3) implies that for every
finite set X of L-formulas, X is a K-set iff for every j 2 f1; : : : ; ig the for-
mula 8x8z.ıX _ :Bj1 .y; z/ _ : : : _ :Bjkj

.y; z// is valid, where set.y/ � set.x/.

We recall that ıX is the disjunction of formulas from the set X . Let T9zB.x/
be a relational formula defining 9zB such that OV .T9zB.x// D set.x/. Then
fT9zB.x/;:Bj1 ; : : : ;:Bjkj

g is a K-set for every j 2 f1; : : : ; ig, because T9zB.x/
implies 9z.Bj1 .y; z/ ^ : : : ^ Bjkj

.y; z//. Thus, by the assumption, fT9zB.x/g is a
K-set, which means that the condition (c3) is satisfied in every K-structure.
2:. / Assume (c4) holds in every K-structure. Let X be a finite set of

L-formulas. We assume that variables from set.z/ do not occur in X and
set.z/ \ set.x/ D ;. Clearly, if X is a K-set, then each of the sets below the
line is valid. Now, assume that X [ Aj and X [ f:B l1; : : : ;:B lkl

g are K-
sets for all j 2 f1; : : : ; sg, l 2 f1; : : : ; ig. Then since set.z/ \ set.x/ D ;
and all the variables from set.z/ are new, for every l 2 f1; : : : ; ig the formula
8x8z.ıX _:B l1.y; z/_ : : :_:B lkl

.y; z// is valid, where set.y/ � set.x/. Suppose



468 25 Methodological Principles of Dual Tableaux

X is not a K-set. Then, by the assumption, there exists a K-structure M such
that M ˆ Aj for every j 2 f1; : : : ; sg and M 6ˆ 9zB , a contradiction with the
condition (c4). ut
The assumption made in the condition 2. of the above theorem is not very restrictive
from the point of view of applicability of the relational proof systems. Most often
we pose the constraints on the relations in the models of a relational logic in terms
of formulas of that logic.

The completion conditions for the rules corresponding to the constraints consid-
ered in this section are:

Cpl(rc1) For every object symbol t and for every y 2 set.x/ either there exists
j 2 f1; : : : ; sg such that Aj .y=t/ 2 b or there exists l 2 f1; : : : ; ig such that all
B l1.y=t/; : : : ; B

l
kl
.y=t/ are in b;

Cpl(rc2) For every object symbol t and for every y 2 set.x/ there exists l 2
f1; : : : ; ig such that all B l1.y=t/; : : : ; B

l
kl
.y=t/ are in b;

Cpl(rc3) For all x 2 set.x/, z2 set.z/, and for every object symbol t there exists
an object variable u such that for some l 2 f1; : : : ; ig all :B l1.x=t; z=u/; : : : ;
:B l

kl
.x=t; z=u/ are in b;

Cpl(rc4) For all x 2 set.x/, z 2 set.z/, and for every object symbol t , either there
exists j 2 f1; : : : ; sg such that Aj .x=t/ 2 b or there exists an object vari-
able u such that for some l 2 f1; : : : ; ig all :B l1.x=t; z=u/; : : : ;:B l

kl
.x=t; z=u/

are in b;
Cpl(rc5) For every object symbol t and for every y 2 set.x/, either there exists
j 2 f1; : : : ; sg such that Aj .y=t/ 2 b or �T .y=t/ 2 b.

25.7 Definition–Rule Correspondence

In this section we show how to define a rule given a definition of a relational opera-
tion or a relational constant.

First-Order Definition of a Relational Operation

Let L be a logic based on a relational language. Let a k-ary relational operation # be
defined by a first-order formula:

For every sequence x of object symbols,

.def#/ .#.R1; : : : ; Rk//.x/ iffQz'.R1; : : : ; Rk/.x; z/;

whereRi , i D 1; : : : ; k, are atomic relational terms,Q is a string of quantifiers such
that all of them are either universal or existential, ' is an open first-order formula
built with predicates R1, . . . , Rk , the elements of set.x/ \ OV L are the free vari-
ables in Qz', the elements of set.z/ are the bound variables in Qz', and set.x/ \
set.z/ D ;.

Consider the relational logic L0 which is a signature extension of L such that
the language of L0 is obtained from the language of L by endowing it with the



25.7 Definition–Rule Correspondence 469

k-ary operation #. An L0-structure is an L-model MD .U;m/ in which
m.#.R1; : : : ; Rk// � U k . Models of L0 are L0-structures such that the meaning
of the terms built with operation # is determined by (def #):

.m#/ m.#.R1; : : : ; Rk// D fa W Qz'.m.R1/; : : : ; m.Rk//.a; z/g

The proof system for L0 is obtained from a proof system for L by adding two
decomposition rules (#) and (�#) associated to the operation #:

.#/
.#.R1; : : : ; Rk//.x/

H1; .#.R1; : : : ; Rk//.x/ j : : : jHp; .#.R1; : : : ; Rk//.x/

.�#/
.�#.R1; : : : ; Rk//.x/

K1; .�#.R1; : : : ; Rk//.x/ j : : : jKq; .�#.R1; : : : ; Rk//.x/

where R1; : : : ; Rk are relational terms and sets H1; : : : ;Hp (respectively
K1; : : : ; Kq) are obtained in the following way:

(Step 1) We successively apply the decomposition rules of F-dual tableau pre-
sented in Sect. 1.3 to formula ' (respectively :'), with the restriction that if rule
(8) or .:9/ is applied, then the repetition of the formula .#.R1; : : : ; Rk//.x/ (resp.
.�#.R1; : : : ; Rk//.x/) is not introduced. The tree obtained in this way is finite;

(Step 2) For H1; : : : ;Hp (resp. K1; : : : ; Kq/ we take the leaves of the decomposi-
tion tree obtained in (Step 1).

Observe that the restricted application of (8) and (:9) in (Step 1) does not
make the process incorrect, because the formula .#.R1; : : : ; Rk//.x/ (resp.
.�#.R1; : : : ; Rk//.x/) occurring in the set under the line of the rule (#) (resp.
(�#)) contains implicitly all the repetitions required by those rules.

Then the completion conditions, Cpl(#) and Cpl(�#), are obtained according to the
definition of Cpl(rule) in Sect. 25.5.

Theorem 25.7.1 (Correspondence). Let K be a class of L0-structures. If
Qz'.R1; : : : ; Rk/.x; z/ is L-definable, then the following conditions are equiv-
alent:

1. The rules (#) and (�#) are K-correct;
2. K is a class of L0-models.

The proof follows from correctness of the rules of F-dual tableau and the condition
(def#/. More exactly, the rules .#/ and .�#/ reflect the definition of #, namely, the
rule .#/ is correct whenever definiens i.e., the defining formula, implies definiendum
i.e., the concept being defined, and the rule .�#/ is correct whenever definiendum
implies definiens. If Qz'.R1; : : : ; Rk/.x; z/ is not L-definable, then we have the
weaker theorem:



470 25 Methodological Principles of Dual Tableaux

Theorem 25.7.2. The rules .#/ and .�#/ are L0-correct.

The rules for the following relational operations are constructed in this way:

� Operations c and W in Peirce logic in Sect. 4.4;
� Operation r in the fork logic in Sect. 5.4;
� Projection˘ and division� in the logic of typed relations in Sect. 6.4;
� Operations ! and ˇ in relevant logics in Sect. 9.4 and in the logic RLMTL in

Sect. 14.4;
� Iteration � in the propositional dynamic logic in Sect. 19.2;
� Demonic union jj in the logic of demonic nondeterministic programs in

Sect. 19.4.

Example. Consider logic RL presented in Sect. 2.5 and define relational operations
) and( in the following way:

x.R) P/y iff 8z.R.z; x/! P.z; y//;

x.R( P/y iff 8z.R.y; z/! P.x; z//;

where the symbol! on the right side of these definitions denotes the ordinary first-
order implication. These operations are needed in a relational logic for resituated
semigroups.

Let RL0 be a signature extension of RL such that its language is obtained from the
language of RL by endowing it with the binary relational operations) and(. RL0-
structures are RL-models M D .U;m/ such that m.R ) P/ and m.R ( P/ are
binary relations on U , and RL0-models are RL0-structures such that the meanings of
the operations) and( are defined according to the above definitions, respectively.

The respective decomposition rules are:

.)/ x.R) P/y

z�Rx; zPy z is a new object variable

.� )/ x�.R) P/y

zRx; x�.R) P/y j z�Py; x�.R) P/y

z is any object symbol

.(/ x.R( P/y

y�Rz; xP z
z is a new object variable

.� (/ x�.R( P/y

yRz; x�.R( P/y j x�P z; x�.R( P/y

z is any object symbol



25.7 Definition–Rule Correspondence 471

It is easy to see that these rules are RL0-correct, that is they preserve and reflect
the meanings of the operations ) and ( in RL0-models. Moreover, since both
operations are definable in the language of the logic RL, by Theorem 25.7.1, if K
is a class of RL0-structures, then K-correctness of these rules implies the intended
meanings of the operations in the structures, that is K-correctness implies that K is
a class of RL0-models. By way of example, we show it for).

Let X1
dfD fx.R�1I �P/yg. Then X1 [ fz�Rx; zPyg is a K-set. Thus, by K-

correctness of the rule .)/, X1 [ fx.R) P/yg is also a K-set. Therefore, .R)
P/ � �.R�1I �P/. Now, let X2 D fz�Rx; zPyg. Then, X2 [ fzRx; x�.R )
P/yg and X2 [ fz�Py; x�.R ) P/yg are K-sets. Thus, by K-correctness of the
rule (� )), X2 [ x�.R ) P/y is also a K-set. Thus, for every RL0-structure M
and for every valuation v in M, if .v.z/; v.x// 2 m.R/ and .v.z/; v.y// 62 m.P /,
then .v.x/; v.y// 62 m.R ) P/. Hence, .R ) P/ � �.R�1I �P/, which com-
pletes the proof.

The completion conditions for the above rules can be defined according to the
method presented in Sect. 25.5.

Definition of a Relational Operation by a Relational Term

Let L be a relational logic. Let a k-ary relational operation # be defined by:

For every sequence x of object symbols,

.def’#/ .#.R1; : : : ; Rk//.x/ iff T .R1; : : : ; Rk/.x/

whereRi , i D 1; : : : ; m, are relational terms and T .R1; : : : ; Rk/ is a relational term
of L built with R1, . . . , Rk . As in the case of the first-order definition of #, let L0
be the relational logic which is a signature extension of L such that the language
of L0 is obtained from the language of L by endowing it with the operation #. An
L0-structure is an L-model M D .U;m/ in whichm.#.R1; : : : ; Rk// � U k . Models
of L0 are L0-structures such that the meanings of the terms built with operation # are
determined by (def’ #). The dual tableau for L0 is obtained from a dual tableau
for L by adding two decomposition rules (#) and (�#) associated to the relational
definition of the operation #:

.#/
.#.R1; : : : ; Rk//.x/

T .R1; : : : ; Rk/.x/
.�#/

.�#.R1; : : : ; Rk//.x/

�T .R1; : : : ; Rk/.x/
The completion conditions, Cpl(#) and Cpl(�#), are obtained according to the defi-
nition of Cpl(rule) in Sect. 25.5.

The theorems analogous to Theorems 25.7.1 and 25.7.2 hold.
In some dual tableaux presented in the book, we admit another form of the rules

(#) and (�#) associated to the relational definition of the operation #. Namely, we
decompose term T .R1; : : : ; Rk/.x/ (resp. �T .R1; : : : ; Rk/.x/) applying the rules
of dual tableau for L. Then, as a conclusion(s) of the rule (#) (resp. (�#)) we
take the leaf (the leaves) of the decomposition tree for T .R1; : : : ; Rk/.x/ (resp.



472 25 Methodological Principles of Dual Tableaux

�T .R1; : : : ; Rk/.x/). However, there are some restrictions in this process, in par-
ticular we stop expanding the decomposition tree whenever it contains a variable
which must be instantiated to a new object variable and the only rule that can be ap-
plied introduces a variable which is to be instantiated to an arbitrary object symbol.

The rules for the following operations are constructed in this way:

� The operations Since, Until, and Next of the dual tableau for the temporal logic
TLSU in Sect. 16.4;

� The operation of demonic composition II and the operation of demonic iteration
d.�/ of the dual tableau for the logic of demonic nondeterministic programs in
Sect. 19.4.

Below we present one more example of that kind.

Example. Consider logic RL presented in Sect. 2.5 and define a ternary relational
operation # in logic RL as:

#.R1; R2; R3/
dfD �.R1I �.R2IR3//:

Let RL.#/ be a signature extension of RL such that its language is the language
of RL endowed with the relational operation #. RL.#/-structures are RL-models
M D .U;m/ such that m.#.R1; R2; R3// is a binary relation on U , and RL.#/-
models are RL.#/-structures M D .U;m/ such that the meaning of the operation #
is defined as m.#.R1; R2; R3// D �.R1I �.R2IR3//.
The rules for the terms built with the operation # have the following forms:

.#/
x#.R1; R2; R3/y

x�R1z; z.R2IR3/y
z is a new object variable

.�#/
x�#.R1; R2; R3/y

xR1z; x�#.R1; R2; R3/y j z�R2w;w�R3y; x�#.R1; R2; R3/y

z is any object symbol, w is a new object variable such that z ¤ w

By Theorem 25.7.1, for every class K of RL.#/-structures the following holds: the
rules .#/ and .�#/ are K-correct iff K is a class of RL.#/-models.

The completion conditions corresponding to the above rules are:

Cpl(#) If x#.R1; R2; Rm/y 2 b, then for some object variable z both x�R1z 2 b
and z.R2IR3/y 2 b, obtained by an application of the rule .#/;

Cpl(�#) If x�#.R1; R2; Rm/y 2 b, then for every object symbol z either xR1z 2 b
or there exists an object variable w such that both x�R2w 2 b and w�R3y 2 b,
obtained by an application of the rule .�#/.



25.8 Branch Model and Completeness Proof 473

Definition of a Relational Constant

In a similar way we construct the rules corresponding to definitions of relational
constants. Namely, if a definition of a relational constant R has the form:

For every sequence x of object symbols,

(def R/ R.x/ iff Qz'.R1; : : : ; Rk/.x; z/,

with the assumptions on ' as in (def #/, then the corresponding specific rules .R/
and .�R/ have in the upper sets the formulas R.x/ and �R.x/, respectively, and
their lower sets are obtained from ' and :', respectively, in the way described in
(Step 1) and (Step 2) above. The theorems analogous to Theorems 25.7.1 and 25.7.2
hold. The rules for the following relational constants are constructed in this way:

� C in the relational logics with point relations introduced with definitions in
Sect. 3.3;

� R1 and R2 in relevant logics in Sect. 9.4;
� RP[Q in logics of relative frames in Sect. 12.3;
� @, C�, and CC in the logic of order of magnitude reasoning in Sect. 15.3;
� B and E in the relational logic for Halpern–Shoham logic in Sect. 17.5; D, M ,
P , andO in the relational logic for interval temporal logics in Sect. 17.6;

� Mereological relations in the logic RLMer in Sect. 18.2;
� run in the relational logic for event structure logics in Sect. 19.5.

25.8 Branch Model and Completeness Proof

Let L be a relational logic. In order to prove completeness of an L-dual tableau, we
suppose that an L-valid formula does not have an L-proof. It follows that there exists
a complete L-proof tree for this formula with an open branch, say b. We construct a
branch structure Mb D .U b; mb/ as follows:

� U b is the set of object symbols of the language of L;
� mb.c/ D c, for c 2 OCL;
� mb.R/ D fx 2 .U b/n W n is the arity of R and R.x/ 62 bg, for any relational

variable R 2 RV L;
� For any relational constant C 2 RCL, if C is definable in L, that is if there exists

a term TC such that C does not appear in TC and in every L-model m.C/ D
m.TC /, then we set mb.C /

dfD mb.T / and otherwise mb.C /
dfD fx 2 .U b/n W

n is the arity of C and C.x/ 62 bg;
� For every compound relational term T , mb.T / is defined as in L-models.

Example. In Sect. 2.7 the language of logic RL.1; 10/ includes the relational con-
stant 10 which is assumed to be an equivalence relation in all RL.1; 10/-models. In
the branch structure we define:



474 25 Methodological Principles of Dual Tableaux

mb.10/ dfD f.x; y/ 2 U b � U b W x10y 62 bg:

In Sect. 18.2 dual tableaux for spatial theories based on a plain contact relation are
presented, including a dual tableau for the relational logic RLMer for reasoning about
the mereological relations. The language of RLMer contains relational constants P ,
PP, O , PO, EC, TPP, NTPP, DC, and DR whose definitions in RLMer-models are

given. The meaning of constant P is defined as m.P /
dfD �m.C I �C/, where C is

a relational constant. Then in the branch structure Mb D .U b; mb/ we postulate

mb.P /
dfD �mb.C I �C/.

One of the necessary prerequisites for getting completeness is that the rules of
the L-dual tableau guarantee the following condition:

Closed Branch Property
For every branch of an L-proof tree, ifR.x/ and�R.x/ for an atomic termR belong
to the branch, then the branch can be closed, i.e., R.x/ and �R.x/ will appear in a
node of the branch.

Usually, the closed branch property follows from an essential property of relational
dual tableaux that any application of the rules, in particular an application of the
specific rules, preserves the formulas built with atomic terms or their complements.
However, in some dual tableaux there are the rules which do not satisfy such a
preservation property, for example, the rule (sym)2 presented in Sect. 2.8 and the
rules .�R1/ and .�R2/ presented in Sect. 9.4. In these cases there is no general
method of proving the closed branch property, it must be proved locally, depend-
ing on a rule which violates the preservation property. In case of rule (sym)2 the
closed branch property can be proved as in Proposition 2.8.1. In case of rules .�R1/
and .�R2/ their completion conditions are sufficient for proving the satisfaction in
branch model property (see Proposition 9.4.3).

Given a branch structure Mb , we need to show that Mb is an L-model. This
property is referred to as branch model property.

Branch Model Property
Let b be an open branch of a complete L-proof tree. Then a branch structure Mb is
an L-model.

For that, we need to show that all the constraints assumed in the L-models on rela-
tional variables and the relational constants are satisfied in the branch structure. This
must be guaranteed by the rules of L-dual tableau and their corresponding comple-
tion conditions. A branch structure which is an L-model is referred to as the branch
model.



25.8 Branch Model and Completeness Proof 475

Then, we define the valuation vb in the model Mb as the identity function, i.e.,
vb.x/ D x for every object symbol x, and we prove the so called satisfaction in
branch model property:

Satisfaction in Branch Model Property
Let b be an open branch of a complete L-proof tree. Then for every L-formula ',
the branch model Mb and valuation vb in Mb satisfy: if Mb; vb ˆ ', then ' 62 b.

The proof of this property is by induction on the complexity of relational terms. The
idea of the proof is as follows. First, we prove that the proposition holds for formulas
built with atomic relational terms and for formulas built with complements of atomic
relational terms.

If the interpretation of an atomic relational term R in the branch model Mb D
.U b; mb/ is given by mb.R/

dfD fx 2 .U b/n W R.x/ 62 bg, then for ' D R.x/ the
proposition holds by the definition of mb.R/. Assume Mb; vb ˆ �R.x/, that is
R.x/ 2 b and, by the closed branch property, �R.x/ 62 b. Therefore, the propo-
sition holds for ' D �R.x/. The proof of that kind for the relational variables in
logic RL is presented in Sect. 2.5 (see Proposition 2.5.5).

If the interpretation of an atomic relational term R in the branch model Mb D
.U b; mb/ is defined as in L-models, then L-dual tableau contains the rules .R/ and
.�R/ that reflect the required semantic condition. Then, due to the completion con-
ditions Cpl(R) and Cpl(�R), the proposition holds for R and �R. Then, applying
the induction hypothesis, we can show the proposition for any compound relational
term T and its complement, by using the completion conditions associated with the
rules relevant for the relational operations appearing in T . For example, consider
the constant P from the language of relational logic RLMer for reasoning about the

mereological relations (see Sect. 18.2). Recall that mb.P /
dfD �mb.C I �C/. The

completion conditions determined by the rules for the constant P and its comple-
ment are:

Cpl(P ) If xPy 2 b, then for some object variable z both x�C z 2 b and zCy 2 b,
obtained by an application of the rule .P /;

Cpl(�P ) If x�Py 2 b, then for every object symbol z, either xC z 2 b or z�Cy 2
b, obtained by an application of the rule .�P/.

Assume Mb; vb ˆ xPy. Thus, .vb.x/; vb.y// 2 mb.P /. Suppose xPy 2 b. Then,
by the completion condition Cpl(P ), for some z2U b , both x�C z2 b and zCy 2 b.
Thus, by the induction hypothesis, for some z 2 U b , both .v.x/; v.z// 2 mb.C / and
.v.z/; v.y// 62 mb.C /. Hence, .v.x/; v.y// 2 mb.C I �C/, that is .v.x/; v.y// 62
mb.P /, a contradiction.

Now, assume Mb; vb ˆ x�Py. Thus, .vb.x/; vb.y// 62 mb.P /. Suppose
x�Py 2 b. Then, by the completion condition Cpl(�P ), for every z 2 U b, either
xC z 2 b or z�Cy 2 b. Thus, by the induction hypothesis, for every z 2 U b , either
.v.x/; v.z// 62 mb.C / or .v.z/; v.y// 2 mb.C /. Hence, .v.x/; v.y// 62 mb.C I �C/,
that is .v.x/; v.y// 2 mb.P /, a contradiction.



476 25 Methodological Principles of Dual Tableaux

Now, the branch model property and the satisfaction in branch model property
enable us to prove:

Completeness
If ' is an L-valid formula, then ' is L-provable.

The idea of the proof is as follows. Let ' be an L-valid formula and suppose it is not
L-provable. Then there is no any closed L-proof tree for '. Let b be an open branch
of a complete L-proof tree for '. By satisfaction in branch model property, ' is not
true in the branch model Mb . However, since by the branch model property Mb is
an L-model, ' is not L-valid, a contradiction.

25.9 Alternative Forms of Rules

In this section we discuss alternative forms of the rules presented in Sect. 25.6.

‘More Analytic’ Rules

Sometimes relational proof systems require cut-like rules in order to get complete-
ness. Cut rules in relational proof systems have the form:

'1 j : : : j 'k
where f'1; : : : ; 'kg is an unsatisfiable set of literals.

A cut rule of the form:

R.x/ j �R.x/
where R is an atomic relational term and x is a sequence of object symbols, is re-
ferred to as a standard cut rule. In general, we use analytic cut rules; this means
that their application is restricted to R’s and x’s appearing in the formulas of a set
to which the rule is applied. Any such a rule is correct in relational logics. Often,
restricted cut rules are used in which literals have a special form, for example they
may be built with some relational constants. These rules are referred to as special-
ized cut rules. If a cut rule is present in a dual tableau, then we require that:

(Cpl cut) Every complete branch of a proof tree contains either of 'i , i D 1; : : : ; k,
where the variables appearing in 'i may be instantiated to any object symbol.

Some of the rules presented in Sect. 25.6 are specialized cut rules. In some cases we
may replace these rules with analytic rules or axiomatic sets together with standard
cut rules for some literals without loosing completeness.



25.9 Alternative Forms of Rules 477

One of such specialized cut rules is the rule (rc1) discussed in Sect. 25.6:

(rc1)
A1 j : : : jAs j :B11 ; : : : ;:B1k1

j : : : j :B i1; : : : ;:B iki

where the variables that appear in A or B may be instantiated to any object symbol.

This rule corresponds to the condition (c1):

(c1) 8x.A! B/.

where A D A1 ^ : : : ^ As , s � 1, A1, . . . , As are literals, B D B1 _ : : : _ B i ,
i � 1, and for every j 2 f1; : : : ; ig, Bj D B

j
1 ^ : : : ^ Bjkj

, kj � 1, Bj1 , . . . , Bj
kj

are literals, OV .A/ D set.x/ ¤ ;, ; ¤ OV .B/ � OV .A/.
Let B be a disjunction of literals, i.e., B D B1 _ : : : _ Bk , k � 1, Then, instead

of the rule (rc1) we may admit two rules of the form:

(r1c1)
B1; : : : ; Bk

A1; B1; : : : ; Bk j : : : jAs; B1; : : : ; Bk
where the variables that appear in Ai , i 2 f1; : : : ; sg, and do not appear in B may
be instantiated to any object symbol

(r2c1)
Bi j :Bi for every i 2 f1; : : : ; kg

where the variables in Bi , i 2 f1; : : : ; kg may be instantiated to any object symbol.

The completion conditions corresponding to these rules are:

Cpl(r1c1) If B1 2 b, . . . , Bk 2 b, then there exists i 2 f1; : : : ; sg such that Ai 2 b,
obtained by an application of the rule (r1c1);

Cpl(r2c2) For every i 2 f1; : : : ; kg, either Bi 2 b or :Bi 2 b.

If L is a logic whose models satisfy the condition (c1), then the rules obtained in
this way are L-correct. Moreover, the following can be proved:

Theorem 25.9.1. Let L be a relational logic. Then, the rule
A1 j ::: jAs j:B1 j ::: j:Bk

is L-correct iff the rule B1;:::;Bk

A1;B1;:::;Bk j ::: jAs ;B1;:::;Bk
is L-correct.

Proof. Let L be a relational logic. By way of example, we show the implication from
left to right. Assume that the rule

A1 j ::: jAs j:B1 j ::: j:Bk
is L-correct, that is for every

finite set X of formulas, X is an L-set iff X [ fAi g and X [ f:Bj g are L-sets, for
every i 2 f1; : : : ; sg and for every j 2 f1; : : : ; kg. Let Y be any finite set of formulas

and letX
dfD Y [fB1; : : : ; Bkg. By the assumption, Y [fB1; : : : ; Bkg is an L-set iff

Y[fAi ; B1; : : : ; Bkg and Y[f:Bj ; B1; : : : ; Bkg are L-sets, for every i 2 f1; : : : ; sg
and for every j 2 f1; : : : ; kg. Observe that Y [ f:Bj ; B1; : : : ; Bkg is an L-set for
every j 2 f1; : : : ; kg. Thus, for every finite set Y of formulas, Y [ fB1; : : : ; Bkg



478 25 Methodological Principles of Dual Tableaux

is an L-set iff Y [ fAi ; B1; : : : ; Bkg are L-sets, for every i 2 f1; : : : ; sg. Hence, the
rule B1;:::;Bk

A1;B1;:::;Bk j ::: jAs ;B1;:::;Bk
is L-correct. ut

The specialized cut rule (r2c1) is needed in the proof of completeness whenever
for some i 2 f1; : : : ; kg, Bi is a negative literal or Bi is definable in L. Thus, if
a dual tableau contains the rule (r1c1), then it must also contain the rule (r2c1).
However, if B is a disjunction of positive literals which are not definable in L, then
the specialized cut rule (r2c1) is not needed.

Examples of rules of the form (r1c1) and their corresponding conditions of the
form (c1) with a disjunction of positive literals are:

� Rules (symP ) and (tranP ) for symmetry and transitivity condition, respectively,
in logic RLEQ in Sect. 6.6;

� Rule (rher’) for heredity condition and rule (ideal) for right ideal relations in
logic RLINT in Sect. 8.2;

� Rule (rQ1) and (rQ2) for conditions (Q1) and (Q2), respectively, in logic RLJ

in Sect. 8.3;
� Rule (rL1) for condition (L1) in logic RLL1

in Sect. 8.4;
� Rule (SR) for condition S � R in logic RLPLL in Sect. 8.5;
� Rule (ideal) for right ideal relations and rules (rM2i), (rM2’ii), and (rM3) for

conditions (M2)(i), (M2’)(ii), and (M3), respectively, in logic RLRLV in Sects. 9.3
and 9.4; rules (rM10) and (rM11) for conditions (M10) and (M11), respectively,
in relevant logics in Sect. 9.5;

� Rules (rI1 �) and (rI1 �) for condition (I1) and rule (rI6) for condition (I6) in
logic RLNIL in Sects. 11.3 and 11.4; rules (rI7), (rI8’), (rI9’), (rI10), (rI11’), (rI12)
for conditions (I7), (I8’), (I9’), (I10), (I11’), (I12), respectively, in logic RLIL in
Sects. 11.3 and 11.4; rule (3-tran R) for 3-transitivity condition in logic RLCI in
Sect. 11.5;

� Rules (S ) and .R/ for the condition S D R�1 in logic RLFCL in Sect. 13.3;
� Rule (ideal) for right ideal relations, rule (tran �) for transitivity condition, and

rule (rher’) for heredity condition in logic RLMTL in Sect. 14.4; rules (rMTL1),
(rMTL5), and (rMTL6) for conditions (MTL1), (MTL5), and (MTL6), respec-
tively, in logic RLMTL in Sects. 14.3 and 14.4;

� Rules (r(i�)), (r(ii�)), (r(iii�)), and (r(iv�)) for the conditions (i�), (ii�), (iii�),
and (iv�), respectively, in logic RLOMR in Sect. 15.3;

� Rules (Euc R) and (pfun R) for the condition of Euclidean and partial function-
ality of R, respectively, in logic RLLTL in Sect. 16.3;

� Rules (rReC1), . . . , (rReC6), and (rReC9) for conditions (ReC1), . . . , (ReC6),
and (ReC9), respectively, in logic FBAC in Sect. 18.3.

Example. Consider logic L5 which is an axiomatic extension of logic RLV discussed
in Sect. 9.5. A relational dual tableau for the logic L5 includes the rule of the form:

(rM5)
R1.x; y; z; t/ j �R2.x; y; z; t/

This rule reflects the condition (M5) which is of type (c1). According to the method
described above, instead of the rule (rM5), the following rules can be admitted:



25.9 Alternative Forms of Rules 479

For any object terms x, y, z, and t ,

(r1M5)
R2.x; y; z; t/

R1.x; y; z; t/; R2.x; y; z; t/

(r2M5)
R2.x; y; z; t/ j �R2.x; y; z; t/

Figure 9.4 in Sect. 9.5 depicts RLL5
-proof of the relevant formula .p ˇ q ! t/ !

.p ! .q ! t//. In Fig. 25.1 we present a relational proof of this formula in a dual
tableau with the rules (r1M5) and (r2M5) instead of the rule (rM5).

Now, consider a specialized cut rule (rc4):

(rc4)
A1 j : : : jAs j :B11 ; : : : ;:B1k1

j : : : j :B i1; : : : ;:B iki

where each of the variables from set.z/ occurring in any B lm must be instantiated
to a new variable distinct from variables in set.x/, for l 2 f1; : : : ; ig and m 2
f1; : : : ; ki g.
This rule corresponds to the condition (c4):

(c4) 8x.A! 9zB/
where A and B are as in the constraint (c1), x and z are finite sequences of object
variables, not necessarily of the same length, OV .A/ D set.x/ ¤ ;, OV .B/ ¤ ;,
.OV .B/ n set.z// � OV .A/, and set.x/ \ set.z/ D ;.

The rule (rc4) may be replaced with the two rules of the form:

(r1c4)
:A1; : : : ;:As

:B1;:A1; : : : ;:As j : : : j :B i ;:A1; : : : ;:As
where for every j 2 f1; : : : ; ig, :Bj D :Bj1 ; : : : ;:Bjkj

, and the variables that

appear in Bj , j 2 f1; : : : ; ig, and do not appear in A must be instantiated to new
pairwise distinct object variables

(r2c4)
Ai j :Ai for every i 2 f1; : : : ; sg

where the variables in Ai , i 2 f1; : : : ; sg, may be instantiated to any object symbol.

The completion conditions corresponding to these rules are:

Cpl(r1c4) If :A1 2 b, . . . , :As 2 b, then there exists j 2 f1; : : : ; ig such that
for every i 2 f1; : : : ; kj g, :Bji 2 b, where the variables that appear in Bji and
do not appear in A must be instantiated to new pairwise distinct object variables,
obtained by an application of the rule (r1c4);

Cpl(r2c4) For every i 2 f1; : : : ; sg, either Ai 2 b or :Ai 2 b.

If L is a logic whose models satisfy the condition (c4), then the rules obtained in
this way are L-correct. Moreover, the following can be proved:



480 25 Methodological Principles of Dual Tableaux

.P ˇQ! T /! .P ! .Q! T //.O; x; y/

�
.!/ with new variables t and u

�R.O; t; u/;�.P ˇQ! T /.t; x; y/; P ! .Q! T /.u; x; y/

�
.!/ with new variables z and w

�R.O; t; u/;�R.u; z;w/;�P.z; x; y/; .Q! T /.w; x; y/;�.P ˇQ! T /.t; x; y/

�
.!/ with new variables r and s

�R.O; t; u/;�R.u; z;w/;�R.w; r; s/;
�P.z; x; y/;�Q.r; x; y/; T .s; x; y/;�.P ˇQ! T /.t; x; y/

(r2M5) with t; z; r; s
�����

				

R2.t; z; r; s/;�R.O; t; u/;
�R.u; z;w/;�R.w; r; s/; : : :

�
(r1M5)

R1.t; z; r; s/;�R.O; t; u/;
�R.u; z;w/;�R.w; r; s/; : : :

�
.R1/ with w

				

R.w; r; s/;
�R.w; r; s/ : : :

closed

�R2.t; z; r; s/;�.P ˇQ! T /.t; x; y/

�P.z; x; y/;�Q.r; x; y/; T .s; x; y/; : : :

�

.�R2/ with a new variable v

�R.z; r; v/;�R.t; v; s/;�.P ˇQ! T /.t; x; y/

�P.z; x; y/;�Q.r; x; y/; T .s; x; y/; : : :
�������!

�R.t; v; s/
R.t; v; s/; : : :

closed

				

�T .s; x; y/
T .s; x; y/; : : :

closed

�

.�!/ with v; s

�R.z; r; v/; P ˇQ.v; x; y/;
�P.z; x; y/;�Q.r; x; y/; : : :������!

�R.z; r; v/
R.z; r; v/; : : :

closed

�
.ˇ/ with z; r

�P.z; x; y/
P.z; x; y/; : : :

closed

			

�Q.r; x; y/
Q.r; x; y/; : : :

closed

R.t; z;w/;�R.O; t; u/;
�R.u; z;w/; : : :
�

��
�
��(rM2i) with u

R.O; t; u/;
�R.O; t; u/; : : :

closed

R.u; z;w/;
�R.u; z;w/; : : :

closed

Fig. 25.1 An alternative relational proof of the formula .pˇ q! t /! .p! .q! t //

Theorem 25.9.2. Let L be a relational logic. Then, the rule (rc4) is L-correct iff the
rule (r1c4) is L-correct.

The above theorem can be proved in a similar way as Theorem 25.9.1.
The specialized cut rule (r2c4) is needed in the proof of completeness whenever

for some i 2 f1; : : : ; sg, Ai is a positive literal or Ai is definable in L. Thus, if



25.9 Alternative Forms of Rules 481

a dual tableau contains the rule (r1c4), then it must also contain the rule (r2c4).
However, if A is a conjunction of negative literals which are not definable in L, then
the specialized cut rule (r2c4) is not needed.

Example. Consider the intermediate logic INTL2 presented in Sect. 8.4. Models of
the logic INTL2 satisfy the following condition:

(L2) 8x8y8zŒ..x; y/ 2 R ^ .x; z/ 2 R/! 9t..y; t/ 2 R ^ .z; t/ 2 R/�.
The specific rule reflecting the condition (L2) has the following form:

For all object variables x; y, and z,

(rL2)
xRy j xRz j y�.R IR�1/z

According to the method described above, in RLINTL2
-dual tableau we may admit

the following two rules instead of the rule (rL2):
For all object variables x; y, and z,

(r1L2)
x�Ry; x�Rz

y�Rt; z�Rt; x�Ry; x�Rz
for a new object variable t ¤ x; y; z

(r2L2)
xRy j x�Ry

Figure 8.4 in Sect. 8.4 depicts an RLINTL2
-proof of the formula :p _ ::p.

In Fig. 25.2 we present a relational proof of this formula in a dual tableau with
the rules (r1L2) and (r2L2) instead of the rule (rL2).

x.�.R IP/[�.R I�.R IP///y

�
.[/

x�.R IP/y; x�.R I�.R IP//y

�
.�I / with a new variable z

x�Rz; z�Py; x�.R I�.R IP//y

�
.�I / with a new variable w and .�/

x�Rz; z�Py; x�Rw;w.R IP/y

�
(r1L2) with a new variable t

z�Rt;w�Rt; x�Rz; z�Py; x�Rw;w.R IP/y; : : :
����

w�Rt;wRt; : : :
closed

�
.I / with t

z�Rt; z�Py; tPy; : : :
���� (rher’) with z

			

z�Rt; zRt; : : :

closed

z�Py; zPy; : : :
closed

Fig. 25.2 An alternative relational proof of the formula :p _::p.



482 25 Methodological Principles of Dual Tableaux

Rules for Conjunctive Constraints

Now, consider a constraint which is the conjunction of some constraints discussed
in Sect. 25.6. Then, in general, to get a dual tableau for a relational logic whose
models satisfy the condition of that kind, we construct the rules corresponding to
each constraint in a conjunction. However, in many cases we may admit one rule
instead of multiple rules.

By way of example, let L be an extension of the logic RL.1; 10/ (see Sect. 2.7)
such that its language is the RL.1; 10/-language endowed with the relational constant
R interpreted in RL.1; 10/-models as a function. Thus, an L-model is an RL.1; 10/-
model M D .U;m/ that satisfies the following conditions:

(fun1) For every x 2 U there exists y 2 U such that .x; y/ 2 m.R/;
(fun2) For all x; y; and z in U , if .x; y/ 2 m.R/ and .x; z/ 2 m.R/,

then .y; z/ 2 m.10/.
Note that the equivalent form of the condition (fun1) is:

(fun1)’ For all x 2 U , .x; x/ 2 m.R I 1/.
The rules reflecting the conditions (fun1)’ and (fun2/ are:

(fun1 R)’
x�.R I 1/x for every object variable x

(fun2 R)
xRy j xRz j y�10z for all object variables x, y, and z

According to the method described in this section, the rule (fun2 R) may be replaced
with a more analytic rule:

(fun2 R)’
y10z

xRy; y10z j xRz; y10z
for every object variable x

It can be proved that the dual tableau with the rules (fun1 R)’ and (fun2 R)’ is sound
and complete.

The rules that reflect functionality of the relationsR� andR#, for # 2 f_;^g, ad-
mitted in dual tableaux for spatial theories based on a contact relation on a Boolean
algebra described in Sect. 18.3 are constructed in such a way.

We can admit yet another form of the rule reflecting functionality of R and pre-
serving completeness of a dual tableau for a relational logic where R is assumed to
be functional. The rules (fun1 R)’ and (fun2 R)’ may be combined to one rule of
the form:

(fun R)
xRy; x�.R I 1/x j xRz; x�.R I 1/x j y�10z; x�.R I 1/x

for all object variables x, y, and z



25.9 Alternative Forms of Rules 483

Such a rule is admitted in dual tableaux for semantic extensions of basic temporal
logic presented in Sect. 16.3.

Rules Versus Axiomatic Sets

Consider the specialized cut rule (rc2) discussed in Sect. 25.6:

(rc2) :B11 ; : : : ;:B1k1
j : : : j :B i1; : : : ;:B iki

where B is as in the constraint (c1) and the variables that appear in B may be
instantiated to any object symbol.

This rule corresponds to the condition (c2):

(c2) 8xB

Let B be a disjunction of literals, i.e., B D B1 _ : : : _ Bk , k � 1, Then, instead of
the rule (rc1) we may admit the axiomatic set and the rule of the form:

(Ax’c2) fB1; : : : ; Bkg

(r’c2)
Bi j :Bi for every i 2 f1; : : : ; kg

where the variables that appear in Bi , i 2 f1; : : : ; kg, may be instantiated to any
object symbol.

The completion condition corresponding to the rule (r’c2) is:

Cpl(r’c2) For every i 2 f1; : : : ; kg, either Bi 2 b or :Bi 2 b.

If L is a logic whose models satisfy the condition(c2), then the axiomatic set (Ax’c2)
is an L-set and the rule (r’c2) is L-correct. Moreover, the following can be proved:

Theorem 25.9.3. Let L be a relational logic. Then, the rule :B1 j ::: j:Bk
is L-correct

iff every superset of fB1; : : : ; Bkg is an L-set.

If a dual tableau contains an axiomatic set of the form (Ax’c2) and for some i 2
f1; : : : ; kg,Bi is a negative literal or is definable in L, then the dual tableau must also
contain the specialized cut rule (r’c2) which is needed in the proof of completeness.

IfB is a disjunction of positive literals that are nor definable in L, and in addition,
all the rules preserve literals Bi , i 2 f1; : : : ; kg, then the relational counterpart of
(c2) is provided by an axiomatic set and the specialized cut rule (r’c2) is not needed
in the proof of completeness.

Examples of axiomatic sets corresponding to the conditions of the form (c2) with
a disjunction of positive literals are:

� fx10xg for reflexivity of 10 in logic RL.10/ in Sect. 2.7;
� fR.O; x; x/g, fR.O; x��; x/g, fR.O; x; x��/g for conditions (M1) and (M4) in

logic RLRLV in Sect. 9.4;



484 25 Methodological Principles of Dual Tableaux

� fxRy; xSyg for conditionR [ S D U in logic RLCI in Sect. 11.5;
� fx � xg for reflexivity condition in logic RLMTL in Sect. 14.4;
� fx < y; y < x; x10yg for linearity of < in logic RLOMR in Sect. 15.3;
� fR_.x; 0; x/g and fR^.x; 1; x/g for conditions (ReBA8) and (ReBA9), respec-

tively, in logic FBAC in Sect. 18.3.

Example. Let L be a relational logic, let R be a relational constant, and let an
L-model M D .U;m/ be such that m.R/ is irreflexive, i.e., .x; x/ 62 mb.R/, for
every x 2 U ; this condition is an instance of (c2).

According to the method described in Sect. 25.6, the dual tableau for L includes the
rule of the form:

(irref R)
xRx

for every object symbol x

We can replace the rule (irrefR) with an axiomatic set (Ax’c2) of the form fx�Rxg
and the rule (r’c2) of the form:

xRx j x�Rx
To show the branch model property, we have to prove that in the branch model
Mb D .U b; mb/,mb.R/ is irreflexive. For suppose otherwise, then there is x 2 U b
such that .x; x/ 2 mb.R/. Thus, by the definition of mb.R/, xRx 62 b. Now, by the
completion condition Cpl(r’c2), x�Rx 2 b. Since every superset of fx�Rxg is
an axiomatic set, b is closed, a contradiction. Note, that the completion condition
Cpl(r’c2) is crucial in this proof.

Rules for Relational Equations

Now, we discuss alternative forms of the rules that correspond to equational con-
straints or to definitions of relational constants.

Consider the logic RLFCL presented in Sect. 13.3. Its language contains two rela-
tional constantsR and S whose interpretations in RLFCL-modelsM D .U;R; S;m/
satisfy the equation R D S�1. The dual tableau for RLFCL presented in Sect. 13.3
contains two rules .S/ and .R/:

.S/
xSy

yRx; xSy
.R/

xRy

ySx; xRy

They reflect the conditions R � S�1 and S�1 � R, respectively, that is for
every class K of RLFCL-structures M D .U;R; S;m/ the following hold (see
Theorem 13.3.2):

� The rule .S/ is K-correct iff R � S�1 holds in every structure of K;
� The rule .R/ is K-correct iff S�1 � R holds in every structure of K.



25.9 Alternative Forms of Rules 485

Note that in both of the rules, the formula from the premise of the rule is repeated
in the conclusion. However, we may eliminate the repetition in the rules without
loosing completeness. Namely, instead of the rules .S/ and .R/, we admit the rules
of the following forms:

.S/0
xSy

yRx
.R/0

xRy

ySx

The completion conditions corresponding to the rules .S/0 and .R/0 are exactly the
same as those corresponding to the rules .S/ and .R/, respectively:

Cpl(S )0 If xSy 2 b, then yRx 2 b;
Cpl(R)0 If xRy 2 b, then ySx 2 b.

It follows that the completeness proof for the dual tableau with the rules .S/0 and
.R/0 is the same as for the dual tableau with the rules .S/ and .R/. The difference
is in the correspondence theorem. The rules .S/0 and .R/0 are correct with respect
to the class of structures satisfying the equation RDS�1, not only one of the in-
clusions. Namely, for every class K of RLFCL-structures M D .U;R; S;m/ the
following hold:

� The rule .S/0 is K-correct iff R D S�1 holds in every structure of K;
� The rule .R/0 is K-correct iff R D S�1 holds in every structure of K.

Each of the rules .S/0 and .R/0 reflects the equation R D S�1, thus in order to
have a rule directly corresponding to the equation, it suffices to have one of these
rules. However, to get completeness both of these rules must be present, since both
completion conditions are needed to prove the branch model property.

In a similar way we can construct alternative forms of the rules for the relations
F and P of temporal logic TL in Sect. 16.2 and for the relational constants de-
fined in terms of Boolean operations. In particular, we may delete repetitions of the
formula from the premise in the conclusions of the rules corresponding to mere-
ological relations PP, PO, EC, NTPP, DC, and DR (see Table 18.1) presented in
Sect. 18.2.

Positive Versus Negative Forms of the Rules

In Sects. 1.8 and 2.7 we discussed negative forms of the rules for the identity in
first-order logic and in the relational logic RL.1; 10/, respectively. Recall that the
standard rules for the identity in RL.1; 10/-dual tableau have the following forms:

(101/
xRy

xRz; xRy j y10z; xRy z is any object symbol

(102/
xRy

x10z; xRy j zRy; xRy z is any object symbol



486 25 Methodological Principles of Dual Tableaux

The negative rules for identity are:

.101/2
x�10y; y�Rz

x�Rz; x�10y; y�Rz
.102/2

x�10y; z�Rx
z�Ry; x�10y; z�Rx

(sym)2
x�10y
y�10x (ref)2

x�10x
where R is any relational variable or relational constant, and x; y; z are any object
symbols.

The above negative specific rules are dual to the standard rules. As shown in
Sect. 2.7, the dual tableau with negative rules is complete. Observe that contrary
to the standard rules, negative rules do not branch a proof tree and do not involve
introduction of a variable which makes them more suitable for implementation.

In a similar way, we can modify specific rules for other relational constants.
Let L be an extension of the logic RL (see Sect. 2.5) such that its language is the
RL-language endowed with the relational constant R interpreted in RL-models as a
transitive relation. Recall that an L-structure is a system M D .U;R;m/ such that
.U;m/ is an RL-model and R � U � U , that is R is not necessarily a transitive
relation.

The standard rule that reflects transitivity of R is:

(tran R)
xRy

xRz; xRy j zRy; xRy z is any object symbol

The negative form of the rule is:

(tran R)’
x�Ry; y�Rz

x�Rz; x�Ry; y�Rz

The completion condition corresponding to the rule (tran R)’ is:

Cpl(tran R)’ If x�Ry 2 b and y�Rz 2 b, then x�Rz 2 b.

The following can be proved:

Proposition 25.9.1. For every class K of L-structures the following conditions are
equivalent:

1. The rule (tran R) is K-correct;
2. The rule (tran R)’ is K-correct.

Proof. First, we show that the rule (tran R)’ is K-correct iff R is transitive in every

K-structure. Assume the rule (tran R)’ is K-correct. Let X
dfD fxRzg. Then, X [

fx�Rz; x�Ry; y�Rzg is a K-set. Thus, by the assumption, X [ fx�Ry; y�Rzg
is also a K-set. So, for every K-structure M and for every valuation v in M, either
M; v ˆ xRz or M; v ˆ x�Ry or M; v ˆ y�Rz, which means thatR is transitive.



25.10 Implementations 487

Now, assume that R is transitive in every K-structure. Let X be any finite set of L-
formulas. If X [fx�Ry; y�Rzg is a K-set, then so is X [fx�Rz; x�Ry; y�Rzg.
Let X [ fx�Rz; x�Ry; y�Rzg be a K-set and suppose that X [ fx�Ry; y�Rzg
is not a K-set. Then, there exist a K-structure M and a valuation v in M such that
.v.x/; v.y// 2 R and .v.y/; v.z// 2 R but .v.x/; v.z// 62 R, which contradicts
the assumption. Due to Proposition 6.6.1, we can prove that the rule (tran R) is
K-correct iff R is transitive in every K-structure, which completes the proof. ut
In order to prove completeness of a dual tableau with rule (tranR)’, we must change
the definition of the branch structure presented in Sect. 25.8. Given an open branch b
of an L-proof tree, we define a branch structure Mb D .U b; mb/ as in the previous
section except for the clause for the meaning of R:

mb.R/ D f.x; y/ 2 U b � U b W x�Ry 2 bg:

To prove completeness it suffices to show that the branch model property and the
satisfaction in branch model property hold. Let us prove that the branch structure
defined above is an L-model, that is mb.R/ is transitive. Let x; y; z 2 U b and sup-
pose that .x; y/ 2 mb.R/ and .y; z/ 2 mb.R/, but .x; z/ 62 mb.R/. Then, by the
definition of mb.R/, x�Ry 2 b, y�Rz 2 b, and x�Rz 62 b. By the completion
condition Cpl(tran R)’, x�Rz 2 b, a contradiction. Hence, the branch model prop-
erty holds. The satisfaction in branch model property can be proved in a similar way
as in RL-dual tableau.

The method described above can be applied to most of the rules presented in the
book, with the restriction that if we intend to construct a rule in a negative form
reflecting some property of a relational constant, then all the specific rules reflecting
the properties of that constant must be in the negative forms. For otherwise, the
meaning of this constant in the branch structure would not be appropriately defined.

25.10 Implementations

A Tool for Translation of a Theory into Relational Formalism

A Prolog-based implementation of a tool, named transIt, which uniformly carries
out translations from various modal logics to the relational formalism is described
in [FOO06]. This tool offers a high degree of uniformity: transIt is able to treat
many modal logics, all by the very same machinery.

Source languages accepted by the translator are the languages of the logics which
employ binary accessibility relations in their Kripke-style models. The translator
does not deal with the languages of relevant logics or the logics with binary modal-
ities – requiring ternary relations in their models. The main target language which
the translator supports is the algebra of binary relations. Given a formula ' of a
source language, the system produces a relational term �.'/ belonging to an alge-
braic language. The translation � preserves validity. The translator takes a formula



488 25 Methodological Principles of Dual Tableaux

of a specific source language as an input. The first transformation yields an internal
representation of the formula. Then, a sequence of rewritings and simplifications is
performed. Finally, the last step generates the final rendering of the translation. More
specifically, below we list the salient phases which usually lead to the translation,
although some of them may be skipped in specific cases:

Lexical and syntactical analysis
This phase accepts a formula only if it is syntactically correct and its constructs
belong to the specific language in question. The syntax-directed translation imple-
mented through this stage is described by an attributed definite clause grammar.
Hence, any extension to other logics can be achieved by simply adding a suitable
set of grammar rules which characterize the new well-formed formulas. The out-
come of this stage is an intermediate representation of the abstract syntax tree, AST,
of the input formula.

Generation of an internal representation
By means of rewriting process which acts in a bottom-up recursive fashion, the
outcome of the preceding phase is turned into an internal representation of the AST
in the form of a Prolog term, independent of the source language.

Abstract propositional evaluation
The internal representation of the given formula is analyzed in order to extract its
propositional schema. If possible, this schema is then simplified through replace-
ments of some of its subformulas by equivalent ones.

Reduction to primitive constructs
In this phase the formula is rewritten in terms of a small repertoire of propositional
operations, to be regarded as being ‘primitive’. For instance, biimplication $ is
rewritten as a conjunction of two implications. The aim of this transformation is to
make the next phase easier.

Propositional simplifications
Through this phase the internal representation of the formula is simplified by ap-
plying a number of propositional simplifications to it, mainly aimed at reducing the
size of the formula by elimination of tautological subformulas and applications of
the double negation law.

Relational translation
This is the main step of the translation process: the internal representation of the
given formula is translated into a term of the logic RL.1; 10/. The rewriting rules
employed depend on the source language of the input formula. The outcome of this
phase is a relational term.

Relational simplifications
The overall translation process ends with a series of relational simplifications ap-
plied to the relational term produced in the preceding step. The simplest among



25.10 Implementations 489

these rewritings take care of the idempotence, absorption or involution properties
of the relational constructs. The process can easily be extended to perform more
complex simplifications.

Implementations of Dual Tableaux for Relational Logics

In [FNA06] a Prolog implementation of the dual tableau for the relational logic
RL.1; 10/ (see Chap. 2) is described. Actually, it is a part of a prototypical tool
supporting assisted and automated relational reasoning that can be used to verify
validity of modal formulas as well. The proof of a modal formula in this implemen-
tation follows the following phases:

� The given formula is translated into a relational term;
� The relational formula obtained in this way is processed to generate a relational

decision graph;
� The relational decision graph is normalized using a term rewriting system in

order to impose an order in the nodes of the graph;
� The normalized relational decision graph is compiled into a Prolog program;
� The execution of such a Prolog program performs a search for the proof using a

bounded depth-first iterative deepening strategy.

The architecture of the whole system is presented in Fig. 25.3. In particular, it is
composed of: a user-friendly mouse-oriented interface; a translator producing an
optimized relational rendering of the given formula; the dual tableau for relational
logic RL.1; 10/. At each stage of the development of a proof, the user can choose
between exploiting the assistance of the tool and developing a proof by her own, or
leaving the system to proceed in an autonomous way.

The adoption of an approach based on declarative programming allows develop-
ing the system in an incremental way and ensures high modularity and extensibility
of the application.

Another SWI Prolog implementation of relational dual tableaux, ReVAT, is de-
scribed in [LLMS02]. In the report [OS04] a Haskell implementation for relational
logics is presented based on the multilevel relational reference language as proposed
in [Sch03].

sentence �!

logic �!
TRANSLATOR

PROOF

PROCEDUREH)
(and axioms)

form
relational

Fig. 25.3 Basic architecture of the implementation of dual tableaux for relational logics



490 25 Methodological Principles of Dual Tableaux

An Automated Theorem Prover of Dual Tableaux for Logics for Order
of Magnitude Reasoning

In [BMOO09] the authors describe a Prolog implementation of a dual tableau for
the relational logic RLOMR presented in Sect. 15.3. The main steps of the implemen-
tation are as follows.

First, the relations are encoded as predicates. An OMR-formula is represented
using the Prolog fact: formulaOMR.formula/. The argument is an OMR-formula.
A relational formula xTy in logic RLOMR, where x; y are object variables and T
is a relational term, is represented as the Prolog fact rel.address; T; x; y/. The first
argument contains a list of integers which defines the position of the node in the
proof tree generated during the proof process. The Prolog predicate omToreom
reads OMR-formulas and renders the set of RLOMR-formulas.

Once the system receives as an input a relational formula to be checked, it gener-
ates a proof tree, whose leaves contain sets of relational formulas whose disjunctions
are to be proved. The input formula gets proved when Prolog closes all the leaves in
the proof tree.

The addresses of the open leaves are stored in a list, which is handled by the pred-
icate open leaves. The predicate open leaves.Œn�/ states that it is necessary
to prove validity of the set of formulas stored in node Œn�.

When Prolog detects a relation representing an axiomatic set, the corresponding
leaf is deleted and the user is informed by means of the remove leaf predi-
cate. For example, if x10x (i.e., the expression rel.Leaf; equal;X;X/) occurs in
the set of relations of the leaf Leaf, it is deleted because of the occurrence of an
axiomatic set.

The implementation of a rule can be roughly stated as follows: first, the premise
of the rule is checked, in order to verify if the rule is applicable; if so, and provided
that the rule has not been previously applied with the same arguments, the rule is
displayed on the screen and stored as used; finally, the leaf is branched and new
labels are attached to each new leaf. Rules are encoded in Prolog and implemented
using some Prolog codes.

As an example, consider the rule (r(ii�)) from Sect. 15.3:

(r(ii�))
x � z

x � y; x � z j y < z; x � z
for any object variable y

The code for the application of the rule (r(ii�)) to a set of RLOMR-formulas works
as follows. It checks whether x � z is in the given set of formulas, the relations
introduced by the rule are new, and the rule has not been previously applied. If all
these three conditions are satisfied, then the rule is to be applied. The variable y
in the conclusions has to be any of the variables or object constants occurring in
the branch. For that the predicate any variable chooses a constant or a variable
occurring in the branch. Then the predicate branch.Leaf;2/ branches the current
leaf into two new leaves, and copies all the formulas of the current leaf to the two
new leaves. Finally, the predicate update leaf appends x � y to the first leaf
and y < z to the second leaf.



25.10 Implementations 491

The main predicate in the implementation of the proof procedure is run
engine: It examines the first leaf of the tree and tries to apply the rules to the
formulas contained in this leaf. Leaves that have not been closed are stored by the
predicate open leaves. If it is a non-empty list, then the corresponding nodes
must be visited and the predicate apply rules is called recursively as long as the
tree has open leaves.

The rules are organized into several categories which are ordered as follows:
first, the rules that do not branch a leaf, then the rules that branch a leaf into several
leaves and, finally, explosive rules that introduce variables. Whenever a non-closed
leaf does not admit any of the rules in the list, then the system asks the user about
considering some cut-like rule. The unrestricted use of cut-like rules might generate
excessively big trees, thus its use is strictly controlled.

After an application of the procedure, and provided that a closed tree has been
obtained, the system provides a list of the rules used in the proof.

There are several rules of dual tableau for logic RLOMR which exhibit the same
behavior that rule (r(ii)�) regarding an introduction of variables. In particular, the
rule (r(ii�)) produces two new leaves with formulas containing ‘any variable’ y.
In principle, there are as many instantiations of the rule as the values that can be
chosen for y. Thus, if the application of the rule is without any restriction, the
proof tree might grow in an uncontrolled manner. Instead of the naive approach
that allows the user to introduce a particular variable when a rule is being applied,
in the implementation of RLOMR-dual tableau a much smarter solution is used. A
non-instantiated variable, so-called phantom variable, is introduced and the actual
instantiation of a variable is delayed until we get a guarantee that, by a unification
process, an axiomatic set will be generated. Thus, a phantom variable is a special
variable whose possible instantiations are constrained to belong to the set of object
variables or object constants occurring in the leaf. In this way, the growth of the tree
is controlled.

The implementation introduces also a predicate which allows to switch between
a fully automated handling of phantom variables and an interactive mode in which
the procedure stops in order to get feedback from the user as to an appropriate
choice of an object symbol to be used in the instantiation. When an application
of a rule requires an introduction of a variable already occurring on the current
branch, and the program is in the interactive mode, the system provides a list of
formulas occurring in that branch and the user can choose an adequate variable
for the instantiation. The user may refuse to provide feedback and let the system
to introduce a phantom variable. For the rules with a behavior similar to that of
rule (r(ii�)), the implementation should choose a variable for the instantiation. If
eventually the formula could not be proved, the system would have to return to the
previous leaf and choose another variable. The use of phantom variables is crucial
for an efficient performance of the implementation.

Implementations of various manipulations with relations can be found in [BS94,
HBS94, Sin00, FOP02, CFOZ03, BN05, FOO05, GPBV08].



492 25 Methodological Principles of Dual Tableaux

25.11 Towards Decision Procedures

Apart from the decidable subclasses of formulas of logic RL presented in Sect. 2.12,
some decidable classes of formulas of logic RL.1; 10/ can be obtained in view of the
following general principle.

Let L1 be a logic having a decidable validity problem and let L2 be an un-
decidable logic. Assume that there is a validity preserving translation � from
formulas of L1 into formulas of L2, i.e., for every L1-formula ', ' is L1-valid if
and only if �.'/ is L2-valid. Consider a subclass of the L2-formulas defined as

�.L1/
dfD f�.'/ W ' is L1-formulag. Then, �.L1/ has a decidable validity problem

provided that there is an effective procedure such that for every L2-formula  , it
decides whether  2 �.L1/ or  62 �.L1/.

Let L1 be any of the logics considered in Chaps. 7, 8, 11–13, 15, 16, and 19. Most
of these logics are known to be decidable. Let L2 be the corresponding relational
logic RLL1

. The set �.L1/ of those RLL1
-formulas that are the images under the

corresponding translation � of L1-formulas into RLL1
-formulas consists of formulas

xTy, where T is a member of the set of �.L1/-terms defined as:

� P I 1 is a �.L1/-term for every relational variable P of the RLL1
-language;

� If T is a �.L1/-term, then so is �T ;
� If T1 and T2 are �.L1/-terms, then so are T1 [ T2 and T1 \ T2;
� If T is a �.L1/-term, then for every relational constant R representing an acces-

sibility relation from the L1-models, RIT is a �.L1/-term.

Hence, if L1 has a decidable validity problem, then since the membership problem
for �.L1/ is decidable, the set �.L1/ has a decidable validity problem.

This opens the way for construction of uniform relational decision procedures
for a large class of non-classical logics.

25.12 Conclusion

The relational logics provide a general framework for specification and reasoning
in a number of theories. Often it is more sensible to implement one generic logic
within which many other logics can be expressed than to continually reimplement
logics from scratch. The relational logics can play the role of such a generic logic,
which is one of the main motivation for following the relational approach. The tech-
niques of relational representation have been applied successfully to a wide variety
of theories with a wide application domain. Relational logics may be of interest both
to theoreticians, who seek to find underlying connections among various theories in
order to establish model theoretic or proof theoretic results and also to practitioners,
who wish to use a specific logic to determine validity, satisfiability or entailment, in



25.12 Conclusion 493

such diverse areas as spatial reasoning, model checking and verification, reasoning
under uncertainty, and databases. We may summarize the paradigm in which we
have been working as follows. Relational logic:

� Is a general framework for developing formal methods of reasoning;
� Can be seen as an application of algebras of relations to the formalization of a

variety of theories;
� Comes equipped with a dual tableau-style method of deduction;
� Has the advantages of uniformity, modularity, and naturality;
� Is appropriate for the development of a general purpose theorem prover.

Given a logic L of relations, we may extend L to a logic L0 obtained from L by:

(1) Extending the language of L by adding some relational operations and/or rela-
tional constants and/or object constants;

(2) Adding some constraints on the relations and/or object constants in the models
of L.

Both kinds of extensions will necessitate a change in the set of models. Also in both
cases we must augment the deduction system of L in order to get the system for L0.
In case (1) we add decomposition rules corresponding to the new operations and
either specific rules or axiomatic sets characterizing the new constants. In case (2)
we add specific rules and/or axiomatic sets characterizing the additional constraints.

To ensure modularity, we require that the following conditions must be satisfied
by the extended dual tableau:

� All the added rules are correct in L0 and the axiomatic sets are valid in L0;
� A rule added must provide a sufficient condition to prove that its corresponding

constraint holds in the branch model constructed in the completeness proof;
� The extension is conservative, that is, if ' is an L-formula provable in L0-dual

tableau, then it is provable in L-dual tableau;
� The set of formulas provable in L0 is a superset of the set of formulas provable

in L.

The case studies presented in the book show that dual tableaux are semantics-based
systems. Therefore, the developments of discrete duality, that is a duality between
classes of algebras and classes of relational systems which is established without
using a topology, may be helpful in constructing dual tableaux. Given a theory
presented as a class of algebras, having a discrete duality for that class we may
present the theory as a logic with the Kripke-style semantics determined by the
class of relational systems which are dual to those algebras. Then, the methods of
the correspondence theory discussed in Sect. 25.6 will enable us to construct the
dual tableau rules reflecting that semantics. The principles of discrete duality are
presented in [OR07]. Some recent developments of discrete duality can be found in
[DO08, OR08, OR09a, OR09b, OR10, DOR10], among others.



References

[AB75] A. R. Anderson and N. D. Belnap. Entailment: The Logic of Rele-
vance and Necessity. Volume I. Princeton University Press, Princeton,
1975.

[ABD92] A. R. Anderson, N. D. Belnap, and J. M. Dunn. Entailment: The
Logic of Relevance and Necessity. Volume II. Princeton University
Press, Princeton, 1992.

[Ack54] W. Ackermann. Solvable Cases of the Decision Problem. North-
Holland, Amsterdam, 1954.

[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time tem-
poral logic. Journal of the ACM, 49(5):672–713, 2002.

[AK01] A. Avron and B. Konikowska. Decomposition proof systems for
Gödel-Dummett logics. Studia Logica, 69(2):197–219, 2001.

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Transactions on Com-
puters, 27(6):509–516, 1978.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(11):832–843, 1983.

[AMN91] H. Andréka, J. D. Monk, and I. Németi, editors, Algebraic Logic,
Proc. Conf. Budapest (1988), volume 54 of Colloq. Math. Soc. J.
Bolyai. North-Holland, Amsterdam, 1991.

[Bal02] Ph. Balbiani. Emptiness relations in property systems. In de Swart
[dS02a], pages 15–34.

[BBS94] C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal
Aspects of Computing, 6(3):339–358, 1994.

[BD03] D. S. Bridges and L. Dediu. Apartness spaces as a framework for
constructive topology. Annals of Pure and Applied Logic, 119(1-3):
61–83, 2003.

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, Cambridge, 2001.

[Bec05] B. Beckert, editor, Automated Reasoning with Analytic Tableaux
and Related Methods, International Conference, TABLEAUX 2005,
Koblenz, Germany, September 14–17, 2005, Proceedings, volume
3702 of Lecture Notes in Computer Science, Springer, Heidelberg,
2005.

E. Orłowska and J. Golińska-Pilarek, Dual Tableaux: Foundations, Methodology, 495
Case Studies, Trends in Logic 33, DOI 10.1007/978-94-007-0005-5,
c� Springer Science+Business Media B.V. 2011



496 References

[Ber91] G. Bergman. Actions of Boolean rings on sets. Algebra Universalis,
28:153–187, 1991.

[Bet59] E. W. Beth. The Foundations of Mathematics. A Study in the Philoso-
phy of Sciences. Studies in Logic. North-Holland, Amsterdam, 1959.

[BFHL96] G. Baum, M. F. Frias, A. M. Haeberer, and P. E. Martı́nez López.
From specifications to programs: A fork-algebraic approach to bridge
the gap. In W. Penczek and A. Szałas, editors, Mathematical Foun-
dations of Computer Science 1996, 21st International Symposium,
MFCS’96, Cracow, Poland, September 2–6, 1996, Proceedings, vol-
ume 1113 of Lecture Notes in Computer Science, pages 180–191,
Springer, Heidelberg, 1996.

[BG85] J. P. Burgess and Y. Gurevich. The decision problem for linear tem-
poral logic. Notre Dame Journal of Formal Logic, 26:115–128, 1985.

[BGPO06] D. Bresolin, J. Golińska-Pilarek, and E. Orłowska. Relational dual
tableaux for interval temporal logics. Journal of Applied Non-
Classical Logics, 16(3-4):251–277, 2006.

[BK99] M. Białasik and B. Konikowska. A logic for non-deterministic spec-
ifications. In Orłowska [Orł99], pages 286–311.

[Bla90] P. Blackburn. Nominal Tense Logic and Other Sorted Intensional
Frameworks. PhD thesis, Department of Computer Science, Univer-
sity of Edinburgh, 1990.

[BM05] D. Bresolin and A. Montanari. A tableau-based decision procedure
for right propositional neighborhood logic. In Beckert [Bec05], pages
63–77.

[BMOO09] A. Burrieza, A. Mora, M. Ojeda-Aciego, and E. Orłowska. An imple-
mentation of a dual tableaux system for order-of-magnitude qualita-
tive reasoning. International Journal of Computer Mathematics, 86
(10–11):1852–1866, 2009.

[BMS04] R. Berghammer, B. Möller, and G. Struth, editors, Relational and
Kleene-Algebraic Methods in Computer Science: 7th International
Seminar on Relational Methods in Computer Science and 2nd Inter-
national Workshop on Applications of Kleene Algebra, Bad Malente,
Germany, May 12–17, 2003, Revised Selected Papers, volume 3051
of Lecture Notes in Computer Science, Springer, Heidelberg, 2004.

[BMS07] D. Bresolin, A. Montanari, and G. Sciavicco. An optimal decision
procedure for right propositional neighborhood logic. Journal of Au-
tomated Reasoning, 38(1–3):173–199, 2007.

[BMVOA06] A. Burrieza, E. Muñoz-Velasco, and M. Ojeda-Aciego. Order of
magnitude qualitative reasoning with bidirectional negligibility. In
R. Marı́n, E. Onaindia, A. Bugarı́n, and J. Santos, editors, Cur-
rent Topics in Artificial Intelligence, 11th Conference of the Spanish
Association for Artificial Intelligence, CAEPIA 2005, Santiago de
Compostela, Spain, November 16–18, 2005, Revised Selected Papers,
volume 4177 of Lecture Notes in Computer Science, pages 370–378,
Springer, Heidelberg, 2006.



References 497

[BN05] R. Berghammer and F. Neumann. RELVIEW – an OBDD-based com-
puter algebra system for relations. In V. G. Ganzha, E. W. Mayr, and
E. V. Vorozhtsov, editors, CASC 2005, volume 3718 of Lecture Notes
in Computer Science, pages 40–51, Springer, Heidelberg, 2005.

[BO97] W. Buszkowski and E. Orłowska. Indiscernibility-based formaliza-
tion of dependencies in information systems. In Orłowska [Orł97a],
pages 293–315.

[BOA05] A. Burrieza and M. Ojeda-Aciego. A multimodal logic approach to
order of magnitude qualitative reasoning with comparability and neg-
ligibility relations. Fundamenta Informaticae, 68(1–2):21–46, 2005.

[Boo47] G. Boole. The Mathematical Analysis of Logic. Being an Essay To-
wards a Calculus of Deductive Reasoning. MacMillan, Barclay and
London, 1847.

[Boo79] G. Boolos. The Unprovability of Consistency. Cambridge University
Press, Cambridge, 1979.

[Boo93] G. Boolos. The Logic of Provability. Cambridge University Press,
Cambridge, 1993.

[BOO04] A. Burrieza, M. Ojeda-Aciego, and E. Orłowska. Relational approach
to order of magnitude reasoning. Lecture Notes in Artificial Intelli-
gence, 3040:431–440, 2004.

[Böt92a] M. Böttner. State transition semantics. Theoretical Linguistics,
18:239–286, 1992.

[Böt92b] M. Böttner. Variable-free semantics for anaphora. Journal of Philo-
sophical Logic, 21:375–390, 1992.

[BQA03] V. Beiu, J. M. Quintana, and M. J. Avedillo. VLSI implementation
of threshold logic – a comprehensive survey. IEEE Transactions on
Neural Networks, 14:1217–1243, 2003.

[Bra90] R. Brady. The Gentzenization and decidability of RW. Journal of
Philosophical Logic, 19:35–73, 1990.

[Bra03a] R. Brady, editor, Relevant Logics and their Rivals. Volume II. Alder-
shot, Ashgate, 2003.

[Bra03b] R. Brady. Semantic decision procedure for some relevant logics. Aus-
traliasian Journal of Logic, 1:4–27, 2003.

[Bri81] C. Brink. Boolean modules. Journal of Algebra, 71(2):291–313,
1981.

[Bri88] K. Britz. Relations and programs. Master’s thesis, University of Stel-
lenbosch, South Africa, 1988.

[Bro07] L. E. J. Brouwer. On the foundations of mathematics. Thesis, Amster-
dam, 1907. English translation in A. Heyting, editor, L. E. J. Brouwer:
Collected Works 1. Philosophy and Foundations of Mathematics,
Elsevier, Amsterdam, 1975.

[BS72] S. L. Bloom and R. Suszko. Investigation into the sentential calculus
with identity. Notre Dame Journal of Formal Logic, 13(3):289–308,
1972.



498 References

[BS73] D. J. Brown and R. Suszko. Abstract logics. Dissertationes Mathe-
maticae CII, Warsaw, 1973.

[BS85] R. J. Brachman and J. G. Schmolze. An overview of the KL�ONE
knowledge representation system. Cognitive Science, 9(2):171–216,
1985.

[BS94] R. Berghammer and G. Schmidt. RELVIEW: A computer system for
the manipulation of relations. In Nivat et al. [NRRS94], pages 403–
404.

[BT83] S. L. Bloom and R. Tindell. Varieties of “if-then-else”. SIAM Journal
of Computing, 12(4):677–707, 1983.

[Bub77] J. Bubenko. The temporal dimension in information modelling. In
G. Nijssen, editor, Architecture and Models in Data Base Manage-
ment Systems. North-Holland, Amsterdam, 1977.

[Bul70] R. Bull. An approach to tense logic. Theoria, 36:282–300, 1970.
[Bur79] J. P. Burgess. Logic and time. Journal of Symbolic Logic, 44(4):566–

582, 1979.
[Bur82] J. P. Burgess. Axioms for tense logics II: Time periods. Notre Dame

Journal of Formal Logic, 23:375–383, 1982.
[BvBW06] P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of

Modal Logic. Elsevier, Amsterdam, 2006.
[BZ86] R. Berghammer and H. Zierer. Relational algebraic semantics of

deterministic and nondeterministic programs. Theoretical Computer
Science, 43:123–147, 1986.

[CC08] L. M. Cabrer and S. A. Celani. Kripke semantics for monoidal t-norm
based logics MTL and IMTL. In Centre for Logic, Epistemology and
the History of Science, volume 8(6), pages 1–3, 2008.

[CFOZ03] D. Cantone, A. Formisano, E. G. Omodeo, and C. G. Zarba. Com-
piling dyadic first-order specifications into map algebra. Theoretical
Computer Science, 293(2):447–475, 2003.

[CH73] N. Cat-Ho. Generalized Post algebras and their applications to some
infinitary many-valued logics. Dissertationes Mathemticae, 57:1–76,
1973.

[CH97] Z. Chaochen and M. R. Hansen. An adequate first order interval logic.
In W. P. de Roever, H. Langmaack, and A. Pnueli, editors, Com-
positionality: The Significant Difference, International Symposium,
COMPOS’97, Bad Malente, Germany, September 8–12, 1997. Re-
vised Lectures, volume 1536 of Lecture Notes in Computer Science,
pages 584–608, Springer, Heidelberg, 1997.

[Che80] B. Chellas. Modal Logic: An Introduction. Cambridge University
Press, Cambridge, 1980.

[CHR89] N. Cat-Ho and H. Rasiowa. Plain semi-Post algebras as a poset-based
generalization of Post algebras and their representability. Studia
Logica, 48:509–530, 1989.

[Cie80] K. Ciesielski. Generalized threshold logic. Bulletin of the Polish
Academy of Sciences, Mathematics, 28(5-6):219–228, 1980.



References 499

[Cla81] B. L. Clarke. A calculus of individuals based on ‘connection’. Notre
Dame Journal of Formal Logic, 22:204–218, 1981.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[CZ97] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University
Press, Oxford, 1997.

[Dem00] S. Demri. The nondeterministic information logic NIL is PSPACE-
complete. Fundamenta Informaticae, 42(3–4):211–234, 2000.

[Der65] M. Dertouzos. Threshold Logic: A Synthesis Approach. MIT Press,
Cambridge, 1965.

[DG00a] S. Demri and D. M. Gabbay. On modal logics characterized by
models with relative accessibility relations: Part I. Studia Logica,
65(3):323–353, 2000.

[DG00b] S. Demri and D. M. Gabbay. On modal logics characterized by
models with relative accessibility relations: Part II. Studia Logica,
66:349–384, 2000.

[Did87] E. Diday. Introduction a l’approche symbolique en analyse des
donnees. In Actes des journees symboliques numeriques pour
l’apprentissage de connaissances a partir des donnes, 1987.

[Did88] E. Diday. Generating rules by symbolic data analysis and application
to soil feature recognition. in Actes des 8emes Journees Interna-
tionales: Les systemes experts et leurs applications, 1988.

[Dij68] J. W. Dijkstra. GO TO statement considered harmful. Communica-
tions of the Association for Computing Machinery, 11(3):147–148,
1968.

[dL22] T. de Laguna. Point, line and surface as sets of solids. Journal of
Philosophy, 19:449–461, 1922.

[DM71] M. Dunn and R. K. Meyer. Algebraic completeness results for Dum-
mett’s LC and its extensions. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 17:225–230, 1971.

[DM01] I. Düntsch and S. Mikulás. Cylindric structures and dependencies in
relational databases. Theoretical Computer Science, 269(1–2):451–
468, 2001.

[DO96] S. Demri and E. Orłowska. Logical analysis of demonic nondetermin-
istic programs. Theoretical Compututer Science, 166(1–2):173–202,
1996.

[DO00a] I. Düntsch and E. Orłowska. Logics of complementarity in informa-
tion systems. Mathematical Logic Quarterly, 46(2):267–288, 2000.

[DO00b] I. Düntsch and E. Orłowska. A proof system for contact relation al-
gebras. Journal of Philosophical Logic, 29:241–262, 2000.

[DO01] I. Düntsch and E. Orłowska. Beyond modalities: sufficiency and
mixed algebras. In Orłowska and Szałas [OS01], pages 263–285.

[DO02] S. Demri and E. Orłowska. Incomplete Information: Structure, Infer-
ence, Complexity. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, Heidelberg, 2002.



500 References

[DO04] I. Düntsch and E. Orłowska. Boolean algebras arising from infor-
mation systems. Annals of Pure and Applied Logic, 127(1–3):77–98,
2004.

[DO07] S. Demri and E. Orłowska. Relative nondeterministic informa-
tion logic is EXPTIME-complete. Fundamenta Informaticae, 75
(1–4):163–178, 2007.

[DO08] I. Düntsch and E. Orłowska. A discrete duality between apartness
algebras and apartness frames. Journal of Applied Non-Classical
Logics, 18(2–3):209–223, 2008.

[Dob96a] W. B. Dobrowolska. Decidable classes in relational logic generated
by decidable classes in first order logic. Technical Report, Universita
degli Studi di Milano, 1996.

[Dob96b] W. B. Dobrowolska. Some decidable classes in relational logic.
Bulletin of the Polish Academy of Sciences, Mathematics, 44:87–102,
1996.

[DOR10] I. Düntsch, E. Orłowska, and I. Rewitzky. Structures with mul-
tirelations, their discrete dualities and applications. Fundamenta
Informaticae, 100(1–4):77–98, 2010.

[DOW01] I. Düntsch, E. Orłowska, and Hui Wang. Algebras of approximating
regions. Fundamenta Informaticae, 46(1–2):71–82, 2001.

[dR95] M. de Rijke. The logic of Peirce algebras. Journal of Logic, Language
and Information, 4:227–250, 1995.

[dR99] M. de Rijke. A modal characterization of Peirce algebras. In
Orłowska [Orł99], pages 109–123.

[dS02a] H. C. M. de Swart, editor, Relational Methods in Computer Science,
6th International Conference, RelMICS 2001, and 1st Workshop of
COST Action 274 TARSKI Oisterwijk, The Netherlands, October 16–
21, 2001, Revised Papers, volume 2561 of Lecture Notes in Computer
Science, Springer, Heidelberg, 2002.

[DS02b] S. Demri and U. Sattler. Automata-theoretic decision procedures for
information logics. Fundamenta Informaticae, 53(1):1–22, 2002.

[DSW01] I. Düntsch, G. Schmidt, and M. Winter. A necessary relation algebra
for mereotopology. Studia Logica, 69(3):381–409, 2001.

[Dum59] M. Dummett. A propositional calculus with denumerable matrix.
Journal of Symbolic Logic, 24(2):97–106, 1959.

[Dun01a] M. Dunn. A representation of relation algebras using Routley-Meyer
frames. In C. A. Anderson and M. Zeleny, editors, Logic, Meaning
and Computation, volume 305 of Synthese Library, pages 77–108,
Kluwer, Dordrecht, 2001.

[Dün01b] I. Düntsch. Contact relation algebras. In Orłowska and Szałas
[OS01], pages 113–133.

[Dün05] I. Düntsch. Relation algebras and their application in temporal
and spatial reasoning. Artificial Intelligence Review, 23(4):315–357,
2005.



References 501

[DV07] I. Düntsch and D. Vakarelov. Region-based theory of discrete spaces:
A proximity approach. Annals of Mathematics and Artificial Intelli-
gence, 49(1–4):5–14, 2007.

[DW08] I. Düntsch and M. Winter. A representation theorem for boolean con-
tact algebras. Technical Report CS-03-08, Brock University, 2008.

[DWM99] I. Düntsch, H. Wang, and S. McCloskey. Relation algebras in qual-
itative spatial reasoning. Fundamenta Informaticae, 39(3):229–248,
1999.

[DWM01] I. Düntsch, H. Wang, and S. McCloskey. A relation – algebraic
approach to the region connection calculus. Theoretical Computer
Science, 255(1–2):63–83, 2001.

[Efr52] V. Efremovic. The geometry of proximity. Matematiceskij Sbornik
(New Series), 31:189–200, 1952. In Russian.

[EFT94] H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer, Heidelberg, 1994.

[EG01] F. Esteva and L. Godo. Monoidal t-norm based logic: towards a logic
for left-continuous t-norms. Fuzzy Sets and Systems, 124(3):271–
288, 2001.

[Eng67] E. Engeler. Algorithmic properties of structures. Mathematical Sys-
tems Theory, 1(3):183–195, 1967.

[EO67] A. Ehrenfeucht and E. Orłowska. Mechanical proof procedure for
propositional calculus. Bulletin of the Polish Academy of Sciences,
Mathematics, 15(1):25–30, 1967.

[Eps60] G. Epstein. The lattice theory of Post algebras. Transactions of the
American Mathematical Society, 95(2):300–317, 1960.

[ER90] G. Epstein and H. Rasiowa. Theory and uses of Post algebras of order
! C !	. Part I. In Proceedings of the 20th International Symposium
on Multiple-Valued Logic, pages 42–47, Charlotte, NC, USA, 1990.

[ER91] G. Epstein and H. Rasiowa. Theory and uses of Post algebras of order
!C!	. Part II. In Proceedings of the 21th International Symposium
on Multiple-Valued Logic, pages 248–254, Victoria, Canada, 1991.

[FBH98] M. F. Frias, G. Baum, and A. M. Haeberer. Representability and pro-
gram construction within fork algebras. Logic Journal of the IGPL,
6(2):227–257, 1998.

[FBH01] M. F. Frias, G. A. Baum, and A. M. Haeberer. A calculus for program
construction based on fork algebras, design strategies and generic al-
gorithms. In Orłowska and Szałas [OS01], pages 37–58.

[FBHV93] M. F. Frias, G. A. Baum, A. M. Haeberer, and P. A. S. Veloso. A
representation theorem for fork algebras. Technical Report, Pontifı̀cia
Universidade Catòlico do Rio de Janeiro, 1993.

[FBHV95] M. F. Frias, G. A. Baum, A. M. Haeberer, and P. A. S. Veloso. Fork
algebras are representable. Bulletin of the Section of Logic, 24(2):
64–75, 1995.



502 References

[FBM02] M. F. Frias, G. A. Baum, and T. S. E. Maibaum. Interpretability of
first-order dynamic logic in a relational calculus. In de Swart [dS02a],
pages 66–80.

[Fey65] R. Feys. Modal Logics. Louvain E. Nauwelaerts, Paris, 1965.
[FGSB06] M. F. Frias, R. Gamarra, G. Steren, and L. Bourg. Monotonicity anal-

ysis can speed up verification. In R. A. Schmidt, editor, Relations and
Kleene Algebra in Computer Science, 9th International Conference
on Relational Methods in Computer Science and 4th International
Workshop on Applications of Kleene Algebra, RelMiCS/AKA 2006,
Manchester, UK, August 29–September 2, 2006, Proceedings, vol-
ume 4136 of Lecture Notes in Computer Science, pages 177–191,
Springer, Heidelberg, 2006.

[FHV97] M. F. Frias, A. M. Haeberer, and P. A. S. Veloso. A finite axiomatiza-
tion for fork algebras. Logic Journal of the IGPL, 5(3):1–10, 1997.

[Fit90] M. Fitting. First-order Logic and Automated Theorem Proving.
Springer, Heidelberg, 1990.

[FL79] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regu-
lar programs. Journal of Computer and System Sciences, 18(2):194–
211, 1979.

[FM95] M. Fairtlough and M. Mendler. An intuitionistic modal logic with
applications to the formal verification of hardware. In Pacholski and
Tiuryn [PT95], pages 354–368.

[FNA06] A. Formisano and M. Nicolosi-Asmundo. An efficient relational
deductive system for propositional non-classical logics. Journal of
Applied Non-Classical Logics, 16(3–4):367–408, 2006.

[FO95] M. F. Frias and E. Orłowska. A proof system for fork algebras and its
applications to reasoning in logics based on intuitionism. Logique et
Analyse, 150–152:239–284, 1995.

[FO98] M. F. Frias and E. Orłowska. Equational reasoning in non-classical
logics. Journal of Applied Non-Classical Logics, 8(1–2):27–66,
1998.

[FO03] M. Fitting and E. Orłowska, editors, Beyond Two: Theory and Appli-
cations of Multiple-Valued Logic. Springer, Heidelberg, 2003.

[FOO05] A. Formisano, E. G. Omodeo, and E. Orłowska. A PROLOG tool for
relational translation of modal logics: A front-end for relational proof
systems. In Beckert [Bec05], pages 1–10.

[FOO06] A. Formisano, E. G. Omodeo, and E. Orłowska. An environment for
specifying properties of dyadic relations and reasoning about them II:
Relational presentation of non-classical logics. In H. C. M. de Swart,
E. Orłowska, G. Schmidt, and M. Roubens, editors, Theory and
Applications of Relational Structures as Knowledge Instruments II,
International Workshops of COST Action 274, TARSKI, 2002–2005,
Selected Revised Papers, volume 4342 of Lecture Notes in Computer
Science, pages 89–104, Springer, Heidelberg, 2006.



References 503

[FOP02] A. Formisano, E. G. Omodeo, and A. Policriti. Automated validation
of three-variable formulations of set pairing. In J. G. F. Belinfante,
editor, 2002-AMS and MAA Spring Southeastern Section Meeting,
Atlanta, 2002.

[FP06] M. F. Frias and C. López Pombo. Interpretability of first-order lin-
ear temporal logics in fork algebras. Journal of Algebraic and Logic
Programming, 66(2):161–184, 2006.

[Fri02] M. F. Frias. Fork Algebras in Algebra, Logic and Computer Science,
volume 2 of Advances in Logic. World Scientific, Singapore, 2002.

[Gab76] D. Gabbay. Investigations in Modal and Tense Logics. Reidel, Dor-
drecht, 1976.

[Gal75] D. Gallin. Intensional and Higher Order Modal Logic. North-
Holland, Amsterdam, 1975.

[Gen34] G. Gentzen. Untersuchungen über das logische schliessen. Mathema-
tische Zeitschrift, 39:405–431, 1934.

[Gia85] S. Giambrone. TWC and RWC are decidable. Journal of Philosoph-
ical Logic, 14:235–254, 1985.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gli29] V. Glivenko. Sur quelques points de la logique de M. Brouwer. Bul-
letins de la classe des sciences, 5(15):183–188, 1929.

[GM87] I. Guessarian and J. Meseguer. On the axiomatization of “if-then-
else”. SIAM Journal of Computing, 16(2):332–357, 1987.

[GMS03a] V. Goranko, A. Montanari, and G. Sciavicco. A general tableau
method for propositional interval temporal logics. In M. Cialdea
Mayer and F. Pirri, editors, Automated Reasoning with Ana-
lytic Tableaux and Related Methods, International Conference,
TABLEAUX 2003, Rome, Italy, September 9–12, 2003. Proceedings,
volume 2796 of Lecture Notes in Computer Science, pages 102–116,
Springer, Heidelberg, 2003.

[GMS03b] V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval
neighborhood temporal logics. Journal of Universal Computer Sci-
ence, 9(9):1137–1167, 2003.

[GMS04] V. Goranko, A. Montanari, and G. Sciavicco. A road map of inter-
val temporal logics and duration calculi. Journal of Applied Non-
Classical Logics, 14(1–2):9–54, 2004.

[GMSS06] V. Goranko, A. Montanari, P. Sala, and G. Sciavicco. A general
tableau method for propositional interval temporal logics: Theory and
implementation. Journal of Applied Logic, 4(3):305–330, 2006.

[Göd33] K. Gödel. Zum intuitionistischen aussagenkalkül. Ergeb. Math. Koll,
4:40, 1933.

[Gol87] R. Goldblatt. Logics of Time and Computation, volume 7 of CSLI
Lecture Notes. Center for the Study of Language and Information,
Stanford, 1987.



504 References

[Gol93] R. Goldblatt. Mathematics of Modality, volume 43 of CSLI Lecture
Notes. Center for the Study of Language and Information, Stanford,
1993.

[Gor95] L. Gordeev. Cut free formalization of logic with finitely many vari-
ables. Part I. In Pacholski and Tiuryn [PT95], pages 136–150.

[Gor97] R. Goré. Cut-free display calculi for relation algebras. In CSL ’96:
Selected Papers from the10th International Workshop on Computer
Science Logic, pages 198–210, Springer, Heidelberg, 1997.

[Gor01] L. Gordeev. Proof systems in relation algebra. In Orłowska and Szałas
[OS01], pages 219–237.

[Got00] S. Gottwald. A Treatise on Many-Valued Logics, volume 9 of Studies
in Logic and Computation. Research Studies Press, Baldock, 2000.

[GP07] J. Golińska-Pilarek. Rasiowa-Sikorski proof system for the non-
fregean sentential logic SCI. Journal of Applied Non-Classical Log-
ics, 17(4):511–519, 2007.

[GPBV08] J. Golińska-Pilarek, A. Mora Bonilla, and E. Munoz Velasco. An ATP
of a relational proof system for order of magnitude reasoning with
negligibility, non-closeness and distance. In T. B. Ho and Z. H. Zhou,
editors, PRICAI 2008, volume 5351 of Lecture Notes in Artificial In-
telligence, pages 128–139, Springer, Heidelberg, 2008.

[GPH05] J. Golińska-Pilarek and T. Huuskonen. Number of extensions of non-
fregean logics. Journal of Philosophical Logic, 34(2):193–206, 2005.

[GPO07a] J. Golińska-Pilarek and E. Orłowska. Relational reasoning in formal
concept analysis. In FUZZ-IEEE 2007, IEEE International Confer-
ence on Fuzzy Systems, Imperial College, London, UK, 23–26 July,
2007, Proceedings, pages 1–6, London, 2007. IEEE.

[GPO07b] J. Golińska-Pilarek and E. Orłowska. Tableaux and dual tableaux:
Transformation of proofs. Studia Logica, 85(3):283–302, 2007.

[GPO10] J. Golińska-Pilarek and E. Orłowska. Dual tableau for monoidal
triangular norm logic MTL, Fuzzy Sets and Systems (2010), doi:
10.1016/j.fss.2010.09.007.

[Grz60] A. Grzegorczyk. Axiomatization of geometry without points. Syn-
these, 12:228–235, 1960.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundation. Springer, Heidelberg, 1999.

[Gyu95] V. Gyuris. A short proof of representability of fork algebras. Logic
Journal of the IGPL, 3(5):791–796, 1995.

[Häh01] R. Hähnle. Advanced many-valued logics. In D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, volume 2,
pages 297–395. Kluwer, Dordrecht, 2001.

[Häh03] R. Hähnle. Complexity of many-valued logics. In Fitting and
Orłowska [FO03], pages 211–233.

[Háj98] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.



References 505

[HBS93] A. M. Haeberer, G. Baum, and G. Schmidt. On the smooth calculation
of relational recursive expressions out of first-order non-constructive
specifications involving quantifiers. In D. Bjorner, M. Broy, and I. V.
Pottosin, editors, Formal Methods in Programming and Their Ap-
plications, International Conference, Akademgorodok, Novosibirsk,
Russia, June 28–July 2, 1993, Proceedings, volume 735 of Lecture
Notes in Computer Science, pages 281–298, Springer, Heidelberg,
1993.

[HBS94] C. Hattensperger, R. Berghammer, and G. Schmidt. RALF: A
relation-algebraic formula manipulation system and proof checker.
In Nivat et al. [NRRS94], pages 405–406.

[HC68] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic.
Methuen, London, 1968.

[HC84] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic.
Methuen, London, 1984.

[Hen80] M. Hennessy. A proof system for the first-order relational calculus.
Journal of Computer and System Sciences, 20(1):96–110, 1980.

[Hey30] A. Heyting. Die Formalen Regeln der Intuitionistischer Logik, pages
42–71, 158–169. Sitzungsber. Preuss. Acad. Wiss., Berlin, 1930. En-
glish translation in P. Mancosu, editor, From Brouwer to Hilbert: The
Debate on the Foundations of Mathematics in 1920’s, pages 311–327.
Oxford University Press, Oxford, 1998.

[HH02] R. Hirsch and I. Hodkinson. Relation Algebras by Games. Elsevier,
Amsterdam, 2002.

[Hir07] R. Hirsch. Peirce algebras and Boolean modules. Journal of Logic
and Computation, 17(2):255–283, 2007.

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cam-
bridge, 2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[HR06] J. Hodkinson and M. Reynolds. Temporal logic. In Blackburn et al.
[BvBW06], pages 655–720.

[HS91] J. Y. Halpern and Y. Shoham. A propositional modal logic of time
intervals. Journal of the ACM, 38(4):935–962, 1991.

[HS99] U. Hustadt and R. A. Schmidt. On the relation of resolution and
tableaux proof systems for description logics. In T. Dean, editor, Pro-
ceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, IJCAI 99, Stockholm, Sweden, July 31–August 6, 1999.
2 volumes, 1450 pages, pages 110–117, Stockholm, Morgan Kauf-
mann, 1999.

[Hum79] I. L. Humberstone. Interval semantics for tense logic: some remarks.
Journal of Philosophical Logic, 8:171–196, 1979.

[HV91a] A. M. Haeberer and P. A. S. Veloso. A finitary relational algebra for
classical first order logic. Bulletin of the Section of Logic, 20(2):52–
62, 1991.



506 References

[HV91b] A. M. Haeberer and P. A. S. Veloso. Partial relations for program
derivation: adequacy, inevitability, and expressiveness. In Construct-
ing Programs from Specifications, Proceedings of the IFIP TC2
Working Conference, pages 319–371, Amsterdam, North-Holland,
1991.

[IL84] T. Imieliński and W. Lipski. The relational model of data and cylin-
dric algebras. Journal of Computer and System Sciences, 28(1):80–
102, 1984.

[IO06] L. Iturrioz and E. Orłowska. A Kripke-style and relational semantics
for logics based on Łukasiewicz algebras. Multiple-Valued Logic and
Soft Computing, 12(1–2):131–147, 2006.

[Itu82] L. Iturrioz. Modal operators on symmetrical Heyting algebras. In
T. Traczyk, editor, Universal Algerbra and Applications, volume 9 of
Banach Center Publications, pages 289–303. Polish Scientific Pub-
lishers, Warsaw, 1982.

[Itu83] L. Iturrioz. Symmetrical Heyting algebras with operators. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 29:33–
70, 1983.

[JM02] S. Jenei and F. Montagna. A proof of standard completeness for Es-
teva and Godo’s logic MTL. Studia Logica, 70(2):183–192, 2002.

[Joh36] I. Johansson. Der minimalkalkül, ein reduzierter intuitionistischer
formalismus. Compositio Mathematica, 4:119–136, 1936.

[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators, Part II.
American Journal of Mathematics, 74:127–162, 1952.

[Kam68] J. A. Kamp. Tense logic and the theory of linear order. PhD thesis,
University of California, Los Angeles, 1968.

[Kan57] S. Kanger. Provability in Logic, volume 1 of Stockholm Studies in
Philosophy. Acta Universitatis Stockholmiensis, Stockholm, 1957.

[KM00] E. P. Klement and R. Mesiar. Triangular Norms. Kluwer, Dordrecht,
2000.

[KMO98] B. Konikowska, C. Morgan, and E. Orłowska. A relational formal-
isation of arbitrary finite-valued logics. Logic Journal of the IGPL,
6(5):755–774, 1998.

[KO01] B. Konikowska and E. Orłowska. A relational formalisation of a
generic many-valued modal logic. In Orłowska and Szałas [OS01],
pages 183–202.

[Kon87] B. Konikowska. A formal language for reasoning about indiscerni-
bility. Bulletin of the Polish Academy of Sciences, Mathematics,
35:239–249, 1987.

[Kon97] B. Konikowska. A logic for reasoning about relative similarity. Studia
Logica, 58:185–226, 1997.

[Kon02] B. Konikowska. Rasiowa-Sikorski deduction systems in computer
science applications. Theoretical Computer Science, 286(2):323–
366, 2002.

[KP81] D. Kozen and R. Parikh. An elementary proof of the completness of
PDL. Theoretical Computer Science, 14:113–118, 1981.



References 507

[Kri63] S. A. Kripke. Semantical considerations on modal logic. Acta Philo-
sophica Fennica, 16:83–94, 1963.

[Kri65] S. A. Kripke. Semantical analysis of intutionistic logic. In J. Cross-
ley and M. A. E. Dummett, editors, Formal Systems and Recursive
Functions, pages 92–130. North-Holland, Amsterdam, 1965.

[Lee59] C. Y. Lee. Representation of switching circuits by binary-decision
programs. Bell System Technical Journal, 38:985–999, 1959.

[Leś16] S. Leśniewski. Podstawy ogólnej teorii mnogości. Prace Polskiego
Koła Naukowego w Moskwie, Sekcja Matematyczno-Przyrodnicza
2, 1916.

[Leś29] S. Leśniewski. Grundzüge eines neuen Systems der Grundlagen
der Mathematik. Fundamenta Mathematicae, 14:1–81, 1929. En-
glish translation in S. J. Surma, J. T. Srzednicki, D. I. Bernett, and
V. F. Rickey, editors, Stanisław Leśniewski: Collected works, 1992.

[Leś31] S. Leśniewski. O podstawach matematyki. Przegla̧d Filozoficzny, 30–
34, 1927–1931.

[Lew20] C. I. Lewis. Strict implication – an emendation. Journal of Philoso-
phy, 17:300–302, 1920.

[Lip76] W. Lipski. Informational systems with incomplete information. In
Proceedings of the 3rd International Symposium on Automata, Lan-
guages and Programming, Edinburgh, Scotland 1976, pages 120–
130, 1976.

[Lip79] W. Lipski. On semantic issues connected with incomplete informa-
tion databases. ACM Transactions on Database Systems, 4(3):262–
296, 1979.

[LL59] C. I. Lewis and C. H. Langford. Symbolic Logic. Dover Publications,
New York, 1959. First published in 1932.

[LLMS02] G. Lee, R. Little, W. MacCaull, and B. Spencer. ReVAT – relational
validation via analytic Tableaux. Technical Report, St. Francis Xavier
University, 2002.

[LM87] P. B. Ladkin and R. Maddux. The algbera of convex time intervals.
Technical Report, Kestrel Institute, 1987.

[LM94] P. B. Ladkin and R. D. Maddux. On binary constraint problems. Jour-
nal of the ACM, 41(3):435–469, 1994.

[Lod00] K. Lodaya. Sharpening the undecidability of interval temporal logic.
In J. He and M. Sato, editors, Advances in Computing Science -
ASIAN 2000, 6th Asian Computing Science Conference, Penang,
Malaysia, November 25-27, 2000, Proceedings, volume 1961 of
Lecture Notes in Computer Science, pages 290–298, Springer, Hei-
delberg, 2000.

[LT87] K. Lodaya and P. S. Thiagarajan. A modal logic for a subclass of
event structures. In T. Ottmann, editor, Automata, Languages and
Programming, 14th International Colloquium, ICALP87, Karlsruhe,
Germany, July 13–17, 1987, Proceedings, volume 267 of Lecture
Notes in Computer Science, pages 290–303, Springer, Heidelberg,
1987.



508 References

[Łuk20] J. Łukasiewicz. O logice trójwartościowej. Ruch Filozoficzny, 5:170–
171, 1920. English translation in L. Borkowski, editor, Selected
Works of Jan Łukasiewicz, North-Holland, Amsterdam and Polish
Scientific Publishers, Warsaw.

[Lyn50] R. C. Lyndon. The representation of relational algebras. Annals of
Mathematics (Series 2), 51:707–729, 1950.

[Mac97] W. MacCaull. Relational proof system for linear and other substruc-
tural logics. Logic Journal of the IGPL, 5(5), 1997.

[Mac98] W. MacCaull. Relational semantics and a relational proof system for
full Lambek calculus. Journal of Symbolic Logic, 63(2):623–637,
1998.

[Mac99] W. MacCaull. Relational tableaux for tree models, language models
and information networks. In Orłowska [Orł99].

[Mac00] W. MacCaull. A proof system for dependencies for information rela-
tions. Fundamenta Informaticae, 42(1):1–27, 2000.

[Mac01] W. MacCaull. A tableaux procedure for the implication problem for
association rules. In Orłowska and Szałas [OS01], pages 73–91.

[Mad83] R. D. Maddux. A sequent calculus for relation algebras. Annals of
Pure and Applied Logic, 25:73–101, 1983.

[Mad91] R. D. Maddux. Introductory course on relation algebras, finite dimen-
sional cylindric algebras, and their interconnections. In Andréka et al.
[AMN91], pages 361–392.

[Mad06] R. D. Maddux. Relation Algebras. Elsevier, Amsterdam, 2006.
[Mak73] L. L. Maksimowa. Structures with implication. Algebra and Logic,

12:445–467, 1973.
[Mal93] G. Malinowski. Many-Valued Logics. Oxford University Press, Ox-

ford, 1993.
[Man93] E. G. Manes. Adas and the equational theory of if-then-else. Algebra

Universalis, 30:373–394, 1993.
[McC63] J. A. McCarthy. A basis for a mathematical theory of computation. In

P. Braffort and D. Hirschberg, editors, Computer, Programming and
Formal Systems, pages 33–70. North-Holland, Amsterdam, 1963.

[Men90] M. Mendler. Constrained proofs: A logic for dealing with be-
havioural constraints in formal hardware verification. In G. Jones
and M. Sheeran, editors, Designing Correct Circuits, pages 1–28,
Springer, Heidelberg, 1990.

[Men93] M. Mendler. A modal logic for handling behavioural constraints in
formal hardware verification. PhD thesis, Department of Computer
Science, Edinburgh University, 1993.

[MO02a] W. MacCaull and E. Orłowska. Correspondence results for relational
proof systems with application to the Lambek calculus. Studia Log-
ica, 71(3):389–414, 2002.

[MO02b] F. Montagna and H. Ono. Kripke semantics, undecidability and
standard completeness for Esteva and Godo’s logic MTL8. Studia
Logica, 71(2):227–245, 2002.



References 509

[MO04] W. MacCaull and E. Orłowska. A calculus of typed relations. In
Berghammer et al. [BMS04], pages 187–199.

[MO06] W. MacCaull and E. Orłowska. A logic of type relations and its ap-
plications to relational databases. Journal of Logic and Computation,
16(6):789–815, 2006.

[MOG09] G. Metcalfe, N. Olivetti, and D. Gabbay. Proof Theory for Fuzzy Log-
ics, volume 36 of Applied Logic Series. Springer, Heidelberg, 2009.

[Mon64] D. Monk. On representable relation algebras. Michigan Mathemati-
cal Journal, 11:207–210, 1964.

[Mor64] A. De Morgan. On the syllogism: IV, and on the logic of relation.
Transactions of the Cambridge Philosophical Society, 10:331–358,
1864.

[Mos83] B. Moszkowski. Reasoning about digital circuits. Technical Report,
Department of Computer Science, Stanford University, Stanford, CA,
1983.

[MS87] G. Mirkowska and A. Salwicki. Algorithmic Logic. Reidel, Dor-
drecht, 1987.

[Mur71] S. Muroga. Threshold Logic and its Applications. Wiley-Interscience,
New York, 1971.

[Ngu91] T. Nguyen. A relational model of demonic nondeterministic pro-
grams. International Journal of Foundations of Computer Science,
2:101–131, 1991.

[Nou99] A. Nour. Sémantique algébrique d’un systèmes logique basé sur un
ensemble ordonné fini. Mathematical Logic Quarterly, 45:457–466,
1999.

[NPW81] M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures
and domains, Part I. Theoretical Computer Science, 13:85–108, 1981.

[NRRS94] M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Algebraic
Methodology and Software Technology: Proceedings of the Third In-
ternational Conference AMAST’93. Springer, Heidelberg, 1994.

[NW70] S. A. Naimpally and B. D. Warrack. Proximity Spaces. Cambridge
University Press, Cambridge, 1970.

[OdS93] W. M. J. Ophelders and H. C. M. de Swart. Tableaux versus resolution
a comparison. Fundamenta Informaticae, 18:109–127, 1993.

[Ono] H. Ono. The finite embeddability property for MTL. Unpublished
note.

[Ono85] H. Ono. Semantical analysis of predicate logics without the contrac-
tion rule. Studia Logica, 44(2):187–196, 1985.

[Ono93] H. Ono. Semantics for substructural logics. In K. Došen and
P. Schroeder-Heister, editors, Substructural Logics, pages 259–291.
Oxford University Press, Oxford, 1993.

[OOP04] E. Omodeo, E. Orłowska, and A. Policriti. Simulation and semantic
analysis of modal logics by means of an elementary set theory treated
à la Rasiowa-Sikorski. In Berghammer et al. [BMS04], pages 215–
226.



510 References

[OP84] E. Orłowska and Z. Pawlak. Representation of nondeterministic in-
formation. Theoretical Computer Science, 29:27–39, 1984.

[OR07] E. Orłowska and I. Rewitzky. Discrete duality and its applications
to reasoning with incomplete information. In M. Kryszkiewicz, J. F.
Peters, H. Rybiński, and A. Skowron, editors, Rough Sets and Intel-
ligent Systems Paradigms, International Conference, RSEISP 2007,
Warsaw, Poland, June 28-30, 2007, Proceedings, volume 4585 of
Lecture Notes in Computer Science, pages 51–56, Springer, Heidel-
berg, 2007.

[OR08] E. Orłowska and I. Rewitzky. Context algebras, context frames, and
their discrete duality. In J. F. Peters et al., editor, Transactions on
Rough Sets IX, volume 5390 of Lecture Notes in Computer Science,
pages 212–229, Springer, Heidelberg, 2008.

[OR09a] E. Orłowska and A. Radzikowska. Discrete duality for some ax-
iomatic extensions of MTL algebras. In P. Cintula, Z. Haniková,
and V. Švejdar, editors, Witnessed Years – Essays in Honour of Petr
Hájek, number 10 in College Publications, pages 329–344. King’s
College London, London, 2009.

[OR09b] E. Orłowska and I. Rewitzky. Discrete duality for relation algebras
and cylindric algebras. In R. Berghammer, A. Jaoua, and B. Möller,
editors, Relations and Kleene Algebra in Computer Science, 11th In-
ternational Conference on Relational Methods in Computer Science,
RelMiCS 2009, and 6th International Conference on Applications of
Kleene Algebra, AKA 2009, Doha, Qatar, November 1–5, 2009. Pro-
ceedings, volume 5827 of Lecture Notes in Computer Science, pages
291–305, Springer, Heidelberg, 2009.

[OR10] E. Orłowska and I. Rewitzky. Algebras for Galois-style connections
and their discrete duality. Fuzzy Sets and Systems, 161(9):1325–1342,
2010.

[Orł69] E. Orłowska. Mechanical theorem proving in a certain class of for-
mulae of the predicate calculus. Studia Logica, 25:17–29, 1969.

[Orł74] E. Orłowska. Threshold logic. Studia Logica, 33:1–9, 1974.
[Orł76] E. Orłowska. Threshold logic II. Studia Logica, 35:243–247, 1976.
[Orł82] E. Orłowska. Dynamic information systems. Fundamenta Informati-

cae, 5:101–118, 1982.
[Orł83] E. Orłowska. Semantics of vague concepts. In G. Dorn and P. Wein-

gartner, editors, Foundations of Logic and Linguistics. Problems and
Solutions, Selected contributions to the 7th International Congress
of Logic, Methodology and Philosophy of Science, Salzburg (1983),
pages 465–482. Plenum Press, New York, 1983.

[Orł84] E. Orłowska. Logic of indiscernibility relations. 208:177–186, 1984.
[Orł85a] E. Orłowska. Logic of nondeterministic information. Studia Logica,

44:93–102, 1985.
[Orł85b] E. Orłowska. Mechanical proof methods for Post logics. Logique et

Analyse, 110–111:173–192, 1985.



References 511

[Orł87] E. Orłowska. Algebraic approach to database constraints. Funda-
menta Informaticae, 10:57–66, 1987.

[Orł88] E. Orłowska. Kripke models with relative accessibility and
their application to inferences from incomplete information. In
G. Mirkowska and H. Rasiowa, editors, Mathematical Problems in
Computation Theory, volume 21 of Banach Center Publications,
pages 329–339. Polish Scientific Publishers, Warsaw, 1988.

[Orł91] E. Orłowska. Relational interpretation of modal logics. In Andréka
et al. [AMN91], pages 443–471.

[Orł92] E. Orłowska. Relational proof system for relevant logics. Journal of
Symbolic Logic, 57(4):1425–1440, 1992.

[Orł93] E. Orłowska. Dynamic logic with program specifications and its
relational proof system. Journal of Applied Non-Classical Logics,
3(2):147–171, 1993.

[Orł95] E. Orłowska. Temporal logics in a relational framework. In L. Bolc
and A. Szałas, editors, Time and Logic – a Computational Approach,
pages 249–277. University College London Press, London, 1995.

[Orł97a] E. Orłowska, editor, Incomplete Information: Rough Set Analysis.
Springer, Heidelberg, 1997.

[Orł97b] E. Orłowska. Relational formalisation of non-classical logics. In
C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in
Computer Science, pages 90–105. Springer, Vienna, 1997.

[Orł99] E. Orłowska, editor, Logic at Work. Essays dedicated to the mem-
ory of Helena Rasiowa, volume 24 of Studies in Fuzziness and Soft
Computing. Springer, Heidelberg, 1999.

[ORR10] E. Orłowska, A. Radzikowska, and I. Rewitzky. Discrete repre-
sentability and discrete duality. A draft of a book, 2010.

[OS01] E. Orłowska and A. Szałas, editors, Relational Methods for Com-
puter Science Applications, volume 65 of Studies in Fuzziness and
Soft Computing. Springer, Heidelberg, 2001.

[OS04] E. Orłowska and G. Schmidt. Rasiowa-Sikorski proof systems in
relation algebra. Technical Report, Universität der Bundeswehr
München, 2004.

[Pas84] S. Passy. Combinatory dynamic logic. PhD thesis, University of
Sofia, 1984.

[Paw82] Z. Pawlak. Rough sets. International Journal of Information and
Computer Sciences, 11:341–356, 1982. Also available as Technical
Report 435, Institute of Computer Science, Polish Academy of Sci-
ences, Warsaw, 1981.

[Paw91] Z. Pawlak, editor, Rough Sets. Kluwer, Dordrecht, 1991.
[Pea99] D. Pearce. Stable inference as intuitionistic validity. Journal of Logic

Programming, 38(1):79–91, 1999.
[Pei83] C. S. Peirce. Note B: the logic of relatives. In C. S. Peirce, editor,

Studies in Logic by Members of the Johns Hopkins University, pages
187–203. Little Brown, Boston, 1883.



512 References

[Pen88] W. Penczek. A temporal logic for event structures. Fundamenta In-
formaticae, 11:297–326, 1988.

[PM60] M. C. Paull and E. J. McCluskey. Boolean functions realizable with
single threshold devices. Proceedings IRE, 48:1335–1337, 1960.

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Sym-
posium on Foundations of Computer Science, pages 46–57, IEEE,
Providence, 1977.

[Pos20] E. L. Post. Determination of all closed systems of truth tables. Bul-
letin of the American Mathematical Society, 26:437, 1920.

[Pos21] E. L. Post. Introduction to a general theory of elementary proposi-
tions. American Journal of Mathematics, 43:163–185, 1921.

[Pra76] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th
Annual Symposium on Foundations of Computer Science, pages 109–
121, IEEE, Houston, 1976.

[Pra78] V. R. Pratt. A practical decision method for propositional dynamic
logic: Preliminary Report. In Conference Record of the Tenth Annual
ACM Symposium on Theory of Computing, pages 326–337, ACM,
San Diego, 1978.

[Pra79] V. R. Pratt. Models of program logics. In 20th Annual Symposium on
Foundations of Computer Science, pages 115–122, IEEE, San Juan,
1979.

[Pre97] S. Prediger. Symbolic objects in formal concept analysis. Technical
Report, Technische Hohschule Darmstadt, 1997.

[Pri57] A. N. Prior, editor, Time and Modality. Clarendon Press, Oxford,
1957.

[Pri67] A. N. Prior, editor, Past, Present and Future. Oxford University Press,
Oxford, 1967.

[PS95] J. Possega and P. H. Schmitt. Automated deduction with Shannon
graphs. Journal of Logic and Computation, 5(6):697–729, 1995.

[PT85] S. Passy and T. Tinchev. PDL with data constants. Information Pro-
cessing Letters, 20(1):35–41, 1985.

[PT95] L. Pacholski and J. Tiuryn, editors, Computer Science Logic, 8th
International Workshop, CSL ’94, Kazimierz, Poland, September 25–
30, 1994, Selected Papers, volume 933 of Lecture Notes in Computer
Science, Springer, Heidelberg, 1995.

[Ras73] H. Rasiowa. On generalized Post algebras of order !C and !C-
valued predicate calculi. Bulletin of the Polish Academy of Sciences,
Mathematics, 21:209–219, 1973.

[Ras85] H. Rasiowa. Topological representations of Post algebras of order
!C and open theories based on !C-valued Post logic. Studia Log-
ica, 44(4):353–368, 1985.

[Ras91] H. Rasiowa. On approximation logics: a survey. Jahrbuch, 1990, Kurt
Gödel Gesssellschaft, pages 63–87, 1991.

[Ras94] H. Rasiowa. Axiomatization and completeness of uncountably valued
approximation logic. Studia Logica, 53(1):137–160, 1994.



References 513

[RCC92] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on
regions and connection. In Proceedings of the 3rd International Con-
ference on Principles of Knowledge Representation and Reasoning,
pages 165–176, Morgan Kaufmann, Cambridge, 1992.

[Res96] G. Restall. Information flow and relevant logics. In J. Seligman and
D. Westerståhl, editors, Logic, Language and Computation: The 1994
Moraga Proceedings, Volume 1 of CSLI Lecture Notes, pages 463–
478. Center for the Study of Language and Information, Stanford,
1996.

[RM73] R. Routley and R. K. Meyer. The semantics of entailment. In
H. Leblanc, editor, Truth, Syntax and Modality, pages 199–243.
North-Holland, Amsterdam, 1973.

[RMPB83] R. Routley, R. K. Meyer, V. Plumwood, and R. Brady, editors, Rele-
vant Logics and their Rivals I. Ridgeview, Atascadero, 1983.

[Röp80] P. Röper. Intervals and tenses. Journal of Philosophical Logic, 9:451–
469, 1980.

[Ros42] P. C. Rosenbloom. Post algebras I. Postulates and general theory.
American Journal of Mathematics, 64(1):167–188, 1942.

[Rou69] G. Rousseau. Logical systems with finitely truth values. Bulletin of
the Polish Academy of Sciences, Mathematics, 17:189–194, 1969.

[Rou70] G. Rousseau. Post algebras and pseudo-Post algebras. Fundamenta
Mathematicae, 67:133–145, 1970.

[RS60] H. Rasiowa and R. Sikorski. On Gentzen theorem. Fundamenta
Mathematicae, 48:57–69, 1960.

[RS63] H. Rasiowa and R. Sikorski, Mathematics of Metamathematics.
Polish Scientific Publishers, Warsaw, 1963.

[RT52] J. B. Rosser and A. R. Turquette. Many-Valued Logics. North-
Holland, Amsterdam, 1952.

[Sal70] A. Salwicki. Formalized algorithmic languages. Bulletin of the Polish
Academy of Sciences, Mathematics, 18:272–232, 1970.

[Sal72] Z. Saloni. Gentzen rules for them-valued logic. Bulletin of the Polish
Academy of Sciences, Mathematics, 20:819–826, 1972.

[Sch91] E. Schröder. Vorlesungen über die Algebra der Logik (Exakte Logik).
Algebra und Logik der Relative III, Part 1. Teubner, Stuttgart, 1891.
Reprinted by Chelsea, New York, 1966.

[Sch82] W. Schönfeld. Upper bounds for a proof-search in a sequent calcu-
lus for relational equations. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 28:239–246, 1982.

[Sch91] R. A. Schmidt. Algebraic terminological representation. Master’s
thesis, Department of Mathematics, University of Cape Town, Cape
Town, South Africa, 1991. Available as Thesis-Reprint TR 011. Also
as Technical Report MPI-I-91-216, Max-Planck-Institut für Infor-
matik, Saarbrücken, Germany.

[Sch03] G. Schmidt. Relational language. Technical Report, Universität der
Bundeswehr München, 2003.



514 References

[Sch06] R. A. Schmidt. Developing modal tableaux and resolution methods
via first-order resolution. In G. Governatori, I. M. Hodkinson, and
Y. Venema, editors, Advances in Modal Logic 6, papers from the
sixth conference on “Advances in Modal Logic”, held in Noosa,
Queensland, Australia, on 25–28 September 2006, pages 1–26, Col-
lege Publications, London, 2006.

[Seg71] K. Segerberg. An Essay in Classical Modal Logic. University of Up-
psala, Uppsala, 1971.

[Seg77] K. Segerberg. A completeness theorem in the modal logic of pro-
grams. Notices of the AMS, 24(6):A–552, 1977.

[Sha38] C. E. Shannon. A symbolic analysis of relay and switching circuits.
Transactions of the AIEE, 57:713–723, 1938.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell Sys-
tem Technical Journal, 27:379–423, 623–656, 1948.

[Sim87] P. Simons. Parts. A Study in Ontology. Clarendon Press, Oxford,
1987.

[Sin00] C. Sinz. System description: ARA – an automatic theorem prover for
relation algebras. In D. A. McAllester, editor, Proceedings of the 17th
International Conference on Automated Deduction, volume 1831 of
Lecture Notes in Computer Science, pages 177–182, Springer, Hei-
delberg, 2000.

[Smu68] R. M. Smullyan. First Order Logic. Springer, Heidelberg, 1968.
[SOH04] R. A. Schmidt, E. Orłowska, and U. Hustadt. Two proof systems for

Peirce algebras. In Berghammer et al. [BMS04], pages 238–251.
[SR92] A. Skowron and C. Rauszer. The discernibility matrices and functions

in information systems. In R. Słowiński, editor, Intelligent Deci-
sion Support: Handbook of Applications and Advances of Rough Set
Theory, volume 11 of System Theory, Knowledge Engineering and
Problem Solving, pages 331–362. Kluwer, Dordrecht, 1992.

[SS63] B. Schweizer and A. Sklar. Associative functions and abstract semi-
groups. Publ. Math. Debrecen, 10:69–81, 1963.

[SS83] B. Schweizer and A. Sklar. Probabilistic Mertic Space. North-
Holland, Amsterdam, 1983.

[SS93] G. Schmidt and T. Ströhlein. Relations and Graphs – Discrete
Mathematics for Computer Scientists. Monographs in Theoretical
Computer Science. An EATCS Series. Springer, Heidelberg, 1993.

[Ste00] J. G. Stell. Boolean connection algebras: A new approach to the
Region-Connection Calculus. Artificial Intelligence, 122(1–2):111–
136, 2000.

[Sto98] T. Stokes. Radical classes of algebras withB-action. Algebra Univer-
salis, 40:73–85, 1998.

[Sus68] R. Suszko. Non-fregean logic and theories. Analele Universitatii Bu-
curesti, Acta Logica, 9:105–125, 1968.

[Sus71a] R. Suszko. Identity connective and modality. Studia Logica, 27:7–39,
1971.



References 515

[Sus71b] R. Suszko. Quasi-completeness in non-fregean logic. Studia Logica,
29:7–14, 1971.

[Sus71c] R. Suszko. Semantics for the sentential calculus with identity. Studia
Logica, 28:77–81, 1971.

[Sus72] R. Suszko. Abolition of the Fregean axiom. In R. Parikh, editor, Logic
Colloquium: Symposium on Logic held at Boston, 197273, volume
453 of Lecture Notes in Mathematics, pages 169–239, Springer, Hei-
delberg, 1972.

[Sus73] R. Suszko. Adequate models for the non-fregean sentential calculus
SCI. In Logic, Language and Probability. A selection of papers of the
4th International Congress for Logic, Methodology and Philosophy,
pages 49–54, Reidel, Dordrecht, 1973.

[Tar41] A. Tarski. On the calculus of relations. Journal of Symbolic Logic,
6(3):73–89, 1941.

[TG87] A. Tarski and S. R. Givant. Formalization of Set Theory without
Variables, volume 41 of Colloquium Publications. American Mathe-
matical Society, Providence, 1987.

[TMR68] A. Tarski, A. Mostowski, and A. Robinson. Undecidable theo-
ries. Studies in Logic and the Foundations of Mathematics. North-
Holland, Amsterdam, 1968.

[Urq72] A. Urquhart. Semantics for relevant logics. Journal of Symbolic
Logic, 37(1):159–169, 1972.

[Urq84] A. Urquhart. The undecidability of entailment and relevant implica-
tion. Journal of Symbolic Logic, 49:1059–1073, 1984.

[Urq96] A. Urquhart. Duality for algebras of relevant logics. Studia Logica,
56:263–276, 1996.

[Vak87] D. Vakarelov. Abstract characterization of some knowledge represen-
tation systems and the logic NIL of nondeterministic information. In
P. Jorrand and V. Sgurev, editors, Artificial Intelligence: Methodol-
ogy, Systems, Applications, pages 255–260, North-Holland, Amster-
dam, 1987.

[Vak89] D. Vakarelov. Modal logics for knowledge representation systems.
In A. R. Meyer and M. A. Taitslin, editors, Logic at Botik ’89,
Symposium on Logical Foundations of Computer Science, Pereslav-
Zalessky, USSR, July 3-8, 1989, Proceedings, volume 363 of Lecture
Notes in Computer Science, pages 257–277, Springer, Heidelberg,
1989.

[vB83] J. van Benthem. The Logic of Time, volume 156 of Synthese Library.
Reidel, Dordrecht, 1983.

[vB85] J. van Benthem. A Manual of Intensional Logic, volume 1 of CSLI
Lecture Notes. Center for the Study of Language and Information,
Stanford, CA, 1985.

[vB95] J. van Benthem. Temporal logic. In D. Gabbay, C. J. Hogger, and
J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 4, pages 241–350. Clarendon Press,
Oxford, 1995.



516 References

[vB96] J. van Benthem. Exploring Logical Dynamics. CSLI Lecture Notes.
Center for the Study of Language and Information & Cambridge Uni-
versity Press, Stanford, Cambridge, 1996.

[VDB01] D. Vakarelov, I. Düntsch, and B. Bennett. A note on proximity spaces
and connection based mereology. In C. Welty and B. Smith, editors,
Proceedings of the 2nd International Conference on Formal Ontology
in Information Systems (FOIS01), pages 139–150, ACM, New York,
2001.

[VDDB02] D. Vakarelov, G. Dimov, I. Düntsch, and B. Bennett. A proximity
approach to some region-based theories of space. Journal of Applied
Non-Classical Logics, 12(3–4):527–559, 2002.

[Ven90] Y. Venema. Expressiveness and completeness of an interval tense
logic. Notre Dame Journal of Formal Logic, 31(4):529–547, 1990.

[Ven91] Y. Venema. A modal logic for chopping intervals. Journal of Logic
and Computation, 1(4):453–476, 1991.

[VHF95] P. A. S. Veloso, A. M. Haeberer, and M. F. Frias. Fork algebras as
algebras of logic. Bulletin of Symbolic Logic, 1(2):265–266, 1995.

[Vis82] A. Visser. On the completeness principle: A study of provability in
Heyting’s arithmetic. Annals of Mathematical Logic, 22:263–295,
1982.

[vW65] G. H. von Wright. And Next. Acta Philosophica Fennica, Fast.,
18:293–304, 1965.

[Wad75] W. W. Wadge. A complete natural deduction system for the relational
calculus. Technical Report, Coventry, 1975.

[WDB98] H. Wang, I. Düntsch, and D. Bell. Data reduction based on hyper re-
lations. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors,
Proceedings of the 4th International Conference on Knowledge Dis-
covery and Data Mining, pages 349–353, 1998.

[WDG00] H. Wang, I. Düntsch, and G. Gediga. Classificatory filtering in de-
cision systems. International Journal of Approximate Reasoning,
23:111–136, 2000.

[Whi29] A. N. Whitehead. Process and Reality. MacMillan, Barclay and Lon-
don, 1929.

[Wil82] R. Wille. Restructuring lattice theory: an approach based on hierar-
chies of concepts. In I. Rival, editor, Ordered Sets, pages 445–470.
Reidel, Dordrecht, 1982.

[Win80] G. Winskel. Events in computation. PhD thesis, Department of Com-
puter Science, University of Edinburgh, 1980.

[Win86] G. Winskel. Event structure semantics for CCS and related lan-
guages. In volume 224 of Lecture Notes in Computer Science, pages
510–584, Springer, Heidelberg, 1986.

[Wol94] A. Wolf. Optimization and translation of tableau-proofs into resolu-
tion. Elektronische Informationsverarbeitung und Kybernetik, 30(5–
6):311–325, 1994.

[WS92] W. A. Woods and J. G. Schmolze. The KL�ONE family. Computers
and Mathematics with Applications, 23(2–5):133–177, 1992.



References 517

[Yan59] J. Yanov. On equivalence of operator schemes. Problems of Cyber-
netic, 1:1–100, 1959.

[Zem73] J. Zeman. Modal Logic, the Lewis-Modal Systems. Oxford University
Press, Oxford, 1973.



Index

.Ur/, 108
10

Ur, 108
1Ur, 108
I I, 371
BORA.X/, 220
NEGA.X/, 220
POSA.X/, 220
R1.x; y; z; t /, 179
R2.x; y; z; t /, 179
ŒR�, 145
˘A
B , 123
n, 366
\A, 122
A
B , 123
�, 417
hRi, 145
hhRii, 145
I.D/C, 316
ACD, 438
B, 146
CI, 231
CRA, 330
DL, 371
ESL, 377
FAU, 108
FA, 107
FCL, 251
FL, 105, 108
FRA, 54
FS, 238
FW, 238
F, 4
FBACfun, 339
FBAC, 340
FBAı , 354
FBAfun, 339
FBA, 340
FRCCf un, 348
HS, 316

IL, 223
INT, 162
INTL, 171
J, 167
K, 146
LCD, 434
LCDn, 444
LC, 398
LT, 198
L-set, 39
LFS, 240
LFW, 240
LTL.C/, 308
LTL, 295
MTL, 263
NIL, 223
OMR, 278
PC, 144
PDLS, 366
PDL, 360
PFAU, 108
PFA, 106
PLL, 174
PL, 87
Pn, 408
RA, 34
RCC, 329
RLV, 179
RL, 39
RL.1; 10/, 45
RRA, 35
RT, 196
S4, 146
S5, 146
SCI, 418
SHn, 197
TIL, 311
TL, 292
TLG , 386

519



520 Index

TLSU, 300
TRL, 125
T, 146
r, 106
ˇ, 178
ˇa;b , 123
˝, 106
k, 371
	 , 107
�, 107
�AB , 123
=, 366
�A]B , 123
FGA[B , 123
], 122
Ur1, 107
a-property, 218
d.�/, 371
�A, 123
Łukasiewicz, Jan, 195

algebra
MTL, 263–266
Boolean, 34, 85, 144
Boolean with a contact relation, 339–340
fork, 105–108

abstract, 105, 107
full, 106–108, 110, 114
proper, 105–108
representable, 107
with urelements, 108

Heyting, 407
of binary relations, 34–35

full, 34, 54–55
proper, 34

of conditional decisions, ACD, 433,
438–441

of relevant logics, 179
Peirce, 85–87, 99–103

full, 86
representable, 87

pentagonal relation, 36
Post, of order n, 407–408

complete, 409
relation, 33–36, 55–59, 87

full, 54
representable relation, 34, 55–59
sufficiency, 251
with a plain contact relation, 330

Allen’s interval relations, 315, 317
approximation

lower, 220
upper, 220

attribute, 122, 218, 251
indispensable, 221

axiomatic set, 6–7, 40

Boole, George, 33
branch model, 9, 42

defined in a standard way, 44
branch model property, 45, 151
branch of a proof tree, 8, 39

closed, 8, 39
complete, 8–9, 41
open, 8, 41

branch structure, 9, 42
Brouwer, Louitzen Egbertus Jan, 161

calculus
of typed relations, 121–125
full Lambek, 263
of binary relations, 33

clause, 27
closed branch property, 44, 151
completeness of a relational dual tableau, 44
completion conditions, 8, 41
concept in formal concept analysis, 251–253
concept in terminological languages, 100, 101
condition, 434, 444
constant

object, 37
relational, 37
Skolem, 28

context, 251–254, 256–258
correctness of a rule, 7, 39, 150
correspondence

in context logic, 254–255
in information logics of plain frames, 227
in intermediate logics, 171–172
in relational logics, 46–48
in spatial logic, 350–351
in spatial logics, 334–335, 344–345, 357
in standard modal logics, 152
in temporal logics, 296–297, 304–305

cylindrification, 85
left, 86
right, 86

database dependencies, 132–135
De Morgan, Augustus, 33, 85
decision, 434, 444
dependency

decomposition, 135
embedded multivalued, 134



Index 521

functional, 134
generalized join, 135
join, 135
multivalued, 134

domain
of a relation, 86
of an attribute, 122

dual clause, 27
dual clause form, 28
dual resolution, 27–31
dual Skolem normal form, 28
duality, 17–19

entailment
in context logic FCL, 257–261
in information logics of plain frames,

230–231
in Peirce logic PL, 93–95
in relational logics, 61–62
in standard modal logics, 153–154

event structure, 376–377
extensionality, 45
extent, 251–253

feature of an object, 251–253, 257
formal concept analysis, 251–253
formula

1-positive, 63
2-positive, 63
first-order, 4

atomic, 4
dual, 17

indecomposable, 436, 447
negative, 63
negative-positive, 63
operation free, 436, 447
positive, 63
relational, see relational formula
simple, 448
with a unique condition, 436, 447

frame, 145
Fregean axiom, 417
function

information, 218
functional

element of a fork algebra, 107

Gentzen calculus, see Gentzen system for
first-order logic

Gentzen system for first-order logic, 24–27

H-proof, 22
Hilbert system for first-order logic, 22–24

implication
Łukasiewicz, 263
Gödel, 263
Gougen, 263
of a context, 252, 257

information system, 218–223
deterministic, 218
dynamic, 311
total, 218

intent, 251–253
interval, 315–317

non-strict, 316
point, 316
strict, 325

Kanger, Stig, 143
knowledge, 220

complete, 220
empty, 220
incomplete, 220
neg-empty, 220
pos-empty, 220
rough, 220

Kripke semantics, 143
Kripke, Saul, 143

language
first-order, 4
modal, 144–146
relational, 36–38

Lewis, Clarence Irving, 143

meaning function, 37
mereological system, 329
model checking

in context logic FCL, 257–261
in Peirce logic PL, 95–99
in relational logics, 75–80
in standard modal logics, 156–157

nominal, 145, 306–309
non-fregean logic, 417

object
deterministic, 218, 223
nondeterministic, 218



522 Index

operation
Next, 300
Since, 300
Until, 300
ˇa;b of typed relations, 123
complement �A of typed relations, 123
composition

negative, 62
positive, 62

converse of a relation, �1, 34
cross, 106, 107
demonic composition, I I, 371
demonic iteration, d.�/, 371
demonic union, k, 371
divisionA

B of typed relations, 123
dual, 18
dual sufficiency, 145
fork, 105–107
identity,�, 417
if-then-else, 366
intensional, 143
intensional conjunction, 178
intersection \A of typed relations, 122
modal, 145
natural join FGA[B of typed relations, 123
necessity, 145
nondeterministic choice, 360
nondeterministic iteration, 360
Peirce product, 85, 86
possibility, 145
product ˇ, 179, 263
product �A]B of typed relations, 123
product of sets, 86
projection, 107
projection ˘A

B of typed relations, 123
propositional, 4
relational, 37
relative product of relations, I, 34
selection �AB of typed relations, 123
sequential composition of programs, 360
sufficiency, 145, 251, 253
test, 360
union of disjoint sets ], 122
weakest postspecification, =, 366
weakest prespecification, n, 366

order of magnitude reasoning, 277–278

Peirce, Charles Sanders, 33, 85
possible worlds, 143
Post, Emil, 195
prefix, 28
prelinearity, 263
prenex disjunctive normal form, 28

proof
of a first-order formula, 8
of a relational formula, 39
of a sequent, 25
sequence in LCD, 436

proof tree, 8, 39
closed, 8, 39
complete, 8, 41
dual, 19

provability
first-order, 8
relational, 39

quasi proof tree, 14–17
quotient model, 49

range of a relation, 86
Rasiowa, Helena, 3
Rasiowa–Sikorski proof system, 5
region connection calculus, 329
relation

accessibility, 145
Allen’s, see Allen’s interval relations
causality, csl , 377
comparability, 277–280
conflict, cnf , 377
connected, 294
connection, 329
contact, 329–331
database, 132
dense, 294
discrete, 294
distinguishability, 217, 219, 221
diversity, 34
Euclidean, 294
functional, 294
heterogeneous, 121
identity, 10, 34, 45
indiscernibility, 132
indistinguishability, 217, 219–221
information

derived from an information system,
219, 223

irreflexive, 294
left ideal, 35
mereological, 330

disconnected, 330
discrete, 330
external contact, 330
non-tangential proper part, 330
overlap, 330
part of, 329, 330



Index 523

partial overlap, 330
proper part of, 330
tangential proper part, 330

negligibility, 277–280
partially functional, 294
proximity, 329, 354, 356

Efremovic, 356
separated, 356

relative, 217, 237
right ideal, 35, 69, 148
serial, 294
strong backward inclusion, bin, 219
strong complementarity com, 221
strong diversity div, 221
strong forward inclusion, f in, 219
strong incomplementarity, icom, 219
strong indiscernibility, ind , 219
strong left negative similarity lnim, 221
strong left orthogonality lort , 221
strong negative similarity, nim, 219
strong right negative similarity rnim, 221
strong right orthogonality rort , 221
strong similarity, sim, 219
unbound, 294
weak backward inclusion, wbin, 219
weak complementarity wcom, 221
weak diversity wdiv, 221
weak forward inclusion, wf in, 219
weak incomplementarity, wicom, 219
weak indiscernibility, wind , 219
weak left negative similarity wlnim, 221
weak left orthogonality wlort , 221
weak negative similarity, wnim, 219
weak right negative similarity wrnim, 221
weak right orthogonality wrort , 221
weak similarity, wsim, 219
weakly connected, 294
weakly directed, 294

relational databases, 121–122
relational formula, 36, 37

atomic, 37
relational term, 36, 37

atomic, 37
residuum,!, 263, 264
role in terminological languages, 100, 101
RS-proof tree, 8
RS-set, 7
RS-system, 5
rule, 5, 38

branching, 6
decomposition, 6, 38, 40
derived, 22, 58
dual, 17–18
dual factorization, 29
dual resolution, 29

generalization, 22
Modus Ponens, 22
of inference in Gentzen system, 24–25
of inference in Hilbert system, 22
reflecting a constraint, 44

satisfaction
of first-order formulas, 5
of modal formulas, 145–146
of relational formulas, 38

satisfaction in branch model property, 45, 151
Schröder, Ernst, 33
sequent, 24
signed formula, 398
skolemization, 28
Smullyan, Raymond, 12
soundness of a relational dual tableau, 44

t-norm, 263, 264
Łukasiewicz, 263
continous, 263
Gödel, 263
left-continuous, 263, 264

tableau, 12–14
Tarski, Alfred, 33
terminological language, 85, 99–103
threshold, 386
type

of a relation, 122

unifier, 29
most general, 29

urelements, 107

validity
of a PC-formula, 144
of a first-order formula, 5
of a modal formula, 146
of a relational formula, 38
of a set of first-order formulas, 7
of a set of relational formulas, 39

variable
bound, 4
free, 4
individual, 4
object, 37
relational, 37

weight, 386


	Dual Tableaux: Foundations, Methodology,Case Studies
	Preface
	Contents
	Part I Foundations
	Part II Reasoning in Logics of Non-classical Algebras of Relations
	Part III Relational Reasoning in Traditional Non-classical Logics
	Part IV Relational Reasoning in Logics of Information and Data Analysis
	Part V Relational Reasoning about Time, Space, and Action
	Part VI Beyond Relational Theories
	Part VII Conclusion
	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




