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Lie groups and Lie algebras occupy a prominent and central place in mathemat­
ics, connecting differential geometry, representation theory, algebraic geometry, 
number theory, and theoretical physics. In some sense, the heart of (classical) 
representation theory is in the study of the semisimple Lie groups. Their study 
is simultaneously simple in its beauty, as well as complex in its richness. From 
Killing, Cartan, and Weyl, to Dynkin, Harish-Chandra, Bruhat, Kostant, and 
Serre, many mathematicians in the twentieth century have worked on build­
ing up the theory of semisimple Lie algebras and their universal enveloping 
algebras. Books by Borel, Bourbaki, Bump, Chevalley, Humphreys, Jacobson, 
Varadarajan, Vogan, and others form the texts for (introductory) graduate 
courses on the subject. 

The purpose of this article is to provide an exposition of the famous 1967 
paper [PRV2] by KR. Parthasarathy, R. Ranga Rao, and V.S. Varadarajan 
on a class of irreducible Banach space representations of a complex semisimple 
Lie group. This paper was written in a period containing some of the other 
classic works in the subject: Harish-Chandra's pioneering work on the principal 
series representations, and his results on the annihilators of simple modules 
and central characters; Kostant's work on harmonic polynomials and on his 
character formula; and papers about Steinberg's formula and Verma modules, 
to name a few. 

In this article, we attempt to explain some of the key ideas and main results 
of [PRV2]. Given the wide variety of new concepts proposed, as well as its 
impact on subsequent research in the field, the paper ranks alongside these 
other works mentioned above. 

0.1. The basic motivation for the paper [PRV2] arose out of the important 
works [Har2, Har3] of Harish-Chandra, in which he constructed a large family of 
infinite-dimensional irreducible representations of a real semisimple Lie group 
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C. Harish-Chandra generalized the constructions by Gelfand and Naimark in 
the case when C is complex semisimple, and his work is regarded today as a 
cornerstone in the field. For instance, he showed how irreducible representations 
are subquotients of the principal series representations. 

In their work, which followed a few years after [Har2, Har3], Parthasarathy 
et al returned to the simpler setting of complex semisimple Lie groups, where 
they were able to use Harish-Chandra's results to obtain a deeper understand­
ing of the structure of Harish-Chandra's Banach space representations of C. 
Their paper develops a beautiful theory of such representations, each of which 
decomposes into finite-dimensional modules when restricted to the maximal 
compact subgroup of C. The authors go on to develop the theory of minimal 
types, and refine Harish-Chandra's methods (in the complex case) for classify­
ing such irreducible Banach space representations. 

0.2. In addition to the above-mentioned primary motivation for [PRV2], the 
paper develops and proves many other results that have since influenced and 
inspired a large body of research in the field. We mention a few of these here 
(and elaborate upon them in future sections). First, the authors provided a 
multiplicity formula for the classical "tensor product decomposition" problem: 
given two simple finite-dimensional modules over a complex semisimple Lie 
algebra, can one write down the decomposition of their tensor product? Com­
binatorial results due to Kostant, Sternberg, and Brauer were known at the 
time; however, they required double summations over the Weyl group, com­
puting the Kostant partition function, and cancelling terms in the summation, 
which made them increasingly harder to implement. 

In [PRV2], the authors proposed a formula which was somewhat simpler, 
directly involving the tensor factors in question. This formula has since been 
widely used in the literature (as we point out in this article), including in the 
setting of quantum affine algebras and symmetrizable Kac-Moody algebras, as 
well as current algebras and other semidirect product Lie algebras. 

0.3. Next, a byproduct of this "PRV Theorem" (or formula) was that every 
such tensor product contains a unique "largest" summand (the "Cartan compo­
nent"), and a unique "smallest" summand (the "PRV component", or "minimal 
type"). The former was well-known to be the sum of the two highest weights 
in question, but the latter was new. Subsequently, the authors and Kostant 
conjectured the existence of other components, the so-called "generalized PRY 
components". These are simple modules that occur as direct summands of the 
tensor product, and their (dominant integral) highest weights are Weyl group­
linear combinations of the highest weights of the two tensor factors. 

This "PRV Conjecture" has since been proved using multiple techniques 
in the semisimple as well as Kac-Moody settings. Moreover, it has inspired 
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subsequent research that has led to many contributions in understanding the 
original problem of computing tensor product multiplicities. Once again, we 
will discuss these facts in detail below. Throughout this article, we will discuss 
the results in [PRV2] in the special case of .5(2(C) , in order to provide a working 
example - one which we hope will give the reader a greater feel for the results 
being stated. 

0.4. We end this introduction with one last application. In [PRV2l, using 
Kostant's "separation of variables" theorem, the authors defined a set of ma­
trices indexed by pairs of dominant integral weights, whose entries are poly­
nomials on the Cartan subalgebra. The determinants of these matrices yield 
information about the annihilators of Verma modules, and of their simple quo­
tients. (This is related to the Shapovalov form.) 

These "PRV determinants" have since been widely studied, not just in the 
semis imp Ie case, but in the quantum (affine) and the super-reductive settings 
as well. In these settings, PRY determinants can be used to determine whether 
or not the annihilators of Verma modules are generated by their intersection 
with the center. 

1. Notation and Preliminaries 

We assume for the purposes of this article that the reader is familiar with 
basic results concerning the structure of complex semisimple Lie algebras; see 
[Hull, for instance. We now set some basic notation, which also serves as a 
quick summary of the theory. Given a complex semisimple Lie algebra g, fix 
a Cart an subalgebra IJ C 9 (which is abelian and self-normalizing in g). Then 
9 has a direct sum decomposition: 9 = I) EEl EBaER ga, where R is the set of 
roots and ga is the one-dimensional root space for each 0: ERe IJ* . Here, an 
element A E IJ* is called a weight (in [PRV2] it is called a "rank") , and if M is 
an I)-module, then its A-weight space is defined to be: 

M).. := {m EM: h · m = A(h)m Vh E IJ}. 

The weights of M, denoted wt(M), are those A E 1)* for which M).. =I- O. M is 
a weight module if M = EB)..E~. M).. . For instance, 9 is a g-module under the 
adjoint action, and a weight I)-module. The nonzero weights of 9 are precisely 
the roots: wt(g) = RU{O}. 

A simple example to keep in mind is 9 = .5(2(C) . This has a basis 
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of size three, with defining relations: 

[h, e] = 2e, [h,f] = -2f, [e,f] = h. 

Here, ~ = C . hand R = {±a}, where a(h) = 2. Thus, go = C . e, g-o 
C . f, go = C . h. 

1.1. Weights and lattices. Let W be the associated Weyl group and 
(-, -) the Killing form for g. Then (-, -) induces an isomorphism : ~ -+ ~*. Fix 
a positive system R+ C R of roots - or equivalently, the subset IT = {ai : i E I} 
of simple roots indexed by a set I. Then IT is a basis of ~*, and R = R+ 11 R-, 
where R+ = - R- = R n Z::::oIT c ~ *. For each i E I, suppose h~ t---+ ai via 
the Killing form; now define the co-roots to be hi := (2/ai(hD) . h~ E ~. 

Next, choose Chevalley generators ei E go, and fi E g-o, that generate (as 
above) a copy of 5[2 together with hi. Then the ei and fi generate nilpotent sub­
algebras n± of g, and the corresponding Borel (maximal solvable) subalgebras 
are: b± := ~ EB n±. 

We now come to distinguished lattices inside the set of weights. A weight 
A E ~* is said to be dominant if A(hi ) ;::: 0 for all i E I, and integral if 
A(hi ) E Z. The set of integral weights is a lattice A c ~*, whose Z-basis is the 
set offundamental weights {Wi: i E I}. They are defined by: wi(hj ) := c5ij . Let 
A + denote the set of dominant integral weights - which are simply Z>o-linear 
combinations of the Wi. Then A + is also (in bijection with) the set of d~minant 
characters of a maximal torus T of G (where G is a complex connected Lie 
group such that 9 = Lie(G)). 

The weight lattice A also contains the root lattice ZIT with Z-basis IT. The 
group W acts on ~* and preserves either lattice. It is generated by the simple 
reflections {Si : i E I} which act via: Si(A) := A - 2A(hi )ai. The reflections Si 

satisfy the Coxeter relations according to the Dynkin diagram of g, and W is 
a finite group with a well-defined length-function C : W -+ Z>o, the associated 
Bruhat order (see [Hu2, Section 0.4]), and a unique longest e~ment We = W;;-l. 

For example, for 9 = 5[2(C), IT = R+ = {a}, where a(h) = 1. The asso­
ciated fundamental weight is W = ~a, so that ZIT = 2A and A + = Z::::ow. 
Moreover, W = S2 = {I, S = We}, where WeA = -A for all weights 
A E ~* = Cw = Ca. 

1.2. Finite-dimensional representations. A representation or 
module of a group G is simply a group homomorphism W : G -+ GL(V) for 
some (real or complex) vector space V. Similarly, a g-module V is a Lie algebra 
homomorphism W : 9 -+ End(V) = g[(V). We say that W is irreducible if V 
has no nonzero proper submodule; completely reducible or semisimple if V is 
a direct sum of irreducible submodules; and finite-dimensional if dim V < 00. 
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When 9 is semisimple, the irreducible finite-dimensional representations are 
all weight modules for ~, and parametrized by A +. Here is a quick construction: 
suppose llg is the universal enveloping algebra of g, and for any>. E ~*, let 
f).. be the left llg-ideal generated by ker>. c ~ and {ei : i E I}. The Verma 
module M(>.) is defined to be the quotient llg/ h. M(>.) is a weight module and 
wt(M(>.)) = >. - Z~oII. Moreover, a cyclic generator of M(>.) lies in M(>.) .. = 
C . lug, which is called the "highest weight space". 

The modules M(>.) were studied by Verma in his thesis and in [Vel; they are 
of tremendous importance in representation theory - not only for semisimple 
Lie algebras, but also Kac-Moody and Virasoro algebras, quantum groups, and 
other algebras with triangular decomposition. Every Verma module M(>.) has 
a largest maximal submodule and hence a unique simple quotient; denote this 
by V(>.). Then V(>.) also has the same properties as M(>.) (mentioned in the 
previous paragraph); moreover, the modules V(>.) are pairwise non-isomorphic 
for>. E ~*. 

Note that V(>.) is finite-dimensional if and only if>. E A +, and these exhaust 
all finite-dimensional simple g-modules up to isomorphism. The dual space 
to a g-module is also a g-module; for instance, V(>.)* ~ V( -wo >') if >. E 
A +. Moreover, every finite-dimensional g-module is semisimple; in other words, 
every indecomposable finite-dimensional g-module is irreducible. 

For example, if 9 = sh, then for every 0 ::; nEZ, there exists a unique 
irreducible s(2-module V(n) ~ V(n)* of dimension n + 1. (Note that we are 
abusing notation by using V(n) to refer to V(nw).) V(n) contains a vector 
Vn of weight n (a "highest weight vector"), and a basis Vn -2i := (P/i!)vn of 
weight vectors, for 0 ::; i < dim V(n). One checks that for all i, 

h'Vn -2i := (n-2i)vn -2i, e.vn -2i = (n-i+l)vn -2i+2, !-Vn -2i = (i+l)vn -2i-2, 

(1.1) 
where we set V n +2 = V- n -2 = O. A concrete example of V(n) is provided by 
the space of homogeneous polynomials in X, Y of total degree n. Define 

Pn := ker (-n + X ()~ + Y ()~ ) c qx, Y]. 

N ow define Pn : S (2 ---+ Endc( P n) via: 

() 
Pn(e) := X ()y' 

Then Pn ~ V(n) as s(2-modules. 

1.3. Central characters. Given an associative algebra A, denote its 
center by Z(A). An important tool in studying Verma modules and finite­
dimensional modules over a (complex) semisimple Lie algebra 9 is the center 
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Z(llg). Classical results of Chevalley and Harish-Chandra imply that this is a 
polynomial algebra in III (algebraically independent) generators. Moreover, for 
all ,x E ~*, there exists a central character (i.e., an algebra homomorphism) 
X(,x) : Z(llg) -+ te, such that ker X(,x) kills M(,x) and hence V(,x) for all ,x E ~*. 
In particular, every z E Z (llg) acts on V ( ,x) by a scalar (for each ,x). 

The following important results due to Harish-Chandra completely classify 
and explain better, the set of central characters. (These are also known as 
infinitesimal characters in the literature.) To state the results, we need some 
notation: define p := ~ I:oER+ a E ~*j then p = I:iEI Wi E A + and WoP = -po 
Now define the twisted action of W on ~* via: 

w*,x:=w(,x+p)-p, Vw E W,,x E ~*. 

Then w * - induces an algebra automorphism of Sym ~ = P(~*) (the space of 
complex polynomials on ~*) for all w E W. Moreover, given any wE W, define 
n; := E!1"ERnz>o(wII) g±". Then 9 = n;:;; EB ~ EB n;t for all w E Wj for example, 
wheri w = 1, this decomposition is precisely 9 = n- EB ~ EB n+. Hence (llg)o c 
ll~ EB n;:;; (llg)n;t by the Poincare-BirkhofI-Witt (PBW) theor~m [Hu1]. Define 
the Harish-Chandra map (3wII to be the projection: (llg)o --+> ll~ = Sym~. 

Theorem 1.2 ([Harl]). For all w E W, (3wII is a ring homomorphism: 
(llg)o --+> Sym~, which restricts to a ring isomorphism: Z(llg) -+ (Sym ~)(W,*). 
Moreover, for all ,x E ~*, X(,x) = ,x 0 (3II. (Here, ,x extends to an algebra map 
on Sym~.) Every character of Z(llg) equals x(,x) for some,x E ~*. Moreover, 
X(,x) = X(J-L) {:} ,x = w * J-L for some w E W. 

For instance, when 9 = sb(C), III = 1 and 

~ = 4fe + h2 + 2h, 

Then for all z E te, the Casimir element ~ acts on V(zw) as the scalar 
X(zw)(~) = z2 + 2z. Note that p = wand X(zw) = X(z'w) on Z(llg) = q~], 
if and only if z + z' = -2 - i.e., z'w = s * (zw). Similarly, s * h = -h - 2, so: 

2. Harish-Chandra Modules 

We start our discussion of [PRV2] with the main motivation: the works of 
Harish-Chandra. The representations studied by Parthasarathy, Ranga Rao, 
and Varadarajan are known today as (irreducible) admissible Harish-Chandra 
modules. They were first studied in the setting of real semisimple Lie groups 
by Harish-Chandra in [Har2, Har3]. 
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2.1. For the better part of a century, and since the advent of quantum me­
chanics, mathematicians have been interested in unitary representations and 
harmonic analysis of locally compact (abelian) topological groups. One of the 
basic results in this direction is the Peter-Weyl Theorem, which says that ev­
ery unitary (Hilbert space) representation of a compact group decomposes as a 
direct sum of finite-dimensional irreducible submodules. Given the correspon­
dence between complex semisimple groups and compact groups (discovered by 
Weyl), the class of unitary representations of complex semisimple Lie groups 
G and their maximal compact subgroups K has been a subject of wide interest 
and research in the literature. 

To explain the motivation for [PRV2], some notation is now needed. Given 
G ::::l K as above, t = Lie(K) is the compact form of g = Lie(G). Let glC := 
Lie( G) 0IR C be the complexification of its Lie algebra; this is a complex semisim­
pIe Lie algebra that contains the reductive subalgebra tIC := Lie( K) 0IR C. In his 
works cited above, Harish-Chandra initiated the study of a class of irreducible 
infinite-dimensional G-modules that was larger than the class of unitary G­
modules (yet these modules were direct sums of finite-dimensional K-modules). 
Harish-Chandra constructed and studied these modules algebraically, via their 
correspondence to glC-modules (when G has finite center). This correspondence 
was known for finite-dimensional modules, but he showed how to extend it to 
a deep and powerful theory of Banach-space representations of G. 

More precisely, given a continuous Banach space G-representation 7f, whose 
restriction to K contains every irreducible K-module with at most finite multi­
plicity (this is called "admissibility"), Harish-Chandra considered its subspace 
of K-finite vectors (Le., the vectors that lie in finite-dimensional K-stable sub­
spaces) - or more precisely, the tIC-finite vectors. This subspace is called the 
infinitesimal representation associated to 7f. Two such Banach space represen­
tations are said to be infinitesimally equivalent if their infinitesimal represen­
tations are equivalent. (For instance, Harish-Chandra showed in [Har2] that 
two irreducible unitary G-modules are equivalent if and only if they are in­
finitesimally equivalent.) One of the crown jewels of his work is the subquotient 
theorem [Har3], which says that every such admissible V is infinitesimally equiv­
alent to a subquotient of a Hilbert space representation of G (the "principal 
series representations"). 

2.2. We now return to [PRV2J, where the authors are interested in using 
Harish-Chandra's work to gain a deeper understanding of a special case of 
this situation: namely, when G is already a complex group. (This setting was 
also studied earlier - by Weyl in relating complex and compact groups, but 
also by Gelfand and Naimark [GNJ, and Harish-Chandra as well.) By [Har3J, 
it turns out that every tIC-finite irreducible G-representation V (with at most 
finite mUltiplicities) has an infinitesimal character. In other words, the center 
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Z(l1(gC)) acts by scalars on it. As noted in [PRV2, Va], the problem of de­
scribing the infinitesimal equivalence classes of irreducible Banach space G­
representations (which are "admissible", hence equipped with an infinitesimal 
character) can now be reduced by Harish-Chandra's work, to describing the ir­
reducible eC-finite representations - i.e., the so-called simple "(gC, eC)-modules" 
(or "(glC,K)-modules"). Later in this section, we will mention certain promi­
nent features from Harish-Chandra's approach in the real semisimple case, as 
we specialize them to the complex case in [PRV2]. 

Thus, the primary motivation in [PRV2] was to study the irreducible G­
representation~ when G is a complex semis imp Ie group, by applying the meth­
ods and deep results from [Har2, Har3]. For instance, the authors are able 
to simplify Harish-Chandra's description of the closed subspaces of the prin­
cipal series representations, which yield Banach (actually, Hilbert) space G­
representations. Furthermore, the theory of minimal types developed in [PRV2] 
helps obtain a deeper understanding of these simple (glC, elC)-modules. 

We now introduce the setting of [PRV2]. If G is a complex Lie group, then 
9 := Lie(G) is a complex Lie algebra, and Lie(K) is its compact (real) form. 
Thus as real Lie algebra';, 9 = Lie(K) EEl A· Lie(K) in the complex structure 
of g. The complexifieu pair (glC, eC) is isomorphic to (g x g, g), where g is the 
diagonal copy of 9 embedded in 9 x g.1 Now the 9 x g-modules of interest (studied 
by Harish-Chandra in general) are the ones that decompose into direct sums 
of finite-dimensional g-modules with at most finite multiplicities. 

Here is the precise framework studied in [PRV2] (and henceforth in this 
article), stated here in a slightly more general setting. 

Definition 2.1. Suppose 9 is a complex reductive finite-dimensional Lie alge­
bra contained in a complex Lie algebra g. Define the category e(g, g) to be the 
full subcategory of g-modules, such that every object is isomorphic to a direct 
sum of finite-dimensional irreducible g-modules V, each of which occurs with 
finite multiplicity. (This last condition is termed g-admissibility.) Define [V : V] 
to be this multiplicity (which may be zero if no summand is isomorphic to V); 
this integer does not depend on the direct sum decomposition of V. (Note that 
we assume V::f. 0.) 

If V is in e(g, g) and V is a (nonzero) simple g-module, the isotypical sub­
space Vv of V is defined as the (finite-dimensional) span of all the g-submodules 
of V that are isomorphic to V. Clearly, the center Z(l1g) preserves Vv for 
each V, and hence acts locally finitely on V. Moreover, [V : V] then equals 
[Vv : V] = dim Vv/ dim V. 

IThis is achieved using a conjugation X ~ Xc of 9 that fixes t. Thus, 9 embeds inside glC 
via: X ~ (XC,X), and when restricted to e, one obtains: X ~ (X,X) - whence we get that 
tIC = g. 
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2.3. Examples of Harish-Chandra modules in the litera­
ture. The goal of [PRV2] was to study the simple objects in the category 
e(g x g, g). Before elaborating on their results, we remark that various fami­
lies of Harish-Chandra modules have been widely studied in the literature. For 
example, Harish-Chandra modules are examples of integrable g-modules - i.e., 
g-modules where every vector is contained in a finite-dimensional g-module. 
Here are some other examples; in them, we always assume that 9 is semisimple 
(and complex). 

Example 2.2. Suppose 9 is semisimple and go is its compact real form. Let 
Go be a compact Lie group with Haar measure /-Lco ' such that go = Lie(Go). 
Then by the Peter-Weyl Theorem, a dense subspace V of L2 (Go, ee, /-Lco ) is an 
object of e(g, g). Moreover, [V : V(A)] = dim V(A) for all A E A +. 

Example 2.3. Recall that Ug is a direct sum of finite-dimensional g-modules, 
since every term in its standard filtration is. Is it also an object of e(g, g)7 The 
answer is no - in fact, no finite-dimensional module occurs with finite nonzero 
mUltiplicity. To see this, note by Kostant's "separation of variables theorem" 
[K02] that Ug is free as a module (under multiplication) over its center: 

Ug ~ lHl(g) ® Z(Ug), (2.4) 

where lHl(g) is (isomorphic as a g-module to) the space of "harmonic polynomials 
on g" , and is stable under the adjoint action of 9 on Ug. Thus, the multiplicity 
in Ug of every finite-dimensional module is either 0 or dim Z(Ug) , which is 
infinite. In particular, Ug is not admissible. 

However, lHl(g) is indeed an object in e(g, g); in fact, Kostant proved in 
[K02] that [lHl(g) : V(A)] = dim V(A)O for all A E A +. This is the starting point 
for another important contribution of [PRV2] to the theory of semisimple and 
affine (quantized) Lie algebras - the so-called "PRV determinants". We will 
discuss these in Section 5. 

Example 2.5. Simple finite-dimensional gxg-modules are clearly in e(gxg, g), 
by Weyl's Theorem of complete reducibility. This example is also the starting 
point for a result and a conjecture from [PRV2] (the "PRV Theorem" and 
"PRV conjecture"), that have since been extensively used and generalized in 
the literature. We address these in detail in the next section. 

Example 2.6. The above example of Pn for 9 = S(2(C) can be used to produce 
an object in e(S(2(C),S(2(C)) as follows: the s(2(C)-module 

qx,Y] =EBPn =EBV(n) 
n;:::O n;:::O 

is clearly such an object. 
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Note that Pn = V(n) = Symn- I (V(l» for all n E N. Thus, qx, Y] = 
Sym(V(l». With this in mind, we can generalize the above example to 9 = 
sln(C) , as it acts on its simple module Cn (for n > 1). Consider the modules 
Symk(Cn ) C (Cn) ®k for k ~ O. Identifying a basis of Cn with commuting 
variables XI , . . . ,Xn , it is not hard to show that as g-modules, Symk(Cn ) is 
precisely the space Pn,k of homogeneous polynomials in Xl' ... ' Xn of total 
degree k, where eij acts on Pn,k as Xi8j for all 1 S; i , j S; n and all k. 

One can now check that Pn,k is a simple module over sln(C)2. Since n > 

1, hence dim Pn k = (k + n - 1) is increasing in k. Thus the Pn,k are non-
, n-1 

isomorphic for fixed n, and so 

qxl , .. . , Xn] = E9 Pn,k = Sym(Cn) 
k~O 

is indeed an object in e(sln(C),sln(C». 

Example 2.7. If 9 is semisimple and ~ is the Cartan sub algebra of g, then 
e(g,~) is the category of (admissible) weight modules. There has been exten­
sive research on the study and classification of irreducible (admissible) weight 
modules; see [Ma3] for more on this. We remark that Mathieu also studied 
Harish-Chandra modules in other settings in [Ma2]: the Virasoro algebra, the 
Cartan algebra, and the affine Kac-Moody algebras (as mentioned in the con­
clusion to loco cit.) . 

Moreover, a very special family of admissible weight modules constitutes the 
objects of the Bernstein-Gelfand-Gelfand Category 0, which was introduced 
in [BGG]. A lot of research has been undertaken on the Category 0 in vari­
ous settings in modern representation theory - including semisimple and Kac­
Moody Lie algebras, the quantum groups associated with them, the Virasoro 
algebra, and more modern constructions such as rational Cherednik algebras, 
infinitesimal Hecke algebras, and W -algebras. In particular, for semisimple g, 
the classification of irreducible admissible weight modules (by work of Mathieu 
[Ma3] and others) as well as of primitive ideals (by work of Duflo [Du3] and 
others) reduces to the study of simple objects in O. See [Hu2, J02, Kh, MP] 
for additional references and results. 

2.4. A key class of homomorphisms. We now outline Harish­
Chandra's strategy for studying admissible irreducible G-representations, as 
it is used by Parthasarathy et al in the complex setting. Given 9 c 9 as above, 
let n denote the centralizer of 9 in Ug. (This is denoted by D in [Va].) Then 

2See http://math.stackexchange . com/questions/120338 for the sketch of a proof. 
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Z(Ug)+Z(Ug) en c Ug is a chain of algebras3 . Now suppose V is an object of 
e(g, g), and '0 is a simple finite-dimensional g-module such that [V: 'OJ = r > 0. 
Then '0 ~ V('\) as finite-dimensional (and hence, highest-weight) g-modules, 
and Vv ~ V('\)@e as a g-module (i.e., e is the multiplicity space). Multipli­
cation by every zEn preserves the highest weight space (Vvh = V('\h@Cr ; 

this yields a representation TJv,v of n into cr. (This is called TJ((I/O),7r) in 
[PRV2], where 7r = V and (I/0) = D.) Moreover Vv now decomposes as D@Cr , 

under the joint action of 9 and n. 
As a special case, suppose r = 1. Then TJv,v is a homomorphism: n --t 

C. These homomorphisms are the key tools used in [PRV2J to study simple 
admissible Harish-Chandra modules, as we now explain. 

Suppose 9 = 9 x 9 :l g. In order to study simple objects in e(g x g, g), the 
authors of [PRV2J follow the approach suggested by Harish-Chandra in [Har3J: 
if r = [V : 'OJ > 0, then as above, Vv ~ '0 @ Cr under the joint action of Ug 
and n - and moreover, the n-representation TJv,v is simple. Now the following 
remarkable fact holds: the equivalence class of the representation TJv,v of n 
determines that of V, for every component '0 with r > 0. More precisely, if 
V, V' are simple objects of e(g x g, g) and '0 is a simple finite-dimensional 
g-module such that [V : 'OJ + [V' : 'OJ > 0, then 

[V: 'OJ = [V' : 'OJ > 0, TJv,v ~fl TJv',v {:=} V ~ V'. (2.8) 

(See [LMC] for a generalization of this fact.) Thus, a "first approach" would 
be to fix various '0 and study the n-modules TJv,v for all V with [V : 'OJ > 0. 
The authors remark in [PRV2J that such an approach was not very fruitful and 
so a different method had to be adopted. Their contribution was to introduce 
and study the following notion. 

Definition 2.9. Suppose V is a simple object in e(g x g, g) and ,\ E A +. We 
say that ,\ (or Vg(,\)) is a minimal type of V if [V : Vg(,\)J > 0, and 

It is clear that there is at most one minimal type for each V. 
Now the strategy is as follows: first study a class of modules V for which 

the minimal typeD can be shown to exist. These are the irreducible finite­
dimensional representations of 9 x g, and it turns out that there is an explicit 
recipe to compute the homomorphism TJv,v in this case. This recipe involves 

"lv,v equalling a polynomial-valued homomorphism h Il' : n --t P(~* X ~*), 

3In Varadarajan's reminiscences [Va], he points out on Page (xii) that n is highly non­
abelian, so that the first inclusion is not an equality in general. 
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evaluated at some A E A + , II E A - in other words, h Il' ( -; A, II) : n -+ Co (This 
is explained in Section 4.4 and beyond.) 

The authors then go on to explicitly construct a family {7r>.,v : II E A, A E 
~*} of simple objects in e(g x g, g), each of which has a minimal type IJ occurring 
with multiplicity r = 1. (This family necessarily includes the finite-dimensional 
simple 9 x g-modules, as we will see below.) The authors show that for each 
such A and II, the related "key homomorphism" 'TfTi>.,v,v : n -+ C turns out 

to be the same recipe hIl ' as above, now evaluated at (more general points) 
A, II. Thus, Equation (2.8) can be applied to discuss the classification of these 
modules 7r>.,v' (Here and henceforth, we abuse notation and use 'TfTi>.,v,v to refer 
to 'TfTi' Vo-(v) . ) A,Vl 9 

Thus, the starting point for [PRV2]- and even earlier, for Varadarajan and 
Varadhan in 1963 (see [Va]) for the special case of 9 = sln(e) - was to prove the 
assertion that finite-dimensional irreducible 9 x g-modules have minimal types. 
Note that such a simple module has highest weight in A + x A + c (~ x ~)*, so 
we can write it as V(A, /1,). It is clear that for all X E g, its image in 

9 c 9 x 9 c U(g x g) = Ug ® Ug 

is precisely X ® 1 + 1 ® X. Thus, restricting V (A, J-t) to 9 amounts to considering 
the module Vg-(A) ® Vg-(J-t). In other words, the study of the minimal type in 
this setting involves computing the direct summands of the tensor product -
i.e., computing Clebsch-Gordan coefficients. This classical problem is the focus 
of the next section. 

2.5. Digression on minimal type due to Vogan. We end this 
section with a few remarks on the notion of minimal type. The more widely 
accepted notion of minimal K -type (or lowest K -type) in the literature is due 
to Vogan [Vo], and differs from the above notion (in [PRV2]). More precisely, 
Vogan defines a weight A E A + to be a lowest K -type for an admissible Harish­
Chandra (G, K)-module M, if: 

1. V(A) is a K-submodule of M; and 

2. Among all J-t such that V(J-t) is a K-submodule of M, the scalar (J-t + 
2p, J-t + 2p) is minimized at J-t = A. 

One can now ask what is the relation bf'tw('ell these two notions. Note 
that the definition due to Vogan guarantees exbtt'llCC of the minimal type (for 
irreducible admissible representations), but not uniqueness. In fact, uniqueness 
does not hold when G is a (general) real group. such as S [,(2, lR). However, 
uniqueness of the minimal K -type is guaranteed if G is a complex group; see 
[Zh2] for more details. 

96 



Representations of Complex Semi-simple Lie Groups and Lie Algebras 

On the other hand, the definition in [PRV2] guarantees uniqueness but not 
existence. If this version of the minimal type does exist, then it is necessarily 
a minimal type due to Vogan. This can be shown using the following general­
ization of [Hul, Lemma 13.4.C] (whose proof is the same as that of loco cit.), 
with A = wt V(IL) for any finite-dimensional K-submodule V(IL) of M: 

Proposition 2.10. Suppose A c A is W -stable, with highest weight IL. (In 
other words, A C IL - z~orr.) Fix A E A and 0 < c E lR. Then IL E A + and A 
is finite; moreover, 

(A + cp, A + cp) S; (IL + cp, IL + cp), 

with equality if and only if A = IL. 

3. Tensor Products, Minimal Types, and the 
(K)PRV Conjecture 

In this section, we discuss [PRV2, Section 2.2], which contains several results, 
as well as a related conjecture, that have been extremely influential on subse­
quent research in the field. These results and the conjecture have to do with 
the classical question of computing tensor product multiplicities. Although the 
primary motivation of Parthasarathy et al was to study tensor products in 
order to prove the existence and uniqueness of minimal types, some of these 
statements have been subsequently generalized and have contributed to several 
aspects of the multiplicity problem. We will list some of the relevant papers 
and results presently. 

3.1. Tensor product multiplicities and the PRY Theorem. 
We start by recalling the notion of Littlewood-Richardson coefficients. By 
Weyl's theorem of complete reducibility, given A, IL E A +, we can decompose 

V(A) 0 V(IL) = EB m~,1-' V(v), 
vEh+ 

where the multiplicities m~,1-' = m~,A are the coefficients in question, also known 
as tensor product multiplicities. (In the rest of this article, we will abuse nota­
tion and denote Vg(A) by V(A).) If m~,1-' > 0, we say that V(v) is a component 
of V(A) 0 V(IL). For example, V(A + IL) is always a component, generated by 

V(A).x 0 V(IL)I-" and m~~ = I for all A, IL E A +. 
The determination of the multiplicities m~,1-' is a longstanding open problem 

in the literature - as is the simpler problem of computing whether or not m~ 
,1-' 

is positive. Efforts to answer these questions have been ongoing since even 
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before [PRV2]. For instance, in his famous paper [Ko1], Kostant proved his 
multiplicity formula, and also showed a necessary condition for V(v) to be a 
component: it must be of the form v = A + P,1 E A+ for some P,1 E wt(V(p,)). 
Moreover, m>',1t :::; dim V(P,)V-A' By work [St] of Steinberg (using Kostant's 
multiplicity formula), the following was also known: 

m~'1" = L sn(w)dimV(J-L)w.v-,\ = L sn(w)sn(w')P(w'(J-L+p)-w(v+p)+'x). 
wEW 

Here, P : A + -+ N is the Kostant partition function (which is also defined to be 
zero on A \A+), and sn: W -+ {±1} is the sign homomorphism, which is -Ion 
all simple reflections Si. Steinberg's results imply [Ku5] that if (A+p,')(hi ) 2: -1 
for allp,' E wt(V(p,)) and i E I, then m>',1t = dim V(P,)V-A' Kostant had shown 
a special case of this result in [Ko1]' where he assumed that (A + p,')(hi ) 2: 0. 

In [PRV2], the following multiplicity formula is proved. Given p" v E A + 
and, E ~*, define: 

V+(p,;" v) 

V-(p,;"v) 

.- {v E V(p,), : e~(hi)+1v = ° Vi E I}, 

{v E V(p,)'Y : f:(h;)+1 v = 0 Vi E I}. 

Theorem 3.1 ([PRV2]). For all A,p"V E A+, 

m>',1t = dim V+(p,; v - A, A) = dim V+(v; A + wop" -Wop,). 

Now given, E ~*, dim V+(p,;" v) = dim V-(p,; Wo" -wov). 

Here is a typical application of this result, which shows how to compute 
multiplicities. 

Example 3.2. Suppose A, v E A +. If [V(A) 0 V(A)* : V(v)] > 0, then A -
WoA - v E Z~oII by Kostant's results, which implies that v E A + n ZII. For 
every such v, Theorem 3.1 now says: 

m>,,-WOA = dim V+(v; 0, A) := dim{ v E V(v)o : e;(h;)+1v = ° Vi E I}. 

Thus if A(hi ) is large enough for all i (e.g., A = np for n » 0), then 

[V(A) 0 V(A)* : V(v)] = dim V(v)o > 0, 

where the last inequality follows by a result from [Hal], used below to prove 
Proposition 3.6. 0 

The advantage of the "PRV Theorem" 3.1 over some of the earlier formulae 
in the literature is that it calculates the multiplicities directly and without 
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cancellation. For instance, note that the above result of Steinberg involves a 
double summation over the Weyl group - and cancellations of terms - and 
hence is not suitable for practical computations. Several years prior to [PRV2], 
Brauer had proposed another such formula in [Br]; it is similar to a result 
of Klimyk in [Kl], which appeared in the same year as [PRV2]. The result is 
stated as Exercise 24.9 in [Hul]4. It computes the multiplicities m~,J.L as sums of 
dimensions dim V(J.l)J.LI, but with coefficients of ±l and 0, which again implies 
the need to perform cancellation (of formal characters). 

It is mentioned in [PRV2] that Kostant had obtained Theorem 3.1 previ­
ously but had not published it; for a historical account of this result, see [K04]. 

The PRY Theorem 3.1 has been widely used and generalized in the litera­
ture. In [CP], Chari and Pressley extend a special case of this result to show 
that simple integrable modules over affine Lie algebras are quotients of tensor 
products. In [J02], Joseph studies a similar result for a general symmetrizable 
(quantum) Kac-Moody Lie algebra - as does Mathieu in [Mal]. Among other ap­
plications, Young and Zegers start from Theorem 3.1 in [YZ] and relate Dorey's 
rule to q-characters of fundamental representations of quantum affine algebras 
of type ADE. Panyushev and Yakimova study variants and consequences of the 
result in [PY]. 

From a personal viewpoint, the author has used the PRY Theorem in his 
paper [CKR] with Chari and Ridenour, to provide examples of families of finite 
and infinite-dimensional Koszul algebras which naturally arise out of module 
categories over semidirect products 9 ~ V(>.). The result was also used by Chari 
and Greenstein [CGl, CG2] in the study of representations of the truncated 
current algebra g[t]/(tz), as well as in other works of Chari and her collab­
orators, and of Greenstein. These papers have applications in the study of 
Kirillov-Reshetikhin modules over quantum affine algebras. 

3.2. Minimal type. We again start by considering the decomposition of 
the tensor product into its simple module components. Consider the example 
where 9 = 5[2(((:) and 0 ~ J.l ~ >. E Z;:::o. (Once again, we abuse notation and 
use>. E Z to refer to >.. LV E A.) Recall the well-known Clebsch-Gordan formula 
for 5[2(((:): 

V(>') ® V(J.l) = V('\ + J.l) EB V('\ + J.l- 2) EB··· EB V('\ - J.l). (3.3) 

We see that there are two distinguished components in this direct sum: 

• The "largest" component is V(>' + J.l), in that every highest weight oc­
curring on the right, belongs to wt V(>' + J.l). This is called the Cartan 

4See also: http://mathoverflow . net/ questions/85593/ 
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component or the maximal type, and occurs with multiplicity 1. It is gen­
erated by the one-dimensional vector space V(,X)>. 0 V(fl)JL' which is the 
tensor product of the two highest weight spaces . 

• The "smallest" component is V(,X - fl), in that ,X - fl is a weight of 
every summand occurring on the right. This is called the PRV component 
(after the authors of [PRV2]) or the minimal type, and it also occurs with 
multiplicity 1. 

It is reasonable to ask if these results extend to all semisimple g. Remark­
ably, the authors of [PRV2] found the answer of this question to be positive! 
To understand it, one must first make sense of what the minimal type is for 
general g. Note above that we could have interchanged ,X and fl, since the tensor 
product is "commutative" (i.e., the Hopf algebra Ug is cocommutative). Thus, 
to choose the minimal type, one chooses the dominant integral weight from 
among {A - fl, fl - ,X} = W (,X + Wofl). Supporting evidence is obtained from 
Theorem 3.1, where if ,X + Wofl E A +, then substituting it for v yields: 

>'+WoJL_d' V+(\+ .\+ )-1 m>',JL - 1m /\ Wofl, /\ Wofl, -Wofl - . (3.4) 

This led Varadarajan and Varadhan to generalize the existence of the mini­
mal type to 9 = s(n(C) for all n, while they were at the Indian Statistical 
Institute, Kolkata. (See [Va] for a very nice historical account of the develop­
ment of [PRV2].) Subsequently in [PRV2], the authors extended the result to 
arbitrary semisimple 9, and obtained the previously sought-for existence and 
unique multiplicity of the minimal type. Here is their result. 

Theorem 3.5 ([PRV2]). Suppose 9 is semisimple, and ,x, fl E A +. Given v E 

A +, define Ii to be the unique W -translate of v that lies in A +. Then m>'+woJL = >',JL 
1. Moreover, 

m~,JL > 0 =? ,x + Wofl E wt V(v). 

(More generally - say by the result from [KLV] stated in the next proof below 
- wt V(,X + Wofl) C wt V(v) for all such v.) Thus, the sought-for minimal type 
exists and possesses the desired properties. We will see later, how this leads 
to the construction of interesting polynomial maps and infinite-dimensional 
Banach space representations of G. 

For completeness, we remark that the "maximal type" also exists in general: 

Proposition 3.6. If 9 is semisimple and ,x, fl E A +, then m~~ = 1. Moreover, 

m~,JL > 0 =? v E wt V(,X + fl). 

More generally, wt V(,X) 0 V(fl) = wt V(,X + fl). 
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Inductively, wt 18l~1 V(Ai) = wt V(Ei Ai) if all Ai E A +. 

Proof. We only show that wt V(A) I8l V(Ji) c wt V(A + Ji). Note that wt V(A) I8l 
V(Ji) = Uv wt V(v), where we run over all v E A+ such that m>"'1" > O. Now 
from Kostant's results mentioned above, every such v is of the form A + Ji', 
where Ji' E wt V(Ji). Hence it suffices to prove that 

Ji' E wt V(Ji), A + Ji' E A + =} wt V(A + Ji') c wt V(A + Ji). 

We now quote a result from [KLV] , which says that given A, Ji E A +, A - Ji E 

Z~oII if and only if conv(W Ji) C conv(W A), where conv denotes the convex 
hull. Applying this with Ji--v+ A + Ji', A --v+ A + Ji, conv(W(A + Ji')) C conv(W(A + 
Ji)). Now given v' E wt V(A+Ji'), it is clear that (A+Ji)-V' E Z>oII. Recall [Hal, 
Theorem 7.41], which says that for all A E A+, wt V(A) = (A-ZII)nconv(WA). 
Applying this first with A "v-t A + Ji' and then with A --v+ A + Ji, we get that 
v' E conv(W(A + Ji')) C conv(W(A + Ji)), so v' E wt V(A + Ji) as desired. D 

3.3. The (K)PRV conjecture and generalized PRY com­
ponents. We now discuss a vast generalization of Theorem 3.5, which was 
conjectured by Parthasarathy et aI, extended by Kostant and refined by Verma, 
and proved by Kumar in [Kul, Ku3]. The "PRV Conjecture" has been the sub­
ject of much study and numerous papers in the literature, and continues to 
attract interest, as we point out below. 

To state the conjecture, recall the following facts from above: given A, Ji E 
A+ , 

• Equation (3.4) says: A + WoJi E A + =} m~~wol" = 1. 

There is a common generalization of these assertions to arbitrary W E W, which 
is mentioned in [Ku5, PY]. Namely, given A, Ji E A + and W E W, 

It is natural to ask what happens when A + WJi rt. A +. In light of Theorem 3.5, 

a natural guess would be to ask if m~~wl" = 1, or at least, if this multiplicity 
is positive. This is known as the PRV Conjecture in the literature. 

Kostant significantly strengthened the PRY conjecture in the following way. 
Recall that the formal character of each finite-dimensional module V(A) is W­
invariant, which implies that for all wE W, dim V(A)WA = 1. Suppose V WA and 
v~1" are nonzero vectors that span the "extremal weight spaces" V(A)WA and 
V(Ji)WI" respectively, for all A, Ji E A + and W E W. It is then clear that vA I8l v~ 
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generates the copy of the "maximal type" V(A + p,) inside V(A) ® V(p,). Now 
consider the minimal type: is it generated by VA ® v~oJL? The answer is no: in 
fact, this vector generates the entire module! In other words, Ug( VA ® V~oJL) = 
V(A) ® V(p,). Moreover, Theorem 3.5 says that exactly one copy of V(A + wop,) 
sits in it. 

It is now possible to generalize both of these statements. Given any W E W, 
consider the g-submodule generated by VA ® v~JL" Does it contain a (unique) 
copy of V(A + wp,)? This is the subject of the KPRV conjecture, which was 
formulated by Kostant and proved by Kumar in [Kul] in the semisimple case. 

Theorem 3.7 ([Kul, Ku2, Mal]). Suppose 9 is semisimple, A, p, E A +, and wE 

W. Then the module V(A + wp,) appears with multiplicity 1 in the submodule 
Ug(VA ®v~JL) OfV(A) ® V(JL). 

Note that a part of Theorem 3.5 is just the special case w = Wo of this result. 
Moreover, the components V(A + WJL) are known as generalized PRV compo­
nents. 

The KPRV conjecture was also extended to symmetrizable Kac-Moody Lie 
algebras by Mathieu. Given a symmetrizable generalized Cartan matrix A, one 
can again define the associated Kac-Moody Lie algebra g(A) over a field k. 
When char k = 0, one defines the above notions of dominant integral weights 
A + and "X, as well as simple highest weight g(A)-modules L(A) corresponding 
to any weight A. In [Mal], Mathieu defined an associated Kac-Moody group 
over an arbitrary field k (after earlier work by Kac, Moody, Peterson, and Tits) 
using the formalism of ind-schemes. His work led him to prove Theorem 3.7 for 
g(A). (Kumar also proved this case under the assumption that A is regular, in 
[Ku2].) 

Other proofs of the (K)PRV conjecture have since appeared in the literature 
(this is from [Ku5]). For example, Polo had proved the PRY conjecture in type 
A in [Po]. Rajeswari [Ra] gave a proof for classical 9 using Standard Monomial 
Theory; Littelmann did so using his LS-path model (which generalizes the 
Littlewood-Richardson rule using tableaux for gl(n), to symmetrizable Kac­
Moody algebras - see [Li]); and Lusztig's work on the intersection homology 
of generalized Schubert varieties associated to affine Kac-Moody groups also 
provides a proof. 

Here is another related result. Note that if w' ::; w in the Bruhat order, 
then Ug(VA ® v~'JL) C Ug(VA ® v~JL). This follows inductively from the case 
when w = 8iW' > w', which is proved inside the module Vi((w'JL)(hi )) over the 
"n·-copy" ofsl (C) by showing that V KAv' = e(w'JL)(h i ) (v KAv' ) Onecan , 2, A'6' W'JL' A'6' wJL· 
now ask if the component V(A + WJL) occurs in Ug(VA ®v~'JL) for some w' < w, 
or if Ug(VA lSI v~JL) is the "first time" that it occurs in V(A) ® V(JL). 
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Proposition 3.8 ([Kul]). Given regular).., J1, E A + (i.e., )"(hd, J1,(hi ) > 0 Vi E 
J) and Wi < w in the Bruhat order on W, the g-module V()" + WJ1,) does not 
occur in Ug(v>. 0 v~,/-,), 

We end this part by mentioning two further directions in which the (original) 
PRY conjecture has been generalized verx. recently. Suppose G c q are complex 
connected reductive groups, such that W is the Weyl !9"0up of G a~d variolls 
subgroups are "compatible" with the inclusion: G Y G (e.g., Be B, T c T, 
W c W). Given a dominant integral weight X for G and W E W, does the 

simple highest-weight (finite-dimensional) module Vc(p( wX)) with extremal 
weight p(wX) occur inside Vc(X) (upon restricting this to G)? Here, p is the 

restriction of a weight from G to G. For example, the classical PRY conjecture 
uses G = G x G containing the diagonal copy of G, and 

-W=WxW, w=(l,w), 

The above question is addressed in great detail for more general pairs G C G in 
the recent papers [MPRl, MPR2], under the assumption that GIG is "spherical 
of minimal rank" . 

Finally, Hayashi has proved a quantum counterpart of the PRY conjecture 
in [Hay] in the context offusion rules for S(3(C) and the moduli space of SU(3)­
flat connections on a pair of pants. These references are intended to reinforce 
upon the reader that the PRY conjecture is an extremely well-studied result, 
with connections to several other settings in representation theory and beyond. 

3.4. Tensor product multiplicities, revisited. We now return 
to the original question in this section, of computing Littlewood-Richardson 
coefficients. As shown above, several results and formulae have been proposed 
over the years. Additionally, various other approaches have appeared more 
recently in the literature. To name but a few: Littelmann's LS-path model, 
Lusztig's approach using canonical bases, and Kashiwara's use of crystals. See 
[BZ, Ka, Ku5, Li, Lu] for refer~nces and results. 

Recall that the basic questions involving tensor product multiplicities are: 
(a) when are the rnA,/-, positive, and (b) computing the rnA,/-,' Results by 
Kostant, or the PRY conjecture, address the first question, while the PRY 
theorem and results by Brauer and Steinberg discuss the second one. As the 
above references and related results show, the work [PRV2] has had quite an 
influential contribution in this regard. 

We conclude this section with a few additional results in this direction (see 
[Ku5]) that exhibit new components, or in some cases, even obtain a complete 
decomposition of the tensor product. The first is a refinement of the above 

PRY conjecture. One can ask if m~~w/-' = 1 for all w, since it is so for w = 
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1, Wo from above. This claim turns out to be false - in fact, Verma produced 
counterexamples for every 9 of rank 2 (i.e., IIII = 2), by choosing A = J.L = p = 
L:iEI Wi· 

This led Verma to refine the PRV conjecture as follows. The refined state-
ment was also proved by Kumar. 

Theorem 3.9 ([Ku3]). Given A,J.L E A+ and W E W, define Wx to be 
the stabilizer subgroup of A in W, and the map ry : W,\ \WjWJ.< -+ A+ via: 

ry(W>,wWJ.<) = A + WJ.L. Then m~:wJ.< 2: #ry-l(ry(W>.WWJ.<))' 

Of course, if A, J.L are both regular (i.e., (A, a) and (J.L, a) are both nonzero for 
all roots a) , then W>. = WJ.< = {I}. 

Second, a related result from [Ku3] is able to determine all the multiplicities 
when wt V(J.L) = WJ.L is a single orbit (i.e., J.L is minuscule). In this case, 

V(A + WJ.L), 
wEW/W,.:>'+wJ.<EA+ 

where each factor occurs with multiplicity 1. There are exactly #W,\ \WjWJ.< 
components. 

Kumar also shows the following result in [Ku4]: suppose (3 E R+ is such that 
A + J.L - (3 E A +, and such that (3 - ai rt R+ U {O} whenever A(hi ) or J.L(h i ) = O. 
Then m~-::-/3 > O. A similar result can be found in the recent work [MPR1], 
where the authors demonstrate new components of the form WIA + W2J.L - kai 
for some WI, W2 E Wand i E [. 

Finally, Dimitrov and Roth have worked with restrictions of line bundles 
from the square G j B x G j B of the flag variety to the diagonally embedded copy. 
(Here, G is a connected reductive algebraic group with Lie( G) = g, and, BeG 
is a Borel subgroup with Lie(B) = ~ EEl n+; Kumar's proofs in [Ku1] involved 
a study of similar objects.) They study special components V(v) of the tensor 
product modules V(A) 0 V(J.L), that arise out of cohomologiGal reasons. The 
authors mention in [DR] that these cohomological components automatically 
turn out to be generalized PRV components satisfying: m~A,kJ.< = 1 for all 
kEN. They go on to prove the converse implication when G is a classical 
group, as well as in other cases. 

4. Irreducible Banach Space Representations 

We now continue the discussion prior to the preceding section, about construct­
ing irreducible g-admissible Banach (actually, Hilbert) space representations of 
G. In [PRV2], having proved that finite-dimensional 9 x g-modules have mini­
mal types, the authors proceed to construct other such representations (possi­
bly infinite-dimensional), in a completely different manner. Their construction 
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depends heavily on the work of Harish-Chandra [Harl]-[Har4]. These represen­
tations 7r>.,v are defined on subquotients of a Hilbert space. 

4.1. The work of Harish-Chandra. In order to outline the con­
struction of these g-modules by Harish-Chandra and by Parthasarathy et aI, 
additional notation is needed. Let KeG be the maximal compact subgroup 
of a complex connected semisimple Lie group, and let ~o C Lie(K) be a Car­
tan subalgebra. Now define M := exp( FI . ~o) c K to be the corresponding 
Cartan subgroup. For each v E A, define a v to be the unique character of M 
that sends exp( FI· h) to exp( FI· v(h)) for all h E ~o. Then v H av is an 
isomorphism of (A, +) onto the character group M of M. 

Now let Sj := L 2 (K, C, fJ), where fJ denotes the (normalized) Haar measure 
on the compact group K. This is a representation of M under the right-regular 
action: (m· f)(k) := f(km- 1 ). Given v E A, define the v-weight subspace of Sj 

as follows: 
Sj(v) := {f E Sj : m· f = a-v(m)f "im EM}. 

Then Sj decomposes as the direct sum of the Sj(v) over all v E A. Moreover, 
given ~ E ~*, Harish-Chandra had previously defined and studied a G-module 
structure 7r~ on Sj in [Har2]-[Har4]. It turns out that every Sj(v) is a submodule 
of Sj under this structure; define 7r~,v to be this representation. Here are some 
of the properties of these modules that are used in [PRV2]. 

Theorem 4.1 (Harish-Chandra). Fix ~ E ~* and v E A. 

1. For all fJ E A+, [7r~,v : Vg(fJ)] = dim Vg(fJ)v. In particular, [7r~,v : Vg(v)] = 
1. 

2. The representation 7r~,v has an infinitesimal character (of Z(U(g x g))). 

3. 7r~,v possesses a distributional character 8~,v, which is a locally summable 
function that is analytic on the dense open subset of regular points of G. 
Moreover, 8€,v = 8 Cv l if and only if there exists w E W such that 
(= W~,V' = wv. 

4. If ~ is restricted to lie in the real subspace 9'\ of all weights that take 
purely imaginary values on ~o, then 7r€,v is always unitary, and almost 
always irreducible, say whenever ~ E 9'\v c 9'\ (for each v). In particular, 
if ~ E 9'\v and wE W, then 7r€,v ~ 7rw€,wv' 

Although it is not specifically mentioned in [PRV2], it is actually possible to 
compute the central character of 7r€,v - and this has a very familiar expression. 
See Section 4.7. 
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4.2. Constructing the representations 1?~,II. For his subquotient 
theorem, Harish-Chandra identified two closed subt:ipaces .f)~(v) C .f)~(v) C 

1l"~,v, such that the quotient of the larger of them by the smaller one is an 
irreducible G-module. Obtaining a greater understanding of these subquotients 
of 1l"~,v was one of the main motivations behind [PRV2]; when G is a complex 
semisimple group, the authors are indeed able to describe these subspaces more 
easily than Harish-Chandra in the real case. We start with this description. The 
remainder of this entire section is based on [PRV2, Section 2.4]. 

Recall from Theorem 4.1 that [1l"~,v : Vg(v)] = 1. Thus, define .f)~(v) to be 
the smallest closed G-submodule of 1l"~,v containing the unique copy of Vg(v). 
Inside this, define .f)~(v) to be the sum of all closed G-submodules M C .f)~(v) 
such that M n Vg(v) = O. Then .f)~(v) is a maximal submodule of .f)~(v), and 
this leads to the irreducible G-representations 1f>.,v := .f)~(v)/.f)~(v), where A := 

H~+v)-prunsoverallofl)* as well. Clearly, [1f>.,v: Vg(/l)] ~ dim Vg(/l) v V/l E 
A+. 

The space 1f>.,v was shown in [PRV2] to have the following properties: 

• 1f>.,v is an irreducible sub quotient of 1l"f;,v c.f) = L2(K, C, /l), hence it too 
is defined on a Hilbert space. Moreover, 1l"f;,v is irreducible if and only if 
1f>.,v ~ 1l"~,v, if and only if [1f>.,v : Vg(/l)] = dim Vg(/l) v for all/l E A+. 

• 1f>.,v is an object ofe(gxg,g), with minimal type component v E A+nWv. 
Moreover, [1f>.,v : Vg(v)] = 1. 

• 1f>.,v has the same infinitesimal character as 1l"f;,v, where ,\ = ~(~ + v) - p. 

Note that if v' ~ Wv, then 1f,).',v' and 1f>.,v cannot be isomorphic by Equation 
(2.8), because their minimal types are v' =1= v respectively. 

From above, the modules 1f>.,v admit infinitesimal characters. It is clear that 
the highest weight modules V(A, /l) also admit such characters. Moreover, both 
of these are families of simple objects in e(g x g, g). Therefore it is natural to 
ask if 1f>.,v is finite-dimensional for some values of the parameters - and if all 
finite-dimensional simple modules V(A, /l) are thus covered. 

To answer these questions (affirmatively!), Parthasarathyet al studied the 
"key homomorphisms" 'f/v,v : n -+ C in greater detail, by relating them to 
certain homomorphisms hIT : n -+ P(I)* x 1)*). These homomorphisms are the 
subject of the next subsection. 

4.3. Constructing the polynomial-valued maps hTI'. Recall 
the "key homomorphism" 'f/v,v : n -+ C, that is defined whenever a simple 
g-module V arises with multiplicity one in a simple object V of e(g x g, g). It 
turns out that there is an explicit construction of the map 'f/'ir)..,v;v via a different 

homomorphism hIlI (-; A, v), which we now present. We explicitly compute both 
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of these maps below in the example of 9 = 5[2(C), to show that they are equal. 
This material discusses [PRV2, Sections 2.3, 2.4J. 

To construct the map hil', some more notation is needed. Given X E g, 
define 

XU):= X 01, X(2):= 10X, 

and similarly, g(1), g(2) C 9 = 9 EB g, as well as ~(l) and so on. Then X H X 
extends to an isomorphism of associative algebras : Ug -+ Ug, and similar 
statements hold for g(2), ~(l)' etc. 

Now define q := n0) EB n(2)" Note that this is the "positive part" of the 

triangular decomposition of 9 x g, if we define fi: := II(1) 11 - II(2)' This choice 
of simple roots for 9 comes from the consideration of the conjugation on 9 with 
respect to a compact form; see a previous footnote. Now 9 = 9 EB ~(l) EB q, so 
by the PBW Theorem, 

as C-vector spaces. Note that every H E Sym ~ is a polynomial on ~* as follows: 
write H = p( {hi: i E I}) for some polynomial p. Then H()") = p( {>..(hi ) : 
i E I}). This also applies to H E Sym ~(1) or Sym I), for instance, via the 
obvious isomorphisms mentioned above. Similarly, define hn := DiE I h~' for 

n = (ni)iEI E Z~o (which we write as: n ~ 0), and also hn,hel ), and )"(h)n = 
)"(hn) := hn()..) from above. 

We can now define the homomorphisms in question. Suppose wEn, the 
centralizer of 9 in Ug. Then there exists a unique ~n E Ug for all n ~ 0, such 
that 

W == L ~n 0 hell mod (Ug)q. 
n;:::O 

Since [Ji:, wJ = 0 for all h E ~, one checks that ~n E (Ug)o for all n. Finally, 
given any subset II' C R of simple roots for some Borel subalgebra (equivalently, 
II' = wII for some w E W), the maps hil' are defined as follows: 

L (jil' (~n) 0 hn E Sym(~ x ~), 
n;:::O 

L v((jil' (~n)))"(hn) V)", v E ~*. 
n;:::O 

It turns out that these polynomials are very familiar expressions, when W is 
restricted to lie in the center Z(U(g x g)). We see this in Section 4.7 below. 
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4.4. Relationship between 7?,X,v and h ll' ( -; oX, v). Recall that 
there are two classes of irreducible admissible representations that are con­
structed in [PRV2]: the finite-dimensional modules V(A, J.L) for A, J.L E A +, and 
the Hilbert space representations 7r,).,v for A E ~* and v E A. In the former case, 
we define v := A + WoJ.L E A (as in Theorem 3.5); then in both families, the 
representations all contain the minimal type Vg(v) with multiplicity 1. 

Now how does one show that the first of the above families is actually 
contained inside the second? Similarly, how does one check if two given repre­
sentations 7r,).,v and 7r).',v' are equivalent or not? The answer in both cases is 
to use the homomorphisms hIT', together with Equation (2.8). More precisely, 
one relates the maps hIT' to the homomorphisms TJ7r>..v,v. (Note that this does 
not completely answer the second question.) 

Here are some results from the heart of [PRV2], in which the authors begin 
to address these questions. The proofs use Theorem 4.1. 

Theorem 4.2 ([PRV2]). Suppose A E ~* and w(v) E A+ for some v E A,w E 

W. 

1. Then "7'1f>.,v;;;( -) == h w - 1IT ( -; A, v) are homomorphibtns : n ---+ C. 

2. The maps hwIT are homomorphisms: n ---+ P(~* x ~*) for all W E W. 
They are W -equivariant in the following sense: for all wEn, w, w' E W, 
and A, v E ~*, 

'IT I , IT h W w (w' W * A W v) = h W (w' A v) " , , . 

A consequence of this result is a "first step" towards the classification of the 
representations 7r,).,v. (This is discussed at greater length in Section 7.) 

Corollary 4.3. Suppose (A, v), (X, v') E ~* x A. Then 7r,).,v ~ 7rw *>.,wv for all 
W E W, while 7r>.,v and 7r).' ,v' are not equivalent if v' tJ. W v. 

Remark 4.4. Another consequence is the following. Note that since every 
Verma module has a unique simple quotient, hence there exists a unique max­
imal (left) ideal M>. C llg containing n+ and ked. If A E A +, then by [Harl], 

M,). = (llg)n+ + (llg) ker A + L llg . f;<hi)+l. 
iEI 

Thus whenever w(v) E A + for v E A and wE W, there exists a unique maximal 
ideal in llg containing ker v C ij and {ea : a E w-1 (R+)}, where ea spans ga' 

Call this ideal Mv. Now since 7r>.,v is a simple 9 x g-module, it is generated by 
the g-(maximal) weight vector V/7 E Vg(v)v c 7r')',v' Moreover, n acts on Vg(v) 
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by h W - 'II ( -;,x, v). By Equation (2.8), this data uniquely determines 7r)..,v up 
to isomorphism. This implies the following result from [PRVl]: 

There exists a unique maximal ideal 9J1)..,v C ll(g x g) containing 
-1II --

kerhw (-;'x,v) en and 9J1v . Moreover, 7r)..,v ~ U(g X g)/9J1)..,v' 

Note that hIII : n -+ P(~* x ~*) is a homomorphism for each IT' = wIT. 
Thus, hIII (-;'x, v) is a homomorphism: n -+ C for all'x, v E ~*. The strategy in 
[PRV2] for showing this is to restrict to the Zariski dense subset of (,x, v) arising 
from finite-dimensional modules. The authors prove that if P, and IT' are chosen 
"suitably", then hIII (-;'x, v) == TJV()..,Jl),v( -) is a homomorphism: n -+ C. 
Hence so is hIII at all values of (,x, v). This analysis leads to the next topic. 

4.5. Relationship between V(..\, p,) and hil' (-;..\, v). Con­
sider the other family of simple e(g x g, g)-modules studied in [PRV2]: the 
finite-dimensional V('x, p,). From above, the minimal type of such a module is 
,x + wop,. Now consider the "converse" question: given ,x E ~* and v E A, is 
it possible to produce p, E A + such that V ('x, p,) has minimal type v? Sup­
porting evidence for such a claim is given by the following result, in light of 
Equation (2.8). 

Theorem 4.5 ([PRV2]). Suppose,X E A + and v E ,x - A +. Choose w E W 
such that w(v) E A+ and define p, .- -wo('x - v) E A+. Then V('x,p,) has 
minimal type Vg(v); moreover, 

Restating this allows us to answer the "converse" question, which can also be 
found in [Du2]. 

Corollary 4.6. For all ,x, p, E A +, V('x, p,) ~ 7r)..,)..+woJl" 

Proof. Note that v = ,x + wop' E ,x - A+ {::} P, = -wo('x - v) E A+. Thus, set 
v := ,x + wop' and choose w E W such that w(v) E A +. Then using Theorems 
4.2 and 4.5, 

on n. Moreover, v is the (multiplicity one) minimal type component of both 
irreducible modules, by the PRY Theorem. The result follows by applying Equa­
tion (2.8). 0 

Remark 4.7. A word of caution: note that V('x) (>9 V(p,) ~ V(p,) (>9 V('x) as 
g-modules for ,x, fl E ~*, since Ug is cocommutative. Thus, their minimal types 
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are also equal (when A, J.l E A +): A + WeJ.l = J.l + weA. This implies that the 
action of Z(Ug) is equal on both modules. However, YeA, J.l) and V(J.l, A) are 
non-isomorphic simple 9 x g-modules if A f. J.l. Similarly, the infinitesimal char­
acters are not equal on all of Z(U(g x g)) - and hence the key homomorphisms 
'T/V(>-',/L),/J, 'T/V(/L ,>-'),v do not agree on all of n - unless A = J.l. 

4.6. Example: the case of .sb(C). We now verify a part of Theorem 
4.5 in the special case of 9 = S(2(C), in which case it is not hard to compute both 
the homomorphisms in question - at least, on a particular finitely generated 
subalgebra n' c n. 

For convenience, denote the two factors in 9 as gk for k = 1,2 (as opposed to 
gel) and g(2)), with bases {ek,ik,hd· Now for all 0 < n2 S nl EN, the "tensor 
product" module Vl(nd ® V2(n2) is a simple object in e(g x g,g), of highest 
weight (nl' n2). Restricted to g, it decomposes according to the Clebsch-Gordan 
coefficients: 

where Vg(n) is a finite-dimensional irreducible g-module of highest weight n 
(equivalently, of dimension n + 1). Now denote the highest weight generators 
of \Ii (ni) by Vn1 and V~2 respectively, and define the weight basis Vn1 -2i := 

(Ii /i!)vn1 of VI (nd, with 0 S i < dim VI (nl). Similarly define V~2-2j E V2(n2) . 
One checks using Equation (1.1) that 

n2 
v~1-n2:= ~)-I)jj!. nl(nl -1) · · · (nl - j + 1) · Vnl -2j ® V~j-n2 

j=O 

is a weight vector in V(nl ' n2) which is killed by el + e2 := el ® 1 + 1 ® e2. 
Hence it generates the minimal type (Le., the PRY component) Vg(nl - n2), 
and we have: 

Note that the subalgebra n that commutes with 9 in U(g) contains the 
center of U(g). This is freely generated by the two Casimir operators 

Clearly, ~l ® 1 acts on VI (nl) ® V2 (n2) by the scalar n? + 2nl; similarly, 1 ® ~2 
acts by n~ + 2n2. Moreover, ~ = 4(!I + h)(el -I- e2) + (hI + h2)2 + 2(hl + h2) 
lies in n as well; by s(2-theory, it acts on V~l -n2 via: ~ . V~l -n2 = (( nl -
n2)2 + 2(nl - n2))v~1-n2' Since ~ commutes wi •. ,; j), it acts on Vg(nl - n2) by 
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this same scalar. This allows us to determine 1JV(n, ,n2),nl --n2 - at least, on the 
subalgebra n' := «:[L\1, L\2, L\] c n: 

1JV(n, ,n2),n, -n2 (L\i) .- nf + 2ni = X( ni)(L\) (i = 1,2), 

1JV(n"n2),n,-n2(L\) .- x(n1 - n2)(L\). (4.8) 

Now consider hTI( -; A, v). Note from above that II = v = A+Wo J1 = n1 -n2, 
so W = 1. Since q is spanned by e1 and 12, projecting the various L\i onto 
Ug ® U~(l) modulo q yields 

L\1 = 4he1 + hi + 2h1 == hi + 2h1 mod (Ug)q. 

Hence hTI(L\l; A, v) = A(h1)2 + 2A(hd = nf + 2n1, as in Equation (4.8). Simi­
larly, 

~2 4e2h + h~ - 2h2 == h~ - 2h2 == (hI + hd - 2(hl + h2) - h~ - 2hIh2 + 2hI 
-2 - - 'l __ __ 

h - 2h - 2h 0 hI + hi + 2hI mod (Ug)q. 

Computing hTI(L\2; A, v) amounts to evaluating this polynomial at 
(v(h),A(hd) = (n1 - n2,nd. This yields n~ + 2n2, as desired. Finally, 

L\ = 2fe + h2 + 2h. To evaluate hTI(L\; A, v), we must first apply the Harish­
Chandra projection f3TI to this expression, which kills the first term. Now 
evaluating at (h, h1) = (n1 - n2, n1), we obtain x(n1 - n2)(L\), as in Equation 
(4.8). Thus, h TI (L\';n1,n1 - n2) == 1JV(n"n2),n,-n2(L\') for L\' = L\1,L\2,L\; 
assuming that both of these are homomorphisms implies equality on all 
of n'. D 

4.7. Infinitesimal characters. Although it does not seem to be explic­
itly mentioned in [PRV2], the above facts allow us to compute the infinitesimal 
characters of the representations 7f~,v - or equivalently, of 1i'>.,v. In fact, we prove 
a stronger result. 

Theorem 4.9. For all A, v E ~*, wE W, and z E Z(U(g x g)), 

hwTI(z; A, v) = X(A, v - A - 2p)(z), 

where X(A, N) is the central character for the 9 x g- Verma module M(A, N). 
Now given ~ E ~* and v E A, define A := ~(~ + v) - p. Then X7r{,v = X1r>.,v = 
X(A, v - A - 2p).5 Moreover, X7rw~,wv = X1rw.>.,wv = X(w * A, w * (v - A - 2p)) = 
X(A,V - A - 2p). 

5This assertion about central characters of Harish-Chandra modules can be found in [Du2], 
for instance. 
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For example, consider the situation where 7r.x,v is finite-dimensional. Thus, v E 

,\ - A + , and 7r.x,v = V('\, /-l), where /-l := -wo('\ - v) E A +. Thus, v = ,\ + wo/-l· 
In this case, the result says that the second component of the central character 
IS: 

x(v -,\ - 2p) = X(,\ + Wo/-l-'\ - 2p) = X(wof-L + WoP - p) = X(wo * /-l), 

since woP = -po Hence XV{.x,JL) = X('\, WO * /-l) = X('\, f-L) (by Theorem 1.2), as 
expected. 

Proof. We use a "Zariski density" argument as in [PRV2], that Varadarajan 
attributes to Harish-Chandra in [Va]. By Harish-Chandra's Theorem 1.2, every 
central character of Z(U(g x g») is of the form X(/-lI,/-l2) for some /-li E ~*. 

Moreover, Z(U(g x g») c n, so we can evaluate h W - 'n ( -;'\, v) on it. For all 

Z E Z(Ug), one uses the definitions to check that hW-'n(Z{l);'\, v) = (v0'\)(10 
,en(Z(l))) = X('\)(z) for all '\, v E ~* and all il'. 

For Z(2) in the second copy of the center, first suppose that v E A +. Write 
the Harish-Chandra projection of z, but now using the decomposition Ug = 
Un + 0 U~ 0 Un -. In other words, compute ,eWe n (z), since Z(2) == (,eWe n (z) ) (2) 

mod (Ug)q. Now use the basis hi (2) of ~(2) to write out the above as a polyno­
mial: 

(,ew en (Z))(2) = p({hi (2) : i E I}) = P({hi - hi(l) : i E I}). 

Hence h n (Z{2);'\, v) involves acting by von hi and by ,\ on hill). Now recall 
that for all Z E Z(Ug), Z E Z(Ug) C n. Using these facts, and fixing Vi E ~*, 

compute using Theorem 4.2: 

p({v(h i ) - .\(hi )}) = p({(v - .\)(hi )}) = (v - .\)(,Bwell(z»v'(l) 

hwen(zj v', v - >.) = hn(Zj We * v', we(v -.\» = X(Wo(v - .\»(z), 

since Wo = w;;;l. By Theorem 1.2, twist this weight by Wo; thus for all (z,'\, v) E 
Z(Ug) x ~* X A+, 

hn(Z(2);'\' v) = X(Wo * Wo(v - '\))(Z) = X(v - ,\ - 2p)(z). 

Now fix any weight ,\ and any central z, and consider the map hz,.x : ~* -+ e, 
given by: 

hz,.x(v) := hn (Z(2);'\, v) - x(v - ,\ - 2p)(z). 

It is clear that hz,.x is a polynomial map, whidl vanishes if I) iiI'S in the 
Zariski dense subset A + c ~'. But then hz ,). ::=: 0 as polynomial". (This is 
the aforementioned Zariski density argument; it is analogous to saying that if 
a polynomial p(TJ.,"" Tn) : en -+ e is identically zero on Zo + Z:;o for some 
Zo E en, then p == 0.) We conclude that for all '\, v E ~. and Z E Z(Ug), 
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hil(z; A, v) = X(A, v - A - 2p)(z). It is also easy to check that the following 
holds: 

w * (v - A - 2p) = wv - w * A - 2p Vw E W, v, A E ~*. (4.10) 

Now given any wE W, compute using Theorems 1.2 and 4.2: 

hil(z; W * A, wv) = X(w * A, wv - w * A - 2p)(z) 

X(w * A, w * (v - A - 2p))(z) = X(A, v - A - 2p)(z). 

This proves the main assertion of the theorem;· the rest follow easily. For in­
stance, if wv E A +, then considering the action of any central z on the minimal 
type (and using Theorem 4.2), 

Remark 4.11. A similar result follows from the definitions: given z E Z(llg), 
A,V E ~*, and w E W, hw-1ilCZ;A,V) = X(w(v))(z). Note that this was shown 
in [PRV2] only when w(v) E A+. Now since the action of any w E W on ~* is 
a linear - hence, polynomial - map, once again a Zariski density argument can 
be used to extend the result to all v E ~*, for any fixed z E Z(llg). 

In the above result, observe that the above recipe for the central character 
is "W -equivariant", in that the last equation in the statement of the theorem 
(which is basically Equation (4.10)) holds. One can check that this is not always 
so: in other words, if we use X(A, w* (v- A- 2p)) to denote the central character 
(via Theorem 1.2) for arbitrary w =I- 1 E W - such as w = we' say. However, 
one can check that W-equivariance does hold if w is central in W. 

4.8. Remarks. We conclude this section with some remarks. Note that 
the presentation in [PRV2] of the material in this section is motivated by the 
approach of Harish-Chandra. Thus, it differs somewhat from the presentation 
in this article. 

More precisely, the philosophy in [PRV2] (as per the historical account 
given in [Va]) was to use Harish-Chandra's density theorem, which roughly 
says that among all irreducible G-modules containing a given irreducible finite­
dimensional £-module V, the ones that are finite-dimensional form a Zariski 
dense set. What this means is that the homomorphisms hil' (-; A, v) correspond 
to finite-dimensional representations at special lattice points, as in Corollary 
4.6 - and the set of these lattice points is Zariski dense in ~* x ~*. If we replace 
these by more general points, then the homomorphisms in question correspond 
to infinite-dimensional representations. 
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In view of this perspective, the approach in [PRV2J was to "alternate" 
between the representations and the homomorphisms. Here is their strategy: 

• Identify and study the minimal type in all finite-dimensional simple 9-
modules V(,x, J.l). 

• Explicitly compute the polynomials h TI' for these modules, and prove that 
11v().,/-L),i:;( -) == hw-'TI( -;,x, v), where v = ,x + WoJ.l and v = w(v) E A +. 

• Motivated by this, claim that there are simple modules 7r).,v in e(g x g, g) 
for all ,x E ~* and v E A, with minimal type v; now construct these. 

• Finally, prove that 11'iiA ,v,v( -) indeed equals hw-'TI( -;,x, v) for these mod­
ules. 

5. The Rings :Rv,n' and the PRY Determinants 

The next object of study in [PRV2J is the image :Rv,w-'TI of the map 
hw-'TI(_; -,v) : n -+ Sym~, where w(v) E A+. This was done in detail in 
[PRV2, Section 3J using deep results of Kostant [Ko2J, such as his separation 
of variables theorem (2.4). These results lead to the definition and study of the 
so-called PRY determinants, which we discuss below. 

5.1. The rings j{v,II'. To state the next result, we need some notation. 
Recall the stabilizer subgroup Wv of a weight v, as well as the twisted action 
of the Weyl group * on ~*, which transfers to ~ and then extends to Sym ~ = 
P(~·). 

Theorem 5.1 ([PRV2]). For all v E A and W E W such that w(v) E A+, 
:Rv,w-'TI C Iv, where 

Iv := {p E P(~·) : W * P = P Vw E Wv }. 

If v = 0 or v(hi ) > 0 for all i E I, then :Rv,TI = Iv. For general v E A +, define 

(Ug)o(v) := {a E (Ug)o : (ad ei)v(hi )+1 (a) = 0 Vi E I}. 

Then :Rv,TI = Wo * ,BTI((Ug)o( -wov)), and :Rwv,wTI = W * :Rv,TI for all wE W. 

Note that if v(hi ) > 0 for all i (i.e., v is regular), then Iv = P(~·). Moreover, 
10 = P(~·)(W,.). 

Remark 5.2. The authors claim in [PRV2J that they have proved that :Rv,TI = 
Iv for all v E A +, using a case-by-case analysis. 
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We also remark that Theorem 5.1 has the following' consequence for v = 0 
or regular v. 

Corollary 5.3 ([PRV2]). Suppose v(hi ) > 0 for all i, and .>.,.>.' E 1)*. Then, 

whereas the representations 1i\.,v are inequivalent for all .>.. 

The proofs of these results are carefully developed in [PRV2, Section 3], via 
many intermediate lemmas. These lemmas heavily use results developed by 
Kostant in [Ko2], which deal with the symmetrization map and with finite­
dimensional g-submodules of Sym 9 and Ug. In the next part, we discuss some 
of these results, and show how they can be used to define and study the "PRV 
determinants" . 

We end this part by disc~ssing the case of .5(2, where we classify all of the 
modules 1i\,v. 

Example 5.4. Suppose 9 = .5(2(iC). Using the results of Section 4.6, compute 
with v E /Z~o: 

It is now clear that if v = 0, then these generate qhi + 2hd = qh1](W,*l. 
The above result says that hII(w; -, v) is an element of this ring for all wEn. 
Similarly, if v > 0 (abusing notation), then the above polynomials already 
generate all of qhd as desired. 

Also note that we can classify (all equivalences between) the representations 
1i\,v: given (.>.,v) =f. (.>.',v') in 1)* x A, we claim: 

1i\,v ~ n)., ,v' -¢=} (.>.', v') = (-.>. - 2, -v). (5.5) 

The backward implication follows from Corollary 4.3, and conversely, v' = 
±v. Then the calculations above imply that h II (Al;'>', v) = h II (A1 ;.>.', v'), 
whence.>.' = .>., -.>. - 2. This shows the claim when v' = ±v = O. Otherwise we 
may assume that v' = v > 0 (using the backward implication). Now evaluate 
hII(A + Al - A2; -, v) at .>., .>.'. Then v =f. 0 ====} .>. = .>.'. D 

These calculations naturally lead to the question of classifying the representa­
tions n).,v for general semisimple 9 - and more generally, the classification of 
all simple objects of e(g x g, g). (Recall Corollary 4.3.) These questions will be 
discussed in the concluding section of this article. 
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5.2. Kostant's separation of variables. In order to discuss PRY 
determinants, we need some preliminaries. Recall the symmetrization map A 
from [Har2], which is the unique linear isomorphism : Sym 9 -# Ug satisfying: 
A(l) = 1 and for all r > 0 and XI" .. ,Xr E g, 

1 
A(XI ... X r ) = ,. L Xa(I) ... Xa(r)' 

r. 
aESr 

Also recall that the adjoint action of 9 on itself can be uniquely extended to 
derivations <I> : 9 -t Sym 9 and 8 : 9 -t Ug. Thus, both of these algebras are 
g-modules, and A is a g-module isomorphism: A 0 <I>(X) = 8(X) 0 A for all 
X E g. Moreover, the centers are isomorphic via A. Namely, A: (Symg)Go -# 

Z(Ug) = (Ug)Go , where Go is the adjoint group of g. 
Now given J1 E A +, define the following copies of the g-module V(J1) in 

Symg and Ug: 

,(,J.L := Homg (V(J1), Symg), ,(,J.L(Ug):= Homg (V(J1),Ug) = {AoM : M E ,(,J.L}. 

In [K02], Kostant showed that these are both free modules of rank dJ.L := 
dim V(J1)o, over (Sym g)Go and Z(Ug) respectively. This is related to Kostant's 
"separation of variables" theorem; see Equation (2.4), where IHr(g) is precisely 
the image of the harmonic polynomials in Sym 9 under A. (Recall from above 
that [IHr(g) : V(J1)] = dim V(J1)o = dJ.L") Moreover, it is possible to choose all 
of the basis elements Mi (over the center) for ,(,J.L such that every Mi(V(J1)) 
is a subspace of Symqi(J.t) f) for some qi(J1) E Z::::o. Such elements are called 
homogeneous. The image of a set of homogeneous generators under A yields a 
set of Z(Ug)-module generators for ,(,J.L(Ug). 

The zero weight spaces in these modules ,(,J.L, ,(,J.L(Ug) are of great interest in 
[PRV2]. For instance, it is easy to check that for all v E A +, 

(Ug)o(v) = L 

where V+ (J1; 0, v) was defined above Theorem 3.1. (These spaces were used in 
Theorem 5.1.) 

5.3. PRY determinants. We finally define the PRY determinants. 
(This material is taken from [PRV2, Sections 3,4].) Fix J1 E A +, and choose 
a set {MI , ... , Md,J of homogeneous generators for ,(,J.L. Also choose a basis 
{VI,"" Vd,J of V(J1)o. Now define the PRY matrix as: 

K~:= (( f3IT(>.(M;)vj) )h~;,j~d" E gld" (Sym f)), K~(lI) = (( lI((K~);j))) E gld,,(IC). 
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One of the important results in [PRV2] that has also influenced much fu­
ture research is the computation of the determinants of these and related 
matrices. In the following preliminary result, recall by Theorem 3.1 that 
dim V+(/L; 0, -wov) = m':..wov,v = [Vg(v) ® Vg(lI)* : Vg(/L)]. 

Proposition 5.6 ([PRV2]). For all /L,lI E A+, rank K~(lI) 
dim V+(/L; 0, -Woll). Moreover, 

dJI > 0,'\ E 1)* ==} [1i\,0: Vg(/L)] ::; min(rank K~wOJI('\)' rank K~(wo * '\)). 

The proposition is proved using the auxiliary lemmas developed in [PRV2, 
Section 3], and holds for all dominant integral/L, lI. The authors now propose 
another matrix which turns out to be nonsingular at all regular points h E I). 
To define this, suppose Mi E ,CJI, Vj E V(/L)o, and qi(/L) = deg(Mivj) :::: ° as above. Now there exists a unique hij E Sym I) such that MiVj == hij 
mod E"'ER(Syml))gc" and moreover, hij is homogeneous of degree qi(/L) for 
all 1 ::; i, j ::; dJ1" We now introduce the following terminology. 

Definition 5.7. 

1. Define the matrix KJI := ((hij)h-:;i,j-:;d". 

2. Fix 0: E R+, and suppose 0: +-+ h~ via the Killing form. Now define 
h", := (2/0:(h~))h~. Let e"" f", span g"" g_", respectively, and let mj,JI(O:) 
denote the multiplicity of the eigenvalue j(j + 1) for the restriction of 
f",e", to V(/L)o. Finally, define mJI(O:) = Ej>o mj,JI(O:). 

The following is the main theorem of [PRV2] involving PRY determinants: 

Theorem 5.8 ([PRV2]). Fix /L E A +. Viewed (via the Killing form) as a 
polynomial function on I), det KJI is nonzero at each regular point h E I). In 
particular, det K JI , det K~ are nonzero elements of P(I)*) of degree Ei qi(/L). 
Moreover, there exist nonzero constants cJI ' c~ such that: 

det K = c II hm "(,,,) JI JI "" det K~ = < II II {h", + p(h",) - 1, j}mj,,,("') , 
"'ER+ "'ER+ j21 

where for all a E Ug and j E N, {a,j} := (-l)jj! a(a -1) ... (a - j + 1). (In 

particular, E~~l qi(/L) = E"'ER+ mJI(O:)') 

This is a powerful theorem that computes the PRY determinants in a simple 
manner. It can be used to compute these determinants explicitly for simple 
g, with V(/L) the adjoint representation, for instance. Let us take a simple 
example: 9 = $[2. First note that dJI > ° if and only if /L E 2Z20w. Suppose 
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this holds, and apply Equation (1.1). Then, fe . Vo = (p/2)(p/2 + l)vo, so 
mj,I-'(n:) = 8j ,I-'/2 and ml-'(n:) = 1 for all even p. Hence 

detK~ = <{h,p/2} E ex. h(h -1) ... (h - p/2 + 1). 

It turns out that this is exactly the Shapovalov determinant for S[2(C) (up to 
a scalar). We now show how these are related to PRV determinants, before 
moving on to the next section. 

5.4. Annihilators of Verma modules. Since they were defined and 
computed in [PRV2], PRV determinants have played a role in the study of 
annihilators of Verma modules and their simple quotients, in the following 
manner. In [Dull, Duflo proved the following remarkable result: The annihilator 
of every Verma module is centrally generated. In other words, for any complex 
semisimple g, 

Annug M(A) = 11g . Annz(ug) M(A) = 11g . ker X(A), VA E ~*. (5.9) 

The proof of this statement requires a nontrivial algebra-geometric argument 
from [K02]. Thus, it cannot be extended to the setting of quantum groups 
Uq(g), and a new proof was sought. This was provided by Joseph for quantum 
groups, but it holds in the classical setting as well. In this part, we discuss how 
PRV determinants playa role in proving Duflo's result. 

Given a weight p E ~*, every weight space M(p)I-'-/3 of a Verma module 
has a bilinear form defined on it (where f3 E 1£2011). To see this, first fix a 
Lie algebra anti-involution L : 9 -+ 9 that fixes ~ and sends ei to fi for all 
i E I. Then L sends ga to g-a for all roots n:, and also extends to an algebra 
anti-involution of 11g. Now the Shapovalov form is defined as follows: 

Sh(bl,b2):= !3IT (((bl)· b2) E Sym~, Shl'(blml',b2ml'):= {L(Sh(b1 ,b2)), "v'bl,b2 E lln-, 

where ml-' E M(p)1-' generates the Verma module. One shows that the nonde­
generacy of this form can be checked on each individual weight space. Thus 
for all v E 1£2011, let det ShY be the determinant of Sh, when restricted to a 
(fixed) weight space basis of (11n-)_v. The Shapovalov form can now be shown 
to possess the following properties (see [MP, Sh] for instance): 

Theorem 5.10. For all p E ~*, Shl-' is a symmetric bilinear form on M(p). 
Shl-'(M(p)v, M(p)v 1 ) is nonzero only when v = v' E P - 1£2011. Moreover, the 
radical ofShl-' is the unique maximal submodule of M(p), so it is nondegenerate 
if and only if M(p) ~ V(p). Finally, there exists a nonzero constant c~ such 
that 

det ShY = c~ II II (ha + p(ha ) - j)'P(v-ja). 

aER+ j21 
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We note that both the PRV and Shapovalov determinants det K~, det ShZ! 
are products of linear factors. However, more holds! (The rest of this part is 
from [FLJ.) 

Theorem 5.11. For all semisimple g, the set of all linear factors in {det K~ : 
J1 E A +, d/-L > O} and {det ShZ! : v E Z~oII} coincide. Moreover, given>. E 1)*, 
the annihilator AnnlHI(g) V(>') is trivial if and only >'(detK~) = 0 whenever 
d/-L > o. 

Thus, another approach to proving DuBo's "Verma module annihilator the­
orem" (5.9) is to proceed as follows. This is a program developed by Joseph 
and his coauthors. 

1. U := Ug has a large "locally finite subalgebra" F(U) := {a E U : 
dim(ad U)a < oo}. 

2. A "Peter-Weyl" type result holds: F(U) := ffi>'EA+ Endc V(>.). (Note 
that for U = Ug, this is proved for F(U) = U using the perfect pairing 
between left-invariant differtntial operators in Ug and regular functions on 
the simply connected Lie group G for which 9 = Lie(G), together with 
the usual Peter-Weyl Theorem for regular functions on G.) Under this 
identification, the lifts of the identity elements in the various summands 
are a basis {z >. : >. E A +} of the center; moreover, Z (U) is a polynomial 
algebra in the generators {Z""i : i E I}. 

3. There exists an ad U-stable submodule 1Hl of F(U) such that the multi­
plication map: 1Hl ® Z(U) -+ F(U) is an isomorphism of ad U-modules.6 

Here, ad is the standard adjoint action of the Hopf algebra U on itself. 

4. Now define the PRV determinants using the above facts, and the Shapo­
valov determinants using the anti-involution t and the Harish-Chandra 
projection {3n. Then calculate both sets of determinants and verify their 
properties as in the above results. 

5. Now use the PRV and Shapovalov determinants for any simple submodule 
of a Verma module M(>'), which is itself a Verma module with the same 
central character X(>'). Some more work now shows DuBo's result. 

The important point is that this approach works not only for U = Ug, but 
also for U = Uq(g). (Unlike Ug, F(U) =I- U in the quantum case.) Thus, Joseph 
and Letzter proved the quantum "separation of variables" theorem, and defined 

6If U = 11g, then F(U) = U, and this result is precisely Equation (2.4). One can also 
use this and Example 3.2 to prove the Peter-Weyl type result mentioned above, by counting 
(countably infinite) multiplicities. 
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and computed the related PRY determinants. See [JL1, JL2]; also see [FL] for 
a historical exposition of this program. 

Joseph and others have since extended this approach to affine Lie alge­
bras. Similarly, Gorelik and Lanzmann [GL] have also carried out this program 
for reductive super Lie algebras. They found that the PRY determinants con­
tained some "extra factors" compared to the Shapovalov determinants, and 
their zeroes are precisely the weights for which the corresponding Verma mod­
ule annihilators are not centrally generated. Thus, the PRY and Shapovalov 
determinants (or more precisely, their common zeroes) turn out to yield, in 
various settings, both an approach to proving Duflo's Theorem (5.9), as well 
as the set of Verma modules for which it holds. 

5.5. KPRV determinants. We end this section with a remark. Kostant 
described certain analogues of the PRY determinants in [Ko3] involving 
parabolic subalgebras of g; these analogues had applications related to the ir­
reducibility of principal series representations. Joseph termed these the KPRV 
determinants, and together with Letzter and with Todoric, has defined such no­
tions for (quantum) semisimple and affine Lie algebras. (See [Jo3, JL3, JLT, JT] 
for more on this, including applications to annihilators of Verma modules.) 
Thus, the PRY determinants and their generalizations continue to be a useful 
and popular subject of research in several different settings in representation 
theory. 

6. Representations of Class Zero 

In [PRV2, Section 4], the authors apply the theory previously developed to carry 
out a deeper study of a special sub-family of irreducible admissible (g x g, g)­
modules: the ones of "class zero". Here is a brief discussion of these modules 
and related results. 

Definition 6.1. An irreducible g-admissible G-representation V is said to be 
of class zero if [V : Vg(O)] > O. 

(Note that these are usually referred to as "class one" representations in the lit­
erature - i.e., irreducible admissible (G, K)-modules which have a K-invariant 
vector. In other words, "class one" refers to a K-eigenvector with simultane­
ous eigenvalue 1, while "class zero" refers to a g-eigenvector with simultaneous 
eigenvalue 0.) The first result says that every irreducible Harish-Chandra mod­
ule of class zero is determined by its central character; in fact, it is of the form 
7T>.,o for some A E ~*. Thus, we obtain deeper insights into the classification of 
such modules.(See Equation (2.8) and Theorem 4.9.) 
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Theorem 6.2 ([PRV2]). The set of infinitesimal equivalence classes of class 
zero irreducible representations V is in bijection with the twisted Weyl group or­
bits in ~'. More precisely, every such V is uniquely determined by its infinitesi­
mal character Xv restricted to Z(Ug)(l)·' Moreover, given Xv : Z(U(gxg)) --+ re, 
there exists A E ~. such that 

Xv = X(A, -A - 2p), 

In particular [V : Vg(O)] = 1 and 0 is the minimal type of V. 

Example 6.3. If A E A +, then X7i'>.,o = X(A, WO * (-A - 2p)) = X(A, -WoA) = 
XV(>')0V(>')" By Theorem 3.5, the minimal type of V(A) ® V(A)* is A + 
wo( -WoA) = 0 as well. Therefore ?T>.,o ~ V(A) ® V(A)* by the above result. 
Moreover, every finite-dimensional ?T>.,o is of this kind, by Corollary 4.6. 

We now take a closer look at the multiplicities. When is [?T>.,o : Vg(fL)] = 
dim Vg(fL)O? (That it is at most dim Vg(fL)o follows from Theorem 4.1.) More 
generally, is it possible to compute the multiplicities for class zero modules? 
Once again, the authors were able to achieve this goal in [PRV2]: the mul­
tiplicity equals the rank of a related matrix, which is defined similar to K~ 
above. Namely, given fL E A + such that dJ.L > 0, choose sets of homoge­
neous generators {M1 , ... , Mdp.} and {Mi, ... , Mdp.} for the free (Sym g)Go_ 

modules'cJ.L and ,C-WoJ.L respectively. Now choose dual bases {vd and {v~} for 
V(fL), V( -WofL) ~ V(fL)* respectively. The span of 

Zij := L)A(Mnv~)(A(Mj)Vk) 
k 

then depends only on Mi and Mj . One can now compute the sought-for mul­
tiplicities. 

Theorem 6.4 ([PRV2]). For all fL E A+ and 1 ~ i,j ~ dJ.L' Zij E Z(Ug). Now 
given a central character X = X(A) of Z(Ug) (where A E ~*), [?T>.,o : Vg(fL)] = 
Idp.>o· rank(( X(A)(Zij) )). 

The next result discusses the case when the multiplicities all attain their 
upper bounds. This turns out to be an important question from the point of 
view of the irreducibility of the induced representations 7f€,v discussed earlier; 
see also [Bru]. The following result completely answers this question. (See [Du2] 
for more results along these lines.) 

Theorem 6.5 ([PRV2]). Given A E ~*, the following are equivalent: 

1. ?T>.,o is complete, i.e., [?T>.,o : Vg(fL)] = dim Vg(fL)O whenever dJ.L > 0 for 
fLEA+. 
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2. 1r2(A+p) ,O is irreducible. 

3. The matrices K~wo Jt(..\) and K~(wo *..\) are both invertible whenever 
dJt > 0 for /-l E A + . 

4. For all roots 0: E R+, ~~(ha:) = (..\ + p)(hQ.) rt. z \ {a} . 

This result now holds when ~ attains purely imaginary values on ~o (i.e., 
~ E !.R \ {a}, in the notation of Theorem 4.1). This shows the irreducibility of 
a class of unitary representations that was studied previously in the complex 
semisimple case: 

Theorem 6.6 ([PRV2j). The unitary G-representations of the principal non­
degenerate series (of Gelfand and Naimark [GN]) that contain a nonzero K­
invariant vector, are all irreducible. 

7. Conclusion: The Classification of Irreducible 
Harish-Chandra Modules 

As discussed in previous sections, the paper [PRV2] has led to much research 
in several different directions in representation theory. In this final section, we 
return to its original motivations. As is evident from the paper, as well as from 
much of the contemporary literature, the fundamental and profound work of 
Harish-Chandra on semisimple (real) Lie groups has had an enormous influence 
on the field of representation theory. From the objects studied to the methods 
employed in [PRV2] , the authors have time and again used contributions of 
Harish-Chandra to the subject. 

We now mention some of the subsequent developments in the program 
started by Harish-Chandra, of studying K-admissible G-representations. For 
instance, various results from [Har2, Har3, PRV2] were subsequently gener­
alized by Lepowsky in [LeJ. Moreover, in [Zh1, Zh2], Zhelobenko classified 
irreducible admissible representations of complex semisimple Lie groups, by 
showing that they always arise as distinguished quotients of certain principal 
series representations. This classification is the subject of this section. 

Before moving on to these classification results, we remark that this program 
was extended by Langlands in [La], to the original setting of real semisimple Lie 
groups GIR , where Harish-Chandra had introduced and studied admissible rep­
resentations. The Langlands classification describes how irreducible admissible 
representations are quotients of "generalized principal series", which are in­
duced from tempered representations on parabolic subgroups of GIR • The work 
of Langlands and Harish-Chandra on tempered representations was refined by 
Knapp and Zuckerman [KZJ; thus, one now has an explicit parametrization 
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of the irreducible admissible representations of the groups G IR • (See also [BBJ, 
which studies more general irreducible representations than just the admissible 
ones.) As this suggests, the legacy of Harish-Chandra is vast and rich, and lives 
on in these works and in the subsequent research which it has inspired. 

7.1. The set of irreducible objects. We now discuss the classi­
fication of all irreducible objects of e(g x g,g). There are two parts to this 
discussion: first, to determine a representative set of simple objects that cov­
ers all isomorphism classes; and second, to determine the equivalences among 
the objects in this set. In what follows, the final results will be stated as they 
appear in Duflo's notes [Du2j on the subject. 

It turns out that the category e(g x g, g) is equivalent to a subcategory 
of the BGG Category O. In particular, Harish-Chandra modules have certain 
properties in common with Verma modules. For instance, all objects of this 
category have finite length, all simple objects have a corresponding central 
character, and for a given central character, the simple objects are indexed 
by the Weyl group. More precisely, Beilinson and Bernstein have classified all 
irreducible (g x g, g)-modules with a fixed infinitesimal character. Here is a 
special case of their results. 

Theorem 7.1 ([BBl). Given A, J.L E A +, the set of isomorphism classes of 
irreducible admissible (g x g, g) -modules with infinitesimal character X = X( A, J.L) 

is in bijection with WA \ W jWw 

For instance, if A, J.L are both regular, then there are exactly IWI isomorphism 
classes, while there is a single class if A or J.L is zero. 

Now recall Theorem 6.2, which says that all irreducible admissible class zero 
modules are of the form 7rA,o for some>. E ~ •. One can similarly ask: is every 
irreducible admissible (gxg,g)-module of the form 7rA,v for some (>., v) E ~* xA? 
The answer turns out to be positive. 

Theorem 7.2. Suppose V is an irreducible object of e(g x g, g). Then there 
exist A E ~. and v E A such that V ~ 7rA,v ~ 7r W.A,WV for all w E W. In 
particular, V has minimal type v and infinitesimal character X(>., v - >. - 2p). 

7.2. The objects in a given isomorphism class. The other as­
pect of classification is to identify the isomorphism classes. In light of the above 
result, the task is to identify when 7rA,v ~ 7rA' ,v" In light of Corollary 4.3, one 
may assume that v = v' E A +. Moreover, in light of Corollaries 4.3 and 5.3 for 
general g, and Equation (5.5) for 5[2(C), it is easy to guess the general result. 
This is further reinforced by the fact that if v, v' E A, and ~ E !)tv, ~' E !)tv' 
(notation as in Theorem 4.1), then 1l'~,v is irreducible, hence isomorphic to 7rA,v 
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(and similarly for 7re',v'). Now as observed in [PRV2], 

7rA,v ~ 7r>.' ,v' {::=} 7re,v ~ 7re' ,v' {::=} ee,v = ee' ,v' 

{::=} 3w E W: (e, II') = (w~, WII) {::=} 3w E W : (>.', II') = (w * >., WII). 

It should not come as a surprise now, that the obvious claim turns out to be 
correct: 

Theorem 7.3. Given (>', II), (N, II') E 1)* x A, 

7rA,v ~ 7r>.',v' {::=} 3w E W : (>.', II') = (w * >., WII). 

7.3. Concluding remarks. We end with a couple of (incomplete) cal­
culations regarding the above analysis, involving central characters. 

1. It is natural to ask if the central character associated to an irreducible 
admissible module V, determines its minimal type. Thus, given that Xv = 
X(IlI,1l2), how does one determine the minimal type of V? 

It is clear that if V ~ 7rA,v (from above results), then 

III = WI * >., 

for some WI, W2 E W. Now note that 

Hence IIw := 2p + III + W * 112 E A for some W E W; moreover, for every 
such w, IIw is a candidate for the minimal type, by these calculations. 
Thus, if W is not uniquely identified from above, then neither is D. 

2. Similarly, given (A, II), (A', II') E 1)* x A, a necessary condition for 7rA,v to 
be isomorphic to 7rA',v' is that their central characters and minimal types 
coincide. It is natural to ask if this data is also sufficient to determine the 
isomorphism type. 

Clearly, in order to have the same minimal type, Corollary 4.3 implies 
that II' E WII. Say II' = WIll. Now since the infinitesimal characters 
coincide, Theorem 4.9 implies: 

>.' = W2 * >., II' - >.' - 2p = W * (II - >. - 2p) = WII - W * A - 2p. 

Using these equations translates to the following condition: 

WIll - W2 * A = WII - W * >., 
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and this data may not have the unique solution: WI = W2 = w. 

The reason for this discrepancy is Equation (2.8): the representation 1T>.,v 
carries the same data as its minimal type and the action of n on it. The 
above data only accounts for the minimal type and the action of the 
proper subset Z(U(g x g)) ~ n. For instance, Z(Ug) is not accounted for. 

To conclude, we have tried to explain the flavour of some of the results in 
[PRV2], as well as their connection to, and impact on, subsequent research 
in a wide variety of directions in the field. From the multiplicity problem 
and obtaining components in tensor products of finite-dimensional modules, 
to PRY determinants and annihilators of Verma modules, to the classification 
of all irreducible admissible modules as in Harish-Chandra's grand program 
on semisimple Lie groups - the work [PRV2] has contributed to, and inspired 
much subsequent research in, many aspects of representation theory. The list of 
results and connections mentioned in this article is by no means complete, but 
we hope that it suffices to convince the reader of the importance and influence 
of this work in representation theory. 
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