
CHAPTER 7 

Enumeration under Group Action 

7.1. The Orbit-Stabilizer Formula 

Let G be a group and X a set. We say G acts on X if there is 
a map G x X ---t X (usually denoted by (g, x) I---t 9 . x) satisfying the 
following axioms for all x EX: 

(1) 1· x = x, where 1 denotes the identity of G; 
(2) (gh)· x = g. (h· x) for all g, hE G. 

Here are a few examples. 

(1) If G is a group and H is a subgroup, let X be the set of left 
cosets of H in G. Then G acts on X via g(aH) = (ga)H. 

(2) If G is a group and we let X be G itself, then G acts on itself 
via conjugation: g. x = gxg- l . 

(3) Let p be prime and G = Z/pZ be the additive group of residue 
classes [a] mod p. Let X be the set of all p-tuples (Xl, X2, ... , xp) 
where Xi E {I, 2, ... , n}. Since G is cyclic, it suffices to define 
how [1] acts on X. We put 

[1]· (XI,X2, ... ,Xp) = (xp,xI, ... ,xp-d. 

In other words, [1] acts like a shift operator, shifting the co­
ordinates by one component. 

(4) Let n be a natural number and G = Z/nZ. Let X be the set 
of all n-tuples (Xl , ... , x n ) where Xi E {I, 2, ... , A}. We define 

[1]· (XI,X2, ... ,Xn ) = (xn,xI, ... ,xn-d. 

We can view the set X as all the possible "necklaces" formed 
by using beads of A colours. This perspective will be useful in 
later applications. 

It will be convenient to simplify our notation slightly. Instead of 
writing 9 . x, we will simply write gx, when it is clear that 9 E G and 
X E X. An action of G on X determines an equivalence relation on X 
as follows. Namely, we will write X rv y if there is an element 9 E G 
such that gx = y. Thus, if gx = y then x = g-ly and y rv x. Since 
Ix = x, this means that x rv x. Also, it is easy to check that x rv y and 
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y rv Z implies x rv z. Therefore, rv defines an equivalence relation on 
X. Consequently, we can partition X into equivalence classes, which we 
call orbits. More precisely, if we use the notation Gx to signify the set 

{gx : 9 E G} 

then it is clear that the equivalence classes consist of sets of the form 
GXi for various Xi'S. 

If G and X are finite, it is natural to ask how many elements are 
there in each orbit and how many equivalence classes there are. We 
begin with the first question. We begin by listing the IGI elements 

(7.1.1) gx: 9 E G 

and ask how many times an element gets repeated. Indeed, gx = hx if 
and only if h-1gx = x, that is if and only if h-1g fixes x. 

This leads to the notion of the stabilizer of x, denoted Gx , and 
defined as the set of elements of G fixing x. It is easy to see that the 
stabilizer of x is a subgroup of G for any x E X. In the context above, 
we see that gx = hx if and only if h-1g lies in Gx . In other words, 
gx = hx if and only if gGx = hGx' Thus, in the listing (7.1.1), each 
element is repeated the same number of times, namely IGxl times so that 
the number of distinct elements is [G : Gx ]. As the set X is partitioned 
into its orbits, we see that there are elements Xi'S so that 

X = l:.J~=lGxi' 

For each subgroup H of G we define fix(H) to be the set of H-fixed 
points of X. That is 

fix(H)={XEX: hx=x VhEH}. 

If 9 E G, we simply write fix(g) for the set of elements fixed by the 
subgroup generated by g. From the above relation, we separate those 
Xi'S for which GXi consists of singleton sets. In other words, we obtain: 

THEOREM 7.1.1 (Orbit-Stabilizer formula). If G is a finite group 
acting on a finite set X, we have 

IXI = Ifix(G)I + L [G: GxJ 
Gx ; =l=G 

This formula is of central importance in mathematics and has nu­
merous applications. For instance, in the case a group G acts on itself 
via conjugation, we get: 
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COROLLARY 7.1.2 (The class equation). Let G act on itself via con­
jugation. Let Z(G) = {g : gx = xg, Vx E G} denote its center and 
C(x) = {g E G : gx = xg} be the centralizer of x in G. Then, 

IGI = IZ(G)I + L [G: C(x)]. 
xr;f.Z(G) 

PROOF. We see immediately that x is a G-fixed point if and only 
if x E Z ( G). Moreover, the stabilizer of any element x is C (x). The 
formula is now immediate from the orbit-stabilizer formula applied to 
this specific case. • 

If we apply the orbit-stabilizer formula to Example 3 above, we see 
that on one hand, we have nP elements in X and on the other, the set 
of fixed elements is easily seen to be of size n. Now every summand in 
the sum is p since Z/pZ has no non-trivial subgroups. We recover the 
following result: 

THEOREM 7.1.3 (Fermat's little theorem). If p is a prime number, 
then p divides nP - n for each integer n. 

A less trivial application by considering the following situation. Let 
G be a group of order n and consider 

X={(XI, ... ,Xp): xI···xp =1, Xi EG}. 

The size of X is n P- 1 since we may choose each of Xl, ... , Xp-l in n ways, 
then xp is uniquely determined by the equation 

Xl··· Xp = 1. 

We let the additive group Z/pZ act on X by setting 

[1] . (Xl, ... , Xp) = (xp, Xl, ... , Xp-l). 

Note that the set of fixed points consists of elements (x, X, ... , x) with 
xP = 1. If p is a prime divisor of n, the orbit-stabilizer formula imme­
diately gives that the number of fixed points is divisible by p. Since 
fix( G) =1= 0 (why?), it follows that G has an element of order p. This is 
usually referred to as Cauchy's theorem. We record this as: 

COROLLARY 7.1.4 (Cauchy, 1845). If G is a group of order nand p 
is a prime dividing n, then G has an element of order p. 

However, much more is true. Cauchy's theorem was generalized by 
Peter Ludwig Sylow (1832-1918) in 1872. Almost all work on finite 
groups use Sylow's theorems. The class equation enables us to deduce 
the first Sylow theorem, namely: 
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COROLLARY 7.1.5 (Sylow's First Theorem). lfG is a group of order 
nand pk is a prime power dividing n, then G has a subgroup of order 
pk. 

PROOF. We proceed by induction on tGt. If tGt = 2, the theorem 
is true. 

Let tGt = prm, where r 2': k and m and p are coprime. If x E G and 
pk divides iC(x)i, then we are done by induction. 

Otherwise, because every summand in the sum occurring in the 
class equation is divisible by p, we deduce that p divides the order of 
the center Z(G). By Cauchy's theorem, Z(G) has an element x of 
order p. The subgroup generated by x in G is normal since x E Z(G). 
The quotient G / (x) has order divisible by pk-1 and by induction has a 
subgroup H/(x) of order pk-1. By the correspondence theorem, H is a 
subgroup of G of order pk, as desired .• 

We remark that all of the Sylow theorems can be derived by consid­
ering appropriate group action. Recall the notion of a p-Sylow subgroup. 
If pk is the largest power of a prime number p dividing the order of G, 
and P is a subgroup of order pk, we call Pap-Sylow subgroup of G. 
The normalizer of a subgroup H of Gis N(H) = {g: 9 E G,gHg- 1 = 

H}. 

COROLLARY 7.1.6 (Sylow'S Second Theorem). Let G be a finite 
group of order nand Pap-Sylow subgroup of G. Let X be the set 
of p-Sylow subgroups of G and let P act on X via conjugation. Then, 
P is the only fixed point under this action. Thus, the number of p­
Sylow subgroups is == 1 ( mod p) and all of the p-Sylow subgroups are 
conjugates of P. Moreover, any p-subgroup of G is contained in some 
conjugate of P. 

PROOF. Suppose Q is another p-Sylow subgroup fixed by P. Then, 
gQg-1 = Q for all 9 E P. Take x E P\Q. Then, x is in the normalizer 
N(Q). But N(Q) contains Q and the coset xQ is not Q. As the quotient 
N(Q)/Q has order coprime to p, the coset xQ has order k coprime to 
p. Thus, for some k, xk E Q with (k,p) = 1. But x has order equal 
to some prime power pb (say). So we can find integers u, v so that 
ku + pbv = 1. Hence, x = Xku+pbv E Q, contrary to hypothesis. As 
the set X is partitioned into orbits under the action of P, we deduce 
immediately that the number of elements of X is == 1 (mod p). Now let 
Y be the set of conjugates of P. Let H be a p-subgroup of G. Then H 
acts on Y. If H fixes an element Q of Y, then H is in the normalizer 
of Q .. If H is not contained in Q, then the argument above gives us a 
contradiction. Thus every p-subgroup H is contained in some conjugate 
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of P. In particular, if H is another p-Sylow subgroup, this means that 
it is conjugate to P. This completes the proof .• 

A p-group is a group whose order is a power of p where p is a prime 
number. We remark that any p-group G has subgroups of all orders 
dividing IGI. Indeed, the class equation implies the non-triviality of 
the center. By Cauchy's theorem, we may take an element z in the 
center of order p and consider the quotient G/(z). By induction, this 
has subgroups of all orders dividing IGllp which by the correspondence 
theorem give subgroups of the required order in G. For an arbitrary 
group G, and any prime power pt dividing IGI, we deduce that G has 
subgroups of order pt. Moreover, one can show that the number of these 
subgroups is == 1( mod p), but we leave this as an exercise. 

Given a finite group G of order n, and a subgroup H of G, we 
can partition G into the cosets of H from which we see Lagrange's 
theorem, namely that the order of any subgroup is a divisor of the 
order of G. The converse is not true, as is seen by considering the 
alternating group A4 on 4 letters. These are the even permutations of 
84 and one can list the elements: 

(1), (1 2) (34), (1 3) (24), (14) (23), (123), (1 32), (1 24), (142) 

(234),(243),(341),(314). 

If A4 had a subgroup H of order 6, then this subgroup is necessarily 
normal which means that the square of any element of A4 lies in H. In 
particular, the square of any 3-cycle 9 is in H. But 9 = (g2)2 lies in 
H so that all 3-cycles must lie in H, a contradiction since there are 8 
3-cycles. The virtue of Sylow theory is that it shows that the converse 
of Lagrange's theorem holds for prime powers dividing the order of the 
group. 

7.2. Burnside's Lemma 

It is possible to derive a formula for the number of equivalence classes 
under a group action. This is called Burnside's lemma as William Burn­
side (1852-1927) wrote about it in 1900. The result was known before 
Burnside mentioned it as it appears in the works of Augustin Louis 
Cauchy (1789-1857) in 1845 and of Ferdinand Georg Frobenius (1849-
1917) in 1887. 

We will apply the next result to the problem of counting necklaces 
encountered in the previous chapter. 
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THEOREM 7.2.1 (Burnside's lemma). If G is a finite group acting 
on a set X, the number of equivalence classes is 

1 
TGT L Ifix(g)l· 

gEG 

In other words, the number of equivalence classes is the average number 
of fixed points. 

PROOF. The equivalence class of an element x of X is the orbit of x. 
Thus, if w(x) is l/IGxl, we see that the number of equivalence classes 
is 

L w(x). 
xEX 

On the other hand, this is 

111 L a lGxl = aLL 1 = aLL 1. 
xEX I I I I xEX gEGx I I xEX gEG: gx=x 

By interchanging the sum, we find this is 

1 1 
TGT L L 1 = TGT L lfix(g)I· 

gEG xEX:gx=x gEG 

This completes the proof .• 

COROLLARY 7.2.2. The number of conjugacy classes in a group is 

1 
TGT L IC(g)l· 

gEG 

PROOF. The number of fixed points of g EGis precisely IC(g)l .• 

Let us apply this to the problem of counting necklaces. Each neck­
lace of length n formed out of beads of A colours can be viewed as a 
sequence (al' ... , an) with ai E {1, 2, ... A}. Two necklaces are considered 
the same if the two sequences representing them are the same after a 
shift. In other words, Z/nZ acts on the sequences and the number of 
necklaces is precisely the number of equivalence classes under this ac­
tion. Now, how many fixed points does an element r of Z/nZ have? A 
sequence (al' ... , an) is fixed r if and only if 

for all t and all i. In other words, 

for all i and all u lying in the subgroup generated by r in Z/nZ. Since 
Z/nZ is cyclic, any subgroup is also cyclic so the number of fixed points 
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of r is >..n/o(r) where oCr) is the order of r mod n. Recall that in any 
cyclic group of order n, the number of elements of order din is precisely 
cjJ( d). Thus, the number of necklaces is 

7.3. P6lya Theory 

George P6lya (1887-1985) was one of the most influential mathe­
maticians of the 20th century. 

The action of a group G on a set X can be viewed as a map 

G --+ Sym(X) 

where we send each element g E G to the permutation x 1--+ gx since 
gx = gy implies x = y by the axioms of action. In this way, we may 
view each element of G as a permutation and so we can consider its 
cycle decomposition as a product of disjoint cycles. Suppose g has Cl 

cycles of length 1, C2 cycles of length 2 ... , Cn cycles of length n where 
n = IXI. The cycle index of g is defined to be the monomial 

X CI X C2 xCn 
1 2'" n 

which we symbolically denote by x g . The cycle index of G is defined 
to be the polynomial 

Pc(x) = I~I L x g . 
gEC 

The situation can be looked at in another way. If G acts on X and we 
have a map f : X --+ Y, we may view Y as a set of colours. Then, the 
action of G on X induces an action of G on Map(X; Y), the set of maps 
from X to Y as follows: 

(g. f)(x) = f(g-Ix). 

It is important to check that this is indeed an action: we have for x EX, 

On the other hand, 

as desired. Burnside's lemma immediately implies the following. 
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THEOREM 7.3.1 (P6Iya). Let X and Y be finite sets and G act on 
X. The number of orbits of G on Map(X; Y) zs 

1 00 

TGT L ck(G)IYlk, 
k=l 

where Ck (G) is the number of elements of G with exactly k disjoint cycles 
in their cycle decomposition. 

REMARK 7.3.2. Notice that this number is simply Pc(lYl, IYI, ... ). 
PROOF. To apply Burnside's lemma, we must count the number of 

fixed points of an element 9 on Map(X; Y). That is, we must count 
the number of maps f : X -7 Y such that 9 f = f· This means that f 
is constant on each orbit of g. The number of orbits is the number of 
disjoint cycles in the cycle decomposition of g. We may assign values of 
f arbitrarily on each orbit, so the final count is given as stated in the 
theorem .• 

If we let Y denote the set of A colours of beads, and X denotes 
the set {1,2, ... ,n}, then a sequence (al, ... ,an ) of length n can then 
be viewed as a map f from X to Y. As the group Z/nZ acts on the 
co-ordinates in the obvious way by shifting, this induces an action on 
Map(X; Y). We see then that the maps that correspond to distinct 
necklaces are equivalence classes of maps under this induced action. 

We can retrieve our result about the necklace count from the pre­
vious section in the following way. First, we must determine the cycle 
structure of a residue class r viewed as a permutation. Clearly, all orbits 
have the same length and if o( r) denotes the order of r, then each orbit 
has size o(r) and the number of disjoint cycles is n/o(r). Hence, the 
number of elements of Z/nZ with exactly k cycles is zero unless kin, in 
which case it is the number of elements of order n/k. The number of 
such elements is ¢(n/k), as we saw before. 

Now suppose we have the dihedral group Dn acting on the necklace 
sequences. Thus, if we present Dn as 

(r, f : rn = 1,12 = l,Jr f = r-1). 

We could try to count the number of equivalence classes by using Burn­
side's formula. To use Burnside's formula, we have to count the number 
of fixed points of each element of Dn. It is better to use the cycle in­
dex polynomial to determine the number of equivalence classes. We 
illustrate this as follows. 

Firstly, let us have a geometric view of the dihedral group. It is 
to be viewed as the group of symmetries of a regular n-gon. If we fix 
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any vertex, and bisect the interior angle subtended at that vertex, we 
can view the element f as the flip of the polygon about this axis. We 
can view the elements frj as flips about the axis determined by the 
other points. If n is odd, each of these elements fixes one vertex and 
transposes pairs of vertices which are mirror images about that axis. 
Thus, the cycle structure of frj is that it is a product of one one-cycle 
and (n - 1) /2 transpositions. Thus, in the case of n odd, the cycle index 
polynomial is easily seen to be 

~ (~""-(d) n/d + (n-l)/2) 
~ ~~ ~ nXl~ . 

din 

Now we consider the case n even. As noted above, there are two axes of 
symmetry. The elements frj with j odd correspond to flipping through 
an axis through a vertex. In this case, it is seen that the opposite vertex 
is also fixed. In this way, we see the cycle decomposition is a product of 
(n - 2)/2 transpositions and 2 I-cycles. If j is even, there are no fixed 
points and the cycle decomposition of frj is simply a product of n/2 

transpositions. In this case, the cycle index polynomial is 

~ (~""-(d) n/d +?:: 2 (n-2)/2 +?:: n/2) 
2n ~~ Xd 2X1X2 2 X2 ' 

din 

P6lya's theorem now tells us that the number of equivalence classes of 
maps is Pc()..,).., ... ) where).. is the number of elements ofY. This shows: 

THEOREM 7.3.3. Under the action of the dihedral group, the number 
of distinct necklaces of length n formed using beads of).. colours is 

~ (I: ¢(n/d) .. d + )..(n+l)/2) 
din 

if n is odd and 

~ (L:¢(n/d) .. d + ~)..(n+2)/2 + ~)..n/2) 
din 

if n is even. 

We conclude this section with one application of P6lya theory to 
chemistry. It seems that the historic origins of the theory are rooted in 
problems arising in chemistry. 

The methane molecule has chemical composition CH4 where C de­
notes a carbon atom and H is a hydrogen atom. This molecule has 
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tetrahedral shape and the H4 indicates that there are 4 atoms of hy­
drogen in the molecule positioned at the vertices of the tetrahedron, 
with the carbon atom at the centroid. The problem is to determine 
how many different molecules can be formed by replacing the hydrogen 
atoms with one of bromine, chlorine or fluorine. This question can be 
re-interpreted in the context of the colouring problems considered by 
P6lya theory. 

Indeed, the group of symmetries of the regular tetrahedron is A4 , 

the alternating group on 4 letters. To see this, observe that we can 
rotate the tetrahedron about the center of any face and each of these 
correspond to 3-cycles, one for each face. This gives us a total of 8 3-
cycles in the group of symmetries. There is one more symmetry given by 
a rotation by 180 degrees about the axis joining the center of opposite 
sides. This is easily seen to be a product of two transpositions and there 
are 3 such permutations. Together with the identity, we have the full 
group of symmetries. 

It is now straightforward to write down the cycle index polynomial 
of the action of A4 on the vertices of the regular tetrahedron. From the 
discussion above, we have 

1 ( 4 2) 
PA4(Xl,X2,X3,X4) = 12 xl + 8XlX3+ 3x2 . 

The number of different molecules is then seen to be PA4 (3,3,3,3) 
15. If the group of symmetries are not taken into account, we have 
34 = 81 ways of placing the atoms of bromine, chlorine or fluorine at 
the vertices of the tetrahedron. However, many of them clearly give the 
same molecule. 

We make a few additional remarks concerning P6lya's theorem. In 
the special case that G = Sn acting on the set {I, 2, ... , n} in the usual 
way, the cycle index polynomial PSn ().., ••. )..) is 

1 n , L Is(n, k)l)..k 
n. 

k=O 

where the s(n, k)'s denote the Stirling numbers of the first kind. This 
represents the number of ways of colouring n indistinguishable objects 
(or balls) using).. colours. This is related to a problem treated earlier by 
simpler methods. Indeed, this is the same as asking in how many ways 
we may put n indistinguishable balls into ).. boxes. This is the same as 
the number of solutions of 

Xl + X2 + ... + X>. = n 
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with the Xi'S non-negative integers. In either interpretation, it is easily 
seen that the number of ways is 

( n+A-l). 
A-I 

Indeed, if we first consider a collection of n distinguishable balls and 
we throw into this collection A-I indistinguishable "sticks", then the 
number ways we can arrange these objects is clearly 

(n + A - I)!. 

However, A-I of these objects are identical and can be permuted in 
(A - I)! ways and so we get our result. Now if we say the balls are also 
indistinguishable, then we can permute these among themselves in n! 
ways. In this way, we retrieve an earlier formula, namely, 

n 

(A + n - l)(A + n - 2) .. · A = L Is(n, k)IAk. 
k=O 

If we change A to - A, we get 
n 

(A)n = L s(n, k)Ak. 
k=O 

Two further applications of the P6lya theory are amusing. The game 
of tic-tac-toe involves a 3 x 3 grid in which the players place alternately 
X or 0 until a row, column or diagonal of the same symbols are placed 
and the game is over. It is interesting to consider how many possible 
configurations can be seen at any given moment during a game. Or 
even, one may ask how many possible outcomes are there. This in its 
generality is too difficult to answer. We will consider a simpler problem. 
Namely, in how many ways can we colour a 3 x 3 grid using three colours. 
We can see that the cyclic group of order 4 operates by rotation on such 
a grid. If we label the grid as 

1 2 3 
6 5 4 

7 8 9 

then a clockwise rotation r is represented by the permutation 

(1397)(2486)(5) 

whereas r2 is given by 

(19 )(2 8 )(3 7 )(6 4 )(5). 
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Note that r3 has the same cycle structure as r and so we easily see that 
the cycle index polynomial is 

1 ( 9 2 4) P(XI, ... ,xg) = 4" Xl + 2XIX4 + XIX2 . 

A simple calculation shows that the number of colourings with three 
colours is 4995. Of course, some of these never can represent the final 
outcome or the shape of the grid during the game. For such a compu­
tation, one needs a finer P6lya theory with weights, which we do not 
consider here. 

Let us now consider the problem of colouring the faces of the cube 
using .\ colours. To do this, we begin by considering the group of sym­
metries of the cube. These can be classified as follows. 

(1) the identity element; 
(2) rotation by 90 degrees about the axis joining the center of two 

opposite faces; 
(3) rotation by 180 degrees about the same axis; 
(4) rotation by 180 degrees about the axis joining the midpoints 

of two diagonally opposite edges; 
(5) rotation by 120 degrees about the axis determined by the di­

agonal of the cube. 

If we think of these symmetries as acting on the faces, and write down 
the cycle structure, we obtain the following: 

(1) 1 element of type 16 ; 

(2) 6 elements of type 1241 ; 

(3) 3 elements of type 1222; 
( 4) 6 elements of type 23 ; 

(5) 8 elements of type 32 . 

Thus, we see the group of symmetries has order 24. One can easily see 
that this group is isomorphic to 84. We can immediately write down 
the cycle index polynomial for 84 acting on the faces of the cube from 
the above analysis: 

PS4 (X1, ""X6) = 214 (x~ + 6xix4 + 3xix~ + 6x~ + 8x~). 
By P6lya's theorem, the number of ways of colouring the faces of the 
cube using .\ colours is 

~ (.\6 + 12.\3 + 3.\4 + 8.\2) 24 . 

In particular, there are 10 ways of colouring the faces of the cube using 
2 colours. 
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7.4. Exercises 

EXERCISE 7.4.1. Show that the examples from the first section are 
actions of groups. 

EXERCISE 7.4.2. Let G be a finite group acting on a finite set X. 
For each 9 E G, define O"g(x) = g. x for each x E X. Show that O"g is a 
permutation of X. 

EXERCISE 7.4.3. Show that the map 

9 f-t 0" 9 

is a group homomorphism from G into Sym(X) which is the group of 
permutations of the set X. 

EXERCISE 7.4.4. Let G be a group acting on a set X and H a group 
acting on a set Y. Assume that X and Yare disjoint and let U = XuY. 
For 9 E G, hE H , define 

(g, h) . x := g. x if x E X 

and 
(g , h) . y : = h . y if y E Y. 

Show that this defines an action of G x H on U. 

EXERCISE 7.4.5. Determine the number of ways in which four cor­
ners of a square can be coloured using two colours. It is permissible to 
use single colour on all four corners. 

EXERCISE 7.4.6. In how many ways can you colour the four corners 
of a square using three colours ? 

EXERCISE 7.4.7. If X = [3], define an action of 8 3 on X by 0" • i = 
O"(i) for i E X and 0" E 83 . Calculate the cycle index polynomial 
PS3 (Xl, X2, X3). 

EXERCISE 7.4.8. In how many ways can you colour the vertices of 
an equilateral triangle so that at least two colours are used ? 

EXERCISE 7.4.9. What is the number of graphs on 4 vertices? What 
is the number of nonisomorphic graphs on 4 vertices ? 

EXERCISE 7.4.10. Let G and H be finite groups acting on finite sets 
X and Y. Assume that X and Y are disjoint. By Exercise 7.4.3, we can 
define an action of G x H on Xu Y. If Pc and PH indicate the cycle 
index polynomials of G acting on X and H acting on Y respectively, 
show that the cycle index polynomial of G x H acting on XuY is Pc PH . 
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EXERCISE 7.4.11. How many striped flags are there having six stripes 
(of equal width) each of which can be coloured red, white or blue? 

EXERCISE 7.4.12. What if we change the number of stripes to nand 
the number of colours to q ? 

EXERCISE 7.4.13. Let Sn acting on the set X = [n] in the usual way 
(as in Exercise 7.4.1). Let PSn be the cycle index polynomial. Prove 
that PSn is the coefficient of zn in the power series expansion of 

exp(zxl + z2 X2 /2 + z3 X3 /3 + ... ). 
EXERCISE 7.4.14. We say that a E Sn has cycle type (Cl,"" cn) 

if a has precisely Ci cycles of length i in its unique decomposition as 
a product of disjoint cycles. Show that the number of permutations of 
type (CI, C2,··· ,cn ) is 

n! 
1C1Cl!2C2C2! ... nCnen!' 

EXERCISE 7.4.15. Let Pn denote the path on n vertices. What is 
the automorphism group Aut(Pn ) of Pn ? 

EXERCISE 7.4.16. What is the cycle index polynomial of Aut(Pn ) 

acting on the vertex set of Pn ? 

EXERCISE 7.4.17. In how many ways can we colour the vertices of 
Pn using). colours, up to the symmetry of Aut(Pn ) ? 

EXERCISE 7.4.18. Consider the graph X on 5 vertices obtained from 
the complete graph K5 by deleting two edges incident to the same ver­
tex. What is the automorphism group Aut(X) of X ? 

EXERCISE 7.4.19. Let X be the graph from Exercise 7.4.18. What 
is the cycle index polynomial of Aut(X) acting on the vertex set of X ? 

EXERCISE 7.4.20. In how many ways can we colour the vertices of 
X using). colours, up to the symmetry of Aut(X) ? 


