
CHAPTER 6 

Mobius Inversion and Graph Colouring 

6.1. Posets and Mobius Functions 

August Ferdinand Mobius (1790-1868) introduced the function which 
bears his name in 1831 and proved the well-known inversion formula. 
He was an assistant to Carl Friedrich Gauss (1777-1855) and made im­
portant contributions in geometry and topology. The Mobius function 
is very important tool not only in combinatorics, but also in algebra 
and number theory. 

A poset is a pair (P,::;) with P a set and::; a relation on P (that 
is, a subset of P x P) satisfying 

(1) x ::; x for all x E P (reflexive property); 
(2) x ::; y and y ::; x implies x = y (antisymmetric property); 
(3) x ::; y, y::; z implies x ::; z (transitive property). 

We call :S a partial order on P. If x :S y and x -I y, we sometimes 
write x < y. An interval [x, z] consists of elements of yEP satisfying 
x ::; y ::; z . A poset P is called locally finite if every interval is finite. 
We say y covers x if x ::; y and the interval [x, y] consists of only two 
elements, namely, x and y. The Hasse diagram of (P,::;) is given by 
representing elements of P as points in the Euclidean plane, joining x 
and y by a line whenever y covers x and putting y "higher" than x on 
the plane. 

Here are some examples of posets. 

(1) If 5 is a finite set and we consider the collection P(5) of all 
subsets of 5, partially ordered by set inclusion, is a locally finite 
poset. 

(2) If N is the set of natural numbers, we can definite a partial 
order by divisibility. Thus, a ::; b if and only if alb. It is easily 
verified that this is a partial order. 

(3) If 5 is a finite set we consider II(5), the collection of partitions 
of 5. Given two partitions ex and (3 we say ex ::; (3, if every 
block of ex is contained in a block of (3. We sometimes refer to 
ex as a refinement of (3. 
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(4) If V(n, q) is the n-dimensional vector space over the finite field 
of order q, we can consider the poset of its subspaces partially 
ordered by inclusion. 

(5) We can define a partial order on the elements of the symmetric 
groups Sn as follows. Let a E Sn. A permutation r E Sn is 
said to be a reduction of a if r(k) = a(k) for all k except for 
k = i, j where we have a( i) > a(j) with i < j. We will write 
TJ :S a if we can obtain TJ by a sequence of reductions from 
a. This is called the Bruhat order on the symmetric group 
which makes Sn into a poset. 

Given two posets (PI, :Sl) and (P2 , :S2), we can define their direct 
product as (PI x P2 , :S), with partial order 

(Xl, yd :S (X2' Y2) if Xl:S1 X2, and Yl:S2 Y2· 

If X and yare not comparable in P, we sometimes write X i y. Let 
F be a field and denote by I(P) the set of intervals of P. The incidence 
algebra I(P, F) is the F-algebra of functions 

f : I(P) --t F 

where we define multiplication (or convolution) by 

(fg)(x, y) = L f(x, z)g(z, y). 
x5.z5.y 

Here we are writing f(x, z) for f([x, z]). Given a locally finite poset P, 
its Mobius function IL is a map 

IL:PXP--tZ 

defined recursively as follows. We set IL(X, y) = 0 if X i y. Otherwise, 
we define it by the recursion 

L IL(X, z) = 6(x, y) 
x5.z5.y 

where6(x, y) = 1 if X = Y and 0 otherwise. Observe that this equation 
can be written in "matrix form" as follows. 

Define the zeta function of P by ((x, y) = 1 if x :S y and zero 
otherwise. If for the moment, we assume P is finite, and we list our 
elements in some sequence Zl, ... , Zn say. The matrix Z whose (i, j)­
th entry is ((Zi,Zj) and the matrix M whose (i,j)-th entry is IL(Zi,Zj) 
satisfy M Z = I. This follows from the above recursion for IL. Thus, M 
is the inverse of the matrix Z. Since the inverse is both a left inverse as 
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well as a right inverse, we deduce that ZM = I which means 

L f.L(z , y) = J(x , y) . 
x'5.z'5.y 

THEOREM 6.1.1 (Mobius Inversion for Posets, Version 1). Let (P,:S) 
be a locally finite poset and suppose that f : P ---t R is given by 

f(x) = Lg(y)· 
y'5.x 

Then 
g(x) = L f.L(y , x)f(y), 

y'5. x 

and conversely. 

PROOF. We have that 

L f.L(y, x) L g(z) = L g(z) L f.L(y, x) = g(x) 
y'5.x 

as required. The converse is left as an exercise .• 

THEOREM 6.1.2 (Mobius Inversion for Posets, Version 2). Let (P,:S) 
be a locally finite poset and suppose that 

f(x) = L g(y). 
y?x 

Then, 

g(x) = L f.L(x , y)f(y), 
y?x 

and conversely. 

PROOF. As before, 

L f.L(x , y) L g(z) = L g(z) L f.L(x , y) = g(x) , 
y?x z?x 

as required. The converse is left as an exercise .• 

6.2. Lattices 

Given a poset (P, :S), we say z is a lower bound of x and y if 
z :S x and z :S y. Any maximal element of the set of lower bounds for 
x and y is called a greatest lower bound. Such elements need not 
be unique as simple examples can show. The notions of upper bound 
and least upper bound are similarly defined. A lattice L is a pair 
(L,:S) such that (L,:S) is a poset and the greatest lower bound and 
least upper bound exist for any pair of elements x and y. We denote 
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the greatest lower bound of x and y by x 1\ y and least upper bound by 
x V y. For example, in the poset of the reals with the usual ordering, 
x 1\ y is min(x, y) and x V y is max(x, y). In the poset of the natural 
numbers partially ordered by divisibility, x 1\ y is gcd(x, y), the greatest 
common divisor of x and y and x V y is lcm(x, y), the least common 
multiple of x and y. In the poset of subsets of a set S partially ordered 
by set inclusion, x 1\ y is x n y and x V y is xU y. 

Two posets (P1 ,::;d and (P2 , ::;2) are said to be isomorphic if there 
is a one-to-one and onto map f : P1 ---'t P2 such that x ::;1 y if and only 
if f(x) ::;2 f(y)· 

Let S be a set of n elements and consider the poset P(S) of subsets 
of S. Let I = {O, I} be the two element poset defined by 0 < 1. One 
can show easily that P(S) and In are isomorphic. For each subset A of 
S we define f(A) to be the characteristic vector of A. It is then easily 
verified that this is the required isomorphism. 

This observation allows us to compute the Mobius function of P(S) 
very easily. Indeed, it is not hard to verify that if (P1,::;d and (P2, ::;2) 
are two locally finite posets, then the Mobius function of P1 x P2 is given 
by 

Now, the Mobius function for I is easily seen to be given by 

Thus, the Mobius function for In is given by 

and using the isomorphism between P(S) and In given above, we deduce 
that 

J.L(A, B) = (_l)IBI-IAI. 

The Mobius inversion formula for sets now reads as: 

THEOREM 6.2.1. If 

then 

and conversely. 

F(A) = L G(B), 
A<;;;B 

G(A) = L (-l)IBI-IAIF(B), 
A<;;;B 
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We can specialize this to deduce the inclusion-exclusion principle. 
Indeed, suppose we have a set A with subsets Ai with i E I. We would 
like to derive a formula for the size of 

A\ Ui Ai' 

For each subset J of I, we let F (J) be the number of elements of A 
which belong to every Ai for i E J. Let G(J) be those elements which 
belong to every Ai for i E J and to no other Ai for i tf. J. Clearly, 

F(K) = L G(J). 
J~K 

By Mobius inversion, we obtain 

G(K) = L JL(K, J)F(J). 
nK 

What we seek is G(0). Because F(J) = I niEJ Ail, we retrieve the 
principle of inclusion and exclusion. Thus, the Mobius inversion formula 
is a vast generalization of this important principle. 

6.3. The Classical Mobius Function 

Let us consider the lattice D(n) of divisors of a natural number n. 
By the unique factorization theorem, we see that if 

n = p~l ... p~k, 

with Pi'S being distinct primes, then 

D(n) ~ D(p~l) '" D(p~k). 

Thus, in order to determine the Mobius function of D(n), it suffices to 
determine for D(pa) for primes p. We observe that JL(pi,pi) is 1 if i = j, 
is -1 if i = j - 1 and 0 otherwise. By the product theorem, the Mobius 
function for D(n) is easily computed: JL(a, b) = 0 unless alb in which 
case it is the classical Mobius function JL(b/a) defined as follows: JL(n) 
is zero unless n is square-free in which case it is (_l)k, where k is the 
number of prime factors of n. The Mobius inversion formula for the 
lattice of natural numbers partially ordered by divisibility is now seen 
as an immediate consequence of the general inversion formula. 

One immediate application of the Mobius inversion formula is to 
count the number cjJ( n) of natural numbers less than n which are coprime 
to n. We see immediately that 

cjJ(n) = L JL(d)n/d. 
din 
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There are many applications of the inversion formula in counting prob­
lems. For instance, let us look at the following celebrated example. If 
we have an infinite supply of beads of ). colours, in how many ways can 
we make a necklace of n beads? Clearly, any necklace can be thought 
of as a sequence (aI, ... , an), where we identify any cyclic permutation 
of the sequence as giving rise to the same necklace. We will say that a 
necklace is primitive of length n if for no divisor d < n it is not ob­
tained by repeating n/d times a necklace of length d. We say a necklace 
has period d if it is obtained by repeating J times a primitive neck­
lace of length d. With these notions, we can count first the number of 
sequences to be ). n. On the other hand, each sequence corresponds to 
some primitive necklace of period d which must necessarily divide n. If 
we let M(d) be the number of primitive necklaces of length d, we have 
d places from which to start the sequence and so we obtain 

By Mobius inversion, we get 

M(n) = ~ L p,(d).n/d. 
n 

din 

Now the total number of necklaces is 

LM(d). 
din 

This can be simplified further. We have 

L L ~p,(a).b = L ~b p,~a) = L ~b L p,(a)/a. 
de=n ab=d abe=n bin ae=n/b 

The inner sum is easily seen to be ¢(n/b)/(n/b). Thus, the final formula 
is 

6.4. The Lattice of Partitions 

Let S be a finite set and II(S) the collection of its partitions. We 
make II(S) into a poset as follows. Recall that the components of a 
partition are called blocks (or equivalence classes). We say a ::; (3 if (3 
refines the a. That is, each block of a is a union of blocks of (3. For 
example, 

a = {1,2}{3,4,5} ::; {1}{2}{3,5}{4} = (3. 
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It is easy to verify that this poset is a lattice with minimal element ° 
given by the partition consisting of one block containing all the elements 
of 8. The maximal element 1 is given by the partition consisting of 
singleton sets. Thus, the "greater" the partition, the larger the number 
of blocks. 

We would like to determine the Mobius function of this lattice. To 
this end, let us define b(o;) to be the number of blocks of the partition 
0;. Let us fix a partition (3 with m blocks. If 0; ::; (3, then every block 
of 0; is a union of blocks of (3 and it is then clear that if we view (3 as a 
set of its blocks, then 

[0, (3] ~ II ((3) , 

which will be useful in the computation of the Mobius function. 
Let x be an indeterminate. For each partition 0; define g( 0;) to be 

the polynomial (X)b(a)' Then, 
m 

L g(o;) = L (X)b(a) = L 8(m, k)(X)k = xm = x b(;3) 

a <;,;3 a <;';3 k=l 

by a calculation from Chapter 2. By Mobius inversion, 
m 

by a calculation done (again) in the Chapter 2. Identifying the coeffi­
cients of xk of both sides of the identity above gives 

s(m, k) = 

a<;';3,b(a)=k 

Taking k = 1 gives 
s(m, 1) = p,(0, (3). 

Thus, the value of the Mobius function p,(0, (3) depends only the number 
of blocks in (3, namely b((3). But recall that (-1)m- 1s(m,1) is the 
number of permutations of 8m with exactly one cycle in their disjoint 
cycle decomposition. The number of such permutations is (m - I)!. 
Thus, we have proved that: 

THEOREM 6.4.1. For the lattice of partitions II(8) of an n element 
set, we have 

We will now count the number of connected labeled graphs on n 
vertices. To this end, let us observe that any graph induces partition 
on the vertices given by its connected components. For each partition 
(3 of the n vertices, let g((3) be the number of graphs whos8 partition 
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of connected components is finer than (3. Let f((3) be the number of 
graphs whose partition of connected components is equal to (3. Clearly, 

g((3) = L f(a). 
a?.l3 

By Mobius inversion, we get 

f((3) = L p,((3, a)g(a). 
a?f3 

What we want to determine is f(O). But this is 

f(O) = L p,(0, a)g(a). 

6.5. Colouring Graphs 

Graph colouring is one of the main topics in graph theory. We de­
scribe here some connections between this subject and Mobius inversion. 
More details regarding graph colouring will appear in Chapter 10 and 
Chapter 11. 

Given a map M in the plane, let PM()..) be the number of ways of 
colouring !vI properly using).. colours. We say that a colouring is proper 
if no two adjacent regions receive the same colouring. If r(M) is the 
number of regions of the map, then the number of arbitrary colourings 
using ).. colours is clearly ).."·(M). Given any such colouring, we may 
"refine" it to get a proper colouring of a unique "submap" obtained 
by deleting the common boundary between the regions with the same 
colour. It is also clear that we may define a partial ordering on the set 
of "submaps" of M in the obvious way. Thus, we obtain 

)..r(M) = L PA()..). 
AC:;M 

By applying Mobius inversion on this poset of submaps, we obtain 

PM()..) = L p,(A, M) .. r(A). 

AC:;M 

This remarkable formula also shows that the number of ways of colour­
ing the map M using only ).. colours is given by a polynomial in ).. of 
degree equal to the number of regions. This is not at all an obvious fact 
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and yet by the theory of Mobius inversion, we were able to deduce it 
immediately. 

The same result can be derived for colouring graphs. If X is a graph 
and P X (A) is the number of properly colouring the vertices of X using 
A colours, then we may derive a similar formula as follows. If X has 
n(X) vertices, the number of arbitrary colourings of X using A colours 
is An(X). Any such colouring can be refined to give a proper colouring 
of a subgraph obtained by contracting any two adjacent vertices that 
received the same colouring. The collection of subgraphs is a poset in 
the obvious way and thus, by Mobius inversion we see that 

pX(A) = L J.L(A, X)An(A), 
A~X 

which is again a polynomial in A of degree equal to the number of vertices 
of the graph. 

The scheduling problem is really a colouring problem. Suppose 
in a university we are to schedule exams so that no student has a time 
conflict. We construct a graph whose vertices are the courses for which 
we must schedule an exam. We join two vertices if the corresponding 
courses have a common student. The colours correspond to time slots 
and a proper colouring of the graph means that we assign time slots so 
that no student has a conflict. 

Recall that given a graph X and an edge e by X/e we mean the 
contraction of X by e which means we create a new graph where the 
two vertices of e are identified. 

THEOREM 6.5.1. Let X be a simple graph and let pX(A) be the num­
ber of ways of properly colouring X using A colours. If e is an edge, then 

pX(A) = PX-e(A) - PX/e(A). 

PROOF. Clearly, any proper colouring of X is also a proper colouring 
of X-e. Thus, we look at all proper colourings of X - e and remove 
from this number those which are not proper colourings of X. This 
latter number corresponds to the situation where the two vertices of e 
get the same colour in X-e. But this corresponds to a proper colouring 
of X/e .• 

Since X - e and X / e have at least one less edge than X, we see 
immediately by induction that pX(A) is a polynomial in A. However, a 
more precise theorem can be derived. 

THEOREM 6.5.2. The polynomial pX(A) has degree n = IV(X)I and 
integer coefficients alternating in sign and beginning as 

pX(A) = An - IE(X)IAn- 1 + ... , 
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where IE(X)I is the cardinality of the edge set. 

PROOF. We prove this by induction on the number of edges of X. 
The claim holds trivially if IE(X)I = 0 for then px()..) = )..n. By induc­
tion, we may write 

and 
-PX/e()..) = _)..n-1 + b1)..n-2 - ... 

where a2, ... and b1, ... are non-negative integers by the induction hy­
pothesis. Adding these two equations gives 

and the theorem is proved .• 

Based on this result, we call px()..) the chromatic polynomial of 
X. This polynomial was introduced by George David Birkhoff (1884-
1944) in 1912 as an attempt to attack the four-colour conjecture (now 
theorem). Showing that px(4) > 0 for any planar graph X is equivalent 
to the four-colour theorem. 

For the complete graph K n , the chromatic polynomial is easily seen 
to be 

)..().. - 1)().. - 2)··· ().. - (n - 1)). 

When we expand this as a polynomial in ).., we obtain 

n 

L s(n, k))..k 
k=O 

and the numbers s(n, k) are the Stirling numbers of the first kind. 
From our theorem, we see that the s(n, k) alternate in sign. Recall 
that Is(n, k)1 is the number of permutations of the symmetric group Sn 
with exactly k cycles in its unique factorization as a product of disjoint 
cycles. 

The chromatic number x(X) of the graph X is the smallest positive 
integer m so that px(m) > O. The chromatic number of the complete 
graph Kn is clearly n. For the cycle graph en, the chromatic number 
is 2 or 3 according as n is even or odd. The four colour theorem is 
the assertion that the chromatic number of any graph obtained from a 
planar map is 4. 

One can get a trivial bound for the chromatic number which is easily 
seen to be sharp in the cases of the complete graph and the odd cycles. 
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THEOREM 6.5.3. Let b.(X) denote the maximum degree of any ver­
tex in a simple graph X. Then 

x(X) ::; 1 + b.(X). 

PROOF. We use a greedy colouring by colouring the vertices in the 
order 1,2, ... ,n assigning to i the smallest-indexed colour not already 
used by its neighbours j < i. 

Each vertex i will have at most b. neighbours j < i so this colouring 
will not use more than b. + 1 colours .• 

As our remarks indicate, this theorem is sharp. However, a famous 
theorem of Brooks, proved in 1941, states that these are the only two 
counterexamples and if we exclude them, we have a sharper bound. 

THEOREM 6.5.4 (Brooks, 1941). If X is connected and not a com­
plete graph or an odd cycle, then 

x(X) ::; b.(X). 

The proof of this theorem is rather complicated and we will skip it 
here. 

6.6. Colouring Trees and Cycles 

Theorem 6.5.1 can be used to determine the chromatic polynomial 
of trees. In fact, any tree T has a leaf v (say). Let e be the unique edge 
containing vertex v. We have that 

PT()..) = PT-e()..) - PT/e()..)· 

Since T - e has two connected components, namely an isolated vertex 
and a tree with one less edge than T, we see that an inductive argument 
easily shows: 

THEOREM 6.6.1. Let T be a tree with n vertices. Then 

PT()..) = )..().. - l)n-l. 

PROOF. We apply induction on n and note that in the remark pre­
ceding the statement of the theorem, T / e is a tree on n - 1 vertices. 
Thus, induction gives 

• 
COROLLARY 6.6.2. The chromatic number of a tree is 2. 
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Theorems 6.5.1 and 6.6.1 can be used to determine the chromatic 
polynomial of the cycle en on n vertices. Deleting an edge from the 
cycle gives a tree on n vertices and contracting an edge gives a cycle on 
n - 1 vertices. Thus, by an inductive argument we deduce: 

THEOREM 6.6.3. The chromatic polynomial of the cycle en is 

(>. - lY' + (-IY'(>' - 1). 

In particular, the chromatic number of en is 2 or 3 according as n is 
even or odd. 

PROOF. For n = 3, we verify the theorem directly: 

>.(>. - 1)(>' - 2) = (>. - 1)3 - (>. - 1). 

For the general case, by the remark preceding the theorem and the 
induction hypothesis, we get 

which is easily seen to be the stated expression .• 

It is rather remarkable that the converse of Theorem 6.6.1 also holds. 
That is, if X is a graph with chromatic polynomial px(>') = >'(>'_I)n-l, 
then X is a tree. To see this, first note that if X consists of connected 
components Xl, X 2 , ... then the chromatic polynomial of X is just the 
product of the chromatic polynomials of the connected components. 
Secondly, any chromatic polynomial has>. = 0 as a root. This can be 
seen in several ways. An immediate way to see it is to say that the num­
ber of ways of colouring a map using zero colours is zero. Another way 
is to see it is via an inductive argument from the contraction deletion 
Theorem 6.5.1. Thus, the order of the zero at >. = 0 is at least equal to 
the number of connected components. Since the zero is of order 1 in our 
case, the graph is connected. In addition, the number of edges is n - 1 
which can be seen from computing the coefficient of the second term. 
Thus, X is connected and has exactly n - 1 edges and so by Theorem 
5.1.2, X is a tree. This proves: 

THEOREM 6.6.4. If X has chromatic polynomial >.(>. - l)n-l, then 
X is a tree on n vertices. 

There are other classes of graphs except trees that are not isomor­
phic but share the same chromatic polynomial. An easy way to con­
struct such graphs is by using the following theorem. 
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THEOREM 6.6.5. Let X and Y be two graphs whose intersection is 
a complete graph K r . Then 

pX(A) . PY(A) 
PXUY(A) = A(A - 1) ... (A - r + 1) 

We leave the proof of this theorem as an exercise. 

6.7. Sharper Bounds for the Chromatic Number 

We will now connect eigenvalues of the adjacency matrix of a graph 
with its chromatic number. As preparation to this end, we will review 
the notion of Rayleigh-Ritz quotient or ratio from linear algebra. 

Let A be a real symmetric matrix. If x = (Xl"'" xn)t and Y = 
(YI,'" ,Yn)t are two n by 1 column vectors, then the inner product 
(x, y) is defined as Xl YI + ... + XnYn' For any non-zero column vector v, 
we call (Av, v)/( v, v) the Rayleigh-Ritz quotient of v and denote it by 
R(A, v). Denote by Amax and Amin the largest and smallest eigenvalues 
of A respectively. Then 

and 

Amax = max (Av, v) 
#0 (v, v) 

. (Av, v) 
Amin = mm ( ). 

v#O v,v 
To see this, observe that if U denotes the matrix whose columns form 
an orthonormal basis of eigenvectors of A, then we may write 

A = UDU t , 

where D is a diagonal matrix whose diagonal entries are the eigenvalues 
of A. Thus, 

As each of the terms I(UtV)iI 2 is non-negative, 

Amin L 1 (UtV)i 12 S vt Av S Amax L 1 (UtV)i 12. 
i 

Since U is an orthogonal matrix, we have 

Thus, if v =f. 0, 

L I(UtV)iI 2 = L IVil 2 = vtv. 
i 

(Av, v) 
Amin S ( ) S Amax. V,V 
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The inequalities are easily seen to be sharp by considering the eigen­
vectors corresponding to Amax and Amin respectively, which proves our 
assertion. This result is usually referred to as the Rayleigh-Ritz theorem 
in the literature. 

If X is a graph, let us denote Amax(X) and Amin(X) to be the largest 
and smallest eigenvalues of the adjacency matrix Ax of X. We also say 
that X' is a subgraph of X if V(X') ~ V(X) and E(X') ~ E(X). We 
begin by proving: 

THEOREM 6.7.1. If X' is a subgraph of X, then 

Amax(X') :S Amax(X); Amin(X') 2: Amin(X). 

If Ll(X) and i5(X) denotes the maximal and minimal degrees of X, then 

i5(X) :S Amax(X) :S Ll(X). 

PROOF. The first part of the theorem is proved as follows. By rela­
beling the vertices, we may assume that the adjacency matrix A of X 
has a leading principal submatrix Ao which is the adjacency matrix of 
X'. Let Zo be chosen so that Aozo = Amax(Ao)zo and (zo, zo) = 1. Let 
z be the column vector with IV(X)I rows formed by adjoining zero to 
entries of zo0 Then, 

Amax(Ao) = R(Ao, zo) = R(A, z) :S Amax(A). 

Thus, Amax(Ao) :S Amax(A). The other inequality is proved in a similar 
way. For the second part, let u be a column vector each of whose entries 
is 1. Then, if n = IV(X)I and di is the degree of vertex Vi, we have 

1 1 
R(A, u) = - L aij = - L di 2: i5(X). 

n .. n. 
X,) z 

But the Rayleigh quotient R(A, u) is at most Amax(A) and so 

Amax(X) 2: i5(X). 

For the other inequality, let V be an eigenvector corresponding to the 
eigenvalue AO = Amax(X). Let Xj be the largest positive entry of v. 
Then, 

* 

where the * on the summation means we sum over the vertices adjacent 
to Vj. This proves the theorem .• 

We will now relate the chromatic number to the largest eigenvalue 
of the adjacency matrix of X. To this end, we say a graph is t-critical if 
X(X) = t and for all proper vertex subgraphs U of X, we have X(U) < t. 
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LEMMA 6.7.2. Suppose X has chromatic number t 2': 2. Then X has 
at-critical subgraph U such that every vertex of U has degree at least 
t - 1 in U. 

PROOF. The set of all vertex subgraphs of X is non-empty and con­
tains some graphs (for instance, X itself) that have chromatic number t. 
Let U be a vertex subgraph of X whose chromatic number is t which is 
minimal with respect to the number of vertices. Clearly, U is t-critical. 
Moreover, if v E V(U), then the vertex subgraph whose vertex set is 
V(U)\v is a vertex subgraph of U and has a vertex colouring with t-1 
colours. If the valency of v in U were less than t - 1, then, we could 
have extended this vertex colouring to U contradicting X(U) = t .• 

The previous lemma has the following important consequences. 

THEOREM 6.7.3 (Szekeres-Wilf 1968). If X is a graph, then 

X(X) :::; 1 + max5(Y). 
n;;x 

PROOF. By Lemma 6.7.2, there is a vertex subgraph U of X whose 
chromatic number is X(X) and 5(U) 2': X(X) - 1. Thus, we have 

X(X) :::; 1 + o(U) :::; 1 + max 5(Y). 
y<;;x 

• 
By a slight modification of the previous proof, we also get the fol­

lowing result. 

THEOREM 6.7.4 (Wilf, 1967). For any graph X, we have 

X(X) :S 1 + Amax(X). 

PROOF. As before, there is a vertex subgraph U of X whose chro­
matic number is X(X) and 5(U) 2': X(X) - 1. Thus, by Theorem 6.7.1, 
we have 

x(X) :::; 1 + 5(U) :::; 1 + Amax(U) :::; 1 + Amax(X), 

as desired .• 

6.8. Sudoku Puzzles and Chromatic Polynomials 

The Sudoku puzzle has become a very popular puzzle that many 
newspapers carry as a daily feature. The puzzle consists of a 9 x 9 
square grid in which some of the entries of the grid have a number from 
1 to 9. One is then required to complete the grid in such a way that 
every row, every column, and everyone of the nine 3 x 3 sub-grids 
contain the digits from 1 to 9 exactly once. The sub-grids are shown 
below. 
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For anyone trying to solve a Sudoku puzzle, several questions arise nat­
urally. For a given puzzle, does a solution exist? If the solution exists, 
is it unique? If it is not unique, how many solutions are there? More­
over, is there a systematic way of determining all the solutions ? How 
many puzzles are there with a unique solution ? What is the minimum 
number of entries that can be specified in a single puzzle to ensure a 
unique solution? For instance, the next figure shows that the minimum 
is at most 17. We leave it to the reader to show that the puzzle below 
has a unique solution. It is unknown if a puzzle with 16 specified entries 
exists that yields a unique solution. 

We reinterpret the Sudoku puzzle as a vertex colouring problem in 
graph theory. We associate a graph with the 9 x 9 Sudoku grid as 
follows. The graph will have 81 vertices with each vertex corresponding 
to a cell in a grid. Two distinct vertices will be adjacent if and only if 
the corresponding cells in the grid are either in the same row, or same 
column, or the same sub-grid. Each completed Sudoku square then 
corresponds to a proper colouring of this graph. We put this problem in 
a more general and formal context. Consider an n2 x n2 grid. To each 
cell in a grid, we associate a vertex labeled (i, j) with 0 ::; i, j ::; n 2 - 1. 
We will say that (i, j) and (if, j') are adjacent if i = if or j = j' or 
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l * J ~ l ~ J and l * J = l * J. Recall that l x J is the largest integer less 
than or equal to a. We will denote this graph by Xn and call it the 
Sudoku graph of rank n. An easy computation shows that Xn is a 
regular graph having degree 3n2 - 2n - 1. In the case n = 3, X3 is 
20-regular and in case n = 2, X 2 is 7-regular. 

A Sudoku square of rank n will be a proper coloring of this graph 
using n 2 colours. 

THEOREM 6.8.1. For every natural number n, the chromatic number 
of the Sudoku square Xn is n 2 . 

PROOF. It is easy to see that we need at least n 2 colours because 
the n 2 vertices of the same row or column create a complete subgraph 
of order n 2 . For 0 ::; i ::; n 2 - 1, write i = tin + di , where 0 ::; ti ::; n - 1 
and 0 ::; di ::; n - 1. Colour the vertex corresponding to the cell (i, j) of 
the Sudoku square by the colour din + ti + ntj + dj , reduced modulo n 2 . 

We leave it as an exercise for the reader to show that this is a proper 
colouring of Xn with n 2 colours .• 

A Sudoku puzzle corresponds to a partial colouring of Xn and the 
question is whether this partial colouring can be completed to a total 
proper colouring of the Sudoku graph Xn with n 2 colours. Given a 
partial proper colouring C of a graph G), one can show that the number 
of ways of completing this colouring to obtain a proper colouring with 
A colours, is a polynomial in A, provided that A is greater than or equal 
to the number of colours used in C . We leave this as an exercise. 

It is not obvious at the outset if a given puzzle has a solution. Also, 
it is always clear whether or not a puzzle has a unique solution. An 
obvious necessary condition to have a unique solution is that the partial 
Sudoku square must contain at least 8 distinct numbers from {I, ... ,9}. 
This is not sufficient as the square below has exactly two solutions. The 
proof of this fact is left as an exercise. 
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6.9. Exercises 

EXERCISE 6.9.1. Show that the five examples from the first are ac­
tually posets. 

EXERCISE 6.9.2. Draw the Hasse diagram for 83 with the Bruhat 
order and determine completely the Mobius function of this poset. 

EXERCISE 6.9.3. If 

G(x) = L F(x/n) 
n::;x 

prove that 

F(x) = L J.L(n)G(x/n). 
n::;x 

EXERCISE 6.9.4. Show that 

L J.L(n) [x/n] = 1 
n::;x 

where [x] denotes the greatest integer less than x. 

EXERCISE 6.9.5. Let (PI, :Sl) and (P2, :S2) be two locally finite 
posets. Show that 

EXERCISE 6.9.6. Let (P,:S) be a finite poset. For a E P, we will 
denote by 1 a the set {x E P : x :s a} and i a the set {x E P : a :s 
x}. We say that P is linearly ordered if any two elements of Pare 
comparable. Show that any partial ordering of P can be extended to a 
linear ordering as follows. View the poset (P,:S) as a subset R of P x P 
satisfying the axioms: (1) (a, a) E R, (2) (a, b) E Rand (b, a) E R 
implies a = band (3) (a, b) E R, (b, c) E R implies (a, c) E R. A linear 
order can be regarded as a subset R' of P x P which has the additional 
property that for any a, bE P either (a, b) E R' or (b, a) E R'. Let now 
a, b be incomparable in (P, :S). Put R' = R u (1 ax i b). Verify that 
R' is a partial order of P in which (a, b) E R'. Deduce that any partial 
ordering of P can be extended to a linear ordering. 

EXERCISE 6.9.7. Six different television stations are applying for 
channel frequencies and no two stations can use the same frequency if 
they are within 150 miles of each other. If the distances between the 
stations A, B, C, D, E and F are given by the matrix below, find the 
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minimal number of frequencies needed. 

A B C D E F 
A 85 175 200 50 100 
B 85 125 175 100 160 
C 175 125 100 200 250 
D 200 175 100 210 220 
E 50 100 200 210 100 
F 100 160 250 220 100 

EXERCISE 6.9.8. Prove that the sum of the coefficients of the chro­
matic polynomial of a graph X is zero unless X has no edges. Show 
that the coefficients of pX(A) alternate in sign. 

EXERCISE 6.9.9. If Xl"'" Xt are the components of X, then 

t 

pX(A) = IIpxi(A). 
i=l 

If pX(A) is the chromatic polynomial of a graph X, show that we can 
write it as AC f(A) where f(O) of. 0 and c is the number of connected 
components of X. 

EXERCISE 6.9.10. The join of two graphs X and Y is defined as the 
graph obtained by joining every vertex of X to every vertex of Y. We 
denote this graph by X V Y. Show that X(X V Y) = X(X) + X(Y). 

EXERCISE 6.9.11. The wheel graph is KI V Cn. That is, the wheel 
graph is the cycle graph together with a vertex at the 'center' which is 
connected to all the vertices of Cn. Determine the chromatic polynomial 
of the wheel graph. Show also that 

EXERCISE 6.9.12. Let pX(A) be the chromatic polynomial of a con­
nected graph X of order n. Show that 

if n ~ 3. 

EXERCISE 6.9.13. Compute the chromatic polynomial of the graph 
in Figure 6.l. 

EXERCISE 6.9.14. Prove Theorem 6.6.5. 
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FIGURE'6,l 

EXERCISE 6.9.15. Let X be a graph with n vertices, e edges and 
maximum degree ~. Show that 

Amax ~ max (~, VK). 
When does equality occur ? 

EXERCISE 6.9.16. Let G be a graph with n vertices and let C be a 
partial proper colouring of t vertices of G using k colours. If PG,c(A) 
denotes the number of ways of completing this colouring using A colours 
to a proper colouring of G, then prove that PG,c(A) is a polynomial in 
A with integer coefficients of degree n - t for A ~ k. 

EXERCISE 6.9.17. Show that the chromatic number of a graph X 
satisfies 

x(X)::; 1 + ~. 
EXERCISE 6.9.18. Let Gn be the graph whose vertex set is [2n] = 

{I, 2, ... , 2n} and where (i,j) is an edge if and only if i and j have a 
common prime divisor. Show that the chromatic number of Xn is at 
least n. 

EXERCISE 6.9.19. The Kneser graph K(n, k) is the graph whose 
vertices are all the k-element subsets of [n]. Two k-subsets are adjacent 
in K (n, k) if and only if they are disjoint. Show that the Petersen graph 
(Figure 10.2) is isomorphic to K(5, 2) and that x(K(n, k)) ::; n - 2k+ 2. 
The chromatic number of K(n, k) actually equals n - 2k + 2 as proved 
by Laszlo Lovasz in 1978, but this is a more difficult result. 

EXERCISE 6.9.20. Let c(X) denote the number of components of the 
graph X and for F S;;; E(X), denote by X[F] the spanning sub graph of 
X with edge set F. Show that 

pX(A) = L (_1) 1F1 Ac(X[F]). 

F~E(X) 


