
CHAPTER 5 

Trees 

5.1. Forests, Trees and Leaves 

A forest is an acyclic graph (that is, a graph with no cycles). The 
connected components of a forest are called trees. Therefore, a tree is 
a connected acyclic graph. In particular, any tree is a bipartite graph. 
A leaf is a vertex of degree one. In the figure below, we have a tree 
with seven leaves. 

FIGURE 5.1 

Given a graph X and a vertex v, we denote by X - 'U the graph 
obtained by deleting the vertex v and any edges incident with 'U. We 
begin by proving the following: 

LEMMA 5.1.1. Every tree with n 2: 2 vertices has at least two leaves. 
Deleting a leaf from an n-vertex tree gives a tree with n - 1 vertices. 

PROOF. A connected graph with at least two vertices has at least 
one edge. Let us consider a maximal path in the graph joining u and 
v (say). Every neighbour of u or v must be member of the path for 
otherwise, this would violate maximality of the path. If u or v had two 
neighbours, we would get cycle. Thus, u and v must be leaves. Now let 
v be a leaf. We will show that X' = X - v is a tree. Clearly, X - v 
is acyclic because deleting a vertex is not going to increase the number 
of cycles. We must show it is connected. Given two vertices in X', let 
P be a path joining them in X which exists because X is connected. 
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42 5. TREES 

This path cannot involve v for otherwise v will have degree at least two. 
Therefore, X' is connected .• 

We now give the following characterization of trees. 

THEOREM 5.1.2. Let X be a graph on n vertices. The following are 
equivalent. 

(1) X is a tree. 
(2) X is connected and has n - 1 edges. 
(3) X has n - 1 edges and no cycles. 
( 4) For any u, v E V (X), there is a unique path joining them. 

PROOF. To prove (1) implies (2), we use induction. By the previous 
lemma, let v be a leaf and consider the tree X' = X - v with n - 1 
vertices. By induction, it has n - 2 edges and together with the edge 
joining X' to v, we get a total of n -1 edges. The same argument shows 
that (1) implies (3). To prove that (2) implies (3), let us suppose X 
has a cycle. We may delete edges from any cycle until we get a graph 
X' which is acyclic and has n vertices. But then, X' is a tree and so 
has n - 1 edges. Thus, no edges were deleted from X and X has no 
cycles. We can also show that (3) implies (1) as follows. Let Xl, ... , Xk 
be the connected components of X. Since every vertex appears in one 
component, we have that 

k 

L W(Xi)1 = n. 
i=l 

As X has no cycles, each component is a tree so that IE(Xdl = IV(Xi)l-
1 for each i. Thus, the number of edges of X is n - k. But as X has n-1 
edges, k = 1 and so X has only one connected component. Therefore, X 
is a tree. Finally, we must show the equivalence of (1) and (4). Clearly, 
(1) implies (4) for otherwise X would have a cycle. Conversely, if any 
two points have a unique path joining them, there are no cycles in the 
graph and moreover, X is connected. This completes the proof .• 

5.2. Counting Labeled Trees 

Arthur Cayley (1821-1895) spent 14 years as a lawyer during which 
he published 250 mathematical papers. In total, he published over 900 
papers and notes covering almost every aspect of mathematics. 

A classical result of Cayley states that the number of labeled trees 
on n vertices is nn-2. Despite its simplicity, it is remarkable that there 
is no simple proof of this formula. We apply an inductive argument to 
deduce it. 
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Let G(n, m) be the number of connected graphs on n labeled vertices 
and m edges. Let F(n, m) denote the number of such graphs that have 
no vertices of degree 1. Let A be the set of connected graphs on n 
labeled vertices having m edges. Let Ai be the subset of A of connected 
graphs with vertex Vi of degree 1. Thus, 

F(n, m) = IA\ Ui Ail-

Let us observe that IAil = G(n - 1, m - l)(n - 1) and generally 

IAII = G(n -III,m -III)(n -IIIFI. 
Then, by the inclusion-exclusion principle, we have 

F(n, m) = L (-l)IIIG(n -III, m -III)(n _111)111. 
I~V 

By collecting subsets of the same cardinality in the sum on the right, 
we obtain the following result. 

THEOREM 5.2.1. 
n 

F(n,m) = L(-l)i (~) G(n - i,m - i)(n - i)i. 
t=O 

Theorem 5.1.2 tells us that any connected graph on n vertices and 
n - 1 edges is necessarily a tree. Thus, G(n, n - 1) is the number of 
labeled trees on n vertices. Since every tree has a leaf, we have that 
F(n,n -1) = O. 

THEOREM 5.2.2. If Tn denotes the number of labeled trees on n 
vertices, then 

n 

2)-1)i (~) Tn-i(n - i)i = O. 
t=O 

Now we are ready to prove Cayley's formula. 

THEOREM 5.2.3 (Cayley, 1889). For n 2: 2, 

T n-2 n=n . 

PROOF. We prove the theorem by induction on n. For n ;::::: 2, the 
formula is clear. By induction, Tn- i = (n - i)n-i-2 for i 2: 1. Using 
Theorem 5.2.2, we obtain that 

n 

Tn + L( _l)i (~) (n - 'i)n-2 = O. 
i=l 

By Theorem 3.3.1, the latter sum is _nn-2 from which we deduce the 
theorem .• 
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5.3. Spanning Subgraphs 

A spanning subgraph of a graph X is a subgraph with vertex set 
V(X). A spanning tree is a spanning subgraph which is a tree. Given 
a graph X, we let T(X) denote the number of spanning trees of X. 

In a graph X, the graph obtained by deleting an edge e is denoted 
X-e. In this case, let us note that the vertices of e still belong to X-e. 
It may happen that this process increases the number of components 
of the graph, in which case we call e a cut edge or a bridge. The 
contraction of X by an edge e with endpoints u and v is the graph 
obtained by replacing u and v by a single vertex whose incident edges 
are the edges other than e that were incident to u or v. The resulting 
graph, denoted X / e has one less edge than X. 

THEOREM 5.3.1. If T(X) is the number of spanning trees in X and 
e E E(X) is not a loop, then 

T(X) = T(X - e) + T(X/e). 

PROOF. The spanning trees of X that omit e are counted by T(X -
e). The spanning trees that contain e are in one-to-one correspondence 
with the spanning trees of X/e. To see this, note that when we contract 
e in a spanning tree that contains e, we obtain a spanning tree of X/e 
because the resulting subgraph of X/e is spanning, connected and has 
the right number of edges. Since the other edges maintain their identity 
under contraction, no two trees are mapped to the same spanning tree 
of X / e by this operation. Also, each spanning tree of X arises in this 
way and so the function is a bijection. • 

Recall that the Laplacian of a graph X is the matrix 

L=D-A, 

where A is the adjacency matrix of X and D is the diagonal matrix 
whose (i, i)-th entry equals the degree of vertex i. 

Gustav Robert Kirchhoff (1824-1887) is perhaps best known for the 
Kirchhoff's laws in electrical circuits. These were announced in 1845 
and extended previous work of Georg Simon Ohm (1789-1854). 

A celebrated theorem of Kirchhoff from 1847 gives the number T(X) 
via a determinant formula. This results is also known as the Matrix-Tree 
Theorem. 

THEOREM 5.3.2 (Matrix-Tree Theorem). For any loopless graph X, 
the number of spanning trees T(X) equals (-l)i+j times the determinant 
of the matrix obtained by deleting the i-th row and j-th column of the 
Laplacian matrix L. 
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We will not prove this theorem since it involves detailed linear alge­
bra. We pause to remark that Cayley's theorem can be deduced easily 
from this more general result as follows. The number of trees on a ver­
tex set Vb ... , Vn is the number spanning trees of the complete graph 
Kn. The adjacency matrix of Kn is J - I with notation of the previous 
chapter. Thus, the Laplacian of the complete graph is 

(n - 1)1 - (J - 1) 

and any cofactor is the determinant of (n - 1)In- 1 - (In-l - In-I) 
where we have written the subscript to indicate the size of our matrix. 
By Example 4.2.3 in Chapter 4, we see that this determinant is the 
characteristic polynomial of the graph K n - 1 evaluated at A = n - 1 
which is 

[A - (n - 2)](A + 1)n-2 = nn- 2 

and thus, we recover Cayley's formula. 
Theorem 5.3.2 can be stated in more succinct terms. Recall that 

the classical adjoint of a matrix A, denoted adj(A), is the transpose 
of the matrix whose i, j-th entry is (-1 )i+j times the determinant of 
the matrix obtained from A by deleting the i-th row and j-th column. 
If J denotes (as before) the matrix all of whose entries are equal to 1, 
then Theorem 5.3.2 is equivalent to the assertion that 

adj(L) = T(X)J. 

For example, Cayley's formula can be restated as 

adj(nI - J) = nn-2 J. 

It is not hard to see that 

J2 = nJ J L = LJ = O. , 
These equations imply that (nI - J) (J + L) = nJ - j2 + nL - J L = nL. 
Thus, 

adj(J + L)adj(nI - J) = adj((nI - J)(J + L)) = adj(nL). 

Cayley's formula implies adj(nI -J) = nn-2 J. Also, adj(nL) = nn-1adj(L 
because in the adjoint the entries are formed by taking (n - 1) x (n - 1) 
determinants. We therefore deduce that 

[adj(J + L)]J = nadj(L). 

By Theorem 5.3.2, 
adj(L) = T(X)J 

so we obtain 
[adj(J + L)]J = nT(X)J. 
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Multiplying both sides of the equation by (J + L) on the left gives 

[det(J + L)]J = nT(X)(J + L)J. 

Because (J + L)J = J2 + LJ = nJ, we therefore deduce the next result. 

THEOREM 5.3.3. Let X be a simple graph whose Laplacian matrix 
is L. The number of spanning trees in X is given by 

T(X) = n-2 det(J + L). 

In the case X is a connected k-regular graph, we can derive a nicer 
formula. Recall that the adjacency matrix of X has eigenvalue k. Since 
X is connected, the multiplicity of this eigenvalue is 1. To see this, let 
v = (Xl, ... , xn) be an eigenvector corresponding to the eigenvalue k. 
The equation 

implies that 
Axv = kv 

n 

L aijXj = kXi. 

j=l 

Without any loss of generality suppose that Xl > 0 and that Xl 

maxlSisn Xi· If for some i, Xi < Xl, then 
n 

kXl = L aljXj < kXl 

j=l 

which is a contradiction. Thus, all the Xi are equal and so every eigen­
vector must be a multiple of (1, 1, ... , 1). If X is not connected, the mul­
tiplicity of the eigenvalue is easily seen to be the number of connected 
components. By Theorem 5.3.3, we must compute the determinant 

det(J + kI - A) 

which is just the characteristic polynomial of A - J evaluated at k. The 
eigenvalues of A - J are easily determined. Let VI, ... , Vn be a orthogonal 
basis of eigenvectors of A, with VI a multiple of (1, 1, ... , 1) corresponding 
to the eigenvalue k. Then, for 2 :S i :S n, 

(A - J)Vi = AiVi 

as JVi = O. This is true because VI is orthogonal to the Vi. Also, 

(A - J)Vl = (k - n)vl 

so this determines all the eigenvalues of A - J and their multiplicity. 
The characteristic polynomial of A - J is 

n 

(A - (k - n)) II (A - Ai). 
i=2 
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Putting this together with Theorem 5.3.3 gives 

THEOREM 5.3.4. If X is a connected k-regular graph, then the num­
ber of spanning trees of X is given by 

n 

where the product is over the eigenvalues unequal to k. 

This theorem can, for instance, be used to compute the number of 
spanning trees of the bipartite graph Kn,n (see Exercise 5.5.11). 

5.4. Minimum Spanning Trees and Kruskal's Algorithm 

In many contexts in which graph theory is applied, we consider 
weighted graphs. That is, we suppose we have a graph X together 
with a "weight" function w : E(X)-7ffi.+ that assigns to each edge a 
positive weight. For example, our graph could be a network of cities, 
and the weight function could be the cost of putting a communication 
network between the two cities. We will be interested in finding a con­
nected subgraph so that its total "cost", i.e., the sum of the weights of 
the edges in the subgraph, is minimal. Clearly, if there is a cycle, we can 
delete a 'costly' edge from the cycle and so, what we are searching is a 
spanning tree whose 'cost' is minimal. We call such a tree a minimum 
spanning tree. Of course, it need not be unique. 

There is a fundamental algorithm, called Kruskal's algorithm 
which determines a minimum spanning tree of any connected graph 
in a 'greedy' fashion. It can be described as follows. Choose an edge el 
of X with w( el) minimal. Eliminate it from the list. Inductively choose 
e2, ... , en-l in the same manner subject to the constraint that the newly 
chosen edge does not form a cycle with previously chosen edges. The re­
quired spanning tree is the subgraph with these edges. Before we prove 
that this greedy algorithm actually works, we illustrate this with an 
example. 

Consider the following weighted adjacency matrix giving the cost 
of building a road from one city to another. An infinite entry indicates 
there is a mountain in the way and a road cannot be built. The question 
is to determine the least cost of making all the cities reachable from each 
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other. This amounts to finding a spanning tree with minimum "length". 

A B C D E 
A 0 3 5 11 9 
B 3 0 3 9 8 
G 5 3 0 00 10 
D 11 9 00 0 7 
E 9 8 10 7 0 

The algorithm proceeds first by finding an edge of minimum weight, 
AB say. It then deletes this edge. In the next step, the algorithm finds 
the next smallest entry, BG say. The algorithm continues in this way 
and whenever an edge is chosen which produces a cycle, the algorithm 
does not select it. Thus, in the example below, AG is the next smallest 
entry but we would not choose it for it produces a cycle with AB and 
BG. 

Thus the next entry to choose is DE followed by BE. Thus the 
minimum spanning tree is given in Figure 5.2. The minimum 'cost' is 
21. 

D 

A B c 

E 

FIGURE 5.2. A minimum spanning tree of weight 21 

THEOREM 5.4.1. In a weighted connected graph X, Kruskal's algo­
rithm constructs a minimum weight spanning tree. 

PROOF. Kruskal's algorithm produces a tree since it selects n - 1 
edges which do not form cycles from a connected graph on n vertices. 
Let T be the tree produced by the algorithm and let T* be a minimum 
weight spanning tree. If T = T*, we are done. If not, let e be the first 
edge chosen for T that is not in T*. Adding e to T* creates a cycle G 
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since T* is a spanning tree. Because T contains no cycles, we deduce 
that the cycle C must contain at least one edge e' not in E(T). Now 
consider the subgraph T* + e - e' of X obtained from T* by adding the 
edge e and removing the edge e'. The subgraph T* + e - e' is actually 
a spanning tree of X because it has n - 1 edges and contains no cycles. 
Since T* contains e' and all the edges of T chosen before e, it means that 
both e' and e are available when the algorithm chooses e and therefore, 
w( e) :S w( e'). Thus, T* + e - e' is a spanning tree with weight at most 
that of T* (actually with the same weight as T* since T* is a minimum 
weight spanning tree) that agrees with T for a longer initial list of edges 
than T* does. Repeating this process, we deduce that the tree created 
by Kruksal's algorithm has the same weight as T* which finishes the 
proof .• 

5.5. Exercises 

EXERCISE 5.5.1. Prove that in any tree, every edge is a bridge. 

EXERCISE 5.5.2. Let X be a connected graph on n vertices. Show 
that X has exactly one cycle if and only if X has n edges. Prove that 
a graph with n vertices and e edges contains at least e - n + 1 cycles. 

EXERCISE 5.5.3. Let d1, d2 , ... , dn be positive integers. Show that 
there exists a tree on n vertices with vertex degrees d1 , d2, ... , dn if and 
only if 

n 

Ldi = 2n - 2. 
i=l 

EXERCISE 5.5.4. The number of trees with degree sequence d1 , ... , dn 

with d1 + ... + dn = 2n - 2 is 

( n - 2) (n - 2)! 
d1-l, ... ,dn-l - (d1-l)! ... (dn-l)!· 

EXERCISE 5.5.5. Show that if X is a tree on n labeled vertices, then 
each element of {X - e : e E E(X)} is a forest of two trees. 

EXERCISE 5.5.6. Let T and T' be two distinct trees on the same set 
of n vertices. Show that for each edge e E E(T) \ E(T'), there exists 
e' E E(T') \ E(T) such that T \ {e} U {e'} is a tree. 

EXERCISE 5.5.7. Let Tn be the number of trees on n labeled vertices. 
Prove that 

n-l 

2(n - l)Tn = L (7) TiTn-ii(n - i). 
z=l 
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EXERCISE 5.5.8. Show that 

~ (7 ) ii-l (n - i)"- i-l ~ 2(n - l)nn-'. 

EXERCISE 5.5.9. Let G(r, S; m) be the number of connected bipartite 
graphs with partite sets of size rand shaving m edges, and let F( r, S; m) 
be the number of such graphs not containing any vertices of degree 1. 
Prove that 

F(r,s;m) = L. C) G)(-l)i+jG(r-i,S-j;m-i- j )(S-j)i(r-i)j. 
t,) 

EXERCISE 5.5.10. Putting m = r + s - 1 in the previous exercise, 
notice that G(r, S; r + s -1) counts the number T(r, s) (say) of spanning 
trees in the bipartite graph Kr,s. Deduce that 

and that T(r, s) = r s - 1 sr-l. 

EXERCISE 5.5.11. Show that the number of spanning trees of the 
bipartite graph Kn,n is n2n-2. 

EXERCISE 5.5.12. The Wiener index of a graph X is W(X) = 
Lu,vEV(X) d(u,v), where d(u,v) denotes the distance from u to v. Show 
that if X is a tree on n vertices, then 

EXERCISE 5.5.13. A communication link is desired between five uni­
versities in Canada: Queen's, Toronto, Waterloo, McGill and UBC. 
With obvious notation, the matrix below gives the cost (in thousands 
of dollars) of building such a connection between any two of the univer­
sities. 

Q T W M U 

Q 350 400 300 1200 
T 350 100 600 1300 
W 400 100 700 1400 
M 300 600 700 1600 
U 1200 1300 1400 1600 

Use the greedy algorithm to determine the minimal cost so that all 
universities are connected. 
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EXERCISE 5.5.14. Every tree with maximum degree d has at least 
d leaves. Construct a tree with n vertices and maximum degree d for 
each n > d :2 2. 

EXERCISE 5.5.15. Let X be a graph on n :2 3 vertices such that by 
deleting any vertex of X, we obtain a tree. Find X. 

EXERCISE 5.5.16. Show that every connected graph X contains at 
least two vertices u with the property that X \ {u} is connected. What 
are the trees on n vertices that contain exactly two vertices with this 
property? 

EXERCISE 5.5.17. Show that the graph obtained from Kn by remov­
ing one edge has (n - 2)nn-3 spanning trees. 

EXERCISE 5.5.1S. Let Gn be the graph obtained from the path Pn by 
adding one vertex adjacent to all the vertices of the path Pn . Determine 
the number of spanning trees of Gn . 

EXERCISE 5.5.19. If G is a graph on n vertices having maximum 
degree k :2 2 and diameter D, show that 

{
2D + 1, if k = 2 

n:5: k[(k-1)D_1] 
k-2 + 1, otherwise. 

EXERCISE 5.5.20. The center of a graph X is the subgraph induced 
by the vertices of minimum eccentricity. Show that the center of a tree 
is a vertex or an edge. 


