
CHAPTER 4 

Matrices and Graphs 

4.1. Adjacency and Incidence Matrices 

Given a graph X, we associate two matrices to encode its informa­
tion. The first is the adjacency matrix A or sometimes denoted Ax 
or A(X). If n is the number of vertices of X, then A is an n x n matrix 
whose (i,j)-th entry is the number of edges between i and j. In case X 
is a simple graph, this is simply a (0,1) matrix whose i, j-th entry is 1 
or 0 according as i is joined to j. 

THEOREM 4.1.1. The (i,j)-th entry of Am is the number of walks 
of length m from i to j. 

PROOF. We prove this by induction. For m = 1, this is clear from 
the definition. Suppose we have proved it for Aj for j ::S m - 1. Write 
Ar = (at]). Since Am = Am-I. A, we have 

n 
(m) '"' (m-l) 

aij = L.." aik akj' 
k=l 

Clearly, the number of paths from i to j of length m is 
n 

L (#of paths from i to k of length m -1 ) akj' 
k=l 

By induction, the number of paths from i to k of length m - 1 is a~;;-l) 
which proves the theorem .• 

There is another matrix M called the incidence matrix of the 
graph. If X has n vertices and e edges, then M is a an n x e matrix 
defined as follows. The (i, j)-th entry is 1 if the vertex Vi is incident to 
the edge ej, and 0 otherwise. The relationship between this matrix and 
the adjacency matrix is given by the easily verified equation 

MMt = D+A 

where D is the diagonal matrix consisting of the vertex degrees. 
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4.2. Graph Isomorphism 

An isomorphism between two graphs X and Y is a bijection f 
between the vertex set of X and the vertex set of Y such that uv is an 
edge of X if and only if f (u) f ( v) is an edge of Y. The reader is invited to 
show that the graphs in Figure 4.1 are isomorphic. We will usually study 
isomorphism in the context of simple graphs. A moment's reflection 
shows that applying a permutation to both the rows and columns of the 
adjacency matrix of a graph X has the effect of reordering the vertices of 
X. A permutation matrix is a square 0, 1 matrix which has precisely 
one entry 1 in each row and each column and O's elsewhere. 

THEOREM 4.2.1. The graphs X and Yare isomorphic if and only if 
there is a permutation matrix P such that 

PAxp-1 = Ay. 

We begin by reviewing some elementary facts from linear algebra 
about matrices and their characteristic polynomials. Given a square 
matrix A, its characteristic polynomial is det(AJ - A). The roots 
of this polynomial are called eigenvalues of A. If A is an eigenvalue 
and v is an eigenvector so that Av = AV, then v is called an eigen­
vector corresponding to A. Thus, for two graphs to be isomorphic, it 

FIGURE 4.1 

is necessary that their adjacency matrices have the same eigenvalues. 
However, this is not a sufficient condition for isomorphism. Consider 
the graph obtained from C4 by adding an isolated vertex. This graph 
has the same eigenvalues as K 1,4, but it is obviously not isomorphic to 
K 1,4. See also Exercise 4.5.15 and Exercise 4.5.16. 

EXAMPLE 4.2.2. Let us compute the characteristic polynomial of the 
n by n matrix J whose i,j-th entry is 1 for alII :S i,j :S n. Clearly, it is 
a singular matrix (that is, its determinant is zero because the rows are 
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linearly dependent). Any eigenvector v = (Xl, ... , xn) with eigenvalue A 
satisfies Jv = AV so that 

Xl + ... + Xn = AXi, 

for alII::::; i ::::; n. Clearly, A = n is an eigenvalue and v = (1,1, ... , 1) is a 
corresponding eigenvector. On the other hand, the subspace of vectors 
v = (Xl, ... , xn) satisfying the equation 

Xl + ... + Xn = 0 

has dimension n - 1 and these vectors correspond to eigenvalue zero. 
Thus, the characteristic polynomial is (A - n) A n-l . 

EXAMPLE 4.2.3. Let us determine the characteristic polynomial of 
the complete graph Kn. The adjacency matrix of Kn is J - I with J 
as in Example 4.2.2 and I is the identity matrix of order n. Now let us 
recall that if A has eigenvalue f-L then f-L + c is an eigenvalue of A + cI 
because det(AI - (A + cI)) = det((A - c)I - A). Thus, the eigenvalues 
of J - I are n - 1 and -1 with multiplicity 1 and n - 1 respectively. 
Therefore, the characteristic polynomial of the complete graph on n 
vertices is [A - (n - 1)](A + l)n-l. 

EXAMPLE 4.2.4. Let us determine the characteristic polynomial of 
the bipartite graph Kr,s. Since the adjacency matrix has form 

A= 

o 0 
o 0 

o 0 
1 1 
1 1 

1 1 

011 
o 1 1 

011 
1 0 0 
1 0 0 

100 

1 
1 

1 
o 
o 

o 
it has rank 2. Recall now that the rank of a square matrix is equal to 
the number of non-zero eigenvalues counted with multiplicity. As our 
matrix has trace zero and this is also equal to the sum of the eigenvalues, 
we deduce that Am,n has only two non-zero eigenvalues AI, A2 with Al = 
-A2 = b (say). Moreover, each of these has multiplicity 1. Thus, the 
characteristic polynomial is (with n = r + s) 

An - 2(A2 _ b2 ). 

We can actually determine b more precisely. If we look at the defini­
tion of the characteristic polynomial as det(AI - Ar,s), we see that the 
coefficient of An - 2 can be arrived at as follows. From the determinant 
expression, we must choose (n - 2) diagonal entries and the other two 
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entries must come from non-zero entries in order to contribute to the 
coefficient. This can also be seen from the formula for the determinant. 
The permutations that contribute must necessarily fix (n-2) letters and 
thus correspond to transpositions. The remaining positions contribute 
-ai,j and -aj,i for some i,j. Since the graph is bipartite, there are rs 
non-zero contributions of this form. This means b2 must be rs. Thus, 
the characteristic polynomial is 

An - 2 p, - v'rS)(A + v'rS). 

This can also be deduced in another (simpler) way. As we observed, the 
number of closed walks of length 2 is equal to the trace of the square of 
the adjacency matrix. In our bipartite case, this is clearly 2rs, which 
must necessarily equal the sum of the squares of the eigenvalues, which 
is 2b2 . Thus, b2 = rs. 

4.3. Bipartite Graphs and Matrices 

The eigenvalues of bipartite graphs have the following interesting 
property. 

THEOREM 4.3.1. If X is bipartite, and A is an eigenvalue with mul­
tiplicity m, then -A is also an eigenvalue of multiplicity m. 

PROOF. Since X is bipartite, we may arrange our rows and columns 
of A = Ax according to the partite sets so that A has the following form 

A=(~t ~) 
where B is a 0,1 matrix. If A is an eigenvalue with eigenvector 

partitioned according to the partite sets. We have 

AV = Av = ( :t~ ) = A ( : ) 

so that By = AX and Btx = Ay. Let 

Then 

Av' = ( -BY) Btx 
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Thus, Vi is an eigenvector with eigenvalue -A. Also, m independent 
eigenvectors corresponding to A give m independent eigenvectors corre­
sponding to -A. This completes the proof .• 

We can now characterize bipartite graphs by the shape of the char­
acteristic polynomial. 

THEOREM 4.3.2. The following statements are equivalent. 

(1) X is bipartite; 
(2) The eigenvalues of X occur in pairs Ai, Aj such that Ai = -Aj; 
(3) The characteristic polynomial of X is a polynomial in A2; 
(4) for any positive integer t, 2::~=1 A;t-l = 0 where the sum is 

over the eigenvalues (with multiplicity) of Ax . 

PROOF. The fact that (1) implies (2) was done in the previous the­
orem. The equivalence of (2) and (3) is clear since (A - Ai)(A - Aj) = 
(A2 - a) with a = AT- It is also clear that (2) implies (4) since the eigen­
values occur in pairs with opposite signs and so they cancel each other 
in the sum in (4). To see that (4) implies (1), we recall that the (i,j)-th 
entry of A~-l counts the number of paths of length 2t - 1 from vertex 
i to vertex j. In particular, the diagonal entries count the number of 
closed walks of this length. But the sum of the diagonal entries is the 
total number of closed paths of this length and (4) says this sum is zero. 
Thus, X has no closed paths of odd length. By Theorem 1.5.1, X is 
bipartite .• 

4.4. Diameter and Eigenvalues 

Recall from linear algebra the notion of a minimal polynomial 
of a matrix. By the Cayley-Hamilton theorem (or by the fact that 
1, A, A 2 , ... , An2 are linearly dependent via dimension considerations) 
we deduce that A satisfies some monic polynomial equation. Among 
all, there is one of minimal degree which is necessarily unique (by the 
division algorithm). The degree of this minimal polynomial is equal to 
the number of distinct eigenvalues of A. 

Indeed, this is easy to see in the case of real symmetric matrices 
that we are dealing with. By the spectral theorem all the eigenvalues 
of a real symmetric matrix are real and there is a basis of eigenvectors. 
If we let 

r 

i=l 

where the Ai range over the distinct eigenvalues of A, then g(A) = O. 
To see this, it suffices to see how g(A) operates on set of basis vectors. 
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We take the basis · of eigenvectors and see that this is immediate (as the 
various factors commute) and we may write 

T 

g(A) = IT (A - Ai!). 

i=l 

If there were a polynomial h of smaller degree with h(A) = 0, we see 
that it must divide the polynomial g(A) and must consist of a product of 
terms of the form A - Ai for some proper subset of subscripts. But then, 
the eigenvector Vj corresponding to an eigenvalue Aj that is omitted in 
the product will not be annihilated by h(A). 

Recall that the distance d( u , v) between vertices u , v equals the 
shortest length of a path connecting u and v. Now we define the diam­
eter of a graph X as 

diam(X) = max d(u, v) 
u ,vEV(X) 

where the maximum is over all possible pairs of vertices. 

THEOREM 4.4.1. If diam(X) < 00, then the diameter is strictly less 
than the number of distinct eigenvalues of X. 

PROOF. Let A be the adjacency matrix of X. Then A satisfies a 
polynomial of degree r if and only if some non-zero linear combination 
of A ° , A I , ... , AT is zero. Since the number of distinct eigenvalues is 
equal to the degree of the minimal polynomial, we need only show that 
AO,Al, ... ,Ak are linearly independent when k ::::: diam(X). Let k = 
diam(X) and choose Vi , Vj so that the distance between Vi and Vj equals 
k. By counting walks from Vi to Vj we see that the i,j-th entry of 
Ak is not zero. But the (i,j)-th entry of At for t < k is zero because 
d(vi,vj) = k. Therefore, Ak is not a linear combination of At for t < k. 
Hence, the degree of the minimal polynomial is strictly greater than 
diam(X) .• 

The examples of previous section show that this result is sharp. For 
instance, in the case of the complete graph K n , the diameter is equal to 
1 and the number of distinct eigenvalues is 2. In the case of the bipartite 
graph KT,s, we have diameter 2 and the number of distinct eigenvalues 
is 3. There are many other classes of graphs X whose number of distinct 
eigenvalues equals 1 + diam(X). 

4.5. Exercises 

EXERCISE 4.5.1. Determine the eigenvalues of P4 and C5 . 
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EXERCISE 4.5.2. Show that a graph X with n vertices is connected 
if and only if (A + In)n-l has no zero entries, where A is the adjacency 
matrix of X. 

EXERCISE 4.5.3. For a simple graph X with e edges, t3 triangles 
and adjacency matrix A, show that 

tr(A) = 0, tr(A2 ) = 2e, tr(A3) = 6t3. 

EXERCISE 4.5.4. If X is a bipartite graph with e edges and A is an 
eigenvalue of X, show that 

IAI:::; ve. 
EXERCISE 4.5.5. Let X be a simple graph with n vertices and e 

edges. If A is an eigenvalue of the adjacency matrix A of X, show that 

IAI :::; J2e(nn - 1) . 

EXERCISE 4.5.6. If two non-adjacent vertices of a graph X are ad­
jacent to the same set of vertices, show that its adjacency matrix has 
eigenvalue O. 

EXERCISE 4.5.7. The eccentricity of a vertex u in a graph X is the 
maximum of d( u, v) as v ranges over the vertices of X. The minimum 
of all the possible eccentricities is called the radius, denoted rad(X), 
of the graph X. Show that if X is connected, then 

rad(X) :::; diam(X) :::; 2rad(X). 

EXERCISE 4.5.8. Let R be a commutative ring and AI, ... , Ak be 
n x n matrices. We define a generalized commutator as 

[AI, ... , AkJ = L (sgna-)Aa(I) ... Aa(k). 
aESk 

When k = 2n, show that 

[AI, ... , AkJ = O. 

This is a classical theorem of Shimson Avraham Amitsur (1921-1994) 
that can be proved using Euler circuits in digraphs. 

EXERCISE 4.5.9. Show that the graphs in Figure 4.1 are isomorphic 
by presenting an explicit isomorphism. 

EXERCISE 4.5.10. Let M be the incidence matrix of a simple graph 
X. Prove that 

MMt = D+A 
where A is the adjacency matrix of X and D is a diagonal matrix con­
sisting of the degrees of the vertices of X. 
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EXERCISE 4.5.11. In a simple graph X, we choose an orientation 
by assigning a direction to each edge. The modified incidence matrix N 
is defined as follows. Its rows are parameterized by the vertices Vi and 
the columns by the edges ej, as before. The i, j-th entry of N is +1 if 
Vi is the tail of ej, -1 if it is the head and zero otherwise. Prove that 

NNt=D-Ax. 

EXERCISE 4.5.12. The Laplacian matrix of a graph X is D -
A. Show that the smallest eigenvalue of the Laplacian is O. If X is 
connected, then 0 has multiplicity 1 for the Laplacian. 

EXERCISE 4.5.13. If X is k-regular, then A is an eigenvalue of the 
its adjacency matrix if and only if k - A is an eigenvalue of its Laplacian 
matrix. 

EXERCISE 4.5.14. Prove that A4 + A3 + 2A2 + A + 1 cannot be the 
characteristic polynomial of an adjacency matrix of any graph. 

EXERCISE 4.5.15. Determine the characteristic polynomial of the 
cycle C4 . 

EXERCISE 4.5.16. Let Y denote the graph obtained from a graph X 
by adding an isolated vertex. Show that Py(A) = APX(A). If X = C4, 
compare Py with PK1 ,4' 

EXERCISE 4.5.17. The odd girth of a graph X is the shortest length 
of an odd cycle. If X and Y have the same eigenvalues, then they have 
the same odd girth. 

EXERCISE 4.5.18. The line graph L(X) (see also Chapter 11)of 
a graph X the edges of X as vertices, two edges e and f of X being 
adjacent in L(X) if they have common endpoint in X. Show that if 
N is the incidence matrix of X, then the adjacency matrix of L(X) is 
Nt N - 21m , where m is the number of edges of X. 

EXERCISE 4.5.19. If X is k-regular and A is an eigenvalue of the 
adjacency matrix of X, then k + A - 2 is an eigenvalue of the line graph 
of X. 

EXERCISE 4.5.20. Any eigenvalue of a line graph is greater than or 
equal to -2. 


