
CHAPTER 2 

Recurrence Relations 

2.1. Binomial Coefficients 

Combinatorics is the study of finite sets. To define finite sets, we 
need the notion of bijective function. Given two sets X and Y, a function 
f : X ----+ Y is injective or one-to-one if f(a) i- f(b) for any a, bE X 
with ai-b. A function f : X ----+ Y is surjective or onto if for any 
y E Y, there exist x E X such that f (x) = y. A function is bijective 
if it is injective and surjective. A function f : X ----+ Y is invertible 
if there exists a function 9 : Y ----+ X such that f (x) = y if and only 
if g(y) = x. If 9 exists, it is called the inverse of f and it is usually 
denoted by f-l. We leave as an exercise the fact that a function is 
bijective if and only if it is invertible. 

We say that a set X is finite if there exists an positive integer nand 
a bijective function f : X ----+ {I, ... ,n}. In this case, we say that X has 
n elements or it has cardinality n. Also, the empty set 0 is the finite set 
of cardinality 0. 

We usually denote a set with n elements by [n] = {1, 2, ... , n}. To 
a subset A of [n], one can associate its characteristic vector XA E 
{O, l}n, where XA (i) = 1 if i E A and 0, otherwise. 

PROPOSITION 2.1.1. The number of subsets of a set with n elements 
is 2n. 

PROOF. The correspondence A ----+ XA is a bijection between the 
subsets of [n] and the vectors in {O, l}n. The result follows easily since 
there are 2n vectors in {O, 1} n. • 

One can also use induction on n to prove the previous proposition 
(see Exercise 2.7.2). 

A permutation of [n] is a bijective function f : [n] ----+ [n]. The 
set of all permutations of [n] is denoted by Sn. It is a group called the 
symmetric group. Since f(l) can be chosen in n ways, f(2) in (n -1) 
ways, ... , f(n - 2) in 2 ways and f(n -1) in one way, it follows that the 
number of permutations is n(n -1) ... 2·1 which will be denoted by n!. 
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We call i E [n] a fixed point for a permutation (J" if (J"( i) = i. For 
k ::::: 2, the cycle (iI, ... ,ik) is the permutation 7r E Sn with 7r( i j ) = ij+1 

for j E [k] (here ik+l = il) and any other l i= i l , ... ,ik is a fixed point 
of 7r. 

Note that (il,'" ,ik) = (ij, ij+l,' .. ,ik, i l , ... ,ij - l ) for each j E [k]. 
The length of the cycle 7r is k. A cycle of length 2 is also known as 
a transposition. The parity of a permutation (J" E Sn equals parity 
of the number of pairs 1 :S i < j :S n such that (J"(i) > (J"(j). The 
signature of (J" is 1 if the parity of (J" is even and -1 otherwise. 

THEOREM 2.1.2. Every permutation can be written as a product of 
disjoint cycles. The representation is unique modulo the order of the 
factors and the starting points of the cycles. 

PROOF. Let (J" E Sn. We prove the theorem by induction on the 
number k of points that are not fixed by the permutation (J". 

If k = 2, then (J" is a transposition which is a cycle of length 2 and 
we are done. 

Assume that k ::::: 3. Let i E [n] such that (J"(i) i= i. Denote by l 
the smallest integer such that (J"l(i) = i. Then, 7r = (i, (J"(i) , ... , (J"l-l(i)) 
is a cycle of length l. We leave as an exercise for the reader to prove 
that the number of points that are not fixed by (J"7r- 1 is less than k. By 
applying the induction hypothesis to (J"7r- 1, the theorem follows .• 

For any integer k with 0 :S k :S n, define the binomial coefficient 
G) as the number of subsets with k elements (or k-subsets) of [n]. 

PROPOSITION 2.1.3. 

( n) = n (n - 1) ... (n - k + 1) 
k k! . 

PROOF. It is obvious that G) = n for each n ::::: 1. Let us count the 
number of pairs (A, x), where A ~ [n], IAI = k and x E A. There are 
G) such A's and each has k elements. Thus, the answer is kG). On 
the other hand, if we count the x's first, we have n choices. For each 
x, there are (~::::i) subsets A such that A ~ [n], x E A. This is because 
each such A is of the form BU {x}, where B c [n] \ {x} and lEI = k-1. 
Thus, the answer we get now is nG::::i)· Hence, G) = I(~::::i). 

Replacing n by n - 1,n - 2, ... ,n - k + 2, we obtain 

( n - i) = n - i (n - i-I) 
k-i k-i k-i-1 
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for i = 0,1, ... ,k - 2. Multiplying all these equations together, we get 

( n) krr-2 (n -~) = n(n -1) ... (n - k + 1) krr-2 (n - ~). 
k k - z k! k - z 

i=l i=l 

Simplifying the previous equality, we obtain 

( n) = n(n - 1) ... (n - k + 1) 
k k! 

as claimed .• 

When n is an integer, an easy to remember formula for (~) is k!(:~k)!. 
One can use these results to determine which binomial coefficient (~) is 
the largest when ° :::; k :::; n (see Exercise 2.7.1). 

The originators of combinatorics came from the East and the main 
stimulus came from the Hindus. The formulae for the number of per­
mutations on n elements and the number of k-subsets of [nJ were known 
to Bhaskara around 1150. Special cases of these formulae were found in 
texts dating back to the second century BC. 

The following theorem is often attributed to Blaise Pascal (1623-
1662) who knew this result as it appeared in a posthumous pamphlet 
published in 1665. It appears that the result was known to various 
mathematicians preceding Pascal such as the 3rd century Indian math­
ematician Pingala. 

THEOREM 2.1.4 (Binomial Theorem). For any positive integer n, 

(x + a)n = t (~)xkan-k. 
k=O 

PROOF. Writing (x+a)n as (x+a)(x+a) ... (x+a), we notice that 
the number of times the term xkan- k appears, equals the number of 
ways of choosing k brackets (for x) from the n factors of the product. 
That is exactly G). • 

Sir Isaac Newton (1643-1727) was one of the greatest mathemati­
cians of the world. His contributions in mathematics, physics and as­
tronomy are deep and numerous. In 1676, Newton showed that a similar 
formula holds for real n. Newton's formula involves infinite series and 
it will be discussed in the Catalan number section. 

If f, 9 : N -+ JR., we say f(n) rv g(n) if lim f((n)) = 1. James Stirling 
n~oo 9 n 

(1692-1770) was a Scottish mathematician who showed that 

n! rv v27rn (;) n. 



2.2. DERANGEMENTS 13 

This is usually called Stirling's formula. It appears in Methodus Differ­
entialis which Stirling published in 1730. Abraham de Moivre (1667-
1754) also knew this result around 1730. 

2.2. Derangements 

The term reccurence is due to Abraham de Moivre (1722). A se­
quence satisfies a recurrence relation when each term of the sequence is 
defined as a function of the preceding terms. In many counting ques­
tions, it is more expedient to obtain a recurrence relation for the com­
binatorial quantity in question. Depending on the nature of this recur­
rence, one is then able to determine in some cases, an explicit formula, 
and in other cases, where explicit formulas are lacking, some idea of the 
growth of the function. We will give several examples in this chapter. 

We begin with the problem of counting the number of permutations 
0" of Sn without any fixed points. These are permutations with the 
property that d i) =I i for all 1 ::; i ::; n. Such permutations are called 
derangements. The first appearance of this problem is in 1708 in a 
book on games of chance Essay d'Analyse sur les Jeux de Hazard by 
Pierre Remond de Montmort (1678-1719). 

Let dn be the number of derangements on [n]. We will obtain a 
recurrence relation for it as follows. For such a derangement, we know 
that 0"( n) = i for some 1 ::; i ::; n - 1. We fix such an i and count the 
number of derangements with O"(n) = i. Since there are n - 1 choices 
for i, the final tally is obtained by multiplying this number by n - 1. If 
0" is a derangement with O"(n) = i, we consider two cases. If di) = n, 
then 0" restricted to 

{I, 2, ... , n} \ {i, n} 

is a derangement on n - 2 letters and the number of such is dn - 2 . If 
0"( i) =I n, let j be such that dj) = n, with i =I j. Thus, if we define 0"' 

by setting 

0"' ( k) = 0" ( k ) , for 1 ::; k ::; n - 1, k =I j 

and 0"' (j) = i, we see that 0"' is a derangement on n - 1 letters. Con­
versely, if 0"' is a derangement on n - 1 letters and O"'(j) = i, we can 
extend it to a derangement on n letters by setting O"(j) = nand O"(n) = i. 
Thus, we get the recurrence 

THEOREM 2.2.1. 

Now we will prove by induction that: 
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THEOREM 2.2.2. For n 2: 1, 

n (-I)j 
dn = n!L-·-,-· 

. 0 J. 
J= 

PROOF. Indeed, if n = 1, it is clear that d1 = 0 and for n = 2, 
d2 = 1. If we let f(n) denote the right hand side of the above equation, 
we will show that f(n) satisfies the same recursion as dn with the same 
initial conditions, thereby establishing the result. Thus, (n - 1) (f (n -
1) + f(n - 2)) equals 

n-2 (-I)j ( ((_1)n-l)) 
(n - I)! t; J! (n - 1) 1 + (n _ I)! + 1 

n-2 (-I)j (_I)n-l 
= n! L -.,- + ( _ 1)' (n - 1) 

j=O J. n . 

= f(n) 

as desired .• 

Let us observe that 
. dn 1 

hm - =-. 
n---+oo n! e 

In fact, we can make this more precise. As the series is alternating 
we begin by noting that if an is a decreasing· sequence of positive real 
numbers tending to zero, then, 

00 n 

1 L( -1)jaj - I) -1) j ajl :s; lan+l - (an+2 - an+3) - ···1 :s; an+!' 
j=O j=O 

Thus, 

1

-1 dn I 1 e - - < ~---:-:-
n! (n + I)!' 

Denoting by l x J the largest integer less than or equal to x, the 
previous equation implies the following result. 

THEOREM 2.2.3. For n 2: 1, 

dn = In!/e + 1/2J. 
PROOF. By our remarks above, 

1 1 
Id -n!/el < -- <­

n -n+l 2 

for n 2: 1. As dn is a non-negative integer, it is uniquely determined by 
this inequality as the nearest integer to n! / e. 



2.3. INVOLUTIONS 15 

We leave as an easy exercise for the reader to show that the nearest 
integer to x is [x + 1/2] .• 

This result means that the probability that a random permutation 
in Sn is a derangement is about ~. We give a different proof of the 
formula for the number of derangements using inclusion and exclusion 
in Chapter 3. 

2.3. Involutions 

We now want to count the number of elements of order 2 in the 
symmetric group Sn. Such an element is called an involution. Recall 
that any permutation is a product of disjoint cycles and the order of the 
permutation is the least common multiple of the cycle lengths. Thus, 
if the permutation has order 2, then all the cycles must be of length 1 
or 2. Let s(n) be the number of such involutions. We partition these 
involutions into two groups: those that fix n and those that do not. The 
number fixing n is clearly s( n -1). If (J is an involution not fixing n, then 
dn) = i (say) for some 1 SiS n - 1. But then we must necessarily 
have (J(i) = n as (J is a product of I-cycles or 2-cycles (transpositions). 
Thus, (J restricted to 

{1,2, ... ,n -1}\{i} 

is an involution on n - 1 letters. There are s (n - 2) such elements and 
n - 1 choices for i, so we get the recurrence 

THEOREM 2.3.1. Let s( n) be the number of involutions in Sn- Then 

s(n) = s(n - 1) + (n - l)s(n - 2). 

We can derive a modest amount of information from this recurrence, 
though our results will not be as sharp as what we obtained for dn , the 
number of derangements in Sn- We have: 

THEOREM 2.3.2. (1) s(n) is even for all n > l. 
(2) s(n) > JnT for all n > l. 

PROOF. Clearly, s(l) = 1 and s(2) = 2 and the assertion is true 
for n = 2. From the recurrence (or directly) we see that s(3) = 4. 
Consequently, applying induction to the recurrence, one can show easily 
that s(n) is even. We will also apply induction to prove the second part 
of the theorem. Again, for n = 2 and n = 3, the inequality is clear. 
Suppose we have established the inequality for numbers < n. Then, by 
induction, 

s(n) > J(n - I)! + (n - I)J(n - 2)! ~ (J(n - 1)!)(1 + vn=I). 
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To complete the proof, we need to show 

l+~2:Vn. 

But this is clear by squaring both sides of the inequality. • 

2.4. Fibonacci Numbers 

The Fibonacci numbers are defined recursively as follows. Fa = 1, 
Ft = 1, and Fn = Fn- l + Fn-2 for n 2: 2. The following problem led 
Fibonacci to consider these numbers. Suppose we start with a pair of 
rabbits, one male and one female. At the end of each month, every 
female produces one new pair of rabbits (one male and one female). 
The question that Leonardo Pisano Fibonacci (1170-1250) asked was: 
how many pairs will there be in one year? This problem appears in 
1202 in his book Liber abaci which also introduced the use of Arabic 
numerals into Europe. 

It is easy to see that the number of pairs after n months will be 
exactly Fn. How can we find a formula for Fn ? 

The Fibonacci numbers satisfy a linear recurrence relation with 
constant coefficients. These are recurrence relations of the following 
form: 

Yn = alYn-l + a2Yn-2 + ... + akYn-k 

where k 2: 1 is a fixed integer and aI, a2, ... , ak are all constant (they 
do not depend on n). 

To find a general formula for Yn, we must solve the characteristic 
equation 

Xk = alxk- l + a2xk-2 + ... + ak. 

If this equation has distinct solutions, then Yn is going to be a linear 
combination of the n-th powers of these solutions. Using the initial k 
values of the sequence (Yn)n, one can find the exact formula for Yn' 

If the previous equation has multiple solutions, a formula for Yn can 
be determined as follows. If a is a solution with multiplicity r, then 
one can check an, nan, ... , n r - l an are all solutions of the characteristic 
equation. We can write Yn as a linear combination of such solutions 
and use the initial values of the sequence (Yn)n to determine a precise 
formula. 

Let us try to use this method to find a formula for Fn. Since the 
recurrence relation is Fn = Fn-l +Fn-2, it follows that the characteristic 

equation is x 2 = X + 1. The solutions of this equation are a = 1+l'5 and 

j3 = 1-2.)5. We obtain that Fn = can +dj3n, where c and d are constants 
to be determined. 
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Since 1 = Fa = c+d and 1 = Fl = ca+d(3, we obtain that c = V;jgl 
and d = V;~I. We deduce that 

2.5. Catalan Numbers 

Eugene Charles Catalan (1814-1894) was born in Bruges, Belgium. 
He defined the numbers which bear his name today, while counting the 
number of ways of decomposing a convex n-gon into triangles by n - 2 
non-intersecting diagonals. Around the same time, the Catalan numbers 
were also studied by Johann Andreas von Segner (1704-1777), Leonhard 
Euler (1707-1783) and Jacques Binet (1786-1856). 

The Catalan numbers have many combinatorial interpretations and 
arise in branches of mathematics and computer science. There are at 
least 66 combinatorial interpretations of Catalan numbers (see Exercise 
6.19 in Richard Stanley's Enumerative Combinatorics, Volume 2). 

Here we will define the Catalan number Cn as the number of ways 
we can bracket a sum of n elements so that it can be calculated by 
adding two terms at a time. For example, for n = 3, we have 

((a + b) + c) and (a + (b + c)). 

Thus, C3 = 2. 
For n = 4, we have C4 = 5 since there are five ways of bracketing a 

sum with 4 terms: 
( ( (a + b) + c) + d), 

( (a + (b + c)) + d), 

(a + (( b + c) + d)) , 

(a + (b + (c + d))), 

((a+b) + (c+d)). 

We can obtain a recurrence for Cn as follows. Any bracketed expression 
is of the form 

El +E2 

where El is a bracketed expression containing i terms (say) and E2 is 
a bracketed expression containing n - i terms. By our definition, there 
are Ci choices for El and Cn - i choices for E2, so we get 

n-l 

Cn = L CiCn - i · 

i=1 
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It may be that Segner was the first to notice this recurrence relation 
and Euler was the first to solve it (see Chapter 6 in Enumerative Com­
binatorics, Volume 2 by Richard Stanley). Notice that this recurrence 
is more complicated than the one for dn or s(n) derived in the previ­
ous sections in that the recurrence uses all of the previous Ci's for its 
determination. 

In order to determine a nice formula for the Catalan numbers, we 
use the theory of generating functions. To an infinite sequence (an )n2:0 
we associate the following formal power series: 

Lantn. 
n2:0 

We regard such series as algebraic objects without any interest in their 
convergence. We say two series are equal if their coefficient sequences 
are identical. We define addition and subtraction as follows 

The multiplication is defined similarly to the one for polynomials. 

L antn . L bntn = L cntn 

n2:0 n2:0 n2:0 

where Cn = ~~=o akbn-k· We can also differentiate formal power series 
the same way as one would do for polynomials. 

The standard functions of analysis are defined as formal power series by 
their usual Taylor series. For example, 

tn 
t _ '" e -~,. n. 

n2:0 

The following equation is a definition of (1 + ty~ 

(1 + t)U = L (~)tn 
n2:0 

where (U) = U(U-l) ... ~u-n+1) for any real number a. If a is a non-
n n. 

negative integer, then this is just Theorem 2.1.4 since (~) = 0 for n > a. 
For a real, the equation above will be regarded here as a definition. An 
alternative approach would be to define (1 + t)U for any rational a by 
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using the exponent laws (which hold for power series) and then prove 
that its Taylor series has the claimed form. This was done by Newton. 

We encode the recurrence for the Catalan numbers in a generating 
function as follows. Let 

CXl 

n=O 

where we set Co = 0 and C 1 = 1. Let us compute the coefficient of t n 

in F(t? for n 2: 2. It is equal to 

since Co = O. Thus, 

n-1 

LCiCn - i = Cn 

i=1 

F(t)2 = F(t) - t. 

This is a quadratic equation in F(t) which we can solve using the familiar 
formula for solving quadratic equations: 

F(t) = 1 ± v'1=4t. 
2 

We must determine which "sign" will give us the correct solution for 
F(t). We choose the minus sign because F(O) = O. Thus, 

1- VI - 4t 
F(t) = 2 . 

We can use the binomial theorem to determine the Cn's explicitly. In­
deed, the coefficient of tn on the right hand side of the above expression 
for F(t) is easily seen to be 

_~ (1~2) (_4)n 

which simplifies to the following result. 

THEOREM 2.5.1. 

Cn = ~ (2n - 2) . 
n n-l 

We can use Stirling's formula to determine the asymptotic behaviour 
of Cn+1. Indeed, by Stirling's formula, 

n! rv V27rn(nje)n, 

so that 
22n 

Cn +! rv (n + 1)j7fn' 
from which we see that it has exponential growth. 
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2.6. Bell Numbers 

Eric Temple Bell (1883-1960) was born in Aberdeen, Scotland. He 
was the president of the Mathematical Association of America between 
1931 and 1933. 

The n-th Bell number, denoted by Bn , is the number of partitions 
of an n-element set. A partition of [n] is a collection of pairwise disjoint 
non-empty subsets B l , ... ,Bk (called blocks) whose union is [n]. By 
convention, Bo = 1. The partitions of [2] are {I} U {2} and {I, 2}. The 
partitions of [3] are {I} U {2} U {3}, {I, 2} U {3}, {I, 3} U {2}, {2, 3} U {I} 
and {I, 2, 3}. Thus, Bl = 1, B2 = 2 and B3 = 5. We will derive a 
recurrence relation for the Bell numbers. Of the partitions of [n], we 
consider the block to which n belongs. Clearly, such a block can be 
written as in} U Y for some subset Y of {I, 2, ... , (n - I)}. If this block 
has k elements, then Y is a subset of k - 1 elements. The number of 
ways of choosing Y is (~=D. The remaining elements can be partitioned 
in Bn - k ways. Thus, we obtain 

Bn = t (~ = ~) Bn- k· 
k=l 

We can use this recurrence to write down an exponential generating 
function: 

Then, 

00 B 
G(t) = L -ftn. 

n. 
n=O 

00 Boon tk-l B tn-k 
G'() '"' n n-l '"' '"' n-k 

t = ~ (n _ I)! t = ~ ~ (k - I)! (n - k)! 
n=l n=lk=l 

The sum on the right hand side is easily seen to be 

Thus, 

G(t) = Aee 
t 

for some constant A. Since G(O) = 1, we must have A = e- l . This 
proves: 

THEOREM 2.6.1. 
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We can use this theorem to derive an explicit formula for Bn as 
follows. The right hand side of the above equation can be expanded as 

and on comparing the coefficients of tn we obtain: 

THEOREM 2.6.2. 

2.7. Exercises 

EXERCISE 2.7.1. If 0 ::; k ::; l ~ J, show that 

EXERCISE 2.7.2. Prove by induction on n that [n] has 2n subsets. 

EXERCISE 2.7.3. Show that 

1· I! + 2 . 2! + ... n· n! = (n + I)! - 1. 

EXERCISE 2.7.4. Show that 

for each n 2 k 2 I 2 o. 

EXERCISE 2.7.5. Show that 

(n) = (n - 1) (n - 1) 
k k + k-l . 

EXERCISE 2.7.6. Show that 

EXERCISE 2.7.7. Show that 
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EXERCISE 2.7.8. Show that 

22n < (2nn) < 22n 2n + 1 

and use Stirling's formula to prove that 

(2n) rv~. 
n ..;rrn 

EXERCISE 2.7.9. Give a solution using binomial coefficients and a 
direct combinatorial solution to the following question: How many pairs 
(A, B) of subsets of [n] are there such that An B = 0 ? 

EXERCISE 2.7.10. Show that the number of even subsets of [n] equals 
the number of odd subsets of [nJ. Give two proofs, one using binomial 
formula, and one using a direct bijection. Calculate the sum of the sizes 
of all even (odd) subsets of [n]. 

EXERCISE 2.7.11. Let n be an integer, n ~ 1. Let 8i denote the 
number of subsets of [n] whose order is congruent to i (mod 3) for i E 
{O, 1, 2}. Determine 80,81, 82 in terms of n. 

EXERCISE 2.7.12. Prove by mathematical induction that 

for n ~ O. 

EXERCISE 2.7.13. Show that the number of distinct ways of trian­
gulating a convex n-gon by n - 2 nonintersecting diagonals equals en-I. 

EXERCISE 2.7.14. Show that the number of solutions of the equation 

Xl + ... + Xk = n 

in positive integers (Xi> 0 for each i) is (~=D. 

EXERCISE 2.7.15. Show that for each nand k, 1 ~ k ~ n 

EXERCISE 2.7.16. Calculate 
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EXERCISE 2.7.17. Calculate 

lim n 
n-->oo 

when t is a real number. 

EXERCISE 2.7.18. Let k be a non-negative integer number. Show 
that any non-negative integer number n can be written uniquely as 

where 0 :::; Xl < X2 < ... < xk· 

EXERCISE 2.7.19. Let Bn denote the n-th Bell number. Show that 
Bn < n! for each n :2 3. 

EXERCISE 2.7.20. Determine the number of ways of writing a posi­
tive integer n as a sum of ones and twos. 


