
CHAPTER 12 

Regular Graphs 

12.1. Eigenvalues of Regular Graphs 

Recall that a k-regular graph is one in which every vertex has degree 
k. Thus, every row sum (and hence every column sum) of its adjacency 
matrix A is k. We have seen (see Exercise 4.5.1) that k is an eigenvalue 
of A. Moreover, it is easy to see that all the eigenvalues). satisfy 1).1 ::; k. 
Indeed, let v = (Xl, ... ,xn)t be an eigenvector with eigenvalue ).. Then 

implies that 

).v = Av 

).Xi = L Xj. 

(i,j)EE 

Without loss of generality, we may suppose IXII = maxi IXil. Then, 

I).IIXII ::; klxll, 

from which we infer 1).1 ::; k. A similar argument shows that if X is 
connected, then the multiplicity of ).0 = k is one. In fact, the same ar
gument shows that the multiplicity of ).0 = k is the number of connected 
components of X. To see this, let v = (Xl, ... , xn)t be an eigenvector cor
responding to the eigenvalue k and without loss of generality, suppose 
IXII is maximal as before. We may also suppose Xl > O. Then, 

kXI = L Xj::; kXI 

(l,j)EE 

which means that there is no cancelation in the sum and all the xj's are 
equal to Xl. 

Thus, if X is a connected k-regular graph, we may arrange the 
eigenvalues as 

It is not difficult to show that -k is an eigenvalue of X if and only 
if X is bipartite, in which case, its multiplicity is again equal to the 
number of connected components. 
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Indeed, we have already observed (see Theorem 4.3.1) that the eigen
values of the adjacency matrix of a bipartite graph occur in pairs Ai, Aj 
with Ai = -Aj. To show that if -k is an eigenvalue of a connected 
k-regular graph X, that X must be bipartite, we let (Xl, ... , xn) be an 
eigenvector corresponding to -k. Then, 

implies 

n 

-kXi = L aijXj 
j=l 

n 

klxil ::; Laijlxjl ::; klxil 
j=l 

if i is an index such that IXi I is maximal among the absolute values of the 
components of (Xl, ... , xn). The above inequality implies that we must 
have 'IXil = IXjl for any j adjacent to i. Since the graph is connected, 
this must be true of every component. Since the eigenvector is non-zero, 
each component must be strictly positive or strictly negative. Now let 
A be the vertices i such that Xi > 0 and B the vertices where Xi < O. 
We can now show that A and B are independent sets. Indeed, if Xi > 0, 
then the relation 

n 

-kXi = L aijXj 
j=l 

shows that if we let ai be the number of vertices in A adjacent to i and 
bi the number of vertices adjacent to i in B, then 

ai - bi = -k. 

But ai + bi = k so we deduce 2ai = O. Hence, if -k is an eigenvalue of 
a k-regular graph, then X is bipartite. 

Any eigenvalue Ai =I- ±k is referred to as a non-trivial eigenvalue. 
We denote by A(X) the maximum of the absolute values of all the non
trivial eigenvalues. We will see in the next sections that A(X) has closed 
connections with the structure of X. 

12.2. Diameter of Regular Graphs 

Recall that we defined a metric on a connected graph by defining 
the distance d(x, y) for X, y E V as the minimal length amongst all 
the paths from X to y. The diameter of a connected graph was then 
the maximum value of the distance function. We begin by deriving an 
estimate for the diameter involving A(X) due to Fan Chung. If A is the 
adjacency matrix, then the (x, y)-th entry of AT is the number of paths 
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from x to y of length r. Hence, if m is the diameter of X, then every 
entry of Am is strictly positive. 

Let n = IVI and Uo, U1, ... , Un-1 be an orthonormal basis of eigenvec
tors of A with corresponding eigenvalues >'0, ... , >'n-1 respectively. We 
may take Uo = u/ v'n where u = (1,1, ... , 1) as defined earlier. We can 
write 

n-1 
A = L >'iUiU~. 

i=O 

More generally, 
n-1 

Ar = L >'iu(u~. 
i=O 

In particular, we see that the (x, y )-th entry of Am is 

= L >'i(UiU~)x,y 
which is 

km 
2: --:;;: -I L >'i(ui)x(ui)yl· 

i?1 

Let us assume that X is not bipartite (so that -k is not an eigenvalue. 
Then, by the Cauchy-Schwarz inequality, 

which is easily seen to be 

~ >.(x)m(l - (uO);)1/2(1 - (uO)~)1/2 ~ >.f(l - l/n). 

Thus, (x, y)-th entry of Am is always positive if 

km 

>.(x)m > n - 1. 

If X is bipartite, it is easy to see that we get 

2km 
--->n-1. 
>.(x)m 

In other words, we have proved 

THEOREM 12.2.1. Let X be a k-regular graph with n vertices and 
diameter m. If X is not bipartite, then 

log(n - 1) 
m < log(k/>.(X)). 
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If X is bipartite, then we have the sharper inequality 

log[(n - 1)/2] 
m < log(k/ A(X)) . 

This inequality also shows that regular graphs with small A(X), have 
small diameter. In communication theory, one requires the network to 
have small diameter for efficient operation. Note that the diameter of a 
connected, k-regular graph X on n vertices is always at least log(~~~)-2 
(see Exercise 5.5.20). The best upper bound obtained from the previous 
result is about twice as large as this lower bound. 

At this point, a natural question is how small can A(X) be? The 
following elementary observation about the eigenvalue A(X) is worth 
making. Observe that the eigenvalues of A2 are simply the squares of 
the eigenvalues of A. On the other hand, the trace of A 2 is simply kn 
for a k-regular graph X. Thus, if X is not bipartite, 

k 2 + (n - 1)A(X)2 ~ kn 

which gives the inequality 

If X is bipartite, then 

in which case 

A(X) ~ (n -k) 1/2 Vk. 
n-1 

2k2 + (n - 2)A(X)2 ~ nk, 

A(X) ~ (n -2k) 1/2 Vk. 
n-2 

If we think of k as fixed and n---.oo, then we see that 

lim A(X) ~ Vk. 
n->oo 

An asymptotic version of a theorem of Alon and Bopanna from 1986 
asserts that 

(12.2.1) 

where the limit is taken over k-regular graphs with n going to infinity. 
Several proofs of this result exist in the literature. A sharper version 
was derived by Nilli in 1991. 

THEOREM 12.2.2. Suppose that X is a k-regular graph. Assume that 
the diameter of X is ~ 2b + 2 ~ 4. Then 

2Jk'=l-1 
A1(X) ~ 2Jk=l- b . 
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Let us make the following observation. If m = d( u, v) is the diameter 
of X, then the number of paths from u of length m is ::; km and as each 
such path has m + 1 vertices, we deduce that the number of vertices n 
satisfies the inequality 

n::; (m + l)km. 

Thus, if k is fixed and n-+oo, then the diameter also tends to infinity. 
In particular, Theorem 12.2.2 implies inequality (12.2.1) since A(X) 2': 
Al (X). 

We preface our proof of Theorem 12.2.2 by recalling the Rayleigh
Ritz Theorem from Chapter 6, Section 6.S. Let A be a symmetric matrix 
(a similar analysis applies to Hermitian matrices). Let Amax and Amin 
be the largest and smallest eigenvalues of A respectively. Then, we have 

and 

Amax = max (Av, v) 
#0 (v, v) 

. (Av,v) 
Amin = mm ( ). 

voiO v,v 

Now let L(X) denote the space of real-valued functions on X. We 
can equip the vector space L(X) with an inner product by defining 

(j, g) = I: f(x)g(x). 
xEX 

We can view the adjacency matrix as acting on L(X) via the formula 

(Af)(x) = L f(y)· 
(x,Y)EE(X) 

For a connected k-regular graph, AO = k is an eigenvalue of multiplicity 
1 and the corresponding eigenspace is the set of constant functions. 
Hence, we can decompose our space as 

L(X) = Rfo E9 Lo(X) 

where fa = 1 and Lo(X) is the space of functions orthogonal to fa. 
Thus, we can consider A as operating on Lo(X). By the Rayleigh-Ritz 
theorem, 

(Af,!) 
Al (X) = rr;;t (j, f) . 

U.!O)=O 

Since we want a lower bound for Al(X), it is natural to consider the 
matrix ~ = kI - A whose eigenvalues are easily seen to be k - Ai 
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(0 :S i :S n - 1). (~is a discrete analogue of the classical Laplace 
operator.) Thus, 

k \ (X) . (~f, f) 
- /\1 = rrJ~ (f, f) . 

(f,Jo)=O 

The strategy now is to find an appropriate function f, obtain an upper 
bound for (f, f) and a lower bound for (~f, f). We can now prove 
Theorem 12.2.2. 

PROOF. Let u, v E G be such that d( u, v) 2: 2b + 2. For i 2: 0, define 
sets 

Ui={xEG: d(x,u)=i} 

Vi={XEG: d(x,v)=i}. 

Then, the sets Uo, Ul, ... , Ub, Va, VI, ... , Vb are disjoint, for otherwise, by 
the triangle inequality we get d( u, v) :S 2b which is a contradiction. 
Moreover, no vertex of 

is adjacent to 

V = U~=oVi 
for otherwise d( u, v) :S 2b + 1 which is a contradiction. For each vertex 
in Ui, at least one lies in Ui-l and at most q = k - 1 lie in Ui+ 1 (for 
i 2: 1). Thus, 

IUi+ll :S qlUil· 
By the same logic, I Vi +1 I :S qlViI· By induction, we see that IUbl :S 
q(b-i)IUil and IVbI :S q(b-i)IViI· We will set f(x) = Ii for x E Ui, 
f(x) = gi for x E Vi and zero otherwise, with the fi and gi to be chosen 
later. Now, 

(f,f) = A+B 

where 
b 

A = :LfllUil 
i=O 

and 

i=O 

By the inequalities derived above, we get 

b b 

(f, f) 2: :L flq-(b-i) IUbl + :L g;q-(b-i) IVbI· 
i=O i=O 
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We now choose fa = 0:, go = (3, Ii = o:q-(i-l)/2 and gi = (3q-(i-l)/2 for 
i :::: 1. Thus, 

(f, f) :::: (0:2 + (32) (1 + b ~~l ) . 
We choose 0: and (3 so that (f, fa) = O. 

Now we derive an upper bound for (!:l.f, f). Note that 

~ L (f(x) - f(y))2 = k(f, f) - (Af, f) = (!:l.f, f) 
(x,y)EE 

by an easy calculation. Let Au denote the sum 

~ L (f(x) - f(y))2 
(x,Y)EE 
x or y EU 

and let Av be defined similarly. If we partition according to the con
tribution from each Ui and keep in mind that each x E Ui has at most 
q = k - 1 neighbours in Ui+l, we obtain 

b-1 
Au ::; L IUilq (q-(i-1)/2 - q-i/2f 0:2 + IUblq. q-(b-1)0:2. 

i=l 

This is easily computed to be 

= (Jq _1)2 (lUll + IU21q-l + ... + IUb_llq-(b-2) + IUblq-(b-1)) 0:2 

+0:2(2Jq -l)IUblq-(b-l). 

Consequently, 

A 0:2 
Au ::; (Jq - 1)2(A - 0:2 ) + (2Jq - 1) ~ 

which is less than 

Similarly, 

Av < (1 + q - 2Jq + 2~ -1) B. 

Combining these inequalities gives 

2y7i - 1 
k - A1(X) < 1 + q - 2Jq + b 

which proves the theorem .• 



148 12. REGULAR GRAPHS 

12.3. Ramanujan Graphs 

The previous theorem motivates the definition of a Ramanujan 
graph. A k-regular graph is said to be Ramanujan if 

'\(X) :::; 2Jk=l. 
This notion was introduced by Lubotzky, Phillips and Sarnak in a fun
damental paper from 1986 in which they constructed infinite families 
of k-regular Ramanujan graphs whenever k - 1 is a prime power. The 
graphs were named after Srinivasan Ramanujan (1887-1920) because 
the construction obtained by Lubotzky, Phillips and Sarnak and inde
pendently by Margulis, used deep number theoretic results related a 
conjecture of Ramanujan. 

In view of the Alon-Bopanna theorem, these graphs are extremal 
with respect to the property of trying to minimize '\(X) in the class of 
all k-regular graphs. Given k ::::: 3, the explicit construction of an infinite 
family of k-regular Ramanujan graphs is still a major unsolved problem 
for any given k. So far, such constructions have been possible using deep 
results from algebraic geometry and number theory and only when k-l 
is a prime power. For example, no one has been able to construct an 
infinite family of 7-regular Ramanujan graphs. 

The complete graph Kn is an (n - I)-regular Ramanujan graph. 
Also, the cycle graph en is a 2-regular Ramanujan graph. 

In section 4, we will construct a family of regular graphs using group 
theory and determine explicitly the eigenvalues of the adjacency matrix 
in terms of group characters. This will allow us to construct some 
explicit examples of Ramanujan graphs. 

12.4. Basic Facts about Groups and Characters 

A group G is a set together with a binary operation * (say) satisfying 
the following axioms: 

(1) a, bEG implies a * bEG (closure); 
(2) a, b, c E G implies (a * b) * c = a * (b * c) (associativity); 
(3) there is an element called the identity e E G such that a * e = 

e * a = a for all a E G (identity element); 
( 4) for any a E G, there is abE G so that a * b = b * a = e 

(inverses); we write a-I to denote the inverse of a. 

If in addition to this, a * b = b * a for all a, bEG, we say that G 
is abelian or commutative. When G is finite, we call the size of G the 
order of G. Note also that in a group, we have the cancelation law: 
a * b = a * c implies b = c since we can multiply both sides on the left by 
a-I. Warning: if a*b = c*a, we cannot necessarily conclude that b = c. 
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See example 6 below. The cancelation law also shows that the identity 
element is unique because if there were two e, e' say, then a = ae = ae' 
and we deduce e = e'. 

The reason for studying groups in the abstract is that many scien
tific discoveries can be formulated in the language of group theory. In 
addition, the fundamental particles in the heart of the atom seem to 
know everything about non-abelian groups! In fact, the character the
ory of certain subgroups of the group GL2(C) (see example 6 below) led 
to the discovery of new sub-atomic particles in the early 20th century. 

Here are some examples of groups. 

(1) Z under addition. 
(2) Z under multiplication is not a group since there are no in-

verses. 
(3) R *, non-zero reals under multiplication. 
(4) C*, non-zero complex numbers under multiplication. 
(5) C and R under addition. 

All of these are examples of infinite abelian groups. 
(6) GL2(R), or GL2(C) the collection of 2 x 2 invertible matrices 

with entries in R or C is a group under multiplication. 
These are infinite non-abelian groups. Notice that 

(0 -1) (a b) = (-C -d) = ( d -c) (0 -1). 
1 0 C dab -b a 1 0 

We cannot cancel the matrix 

from both sides of the equation! 
(7) Z/nZ under addition consists of residue classes modulo n. This 

is a finite abelian group of order n. 
(8) Z/6Z with multiplication is not a group since the residue class 

2 does not have an inverse. 
(9) (Z/pZ)* is the set of coprime residue classes mod p, with p 

prime. This is a finite abelian group of order p - 1. 
To indicate a * b we sometimes drop the * and simply write 

ab with no cause for confusion. There is a general tendency 
to use the multiplicative notation for writing the group law 
although there is non universal convention about this. Part 
of the reason for this is to emphasize that the groups we are 
dealing with need not be abelian. There is also a tendency to 
use the symbol 1 to denote the identity element (and 0 when 
we write the group additively). 



150 12. REGULAR GRAPHS 

(10) The symmetries of the equilateral triangle, namely rotation by 
60 degrees denoted r and a flip about the vertical axis f gener
ates a non-abelian group of order 6. This group is isomorphic 
to the group of permutations on 3 letters. 

THEOREM 12.4.1. If G is a finite abelian group of order n, then 
gn = 1 for any element 9 E G. 

PROOF. Let gl, "., gn be the distinct elements of G. The elements 

ggl, gg2, .'" ggn 

are also distinct and therefore must be all of the elements of the group. 
Thus, 

gl ... gn = ggl ... ggn = gn(gl ... gn) 

and canceling by (gl ... gn), we deduce the result .• 

This theorem can be thought of as a generalization of Fermat's little 
theorem which says that if p is prime and a is coprime to p, then 

aP- 1 == 1( mod p). 

Theorem 1 is true for non-abelian groups also and is due to Lagrange. 
A group is called cyclic if there is an element go such that every 

element of the group is of the form g'O for some integer m. For instance, 
Z is a cyclic group under addition with generator 1. As any cyclic group 
is countable, the group of non-zero reals under multiplication and the 
group of additive reals are not cyclic groups. The group of residue 
classes mod n under addition, is a cyclic group with generator being the 
residue class 1. Any coprime residue class will also serve as a generator. 

A character X of a group G is a map 

x: G---+C* 

such that x(ab) = x(a)x(b). It is an example of a homomorphism. 
The character that sends every element to the element 1 is called the 
trivial character. Notice that any character of a group must take 
the identity element to 1 because X(12) = X(l) = x(1? and the only 
non-zero complex number z satisfying z2 = z is z = 1. Another thing 
to notice is that x(a-1) = x(a)-1 since 1 = x(aa-1) = x(a)x(a-1) from 
which the result is immediate. By Theorem 1, we deduce that if G is 
a finite group of order n,then X(g) must be an n-th root of unity since 
1 = X(gn) = X(g)n. 

The basic idea of character theory is that to understand the abstract 
group G, we map into something concrete like the multiplicative group 
of complex numbers and see how the image looks like to deduce what G 
looks like. It turns out that if G is a finite abelian group of order n, then 
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there are exactly n distinct characters that one can construct. The set 
of characters in turn forms a group under multiplication of charactfTs. 
Indeed, we define for two characters X and 'ljJ, the product character 

(x'ljJ)(a) := x(a)'ljJ(a). 

We call this the character group of G and denote it by G. The identity 
element of G is the trivial character. The character inverse to X is X-I 
defined by 

x-l(a) = x(a)-I. 
In the case of the additive group of residue classes mod n, all of the 
characters are given by 

Xj(a) = e27rija/n, j = 0,1,2, ... , (n - 1). 

Notice that XO is the trivial character. 

12.5. Cayley Graphs 

There is a simple procedure to constructing k-regular graphs using 
group theory. This can be described as follows. Let G be a finite group 
and S a k-element subset of G. We suppose that S is symmetric in the 
sense that s E S implies s-1 E S. Now construct the graph X(G, S) by 
having the vertex set to be the elements of G the (x, y) is an edge if and 
only if xy-l E S. 

The eigenvalues of the Cayley graph are easily determined as follows. 
The cognoscenti will recognize that it is the classical calculation of the 
Dedekind determinant in number theory. 

THEOREM 12.5.1. Let G be a finite abelian group and S a symmetric 
subset of G of size k. Then the eigenvalues of the adjacency matrix of 
X(G, S) are given by 

AX = LX(s) 
sES 

as X ranges over all the irreducible characters of G. 

REMARK 12.5.2. Notice that for the trivial character, we have Al = 
k. If we have for all X#- 1 

.LX(s) < k 
sES 

then the graph is connected by our earlier remarks. Thus, to construct 
Ramanujan graphs, we require 

.LX(s) ~ 2Jk=l 
sES 
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for every non-trivial irreducible character X of G. This is the strategy 
employed in many of the explicit construction of Ramanujan graphs. 

PROOF. For each irreducible character X, let Vx denote the vector 
(X(g) : 9 E G). Let 8s(g) equal 1 if 9 E S and zero otherwise and denote 
by A the adjacency matrix,of X(G, S). Then, 

(Avx)x = 2: 8s(xg-1 )X(g)· 
gES 

By replacing xg-1 by s, and using the fact that S is symmetric, we 
obtain 

(Avx)x = X(x) (2: X(S)) 
sES 

which shows that Vx is an eigenvector with eigenvalue 

2:X(s) 
sES 

which completes the proof .• 

As mentioned above, this calculation is reminiscent of the Dedekind 
determinant formula in number theory. Recall that this formula com
putes det A where A is the matrix whose (i, j)-th entry is f( ij-l) for 
any function f defined on the finite abelian group G of order n. The 
determinant is 

II (2: f(9)X(g)) . 
x gEG 

The proof is analogous to the calculation in the proof of Theorem 3 and 
we leave it to the reader. As an application, it allows us to compute 
the determinant of a circulant matrix. For instance, we can compute 
the characteristic polynomial of the complete graph. Indeed, it is not 
hard to see that by taking the additive cyclic group of order nand 
setting f(O) = -A, f(a) = 1 for a =1= 0, we obtain that the characteristic 
polynomial is 

(-It(A - (n - I))(A - I)n-l 

by the Dedekind determinant formula. As the complete graph of or
der n is an (n - I)-regular graph, we see immediately from the above 
calculation that it is a Ramanujan graph. 

If G is an abelian group and S is a subset of G, we can define another 
set of graphs Y(G, S) called sum graphs as follows. The vertices consist 
of elements of G and (x, y) is an edge if xy E S. Arguing as before, we 
can show 
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THEOREM 12.5.3. Let G be an abelian group. For each character X 
ofG, the eigenvalues ofY(G,S) are given as follows. Define 

ex = LX(s). 
sES 

If ex = 0, then Vx and vx1 are both eigenvectors with eigenvalues zero. 
If ex i- 0, then 

lexlvx ± exvx-l 

are two eigenvectors with eigenvalues ± lex I· 

Using this theorem, Winnie Li constructed Ramanujan graphs in the 
following way. Let F q denote the finite field of q elements. Let G = F q2 

and take for S the elements of G of norm 1. This is a symmetric subset 
of G and the Cayley graph X(G, S) turns out to be Ramanujan. The 
latter is a consequence of a theorem of Deligne estimating Kloosterman 
sums. 

These results allow us to construct Ramanujan graphs by estimating 
character sums. 

There is a generalization of these results to the non-abelian context. 
This is essentially contained in a paper by Diaconis and Shahshahani. 
Using their results, one can easily generalize the Dedekind determinant 
formula as follows (and which does not seem to be widely known). Let 
G be a finite group and f a class function on G. Then the determinant 
of the matrix A whose rows (and columns) are indexed by the elements 
of G and whose (i,j)-th entry is f(ij-1) is given by 

II ( tl) L f(9)X(g)) X(1) 

x X gEG 

with the product over the distinct irreducible characters of G. 
The following theorem is due to Diaconis and Shahshahani. 

THEOREM 12.5.4. Let G be a finite group and S a subset which is 
stable under conjugation. Let A be the adjacency matrix of the graph 
X(G,S) (where u,v E G are adjacent if and only ifuv-1 E S). Then 
the eigenvalues of A are given by 

1 
Ax = X(I) 2: X(s) 

sES 

as X ranges over all irreducible characters of G. Moreover, the multi
plicity of Ax is X(I)2. 
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We remark that the Ax in the above theorem need not be all distinct. 
For example, if there is a non-trivial character X which is trivial on S, 
then the multiplicity of the eigenvalue lSI is at least 1 + X(1)2. 

PROOF. We essentially modify the proof of Diaconis and Shahsha
hani to suit our context. We consider the group algebra C[G] with basis 
vectors eg with g E G and multiplication defined as usual by egeh = egh. 

We define the linear operator Q by 

Q = Les = L O"s(g)eg 

sES gEG 

which acts on C[G] by left multiplication. The matrix representation 
of Q with respect to the basis vectors eg with g EGis precisely the 
adjacency matrix of X(G, S) as is easily checked. If r denotes the left 
regular representation of G on C [G], we find that the action of 

r(A) = L r(s) 
sES 

on C[G] is identical to Q. Moreover, C[G] decomposes as 

e[G] = EBpVp 

where the direct sum is over non-equivalent irreducible representations 
of G and the subspace Vp is a direct sum of deg p copies of the subspace 
Wp corresponding to the irreducible representation p. The result is now 
clear from basic facts of linear algebra .• 

12.6. Expanders 

For any subset A of the vertex set of a graph X, we may define the 
edge-boundary of A, denoted 8A by 

8A={XYEE(X) :XEA,yttA}. 

That is, the edge-boundary of A consists of the edges which are incident 
to precisely one vertex of A. The edge-expansion h(X) of X equals 

the minimum of If~l, where the minimum is taken over all subsets A 

of the vertex set of X of order at most 11/~X)I. As many combinatorial 
invariants, the edge-expansion of a graph is hard to compute. 

Let c be positive real number. A k-regular graph X with n vertices 
is called a c-expander if 

(12.6.1) h(X) 2: c. 

A very important problem is constructing infinite families of k-regular 
c-expanders for fixed k 2: 3 and some c > O. Expander graphs play an 
important role in computer science and the theory of communication 
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networks. These graphs arise in questions about designing networks 
that connect many users while using only a small number of switches. 
Our interest in them lies in the fact the theory of c-expanders can be 
related to the eigenvalue questions of the previous section. This is done 
in the next theorem. 

THEOREM 12.6.1 (Alon-Milman, Dodziuk). Let X be a k-regular 
graph. Then 

PROOF. We prove only the first inequality, the second inequality is 
slightly more complicated. 

The idea is to apply the Rayleigh-Ritz ratio·in the following way. As 
observed in the previous section, let f be a function defined on V(X) 
that is orthogonal to the constant function fo. If L = kI - A is the 
Laplacian matrix of X, then 

(Lf,f) > k - A (X) 
(f,f) - 1 

by Rayleigh-Ritz inequality. 
Let A be a subset of V(X) of size at most IV~X)I. If we set 

f( ) - { IV(X) \ AI if x E A 
x - -IAI if x 9f A 

then it is easily seen that (f, fo) = O. On the other hand, a direct 
calculation shows that 

(f, f) = IV(X)IIAIIV(X)\AI· 

By using the formula 

(Lf, f) = ~ L (f(x) - f(y))2 
(x ,y)EE 

we easily check that 

(Lf , f) = IXI2 10AI 
so that by the previous we obtain 

loAI > (k _ A (X)) IV(X) \ AI > k - Al(X). 
IAI - 1 IAI - 2 

Since this inequality holds for each A c V(X) of size at most IV~X)I, it 

follows that h(X) ::::: k-)'~(X) .• 
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The previous theorem shows that making Al as small as possible 
gives us good expander graphs. By the Alon-Bopanna theorem, we 
cannot do better than 

A(X) :S 2Vk=l. 
Thus, Ramanujan graphs make excellent expanders. 

In 1973, Margulis gave the first explicit construction of an infinite 
family of 8-regular graphs. Given an nonnegative integer m, consider 
the graph em whose vertex set is 2m X 2m. Each vertex (x, y) of em 
is adjacent exactly to (x + y, y), (x - y, y), (x, y + x), (x, y - x), (x + y + 
1, y), (x - y + 1, y), (x, y + X + 1), (x, y - x + 1) where all the operations 
are done modulo m. Varying m produces an infinite family of 8-regular 
graphs. Margulis showed these graphs are expanders by using results 
from group representations. In 1981, Gabber and Galil used harmonic 
analysis to show that any non-trivial eigenvalue of em has absolute 
value at most 5J2 :::::i 7.05 < 8. 

12.7. Counting Paths in Regular Graphs 

If A is the adjacency matrix of X, it is clear that the (x,y)-th co
ordinate of Ar enumerates the number of paths of length r from x to 
y. We will be interested in proper paths, that is paths which do not 
have back-tracking. We are interested in counting the number of proper 
paths of length r in a k-regular graph. Let Ar denote the matrix whose 
(x, y)-th entry will be the number of proper paths from x to y. Then, 
Ao = I and Al = A and clearly 

A2 = A2 + kI 

since A2 encodes the number of proper paths of length 2. 
Inductively, it is clear that 

AlAr = Ar+! + (k - 1)Ar-1' 

since the left hand side enumerates paths of length r + 1 which are 
extended from proper paths of length r and the right side enumerates 
first the proper paths of length r + 1 and proper paths of length r - 1 
which are extended to 'improper' paths of length r. 

This recursion allows us to deduce the following identity of formal 
power series: 

PROPOSITION 12.7.1. 

(~Act') (I - At + (k - l)t2 ) = (1- t2 )I. 
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12.8. The Ihara Zeta Function of a Graph 

Let X be a k-regular graph and set q = k - 1. Motivated by the 
theory of the Selberg zeta function, Ihara was led to make the following 
definitions and construct the graph-theoretic analogue of it as follows. 
A proper path whose endpoints are equal is called a closed geodesic. If 
, is a closed geodesic, we denote by ,r the closed geodesic obtained by 
repeating the path, r times. A closed geodesic which is not the power 
of another one is called a prime geodesic. We define an equivalence 
relation on the closed geodesics (xo, ... , xn) and (Yo, ... , Ym) if and only if 
m = n and there is a d such that Yi = Xi+d for all i (and the subscripts 
are interpreted modulo n. An equivalence class of a prime geodesic is 
called a prime geodesic cycle. Ihara then defines the zeta function 

Zx(s) = II (1 _ q_SI'(p))-l 

P 

where the product is over all prime geodesic cycles and £(p) is the length 
of p. 

Ihara proves the following theorem: 

THEOREM 12.8.1. For g = (q - 1)IXI/2, we have 

Zx(s) = (1 - u 2 )-g det(I - Au + qu2 )-1, u = q-s. 

Moreover, Z x (s) satisfies the "Riemann hypothesis" (that is, all the 
singular points lie on Re(s) = 1/2 ) if and only if X is a Ramanujan 
graph. 

PROOF. (Sketch) We assume that the zeta function has the shape 
given and show that it satisfies the Riemann hypothesis if and only if X 
is Ramanujan. Let <fy(z) = det(zI - A) be the characteristic polynomial 
of A. If we set z = (1 + qu2 )/u, then the singular points of the Zx(s) 
arise from the zeros of <fy( z ). Since 

z ± J z2 - 4q 
u = -----'------=. 

2q 

and any zero of <fy is real (because A is symmetric), we deduce that 

zu (1 + qu2 )u u + qlul 2u 

U uu lul 2 

is also real. Thus, the numerator is real and so, we must have 

qlul2 = 1, 

which is equivalent to the assertion of the theorem .• 
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12.9. Exercises 

EXERCISE 12.9.1. If X is a k-regular graph with eigenvalues k = 
AO 2:: Al 2:: ... 2:: An-I, determine the eigenvalues of the complement of 
X. 

EXERCISE 12.9.2. A graph X is regular and connected if and only 
if J is a linear combination of powers of the adjacency matrix A of X. 

EXERCISE 12.9.3. Let k = AO > Al > ... > A8-1 be the distinct 
eigenvalues of the adjacency matrix A of a k-regular connected graph 
X with n vertices. Show that 

8-1 

n IT J= . A-A.] TI~-I(k _ A') . ( ~ n). 
~=1 ~ t=1 

EXERCISE 12.9.4. A graph X is strongly regular with parame
ters (n, k, a, c) if it is k-regular, every pair of adjacent vertices has a 
common neighbours and every pair of non-adjacent vertices has c com
mon neighbours. Show that the adjacency matrix A of a strongly regular 
graph X with parameters (n, k, a, c) satisfies the equation 

A2 - (a - c)A - (k - c)J = cJ. 

EXERCISE 12.9.5. Calculate the eigenvalues of a strongly regular 
graph X with parameters (n, k, a, c). 

EXERCISE 12.9.6. Let q == 1 (mod 4) be a power of a prime. The 
Paley graph JPl q has vertices the elements of the field IF q with x adjacent 
to y if x - y is a square in IF q' Show that JPl5 = C5 and that JPl q is a 

strongly regular graph with parameters (q,~, 9, q~I). 
EXERCISE 12.9.7. Calculate the eigenvalues of the line graph L(Kn) 

of the complete graph Kn. 

EXERCISE 12.9.8. Calculate the eigenvalues of the complement of 
the line graph of Kn. 

EXERCISE 12.9.9. An n X n matrix C is called a circulant matrix 
if row i of C is obtained from the first row of C by a cyclic shift of i - 1 
steps for each i E [n j. Let Z be the n x n circulant matrix whose first row 
is [0,1,0, ... ,OJ. Show that the eigenvalues of Z are 1,w,w2 , ... ,wn-l, 
where w = cos (2:) + i sin (2:) . 

EXERCISE 12.9.10. Show that the Petersen graph is isomorphic to 
the complement of the line graph of K5. 

EXERCISE 12.9.11. Calculate the eigenvalues of the Petersen graph. 
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EXERCISE 12.9.12. Let C be an n x n circulant matrix whose first 
row is [C1' C2, ... ,cn ]. Show that 

i=l 

where Z is the n x n circulant matrix whose first row is [0,1,0, ... ,0]. 

EXERCISE 12.9.13. A circulant graph is a graph X whose ad
jacency matrix is a circulant matrix. Show that a circulant graph is 
regular. 

EXERCISE 12.9.14. If [0, C2,' .. ,cn ] is the first row of the adjacency 
matrix C of a circulant graph X, show that the eigenvalues of Care 

n 

As = L aiw(i-1)s, 

i=2 

for S E {O, 1, ... , n - I} and w = cos (2:) + i sin (2:). 

EXERCISE 12.9.15. Show that the cycle en with n vertices is a cir
culant graph. 

EXERCISE 12.9.16. Calculate the eigenvalues of the cycle Cn. 

EXERCISE 12.9.17. The Mobius ladder M2n is the 3-regular graph 
on 2n vertices which is obtained from the cycle C2n by joining each pair 
of opposite vertices. Show that the Mobius ladder is a circulant graph. 

EXERCISE 12.9.18. Show that the eigenvalues of the Mobius ladder 
M2n are 

As = 2 cos (:;) + (_l)S, 

for S E {O, 1, ... , 2n - I}. 

EXERCISE 12.9.19. Determine which of the graphs L(Kn), L(Kn) 
and M 2n are Ramanujan. 

EXERCISE 12.9.20. Let X be a graph with n vertices and let Wi,j(r) 
denote the number of walks of length r between the vertices i and j of 
X. If W is the matrix whose (i,j)-th entry is 

00 

Wi,j = L Wi,j(r)xr 

r=l 

show that 
W(In - xA) = In, 

where A is the adjacency matrix of X. 


