
CHAPTER 10 

Planar Graphs 

10.1. Euler's Formula 

A graph is said to be embedded in the plane if it can be drawn 
on the plane so that no two edges intersect. Such a graph is called a 
planar graph. Graphs arising from maps are clearly planar. In fact, 
planar maps can be characterized as such. Any planar map cuts out the 
plane into faces. To be precise, a maximal region of the plane which 
does not contain in its interior a vertex of the graph is called a face. A 
finite plane graph has also one unbounded face called the outer face. 
The faces are pairwise disjoint . The basic relation for planar graphs is 
the following theorem due to Euler. 

THEOREM 10.1.1 (Euler, 1758). If X is a connected planar graph 
with v vertices, e edges and f faces, then 

v - e + f = 2. 

PROOF. The proof will be by induction on the number of vertices. 
If v = 1, then X is a "bouquet" of loops. If in addition e = 0, then 
f = 1 and the formula is true in this case. Each added loop cuts the 
face into two faces and so increases the face count by 1. So the formula 
holds in case v = 1. For v > 1 and X connected, take an edge eo which 
is not a loop and the contraction of X by eo gives X/eo. Contraction 
does not reduce the number of faces so X/e has v-I vertices, e - 1 
edges, and f faces. Since X/e has fewer number of vertices, we can 
apply the induction hypothesis to get 

(v - 1) - (e - 1) + f = 2 = v - e + f = 2 

which is what we want to prove .• 

If X is not connected, then Euler's formula fails. If X is a planar 
graph with c connected components, then 

v-e+f=c+1. 

This is easily seen be adding c-l edges (or "bridges") and then applying 
Euler's formula to this connected graph. Adding the bridges does not 
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alter the face count. Thus, we get 

v - (e + c - 1) + f = 2 

from which the formula follows. Euler's formula has many applications. 
The first is that we can derive some necessary conditions for a graph to 
be planar. 

THEOREM 10.1.2. If X is a simple planar graph with at least 3 
vertices, then e :::; 3v - 6. If X is triangle-free, then e :::; 2v - 4. 

PROOF. It suffices to prove this for connected graphs. Every face 
must contribute at least three edges. But each edge appears in two 
faces. Thus, 3f :::; 2e and putting this into Euler's form~la gives us 

2 
2 = v - e + f < v - e + -e - 3 

which gives the inequality 

e:::; 3v - 6. 

If X is triangle-free, then, each face contributes at least four edges. 
Since each edge appears in two faces, we get 2e 2:: 4f. Putting this back 
into Euler's formula gives the second inequality .• 

K 3,3 

FIGURE 10.1 

COROLLARY 10.1.3. The graphs, K5 and K 3,3 are non-planar. 

PROOF. If K5 were planar, then applying the theorem gives10 < 
15 - 6 = 9, a contradiction. For K 3,3, we get 9 :::; 18 - 6 = 12 which 
does not give a contradiction if we use the first inequality. However, the 
bipartite graph has no triangles and so, by the second inequality, we get 
9 :::; 8, which is a contradiction .• 
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A famous theorem of Kazimierz Kuratowski (1896-1980) proved in 
1930 states that a graph is planar if and only if it can be (edge)­
contracted to either K5 or K 3,3. Thus, for example, as the Petersen 
graph (shown in Figure 10.2) can be contracted to K5 by collapsing 
the edges connecting the "inside" cycle of 5 vertices to the outer five 
vertices, it is not planar. 

FIGURE 10.2. Petersen graph 

THEOREM 10.1.4. Every simple planar graph X contains a vertex 
of degree at most five. 

PROOF. If every vertex has degree at least six, then 2e 2: 6v which 
implies e 2: 3v. However, Theorem 10.1.2 implies e :s: 3v - 6 which is a 
contradiction. • 

Now, we can prove the six-colour theorem: 

THEOREM 10.1.5 (The six colour theorem). Every map can be pTOp­
erly coloured using six colours. 

PROOF. We proceed by induction on the number of vertices (or 
regions) of the planar graph associated with the map. Suppose that 
all planar graphs with fewer than n - 1 vertices are 6-colourable. By 
Theorem 10.1.4, X contains a vertex of degree 5 or less. By induction, 
X - v is 6-colourable and as v has degree 5 or less, we can colour it with 
one of the six colours not used on any of its adjacent vertices .• 
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10.2. The Five Colour Theorem 

The four colour theorem has a colourful history! It states that any 
planar graph can be coloured using four colours. Since K4 is planar, 
and has chromatic number 4, we see that four colours are necessary. To 
prove that this is sufficient is more difficult. The four colour conjecture 
was first formulated by Francis Guthrie on October 23, 1852. Guthrie 
was a student at University College London where he studied under 
Augustus de Morgan (1806-1871). When Guthrie asked de Morgan, he 
did not know how to prove it and wrote to Sir William Rowan Hamilton 
(1805-1865) in Dublin if he knew. It seems that Guthrie graduated and 
then studied law. After practicing as a barrister, he went to South 
Africa in 1861 as a professor of mathematics. After a few mathematical 
papers, he switched to the field of botany. 

In the meanwhile, de Morgan circulated Guthrie's question to many 
mathematicians. Arthur Cayley, who learned of the question from de 
Morgan in 1878, posed it as a formal unsolved problem to the London 
Mathematical Society on 13 June, 1878. On 17 July 1879, Alfred Kempe 
(1849-1922), a London bar.rister and amateur mathematician announced 
in Nature that he had a proof. Kempe had studied under Cayley, and 
at Cayley's suggestion, submitted his paper to the American Journal of 
Mathematics in 1879. We will discuss Kempe's "proof" below. Appar­
ently, Kempe received great acclaim for his work. He was elected Fellow 
of the Royal Society and served as its treasurer for many years. In 1912, 
he was knighted. The error in his "proof" was discovered in 1890 by 
Percy John Heawood (1861-1955), a lecturer in Durham, England. In 
his paper, Heawood showed how to salvage the proof and prove that 
every map is 5-colourable. We will now prove the following theorem 
due to Heawood. 

THEOREM 10.2.1 (Heawood, 1890). Any planar graph is 5-colourable. 

PROOF. We will prove the theorem by induction on the number of 
vertices. Let X be a planar graph on n vertices. The base case n = 1 
is obvious. Assume n 2:: 2. By Theorem 10.1.4, there is a vertex x 
of degree at most 5. The graph Y = X \ {x} is also planar and by 
induction, Y can be coloured using at most 5 colours. If the degree of 
x is 4 or less, then x an be coloured with a colour not used for any of 
its adjacent vertices. This way, we can obtain a proper colouring of X 
with at most 5 colours. So we may suppose that x has degree 5. If 
any two of the neighbours of x get the same colour, then the previous 
argument shows how one can colour X with at most 5 colours. Let us 
label the neighbours of x as p, q, r, s, t and say that they are coloured in 
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Y with 1,2,3,4,5 respectively, by the induction hypothesis. Denote by 
Xi,j the subgraph of Y whose vertices are coloured with colour with i 
and j. Now consider X 1,3. Both p and r belong to X 1,3. If they lie in 
two distinct components, then, we may interchange colours 1 and 3 in 
the component containing r with the result that p and r are coloured 
using colour 1. Then, we can colour x using colour 3. If however, p and 
r lie in the same connected component of X 1,3, then this means there 
is a chain of vertices with alternating colours 1 and 3 from p to r. Now 
consider X 2,4. Both q and s belong to this subgraph. Again, if q and 
s lie in distinct connected components, we may interchange colours 2 
and 4 in one of the components and free up one colour and use that to 
colour x. If q and s do not lie in the same connected component, then 
there is a path of alternating colours from q to s. But this path must 
cross the path from p to r and this would violate planarity. Thus, the 
second possibility cannot arise which means that we can use the same 
colour on q and s and thus, colour X with 5 colours. This finishes the 
proof .• 

Kempe's "proof" performed this colour reversal technique twice and 
this leads to difficulties as Heawood pointed out. Here is Kempe's ar­
gument. As before, we proceed by induction on the number of vertices. 
Let x be a vertex of degree at most 5. If the degree of x is at most 4, 
then an argument as in Heawood's proof can be applied (and we leave 
this as an exercise to the reader). However, the proof breaks down when 
degree of x is 5 for the following reasons. Label the vertices adjacent to 
x as p, q, r, s, t and let us suppose that induction gave the colouring of 
vertices as shown in Figure 10.3. If there is no 2,3 colour chain between 
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FIGURE 10.3 
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q and s, we can carry a colour reversal to free the colour 2 (say) for 
vertex x. If there is no 2,4 colour chain between q and t, we can carry 
out a colour reversal to free the colour 2 for vertex x. It looks as if we 
therefore have a situation indicated in Figure 10.4. Since there cannot 
be aI, 3 colour chain between p and s, a colour reversal can paint the 
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x 

FIGURE 10.4 
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vertex p with colour 3. Since there cannot be a 1,4 colour chain be­
tween rand t a colour reversal will paint the vertex r with colour 4. So 
it looks as if colour 1 is freed and we can use it to colour x. However, 
there is a gap in the reasoning. In the figure below, carrying out the 
reversals as indicated above will paint p and r with colour 1. Indeed, 
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FIGURE 10.5 
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the colour reversal argument is valid for changing the colour of p and 
the colour of r. However, simultaneously changing the colour of p and 
r leads to difficulties. This is essentially what Heawood observed as the 
gap in Kempe's proof. He was able to salvage the argument to deduce 
the five colour theorem as we indicated above. 

10.3. Colouring Maps on Surfaces of Higher Genus 

As we mentioned earlier, K3 ,3 is not a planar graph since we cannot 
draw it on the plane without intersecting edges. If however, we tried to 
draw it on a torus, then it is possible to draw the graph without crossing 
of edges as it can be verified easily. A celebrated theorem of Mobius 
(1870) is that any compact (orient able) surface is homeomorphic to a 
sphere with 9 handles. The genus of the surface is denoted g. A torus, 
for example, has genus one since it is homeomorphic to a sphere with 
one handle. 

One can show that any graph X can be embedded in some compact 
orient able surface. The minimal genus of the surface for which this can 
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be done is called the genus of the graph. For example, the genus of 
K 3 ,3 is l. 

For graphs embedded on a surface of genus g, Euler's formula gen­
eralizes as follows. A face is defined as before, as a maximal region cut 
out by the graph which contains no vertex of the graph in its interior. 
We state without proof the following result . 

THEOREM 10.3.1 (Euler 's formula). If G is a connected graph of 
genus g, then 

v - e + f = 2 - 2g. 

Using Euler's formula, we can prove as before that any simple graph 
of genus 9 has at most 3( v - 2 + 2g) edges. This is the analogue that 
a planar graph has at most 3(v - 2) edges. As before, summing up the 
degrees gives 

2e ::; 6( v - 2 + 2g) 

so that there has to be at least one vertex of degree 

6(v - 2 + 2g) 
< . - v 

This is the analog of the result for planar graphs which says there is at 
least one vertex of degree at most five. Now we can prove: 

THEOREM 10.3.2 (Heawood, 1890). Any graph X of genus 9 can be 
coloured with 

r7+J~+48g1 

colours provided 9 > O. Here r x 1 denotes the smallest integer larger 
than or equal to x. 

REMARK 10.3.3. Notice that if 9 = 0 were allowed in the formula, 
then we deduce the four colour theorem. 

PROOF. Let 

c = r 7 + J~ + 48g l. 
If X has at most c vertices, we are done. So suppose that v > c. If we 
can show that every simple graph of genus 9 has a vertex of degree at 
most c-l, then we can use an induction argument as before to complete 
the proof. Notice that 

c2 -7c+ (12 -12g) 2: 0 

so that 
12(g - 1) 

c-1>6+ . - c 
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Thus, from the remark before the statement of the theorem, we have 
that X has a vertex of degree at most 

6 + 12(g - 1) < 6 + 12(g - 1) ::; c _ 1 
v - c 

as desired .• 

REMARK 10.3.4. Notice that 9 2: 1 is used in a crucial way in the 
'inequalities at the end of the proof. 

For a long time, it was an outstanding problem to determine the 
genus of the complete graph. The complete graph conjecture, proved 
in 1968 by Gerhard Ringel and J.W.T. Youngs, states that the genus of 
Kn is 

10.4. Exercises 

EXERCISE 10.4.1. The girth of a graph is the length of its shortest 
cycle (that is, closed path). Use Euler's formula to show that if X is a 
planar graph with girth" and v vertices, then the number of edges e 
of X satisfies the inequality 

e::; -'-(v - 2). 
,-2 

EXERCISE 10.4.2. Determine the girth of the Petersen graph (Figure 
10.2) and use the previous question to deduce that it is not a planar 
graph. 

EXERCISE 10.4.3. Let X be a graph with chromatic number X(X) > 
3. Show that the genus g(X) of a graph X satisfies the inequality 

1 
g(X) 2: 12 (X(X)2 - 7X(X) + 12) . 

Deduce that for n 2: 5, the genus of the complete graph Kn is at least 

,(n - 3i;n -4)l. 
EXERCISE 10.4.4. Determine all r, s such that Kr,s is a planar graph. 

EXERCISE 10.4.5. Show that K5 \ e is planar for any edge e of K 5. 

EXERCISE 10.4.6. Show that K 3,3 \ f is planar for any edge f of 

K3,3 \ f· 
EXERCISE 10.4.7. Let G be the graph obtained from K 4,4 by deleting 

a perfect matching. Is G planar ? 
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EXERCISE lO.4.S. Let S be a set of n points in the plane such that 
the distance between any two of them is at least 1. Show that there are 
at most 3n - 6 pairs x, y such that the distance between x and y is 1. 

EXERCISE 10.4.9. The crossing number of a graph X is the min­
imum number of crossings in a drawing of X in the plane. What are 
the crossing numbers of K5 and K 3,3 ? 

EXERCISE 10.4.10. Let X be a graph with n vertices and e edges. 
If k is the maximum number of edges in a planar subgraph of X, show 
that the crossing number of X is at least e - k. Prove that the crossing 
number of X is at least e - 3n + 6. If X has no triangles, then the 
crossing number is at least e - 2n + 4. 

EXERCISE 10.4.11. Show that the crossing number of K6 is 3. 

EXERCISE 10.4.12. A planar graph X is outerplanar if it has a 
drawing with every vertex on the boundary of the unbounded face. 
Show that any cycle is outerplanar. Show that K4 is planar, but not 
outerplanar. 

EXERCISE 10.4.13. Show that K2,3 is planar, but not outerplanar. 

EXERCISE 10.4.14. Any outerplanar graph is 3-colourable. 

EXERCISE 10.4.15. An art gallery is represented by a polygon with n 
sides. Show that it is possible to place l J J guards such that every point 
interior to the polygon is visible to some guard. Construct a polygon 
that can be guarded by precisely l J J guards. 

EXERCISE 10.4.16. What is the crossing number of the Petersen 
graph? 

EXERCISE 10.4.17. Prove that every outerplanar graph has a vertex 
of degree at most 2. 

EXERCISE 10.4.18. Show that every planar graph decomposes into 
two bipartite graphs. 

EXERCISE 10.4.19. For any n :::::: 4, construct a planar graph with n 
vertices and chromatic number 4. 

EXERCISE 10.4.20. Let X be a planar graph with a Hamiltonian 
cycle C. If X has iI faces of length i inside C and II' faces of length i 
outside C, then 

L(i - 2)UI - in = O. 
i 


