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PREFACE 

The butterfly counts not months but moments, and has time 
enough. 

Rabindranath Tagore 

The concept of a graph is fundamental in mathematics since it con­
veniently encodes diverse relations and facilitates combinatorial anal­
ysis of many complicated counting problems. In this book, we have 
traced the origins of graph theory from its humble beginnings of recre­
ational mathematics to its modern setting for modeling communication 
networks as is evidenced by the world wide web graph used by many 
internet search engines. 

This book is an introduction to graph theory and combinatorial 
analysis. It is based on courses given by the second author at Queen's 
University at Kingston, Canada between 2002 and 2008. The courses 
were aimed at students in their final year of their undergraduate pro­
gram. As such, we believe this text is very suitable for a first course on 
this topic. 

Graph theory and combinatorics interact well with other branches 
of mathematics like number theory, algebraic topology, algebraic geom­
etry and representation theory as well as other sciences. For instance, 
Ramanujan graphs and expander graphs have gained prominence with 
applications to the construction of optimal communication networks. 
Thus, we have included a chapter on this important emerging theme at 
the end of the book. 

There are many books on graph tneory and combinatorics. What 
makes this book unique is that we have tried to make it suitable for 
self-study. Students and non-experts should be able to work through 
the book at their own pace without an instructor. Hints to the exercises 
have also been provided to facilitate this study. 

The book can also be used for a course at the college level. The 
material can easily be covered in two semesters. Instructors may find 
it easy to highlight the graph-theoretic aspects in one course, and the 
combinatorial aspects in another. For instance, Chapters 1, 3, 4, 5, 6, 
8, 10, 11, 12 can be used for a one semester course in graph theory. 
Chapters 2, 3, 6, 7, and 9 can comprise a short semester course in 
combinatorics. 

At the end of this book, we present a brief list of books and papers 
that give more details about some of the topics discussed here. 

S.M. Cioaba and M. Ram Murty 
April 2009 
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CHAPTER 1 

Basic Notions of Graph Theory 

1.1. The Konigsberg Bridges Problem 

Graph theory may be said to have begun in the 1736 paper by 
Leonhard Euler (1707-1783) devoted to the Konigsberg bridge problem. 
In the town of Konigsberg (now Kaliningrad in western Russia), there 
were two islands and seven bridges connected as shown in the figure 
below. The challenge was to leave home and to traverse each bridge 
exactly once and return home. 

FIGURE 1.1. The bridges of Konigsb~rg 

Euler constructs a graph corresponding to the problem as follows 
(see Figure 1.2). The two sides of the river and the two islands are 
represented by vertices or points in the plane. They are joined if there 
is a bridge between them. 

The resulting graph has multiedges according as the number of 
bridges between the two points. The Konigsberg bridge problem re­
duces to a circuit through the graph which traverses each edge only 
once. Euler reasoned that if there is such a circuit in the graph, the 
valence of each vertex, or the number of edges coming out of any vertex 
must be even (see Figure 1.3). 

In the Konigsberg bridge graph, the valence of each vertex is odd 
and hence, no such circuit exists. This example illustrates many of the 
basic notions of graph theory which we take up in the next section. 



2 1. BASIC NOTIONS OF GRAPH THEORY 

FIGURE 1.2. A graph representation of the bridges of Konigsberg 

FIGURE 1.3. A vertex in an Eulerian cycle 

1.2. What is a Graph? 

A graph X is a pair (V, E) consisting of a set of vertices V = V (X) 
and edges E = E(X) that associates with each edge two vertices (not 
necessarily distinct) called its endpoints. A loop is an edge whose 
endpoints are equal. Multiple edges are edges having the same pair 
of endpoints. A graph is called simple if it has no loops or multiple 
edges. When u and v are endpoints of an edge, we say they are adjacent 
or are neighbours. The valence or degree of a vertex is the number 
of edges coming out of it. We denote the valence or the degree of the 
vertex x by d(x). A vertex is said to be odd or even according as d(x) 
is odd or even. A graph is said to be finite if the vertex and edge sets 
are finite. We will be treating only finite graphs here. 
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The graph in Figure 1.2 has multiple edges and thus, is not a simple 
graph. It has one vertex of valence 5 and three of valence 3. All of its 
vertices are odd. It has no loops. Our first theorem of graph theory is 
obvious. 

THEOREM 1.2.1. For a finite graph X, 

L d(x) = 2IE(X)I· 
xEV 

COROLLARY 1.2.2. In any finite graph, the number of odd vertices 
zs even. 

An independent set or stable set in a graph is a subset of vertices 
no two of which are adjacent. The complete graph on n vertices is a 
simple graph in which any two distinct vertices are adjacent. We denote 
this graph by the notation Kn. A graph is called bipartite if the vertex 
set can be written as the union of two disjoint independent sets. The 
bipartite graph Kr,s is the simple bipartite graph whose vertex set is a 
disjoint union of two independent sets of size rand s with every element 
in the first set adjacent to every element in the second set. The n-cycle 
denoted Cn is the graph on n vertices VI, ... , Vn with only the adjacency 
relation (Vi, Vi+I) E E(Cn ) for 1 ::; i ::; n where we interpret Vn+1 as VI. 

FIGURE 1.4. K3 = C3 and K4 

Until 1976, one of the most famous unsolved problems of mathemat­
ics was the four colour conjecture. This conjecture says that every map 
can be properly coloured using only four colours, where a proper colour­
ing means that no two adjacent regions should be coloured the same. It 
was finally solved in 1976 by Kenneth Appel and Wolfgang Haken using 
extensive computer verification. For some, this is not satisfying and so 
the search is still on for a more conceptual and clearer solution. 

The problem has a long history. It was first posed in a letter of 
October 23, 1852 from Augustus de Morgan (1806-1871) to William 
Rowan Hamilton (1805-1865). It was asked by one of de Morgan's 
students Frederick Guthrie who later attributed to his brother Francis 
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Guthrie. In 1878, Arthur Cayley (1821-1895) announced the problem to 
the London Mathematical Society and Alfred Bray Kempe (1849-1922) 
published a "proof" in 1879. In 1890, Percy John Heawood (1861-1955) 
indicated there was a gap in Kempe's proof and gave a simple proof that 
"five colours suffice". This is called the Five Colour Theorem which we 
will prove later in the book. 

Graphs arise in diverse contexts and many of the "real world" prob­
lems can be formulated graph-theoretically. An important problem that 
arises in practice is the following scheduling one. Suppose we have n 
timetable slots in which to schedule r classes. We want a timetabling so 
that no student has a conflict. We can create a graph on r vertices, each 
vertex denoting a class. We join two vertices if they have a common 
student. We want to "colour" the graph using n colours so that no two 
adjacent vertices have the same colour. The chromatic number of 
a graph X, written X(X), is the minimum number of colours needed 
to colour the vertices so that no two adjacent vertices have the same 
colour. 

Bipartite graphs arise in job assignment questions. Suppose we have 
m jobs and n people, but not all people are qualified to do the job. Can 
we make job assignments so that all the jobs are done? Each job is filled 
by one person and · each person can hold at most one job. Thus, we can 
create a bipartite graph consisting of n people and m jobs and join a 
person to a job if the person can do the respective job. 

Sometimes, we can assign "weights" to edges and this facilitates 
discussion of "routing problems". Suppose we have a road network. 
The edges will correspond to road segments and the weights can be the 
distances between various points of the network. Questions concerning 
the shortest path from point a to point b can be formulated in terms of 
finding the graph geodesic between vertex a and vertex b. 

1.3. Mathematical Induction and Graph Theory Proofs 

In many proofs of theorems in graph theory and combinatorics, we 
will require the principle of mathematical induction which we recall 
below. Suppose we have a sequence of propositions {Pn } indexed by 
the natural numbers that we would like to prove. We begin by verifying 
that PI is true. If we can prove that Pk for k :::; n implies Pn+1 for every 
n, then all of the propositions are established. 

The simplest illustration of this is the following. Notice that 

13 + 23 = 9 = 32 

13 + 23 + 33 = 36 = 62 
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13 + 23 + 33 + 43 = 100 = 102 

a pattern first noticed by Aryabhata in 5th century India. He showed 
that in general that 

Sn := 13 + 23 + ... + n3 = (n(n 2+ 1)) 2 

and he did this essentially by the principle of mathematical induction. 
So the proposition Pn is that Sn is given by the formula above. For 
n = 1 it is clear. Assume we have proved it for each k :::; n. Then, 

Sn+1 = Sn + (n + 1)3 

and by the induction hypothesis, 

so that we obtain 

( n(n + 1))2 (n2) 
Sn+1 = 2 + (n + 1)3 = (n + 1)2 4'" + (n + 1) 

= (n+l)2 (n2+:n+4) = Cn + 1)in + 2))2 

as required. 
We derive two important theorems below by the method of math­

ematical induction. The first concerns parity of cycles in graphs. The 
second characterizes Eulerian graphs. 

A walk in a graph is a sequence vo, el, VI, ... , ek, Vk of vertices Vi and 
edges ei such that for 1 :::; i :::; k, the edge ei has endpoints Vi-I and Vi. 

We sometimes refer to the walk as avo, Vk walk to indicate the initial 
and final points of the walk. The length of a walk is the number of 
edges in it. We say a walk is odd or even according as the length of 
the walk is odd or even respectively. A trail is a walk with no repeated 
edge. A path is a walk with no repeated vertex. Thus, a path is also a 
trail. The distance d( u, v) between vertices u and V equals the shortest 
length of a u, v path. A circuit is a closed trail. A cycle is a closed 
path. We speak of odd or even paths, trails, cycles, circuits according 
as their lengths are odd or even respectively. 

A graph is said to be connected if any two of its vertices are joined 
by a path. Any graph can be partitioned into its connected components. 

LEMMA 1.3.1. Every closed odd walk contains an odd cycle. 
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PROOF. We use induction on the length e of the closed walk W. For 
e = 1, a closed walk of length one clearly is also a cycle of length one. 
So there is nothing to prove. Now suppose that the assertion has been 
established for odd walks of length < e. If W has no repeated vertices, 
then W itself is a closed cycle. Otherwise, we may suppose that a vertex 
v is repeated in W. vVe can think of the walk as starting from v and 
view W as two v, v walks WI and W2 (say). The length of W is the sum 
of the lengths of WI and W 2 . As the length of W is odd, one of WI or 
W2 must have odd length which is necessarily smaller than the length 
of W. By induction, this odd walk must have an odd cycle .• 

1.4. Eulerian Graphs 

A graph is called Eulerian if it has a closed trail containing all 
edges. A beautiful theorem of Leonhard Euler is the following result. 

THEOREM 1.4.1. A graph is Eulerian if and only if it is connected 
and all vertices have even degree. 

REMARK 1.4.2. It seems that Euler did not give a complete proof 
in his 1741 paper. The first complete published proof was given by Karl 
Hierholzer (1840-1871) in a posthumous article in 1873. The graph we 
drew to model the problem did not appear in print until 1894. 

Before we prove the previous theorem, we need the following lemma. 

LEMMA 1.4.3. If every vertex of a graph X has degree at least 2, 
then X contains a cycle. 

PROOF. Let P be a maximal path in X. Let u be an endpoint of 
P. Since P is maximal, every neighbour of u must already be a vertex 
of P otherwise, P can be extended. Since u has degree at least 2, it has 
a neighbour v in V(P) via an edge not in P (see Figure 1.5). The edge 
uv completes a cycle with the portion of P from v to u .• 

p 

u v 

FIGURE 1.5 
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PROOF. (Theorem 1.4.1) The necessity is clear from what we have 
said before. We prove sufficiency by induction on the number of edges 
m of X. If m = 0, there is nothing to prove. Since X has even degrees, 
every vertex of X has degree at least 2. By Lemma 1.4.3, X contains a 
cycle C. Let X' be the graph obtained from X by deleting the edges of 
the cycle C. Since C has 0 or 2 edges at each vertex, each component of 
X' is a connected graph whose degrees are all even. By induction, each 
component of X' has an Eulerian circuit. We combine these circuits 
with C to get an Eulerian circuit of X as follows. We travel along C 
and when we encounter a component of X' for the first time, we go 
through the Eulerian circuit of that component. This completes the 
proof .• 

This theorem can be generalized to directed graphs (or digraphs). 
In this context, the theorem on the existence of an Eulerian circuit can 
be suitably generalized and has interesting algebraic and combinatorial 
applications (see Exercise 4.5.8). 

1.5. Bipartite Graphs 

We will use Lemma 1.3.1 to prove the following theorem of Konig 
(1936). Denes Konig (1884-1944) studied at Budapest and Gottingen. 
His book Theor'ie der endlichen und unendlichen Graphen - "Theory 
of finite and infinite graphs" which appeared in 1936 is considered to 
be the first monograph in graph theory and contributed greatly to the 
growing interest in this subject. 

THEOREM 1.5.1. A graph X is bipartite if and only if it has no odd 
cycle. 

PROOF. We first show necessity. Every walk alternates between the 
two sets of a bipartition. So every return to the original partite set 
happens after an even number of steps. Hence, X has no odd cycle. For 
the converse, let X be a graph with no odd cycle. Let U be a non-trivial 
component of X and u a vertex in it. For each v E V(U) let f(v) be the 
minimum length of a u, v-path. Since U is connected, f ( v) is defined of 
every v E V(U). Let 

A = {v E V (U) : f ( v) is even} 

and 
B = {v E V(U): f(v)isodd}. 

An edge v, Vi within A or B would create a closed odd walk. By Lemma 
1.3.1, X would contain an odd cycle, contrary to assumption. Thus, A 
and B are independent sets. Clearly, X = Au B so X is bipartite .• 
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We conclude this section with a simple result concerning the degrees 
of the vertices of a bipartite graph. The bipartite version of the Theorem 
1.2.1 is the following result. 

THEOREM 1.5.2. If X is a bipartite graph with colour sets A and B, 
then 

L d(a) = L d(b) = IE(X)I· 
aEA bEE 

PROOF. By counting the number of edges of X in two different ways, 
the result follows immediately .• 

1.6. Exercises 

EXERCISE 1.6.1. Is there a simple graph of 9 vertices with degree 
sequence 

3,3,3,3,5,6,6,6,6? 

EXERCISE 1.6.2. Is there a bipartite graph of 8 vertices with degrees 

3,3,3,5,6,6,6,6? 

EXERCISE 1.6.3. In a simple graph with at least two vertices, show 
that there are at least two vertices with the same degree. 

EXERCISE 1.6.4. Show that 

2 22 2 n (n + 1) (2n + 1) 
1 + + ... + n = ------'-6-'----'--

and 
1 + 3 + ... + (2n - 1) = n 2 . 

EXERCISE 1.6.5. A directed graph (or digraph) is a graph X 
together with a function assigning to each edge, an ordered pair of 
vertices. The first vertex is called the tail of the edge and the second is 
called the head. To each vertex v, we let d+(v) be the number of edges 
for which v is the tail and d- ( v) the number for which it is the head. 
We call d+(v) the outdegree and d-(v) the in degree of v. Prove that 

Ld+(v) = Ld-(v) = #E(X) 
v v 

where the sum is over the vertex set of X. 

EXERCISE 1.6.6. In any digraph, we define a walk as a sequence 

with Vi-l the tail of ei and Vi its head. The analogous notions of trail, 
path, circuit and cycle are easily extended to digraphs in the obvious 



1.6. EXERCISES 9 

way. If X is a digraph such that the outdegree of every vertex is at least 
one, show that X contains a cycle. 

EXERCISE 1.6.7. An Eulerian trail in a digraph is a trail containing 
all the edges. An Eulerian circuit is a closed trail containing all the 
edges. Show that a digraph X contains an Eulerian circuit if and only if 
d+ ( v) = d- ( v) for every vertex v and the underlying graph has at most 
one component. 

EXERCISE 1.6.8. Determine for what values of m 2: 1 and n 2: 1 is 
Km,n Eulerian. 

EXERCISE 1.6.9. What is the maximum number of edges in a con­
nected, bipartite graph of order n ? 

EXERCISE 1.6.10. How many 4-cycles are in Km,n ? 

EXERCISE 1.6.11. Let Qn be the n-dimensional cube graph. Its 
vertices are all the n-tuples of 0 and 1 with two vertices being adjacent 
if they differ in precisely one position. Show that Qn is connected and 
bipartite. 

EXERCISE 1.6.12. Show that Qn has 2n vertices and n2n- 1 edges. 

EXERCISE 1.6.13. How many 4-cycles are in Qn ? 

EXERCISE 1.6.14. Does Qn contain any copies of K2,3 ? 

EXERCISE 1.6.15. Show that every graph X contains a bipartite 
subgraph with at least half the number of edges of X. 

EXERCISE 1.6.16. Let X be a graph in which every vertex has even 
degree. Show that it is possible to orient the edges of X such that the 
indegree equals the out degree for each vertex. 

EXERCISE 1.6.17. Show that a graph X is connected if and only if 
for any partition of its vertex set into two non-empty sets, there exists 
at least one edge between the two sets. 

EXERCISE 1.6.18. Show that in a connected graph any two paths of 
maximum length have at least one common vertex. 

EXERCISE 1.6.19. Let X be a graph with n vertices and e edges. 
Show that there exists at least one edge uv such that 

4e 
d(u) + d(v) 2: -. 

n 
EXERCISE 1.6.20. If X is a graph on n vertices containing no K3 's, 

then the number of edges of X is less than or equal to l ~2 J edges. Give 

an example of a graph on n vertices containing no K3 's with l ~2 J edges. 



CHAPTER 2 

Recurrence Relations 

2.1. Binomial Coefficients 

Combinatorics is the study of finite sets. To define finite sets, we 
need the notion of bijective function. Given two sets X and Y, a function 
f : X ----+ Y is injective or one-to-one if f(a) i- f(b) for any a, bE X 
with ai-b. A function f : X ----+ Y is surjective or onto if for any 
y E Y, there exist x E X such that f (x) = y. A function is bijective 
if it is injective and surjective. A function f : X ----+ Y is invertible 
if there exists a function 9 : Y ----+ X such that f (x) = y if and only 
if g(y) = x. If 9 exists, it is called the inverse of f and it is usually 
denoted by f-l. We leave as an exercise the fact that a function is 
bijective if and only if it is invertible. 

We say that a set X is finite if there exists an positive integer nand 
a bijective function f : X ----+ {I, ... ,n}. In this case, we say that X has 
n elements or it has cardinality n. Also, the empty set 0 is the finite set 
of cardinality 0. 

We usually denote a set with n elements by [n] = {1, 2, ... , n}. To 
a subset A of [n], one can associate its characteristic vector XA E 
{O, l}n, where XA (i) = 1 if i E A and 0, otherwise. 

PROPOSITION 2.1.1. The number of subsets of a set with n elements 
is 2n. 

PROOF. The correspondence A ----+ XA is a bijection between the 
subsets of [n] and the vectors in {O, l}n. The result follows easily since 
there are 2n vectors in {O, 1} n. • 

One can also use induction on n to prove the previous proposition 
(see Exercise 2.7.2). 

A permutation of [n] is a bijective function f : [n] ----+ [n]. The 
set of all permutations of [n] is denoted by Sn. It is a group called the 
symmetric group. Since f(l) can be chosen in n ways, f(2) in (n -1) 
ways, ... , f(n - 2) in 2 ways and f(n -1) in one way, it follows that the 
number of permutations is n(n -1) ... 2·1 which will be denoted by n!. 
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We call i E [n] a fixed point for a permutation (J" if (J"( i) = i. For 
k ::::: 2, the cycle (iI, ... ,ik) is the permutation 7r E Sn with 7r( i j ) = ij+1 

for j E [k] (here ik+l = il) and any other l i= i l , ... ,ik is a fixed point 
of 7r. 

Note that (il,'" ,ik) = (ij, ij+l,' .. ,ik, i l , ... ,ij - l ) for each j E [k]. 
The length of the cycle 7r is k. A cycle of length 2 is also known as 
a transposition. The parity of a permutation (J" E Sn equals parity 
of the number of pairs 1 :S i < j :S n such that (J"(i) > (J"(j). The 
signature of (J" is 1 if the parity of (J" is even and -1 otherwise. 

THEOREM 2.1.2. Every permutation can be written as a product of 
disjoint cycles. The representation is unique modulo the order of the 
factors and the starting points of the cycles. 

PROOF. Let (J" E Sn. We prove the theorem by induction on the 
number k of points that are not fixed by the permutation (J". 

If k = 2, then (J" is a transposition which is a cycle of length 2 and 
we are done. 

Assume that k ::::: 3. Let i E [n] such that (J"(i) i= i. Denote by l 
the smallest integer such that (J"l(i) = i. Then, 7r = (i, (J"(i) , ... , (J"l-l(i)) 
is a cycle of length l. We leave as an exercise for the reader to prove 
that the number of points that are not fixed by (J"7r- 1 is less than k. By 
applying the induction hypothesis to (J"7r- 1, the theorem follows .• 

For any integer k with 0 :S k :S n, define the binomial coefficient 
G) as the number of subsets with k elements (or k-subsets) of [n]. 

PROPOSITION 2.1.3. 

( n) = n (n - 1) ... (n - k + 1) 
k k! . 

PROOF. It is obvious that G) = n for each n ::::: 1. Let us count the 
number of pairs (A, x), where A ~ [n], IAI = k and x E A. There are 
G) such A's and each has k elements. Thus, the answer is kG). On 
the other hand, if we count the x's first, we have n choices. For each 
x, there are (~::::i) subsets A such that A ~ [n], x E A. This is because 
each such A is of the form BU {x}, where B c [n] \ {x} and lEI = k-1. 
Thus, the answer we get now is nG::::i)· Hence, G) = I(~::::i). 

Replacing n by n - 1,n - 2, ... ,n - k + 2, we obtain 

( n - i) = n - i (n - i-I) 
k-i k-i k-i-1 
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for i = 0,1, ... ,k - 2. Multiplying all these equations together, we get 

( n) krr-2 (n -~) = n(n -1) ... (n - k + 1) krr-2 (n - ~). 
k k - z k! k - z 

i=l i=l 

Simplifying the previous equality, we obtain 

( n) = n(n - 1) ... (n - k + 1) 
k k! 

as claimed .• 

When n is an integer, an easy to remember formula for (~) is k!(:~k)!. 
One can use these results to determine which binomial coefficient (~) is 
the largest when ° :::; k :::; n (see Exercise 2.7.1). 

The originators of combinatorics came from the East and the main 
stimulus came from the Hindus. The formulae for the number of per­
mutations on n elements and the number of k-subsets of [nJ were known 
to Bhaskara around 1150. Special cases of these formulae were found in 
texts dating back to the second century BC. 

The following theorem is often attributed to Blaise Pascal (1623-
1662) who knew this result as it appeared in a posthumous pamphlet 
published in 1665. It appears that the result was known to various 
mathematicians preceding Pascal such as the 3rd century Indian math­
ematician Pingala. 

THEOREM 2.1.4 (Binomial Theorem). For any positive integer n, 

(x + a)n = t (~)xkan-k. 
k=O 

PROOF. Writing (x+a)n as (x+a)(x+a) ... (x+a), we notice that 
the number of times the term xkan- k appears, equals the number of 
ways of choosing k brackets (for x) from the n factors of the product. 
That is exactly G). • 

Sir Isaac Newton (1643-1727) was one of the greatest mathemati­
cians of the world. His contributions in mathematics, physics and as­
tronomy are deep and numerous. In 1676, Newton showed that a similar 
formula holds for real n. Newton's formula involves infinite series and 
it will be discussed in the Catalan number section. 

If f, 9 : N -+ JR., we say f(n) rv g(n) if lim f((n)) = 1. James Stirling 
n~oo 9 n 

(1692-1770) was a Scottish mathematician who showed that 

n! rv v27rn (;) n. 
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This is usually called Stirling's formula. It appears in Methodus Differ­
entialis which Stirling published in 1730. Abraham de Moivre (1667-
1754) also knew this result around 1730. 

2.2. Derangements 

The term reccurence is due to Abraham de Moivre (1722). A se­
quence satisfies a recurrence relation when each term of the sequence is 
defined as a function of the preceding terms. In many counting ques­
tions, it is more expedient to obtain a recurrence relation for the com­
binatorial quantity in question. Depending on the nature of this recur­
rence, one is then able to determine in some cases, an explicit formula, 
and in other cases, where explicit formulas are lacking, some idea of the 
growth of the function. We will give several examples in this chapter. 

We begin with the problem of counting the number of permutations 
0" of Sn without any fixed points. These are permutations with the 
property that d i) =I i for all 1 ::; i ::; n. Such permutations are called 
derangements. The first appearance of this problem is in 1708 in a 
book on games of chance Essay d'Analyse sur les Jeux de Hazard by 
Pierre Remond de Montmort (1678-1719). 

Let dn be the number of derangements on [n]. We will obtain a 
recurrence relation for it as follows. For such a derangement, we know 
that 0"( n) = i for some 1 ::; i ::; n - 1. We fix such an i and count the 
number of derangements with O"(n) = i. Since there are n - 1 choices 
for i, the final tally is obtained by multiplying this number by n - 1. If 
0" is a derangement with O"(n) = i, we consider two cases. If di) = n, 
then 0" restricted to 

{I, 2, ... , n} \ {i, n} 

is a derangement on n - 2 letters and the number of such is dn - 2 . If 
0"( i) =I n, let j be such that dj) = n, with i =I j. Thus, if we define 0"' 

by setting 

0"' ( k) = 0" ( k ) , for 1 ::; k ::; n - 1, k =I j 

and 0"' (j) = i, we see that 0"' is a derangement on n - 1 letters. Con­
versely, if 0"' is a derangement on n - 1 letters and O"'(j) = i, we can 
extend it to a derangement on n letters by setting O"(j) = nand O"(n) = i. 
Thus, we get the recurrence 

THEOREM 2.2.1. 

Now we will prove by induction that: 
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THEOREM 2.2.2. For n 2: 1, 

n (-I)j 
dn = n!L-·-,-· 

. 0 J. 
J= 

PROOF. Indeed, if n = 1, it is clear that d1 = 0 and for n = 2, 
d2 = 1. If we let f(n) denote the right hand side of the above equation, 
we will show that f(n) satisfies the same recursion as dn with the same 
initial conditions, thereby establishing the result. Thus, (n - 1) (f (n -
1) + f(n - 2)) equals 

n-2 (-I)j ( ((_1)n-l)) 
(n - I)! t; J! (n - 1) 1 + (n _ I)! + 1 

n-2 (-I)j (_I)n-l 
= n! L -.,- + ( _ 1)' (n - 1) 

j=O J. n . 

= f(n) 

as desired .• 

Let us observe that 
. dn 1 

hm - =-. 
n---+oo n! e 

In fact, we can make this more precise. As the series is alternating 
we begin by noting that if an is a decreasing· sequence of positive real 
numbers tending to zero, then, 

00 n 

1 L( -1)jaj - I) -1) j ajl :s; lan+l - (an+2 - an+3) - ···1 :s; an+!' 
j=O j=O 

Thus, 

1

-1 dn I 1 e - - < ~---:-:-
n! (n + I)!' 

Denoting by l x J the largest integer less than or equal to x, the 
previous equation implies the following result. 

THEOREM 2.2.3. For n 2: 1, 

dn = In!/e + 1/2J. 
PROOF. By our remarks above, 

1 1 
Id -n!/el < -- <­

n -n+l 2 

for n 2: 1. As dn is a non-negative integer, it is uniquely determined by 
this inequality as the nearest integer to n! / e. 
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We leave as an easy exercise for the reader to show that the nearest 
integer to x is [x + 1/2] .• 

This result means that the probability that a random permutation 
in Sn is a derangement is about ~. We give a different proof of the 
formula for the number of derangements using inclusion and exclusion 
in Chapter 3. 

2.3. Involutions 

We now want to count the number of elements of order 2 in the 
symmetric group Sn. Such an element is called an involution. Recall 
that any permutation is a product of disjoint cycles and the order of the 
permutation is the least common multiple of the cycle lengths. Thus, 
if the permutation has order 2, then all the cycles must be of length 1 
or 2. Let s(n) be the number of such involutions. We partition these 
involutions into two groups: those that fix n and those that do not. The 
number fixing n is clearly s( n -1). If (J is an involution not fixing n, then 
dn) = i (say) for some 1 SiS n - 1. But then we must necessarily 
have (J(i) = n as (J is a product of I-cycles or 2-cycles (transpositions). 
Thus, (J restricted to 

{1,2, ... ,n -1}\{i} 

is an involution on n - 1 letters. There are s (n - 2) such elements and 
n - 1 choices for i, so we get the recurrence 

THEOREM 2.3.1. Let s( n) be the number of involutions in Sn- Then 

s(n) = s(n - 1) + (n - l)s(n - 2). 

We can derive a modest amount of information from this recurrence, 
though our results will not be as sharp as what we obtained for dn , the 
number of derangements in Sn- We have: 

THEOREM 2.3.2. (1) s(n) is even for all n > l. 
(2) s(n) > JnT for all n > l. 

PROOF. Clearly, s(l) = 1 and s(2) = 2 and the assertion is true 
for n = 2. From the recurrence (or directly) we see that s(3) = 4. 
Consequently, applying induction to the recurrence, one can show easily 
that s(n) is even. We will also apply induction to prove the second part 
of the theorem. Again, for n = 2 and n = 3, the inequality is clear. 
Suppose we have established the inequality for numbers < n. Then, by 
induction, 

s(n) > J(n - I)! + (n - I)J(n - 2)! ~ (J(n - 1)!)(1 + vn=I). 
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To complete the proof, we need to show 

l+~2:Vn. 

But this is clear by squaring both sides of the inequality. • 

2.4. Fibonacci Numbers 

The Fibonacci numbers are defined recursively as follows. Fa = 1, 
Ft = 1, and Fn = Fn- l + Fn-2 for n 2: 2. The following problem led 
Fibonacci to consider these numbers. Suppose we start with a pair of 
rabbits, one male and one female. At the end of each month, every 
female produces one new pair of rabbits (one male and one female). 
The question that Leonardo Pisano Fibonacci (1170-1250) asked was: 
how many pairs will there be in one year? This problem appears in 
1202 in his book Liber abaci which also introduced the use of Arabic 
numerals into Europe. 

It is easy to see that the number of pairs after n months will be 
exactly Fn. How can we find a formula for Fn ? 

The Fibonacci numbers satisfy a linear recurrence relation with 
constant coefficients. These are recurrence relations of the following 
form: 

Yn = alYn-l + a2Yn-2 + ... + akYn-k 

where k 2: 1 is a fixed integer and aI, a2, ... , ak are all constant (they 
do not depend on n). 

To find a general formula for Yn, we must solve the characteristic 
equation 

Xk = alxk- l + a2xk-2 + ... + ak. 

If this equation has distinct solutions, then Yn is going to be a linear 
combination of the n-th powers of these solutions. Using the initial k 
values of the sequence (Yn)n, one can find the exact formula for Yn' 

If the previous equation has multiple solutions, a formula for Yn can 
be determined as follows. If a is a solution with multiplicity r, then 
one can check an, nan, ... , n r - l an are all solutions of the characteristic 
equation. We can write Yn as a linear combination of such solutions 
and use the initial values of the sequence (Yn)n to determine a precise 
formula. 

Let us try to use this method to find a formula for Fn. Since the 
recurrence relation is Fn = Fn-l +Fn-2, it follows that the characteristic 

equation is x 2 = X + 1. The solutions of this equation are a = 1+l'5 and 

j3 = 1-2.)5. We obtain that Fn = can +dj3n, where c and d are constants 
to be determined. 
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Since 1 = Fa = c+d and 1 = Fl = ca+d(3, we obtain that c = V;jgl 
and d = V;~I. We deduce that 

2.5. Catalan Numbers 

Eugene Charles Catalan (1814-1894) was born in Bruges, Belgium. 
He defined the numbers which bear his name today, while counting the 
number of ways of decomposing a convex n-gon into triangles by n - 2 
non-intersecting diagonals. Around the same time, the Catalan numbers 
were also studied by Johann Andreas von Segner (1704-1777), Leonhard 
Euler (1707-1783) and Jacques Binet (1786-1856). 

The Catalan numbers have many combinatorial interpretations and 
arise in branches of mathematics and computer science. There are at 
least 66 combinatorial interpretations of Catalan numbers (see Exercise 
6.19 in Richard Stanley's Enumerative Combinatorics, Volume 2). 

Here we will define the Catalan number Cn as the number of ways 
we can bracket a sum of n elements so that it can be calculated by 
adding two terms at a time. For example, for n = 3, we have 

((a + b) + c) and (a + (b + c)). 

Thus, C3 = 2. 
For n = 4, we have C4 = 5 since there are five ways of bracketing a 

sum with 4 terms: 
( ( (a + b) + c) + d), 

( (a + (b + c)) + d), 

(a + (( b + c) + d)) , 

(a + (b + (c + d))), 

((a+b) + (c+d)). 

We can obtain a recurrence for Cn as follows. Any bracketed expression 
is of the form 

El +E2 

where El is a bracketed expression containing i terms (say) and E2 is 
a bracketed expression containing n - i terms. By our definition, there 
are Ci choices for El and Cn - i choices for E2, so we get 

n-l 

Cn = L CiCn - i · 

i=1 
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It may be that Segner was the first to notice this recurrence relation 
and Euler was the first to solve it (see Chapter 6 in Enumerative Com­
binatorics, Volume 2 by Richard Stanley). Notice that this recurrence 
is more complicated than the one for dn or s(n) derived in the previ­
ous sections in that the recurrence uses all of the previous Ci's for its 
determination. 

In order to determine a nice formula for the Catalan numbers, we 
use the theory of generating functions. To an infinite sequence (an )n2:0 
we associate the following formal power series: 

Lantn. 
n2:0 

We regard such series as algebraic objects without any interest in their 
convergence. We say two series are equal if their coefficient sequences 
are identical. We define addition and subtraction as follows 

The multiplication is defined similarly to the one for polynomials. 

L antn . L bntn = L cntn 

n2:0 n2:0 n2:0 

where Cn = ~~=o akbn-k· We can also differentiate formal power series 
the same way as one would do for polynomials. 

The standard functions of analysis are defined as formal power series by 
their usual Taylor series. For example, 

tn 
t _ '" e -~,. n. 

n2:0 

The following equation is a definition of (1 + ty~ 

(1 + t)U = L (~)tn 
n2:0 

where (U) = U(U-l) ... ~u-n+1) for any real number a. If a is a non-
n n. 

negative integer, then this is just Theorem 2.1.4 since (~) = 0 for n > a. 
For a real, the equation above will be regarded here as a definition. An 
alternative approach would be to define (1 + t)U for any rational a by 
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using the exponent laws (which hold for power series) and then prove 
that its Taylor series has the claimed form. This was done by Newton. 

We encode the recurrence for the Catalan numbers in a generating 
function as follows. Let 

CXl 

n=O 

where we set Co = 0 and C 1 = 1. Let us compute the coefficient of t n 

in F(t? for n 2: 2. It is equal to 

since Co = O. Thus, 

n-1 

LCiCn - i = Cn 

i=1 

F(t)2 = F(t) - t. 

This is a quadratic equation in F(t) which we can solve using the familiar 
formula for solving quadratic equations: 

F(t) = 1 ± v'1=4t. 
2 

We must determine which "sign" will give us the correct solution for 
F(t). We choose the minus sign because F(O) = O. Thus, 

1- VI - 4t 
F(t) = 2 . 

We can use the binomial theorem to determine the Cn's explicitly. In­
deed, the coefficient of tn on the right hand side of the above expression 
for F(t) is easily seen to be 

_~ (1~2) (_4)n 

which simplifies to the following result. 

THEOREM 2.5.1. 

Cn = ~ (2n - 2) . 
n n-l 

We can use Stirling's formula to determine the asymptotic behaviour 
of Cn+1. Indeed, by Stirling's formula, 

n! rv V27rn(nje)n, 

so that 
22n 

Cn +! rv (n + 1)j7fn' 
from which we see that it has exponential growth. 
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2.6. Bell Numbers 

Eric Temple Bell (1883-1960) was born in Aberdeen, Scotland. He 
was the president of the Mathematical Association of America between 
1931 and 1933. 

The n-th Bell number, denoted by Bn , is the number of partitions 
of an n-element set. A partition of [n] is a collection of pairwise disjoint 
non-empty subsets B l , ... ,Bk (called blocks) whose union is [n]. By 
convention, Bo = 1. The partitions of [2] are {I} U {2} and {I, 2}. The 
partitions of [3] are {I} U {2} U {3}, {I, 2} U {3}, {I, 3} U {2}, {2, 3} U {I} 
and {I, 2, 3}. Thus, Bl = 1, B2 = 2 and B3 = 5. We will derive a 
recurrence relation for the Bell numbers. Of the partitions of [n], we 
consider the block to which n belongs. Clearly, such a block can be 
written as in} U Y for some subset Y of {I, 2, ... , (n - I)}. If this block 
has k elements, then Y is a subset of k - 1 elements. The number of 
ways of choosing Y is (~=D. The remaining elements can be partitioned 
in Bn - k ways. Thus, we obtain 

Bn = t (~ = ~) Bn- k· 
k=l 

We can use this recurrence to write down an exponential generating 
function: 

Then, 

00 B 
G(t) = L -ftn. 

n. 
n=O 

00 Boon tk-l B tn-k 
G'() '"' n n-l '"' '"' n-k 

t = ~ (n _ I)! t = ~ ~ (k - I)! (n - k)! 
n=l n=lk=l 

The sum on the right hand side is easily seen to be 

Thus, 

G(t) = Aee 
t 

for some constant A. Since G(O) = 1, we must have A = e- l . This 
proves: 

THEOREM 2.6.1. 
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We can use this theorem to derive an explicit formula for Bn as 
follows. The right hand side of the above equation can be expanded as 

and on comparing the coefficients of tn we obtain: 

THEOREM 2.6.2. 

2.7. Exercises 

EXERCISE 2.7.1. If 0 ::; k ::; l ~ J, show that 

EXERCISE 2.7.2. Prove by induction on n that [n] has 2n subsets. 

EXERCISE 2.7.3. Show that 

1· I! + 2 . 2! + ... n· n! = (n + I)! - 1. 

EXERCISE 2.7.4. Show that 

for each n 2 k 2 I 2 o. 

EXERCISE 2.7.5. Show that 

(n) = (n - 1) (n - 1) 
k k + k-l . 

EXERCISE 2.7.6. Show that 

EXERCISE 2.7.7. Show that 



22 2. RECURRENCE RELATIONS 

EXERCISE 2.7.8. Show that 

22n < (2nn) < 22n 2n + 1 

and use Stirling's formula to prove that 

(2n) rv~. 
n ..;rrn 

EXERCISE 2.7.9. Give a solution using binomial coefficients and a 
direct combinatorial solution to the following question: How many pairs 
(A, B) of subsets of [n] are there such that An B = 0 ? 

EXERCISE 2.7.10. Show that the number of even subsets of [n] equals 
the number of odd subsets of [nJ. Give two proofs, one using binomial 
formula, and one using a direct bijection. Calculate the sum of the sizes 
of all even (odd) subsets of [n]. 

EXERCISE 2.7.11. Let n be an integer, n ~ 1. Let 8i denote the 
number of subsets of [n] whose order is congruent to i (mod 3) for i E 
{O, 1, 2}. Determine 80,81, 82 in terms of n. 

EXERCISE 2.7.12. Prove by mathematical induction that 

for n ~ O. 

EXERCISE 2.7.13. Show that the number of distinct ways of trian­
gulating a convex n-gon by n - 2 nonintersecting diagonals equals en-I. 

EXERCISE 2.7.14. Show that the number of solutions of the equation 

Xl + ... + Xk = n 

in positive integers (Xi> 0 for each i) is (~=D. 

EXERCISE 2.7.15. Show that for each nand k, 1 ~ k ~ n 

EXERCISE 2.7.16. Calculate 
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EXERCISE 2.7.17. Calculate 

lim n 
n-->oo 

when t is a real number. 

EXERCISE 2.7.18. Let k be a non-negative integer number. Show 
that any non-negative integer number n can be written uniquely as 

where 0 :::; Xl < X2 < ... < xk· 

EXERCISE 2.7.19. Let Bn denote the n-th Bell number. Show that 
Bn < n! for each n :2 3. 

EXERCISE 2.7.20. Determine the number of ways of writing a posi­
tive integer n as a sum of ones and twos. 



CHAPTER 3 

The Principle of Inclusion and Exclusion 

3.1. The Main Theorem 

The principle of inclusion-exclusion was used by De Moivre in 1718 
to calculate the number of derangements on n elements. 

Let A be a finite set and for each i E {I, 2, ... , n}, let Ai be a subset 
of A. We would like to know how many elements there are in the set 

A\ Ui=l Ai. 

That is, we would like to know the number of elements remaining in A 
after we have removed the elements of Ai for each i = 1,2, ... , n. To this 
end, we define for each subset I of [n] = {I, 2, ... , n}, 

AI = niElAi . 

That is, AI consists of elements belonging to all Ai, i E I. If I is the 
empty set 0, we make the convention A0 = A. The principle of inclusion 
and exclusion is contained in the following theorem. 

THEOREM 3.1.1. The number of elements not belonging to any Ai, 

1 SiS n is given by 

L (-l)IIIIAI I· 
I~[nl 

PROOF. The sum is equal to 

L (_1)111 L 1 = L L (_1)111. 
I~[nl aEA1 aEA I:I~[n],aEAI 

Let Sa be the set of indices i such that a E A. Then, the inner sum is 
over all subsets of Sa. If Sa is empty, this sum is 1. Otherwise, by the 
Binomial Theorem, it is equal to 

~(-I)j (IS~I) = (1 - 1)ISal = 0, 
. 0 J J= 

when Sa is non-empty. Hence, the sum is equal to the number of el­
ements a for which Sa is empty. Since the number of elements not 
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belonging to any Ai is precisely the number of elements a for which Sa 
is empty, this completes the proof. • 

This simple principle is one of the most powerful in all of mathemat­
ics and has important consequences which we will present in the next 
sections. 

3.2. Derangements Revisited 

It will be recalled that in Chapter 2, we derived a recurrence re­
lation for the number of derangements of a set with n elements. We 
then "guessed" a formula and proved it by induction. We now give 
a more credible approach to the derivation of this formula. Let A be 
the set {I, 2, ... , n}. The number dn counts the number of permutations 
without any fixed points. For each i, 1 ::; i ::; n, let Ai be the subset of 
permutations fixing i. Then, the number of derangements is the number 
of permutations not belonging to any of the Ai, 1 ::; i ::; n. For each 
subset I of {I, 2, .. , n}, the number of elements of AI is clearly (n -II!)!. 
By the inclusion-exclusion principle, we obtain the following result. 

THEOREM 3.2.1. 

dn = t( -1)j (~) (n - j)!. 
. 0 J J= 

This is precisely the formula we established by induction in the pre­
vious chapter. As noted earlier, this result has the curious consequence 
that if a group of 100 people each wrote their names on a card and 
these cards were then collected and shuffied and a card is handed back 
to each person, then the probability that a person would receive their 
own original card back is very close to 1 - lie. 

3.3. Counting Surjective Maps 

Let us now count the number of surjective functions from an n-set 
to a k-set. The total number of functions from [n] to [k] is clearly kn. 

THEOREM 3.3.1. The number of surjective functions f : [n] -+ [k] is 

k 

2)-I)j (~) (k - jr· 
j=O J 

PROOF. For each 1 ::; i ::; k, let Ai be the set of functions from 
an n-set to a k-set that do not have i in their range. Then, AI has 
cardinality (k -IllY? By the inclusion-exclusion principle, the result is 
now immediate. • 
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COROLLARY 3.3.2. If k and n are nonnegative integers, then 

t(-l)j (~) (k_j)n = {Of 
. 0 J n. 

J= 

if k < n; 

if k = n . 

PROOF. If n < k, there are no surjective functions from an n-set to 
a k-set. The number of surjective maps from an n-set to another n-set 
is clearly nL The result now follows from the previous theorem .• 

3.4. Stirling Numbers of the First Kind 

We now introduce Stirling numbers of the first kind, denoted 
s(n, k). The Stirling numbers of first kind and of second kind (which will 
be defined in the next section) are named after James Stirling whose for­
mula for n! is contained in the previous chapter. Recall that every per­
mutation has a unique decomposition (up to rearrangement) as a prod­
uct of disjoint cycles. We define s( n, k) by the rule that (-1 )n-k s( n, k) 
is the number of permutations of Sn which can be written as a product 
of k-disjoint cycles. Clearly, s(n, n) = 1 since the only permutation that 
has n disjoint cycles in its cycle decomposition is the identity permuta­
tion. It is also clear that 

n n 

2) -l)n-ks (n, k) = L Is(n, k)1 = nL 
k=l k=l 

We now establish a recurrence for s(n, k). 

THEOREM 3.4.1. 

s(n + 1, k) = -ns(n, k) + s(n, k - 1). 

PROOF. Of the permutations of Sn+ I with k disjoint cycles, we con­
sider those in which (n + 1) appears as a one cycle and those in which it 
does not. The number in the first group is clearly (_1)n-(k-l) s(n, k-1). 
For the number in the second group, we may view the elements as per­
mutations of Sn with k disjoint cycles into which we have inserted (n+ 1). 
For a cycle of Sn of length j, there are j places into which we can insert 
(n + 1) giving j new permutations. Now if (7 is a permutation of Sn 
with k-cycles of lengths jl, ... ,jk, we can interpolate (n + 1) into this 
in jl + ... + jk = n ways. Thus, the number of elements in the second 
group is n(-l)n-ks(n,k). 

Thus, 

(_l)n+l-k s(n + 1, k) = (_1)n-(k-l) s(n, k - 1) + n( -It-k s(n, k). 

This simplifies to give the stated recurrence .• 
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For t E IR, we denote (t)n = t(t-1) ... (t --n+ 1). Using the previous 
result, we can prove the following: 

THEOREM 3.4.2. 
n 

(t)n = L s(n, k)tk . 

k=l 

PROOF. Again, we use induction on n. For n = 1, the result is clear. 
Assume that the result is established for n ::; m. Then, 

(t)m+J ~ (t)m(t - m) ~ (~s(m, k)tk ) . (t - m). 

The coefficient of t k on the right is 

s(m, k - 1) - ms(m, k) 

which is precisely s(m + 1, k) by the previous theorem. This completes 
the proof .• 

3.5. Stirling Numbers of the Second Kind 

We denote by S(n, k) the number of partitions of an n-set into k­
blocks. These numbers are called the Stirling numbers of the second 
kind. We will try to relate these numbers to the discussion of the 
surjective functions. Observe that if we have a surjective map f from 
an n-set to a k-set, the "fibers", namely f-l(j) := {i : i E [n], f(i) = j}, 
for 1 ::; j ::; k form a partition of the n-set into k-blocks. Conversely, 
given a partition of a n-set into k-blocks, there are clearly k!S(n, k) 
ways of defining a surjective map from the n-set to a k-set because we 
can view each block as the fiber of the image of such a map and there 
are k! ways of assigning the image. Putting this together with Theorem 
3.3.1 gives the following result. 

THEOREM 3.5.1. 
k 

k!S(n, k) = L( -l)j (~) (k - jt· 
j=O J 

We again see how one can deduce Corollary 3.3.2. Indeed, if k > n, 
there are no ways of partitioning an n-set into k-blocks as each block 
must contain at least one element. For k = n, we clearly have S(n, n) = 
1. 

This formula also allows us in yet another way to deduce the gener­
ating function for the Bell numbers Bn which we derived in the previous 
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chapter. Indeed, we clearly have 
n 

En = L S(n, k). 
k=O 

On the other hand, notice that 

Upon ill:terchanging the summation, we get that this equals 

k 

~! L(-l)j (~) e(k-j)t. 
j=O J 

Using the binomial theorem, we can simplify the right hand side and 
deduce: 

THEOREM 3.5.2. 

~ S(n, k)tn = ~( t _ I)k 
~ , k' e . 
n=O n. . 

Combining this fact with the formula relating En with the Stirling 
numbers of the second kind easily gives us again the generating function 

~ Bntn _ et_l 
~ ,-e . 
n=O n. 

Even though we have an explicit formula for the S(n, k)'s, it will be 
useful to derive the following recurrence relation. 

THEOREM 3.5.3. 

S(n, k) = S(n - 1, k - 1) + kS(n - 1, k). 

PROOF. In partitioning the n-set {I, 2, ... , n} into k blocks, we have 
two possibilities. Either n is in a singleton block by itself or it is not. 
In the first case, the number of such decompositions clearly corresponds 
to S(n - 1, k - 1). In the second case, we take the decomposition of an 
(n -I)-set into k-blocks, and we now have k choices into which we may 
place n. This gives the recursion .• 

We may use this recursion to give another 'generating form' for the 
numbers S(n, k) for n fixed and varying k. To this end, we recall the 
notation (t)n = t(t - l)(t - 2) ... (t - n + 1). 
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THEOREM 3.5.4. 
n 

t n = L S(n, k)(t)k' 
k=1 

PROOF. The proof is by induction on n. For n = 1, the result is 
clear. Suppose that we have proved the for.mula for n :S m. Then, we 
write 

m 

tm +1 = tm . t = L S(m, k)(t)k((t - k) + k) 
k=1 

by the induction hypothesis. Because (t)k(t - k) = (t)k+I, we deduce 
that 

m m 

t m +1 = L S(m, k)(t)k+1 + L kS(m, k)(th· 
k=l k=1 

By changing variables on the first sum, and noting that S(m, m+ 1) = 0, 
we may write the right hand side as 

m+1 m+1 

L {S(m, k - 1) + kS(m, k)}(t)k = L S(m + 1, k)(t)k 
k=] k=l 

by the recursion of Theorem 3.5.3. This completes the proof .• 

COROLLARY 3.5.5. If A and B are the n x n matrices whose (i,j)-th 
entries are given by s(i,j) and S(i,j) respectively, then B = A-I. 

PROOF. Let V be the vector space of polynomials of degree :S n, 
with constant term zero. Then A and B are the transition matrices 
from the two bases: 

(1) t,t2 , ... ,tn ; 

(2) (th, (th, ... , (t)n. 
The result now follows from linear algebra .• 

and 

COROLLARY 3.5.6. The following are equivalent: 

(1) gn = l:~=1 S(n, k)!ki 
(2) fn = l:~=1 s(n, k)9k. 

PROOF. This is immediate from matrix inversion .• 

If we define fo and go so that fo = go, and 

F(t) = ~ fntn 
~ n! 
n=O 

G(t) = ~ gntn 
~ n! 
n=O 
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where gn and fn are related as in Corollary 3.5.6, then we can determine 
the relationship between these two generating functions as follows. 

00 n tn 

G(t) = fo + L L S(n, k)ik,. 
n. 

n=lk=l 

Interchanging summation, we deduce 

00 (et _ l)k 
G(t) = fo + Lik k! = F(et -1). 

k=l 

which implies the following result. 

COROLLARY 3.5.7. If fn and 9n are related as in Corollary 3.5.6, 
then 

G(t) = F(et - 1). 

This allows us to deduce the generating function for Stirling numbers 
of the first kind. Let gk = 1 and gn = 0 for n i= k. Then, fn = s(n, k). 
By Corollary 3.5.7, we get 

tk 
- = F(et - 1) k! . 

Putting x = et - 1 gives 

~ s(n,k)xk (log(1 + x) )k 
k! ~ k! 

n=O 

3.6. Exercises 

EXERCISE 3.6.1. There are 13 students taking math, 17 students 
taking physics and 18 students taking chemistry. We know there are 5 
students taking both math and physics, 6 students taking physics and 
chemistry and 4 students taking chemistry and math. Only 2 students 
out of the total of 50 students are taking math, physics and chemistry. 
How many students are not taking any courses at all ? 

EXERCISE 3.6.2. The greatest common divisor gcd(a, b) of two 
natural number a and b is the largest natural number that divides both 
a and b. If n is a natural number, denote by ¢(n) the number of integers 
k with 1 ::; k ::; nand gcd(n, k) = 1. Show that if P is a prime, then 
¢(p) = p-l and that ifp i= q are two primes, then ¢(pq) = (p-l)(q-l). 

EXERCISE 3.6.3. If n = p~l ... p~r with Pi distinct primes, then show 
that 

¢(n) = nIT (1 -~) . 
i=l Pt 
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EXERCISE 3.6.4. How many integers less than n are not divisible by 
any of 2,3 and 5? 

EXERCISE 3.6.5. How many 7 digit phone numbers contain at least 
3 odd digits ? 

EXERCISE 3.6.6. If A1 , A2 , ... ,An are finite sets, show that 
n n 

i=l ioFj i=l 

When does equality happen ? 

EXERCISE 3.6.7. If nand r are non-negative integers with 0 :S r :S n, 
denote by f (n, r) the number of permutations of Sn with exactly r fixed 
points. Show that 

lim f(n,r) = ~. 
n-+oo n! er! 

EXERCISE 3.6.8. Show that t.( -I)t) (n - j)n+l ~ (n; I)nl 
EXERCISE 3.6.9. Let sen, k) denote the Stirling numbers of the first 

kind. Show that 
n 

x(x + 1) ... (x + n - 1) = L Is(n, k)lxk . 

k=O 

EXERCISE 3.6.10. Using the previous identity, prove that the num­
ber of permutations with an even number of cycles (in their decompo­
sition as a product of disjoint cycles) is equal to the number of permu­
tations with an odd number of cycles. 

EXERCISE 3.6.11. Let Sen, k) denote the Stirling numbers of second 
kind. Show that 

S (n + 1, k) = t (~) S (j, k - 1). 
j=l J 

EXERCISE 3.6.12. Prove that 

EXERCISE 3.6.13. Show that 

Is(n, 1)1 = (n - I)!. 

Give two proofs. 

ifm 2 k 

ifm < k. 
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EXERCISE 3.6.14. Prove that S(n, 1) = S(n, n) = 1 and S(n,2) = 
2n - 1 - 1. 

EXERCISE 3.6.15. Show that S(n,n -1) = G). 
EXERCISE 3.6.16. Let s(n) be the number of involutions in the sym­

metric group Sn. Show that 

f(t) := L s(n~tn = et+? 
n. 

n~O 

EXERCISE 3.6.17. The Bernoulli numbers bn are defined by the re-
currence relation 

t (n; l)bk = 0 
1.=0 

for n 2: 1 and bo = 1. Prove that 
bntn ·t 

g(t) := L --;! = et _ 1· 
n~O 

These numbers were first studied by Jakob Bernoulli (1654-1705) in 
1713. 

EXERCISE 3.6.18. Show that g(t) + ~ is an even function of t, where 
g(t) is defined in the previous exercise. 

EXERCISE 3.6.19. Show that bn = 0 for each odd number n 2: 3. 

EXERCISE 3.6.20. Let (fn)n~O and (gn)n~O be sequences, with expo­
nential generating functions F(X) and G(X). Show that the following 
the statements 

and 
G(X) = eX f(X) 

are equivalent. 



CHAPTER 4 

Matrices and Graphs 

4.1. Adjacency and Incidence Matrices 

Given a graph X, we associate two matrices to encode its informa­
tion. The first is the adjacency matrix A or sometimes denoted Ax 
or A(X). If n is the number of vertices of X, then A is an n x n matrix 
whose (i,j)-th entry is the number of edges between i and j. In case X 
is a simple graph, this is simply a (0,1) matrix whose i, j-th entry is 1 
or 0 according as i is joined to j. 

THEOREM 4.1.1. The (i,j)-th entry of Am is the number of walks 
of length m from i to j. 

PROOF. We prove this by induction. For m = 1, this is clear from 
the definition. Suppose we have proved it for Aj for j ::S m - 1. Write 
Ar = (at]). Since Am = Am-I. A, we have 

n 
(m) '"' (m-l) 

aij = L.." aik akj' 
k=l 

Clearly, the number of paths from i to j of length m is 
n 

L (#of paths from i to k of length m -1 ) akj' 
k=l 

By induction, the number of paths from i to k of length m - 1 is a~;;-l) 
which proves the theorem .• 

There is another matrix M called the incidence matrix of the 
graph. If X has n vertices and e edges, then M is a an n x e matrix 
defined as follows. The (i, j)-th entry is 1 if the vertex Vi is incident to 
the edge ej, and 0 otherwise. The relationship between this matrix and 
the adjacency matrix is given by the easily verified equation 

MMt = D+A 

where D is the diagonal matrix consisting of the vertex degrees. 
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4.2. Graph Isomorphism 

An isomorphism between two graphs X and Y is a bijection f 
between the vertex set of X and the vertex set of Y such that uv is an 
edge of X if and only if f (u) f ( v) is an edge of Y. The reader is invited to 
show that the graphs in Figure 4.1 are isomorphic. We will usually study 
isomorphism in the context of simple graphs. A moment's reflection 
shows that applying a permutation to both the rows and columns of the 
adjacency matrix of a graph X has the effect of reordering the vertices of 
X. A permutation matrix is a square 0, 1 matrix which has precisely 
one entry 1 in each row and each column and O's elsewhere. 

THEOREM 4.2.1. The graphs X and Yare isomorphic if and only if 
there is a permutation matrix P such that 

PAxp-1 = Ay. 

We begin by reviewing some elementary facts from linear algebra 
about matrices and their characteristic polynomials. Given a square 
matrix A, its characteristic polynomial is det(AJ - A). The roots 
of this polynomial are called eigenvalues of A. If A is an eigenvalue 
and v is an eigenvector so that Av = AV, then v is called an eigen­
vector corresponding to A. Thus, for two graphs to be isomorphic, it 

FIGURE 4.1 

is necessary that their adjacency matrices have the same eigenvalues. 
However, this is not a sufficient condition for isomorphism. Consider 
the graph obtained from C4 by adding an isolated vertex. This graph 
has the same eigenvalues as K 1,4, but it is obviously not isomorphic to 
K 1,4. See also Exercise 4.5.15 and Exercise 4.5.16. 

EXAMPLE 4.2.2. Let us compute the characteristic polynomial of the 
n by n matrix J whose i,j-th entry is 1 for alII :S i,j :S n. Clearly, it is 
a singular matrix (that is, its determinant is zero because the rows are 
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linearly dependent). Any eigenvector v = (Xl, ... , xn) with eigenvalue A 
satisfies Jv = AV so that 

Xl + ... + Xn = AXi, 

for alII::::; i ::::; n. Clearly, A = n is an eigenvalue and v = (1,1, ... , 1) is a 
corresponding eigenvector. On the other hand, the subspace of vectors 
v = (Xl, ... , xn) satisfying the equation 

Xl + ... + Xn = 0 

has dimension n - 1 and these vectors correspond to eigenvalue zero. 
Thus, the characteristic polynomial is (A - n) A n-l . 

EXAMPLE 4.2.3. Let us determine the characteristic polynomial of 
the complete graph Kn. The adjacency matrix of Kn is J - I with J 
as in Example 4.2.2 and I is the identity matrix of order n. Now let us 
recall that if A has eigenvalue f-L then f-L + c is an eigenvalue of A + cI 
because det(AI - (A + cI)) = det((A - c)I - A). Thus, the eigenvalues 
of J - I are n - 1 and -1 with multiplicity 1 and n - 1 respectively. 
Therefore, the characteristic polynomial of the complete graph on n 
vertices is [A - (n - 1)](A + l)n-l. 

EXAMPLE 4.2.4. Let us determine the characteristic polynomial of 
the bipartite graph Kr,s. Since the adjacency matrix has form 

A= 

o 0 
o 0 

o 0 
1 1 
1 1 

1 1 

011 
o 1 1 

011 
1 0 0 
1 0 0 

100 

1 
1 

1 
o 
o 

o 
it has rank 2. Recall now that the rank of a square matrix is equal to 
the number of non-zero eigenvalues counted with multiplicity. As our 
matrix has trace zero and this is also equal to the sum of the eigenvalues, 
we deduce that Am,n has only two non-zero eigenvalues AI, A2 with Al = 
-A2 = b (say). Moreover, each of these has multiplicity 1. Thus, the 
characteristic polynomial is (with n = r + s) 

An - 2(A2 _ b2 ). 

We can actually determine b more precisely. If we look at the defini­
tion of the characteristic polynomial as det(AI - Ar,s), we see that the 
coefficient of An - 2 can be arrived at as follows. From the determinant 
expression, we must choose (n - 2) diagonal entries and the other two 
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entries must come from non-zero entries in order to contribute to the 
coefficient. This can also be seen from the formula for the determinant. 
The permutations that contribute must necessarily fix (n-2) letters and 
thus correspond to transpositions. The remaining positions contribute 
-ai,j and -aj,i for some i,j. Since the graph is bipartite, there are rs 
non-zero contributions of this form. This means b2 must be rs. Thus, 
the characteristic polynomial is 

An - 2 p, - v'rS)(A + v'rS). 

This can also be deduced in another (simpler) way. As we observed, the 
number of closed walks of length 2 is equal to the trace of the square of 
the adjacency matrix. In our bipartite case, this is clearly 2rs, which 
must necessarily equal the sum of the squares of the eigenvalues, which 
is 2b2 . Thus, b2 = rs. 

4.3. Bipartite Graphs and Matrices 

The eigenvalues of bipartite graphs have the following interesting 
property. 

THEOREM 4.3.1. If X is bipartite, and A is an eigenvalue with mul­
tiplicity m, then -A is also an eigenvalue of multiplicity m. 

PROOF. Since X is bipartite, we may arrange our rows and columns 
of A = Ax according to the partite sets so that A has the following form 

A=(~t ~) 
where B is a 0,1 matrix. If A is an eigenvalue with eigenvector 

partitioned according to the partite sets. We have 

AV = Av = ( :t~ ) = A ( : ) 

so that By = AX and Btx = Ay. Let 

Then 

Av' = ( -BY) Btx 
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Thus, Vi is an eigenvector with eigenvalue -A. Also, m independent 
eigenvectors corresponding to A give m independent eigenvectors corre­
sponding to -A. This completes the proof .• 

We can now characterize bipartite graphs by the shape of the char­
acteristic polynomial. 

THEOREM 4.3.2. The following statements are equivalent. 

(1) X is bipartite; 
(2) The eigenvalues of X occur in pairs Ai, Aj such that Ai = -Aj; 
(3) The characteristic polynomial of X is a polynomial in A2; 
(4) for any positive integer t, 2::~=1 A;t-l = 0 where the sum is 

over the eigenvalues (with multiplicity) of Ax . 

PROOF. The fact that (1) implies (2) was done in the previous the­
orem. The equivalence of (2) and (3) is clear since (A - Ai)(A - Aj) = 
(A2 - a) with a = AT- It is also clear that (2) implies (4) since the eigen­
values occur in pairs with opposite signs and so they cancel each other 
in the sum in (4). To see that (4) implies (1), we recall that the (i,j)-th 
entry of A~-l counts the number of paths of length 2t - 1 from vertex 
i to vertex j. In particular, the diagonal entries count the number of 
closed walks of this length. But the sum of the diagonal entries is the 
total number of closed paths of this length and (4) says this sum is zero. 
Thus, X has no closed paths of odd length. By Theorem 1.5.1, X is 
bipartite .• 

4.4. Diameter and Eigenvalues 

Recall from linear algebra the notion of a minimal polynomial 
of a matrix. By the Cayley-Hamilton theorem (or by the fact that 
1, A, A 2 , ... , An2 are linearly dependent via dimension considerations) 
we deduce that A satisfies some monic polynomial equation. Among 
all, there is one of minimal degree which is necessarily unique (by the 
division algorithm). The degree of this minimal polynomial is equal to 
the number of distinct eigenvalues of A. 

Indeed, this is easy to see in the case of real symmetric matrices 
that we are dealing with. By the spectral theorem all the eigenvalues 
of a real symmetric matrix are real and there is a basis of eigenvectors. 
If we let 

r 

i=l 

where the Ai range over the distinct eigenvalues of A, then g(A) = O. 
To see this, it suffices to see how g(A) operates on set of basis vectors. 
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We take the basis · of eigenvectors and see that this is immediate (as the 
various factors commute) and we may write 

T 

g(A) = IT (A - Ai!). 

i=l 

If there were a polynomial h of smaller degree with h(A) = 0, we see 
that it must divide the polynomial g(A) and must consist of a product of 
terms of the form A - Ai for some proper subset of subscripts. But then, 
the eigenvector Vj corresponding to an eigenvalue Aj that is omitted in 
the product will not be annihilated by h(A). 

Recall that the distance d( u , v) between vertices u , v equals the 
shortest length of a path connecting u and v. Now we define the diam­
eter of a graph X as 

diam(X) = max d(u, v) 
u ,vEV(X) 

where the maximum is over all possible pairs of vertices. 

THEOREM 4.4.1. If diam(X) < 00, then the diameter is strictly less 
than the number of distinct eigenvalues of X. 

PROOF. Let A be the adjacency matrix of X. Then A satisfies a 
polynomial of degree r if and only if some non-zero linear combination 
of A ° , A I , ... , AT is zero. Since the number of distinct eigenvalues is 
equal to the degree of the minimal polynomial, we need only show that 
AO,Al, ... ,Ak are linearly independent when k ::::: diam(X). Let k = 
diam(X) and choose Vi , Vj so that the distance between Vi and Vj equals 
k. By counting walks from Vi to Vj we see that the i,j-th entry of 
Ak is not zero. But the (i,j)-th entry of At for t < k is zero because 
d(vi,vj) = k. Therefore, Ak is not a linear combination of At for t < k. 
Hence, the degree of the minimal polynomial is strictly greater than 
diam(X) .• 

The examples of previous section show that this result is sharp. For 
instance, in the case of the complete graph K n , the diameter is equal to 
1 and the number of distinct eigenvalues is 2. In the case of the bipartite 
graph KT,s, we have diameter 2 and the number of distinct eigenvalues 
is 3. There are many other classes of graphs X whose number of distinct 
eigenvalues equals 1 + diam(X). 

4.5. Exercises 

EXERCISE 4.5.1. Determine the eigenvalues of P4 and C5 . 



4.5. EXERCISES 39 

EXERCISE 4.5.2. Show that a graph X with n vertices is connected 
if and only if (A + In)n-l has no zero entries, where A is the adjacency 
matrix of X. 

EXERCISE 4.5.3. For a simple graph X with e edges, t3 triangles 
and adjacency matrix A, show that 

tr(A) = 0, tr(A2 ) = 2e, tr(A3) = 6t3. 

EXERCISE 4.5.4. If X is a bipartite graph with e edges and A is an 
eigenvalue of X, show that 

IAI:::; ve. 
EXERCISE 4.5.5. Let X be a simple graph with n vertices and e 

edges. If A is an eigenvalue of the adjacency matrix A of X, show that 

IAI :::; J2e(nn - 1) . 

EXERCISE 4.5.6. If two non-adjacent vertices of a graph X are ad­
jacent to the same set of vertices, show that its adjacency matrix has 
eigenvalue O. 

EXERCISE 4.5.7. The eccentricity of a vertex u in a graph X is the 
maximum of d( u, v) as v ranges over the vertices of X. The minimum 
of all the possible eccentricities is called the radius, denoted rad(X), 
of the graph X. Show that if X is connected, then 

rad(X) :::; diam(X) :::; 2rad(X). 

EXERCISE 4.5.8. Let R be a commutative ring and AI, ... , Ak be 
n x n matrices. We define a generalized commutator as 

[AI, ... , AkJ = L (sgna-)Aa(I) ... Aa(k). 
aESk 

When k = 2n, show that 

[AI, ... , AkJ = O. 

This is a classical theorem of Shimson Avraham Amitsur (1921-1994) 
that can be proved using Euler circuits in digraphs. 

EXERCISE 4.5.9. Show that the graphs in Figure 4.1 are isomorphic 
by presenting an explicit isomorphism. 

EXERCISE 4.5.10. Let M be the incidence matrix of a simple graph 
X. Prove that 

MMt = D+A 
where A is the adjacency matrix of X and D is a diagonal matrix con­
sisting of the degrees of the vertices of X. 
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EXERCISE 4.5.11. In a simple graph X, we choose an orientation 
by assigning a direction to each edge. The modified incidence matrix N 
is defined as follows. Its rows are parameterized by the vertices Vi and 
the columns by the edges ej, as before. The i, j-th entry of N is +1 if 
Vi is the tail of ej, -1 if it is the head and zero otherwise. Prove that 

NNt=D-Ax. 

EXERCISE 4.5.12. The Laplacian matrix of a graph X is D -
A. Show that the smallest eigenvalue of the Laplacian is O. If X is 
connected, then 0 has multiplicity 1 for the Laplacian. 

EXERCISE 4.5.13. If X is k-regular, then A is an eigenvalue of the 
its adjacency matrix if and only if k - A is an eigenvalue of its Laplacian 
matrix. 

EXERCISE 4.5.14. Prove that A4 + A3 + 2A2 + A + 1 cannot be the 
characteristic polynomial of an adjacency matrix of any graph. 

EXERCISE 4.5.15. Determine the characteristic polynomial of the 
cycle C4 . 

EXERCISE 4.5.16. Let Y denote the graph obtained from a graph X 
by adding an isolated vertex. Show that Py(A) = APX(A). If X = C4, 
compare Py with PK1 ,4' 

EXERCISE 4.5.17. The odd girth of a graph X is the shortest length 
of an odd cycle. If X and Y have the same eigenvalues, then they have 
the same odd girth. 

EXERCISE 4.5.18. The line graph L(X) (see also Chapter 11)of 
a graph X the edges of X as vertices, two edges e and f of X being 
adjacent in L(X) if they have common endpoint in X. Show that if 
N is the incidence matrix of X, then the adjacency matrix of L(X) is 
Nt N - 21m , where m is the number of edges of X. 

EXERCISE 4.5.19. If X is k-regular and A is an eigenvalue of the 
adjacency matrix of X, then k + A - 2 is an eigenvalue of the line graph 
of X. 

EXERCISE 4.5.20. Any eigenvalue of a line graph is greater than or 
equal to -2. 



CHAPTER 5 

Trees 

5.1. Forests, Trees and Leaves 

A forest is an acyclic graph (that is, a graph with no cycles). The 
connected components of a forest are called trees. Therefore, a tree is 
a connected acyclic graph. In particular, any tree is a bipartite graph. 
A leaf is a vertex of degree one. In the figure below, we have a tree 
with seven leaves. 

FIGURE 5.1 

Given a graph X and a vertex v, we denote by X - 'U the graph 
obtained by deleting the vertex v and any edges incident with 'U. We 
begin by proving the following: 

LEMMA 5.1.1. Every tree with n 2: 2 vertices has at least two leaves. 
Deleting a leaf from an n-vertex tree gives a tree with n - 1 vertices. 

PROOF. A connected graph with at least two vertices has at least 
one edge. Let us consider a maximal path in the graph joining u and 
v (say). Every neighbour of u or v must be member of the path for 
otherwise, this would violate maximality of the path. If u or v had two 
neighbours, we would get cycle. Thus, u and v must be leaves. Now let 
v be a leaf. We will show that X' = X - v is a tree. Clearly, X - v 
is acyclic because deleting a vertex is not going to increase the number 
of cycles. We must show it is connected. Given two vertices in X', let 
P be a path joining them in X which exists because X is connected. 



42 5. TREES 

This path cannot involve v for otherwise v will have degree at least two. 
Therefore, X' is connected .• 

We now give the following characterization of trees. 

THEOREM 5.1.2. Let X be a graph on n vertices. The following are 
equivalent. 

(1) X is a tree. 
(2) X is connected and has n - 1 edges. 
(3) X has n - 1 edges and no cycles. 
( 4) For any u, v E V (X), there is a unique path joining them. 

PROOF. To prove (1) implies (2), we use induction. By the previous 
lemma, let v be a leaf and consider the tree X' = X - v with n - 1 
vertices. By induction, it has n - 2 edges and together with the edge 
joining X' to v, we get a total of n -1 edges. The same argument shows 
that (1) implies (3). To prove that (2) implies (3), let us suppose X 
has a cycle. We may delete edges from any cycle until we get a graph 
X' which is acyclic and has n vertices. But then, X' is a tree and so 
has n - 1 edges. Thus, no edges were deleted from X and X has no 
cycles. We can also show that (3) implies (1) as follows. Let Xl, ... , Xk 
be the connected components of X. Since every vertex appears in one 
component, we have that 

k 

L W(Xi)1 = n. 
i=l 

As X has no cycles, each component is a tree so that IE(Xdl = IV(Xi)l-
1 for each i. Thus, the number of edges of X is n - k. But as X has n-1 
edges, k = 1 and so X has only one connected component. Therefore, X 
is a tree. Finally, we must show the equivalence of (1) and (4). Clearly, 
(1) implies (4) for otherwise X would have a cycle. Conversely, if any 
two points have a unique path joining them, there are no cycles in the 
graph and moreover, X is connected. This completes the proof .• 

5.2. Counting Labeled Trees 

Arthur Cayley (1821-1895) spent 14 years as a lawyer during which 
he published 250 mathematical papers. In total, he published over 900 
papers and notes covering almost every aspect of mathematics. 

A classical result of Cayley states that the number of labeled trees 
on n vertices is nn-2. Despite its simplicity, it is remarkable that there 
is no simple proof of this formula. We apply an inductive argument to 
deduce it. 
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Let G(n, m) be the number of connected graphs on n labeled vertices 
and m edges. Let F(n, m) denote the number of such graphs that have 
no vertices of degree 1. Let A be the set of connected graphs on n 
labeled vertices having m edges. Let Ai be the subset of A of connected 
graphs with vertex Vi of degree 1. Thus, 

F(n, m) = IA\ Ui Ail-

Let us observe that IAil = G(n - 1, m - l)(n - 1) and generally 

IAII = G(n -III,m -III)(n -IIIFI. 
Then, by the inclusion-exclusion principle, we have 

F(n, m) = L (-l)IIIG(n -III, m -III)(n _111)111. 
I~V 

By collecting subsets of the same cardinality in the sum on the right, 
we obtain the following result. 

THEOREM 5.2.1. 
n 

F(n,m) = L(-l)i (~) G(n - i,m - i)(n - i)i. 
t=O 

Theorem 5.1.2 tells us that any connected graph on n vertices and 
n - 1 edges is necessarily a tree. Thus, G(n, n - 1) is the number of 
labeled trees on n vertices. Since every tree has a leaf, we have that 
F(n,n -1) = O. 

THEOREM 5.2.2. If Tn denotes the number of labeled trees on n 
vertices, then 

n 

2)-1)i (~) Tn-i(n - i)i = O. 
t=O 

Now we are ready to prove Cayley's formula. 

THEOREM 5.2.3 (Cayley, 1889). For n 2: 2, 

T n-2 n=n . 

PROOF. We prove the theorem by induction on n. For n ;::::: 2, the 
formula is clear. By induction, Tn- i = (n - i)n-i-2 for i 2: 1. Using 
Theorem 5.2.2, we obtain that 

n 

Tn + L( _l)i (~) (n - 'i)n-2 = O. 
i=l 

By Theorem 3.3.1, the latter sum is _nn-2 from which we deduce the 
theorem .• 
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5.3. Spanning Subgraphs 

A spanning subgraph of a graph X is a subgraph with vertex set 
V(X). A spanning tree is a spanning subgraph which is a tree. Given 
a graph X, we let T(X) denote the number of spanning trees of X. 

In a graph X, the graph obtained by deleting an edge e is denoted 
X-e. In this case, let us note that the vertices of e still belong to X-e. 
It may happen that this process increases the number of components 
of the graph, in which case we call e a cut edge or a bridge. The 
contraction of X by an edge e with endpoints u and v is the graph 
obtained by replacing u and v by a single vertex whose incident edges 
are the edges other than e that were incident to u or v. The resulting 
graph, denoted X / e has one less edge than X. 

THEOREM 5.3.1. If T(X) is the number of spanning trees in X and 
e E E(X) is not a loop, then 

T(X) = T(X - e) + T(X/e). 

PROOF. The spanning trees of X that omit e are counted by T(X -
e). The spanning trees that contain e are in one-to-one correspondence 
with the spanning trees of X/e. To see this, note that when we contract 
e in a spanning tree that contains e, we obtain a spanning tree of X/e 
because the resulting subgraph of X/e is spanning, connected and has 
the right number of edges. Since the other edges maintain their identity 
under contraction, no two trees are mapped to the same spanning tree 
of X / e by this operation. Also, each spanning tree of X arises in this 
way and so the function is a bijection. • 

Recall that the Laplacian of a graph X is the matrix 

L=D-A, 

where A is the adjacency matrix of X and D is the diagonal matrix 
whose (i, i)-th entry equals the degree of vertex i. 

Gustav Robert Kirchhoff (1824-1887) is perhaps best known for the 
Kirchhoff's laws in electrical circuits. These were announced in 1845 
and extended previous work of Georg Simon Ohm (1789-1854). 

A celebrated theorem of Kirchhoff from 1847 gives the number T(X) 
via a determinant formula. This results is also known as the Matrix-Tree 
Theorem. 

THEOREM 5.3.2 (Matrix-Tree Theorem). For any loopless graph X, 
the number of spanning trees T(X) equals (-l)i+j times the determinant 
of the matrix obtained by deleting the i-th row and j-th column of the 
Laplacian matrix L. 
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We will not prove this theorem since it involves detailed linear alge­
bra. We pause to remark that Cayley's theorem can be deduced easily 
from this more general result as follows. The number of trees on a ver­
tex set Vb ... , Vn is the number spanning trees of the complete graph 
Kn. The adjacency matrix of Kn is J - I with notation of the previous 
chapter. Thus, the Laplacian of the complete graph is 

(n - 1)1 - (J - 1) 

and any cofactor is the determinant of (n - 1)In- 1 - (In-l - In-I) 
where we have written the subscript to indicate the size of our matrix. 
By Example 4.2.3 in Chapter 4, we see that this determinant is the 
characteristic polynomial of the graph K n - 1 evaluated at A = n - 1 
which is 

[A - (n - 2)](A + 1)n-2 = nn- 2 

and thus, we recover Cayley's formula. 
Theorem 5.3.2 can be stated in more succinct terms. Recall that 

the classical adjoint of a matrix A, denoted adj(A), is the transpose 
of the matrix whose i, j-th entry is (-1 )i+j times the determinant of 
the matrix obtained from A by deleting the i-th row and j-th column. 
If J denotes (as before) the matrix all of whose entries are equal to 1, 
then Theorem 5.3.2 is equivalent to the assertion that 

adj(L) = T(X)J. 

For example, Cayley's formula can be restated as 

adj(nI - J) = nn-2 J. 

It is not hard to see that 

J2 = nJ J L = LJ = O. , 
These equations imply that (nI - J) (J + L) = nJ - j2 + nL - J L = nL. 
Thus, 

adj(J + L)adj(nI - J) = adj((nI - J)(J + L)) = adj(nL). 

Cayley's formula implies adj(nI -J) = nn-2 J. Also, adj(nL) = nn-1adj(L 
because in the adjoint the entries are formed by taking (n - 1) x (n - 1) 
determinants. We therefore deduce that 

[adj(J + L)]J = nadj(L). 

By Theorem 5.3.2, 
adj(L) = T(X)J 

so we obtain 
[adj(J + L)]J = nT(X)J. 
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Multiplying both sides of the equation by (J + L) on the left gives 

[det(J + L)]J = nT(X)(J + L)J. 

Because (J + L)J = J2 + LJ = nJ, we therefore deduce the next result. 

THEOREM 5.3.3. Let X be a simple graph whose Laplacian matrix 
is L. The number of spanning trees in X is given by 

T(X) = n-2 det(J + L). 

In the case X is a connected k-regular graph, we can derive a nicer 
formula. Recall that the adjacency matrix of X has eigenvalue k. Since 
X is connected, the multiplicity of this eigenvalue is 1. To see this, let 
v = (Xl, ... , xn) be an eigenvector corresponding to the eigenvalue k. 
The equation 

implies that 
Axv = kv 

n 

L aijXj = kXi. 

j=l 

Without any loss of generality suppose that Xl > 0 and that Xl 

maxlSisn Xi· If for some i, Xi < Xl, then 
n 

kXl = L aljXj < kXl 

j=l 

which is a contradiction. Thus, all the Xi are equal and so every eigen­
vector must be a multiple of (1, 1, ... , 1). If X is not connected, the mul­
tiplicity of the eigenvalue is easily seen to be the number of connected 
components. By Theorem 5.3.3, we must compute the determinant 

det(J + kI - A) 

which is just the characteristic polynomial of A - J evaluated at k. The 
eigenvalues of A - J are easily determined. Let VI, ... , Vn be a orthogonal 
basis of eigenvectors of A, with VI a multiple of (1, 1, ... , 1) corresponding 
to the eigenvalue k. Then, for 2 :S i :S n, 

(A - J)Vi = AiVi 

as JVi = O. This is true because VI is orthogonal to the Vi. Also, 

(A - J)Vl = (k - n)vl 

so this determines all the eigenvalues of A - J and their multiplicity. 
The characteristic polynomial of A - J is 

n 

(A - (k - n)) II (A - Ai). 
i=2 



5.4. MINIMUM SPANNING TREES AND KRUSKAL'S ALGORITHM 47 

Putting this together with Theorem 5.3.3 gives 

THEOREM 5.3.4. If X is a connected k-regular graph, then the num­
ber of spanning trees of X is given by 

n 

where the product is over the eigenvalues unequal to k. 

This theorem can, for instance, be used to compute the number of 
spanning trees of the bipartite graph Kn,n (see Exercise 5.5.11). 

5.4. Minimum Spanning Trees and Kruskal's Algorithm 

In many contexts in which graph theory is applied, we consider 
weighted graphs. That is, we suppose we have a graph X together 
with a "weight" function w : E(X)-7ffi.+ that assigns to each edge a 
positive weight. For example, our graph could be a network of cities, 
and the weight function could be the cost of putting a communication 
network between the two cities. We will be interested in finding a con­
nected subgraph so that its total "cost", i.e., the sum of the weights of 
the edges in the subgraph, is minimal. Clearly, if there is a cycle, we can 
delete a 'costly' edge from the cycle and so, what we are searching is a 
spanning tree whose 'cost' is minimal. We call such a tree a minimum 
spanning tree. Of course, it need not be unique. 

There is a fundamental algorithm, called Kruskal's algorithm 
which determines a minimum spanning tree of any connected graph 
in a 'greedy' fashion. It can be described as follows. Choose an edge el 
of X with w( el) minimal. Eliminate it from the list. Inductively choose 
e2, ... , en-l in the same manner subject to the constraint that the newly 
chosen edge does not form a cycle with previously chosen edges. The re­
quired spanning tree is the subgraph with these edges. Before we prove 
that this greedy algorithm actually works, we illustrate this with an 
example. 

Consider the following weighted adjacency matrix giving the cost 
of building a road from one city to another. An infinite entry indicates 
there is a mountain in the way and a road cannot be built. The question 
is to determine the least cost of making all the cities reachable from each 
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other. This amounts to finding a spanning tree with minimum "length". 

A B C D E 
A 0 3 5 11 9 
B 3 0 3 9 8 
G 5 3 0 00 10 
D 11 9 00 0 7 
E 9 8 10 7 0 

The algorithm proceeds first by finding an edge of minimum weight, 
AB say. It then deletes this edge. In the next step, the algorithm finds 
the next smallest entry, BG say. The algorithm continues in this way 
and whenever an edge is chosen which produces a cycle, the algorithm 
does not select it. Thus, in the example below, AG is the next smallest 
entry but we would not choose it for it produces a cycle with AB and 
BG. 

Thus the next entry to choose is DE followed by BE. Thus the 
minimum spanning tree is given in Figure 5.2. The minimum 'cost' is 
21. 

D 

A B c 

E 

FIGURE 5.2. A minimum spanning tree of weight 21 

THEOREM 5.4.1. In a weighted connected graph X, Kruskal's algo­
rithm constructs a minimum weight spanning tree. 

PROOF. Kruskal's algorithm produces a tree since it selects n - 1 
edges which do not form cycles from a connected graph on n vertices. 
Let T be the tree produced by the algorithm and let T* be a minimum 
weight spanning tree. If T = T*, we are done. If not, let e be the first 
edge chosen for T that is not in T*. Adding e to T* creates a cycle G 
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since T* is a spanning tree. Because T contains no cycles, we deduce 
that the cycle C must contain at least one edge e' not in E(T). Now 
consider the subgraph T* + e - e' of X obtained from T* by adding the 
edge e and removing the edge e'. The subgraph T* + e - e' is actually 
a spanning tree of X because it has n - 1 edges and contains no cycles. 
Since T* contains e' and all the edges of T chosen before e, it means that 
both e' and e are available when the algorithm chooses e and therefore, 
w( e) :S w( e'). Thus, T* + e - e' is a spanning tree with weight at most 
that of T* (actually with the same weight as T* since T* is a minimum 
weight spanning tree) that agrees with T for a longer initial list of edges 
than T* does. Repeating this process, we deduce that the tree created 
by Kruksal's algorithm has the same weight as T* which finishes the 
proof .• 

5.5. Exercises 

EXERCISE 5.5.1. Prove that in any tree, every edge is a bridge. 

EXERCISE 5.5.2. Let X be a connected graph on n vertices. Show 
that X has exactly one cycle if and only if X has n edges. Prove that 
a graph with n vertices and e edges contains at least e - n + 1 cycles. 

EXERCISE 5.5.3. Let d1, d2 , ... , dn be positive integers. Show that 
there exists a tree on n vertices with vertex degrees d1 , d2, ... , dn if and 
only if 

n 

Ldi = 2n - 2. 
i=l 

EXERCISE 5.5.4. The number of trees with degree sequence d1 , ... , dn 

with d1 + ... + dn = 2n - 2 is 

( n - 2) (n - 2)! 
d1-l, ... ,dn-l - (d1-l)! ... (dn-l)!· 

EXERCISE 5.5.5. Show that if X is a tree on n labeled vertices, then 
each element of {X - e : e E E(X)} is a forest of two trees. 

EXERCISE 5.5.6. Let T and T' be two distinct trees on the same set 
of n vertices. Show that for each edge e E E(T) \ E(T'), there exists 
e' E E(T') \ E(T) such that T \ {e} U {e'} is a tree. 

EXERCISE 5.5.7. Let Tn be the number of trees on n labeled vertices. 
Prove that 

n-l 

2(n - l)Tn = L (7) TiTn-ii(n - i). 
z=l 
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EXERCISE 5.5.8. Show that 

~ (7 ) ii-l (n - i)"- i-l ~ 2(n - l)nn-'. 

EXERCISE 5.5.9. Let G(r, S; m) be the number of connected bipartite 
graphs with partite sets of size rand shaving m edges, and let F( r, S; m) 
be the number of such graphs not containing any vertices of degree 1. 
Prove that 

F(r,s;m) = L. C) G)(-l)i+jG(r-i,S-j;m-i- j )(S-j)i(r-i)j. 
t,) 

EXERCISE 5.5.10. Putting m = r + s - 1 in the previous exercise, 
notice that G(r, S; r + s -1) counts the number T(r, s) (say) of spanning 
trees in the bipartite graph Kr,s. Deduce that 

and that T(r, s) = r s - 1 sr-l. 

EXERCISE 5.5.11. Show that the number of spanning trees of the 
bipartite graph Kn,n is n2n-2. 

EXERCISE 5.5.12. The Wiener index of a graph X is W(X) = 
Lu,vEV(X) d(u,v), where d(u,v) denotes the distance from u to v. Show 
that if X is a tree on n vertices, then 

EXERCISE 5.5.13. A communication link is desired between five uni­
versities in Canada: Queen's, Toronto, Waterloo, McGill and UBC. 
With obvious notation, the matrix below gives the cost (in thousands 
of dollars) of building such a connection between any two of the univer­
sities. 

Q T W M U 

Q 350 400 300 1200 
T 350 100 600 1300 
W 400 100 700 1400 
M 300 600 700 1600 
U 1200 1300 1400 1600 

Use the greedy algorithm to determine the minimal cost so that all 
universities are connected. 
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EXERCISE 5.5.14. Every tree with maximum degree d has at least 
d leaves. Construct a tree with n vertices and maximum degree d for 
each n > d :2 2. 

EXERCISE 5.5.15. Let X be a graph on n :2 3 vertices such that by 
deleting any vertex of X, we obtain a tree. Find X. 

EXERCISE 5.5.16. Show that every connected graph X contains at 
least two vertices u with the property that X \ {u} is connected. What 
are the trees on n vertices that contain exactly two vertices with this 
property? 

EXERCISE 5.5.17. Show that the graph obtained from Kn by remov­
ing one edge has (n - 2)nn-3 spanning trees. 

EXERCISE 5.5.1S. Let Gn be the graph obtained from the path Pn by 
adding one vertex adjacent to all the vertices of the path Pn . Determine 
the number of spanning trees of Gn . 

EXERCISE 5.5.19. If G is a graph on n vertices having maximum 
degree k :2 2 and diameter D, show that 

{
2D + 1, if k = 2 

n:5: k[(k-1)D_1] 
k-2 + 1, otherwise. 

EXERCISE 5.5.20. The center of a graph X is the subgraph induced 
by the vertices of minimum eccentricity. Show that the center of a tree 
is a vertex or an edge. 



CHAPTER 6 

Mobius Inversion and Graph Colouring 

6.1. Posets and Mobius Functions 

August Ferdinand Mobius (1790-1868) introduced the function which 
bears his name in 1831 and proved the well-known inversion formula. 
He was an assistant to Carl Friedrich Gauss (1777-1855) and made im­
portant contributions in geometry and topology. The Mobius function 
is very important tool not only in combinatorics, but also in algebra 
and number theory. 

A poset is a pair (P,::;) with P a set and::; a relation on P (that 
is, a subset of P x P) satisfying 

(1) x ::; x for all x E P (reflexive property); 
(2) x ::; y and y ::; x implies x = y (antisymmetric property); 
(3) x ::; y, y::; z implies x ::; z (transitive property). 

We call :S a partial order on P. If x :S y and x -I y, we sometimes 
write x < y. An interval [x, z] consists of elements of yEP satisfying 
x ::; y ::; z . A poset P is called locally finite if every interval is finite. 
We say y covers x if x ::; y and the interval [x, y] consists of only two 
elements, namely, x and y. The Hasse diagram of (P,::;) is given by 
representing elements of P as points in the Euclidean plane, joining x 
and y by a line whenever y covers x and putting y "higher" than x on 
the plane. 

Here are some examples of posets. 

(1) If 5 is a finite set and we consider the collection P(5) of all 
subsets of 5, partially ordered by set inclusion, is a locally finite 
poset. 

(2) If N is the set of natural numbers, we can definite a partial 
order by divisibility. Thus, a ::; b if and only if alb. It is easily 
verified that this is a partial order. 

(3) If 5 is a finite set we consider II(5), the collection of partitions 
of 5. Given two partitions ex and (3 we say ex ::; (3, if every 
block of ex is contained in a block of (3. We sometimes refer to 
ex as a refinement of (3. 
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(4) If V(n, q) is the n-dimensional vector space over the finite field 
of order q, we can consider the poset of its subspaces partially 
ordered by inclusion. 

(5) We can define a partial order on the elements of the symmetric 
groups Sn as follows. Let a E Sn. A permutation r E Sn is 
said to be a reduction of a if r(k) = a(k) for all k except for 
k = i, j where we have a( i) > a(j) with i < j. We will write 
TJ :S a if we can obtain TJ by a sequence of reductions from 
a. This is called the Bruhat order on the symmetric group 
which makes Sn into a poset. 

Given two posets (PI, :Sl) and (P2 , :S2), we can define their direct 
product as (PI x P2 , :S), with partial order 

(Xl, yd :S (X2' Y2) if Xl:S1 X2, and Yl:S2 Y2· 

If X and yare not comparable in P, we sometimes write X i y. Let 
F be a field and denote by I(P) the set of intervals of P. The incidence 
algebra I(P, F) is the F-algebra of functions 

f : I(P) --t F 

where we define multiplication (or convolution) by 

(fg)(x, y) = L f(x, z)g(z, y). 
x5.z5.y 

Here we are writing f(x, z) for f([x, z]). Given a locally finite poset P, 
its Mobius function IL is a map 

IL:PXP--tZ 

defined recursively as follows. We set IL(X, y) = 0 if X i y. Otherwise, 
we define it by the recursion 

L IL(X, z) = 6(x, y) 
x5.z5.y 

where6(x, y) = 1 if X = Y and 0 otherwise. Observe that this equation 
can be written in "matrix form" as follows. 

Define the zeta function of P by ((x, y) = 1 if x :S y and zero 
otherwise. If for the moment, we assume P is finite, and we list our 
elements in some sequence Zl, ... , Zn say. The matrix Z whose (i, j)­
th entry is ((Zi,Zj) and the matrix M whose (i,j)-th entry is IL(Zi,Zj) 
satisfy M Z = I. This follows from the above recursion for IL. Thus, M 
is the inverse of the matrix Z. Since the inverse is both a left inverse as 
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well as a right inverse, we deduce that ZM = I which means 

L f.L(z , y) = J(x , y) . 
x'5.z'5.y 

THEOREM 6.1.1 (Mobius Inversion for Posets, Version 1). Let (P,:S) 
be a locally finite poset and suppose that f : P ---t R is given by 

f(x) = Lg(y)· 
y'5.x 

Then 
g(x) = L f.L(y , x)f(y), 

y'5. x 

and conversely. 

PROOF. We have that 

L f.L(y, x) L g(z) = L g(z) L f.L(y, x) = g(x) 
y'5.x 

as required. The converse is left as an exercise .• 

THEOREM 6.1.2 (Mobius Inversion for Posets, Version 2). Let (P,:S) 
be a locally finite poset and suppose that 

f(x) = L g(y). 
y?x 

Then, 

g(x) = L f.L(x , y)f(y), 
y?x 

and conversely. 

PROOF. As before, 

L f.L(x , y) L g(z) = L g(z) L f.L(x , y) = g(x) , 
y?x z?x 

as required. The converse is left as an exercise .• 

6.2. Lattices 

Given a poset (P, :S), we say z is a lower bound of x and y if 
z :S x and z :S y. Any maximal element of the set of lower bounds for 
x and y is called a greatest lower bound. Such elements need not 
be unique as simple examples can show. The notions of upper bound 
and least upper bound are similarly defined. A lattice L is a pair 
(L,:S) such that (L,:S) is a poset and the greatest lower bound and 
least upper bound exist for any pair of elements x and y. We denote 
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the greatest lower bound of x and y by x 1\ y and least upper bound by 
x V y. For example, in the poset of the reals with the usual ordering, 
x 1\ y is min(x, y) and x V y is max(x, y). In the poset of the natural 
numbers partially ordered by divisibility, x 1\ y is gcd(x, y), the greatest 
common divisor of x and y and x V y is lcm(x, y), the least common 
multiple of x and y. In the poset of subsets of a set S partially ordered 
by set inclusion, x 1\ y is x n y and x V y is xU y. 

Two posets (P1 ,::;d and (P2 , ::;2) are said to be isomorphic if there 
is a one-to-one and onto map f : P1 ---'t P2 such that x ::;1 y if and only 
if f(x) ::;2 f(y)· 

Let S be a set of n elements and consider the poset P(S) of subsets 
of S. Let I = {O, I} be the two element poset defined by 0 < 1. One 
can show easily that P(S) and In are isomorphic. For each subset A of 
S we define f(A) to be the characteristic vector of A. It is then easily 
verified that this is the required isomorphism. 

This observation allows us to compute the Mobius function of P(S) 
very easily. Indeed, it is not hard to verify that if (P1,::;d and (P2, ::;2) 
are two locally finite posets, then the Mobius function of P1 x P2 is given 
by 

Now, the Mobius function for I is easily seen to be given by 

Thus, the Mobius function for In is given by 

and using the isomorphism between P(S) and In given above, we deduce 
that 

J.L(A, B) = (_l)IBI-IAI. 

The Mobius inversion formula for sets now reads as: 

THEOREM 6.2.1. If 

then 

and conversely. 

F(A) = L G(B), 
A<;;;B 

G(A) = L (-l)IBI-IAIF(B), 
A<;;;B 
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We can specialize this to deduce the inclusion-exclusion principle. 
Indeed, suppose we have a set A with subsets Ai with i E I. We would 
like to derive a formula for the size of 

A\ Ui Ai' 

For each subset J of I, we let F (J) be the number of elements of A 
which belong to every Ai for i E J. Let G(J) be those elements which 
belong to every Ai for i E J and to no other Ai for i tf. J. Clearly, 

F(K) = L G(J). 
J~K 

By Mobius inversion, we obtain 

G(K) = L JL(K, J)F(J). 
nK 

What we seek is G(0). Because F(J) = I niEJ Ail, we retrieve the 
principle of inclusion and exclusion. Thus, the Mobius inversion formula 
is a vast generalization of this important principle. 

6.3. The Classical Mobius Function 

Let us consider the lattice D(n) of divisors of a natural number n. 
By the unique factorization theorem, we see that if 

n = p~l ... p~k, 

with Pi'S being distinct primes, then 

D(n) ~ D(p~l) '" D(p~k). 

Thus, in order to determine the Mobius function of D(n), it suffices to 
determine for D(pa) for primes p. We observe that JL(pi,pi) is 1 if i = j, 
is -1 if i = j - 1 and 0 otherwise. By the product theorem, the Mobius 
function for D(n) is easily computed: JL(a, b) = 0 unless alb in which 
case it is the classical Mobius function JL(b/a) defined as follows: JL(n) 
is zero unless n is square-free in which case it is (_l)k, where k is the 
number of prime factors of n. The Mobius inversion formula for the 
lattice of natural numbers partially ordered by divisibility is now seen 
as an immediate consequence of the general inversion formula. 

One immediate application of the Mobius inversion formula is to 
count the number cjJ( n) of natural numbers less than n which are coprime 
to n. We see immediately that 

cjJ(n) = L JL(d)n/d. 
din 
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There are many applications of the inversion formula in counting prob­
lems. For instance, let us look at the following celebrated example. If 
we have an infinite supply of beads of ). colours, in how many ways can 
we make a necklace of n beads? Clearly, any necklace can be thought 
of as a sequence (aI, ... , an), where we identify any cyclic permutation 
of the sequence as giving rise to the same necklace. We will say that a 
necklace is primitive of length n if for no divisor d < n it is not ob­
tained by repeating n/d times a necklace of length d. We say a necklace 
has period d if it is obtained by repeating J times a primitive neck­
lace of length d. With these notions, we can count first the number of 
sequences to be ). n. On the other hand, each sequence corresponds to 
some primitive necklace of period d which must necessarily divide n. If 
we let M(d) be the number of primitive necklaces of length d, we have 
d places from which to start the sequence and so we obtain 

By Mobius inversion, we get 

M(n) = ~ L p,(d).n/d. 
n 

din 

Now the total number of necklaces is 

LM(d). 
din 

This can be simplified further. We have 

L L ~p,(a).b = L ~b p,~a) = L ~b L p,(a)/a. 
de=n ab=d abe=n bin ae=n/b 

The inner sum is easily seen to be ¢(n/b)/(n/b). Thus, the final formula 
is 

6.4. The Lattice of Partitions 

Let S be a finite set and II(S) the collection of its partitions. We 
make II(S) into a poset as follows. Recall that the components of a 
partition are called blocks (or equivalence classes). We say a ::; (3 if (3 
refines the a. That is, each block of a is a union of blocks of (3. For 
example, 

a = {1,2}{3,4,5} ::; {1}{2}{3,5}{4} = (3. 
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It is easy to verify that this poset is a lattice with minimal element ° 
given by the partition consisting of one block containing all the elements 
of 8. The maximal element 1 is given by the partition consisting of 
singleton sets. Thus, the "greater" the partition, the larger the number 
of blocks. 

We would like to determine the Mobius function of this lattice. To 
this end, let us define b(o;) to be the number of blocks of the partition 
0;. Let us fix a partition (3 with m blocks. If 0; ::; (3, then every block 
of 0; is a union of blocks of (3 and it is then clear that if we view (3 as a 
set of its blocks, then 

[0, (3] ~ II ((3) , 

which will be useful in the computation of the Mobius function. 
Let x be an indeterminate. For each partition 0; define g( 0;) to be 

the polynomial (X)b(a)' Then, 
m 

L g(o;) = L (X)b(a) = L 8(m, k)(X)k = xm = x b(;3) 

a <;,;3 a <;';3 k=l 

by a calculation from Chapter 2. By Mobius inversion, 
m 

by a calculation done (again) in the Chapter 2. Identifying the coeffi­
cients of xk of both sides of the identity above gives 

s(m, k) = 

a<;';3,b(a)=k 

Taking k = 1 gives 
s(m, 1) = p,(0, (3). 

Thus, the value of the Mobius function p,(0, (3) depends only the number 
of blocks in (3, namely b((3). But recall that (-1)m- 1s(m,1) is the 
number of permutations of 8m with exactly one cycle in their disjoint 
cycle decomposition. The number of such permutations is (m - I)!. 
Thus, we have proved that: 

THEOREM 6.4.1. For the lattice of partitions II(8) of an n element 
set, we have 

We will now count the number of connected labeled graphs on n 
vertices. To this end, let us observe that any graph induces partition 
on the vertices given by its connected components. For each partition 
(3 of the n vertices, let g((3) be the number of graphs whos8 partition 
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of connected components is finer than (3. Let f((3) be the number of 
graphs whose partition of connected components is equal to (3. Clearly, 

g((3) = L f(a). 
a?.l3 

By Mobius inversion, we get 

f((3) = L p,((3, a)g(a). 
a?f3 

What we want to determine is f(O). But this is 

f(O) = L p,(0, a)g(a). 

6.5. Colouring Graphs 

Graph colouring is one of the main topics in graph theory. We de­
scribe here some connections between this subject and Mobius inversion. 
More details regarding graph colouring will appear in Chapter 10 and 
Chapter 11. 

Given a map M in the plane, let PM()..) be the number of ways of 
colouring !vI properly using).. colours. We say that a colouring is proper 
if no two adjacent regions receive the same colouring. If r(M) is the 
number of regions of the map, then the number of arbitrary colourings 
using ).. colours is clearly ).."·(M). Given any such colouring, we may 
"refine" it to get a proper colouring of a unique "submap" obtained 
by deleting the common boundary between the regions with the same 
colour. It is also clear that we may define a partial ordering on the set 
of "submaps" of M in the obvious way. Thus, we obtain 

)..r(M) = L PA()..). 
AC:;M 

By applying Mobius inversion on this poset of submaps, we obtain 

PM()..) = L p,(A, M) .. r(A). 

AC:;M 

This remarkable formula also shows that the number of ways of colour­
ing the map M using only ).. colours is given by a polynomial in ).. of 
degree equal to the number of regions. This is not at all an obvious fact 
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and yet by the theory of Mobius inversion, we were able to deduce it 
immediately. 

The same result can be derived for colouring graphs. If X is a graph 
and P X (A) is the number of properly colouring the vertices of X using 
A colours, then we may derive a similar formula as follows. If X has 
n(X) vertices, the number of arbitrary colourings of X using A colours 
is An(X). Any such colouring can be refined to give a proper colouring 
of a subgraph obtained by contracting any two adjacent vertices that 
received the same colouring. The collection of subgraphs is a poset in 
the obvious way and thus, by Mobius inversion we see that 

pX(A) = L J.L(A, X)An(A), 
A~X 

which is again a polynomial in A of degree equal to the number of vertices 
of the graph. 

The scheduling problem is really a colouring problem. Suppose 
in a university we are to schedule exams so that no student has a time 
conflict. We construct a graph whose vertices are the courses for which 
we must schedule an exam. We join two vertices if the corresponding 
courses have a common student. The colours correspond to time slots 
and a proper colouring of the graph means that we assign time slots so 
that no student has a conflict. 

Recall that given a graph X and an edge e by X/e we mean the 
contraction of X by e which means we create a new graph where the 
two vertices of e are identified. 

THEOREM 6.5.1. Let X be a simple graph and let pX(A) be the num­
ber of ways of properly colouring X using A colours. If e is an edge, then 

pX(A) = PX-e(A) - PX/e(A). 

PROOF. Clearly, any proper colouring of X is also a proper colouring 
of X-e. Thus, we look at all proper colourings of X - e and remove 
from this number those which are not proper colourings of X. This 
latter number corresponds to the situation where the two vertices of e 
get the same colour in X-e. But this corresponds to a proper colouring 
of X/e .• 

Since X - e and X / e have at least one less edge than X, we see 
immediately by induction that pX(A) is a polynomial in A. However, a 
more precise theorem can be derived. 

THEOREM 6.5.2. The polynomial pX(A) has degree n = IV(X)I and 
integer coefficients alternating in sign and beginning as 

pX(A) = An - IE(X)IAn- 1 + ... , 
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where IE(X)I is the cardinality of the edge set. 

PROOF. We prove this by induction on the number of edges of X. 
The claim holds trivially if IE(X)I = 0 for then px()..) = )..n. By induc­
tion, we may write 

and 
-PX/e()..) = _)..n-1 + b1)..n-2 - ... 

where a2, ... and b1, ... are non-negative integers by the induction hy­
pothesis. Adding these two equations gives 

and the theorem is proved .• 

Based on this result, we call px()..) the chromatic polynomial of 
X. This polynomial was introduced by George David Birkhoff (1884-
1944) in 1912 as an attempt to attack the four-colour conjecture (now 
theorem). Showing that px(4) > 0 for any planar graph X is equivalent 
to the four-colour theorem. 

For the complete graph K n , the chromatic polynomial is easily seen 
to be 

)..().. - 1)().. - 2)··· ().. - (n - 1)). 

When we expand this as a polynomial in ).., we obtain 

n 

L s(n, k))..k 
k=O 

and the numbers s(n, k) are the Stirling numbers of the first kind. 
From our theorem, we see that the s(n, k) alternate in sign. Recall 
that Is(n, k)1 is the number of permutations of the symmetric group Sn 
with exactly k cycles in its unique factorization as a product of disjoint 
cycles. 

The chromatic number x(X) of the graph X is the smallest positive 
integer m so that px(m) > O. The chromatic number of the complete 
graph Kn is clearly n. For the cycle graph en, the chromatic number 
is 2 or 3 according as n is even or odd. The four colour theorem is 
the assertion that the chromatic number of any graph obtained from a 
planar map is 4. 

One can get a trivial bound for the chromatic number which is easily 
seen to be sharp in the cases of the complete graph and the odd cycles. 
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THEOREM 6.5.3. Let b.(X) denote the maximum degree of any ver­
tex in a simple graph X. Then 

x(X) ::; 1 + b.(X). 

PROOF. We use a greedy colouring by colouring the vertices in the 
order 1,2, ... ,n assigning to i the smallest-indexed colour not already 
used by its neighbours j < i. 

Each vertex i will have at most b. neighbours j < i so this colouring 
will not use more than b. + 1 colours .• 

As our remarks indicate, this theorem is sharp. However, a famous 
theorem of Brooks, proved in 1941, states that these are the only two 
counterexamples and if we exclude them, we have a sharper bound. 

THEOREM 6.5.4 (Brooks, 1941). If X is connected and not a com­
plete graph or an odd cycle, then 

x(X) ::; b.(X). 

The proof of this theorem is rather complicated and we will skip it 
here. 

6.6. Colouring Trees and Cycles 

Theorem 6.5.1 can be used to determine the chromatic polynomial 
of trees. In fact, any tree T has a leaf v (say). Let e be the unique edge 
containing vertex v. We have that 

PT()..) = PT-e()..) - PT/e()..)· 

Since T - e has two connected components, namely an isolated vertex 
and a tree with one less edge than T, we see that an inductive argument 
easily shows: 

THEOREM 6.6.1. Let T be a tree with n vertices. Then 

PT()..) = )..().. - l)n-l. 

PROOF. We apply induction on n and note that in the remark pre­
ceding the statement of the theorem, T / e is a tree on n - 1 vertices. 
Thus, induction gives 

• 
COROLLARY 6.6.2. The chromatic number of a tree is 2. 
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Theorems 6.5.1 and 6.6.1 can be used to determine the chromatic 
polynomial of the cycle en on n vertices. Deleting an edge from the 
cycle gives a tree on n vertices and contracting an edge gives a cycle on 
n - 1 vertices. Thus, by an inductive argument we deduce: 

THEOREM 6.6.3. The chromatic polynomial of the cycle en is 

(>. - lY' + (-IY'(>' - 1). 

In particular, the chromatic number of en is 2 or 3 according as n is 
even or odd. 

PROOF. For n = 3, we verify the theorem directly: 

>.(>. - 1)(>' - 2) = (>. - 1)3 - (>. - 1). 

For the general case, by the remark preceding the theorem and the 
induction hypothesis, we get 

which is easily seen to be the stated expression .• 

It is rather remarkable that the converse of Theorem 6.6.1 also holds. 
That is, if X is a graph with chromatic polynomial px(>') = >'(>'_I)n-l, 
then X is a tree. To see this, first note that if X consists of connected 
components Xl, X 2 , ... then the chromatic polynomial of X is just the 
product of the chromatic polynomials of the connected components. 
Secondly, any chromatic polynomial has>. = 0 as a root. This can be 
seen in several ways. An immediate way to see it is to say that the num­
ber of ways of colouring a map using zero colours is zero. Another way 
is to see it is via an inductive argument from the contraction deletion 
Theorem 6.5.1. Thus, the order of the zero at >. = 0 is at least equal to 
the number of connected components. Since the zero is of order 1 in our 
case, the graph is connected. In addition, the number of edges is n - 1 
which can be seen from computing the coefficient of the second term. 
Thus, X is connected and has exactly n - 1 edges and so by Theorem 
5.1.2, X is a tree. This proves: 

THEOREM 6.6.4. If X has chromatic polynomial >.(>. - l)n-l, then 
X is a tree on n vertices. 

There are other classes of graphs except trees that are not isomor­
phic but share the same chromatic polynomial. An easy way to con­
struct such graphs is by using the following theorem. 
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THEOREM 6.6.5. Let X and Y be two graphs whose intersection is 
a complete graph K r . Then 

pX(A) . PY(A) 
PXUY(A) = A(A - 1) ... (A - r + 1) 

We leave the proof of this theorem as an exercise. 

6.7. Sharper Bounds for the Chromatic Number 

We will now connect eigenvalues of the adjacency matrix of a graph 
with its chromatic number. As preparation to this end, we will review 
the notion of Rayleigh-Ritz quotient or ratio from linear algebra. 

Let A be a real symmetric matrix. If x = (Xl"'" xn)t and Y = 
(YI,'" ,Yn)t are two n by 1 column vectors, then the inner product 
(x, y) is defined as Xl YI + ... + XnYn' For any non-zero column vector v, 
we call (Av, v)/( v, v) the Rayleigh-Ritz quotient of v and denote it by 
R(A, v). Denote by Amax and Amin the largest and smallest eigenvalues 
of A respectively. Then 

and 

Amax = max (Av, v) 
#0 (v, v) 

. (Av, v) 
Amin = mm ( ). 

v#O v,v 
To see this, observe that if U denotes the matrix whose columns form 
an orthonormal basis of eigenvectors of A, then we may write 

A = UDU t , 

where D is a diagonal matrix whose diagonal entries are the eigenvalues 
of A. Thus, 

As each of the terms I(UtV)iI 2 is non-negative, 

Amin L 1 (UtV)i 12 S vt Av S Amax L 1 (UtV)i 12. 
i 

Since U is an orthogonal matrix, we have 

Thus, if v =f. 0, 

L I(UtV)iI 2 = L IVil 2 = vtv. 
i 

(Av, v) 
Amin S ( ) S Amax. V,V 
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The inequalities are easily seen to be sharp by considering the eigen­
vectors corresponding to Amax and Amin respectively, which proves our 
assertion. This result is usually referred to as the Rayleigh-Ritz theorem 
in the literature. 

If X is a graph, let us denote Amax(X) and Amin(X) to be the largest 
and smallest eigenvalues of the adjacency matrix Ax of X. We also say 
that X' is a subgraph of X if V(X') ~ V(X) and E(X') ~ E(X). We 
begin by proving: 

THEOREM 6.7.1. If X' is a subgraph of X, then 

Amax(X') :S Amax(X); Amin(X') 2: Amin(X). 

If Ll(X) and i5(X) denotes the maximal and minimal degrees of X, then 

i5(X) :S Amax(X) :S Ll(X). 

PROOF. The first part of the theorem is proved as follows. By rela­
beling the vertices, we may assume that the adjacency matrix A of X 
has a leading principal submatrix Ao which is the adjacency matrix of 
X'. Let Zo be chosen so that Aozo = Amax(Ao)zo and (zo, zo) = 1. Let 
z be the column vector with IV(X)I rows formed by adjoining zero to 
entries of zo0 Then, 

Amax(Ao) = R(Ao, zo) = R(A, z) :S Amax(A). 

Thus, Amax(Ao) :S Amax(A). The other inequality is proved in a similar 
way. For the second part, let u be a column vector each of whose entries 
is 1. Then, if n = IV(X)I and di is the degree of vertex Vi, we have 

1 1 
R(A, u) = - L aij = - L di 2: i5(X). 

n .. n. 
X,) z 

But the Rayleigh quotient R(A, u) is at most Amax(A) and so 

Amax(X) 2: i5(X). 

For the other inequality, let V be an eigenvector corresponding to the 
eigenvalue AO = Amax(X). Let Xj be the largest positive entry of v. 
Then, 

* 

where the * on the summation means we sum over the vertices adjacent 
to Vj. This proves the theorem .• 

We will now relate the chromatic number to the largest eigenvalue 
of the adjacency matrix of X. To this end, we say a graph is t-critical if 
X(X) = t and for all proper vertex subgraphs U of X, we have X(U) < t. 
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LEMMA 6.7.2. Suppose X has chromatic number t 2': 2. Then X has 
at-critical subgraph U such that every vertex of U has degree at least 
t - 1 in U. 

PROOF. The set of all vertex subgraphs of X is non-empty and con­
tains some graphs (for instance, X itself) that have chromatic number t. 
Let U be a vertex subgraph of X whose chromatic number is t which is 
minimal with respect to the number of vertices. Clearly, U is t-critical. 
Moreover, if v E V(U), then the vertex subgraph whose vertex set is 
V(U)\v is a vertex subgraph of U and has a vertex colouring with t-1 
colours. If the valency of v in U were less than t - 1, then, we could 
have extended this vertex colouring to U contradicting X(U) = t .• 

The previous lemma has the following important consequences. 

THEOREM 6.7.3 (Szekeres-Wilf 1968). If X is a graph, then 

X(X) :::; 1 + max5(Y). 
n;;x 

PROOF. By Lemma 6.7.2, there is a vertex subgraph U of X whose 
chromatic number is X(X) and 5(U) 2': X(X) - 1. Thus, we have 

X(X) :::; 1 + o(U) :::; 1 + max 5(Y). 
y<;;x 

• 
By a slight modification of the previous proof, we also get the fol­

lowing result. 

THEOREM 6.7.4 (Wilf, 1967). For any graph X, we have 

X(X) :S 1 + Amax(X). 

PROOF. As before, there is a vertex subgraph U of X whose chro­
matic number is X(X) and 5(U) 2': X(X) - 1. Thus, by Theorem 6.7.1, 
we have 

x(X) :::; 1 + 5(U) :::; 1 + Amax(U) :::; 1 + Amax(X), 

as desired .• 

6.8. Sudoku Puzzles and Chromatic Polynomials 

The Sudoku puzzle has become a very popular puzzle that many 
newspapers carry as a daily feature. The puzzle consists of a 9 x 9 
square grid in which some of the entries of the grid have a number from 
1 to 9. One is then required to complete the grid in such a way that 
every row, every column, and everyone of the nine 3 x 3 sub-grids 
contain the digits from 1 to 9 exactly once. The sub-grids are shown 
below. 
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II I I II I I II I I Ii 

II I I I I II I I II 

II I I I I II I I II 
For anyone trying to solve a Sudoku puzzle, several questions arise nat­
urally. For a given puzzle, does a solution exist? If the solution exists, 
is it unique? If it is not unique, how many solutions are there? More­
over, is there a systematic way of determining all the solutions ? How 
many puzzles are there with a unique solution ? What is the minimum 
number of entries that can be specified in a single puzzle to ensure a 
unique solution? For instance, the next figure shows that the minimum 
is at most 17. We leave it to the reader to show that the puzzle below 
has a unique solution. It is unknown if a puzzle with 16 specified entries 
exists that yields a unique solution. 

We reinterpret the Sudoku puzzle as a vertex colouring problem in 
graph theory. We associate a graph with the 9 x 9 Sudoku grid as 
follows. The graph will have 81 vertices with each vertex corresponding 
to a cell in a grid. Two distinct vertices will be adjacent if and only if 
the corresponding cells in the grid are either in the same row, or same 
column, or the same sub-grid. Each completed Sudoku square then 
corresponds to a proper colouring of this graph. We put this problem in 
a more general and formal context. Consider an n2 x n2 grid. To each 
cell in a grid, we associate a vertex labeled (i, j) with 0 ::; i, j ::; n 2 - 1. 
We will say that (i, j) and (if, j') are adjacent if i = if or j = j' or 
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l * J ~ l ~ J and l * J = l * J. Recall that l x J is the largest integer less 
than or equal to a. We will denote this graph by Xn and call it the 
Sudoku graph of rank n. An easy computation shows that Xn is a 
regular graph having degree 3n2 - 2n - 1. In the case n = 3, X3 is 
20-regular and in case n = 2, X 2 is 7-regular. 

A Sudoku square of rank n will be a proper coloring of this graph 
using n 2 colours. 

THEOREM 6.8.1. For every natural number n, the chromatic number 
of the Sudoku square Xn is n 2 . 

PROOF. It is easy to see that we need at least n 2 colours because 
the n 2 vertices of the same row or column create a complete subgraph 
of order n 2 . For 0 ::; i ::; n 2 - 1, write i = tin + di , where 0 ::; ti ::; n - 1 
and 0 ::; di ::; n - 1. Colour the vertex corresponding to the cell (i, j) of 
the Sudoku square by the colour din + ti + ntj + dj , reduced modulo n 2 . 

We leave it as an exercise for the reader to show that this is a proper 
colouring of Xn with n 2 colours .• 

A Sudoku puzzle corresponds to a partial colouring of Xn and the 
question is whether this partial colouring can be completed to a total 
proper colouring of the Sudoku graph Xn with n 2 colours. Given a 
partial proper colouring C of a graph G), one can show that the number 
of ways of completing this colouring to obtain a proper colouring with 
A colours, is a polynomial in A, provided that A is greater than or equal 
to the number of colours used in C . We leave this as an exercise. 

It is not obvious at the outset if a given puzzle has a solution. Also, 
it is always clear whether or not a puzzle has a unique solution. An 
obvious necessary condition to have a unique solution is that the partial 
Sudoku square must contain at least 8 distinct numbers from {I, ... ,9}. 
This is not sufficient as the square below has exactly two solutions. The 
proof of this fact is left as an exercise. 
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6.9. Exercises 

EXERCISE 6.9.1. Show that the five examples from the first are ac­
tually posets. 

EXERCISE 6.9.2. Draw the Hasse diagram for 83 with the Bruhat 
order and determine completely the Mobius function of this poset. 

EXERCISE 6.9.3. If 

G(x) = L F(x/n) 
n::;x 

prove that 

F(x) = L J.L(n)G(x/n). 
n::;x 

EXERCISE 6.9.4. Show that 

L J.L(n) [x/n] = 1 
n::;x 

where [x] denotes the greatest integer less than x. 

EXERCISE 6.9.5. Let (PI, :Sl) and (P2, :S2) be two locally finite 
posets. Show that 

EXERCISE 6.9.6. Let (P,:S) be a finite poset. For a E P, we will 
denote by 1 a the set {x E P : x :s a} and i a the set {x E P : a :s 
x}. We say that P is linearly ordered if any two elements of Pare 
comparable. Show that any partial ordering of P can be extended to a 
linear ordering as follows. View the poset (P,:S) as a subset R of P x P 
satisfying the axioms: (1) (a, a) E R, (2) (a, b) E Rand (b, a) E R 
implies a = band (3) (a, b) E R, (b, c) E R implies (a, c) E R. A linear 
order can be regarded as a subset R' of P x P which has the additional 
property that for any a, bE P either (a, b) E R' or (b, a) E R'. Let now 
a, b be incomparable in (P, :S). Put R' = R u (1 ax i b). Verify that 
R' is a partial order of P in which (a, b) E R'. Deduce that any partial 
ordering of P can be extended to a linear ordering. 

EXERCISE 6.9.7. Six different television stations are applying for 
channel frequencies and no two stations can use the same frequency if 
they are within 150 miles of each other. If the distances between the 
stations A, B, C, D, E and F are given by the matrix below, find the 
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minimal number of frequencies needed. 

A B C D E F 
A 85 175 200 50 100 
B 85 125 175 100 160 
C 175 125 100 200 250 
D 200 175 100 210 220 
E 50 100 200 210 100 
F 100 160 250 220 100 

EXERCISE 6.9.8. Prove that the sum of the coefficients of the chro­
matic polynomial of a graph X is zero unless X has no edges. Show 
that the coefficients of pX(A) alternate in sign. 

EXERCISE 6.9.9. If Xl"'" Xt are the components of X, then 

t 

pX(A) = IIpxi(A). 
i=l 

If pX(A) is the chromatic polynomial of a graph X, show that we can 
write it as AC f(A) where f(O) of. 0 and c is the number of connected 
components of X. 

EXERCISE 6.9.10. The join of two graphs X and Y is defined as the 
graph obtained by joining every vertex of X to every vertex of Y. We 
denote this graph by X V Y. Show that X(X V Y) = X(X) + X(Y). 

EXERCISE 6.9.11. The wheel graph is KI V Cn. That is, the wheel 
graph is the cycle graph together with a vertex at the 'center' which is 
connected to all the vertices of Cn. Determine the chromatic polynomial 
of the wheel graph. Show also that 

EXERCISE 6.9.12. Let pX(A) be the chromatic polynomial of a con­
nected graph X of order n. Show that 

if n ~ 3. 

EXERCISE 6.9.13. Compute the chromatic polynomial of the graph 
in Figure 6.l. 

EXERCISE 6.9.14. Prove Theorem 6.6.5. 
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FIGURE'6,l 

EXERCISE 6.9.15. Let X be a graph with n vertices, e edges and 
maximum degree ~. Show that 

Amax ~ max (~, VK). 
When does equality occur ? 

EXERCISE 6.9.16. Let G be a graph with n vertices and let C be a 
partial proper colouring of t vertices of G using k colours. If PG,c(A) 
denotes the number of ways of completing this colouring using A colours 
to a proper colouring of G, then prove that PG,c(A) is a polynomial in 
A with integer coefficients of degree n - t for A ~ k. 

EXERCISE 6.9.17. Show that the chromatic number of a graph X 
satisfies 

x(X)::; 1 + ~. 
EXERCISE 6.9.18. Let Gn be the graph whose vertex set is [2n] = 

{I, 2, ... , 2n} and where (i,j) is an edge if and only if i and j have a 
common prime divisor. Show that the chromatic number of Xn is at 
least n. 

EXERCISE 6.9.19. The Kneser graph K(n, k) is the graph whose 
vertices are all the k-element subsets of [n]. Two k-subsets are adjacent 
in K (n, k) if and only if they are disjoint. Show that the Petersen graph 
(Figure 10.2) is isomorphic to K(5, 2) and that x(K(n, k)) ::; n - 2k+ 2. 
The chromatic number of K(n, k) actually equals n - 2k + 2 as proved 
by Laszlo Lovasz in 1978, but this is a more difficult result. 

EXERCISE 6.9.20. Let c(X) denote the number of components of the 
graph X and for F S;;; E(X), denote by X[F] the spanning sub graph of 
X with edge set F. Show that 

pX(A) = L (_1) 1F1 Ac(X[F]). 

F~E(X) 



CHAPTER 7 

Enumeration under Group Action 

7.1. The Orbit-Stabilizer Formula 

Let G be a group and X a set. We say G acts on X if there is 
a map G x X ---t X (usually denoted by (g, x) I---t 9 . x) satisfying the 
following axioms for all x EX: 

(1) 1· x = x, where 1 denotes the identity of G; 
(2) (gh)· x = g. (h· x) for all g, hE G. 

Here are a few examples. 

(1) If G is a group and H is a subgroup, let X be the set of left 
cosets of H in G. Then G acts on X via g(aH) = (ga)H. 

(2) If G is a group and we let X be G itself, then G acts on itself 
via conjugation: g. x = gxg- l . 

(3) Let p be prime and G = Z/pZ be the additive group of residue 
classes [a] mod p. Let X be the set of all p-tuples (Xl, X2, ... , xp) 
where Xi E {I, 2, ... , n}. Since G is cyclic, it suffices to define 
how [1] acts on X. We put 

[1]· (XI,X2, ... ,Xp) = (xp,xI, ... , xp-d. 

In other words, [1] acts like a shift operator, shifting the co­
ordinates by one component. 

(4) Let n be a natural number and G = Z/nZ. Let X be the set 
of all n-tuples (Xl , ... , x n ) where Xi E {I, 2, ... , A}. We define 

[1]· (XI,X2, ... ,Xn ) = (xn,xI, ... ,xn-d. 

We can view the set X as all the possible "necklaces" formed 
by using beads of A colours. This perspective will be useful in 
later applications. 

It will be convenient to simplify our notation slightly. Instead of 
writing 9 . x, we will simply write gx, when it is clear that 9 E G and 
X E X. An action of G on X determines an equivalence relation on X 
as follows. Namely, we will write X rv y if there is an element 9 E G 
such that gx = y. Thus, if gx = y then x = g-ly and y rv x. Since 
Ix = x, this means that x rv x. Also, it is easy to check that x rv y and 
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y rv Z implies x rv z. Therefore, rv defines an equivalence relation on 
X. Consequently, we can partition X into equivalence classes, which we 
call orbits. More precisely, if we use the notation Gx to signify the set 

{gx : 9 E G} 

then it is clear that the equivalence classes consist of sets of the form 
GXi for various Xi'S. 

If G and X are finite, it is natural to ask how many elements are 
there in each orbit and how many equivalence classes there are. We 
begin with the first question. We begin by listing the IGI elements 

(7.1.1) gx: 9 E G 

and ask how many times an element gets repeated. Indeed, gx = hx if 
and only if h-1gx = x, that is if and only if h-1g fixes x. 

This leads to the notion of the stabilizer of x, denoted Gx , and 
defined as the set of elements of G fixing x. It is easy to see that the 
stabilizer of x is a subgroup of G for any x E X. In the context above, 
we see that gx = hx if and only if h-1g lies in Gx . In other words, 
gx = hx if and only if gGx = hGx' Thus, in the listing (7.1.1), each 
element is repeated the same number of times, namely IGxl times so that 
the number of distinct elements is [G : Gx ]. As the set X is partitioned 
into its orbits, we see that there are elements Xi'S so that 

X = l:.J~=lGxi' 

For each subgroup H of G we define fix(H) to be the set of H-fixed 
points of X. That is 

fix(H)={XEX: hx=x VhEH}. 

If 9 E G, we simply write fix(g) for the set of elements fixed by the 
subgroup generated by g. From the above relation, we separate those 
Xi'S for which GXi consists of singleton sets. In other words, we obtain: 

THEOREM 7.1.1 (Orbit-Stabilizer formula). If G is a finite group 
acting on a finite set X, we have 

IXI = Ifix(G)I + L [G: GxJ 
Gx ; =l=G 

This formula is of central importance in mathematics and has nu­
merous applications. For instance, in the case a group G acts on itself 
via conjugation, we get: 
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COROLLARY 7.1.2 (The class equation). Let G act on itself via con­
jugation. Let Z(G) = {g : gx = xg, Vx E G} denote its center and 
C(x) = {g E G : gx = xg} be the centralizer of x in G. Then, 

IGI = IZ(G)I + L [G: C(x)]. 
xr;f.Z(G) 

PROOF. We see immediately that x is a G-fixed point if and only 
if x E Z ( G). Moreover, the stabilizer of any element x is C (x). The 
formula is now immediate from the orbit-stabilizer formula applied to 
this specific case. • 

If we apply the orbit-stabilizer formula to Example 3 above, we see 
that on one hand, we have nP elements in X and on the other, the set 
of fixed elements is easily seen to be of size n. Now every summand in 
the sum is p since Z/pZ has no non-trivial subgroups. We recover the 
following result: 

THEOREM 7.1.3 (Fermat's little theorem). If p is a prime number, 
then p divides nP - n for each integer n. 

A less trivial application by considering the following situation. Let 
G be a group of order n and consider 

X={(XI, ... ,Xp): xI···xp =1, Xi EG}. 

The size of X is n P- 1 since we may choose each of Xl, ... , Xp-l in n ways, 
then xp is uniquely determined by the equation 

Xl··· Xp = 1. 

We let the additive group Z/pZ act on X by setting 

[1] . (Xl, ... , Xp) = (xp, Xl, ... , Xp-l). 

Note that the set of fixed points consists of elements (x, X, ... , x) with 
xP = 1. If p is a prime divisor of n, the orbit-stabilizer formula imme­
diately gives that the number of fixed points is divisible by p. Since 
fix( G) =1= 0 (why?), it follows that G has an element of order p. This is 
usually referred to as Cauchy's theorem. We record this as: 

COROLLARY 7.1.4 (Cauchy, 1845). If G is a group of order nand p 
is a prime dividing n, then G has an element of order p. 

However, much more is true. Cauchy's theorem was generalized by 
Peter Ludwig Sylow (1832-1918) in 1872. Almost all work on finite 
groups use Sylow's theorems. The class equation enables us to deduce 
the first Sylow theorem, namely: 
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COROLLARY 7.1.5 (Sylow's First Theorem). lfG is a group of order 
nand pk is a prime power dividing n, then G has a subgroup of order 
pk. 

PROOF. We proceed by induction on tGt. If tGt = 2, the theorem 
is true. 

Let tGt = prm, where r 2': k and m and p are coprime. If x E G and 
pk divides iC(x)i, then we are done by induction. 

Otherwise, because every summand in the sum occurring in the 
class equation is divisible by p, we deduce that p divides the order of 
the center Z(G). By Cauchy's theorem, Z(G) has an element x of 
order p. The subgroup generated by x in G is normal since x E Z(G). 
The quotient G / (x) has order divisible by pk-1 and by induction has a 
subgroup H/(x) of order pk-1. By the correspondence theorem, H is a 
subgroup of G of order pk, as desired .• 

We remark that all of the Sylow theorems can be derived by consid­
ering appropriate group action. Recall the notion of a p-Sylow subgroup. 
If pk is the largest power of a prime number p dividing the order of G, 
and P is a subgroup of order pk, we call Pap-Sylow subgroup of G. 
The normalizer of a subgroup H of Gis N(H) = {g: 9 E G,gHg- 1 = 

H}. 

COROLLARY 7.1.6 (Sylow'S Second Theorem). Let G be a finite 
group of order nand Pap-Sylow subgroup of G. Let X be the set 
of p-Sylow subgroups of G and let P act on X via conjugation. Then, 
P is the only fixed point under this action. Thus, the number of p­
Sylow subgroups is == 1 ( mod p) and all of the p-Sylow subgroups are 
conjugates of P. Moreover, any p-subgroup of G is contained in some 
conjugate of P. 

PROOF. Suppose Q is another p-Sylow subgroup fixed by P. Then, 
gQg-1 = Q for all 9 E P. Take x E P\Q. Then, x is in the normalizer 
N(Q). But N(Q) contains Q and the coset xQ is not Q. As the quotient 
N(Q)/Q has order coprime to p, the coset xQ has order k coprime to 
p. Thus, for some k, xk E Q with (k,p) = 1. But x has order equal 
to some prime power pb (say). So we can find integers u, v so that 
ku + pbv = 1. Hence, x = Xku+pbv E Q, contrary to hypothesis. As 
the set X is partitioned into orbits under the action of P, we deduce 
immediately that the number of elements of X is == 1 (mod p). Now let 
Y be the set of conjugates of P. Let H be a p-subgroup of G. Then H 
acts on Y. If H fixes an element Q of Y, then H is in the normalizer 
of Q .. If H is not contained in Q, then the argument above gives us a 
contradiction. Thus every p-subgroup H is contained in some conjugate 
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of P. In particular, if H is another p-Sylow subgroup, this means that 
it is conjugate to P. This completes the proof .• 

A p-group is a group whose order is a power of p where p is a prime 
number. We remark that any p-group G has subgroups of all orders 
dividing IGI. Indeed, the class equation implies the non-triviality of 
the center. By Cauchy's theorem, we may take an element z in the 
center of order p and consider the quotient G/(z). By induction, this 
has subgroups of all orders dividing IGllp which by the correspondence 
theorem give subgroups of the required order in G. For an arbitrary 
group G, and any prime power pt dividing IGI, we deduce that G has 
subgroups of order pt. Moreover, one can show that the number of these 
subgroups is == 1( mod p), but we leave this as an exercise. 

Given a finite group G of order n, and a subgroup H of G, we 
can partition G into the cosets of H from which we see Lagrange's 
theorem, namely that the order of any subgroup is a divisor of the 
order of G. The converse is not true, as is seen by considering the 
alternating group A4 on 4 letters. These are the even permutations of 
84 and one can list the elements: 

(1), (1 2) (34), (1 3) (24), (14) (23), (123), (1 32), (1 24), (142) 

(234),(243),(341),(314). 

If A4 had a subgroup H of order 6, then this subgroup is necessarily 
normal which means that the square of any element of A4 lies in H. In 
particular, the square of any 3-cycle 9 is in H. But 9 = (g2)2 lies in 
H so that all 3-cycles must lie in H, a contradiction since there are 8 
3-cycles. The virtue of Sylow theory is that it shows that the converse 
of Lagrange's theorem holds for prime powers dividing the order of the 
group. 

7.2. Burnside's Lemma 

It is possible to derive a formula for the number of equivalence classes 
under a group action. This is called Burnside's lemma as William Burn­
side (1852-1927) wrote about it in 1900. The result was known before 
Burnside mentioned it as it appears in the works of Augustin Louis 
Cauchy (1789-1857) in 1845 and of Ferdinand Georg Frobenius (1849-
1917) in 1887. 

We will apply the next result to the problem of counting necklaces 
encountered in the previous chapter. 
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THEOREM 7.2.1 (Burnside's lemma). If G is a finite group acting 
on a set X, the number of equivalence classes is 

1 
TGT L Ifix(g)l· 

gEG 

In other words, the number of equivalence classes is the average number 
of fixed points. 

PROOF. The equivalence class of an element x of X is the orbit of x. 
Thus, if w(x) is l/IGxl, we see that the number of equivalence classes 
is 

L w(x). 
xEX 

On the other hand, this is 

111 L a lGxl = aLL 1 = aLL 1. 
xEX I I I I xEX gEGx I I xEX gEG: gx=x 

By interchanging the sum, we find this is 

1 1 
TGT L L 1 = TGT L lfix(g)I· 

gEG xEX:gx=x gEG 

This completes the proof .• 

COROLLARY 7.2.2. The number of conjugacy classes in a group is 

1 
TGT L IC(g)l· 

gEG 

PROOF. The number of fixed points of g EGis precisely IC(g)l .• 

Let us apply this to the problem of counting necklaces. Each neck­
lace of length n formed out of beads of A colours can be viewed as a 
sequence (al' ... , an) with ai E {1, 2, ... A}. Two necklaces are considered 
the same if the two sequences representing them are the same after a 
shift. In other words, Z/nZ acts on the sequences and the number of 
necklaces is precisely the number of equivalence classes under this ac­
tion. Now, how many fixed points does an element r of Z/nZ have? A 
sequence (al' ... , an) is fixed r if and only if 

for all t and all i. In other words, 

for all i and all u lying in the subgroup generated by r in Z/nZ. Since 
Z/nZ is cyclic, any subgroup is also cyclic so the number of fixed points 
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of r is >..n/o(r) where oCr) is the order of r mod n. Recall that in any 
cyclic group of order n, the number of elements of order din is precisely 
cjJ( d). Thus, the number of necklaces is 

7.3. P6lya Theory 

George P6lya (1887-1985) was one of the most influential mathe­
maticians of the 20th century. 

The action of a group G on a set X can be viewed as a map 

G --+ Sym(X) 

where we send each element g E G to the permutation x 1--+ gx since 
gx = gy implies x = y by the axioms of action. In this way, we may 
view each element of G as a permutation and so we can consider its 
cycle decomposition as a product of disjoint cycles. Suppose g has Cl 

cycles of length 1, C2 cycles of length 2 ... , Cn cycles of length n where 
n = IXI. The cycle index of g is defined to be the monomial 

X CI X C2 xCn 
1 2'" n 

which we symbolically denote by x g . The cycle index of G is defined 
to be the polynomial 

Pc(x) = I~I L x g . 
gEC 

The situation can be looked at in another way. If G acts on X and we 
have a map f : X --+ Y, we may view Y as a set of colours. Then, the 
action of G on X induces an action of G on Map(X; Y), the set of maps 
from X to Y as follows: 

(g. f)(x) = f(g-Ix). 

It is important to check that this is indeed an action: we have for x EX, 

On the other hand, 

as desired. Burnside's lemma immediately implies the following. 
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THEOREM 7.3.1 (P6Iya). Let X and Y be finite sets and G act on 
X. The number of orbits of G on Map(X; Y) zs 

1 00 

TGT L ck(G)IYlk, 
k=l 

where Ck (G) is the number of elements of G with exactly k disjoint cycles 
in their cycle decomposition. 

REMARK 7.3.2. Notice that this number is simply Pc(lYl, IYI, ... ). 
PROOF. To apply Burnside's lemma, we must count the number of 

fixed points of an element 9 on Map(X; Y). That is, we must count 
the number of maps f : X -7 Y such that 9 f = f· This means that f 
is constant on each orbit of g. The number of orbits is the number of 
disjoint cycles in the cycle decomposition of g. We may assign values of 
f arbitrarily on each orbit, so the final count is given as stated in the 
theorem .• 

If we let Y denote the set of A colours of beads, and X denotes 
the set {1,2, ... ,n}, then a sequence (al, ... ,an ) of length n can then 
be viewed as a map f from X to Y. As the group Z/nZ acts on the 
co-ordinates in the obvious way by shifting, this induces an action on 
Map(X; Y). We see then that the maps that correspond to distinct 
necklaces are equivalence classes of maps under this induced action. 

We can retrieve our result about the necklace count from the pre­
vious section in the following way. First, we must determine the cycle 
structure of a residue class r viewed as a permutation. Clearly, all orbits 
have the same length and if o( r) denotes the order of r, then each orbit 
has size o(r) and the number of disjoint cycles is n/o(r). Hence, the 
number of elements of Z/nZ with exactly k cycles is zero unless kin, in 
which case it is the number of elements of order n/k. The number of 
such elements is ¢(n/k), as we saw before. 

Now suppose we have the dihedral group Dn acting on the necklace 
sequences. Thus, if we present Dn as 

(r, f : rn = 1,12 = l,Jr f = r-1). 

We could try to count the number of equivalence classes by using Burn­
side's formula. To use Burnside's formula, we have to count the number 
of fixed points of each element of Dn. It is better to use the cycle in­
dex polynomial to determine the number of equivalence classes. We 
illustrate this as follows. 

Firstly, let us have a geometric view of the dihedral group. It is 
to be viewed as the group of symmetries of a regular n-gon. If we fix 
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any vertex, and bisect the interior angle subtended at that vertex, we 
can view the element f as the flip of the polygon about this axis. We 
can view the elements frj as flips about the axis determined by the 
other points. If n is odd, each of these elements fixes one vertex and 
transposes pairs of vertices which are mirror images about that axis. 
Thus, the cycle structure of frj is that it is a product of one one-cycle 
and (n - 1) /2 transpositions. Thus, in the case of n odd, the cycle index 
polynomial is easily seen to be 

~ (~""-(d) n/d + (n-l)/2) 
~ ~~ ~ nXl~ . 

din 

Now we consider the case n even. As noted above, there are two axes of 
symmetry. The elements frj with j odd correspond to flipping through 
an axis through a vertex. In this case, it is seen that the opposite vertex 
is also fixed. In this way, we see the cycle decomposition is a product of 
(n - 2)/2 transpositions and 2 I-cycles. If j is even, there are no fixed 
points and the cycle decomposition of frj is simply a product of n/2 

transpositions. In this case, the cycle index polynomial is 

~ (~""-(d) n/d +?:: 2 (n-2)/2 +?:: n/2) 
2n ~~ Xd 2X1X2 2 X2 ' 

din 

P6lya's theorem now tells us that the number of equivalence classes of 
maps is Pc()..,).., ... ) where).. is the number of elements ofY. This shows: 

THEOREM 7.3.3. Under the action of the dihedral group, the number 
of distinct necklaces of length n formed using beads of).. colours is 

~ (I: ¢(n/d) .. d + )..(n+l)/2) 
din 

if n is odd and 

~ (L:¢(n/d) .. d + ~)..(n+2)/2 + ~)..n/2) 
din 

if n is even. 

We conclude this section with one application of P6lya theory to 
chemistry. It seems that the historic origins of the theory are rooted in 
problems arising in chemistry. 

The methane molecule has chemical composition CH4 where C de­
notes a carbon atom and H is a hydrogen atom. This molecule has 
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tetrahedral shape and the H4 indicates that there are 4 atoms of hy­
drogen in the molecule positioned at the vertices of the tetrahedron, 
with the carbon atom at the centroid. The problem is to determine 
how many different molecules can be formed by replacing the hydrogen 
atoms with one of bromine, chlorine or fluorine. This question can be 
re-interpreted in the context of the colouring problems considered by 
P6lya theory. 

Indeed, the group of symmetries of the regular tetrahedron is A4 , 

the alternating group on 4 letters. To see this, observe that we can 
rotate the tetrahedron about the center of any face and each of these 
correspond to 3-cycles, one for each face. This gives us a total of 8 3-
cycles in the group of symmetries. There is one more symmetry given by 
a rotation by 180 degrees about the axis joining the center of opposite 
sides. This is easily seen to be a product of two transpositions and there 
are 3 such permutations. Together with the identity, we have the full 
group of symmetries. 

It is now straightforward to write down the cycle index polynomial 
of the action of A4 on the vertices of the regular tetrahedron. From the 
discussion above, we have 

1 ( 4 2) 
PA4(Xl,X2,X3,X4) = 12 xl + 8XlX3+ 3x2 . 

The number of different molecules is then seen to be PA4 (3,3,3,3) 
15. If the group of symmetries are not taken into account, we have 
34 = 81 ways of placing the atoms of bromine, chlorine or fluorine at 
the vertices of the tetrahedron. However, many of them clearly give the 
same molecule. 

We make a few additional remarks concerning P6lya's theorem. In 
the special case that G = Sn acting on the set {I, 2, ... , n} in the usual 
way, the cycle index polynomial PSn ().., ••. )..) is 

1 n , L Is(n, k)l)..k 
n. 

k=O 

where the s(n, k)'s denote the Stirling numbers of the first kind. This 
represents the number of ways of colouring n indistinguishable objects 
(or balls) using).. colours. This is related to a problem treated earlier by 
simpler methods. Indeed, this is the same as asking in how many ways 
we may put n indistinguishable balls into ).. boxes. This is the same as 
the number of solutions of 

Xl + X2 + ... + X>. = n 
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with the Xi'S non-negative integers. In either interpretation, it is easily 
seen that the number of ways is 

( n+A-l). 
A-I 

Indeed, if we first consider a collection of n distinguishable balls and 
we throw into this collection A-I indistinguishable "sticks", then the 
number ways we can arrange these objects is clearly 

(n + A - I)!. 

However, A-I of these objects are identical and can be permuted in 
(A - I)! ways and so we get our result. Now if we say the balls are also 
indistinguishable, then we can permute these among themselves in n! 
ways. In this way, we retrieve an earlier formula, namely, 

n 

(A + n - l)(A + n - 2) .. · A = L Is(n, k)IAk. 
k=O 

If we change A to - A, we get 
n 

(A)n = L s(n, k)Ak. 
k=O 

Two further applications of the P6lya theory are amusing. The game 
of tic-tac-toe involves a 3 x 3 grid in which the players place alternately 
X or 0 until a row, column or diagonal of the same symbols are placed 
and the game is over. It is interesting to consider how many possible 
configurations can be seen at any given moment during a game. Or 
even, one may ask how many possible outcomes are there. This in its 
generality is too difficult to answer. We will consider a simpler problem. 
Namely, in how many ways can we colour a 3 x 3 grid using three colours. 
We can see that the cyclic group of order 4 operates by rotation on such 
a grid. If we label the grid as 

1 2 3 
6 5 4 

7 8 9 

then a clockwise rotation r is represented by the permutation 

(1397)(2486)(5) 

whereas r2 is given by 

(19 )(2 8 )(3 7 )(6 4 )(5). 
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Note that r3 has the same cycle structure as r and so we easily see that 
the cycle index polynomial is 

1 ( 9 2 4) P(XI, ... ,xg) = 4" Xl + 2XIX4 + XIX2 . 

A simple calculation shows that the number of colourings with three 
colours is 4995. Of course, some of these never can represent the final 
outcome or the shape of the grid during the game. For such a compu­
tation, one needs a finer P6lya theory with weights, which we do not 
consider here. 

Let us now consider the problem of colouring the faces of the cube 
using .\ colours. To do this, we begin by considering the group of sym­
metries of the cube. These can be classified as follows. 

(1) the identity element; 
(2) rotation by 90 degrees about the axis joining the center of two 

opposite faces; 
(3) rotation by 180 degrees about the same axis; 
(4) rotation by 180 degrees about the axis joining the midpoints 

of two diagonally opposite edges; 
(5) rotation by 120 degrees about the axis determined by the di­

agonal of the cube. 

If we think of these symmetries as acting on the faces, and write down 
the cycle structure, we obtain the following: 

(1) 1 element of type 16 ; 

(2) 6 elements of type 1241 ; 

(3) 3 elements of type 1222; 
( 4) 6 elements of type 23 ; 

(5) 8 elements of type 32 . 

Thus, we see the group of symmetries has order 24. One can easily see 
that this group is isomorphic to 84. We can immediately write down 
the cycle index polynomial for 84 acting on the faces of the cube from 
the above analysis: 

PS4 (X1, ""X6) = 214 (x~ + 6xix4 + 3xix~ + 6x~ + 8x~). 
By P6lya's theorem, the number of ways of colouring the faces of the 
cube using .\ colours is 

~ (.\6 + 12.\3 + 3.\4 + 8.\2) 24 . 

In particular, there are 10 ways of colouring the faces of the cube using 
2 colours. 
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7.4. Exercises 

EXERCISE 7.4.1. Show that the examples from the first section are 
actions of groups. 

EXERCISE 7.4.2. Let G be a finite group acting on a finite set X. 
For each 9 E G, define O"g(x) = g. x for each x E X. Show that O"g is a 
permutation of X. 

EXERCISE 7.4.3. Show that the map 

9 f-t 0" 9 

is a group homomorphism from G into Sym(X) which is the group of 
permutations of the set X. 

EXERCISE 7.4.4. Let G be a group acting on a set X and H a group 
acting on a set Y. Assume that X and Yare disjoint and let U = XuY. 
For 9 E G, hE H , define 

(g, h) . x := g. x if x E X 

and 
(g , h) . y : = h . y if y E Y. 

Show that this defines an action of G x H on U. 

EXERCISE 7.4.5. Determine the number of ways in which four cor­
ners of a square can be coloured using two colours. It is permissible to 
use single colour on all four corners. 

EXERCISE 7.4.6. In how many ways can you colour the four corners 
of a square using three colours ? 

EXERCISE 7.4.7. If X = [3], define an action of 8 3 on X by 0" • i = 
O"(i) for i E X and 0" E 83 . Calculate the cycle index polynomial 
PS3 (Xl, X2, X3). 

EXERCISE 7.4.8. In how many ways can you colour the vertices of 
an equilateral triangle so that at least two colours are used ? 

EXERCISE 7.4.9. What is the number of graphs on 4 vertices? What 
is the number of nonisomorphic graphs on 4 vertices ? 

EXERCISE 7.4.10. Let G and H be finite groups acting on finite sets 
X and Y. Assume that X and Y are disjoint. By Exercise 7.4.3, we can 
define an action of G x H on Xu Y. If Pc and PH indicate the cycle 
index polynomials of G acting on X and H acting on Y respectively, 
show that the cycle index polynomial of G x H acting on XuY is Pc PH . 
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EXERCISE 7.4.11. How many striped flags are there having six stripes 
(of equal width) each of which can be coloured red, white or blue? 

EXERCISE 7.4.12. What if we change the number of stripes to nand 
the number of colours to q ? 

EXERCISE 7.4.13. Let Sn acting on the set X = [n] in the usual way 
(as in Exercise 7.4.1). Let PSn be the cycle index polynomial. Prove 
that PSn is the coefficient of zn in the power series expansion of 

exp(zxl + z2 X2 /2 + z3 X3 /3 + ... ). 
EXERCISE 7.4.14. We say that a E Sn has cycle type (Cl,"" cn) 

if a has precisely Ci cycles of length i in its unique decomposition as 
a product of disjoint cycles. Show that the number of permutations of 
type (CI, C2,··· ,cn ) is 

n! 
1C1Cl!2C2C2! ... nCnen!' 

EXERCISE 7.4.15. Let Pn denote the path on n vertices. What is 
the automorphism group Aut(Pn ) of Pn ? 

EXERCISE 7.4.16. What is the cycle index polynomial of Aut(Pn ) 

acting on the vertex set of Pn ? 

EXERCISE 7.4.17. In how many ways can we colour the vertices of 
Pn using). colours, up to the symmetry of Aut(Pn ) ? 

EXERCISE 7.4.18. Consider the graph X on 5 vertices obtained from 
the complete graph K5 by deleting two edges incident to the same ver­
tex. What is the automorphism group Aut(X) of X ? 

EXERCISE 7.4.19. Let X be the graph from Exercise 7.4.18. What 
is the cycle index polynomial of Aut(X) acting on the vertex set of X ? 

EXERCISE 7.4.20. In how many ways can we colour the vertices of 
X using). colours, up to the symmetry of Aut(X) ? 



CHAPTER 8 

Matching Theory 

8.1. The Marriage Theorem 

A matching of a graph X is a collection of edges of X which are 
pairwise disjoint. The vertices incident to the edges of a matching Mare 
saturated by M. A perfect matching is a matching that saturates 
all the vertices of X. 

Given a bipartite graph X with bipartite sets A and B , we would 
like to know when there is a matching such that each element of A is 
matched to an element of B uniquely, i.e., a matching that saturates A. 
Thus, a matching is a one-to-one map f : A----+B such that (a,J(a)) is 
an edge of the bipartite graph X . 

This question arises in many "real life" contexts: A could be a set 
of jobs a company would like to fill and B could be a set of candidates 
applying for the jobs. We would join a E A to b E B if b is qualified 
to do job a. Then the matching question is whether all the jobs can be 
filled. In another example, A could be a set of patients and B could be 
a set of drugs. Some patients being allergic to certain drugs, one would 
like to match each patient to a drug the patient is not allergic to such 
that each drug is taken by at most one subject. 

This question was formulated in "matrimonial terms" and solved by 
Philip Hall (1904-1982) in 1935. His theorem goes under the appellation 
of the 'marriage theorem'. Suppose we have a set of n girls and n 
boys. We would like to match each girl to a boy she likes. Under what 
conditions can we match all the girls? We can encode this information 
as a bipartite graph X, with A being the set of girls, B the set of boys. 
We join vertex a E A to b E B if a likes b. Clearly, for a matching to 
be possible, each girl must like at least one boy. If we have a situation 
where two girls like only one boy, then we have a problem and the 
matching question cannot be solved. 

More generally, a necessary condition is that for any subset 8 of A, 
if we let N (8) be the set of boys liked by some girl in 8, then we need 
IN(8)1 ~ 181. Hall's theorem is that this obvious necessary condition 
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is also sufficient. This is one of the simplest, yet powerful, theorems in 
mathematics with far-reaching applications. 

THEOREM 8.1.1 (Marriage Theorem). Let X be a bipartite graph 
with partite sets A and B. There exists a matching that saturates A if 
and only if for every subset 5 of A, we have 

IN(5)1 ~ 151 

where N(5) is the set of neighbours of 5. 

PROOF. The proof is by induction on the number of vertices in A. 
The base case IAI = 1 is trivial since a matching that saturates A 
consists of one edge in this case. Assume now that IAI ~ 2. 

First suppose that 

IN(5)1 ~ 151 + 1 

for every proper subset 5 of A, i.e., a subset 5 c A with S i- 0 and 
5 i- A. By deleting one edge ab of X with a E A, b E B (together 
with the incident vertices a and b) we obtain a bipartite graph Y with 
parts A' = A \ {a} and B' = B \ {b}. In this graph, our partite set 
A' = A \ {a} has fewer elements than A. Every subset 5 of A' satisfies 
Hall's condition IN(5)1 ~ 151 and by induction there is a matching that 
saturates A' in Y. Together with the deleted edge xy, we obtain a 
matching in X that saturates A. This finishes the proof of this case. 

If the condition 

IN(5)1 ~ 151 + 1 

is not satisfied for all proper subsets of A, then for some proper subset 
50 of A, we have 

IN(50)1 = 1501. 

The subgraph Xl with partite sets 50 and N(50 ) satisfies Hall 's con­
dition and so by induction, we have a matching MI that saturates 50 
in Xl' The subgraph X 2 with partite sets A \ 50 and B \ N(50 ) also 
satisfies Hall's condition for if some subset C ~ A \ 50 is such that 

(where the notation NX2(C) refers to the neighbours of C in X 2 ) then 

INx(So U C)I :s INx (50)1 + INx2(C)1 < 1501 + ICI 

contrary to Hall's condition. It follows that there is a matching M2 that 
saturates A \ 50 in X 2 . We deduce that MI U M2 is a matching of X 
that saturates A. This completes the proof .• 
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8.2. Systems of Distinct Representatives 

Suppose S is a finite set and AI, ... , An are subsets. When is it 
possible to choose n distinct elements ai, ... , an with ai E Ai? The 
marriage theorem answers this question. 

THEOREM 8.2.l. A system of distinct representatives ai, ... , an with 
ai E Ai can be chosen from a collection AI, ... , An of subsets of a set S 
if and only if 

IUiE1 Ai l2: III 
for every subset I of {I, ... ,n}. 

PROOF. Consider the bipartite graph X with partite sets A and B. 
The vertices of A correspond to the subsets Ai (1 :S i :S n) and the 
vertices of B are the elements of S. We join Ai in A to a vertex aj E B 
if and only if aj E Ai. Choosing a set of distinct representatives is 
equivalent to finding a matching in X and the condition of the theorem 
is precisely Hall's condition .• 

COROLLARY 8.2.2. In a bipartite graph X with partite sets A and 
B there is a matching of A if fOT some k, we have deg (a) 2: k for all 
a E A and deg (b) :S k for all b E B. 

PROOF. We verify Hall's condition. For any subset S of A, at least 
klSI edges emanate from S. Since deg (b) :S k for all b E B, these edges 
must be incident with at least 

l (klSI) = lSI 
vertices of B. • 

EXAMPLE 8.2.3. At a party, if every boy knows at least k girls and 
every girl knows at most k boys, then it is possible to match every boy 
with a girl he knows. 

EXAMPLE 8.2.4. A Latin square is an n x n array on n symbols 
such that every symbol appears in each row and each column exactly 
once. For instance, the multiplication table for a finite group of order 
n would be an example of a Latin square. A l' X n Latin rectangle 
is a l' x n matrix on n symbols such that every symbol appears once in 
each row and at most once in each column. The first l' rows of a Latin 
square form a l' x n Latin rectangle. 

A classical question is to determine if given a l' x n Latin rectangle 
that uses the symbols {I, 2, ... , n}, it is possible to complete it to give 
a Latin square. The marriage theorem allows us to deduce that we 
can always do this. We construct a bipartite graph as follows. Let Ai 
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be the set of elements of [n] not used in the i-th column. Choosing a 
system of distinct representatives for the Ai'S would allow us to add one 
more row that can be inductively completed to produce a Latin square. 
This can be done if Hall's condition is satisfied. However, the bipartite 
graph with partite sets A consisting of the Ai'S and B consisting of the 
elements of [n] and we join A to b E B if and only if b E Ai has the 
property that deg (Ai) = n-r for all i. Clearly, deg (b) = n-r because 
each entry has been used exactly once for each row. By Corollary 8.2.2, 
we are done. 

A pair of Latin squares (aij) and (bij ) are called orthogonal if the 
n 2 pairs (aij, bij ) are all distinct. For example, the two Latin squares 
on two elements 

(i ~) 
are not orthogonal since the pair matrix 

( 
(1,2) 
(2,1) 

is not a matrix of distinct entries. 

(2,1) ) 
(1,2) 

In the 1780's, Euler showed how to construct n x n orthogonal 
Latin squares when n is odd or divisible by 4. He also conjectured that 
one cannot construct a pair of orthogonal Latin squares for all n == 2 
(mod 4). The case n = 6 is also known as the thirty-six officers 
problem. It asks if it is possible to arrange 6 regiments of 6 officers 
each of different ranks in 6 x 6 square so that no rank or regiment will 
be repeated in a ·row or column. In 1900, Gaston Tarry (1843-1913) 
proved that this problem has no solution by checking all the possible 
arrangements of symbols. 

In 1960, Raj Chandra Bose (1901-1987), Sharadchandra Shankar 
Shrikhande and Ernest Tilden Parker (1926-1991) showed that Euler's 
conjecture is false for n > 6. This means that n x n orthogonal Latin 
squares exist for all n 2': 3 except n = 6. 

8.3. Systems of Common Representatives 

Suppose we are given two collections of subsets AI, ... , An and B I , .. , Bn 
of a set S. A set of elements a I, ... , an is said to be a system of common 
representatives if {aI, ... , an} is a system of distinct representatives for 
both AI, ... , An and B I , ... , Bn. We consider the problem of when we can 
find a system of common representatives. In case one of the collections 
is a partition of S (or even a disjoint collection) this is an immediate 
consequence of the marriage theorem. 
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THEOREM 8.3.1. A system of common representatives exists if and 
only if the union of any k of the sets Ai is not contained in the union 
of any k - 1 of the sets B j . 

PROOF. We construct a bipartite graph X in which the partite set A 
corresponds to the sets Ai and the set B correspond to the sets B j . We 
join Ai to Bj if AinBj i= 0. Clearly the existence of a complete matching 
is equivalent to the existence of a system of common representatives. 
The condition of the theorem is precisely Hall's condition .• 

THEOREM 8.3.2. Let G be a finite group, Hand K subgroups of the 
same order. Then we can find elements Xl, ... , Xr in G such that 

G = H Xl U H X2 U ... U H Xr = xlK U X2K U ... xrK. 

PROOF. We apply Theorem 8.3.1 with the Ai'S being the right cosets 
of H and the Bj's being the left cosets of K. Since these cosets are 
disjoint, the condition of Theorem 8.3.1 is clearly satisfied simply by a 
cardinality count. Thus, it is possible to choose a system of common 
representatives and this is precisely the statement of the Theorem .• 

COROLLARY 8.3.3. If G is a finite group and H a subgroup, then it 
is possible to choose Xl, ... , Xr so that xlH, ... xrH is a complete set of 
left cosets of Hand H xl, ... , H Xr is a complete set of right cosets of H. 

8.4. Doubly Stochastic Matrices 

We now prove a famous theorem in the theory of doubly stochastic 
matrices using the marriage theorem. This result is the Birkhoff-von 
Neumann theorem that states that every doubly stochastic matrix is 
a convex combination of permutation matrices. Recall that a matrix 
A = (aij) is called doubly stochastic if every row sums to 1 and every 
column sums to 1. Such matrices arise naturally in probability theory. 
A permutation matrix is a doubly stochastic matrix in which aij is 
o or 1. Thus, every row and every column of a permutation matrix 
contains a single 1 and the rest of the entries are zero. The set of n x n 
permutation matrices forms a group isomorphic to the symmetric group 
on permutations on n letters. 

THEOREM 8.4.1 (Birkhoff 1946, von Neumann 1953). Every doubly 
stochastic matrix can be written as a linear combination of permutation 
matrices. 

PROOF. Let M = (aij) be a doubly stochastic matrix. We define a 
bipartite graph X with partite sets A and B. The vertices of A will be 
the rows Ri of A and the vertices of B will be the columns Cj of A. We 
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join a row Ri to a column Cj if aij i= O. We claim that this bipartite 
graph satisfies Hall's condition. Indeed, suppose that IN(S)I < lSI for 
some subset S of A. Let lSI = s. The previous inequality implies 
that there are s rows Ri with fewer than s neighbours. If we list our 
rows horizontally, the neighbours are precisely the columns in which 
the rows have non-zero entries. Adding up all the entries of each row 
gives a total of s. Doing the same column-wise gives us a sum of < s, 
which is a contradiction. Thus, Hall's condition is satisfied and there is 
a matching. The existence of a matching means we may select n non­
zero entries of M in such a way that each row and each column contains 
exactly one of them. Of all these non-zero entries, let Cl be one of least 
value. Thus, we can write 

where PI is a permutation matrix. Moreover, (1 - Cl)-1 R is again a 
doubly stochastic matrix but with one less non-zero entry. Thus, the 
proof is completed by inducting on the number of non-zero entries .• 

8.5. Weighted Bipartite Matching 

We now consider a weighted bipartite graph Kn,n with non-negative 
weights Wij corresponding to the edge (i,j). Our goal is to find a max­
imal transversal, that is, a matching so that the sum of the weights 
of the edges in the matching is maximal among all matchings. For the 
sake of simplicity, we assume that the weights are non-negative integers 
(which is usually not a restriction in practice). Let W = (Wij) be the 
weight matrix. 

The algorithm to find a maximal matching that we now describe is 
called the Hungarian algorithm. It was first discovered by Harold 
Kuhn in 1955 and later revised by James Munkres in 1957. The al­
gorithm is based on the work of two Hungarian mathematicians Denes 
Konig (1884-1944) and Jeno Egervary (1891-1958) and Kuhn named it 
the Hungarian algorithm in their honour. 

The goal of finding a maximal matching is facilitated by supple­
mentary "weights". We say a collection of numbers u = (Ul' ... , un) and 
v = (VI, ... , Vn ) is a weighted cover for W if 

\11 :::; i, j :::; n. 

The cost of a cover is defined as 

c(u,v) := LUi + L Vj. 

j 
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LEMMA 8.5.1. For any matching M and any weighted cover, we have 

C(1l, v) ~ w(M) 

where w(M) is defined as the sum of the weights of the edges in M. 
Moreover, c(u, v) = w(A1) if and only if AI is a matching with maximal 
weight. 

PROOF. The first part of the lemma is clear simply by summing 
over all the edges of the matching the inequality 

Wij:::; ui +Vj. 

Thus, there is no matching with weight greater than c( u, v) for any 
cover and the maximal weight is at most the minimal cost of a cover. If 
c(u,v) = w(M), then we must have the equality 

Wij = Ui + Vj 

for all edges of the matching and this must be a matching of maximal 
weight .• 

This lemma is the basis of the Hungarian algorithm. As we men­
tioned before, we suppose Wij are non-negative integers and this is not 
any stringent restriction. We begin by choosing an arbitrary cover, 
which can easily be done simply by choosing Ui to be the largest weight 
in the i-th row and Vi to be zero. Clearly, 

W'ij :::; Ui + Vj 

is satisfied with this choice. Next, we form a bipartite graph Xu,v 
(A, B) where the vertices of A are the rows of the matrix Wand the 
vertices of B are the columns. We join row i to column j if and only if 
Wij = Ui + Vj. If we have a perfect matching in this graph, we are done 
by the lemma. Otherwise, Hall's condition is not satisfied and so there 
is a set of m rows "adjacent" to fewer than m columns. If for each of 
these rows, we decrease Ui by 1 and increase Vj by 1, and thus get a new 

/ / d / / th' l't sequence uI' ... , un an VI"'" Vn , e mequa 1 y 

< / / 
Wij _ Ui + Vj 

is satisfied. To see this, note that if i, j are not related this is clear since 
we have the strict inequality Wij < Ui + Vj. If i, j are related then the 
sum Ui + Vj has not changed. We have thus obtained a new cover whose 
cost is smaller than the earlier one simply because Hall's condition is 
violated. The claim is that this converges to the minimal cost and thus 
the maximal weight transversal. This is clear since we must arrive at 
a matching for otherwise, we can lower the cost of the cover and this 
cannot go on endlessly. 
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To see how to work this algorithm in practice, it is best to use 
matrices. We illustrate this to determine a maximal transversal in the 
matrix 

4 1 6 2 3 
5 0 3 7 6 
2 3 4 5 8 
3 4 6 3 4 
4 6 5 8 6 

"'!e will write the cost covers above the columns and along the rows. 
The initial cost cover is obtained by simply taking the largest weight in 
each row. We write the matrix whose entries are Ui + Vj - Wij alongside: 

0 0 0 0 0 

6 2 5 0 4 3 
7 2 7 4 0 1 
8 6 5 4 3 0 
6 3 2 0 3 2 
8 4 2 3 0 2 

This gives rise to the "equality subgraph" : 

Rows 

• Columns 

FIGURE 8.1 

We can decrease Ui'S by 1 and increase V3, V4, V5 by 1 and re-write 
the matrix whose entries are Ui + Vj - Wij given by this new cover: 

0 0 1 1 1 

5 1 4 0 4 3 
6 1 6 4 0 1 
7 5 4 4 3 0 
5 2 1 0 3 2 
7 3 1 3 0 2 

and we draw the equality subgraph again getting the same graph as 
before. Thus, we can reduce all the u/s by 1 and increase the V3, V4, V5 
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by 1. Repeating the process once more gives: 

0 3 0* 4 3 
0* 5 ·4 0 1 
4 3 4 3 0* 
1 0* 0 3 2 
2 0 3 0* 2 

where we have indicated a transversal by an asterisk. Since we have 
found a transversal, we can determine the cost as the sum of the Ui'S 

and Vj'S which we see to be 31. 
If we were interested in a minimal transversal, all we need to do is 

to take the maximum M of all the entries and replace our weights Wij 

by M - Wij and repeat the above algorithm. 

8.6. Matchings in General Graphs 

In a bipartite graph X with bipartite sets A and B, the marriage 
theorem gives a necessary and sufficient condition for the existence of a 
matching that saturates A. For general graphs, the following theorem 
gives a necessary and sufficient condition for the existence of a perfect 
matching. It was proved by William Tutte (1917-2002) in 1947. Tutte 
was one of the leading mathematicians in graph theory and combina­
torics. In 1935, he began his studies at Cambridge in chemistry, but 
soon after he became interested in mathematics. During World War 
II, he worked at Bletchley Park as a code breaker and he was able to 
deduce the structure of a German encryption machine using only some 
intercepted encrypted messages. 

An odd component of a graph H is a component of H with an odd 
number of vertices. Let odd(H) denote the number of odd components 
of H. 

THEOREM 8.6.1 (Tutte 1947). A graph X contains a perfect match­
ing if and only if 

(8.6.1) odd(X \ S) ::; lSI 
for each S c V(X). 

PROOF. If X has a perfect matching and S is a subset of vertices of 
X, then each odd component of X \ S has a vertex adjacent to a vertex 
in S. This means odd(X \ S) ::; lSI. 

The proof of sufficiency is more complicated. We start it here and 
invite the reader to complete it. 

Assume that condition (8.6.1) is satisfied for all S C V(X). Note 
that by adding edges to X, condition (8.6.1) is preserved (Prove this). 
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The theorem is true unless there exists a graph X that has no perfect 
matchings and adding any missing edges would create a graph with a 
perfect matching. 

Let X be such a graph. We will obtain a contradiction by showing 
that X actually contains a perfect matching. 

Let C denote the set of vertices whose degree is IV(X)I - 1. If 
X \ C is formed by disjoint complete graphs, then one can find a perfect 
matching easily. The case when X \ C is not a union of disjoint cliques 
is left as an exercise. • 

Tutte's theorem was later extended by Claude Berge (1926-2002) in 
1958. Berge was one of the leading mathematicians in graph theory and 
combinatorics in the last century. His result gives a formula for v(X) 
which is the size of a largest matching of a general graph. By size we 
mean the number of edges in the matching. 

THEOREM 8.6.2 (Berge 1958). For a graph X, 

v(X) = ~ (n - max (odd(X \ S) - lSI)) . 
2 SCV"(X) 

8.7. Connectivity 

Recall that a graph X is called connected if any two of its vertices are 
connected by a path. A graph is disconnected if it is not connected. 
A component of X is a maximal connected subgraph of X. This no­
tions can be extended as follows. The vertex-connectivity h;(X) of 
X equals the minimum size of a subset of vertices of X whose deletion 
disconnects X. The edge-connectivity h;'(X) of X equals the mini­
mum size of a subset of edges of X whose deletion disconnects X. Thus, 
a graph is connected if and only if its (vertex- or edge-) connectivity is 
non-zero. By convention, h;(Kn) = h;'(Kn) = n - 1. In general, the 
following inequalities hold in any connected graph. 

LEMMA 8.7.1. If X is a connected graph, then 

1 ::; h;(X) ::; h;' (X) ::; 8(X) 

where 8(X) denotes the minimum degree of X. 

PROOF. If X is connected, then obviously h;(X) ~ 1. Also, if x is 
a vertex of X whose degree equals 8(X), then deleting the 8(X) edges 
incident to x disconnects the graph X. Thus, h;'(X) ::; 8(X). 

If X = Kn or if h;'(X) = 1, then the inequality h;(X) ::; h;'(X) holds 
as well. Assume that X is not a complete graph and h;(X) ~ 2. Let 
XIY1, ... ,XkYk be a set of k = h;'(X) edges whose removal disconnects 
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X. If removing {Xl, ... ,xd disconnects X, then /'i:(X) :::; k = /'i:'(X) 
and we are done. Otherwise, it means that the degree of each Xi is at 
most k which implies that /'i:(X) :::; k .• 

FIGURE 8.2. A 4-regular graph with /'i: = 1 and /'i:' = 2 

A graph X is called k-connected if /'i:(X) ?: k. This means that the 
deletion of any k - 1 vertices of X will not disconnect X. Similarly, X 
is called k-edge-connected if /'i:'(X) ?: k. Thus, a graph is I-connected 
if and only if it is connected. The following result provides a necessary 
and sufficient condition 2-connectivity. We leave its proof as an exercise. 

THEOREM 8.7.2. A graph X is 2-connected if and only if any two 
vertices of X lie on a common cycle. 

The fundamental result involving graph connectivity was proved by 
Karl Menger (1902-1985) in 1927. Menger's theorem is an example of 
a min-max theorem. Given a graph X and two vertices X ::f. Y of X, 
let /'i:(x, y) denote the minimum number of vertices of X whose removal 
separates X from y. Also, two paths from X to yare called independent 
if they have only X and y in common. 

THEOREM 8.7.3. (a) Let x and y be two distinct nonadjacent vertices 
of a graph X. Then /'i:(x, y) equals the minimum number of independent 
paths from x to y. 
(b) Let x and y be two vertices of X. Then the minimal number of 
edges whose removal separates x from y equals the minimum number of 
edge-disjoint paths from x to y. 

PROOF. One inequality is obvious. If there are r independent paths 
from x to y, then deleting exactly one internal vertex from each path 
will separate x from y. The other inequality is left as an exercise .• 

Menger's theorem gives the following necessary and sufficient for a 
graph to be k-connected or k-edge-connected. 



8.8. EXERCISES 97 

COROLLARY 8.7.4. (a) For k ~ 2, a graph X is k-connected if and 
only if it has at least two vertices and there are k independent paths 
between any two vertices. 
(b) For k ~ 2, a graph X is k-edge-connected if and only if it has at 
least two vertices and there are k edge-disjoint paths between any two 
vertices. 

Menger's theorem is a very powerful result with many consequences 
in discrete mathematics. The interested reader may try to apply it to 
prove the Marriage Theorem for example. 

8.8. Exercises 

EXERCISE 8.8.1. A building contractor advertises for a bricklayer, a 
carpenter, a plumber and a toolmaker; he has five applicants - one for 
the job of bricklayer, one for the job of carpenter, one for the jobs of 
bricklayer and plumber, and two for the jobs of plumber and toolmaker. 
Can the jobs be filled? In how many ways? 

EXERCISE 8.8.2. If in a party, every male knows at least k females 
and every female knows at most k males, show that it is possible to 
match every male with a female he knows. 

EXERCISE 8.8.3. A permutation matrix is a 0, 1 matrix having 
exactly one 1 in each row and column. Prove that a square matrix 
of non-negative integers can be expressed as a sum of k permutation 
matrices if and only if all row sums and column sums are equal to k. 

EXERCISE 8.8.4. Let X = (A, B) be a bipartite graph and suppose 
that A satisfies Hall's condition. Suppose further that each vertex of A 
is joined to at least t elements of B. Show that the number of matchings 
that saturate A is at least t! if t :::::: IAI. 

EXERCISE 8.8.5. Show that there are at least n!(n-l)!··· 2!1! Latin 
squares of order n. Show that this quantity is larger than 2(n-l)2 for 
n ~ 5. 

EXERCISE 8.8.6. There are rs couples in a party. The men are 
divided into r age groups with s men in each group. The women are 
divided into r height groups with s women in each group. Show that 
it is possible to select r couples so that all age groups and all height 
groups are represented. 
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EXERCISE 8.8.7. Find a minimum weight transversal in the matrix 
below. 

4 5 8 10 11 
7 6 5 7 4 
8 5 12 9 6 
6 6 13 10 7 
4 5 7 9 8 

EXERCISE 8.8.8. Determine whether or not the graph in Figure 8.3 
has a perfect matching. If not, what is the size of a largest matching? 

FIGURE 8.3 

EXERCISE 8.8.9. For each k 2:: 2, construct a k-regular graph on an 
even number vertices containing no perfect matchings. For each k 2:: 3, 
construct k-regular graphs X such that 1 :::; f\;(X) < f\;'(X) < k. 

EXERCISE 8.8.10. Show that in the complete graph K 2n the number 
of perfect matchings is (2n)!/2n n!. 

EXERCISE 8.8.11. Let W = (Wij) an n x n matrix of non-negative 
weights. Define a function f on the set of n x n doubly stochastic 
matrices by setting for A = (aij), 

f(A) = L aijWij 

i,j 

where the summation is over all indices i,j. Show that f attains its 
maximum value at a permutation matrix. 

EXERCISE 8.8.12. Let t 2:: 0 be an integer. If X is bipartite graph 
with bipartite sets A and B such that IN(8)1 2:: 181- t for each 8 c A, 
then X contains a matching that saturates IAI - t vertices of A. 
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EXERCISE 8.8.13. Let t 2: 1 be an integer. If X is bipartite graph 
with bipartite sets A and B such that IN(S)I 2: t· lSI for each SeA, 
then each a E A has a set Sa of t neighbours in B with Sa n Sal = 0 for 
each a =I a' E A. 

EXERCISE 8.8.14. Let A be a matrix with entries 0 or 1. Show that 
the minimum number of rows and columns that contain all the l's of 
A equals the maximum number of l's in A, no two on the same row or 
column. 

EXERCISE 8.8.15. Finish the proof of Theorem 8.6.1. 

EXERCISE 8.8.16. Show that any 3-regular graph with no bridges 
contains a perfect matching. 

EXERCISE 8.8.17. Prove that every tree has at most one perfect 
matching. 

EXERCISE 8.8.18. Show that a tree T has a perfect matching if and 
only if odd(T \ x) = 1 for any vertex x of T. 

EXERCISE 8.8.19. Let X be a bipartite graph with bipartite sets A 
and B such that IN(S)I > lSI for each SeA. Show that for any edge 
e of X, there exists a matching that contains e and saturates A. 

EXERCISE 8.8.20. Let VI, ... , Vn be subsets of a vector space V. 
Then VI, ... , Vn has a linearly independent system of distinct represen­
tatives if and only if 

dim(UiEI Vi) 2: III 
for each Ie [n]. 



CHAPTER 9 

Block Designs 

9.1. Gaussian Binomial Coefficients 

Let V be an n-dimensional vector space over the finite field F q of 
q elements. We would like to determine the number of subspaces of 
dimension k. For example, the number of I-dimensional subspaces is 
easily found as these are subspaces spanned by one element. Such an 
element must be non-zero and there are qn - 1 ways of choosing such 
an element . But for each choice, any non-zero scalar multiple of it will 
generate the same subspace as there are q - 1 such multiples for any 
fixed vector, we get a final tally of 

qn -1 

q-I 

for the number of I-dimensional subspaces of V. This gives us a clue of 
how to determine the general formula. 

Each subspace of dimension k has a basis of k elements. Let us first 
count in how many ways we can write down a basis for a k-dimensional 
subspace of V. For the first vector, we have qn - 1 choices. For the 
second, we have qn - q choices since we must not pick any scalar multiple 
of the first vector chosen. For the third vector, we have qn - q2 such 
vectors since we should not pick any linear combination of the first two 
chosen. In this way, we see that the number of ways of writing down a 
basis for a k-dimensional subspace is 

On the other hand, any k-dimensional subspace is isomorphic to F~ 
and the number of bases it has correspond to the number of k x k 
non-singular matrices over F q' This number is easily seen to be 

Therefore, we obtain: 
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THEOREM 9.1.1. Let V be a vector space of dimension n over Fq . 

The number of k-dimensional subspaces in V is 

(n) (qn _l)(qn _ q) ... (qn _ qk-1) 
k q'- (qk _ l)(qk _ q) ... (qk _ qk-1)' 

REMARK 9.1.2. We refer to the numbers enumerated in the theorem 
as the q-binomial coefficients or sometimes as the Gaussian binomial 
coefficients. The reason for this will become apparent as we proceed. 
But for now, let us observe that if we think of q as a real number and 
take limits as q ~ 1+, we obtain by I'Hospital's rule that 

q~r+ (~) q = (~) , 
and for this reason (and others), these numbers have properties similar 
to the binomial coefficients. This perspective has proved useful in trying 
to obtain q-analogs of classical binomial identities and to understand 
their meaning from the standpoint of these subspaces. 

Let us observe that we could have done this count in another way. 
Indeed, to any ordered basis, we can associate a k x n matrix with the 
basis vectors being the rows. We can view our subspace of dimension 
k as the row span of this matrix. The row span is unchanged if we 
perform "row operations" on it as follows. We can multiply any row by 
a non-zero scalar. We can add one row to another. We can interchange 
rows. This allows us to speak about the reduced row echelon form of 
a matrix. This form is characterized by the fact that the first non-zero 
entry of each row is a 1. For any row, all the entries preceding the 
leading 1 are zero. If a column contains a leading 1, then all its other 
entries are zero. For example, if n = 4 and k = 2, the possible echelon 
forms are given by 

1 0 
o 1 

(~ ~ ~ :), 
(~ ~ ~ n, 

(01 0* * 0) o 1 ' 

(~ ~ ~ n, 
where * denotes any element of F q' It is clear that every subspace of 
dimension k has a unique echelon form. Thus, the number of subspaces 
of dimension k is equal to the number of echelon forms for a k x n matrix 
over F q' In the above example, this number is easily seen to be 

q4 + q3 + 2q2 + q + 1 = (q4 - 1) (q4 - q) . 
(q2 _ 1)(q2 _ q) 

We now establish the q-analog of Pascal's triangle. 
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THEOREM 9.1.3. 

( n + 1) = ( : ) + qk (n) 
k q k 1 q k q 

PROOF. We prove this by counting the number of reduced row ech­
elon forms. The left hand side is the number of reduced row echelon 
forms of a k x (n + 1) matrix over F q . Such an echelon form either has 
a leading 1 in the (k, n + I)-entry or it does not. For those that do, we 
see that the (k - 1) x n matrix formed by the first k - 1 rows and first 
n columns is in echelon form and their number is 

If the (k, n + 1) entry is not a leading 1, then the last column of such 
a reduced row echelon form has arbitrary entries. The k x n subma­
trix obtained by taking the first n columns is in reduced row echelon 
form and thus counts the number of subspaces of dimension k in an 
n-dimensional vector space. This number is 

As we have qk choices for the last column, we obtain 

( n + 1) = ( : ) + qk (n) . 
k q k lq k q 

This completes the proof. • 

Note that this reduces to the usual recurrence relation for binomial 
coefficients when q = 1. 

THEOREM 9.1.4. 

PROOF. This follows by observing that there is a bijection between 
the k-dimensional subspaces and the n - k-dimensional subspaces of the 
dual space. This can also be verified directly as follows. Note that 

(n) (qn - l)(qn-l - 1)··· (q - 1) 
k q - (qk - l)(qk-l - 1) ... (q - l)(qn-k - l)(qn-k-l - 1)··· (q - 1) 

which is clearly symmetric under the map k ~ n - k .• 

By applying Theorem 9.1.3, we deduce another recurrence: 

( n : 1) q = (~) q + qn+l-k (k : 1) q . 
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We will use this to prove: 

THEOREM 9.1.5 (The q-binomial theorem). For· n 2: 1, 

PROOF. We use induction on n. For n = 1, both sides of the equa­
tion at 1 + t. Suppose that the result is true for n. Then, 

!](1 +qit) = (1 +qnt) (ta G)q qmt'). 

The coefficient of t k on the right is 

which is equal to 

as desired .• 

9.2. Introduction to Designs 

Design theory has its origin in statistics where one must set up 
experiments or "clinical trials" to test the reliability of a product. Con­
sider the following problem. Suppose that we have 7 volunteers to test 
7 products. Each person is willing to test 3 products and each prod­
uct should be tested by 3 people to ensure objectivity. Can we arrange 
the experiment so that any two people would have tested precisely one 
product in common? 

Surprisingly, a solution is provided to this problem by the Fano 
plane (see Figure 9.1). This name honors Gino Fano (1871-1952) who 
was one of the pioneers of projective geometry. Consider the triangle 
of three points; we join each vertex to midpoint of the opposite side. 
The three midpoints are then joined by a circle. In this way, we have 7 
points and 7 "lines". Each line would represent a product and the three 
vertices on a line would mark out three volunteers to test that partic­
ular product. Since any two points determine a unique line, we deduce 
that any two people test precisely one product in common. Observe 
that in this situation, we have by "duality" that any two products are 
simultaneously tested by precisely one person. 
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FIGURE 9.1. The Fano plane 

Here is another famous problem, called Kirkman's schoolgirls prob­
lem. Thomas Kirkman (1806-1895) published this problem in Lady's 
and Gentleman's Diary in 1850. Fifteen schoolgirls walk home each 
day in five groups of three. Is it possible to arrange the walks over a 
one week period so that any two girls walk precisely once together in 
a group. Here is a solution. Consider the vector space Fi and remove 
the zero vector. We then have 15 vectors. Consider triples of vectors 
{x, y, z} such that x + y + z = O. The number of such vectors is 35 
since we have 15 choices for x, 14 choices for y and then z is uniquely 
determined. Note that necessarily, these are distinct triples since if two 
of them were equal, we get the other vector must be zero, which we 
have removed. The number of ordered triples is 15 x 14 and we must 
divide this number by 3! = 6 to get 35. Each triple corresponds to 
a 2-dimensional vector space of F~. It is now possible to arrange the 
solution vectors in 7 groups so that in each group, we have 5 triples and 
the union of the triples is the set of fifteen vectors. Thus, if we think 
each schoolgirl corresponding to a vector, this configuration gives us the 
solution. 

To understand precisely what is behind this solution, we must under­
stand the theory of combinatorial designs. It might be more illuminating 
to consider the following set up. Let X be a set of v volunteers, B a set 
of b products or "blocks" as they are called in the theory. We require 
that each volunteer test r products and each product should be tested 
by k people. In addition, we require that any pair of people together 
test precisely). products. Can such an experiment be arranged? 

We can represent this situation by a bipartite graph (X, B), where 
X consists of the set of v volunteers, B the set of b blocks. We join 
a vertex of X to a vertex of B if the corresponding person is to test 
that particular product. The conditions tell us that the degree of every 
vertex in X is r, and the degree of every vertex in B is k. The final 
condition tells us that any pair of vertices of X have precisely). common 
neighbors. We can get immediately some necessary conditions for such 
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a configuration to exist. Indeed, we can count the number of edges by 
going through the vertices of X or by going through the vertices of B. 
We deduce that 

vr = bk. 

Now let us construct another bipartite graph in which the vertices 
are pairs of vertices. We join a pair to a block if they occur in that 
block. This gives v(v - 1)A/2 edges . Since each block has k elements in 
it, there are k(k - 1)/2 pairs that each block will be joined to and so 
we get 

v(v - l)A = k(k - l)b. 

Since vr = bk, we obtain 

(v - l)A = (k - l)r. 

These are obviously necessary conditions, but they are not sufficient, as 
we shall see. If there is a bipartite graph satisfying these properties, we 
call it a 2 - (v, k, A) design. Sometimes, the more cumbersome notation 
of a (b, v, r, k, A) design is used, but since v, A and k give us r and then 
b by the above relations, it is prudent to drop the extra parameters. 
Thus, we have proved: 

THEOREM 9.2.1. In any 2 - (v, k, A) design, with b blocks and each 
object appearing in r blocks, we must have 

vr = bk, and (v - l)A = (k - l)r. 

These conditions are necessary, but as we shall see below, they are 
not sufficient. For instance, it will be seen that there is no way to 
arrange 22 objects into 22 blocks with each object occurring in precisely 
7 blocks and each block containing 7 objects so that any two distinct 
objects occur in precisely 2 blocks. This corresporrds to (v, b, r, k, A) = 

(22,22,7, 7, 2) or a 2 - (22,7,2) design. 
More generally, one speaks of a t - (v , k, At) design if we insist that 

any t points are contained in precisely At blocks. For example, in the 
design of statistical experiments, we may want any collection t people 
to simultaneously test precisely At products. A 2 - (v, 3,1) design is 
often called a Steiner triple system. We present examples of designs in 
the following sections. 

9.3. Incidence Matrices 

A convenient way of encoding the information in a block design 
(X, B) is by the use of the incidence matrix. This is a v x b matrix 
A whose rows index the objects and the columns index the blocks. The 
(i,j)-th entry of A is 1 if the i-th object occurs in block j. Otherwise, 
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it is zero. We immediately see that every row adds up to r and every 
column adds up to k. Also note that if we look at the v x v matrix 
AAt, the (i,j)-th entry is precisely the number of common neighbors of 
objects i and j. By the conditions for the block design, this number is 
). if i #- j and r if i = j. This we record as: 

THEOREM 9.3.1. Let A be the incidence matrix of the 2 - (v , k , ).) 
block design (X, B). Let J be the v x v matrix all of whose entries are 
1. Then, 

AAt = ).J + (r - ).)1. 

This relation allows us to obtain further necessary conditions for the 
existence of block designs. Indeed, we can compute the determinant of 
AAtas 

r A 
A r 

r 

r+(v-l)A r+(v-l)A 
A r 

r+(v-l)A 
A 

r 

where we have simply added to the first row the sum of all the other 
rows. We can now factor (r + (v - 1).) from the determinant. Thus, 
the determinant is 

1 1 1 1 1 1 
A r A 0 r-A 0 

(r+ (v -l)A) = r·k 

A A r 0 0 r-A 

= rk(r - A)V-l, 

where we have used Theorem 9.2.1 to replace r+ (v -1). with rk and 
in the determinant we have mUltiplied the first row by -). and added 
it to each of the other rows. This gives rk(r - ).)v-l as the value of the 
determinant. 

COROLLARY 9.3.2 (Fisher's inequality). In any 2 - (v, k,).) design, 
we must have b :2: v. That is, there must be at least as many blocks as 
points. 

PROOF. By the theorem, we see that the matrix AAt is non-singular 
and thus has rank v . If b < v, then as the row rank of A is equal to the 
column rank of A, we see that A has rank at most b. Recall that for 
any two matrices A and B for which AB is defined, the row space of 
AB is contl),ined in the row space of A. Thus, rank of AB is less than 
or equal to the rank of A. In our situation, we deduce that rank of AAt 
is less than or equal to b which is strictly less than v, contradiction .• 
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Designs in which b = v are called symmetric designs. In that case, 
we immediately deduce: 

COROLLARY 9.3.3. If in a symmetric 2 - (v, k,'x) design, v is even, 
then k - ,X is a perfect square. 

PROOF. If b = v, the incidence matrix is a square matrix and from 
the theorem, we deduce that 

(detA)2 = r2(r _ ,X)v-l. 

The left hand side is a perfect square and so (r - ,X)v-l = (k - ,X)V-l 
must also be a perfect square. As v-I is odd, this forces k - ,X to be a 
perfect square. • 

Thus, in the example above, we see that there is no 2 - (22,7,2) 
design because 7 - 2 is not a perfect square. We will prove later the 
following important theorem in the theory of designs. This was proved 
in 1951 by Richard Hubert Bruck (1914-1991), Sarvadaman Chowla 
(1907-1995) and Herbert John Ryser (1923-1985). 

THEOREM 9.3.4 (Bruck-Ryser-Chowla). If (X, B) is a symmetric 
2 - (v, k,'x) design, and v is odd, then the equation 

(k - ,X)x2 + (_1)(v-l)/2,Xy2 = z2 

has a non-zero solution in integers. 

As an application of this theorem, consider the existence of a 2 -
(29,8,2) design. That is, can we arrange 29 objects into 29 blocks with 
each object occurring in 8 blocks and any two objects occur in precisely 
2 blocks. The theorem implies that if such a design exists then we can 
solve the diophantine equation 

6x2 + 2y2 = z2 

with (x, y, z) i- (0,0,0). We may assume that gcd(x, y, z)=l, for other­
wise, we can cancel the common factor. From the equation, we see that 
2 divides the left hand side and hence must divide the right hand side. 
So write z = 2Z1. We get 

3x2 + y2 = 2zr 

has a non-trivial solution. If we reduce this mod 3, we get 

2zr == y2 (mod 3). 

If Zl is coprime to 3, we deduce that 2 is a square mod 3, which is not 
the case. Thus, 3 divides Zl, so write Zl = 3Z2 to deduce that 

3x2 + y2 = 18zi 
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has a non-trivial solution. But now, 3 divides y and 913x2 implies 31x, 
contrary to the coprimality assumption at the outset. Hence, there is 
no such design. 

9.4. Examples of Designs 

If we consider a v element set X and consider the collection B of all 
k-element subsets of X, we see that any t-element set with 0 :::; t :::; k, 
is contained in precisely' 

(
V - t) 
k-t 

elements of B. This is an example of a 

design. 
We will now consider q-analogs of this construction. We begin with 

an important class of examples known as projective planes. For the 
elements of X we take all the I-dimensional subspaces of V = Fg. 
There are 

(3) q3-1 2 
=--=q +q+l 

1 q q - 1 

such subspaces. For B we take the 2-dimensional subspaces and we 
will say a I-dimensional subspace U is incident with a two dimensional 
subspace W if U <::;; W. By the correspondence theorem, the number of 
such subspaces is the same as the number of I-dimensional subspaces of 
the quotient VIU. As this quotient is isomorphic to F~, the number of 
times a subspace is replicated in the blocks is (q2 - 1)/(q - 1) = q + l. 
Moreover, any two distinct one-dimensional subspaces generate a unique 
two dimensional subspace so that this gives us 2 - (q2 + q + 1, q + 1,1) 
design for any prime power q. This is called a projective plane of order 
q. This has a visual metaphor. A projective plane of order n is a 
collection X of n 2 + n + 1 elements called "points" and a collection B 
of n 2 + n + 1 blocks called "lines". We require that each point is on 
precisely n + 1 lines and each line has precisely n + 1 points, and any 
two distinct points determine a unique line. Thus, a projective plane of 
order n is a 2 - (n2 + n + 1, n + 1,1) design. It is unknown if there are 
any projective planes of order n when n is not a prime power. We will 
address this question below using the Bruck-Ryser-Chowla theorem. 

The Fano plane consisting of seven points and seven lines is the 2 -
(7,3,1) design constructed above using the finite field of two elements. 
This is usually represented by a triangle along with the midpoints of 



9.4. EXAMPLES OF DESIGNS 109 

the three sides together with the centroid. The lines are the sides of 
the triangle, the lines joining the midpoints of the sides and finally the 
"line" joining the three midpoints usually drawn as a circle. This has 
the amusing application to the following problem. Arrange the luncheon 
engagements of seven people over a week long period in such a way that 
each day three people have lunch together and by the end of the week, 
any two of the people would have had lunch together precisely once. 
If we think of the Fano plane and view the vertices as the people, the 
lines representing the days of the week, the points on the line determine 
which of the three people should lunch together, then we have a visual 
resolution of the required arrangement. 

We now prove the only non-existence theorem known in the theory 
of projective planes. 

THEOREM 9.4.1. If a projective plane of order n exists and n == 1 
or 2 (mod 4), then n can be expressed as a sum of two squares. 

PROOF. As observed earlier, we are asking for the existence of a 
2 - (n2 + n + 1, n + 1,1) design. Notice that v = n(n + 1) + 1 is 
odd. Applying the Bruck-Ryser-Chowla theorem, we deduce that the 
Diophantine equation 

nx2 + ( _1)n(n+1)/2 y 2 =:= z2 

has a non-trivial integral solution. If n == 1 (mod 4), then n(n + 1)/2 is 
odd so the theorem says that we can solve 

nx2 = z2 + y2 

in non-zero integers. The same implication occurs when n == 2 (mod 4). 
Thus n is the sum of two rational squares. To complete the proof, we 
need to show that n is in fact the sum of two integral squares. Now 
we need to use one more fact from number theory. Recall that an odd 
prime number p can be written as a SUll). of two squares if and only if 
p == 1 (mod 4). From this, one can deduce that the numbers that can 
be expressed as a sum of two integer squares are precisely the numbers 
whose unique factorization into distinct prime powers does not admit 
a prime == 3 (mod 4) to an odd power. Thus, if n cannot be written 
as a sum of two squares, then there is a prime p == 3 (mod 4) an odd 
power p2a+1 (say) of which divides n exactly. Reducing the equation 
mod p2a+ 1, we get 

y2 + z2 == 0 (mod p2a+l). 

If y, z are coprime to p, this is already a contradiction for it says that 
-1 is a perfect square mod p. If y and z are not coprime to p, only an 
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even power of p can divide each of them and hence both of them and 
after canceling it, we get a contradiction that completes the proof .• 

We can apply this result to show that there is no projective plane of 
order 6. Indeed, if there is, by the previous theorem, 6 can be written 
as a sum of two integral squares, which is clearly not the case. Thus, 
there is no 2 - (43, 7, 1) design. In particular, there is no way to arrange 
43 objects into 43 blocks such that each block contains 7 objects and 
any two objects occurring together in precisely one block. 

For a long time, the first unresolved case was n = 10. The above 
theorem does not exclude this possibility as 10 can be written as 1 + 9. 
In 1991, Clement Lam of Concordia University, Canada using the Cray 
1 computer showed that there is no projective plane of order 10. Thus, 
we still have no conceptual proof of this fact. It is generally believed 
that projective planes can only exist when n is a prime power, but this 
has not yet been proved. 

9.5. Proof of the Bruck-Ryser-Chowla Theorem 

The proof of Theorem 9.3.4 requires the use of Lagrange's four 
square theorem. This theorem says that every natural number can be 
written as a sum of four squares of natural numbers. We prove it in 
four steps. As the identity 

(lzl2 + IwI2)(luI2 + Iw12) = luz - wvl 2 + Iwu + zvl 2 

is easy to verify directly for all complex numbers u, v, w, z, we deduce 
from it, by putting z = Xl +iX2, w = X3+ix4, u = Yl +iY2, W = Y3+iY4 

that 

where 

Zl = XlYl + X2Y2 + X3Y3 + X4Y4 

Z2 = XlY2 - X2Yl + X3Y4 - X4Y3 

Z3 = XlY3 - X2Y4 - x3Yl + X4Y2 

Z4 = XlY4 + X2Y3 - X3Y2 - X4Yl· 

This means that if a can be written as a sum of four integral squares, 
and b can be written as a sum of four integral squares, so can ab and 
we have an explicit recipe for determining these squares if we know the 
ones for a and b respectively. As every number is a product of prime 
numbers, it therefore suffices to prove Lagrange's theorem for prime 
numbers. 
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The next step is to see that for any odd prime p, we can solve the 
congruence 

X2 + y2 + 1 == 0 (mod p). 

To see this, we consider the set of squares mod p, which has size 1 + (p-
1)/2 = (p + 1)/2. The same is true of the set of elements of the form 
-1 - y2. If these sets were disjoint, we would get at least p + 1 residue 
classes mod p, a contradiction. Hence, there is a common element and 
this gives a solution to the congruence. Since the integers in the interval 
[- (p - 1) /2, (p - 1) /2] forms a complete set of residue classes mod p, we 
may choose Ixi < p/2 and Iyl < p/2, we deduce that there are integers 
x, y so that 

with m < p. 
The third step is to consider the smallest natural number m such 

that mp can be written as a sum of four squares. By the previous 
paragraph, the set is non-empty. Call the smallest such m, mo. Then, 
mo < p. If mo = 1, we are done so let us suppose that 1 < mo < p. 
Hence, we can write 

moP = xi + x~ + x~ + x~. 
If mo were even, then either all of the Xi'S are even or all of them are 
odd, or precisely two of them, say, Xl, :r2 (without loss of generality) are 
even. In any of the cases, Xl - X2, Xl + X2, X3 - X4, X3 + X4 are even and 
we have 

mo = (Xl-X2)2 (Xl+X2)2 (X3-X4)2 (X3+X4)2 
2 P 2 + 2 + 2 + 2 

Thus (mo/2)p can be written as a sum of four squares and this is a 
contradiction to the minimality of mo. So we may suppose mo is odd. 

The final step involves choosing Yl, Y2, Y3, Y4 so that Yi == Xi (mod mo) 
with IYil :S (mo - 1)/2. Then, 

2 2 2 2 
mOml = Yl + Y2 + Y3 + Y4 

with ml < mo. By step 1, we see that (mop)(momJ) can be written as 
a sum of four squares: 

zr + zi + z~ + z~ 
with the Zi'S being given explicitly in terms of xi's and the y/s. From 
this explicit description, we see directly that Zi == 0 (mod mo). Thus, 
we may divide out by m6 and deduce that mlP can be written as a sum 
of four squares. But this contTadicts the minimality of mo as ml < mo. 
This completes the proof of Lagrange's theorem. 
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Now we will sketch the proof of the Bruck-Ryser-Chowla theorem. 
Suppose that we have a symmetric (v, k, A) design with v odd. Let 
n = k - A and suppose that v == 3 (mod 4). We want to show that 

nx2 = z2 + Ay2 

has a non-trivial integral solution. It suffices to show that this has a 
non-trivial rational solution, since we can always clear denominators. 

By Lagrange's theorem, we may write n = a2 + b2 + c2 + d2 and so 
let H be the 4 x 4 matrix: 

b c 
a d 
-d a 
c -b 

Then, H Ht = Ht H = nI . Now let A be the incidence matrix of the 
symmetric block design. This is a v x v matrix. Now look at the 
(v + 1) x (v + 1) matrix B obtained by adding a 1 in the (v + 1, v + 1)­
th position and zeros everywhere else in the last row and last column. 
Then, 

Bt B = (A~ A ~). 
As 41v + 1, we may create the (v + 1) x (v + 1) matrix K which has 
(v + 1)/4 diagonal blocks of the matrix H. Then, KtK = KKt = nI. 
Consider the quadratic form 

xtBtBx = k(xI + ... + x;) + x;+1 + A L XiXj. 
i",j""Sv 

If we put z = Bx, then this is 

LZ;. 
i 

We may "complete squares" and re-write this as 

A(X1 + ... + xv)2 + x;+1 + n(xI + ... + x;). 

Consider another change of co-ordinates: z = Ky. Then 

zt z = ytKtKy 

which is 

Thus, x = (B- 1 K)y so that 

n(YI + ... Y~+1) = A(X1 + ... + xv)2 + X;+l + n(xI + ... + x~). 
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The idea now is to choose the Xi and Yi suitably so as to obtain the 
statement of the theorem. As the matrix B-1 K is a rational matrix, 
we may write 

Xi = LaiYi 
i2l 

with ai rational. If al i- 1, choose Xl = Yl; otherwise, choose Xl = 
-y!. In either case, xi = yi and Yl is a rational linear combination of 
Y2, ... , Yv+l· Thus, X2 is a rational linear combination of Y2, ... , Yv+l: 

X2 = LbiYi 
i22 

with bi rational. If b2 i- 1, choose X2 = Y2; otherwise, choose X2 = -Y2· 
In either case x§ = y~ and Y2 is now a rational linear combination of 
Y3, ... , Yv+l· We continue in this way for each i :S v so that x; = Y; 
for each i :S v and Yv is a rational multiple of Yv+ 1 and x v+ 1 is a 
rational multiple of Yv+1' Put Yv+l = 1. Then, Xv+l and Yv are uniquely 
determined rational numbers and working backwards, so are all the xi's 
and the Yi'S. Since x; = Y; for 1 :S i :S v, we get 

n = nY~+l = A(XI + ... + xv)2 + X;+l 

has a solution in rational numbers. Moreover, the solution is non-trivial 
since xv+1 and Yv+1 are non-zero. This completes the proof in this case. 

The case v == 1 (mod 4) is similar and we leave it as an exercise to 
the reader. The essential change in the above proof is that we use the 
matrix A instead of the matrix B and replace K by the v x v matrix 
obtained by putting H on the diagonal and adding a 1 in the (v, v) 
position and zeros elsewhere in the last row and column. Then, the 
proof proceeds as before and we leave it as an exercise to the reader. 

9.6. Codes and Designs 

The fundamental paper A mathematical theory of communications 
from 1948 of Claude Shannon (1916-2001) is considered to be the start­
ing point of coding theory. Around the same time, Richard Wesley Ham­
ming (1915-1998) and Marcel J.E. Golay (1902-1989) also contributed 
to the beginning of this subject. 

A code is a subset of F~. A code is called linear if it is a subspace of 
F~. It is binary if q = 2. The vectors in the code are called codewords. 
The weight of a vector v, denoted wt( v), is the number of non-zero co­
ordinates of v. The Hamming distance between two vectors v and w is 
the weight of v - w, and is denoted d( v, w). If C is a code, the minimum 
distance d(C) is the minimum of d(v, w) for v, w distinct elements of C. 
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A code is said to be e-error correcting if d( C) 2': 2e + 1. The reason 
for this definition is given by the following theorem. 

THEOREM 9.6.1. A code is e-error correcting if and only if the Ham­
ming spheres: 

Be(c) := {v: d(v, c) :S e} 

are disjoint for all C E C . 

PROOF. If Be(cd and Be(C2) are not disjoint for two distinct codes 
CI, C2, then let v be a common element of these two Hamming spheres. 
Then, • 

d(CI , C2) :S d(CI ' V) + d(V ,C2):S 2e. 

But d( CI , C2) 2': 2e + 1 for any two distinct code words, so this is a 
contradiction. 

Conversely, if all the Hamming spheres are disjoint, and C is not e­
error correcting, then there are two codewords CI, C2 such that d(CI' C2) = 
f :S 2e. This means that CI and C2 do not agree in f positions. Now 
change the co-ordinates of CI in If /2 J of these positions. to agree with 
C2 and call this changed vector b. Because f :S 2e, we have that 

d(CI , b) = If/2J :S e, d(C2,b) = f -If/2J :S e 

so that b is an element of Be(CI) and Be(C2) which is a contradiction .• 

The application of these ideas in communication networks is as fol­
lows. If C is an e-error correcting code, then these codewords l;Lre used 
to send signals over a "noisy channel" . If a code word C is received as 
c' and e errors are made in the transmission, then d(c, c') :S e. Thus c' 
lies in the Hamming sphere Be(c). By Theorem 9.6.1, this is the unique 
code word satisfying this inequality. 

We can construct error correcting codes by taking the rows of the 
incidence matrix of a symmetric (v, k, A)-design as code words. Any two 
words have AI's together in precisely A places. Each code has precisely 
k 1 's and v - k O's. If RI and R2 are distinct rows, then the number of 
co-ordinates with entry 1 at which RI and R2 agree is the dot product 
R I . R2 and this is A. If J is the vector consisting of all 1 's, then the 
number of co-ordinates with entry 0 at which RI and R2 agree is the 
dot product (J - Rd . (J - R2 ) which is v - 2k + A. By the definition 
of the Hamming distance, we deduce that 

Thus, the rows of a symmetric (v, k , A) design give us a (k - A-I )-error 
correcting code. 
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In 1971, the Mars Mariner spacecraft used the rows of a (31,15,7) 
design as codewords to send back photographs of Mars back to Earth. 
This code corrects 7 errors. In later space missions, more sophisticated 
codes called Reed-Solomon codes have been used and these codes are 
capable of correcting a larger number of errors. They are based on the 
following simple idea. Given a code word (ao, aI, ... , am-d, construct a 
polynomial 

f(x) = ao + alx + ... + am_Ixm- l . 

Fix a primitive root 9 of F q' Instead of trying to send the code word, the 
spacecraft transmits the sequence f(O), f(g), ... ,f(gN) where N > m. 
Since a polynomial of degree m is determined by m + 1 values, this is 
sufficient information to retrieve the original code word (ao, ... , am-I) 
and this can be done algorithmically in an efficient way. One can prove 
that this method gives rise to a (q + m) /2-error correcting code. 

9.7. Exercises 

EXERCISE 9.7.1. Prove that 

(qk _ 1) (~) q = (qn - 1) (~ = ~) q' 

EXERCISE 9.7.2. Prove that 

( n ; 1) q (k : 1) q + (~) q + (qn - 1) (~ = ~) q 

EXERCISE 9.7.3. Let fq(n) be the number of subspaces of IB'~. Show 
that 

fq(n + 1) = 2fq(n) + (qn - l)fq(n - 1). 

EXERCISE 9.7.4. Let L be the lattice of subspaces of IB'~ partially 
ordered by inclusion. If W is a subspace of dimension k, show that 

/1(0, W) = (-llqm. 

EXERCISE 9.7.5. 16 students decide to sign up for three fields each. 
Each trip accommodates precisely 6 students. The students would like 
to sign up in such a way that any two of them would be together on 
precisely one of the trips. Is such arrangement possible? Explain. 

EXERCISE 9.7.6. Construct explicitly a 2 - (31, 3,1) design. For any 
natural number n 2': 1, show that there exists a 2 - (2n - 1,3,1) design. 

EXERCISE 9.7.7. If A is a v x b matrix and B is a b x v matrix, show 
that 

rank(AB) :S min(rank(A), rank(B)). 
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EXERCISE 9.7.8. In a symmetric 2 - (v, k,'x) design with incidence 
matrix A, show that 

_1 (A+ 0.J ) 
k-'x Vk 

is the inverse of 

Deduce that 
At A = ,XJ + (r - ,X)I. 

Use this equation to prove that in any symmetric design, every pair of 
blocks has precisely ,X elements in common. 

EXERCISE 9.7.9. Show that there is no projective plane of order 14. 

EXERCISE 9.7.10. If P == 3 (mod 4) is a prime, show that there is 
no 2 - (v,p + 1,1) design with v == 3 (mod 4). 

EXERCISE 9.7.11. If C is a code in lF~ with distance d(C) 2: 2e + 1, 
then 

EXERCISE 9.7.12. If C is a code in lF~ with distance d(C) = d, then 

101 :::; qn-d+l. 

EXERCISE 9.7.13. Label the points of the Fano plane by the elements 
of Z7 such that each block of the Fano plane has the form {x, x+ 1, x+3} 
for x E Z7. 

EXERCISE 9.7.14. Consider the following incidence structure: the 
points are the edges of the complete graph K6 and the blocks are all 
the sets of three edges that form a perfect matching or a triangle in K 6 . 

Show that this is a Steiner triple system on 15 points. 

EXERCISE 9.7.15. Show that if x,y,z E lF~, then 

d(x, z) :::; d(x, y) + d(y, z). 

EXERCISE 9.7.16. Show that if a 2 - (v,3,1) design exists, then 
v == 1,3 (mod 6). 

EXERCISE 9.7.17. Consider the design whose point set is Zn X Z3. 

The blocks are the triples 

{(x, 0), (x, 1), (x, 2)} 
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for x E Zn and 

{(X,i),(y,i), (X;Y,i+ I)} 
for x f:. Y E Zn and i E Z3. Show that this is a 2 - (6t + 3,3, I)-design. 

EXERCISE 9.7.18. Show that the number of blocks in a t - (v, k, oX) 
design is 

_ oX(~) 
b - (~) . 

EXERCISE 9.7.19. Show that in any t - (v, k, 1) design 

v ~ (t + 1)(k - t + 1). 

EXERCISE 9.7.20. Show that there are at most two disjoint Steiner 
triple systems on a set of 7 points. 



CHAPTER 10 

Planar Graphs 

10.1. Euler's Formula 

A graph is said to be embedded in the plane if it can be drawn 
on the plane so that no two edges intersect. Such a graph is called a 
planar graph. Graphs arising from maps are clearly planar. In fact, 
planar maps can be characterized as such. Any planar map cuts out the 
plane into faces. To be precise, a maximal region of the plane which 
does not contain in its interior a vertex of the graph is called a face. A 
finite plane graph has also one unbounded face called the outer face. 
The faces are pairwise disjoint . The basic relation for planar graphs is 
the following theorem due to Euler. 

THEOREM 10.1.1 (Euler, 1758). If X is a connected planar graph 
with v vertices, e edges and f faces, then 

v - e + f = 2. 

PROOF. The proof will be by induction on the number of vertices. 
If v = 1, then X is a "bouquet" of loops. If in addition e = 0, then 
f = 1 and the formula is true in this case. Each added loop cuts the 
face into two faces and so increases the face count by 1. So the formula 
holds in case v = 1. For v > 1 and X connected, take an edge eo which 
is not a loop and the contraction of X by eo gives X/eo. Contraction 
does not reduce the number of faces so X/e has v-I vertices, e - 1 
edges, and f faces. Since X/e has fewer number of vertices, we can 
apply the induction hypothesis to get 

(v - 1) - (e - 1) + f = 2 = v - e + f = 2 

which is what we want to prove .• 

If X is not connected, then Euler's formula fails. If X is a planar 
graph with c connected components, then 

v-e+f=c+1. 

This is easily seen be adding c-l edges (or "bridges") and then applying 
Euler's formula to this connected graph. Adding the bridges does not 
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alter the face count. Thus, we get 

v - (e + c - 1) + f = 2 

from which the formula follows. Euler's formula has many applications. 
The first is that we can derive some necessary conditions for a graph to 
be planar. 

THEOREM 10.1.2. If X is a simple planar graph with at least 3 
vertices, then e :::; 3v - 6. If X is triangle-free, then e :::; 2v - 4. 

PROOF. It suffices to prove this for connected graphs. Every face 
must contribute at least three edges. But each edge appears in two 
faces. Thus, 3f :::; 2e and putting this into Euler's form~la gives us 

2 
2 = v - e + f < v - e + -e - 3 

which gives the inequality 

e:::; 3v - 6. 

If X is triangle-free, then, each face contributes at least four edges. 
Since each edge appears in two faces, we get 2e 2:: 4f. Putting this back 
into Euler's formula gives the second inequality .• 

K 3,3 

FIGURE 10.1 

COROLLARY 10.1.3. The graphs, K5 and K 3,3 are non-planar. 

PROOF. If K5 were planar, then applying the theorem gives10 < 
15 - 6 = 9, a contradiction. For K 3,3, we get 9 :::; 18 - 6 = 12 which 
does not give a contradiction if we use the first inequality. However, the 
bipartite graph has no triangles and so, by the second inequality, we get 
9 :::; 8, which is a contradiction .• 
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A famous theorem of Kazimierz Kuratowski (1896-1980) proved in 
1930 states that a graph is planar if and only if it can be (edge)­
contracted to either K5 or K 3,3. Thus, for example, as the Petersen 
graph (shown in Figure 10.2) can be contracted to K5 by collapsing 
the edges connecting the "inside" cycle of 5 vertices to the outer five 
vertices, it is not planar. 

FIGURE 10.2. Petersen graph 

THEOREM 10.1.4. Every simple planar graph X contains a vertex 
of degree at most five. 

PROOF. If every vertex has degree at least six, then 2e 2: 6v which 
implies e 2: 3v. However, Theorem 10.1.2 implies e :s: 3v - 6 which is a 
contradiction. • 

Now, we can prove the six-colour theorem: 

THEOREM 10.1.5 (The six colour theorem). Every map can be pTOp­
erly coloured using six colours. 

PROOF. We proceed by induction on the number of vertices (or 
regions) of the planar graph associated with the map. Suppose that 
all planar graphs with fewer than n - 1 vertices are 6-colourable. By 
Theorem 10.1.4, X contains a vertex of degree 5 or less. By induction, 
X - v is 6-colourable and as v has degree 5 or less, we can colour it with 
one of the six colours not used on any of its adjacent vertices .• 
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10.2. The Five Colour Theorem 

The four colour theorem has a colourful history! It states that any 
planar graph can be coloured using four colours. Since K4 is planar, 
and has chromatic number 4, we see that four colours are necessary. To 
prove that this is sufficient is more difficult. The four colour conjecture 
was first formulated by Francis Guthrie on October 23, 1852. Guthrie 
was a student at University College London where he studied under 
Augustus de Morgan (1806-1871). When Guthrie asked de Morgan, he 
did not know how to prove it and wrote to Sir William Rowan Hamilton 
(1805-1865) in Dublin if he knew. It seems that Guthrie graduated and 
then studied law. After practicing as a barrister, he went to South 
Africa in 1861 as a professor of mathematics. After a few mathematical 
papers, he switched to the field of botany. 

In the meanwhile, de Morgan circulated Guthrie's question to many 
mathematicians. Arthur Cayley, who learned of the question from de 
Morgan in 1878, posed it as a formal unsolved problem to the London 
Mathematical Society on 13 June, 1878. On 17 July 1879, Alfred Kempe 
(1849-1922), a London bar.rister and amateur mathematician announced 
in Nature that he had a proof. Kempe had studied under Cayley, and 
at Cayley's suggestion, submitted his paper to the American Journal of 
Mathematics in 1879. We will discuss Kempe's "proof" below. Appar­
ently, Kempe received great acclaim for his work. He was elected Fellow 
of the Royal Society and served as its treasurer for many years. In 1912, 
he was knighted. The error in his "proof" was discovered in 1890 by 
Percy John Heawood (1861-1955), a lecturer in Durham, England. In 
his paper, Heawood showed how to salvage the proof and prove that 
every map is 5-colourable. We will now prove the following theorem 
due to Heawood. 

THEOREM 10.2.1 (Heawood, 1890). Any planar graph is 5-colourable. 

PROOF. We will prove the theorem by induction on the number of 
vertices. Let X be a planar graph on n vertices. The base case n = 1 
is obvious. Assume n 2:: 2. By Theorem 10.1.4, there is a vertex x 
of degree at most 5. The graph Y = X \ {x} is also planar and by 
induction, Y can be coloured using at most 5 colours. If the degree of 
x is 4 or less, then x an be coloured with a colour not used for any of 
its adjacent vertices. This way, we can obtain a proper colouring of X 
with at most 5 colours. So we may suppose that x has degree 5. If 
any two of the neighbours of x get the same colour, then the previous 
argument shows how one can colour X with at most 5 colours. Let us 
label the neighbours of x as p, q, r, s, t and say that they are coloured in 
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Y with 1,2,3,4,5 respectively, by the induction hypothesis. Denote by 
Xi,j the subgraph of Y whose vertices are coloured with colour with i 
and j. Now consider X 1,3. Both p and r belong to X 1,3. If they lie in 
two distinct components, then, we may interchange colours 1 and 3 in 
the component containing r with the result that p and r are coloured 
using colour 1. Then, we can colour x using colour 3. If however, p and 
r lie in the same connected component of X 1,3, then this means there 
is a chain of vertices with alternating colours 1 and 3 from p to r. Now 
consider X 2,4. Both q and s belong to this subgraph. Again, if q and 
s lie in distinct connected components, we may interchange colours 2 
and 4 in one of the components and free up one colour and use that to 
colour x. If q and s do not lie in the same connected component, then 
there is a path of alternating colours from q to s. But this path must 
cross the path from p to r and this would violate planarity. Thus, the 
second possibility cannot arise which means that we can use the same 
colour on q and s and thus, colour X with 5 colours. This finishes the 
proof .• 

Kempe's "proof" performed this colour reversal technique twice and 
this leads to difficulties as Heawood pointed out. Here is Kempe's ar­
gument. As before, we proceed by induction on the number of vertices. 
Let x be a vertex of degree at most 5. If the degree of x is at most 4, 
then an argument as in Heawood's proof can be applied (and we leave 
this as an exercise to the reader). However, the proof breaks down when 
degree of x is 5 for the following reasons. Label the vertices adjacent to 
x as p, q, r, s, t and let us suppose that induction gave the colouring of 
vertices as shown in Figure 10.3. If there is no 2,3 colour chain between 
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FIGURE 10.3 
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q and s, we can carry a colour reversal to free the colour 2 (say) for 
vertex x. If there is no 2,4 colour chain between q and t, we can carry 
out a colour reversal to free the colour 2 for vertex x. It looks as if we 
therefore have a situation indicated in Figure 10.4. Since there cannot 
be aI, 3 colour chain between p and s, a colour reversal can paint the 



10.3. COLOURING MAPS ON SURFACES OF HIGHER GENUS 123 

x 

FIGURE 10.4 

t 
4 

vertex p with colour 3. Since there cannot be a 1,4 colour chain be­
tween rand t a colour reversal will paint the vertex r with colour 4. So 
it looks as if colour 1 is freed and we can use it to colour x. However, 
there is a gap in the reasoning. In the figure below, carrying out the 
reversals as indicated above will paint p and r with colour 1. Indeed, 
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FIGURE 10.5 
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the colour reversal argument is valid for changing the colour of p and 
the colour of r. However, simultaneously changing the colour of p and 
r leads to difficulties. This is essentially what Heawood observed as the 
gap in Kempe's proof. He was able to salvage the argument to deduce 
the five colour theorem as we indicated above. 

10.3. Colouring Maps on Surfaces of Higher Genus 

As we mentioned earlier, K3 ,3 is not a planar graph since we cannot 
draw it on the plane without intersecting edges. If however, we tried to 
draw it on a torus, then it is possible to draw the graph without crossing 
of edges as it can be verified easily. A celebrated theorem of Mobius 
(1870) is that any compact (orient able) surface is homeomorphic to a 
sphere with 9 handles. The genus of the surface is denoted g. A torus, 
for example, has genus one since it is homeomorphic to a sphere with 
one handle. 

One can show that any graph X can be embedded in some compact 
orient able surface. The minimal genus of the surface for which this can 
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be done is called the genus of the graph. For example, the genus of 
K 3 ,3 is l. 

For graphs embedded on a surface of genus g, Euler's formula gen­
eralizes as follows. A face is defined as before, as a maximal region cut 
out by the graph which contains no vertex of the graph in its interior. 
We state without proof the following result . 

THEOREM 10.3.1 (Euler 's formula). If G is a connected graph of 
genus g, then 

v - e + f = 2 - 2g. 

Using Euler's formula, we can prove as before that any simple graph 
of genus 9 has at most 3( v - 2 + 2g) edges. This is the analogue that 
a planar graph has at most 3(v - 2) edges. As before, summing up the 
degrees gives 

2e ::; 6( v - 2 + 2g) 

so that there has to be at least one vertex of degree 

6(v - 2 + 2g) 
< . - v 

This is the analog of the result for planar graphs which says there is at 
least one vertex of degree at most five. Now we can prove: 

THEOREM 10.3.2 (Heawood, 1890). Any graph X of genus 9 can be 
coloured with 

r7+J~+48g1 

colours provided 9 > O. Here r x 1 denotes the smallest integer larger 
than or equal to x. 

REMARK 10.3.3. Notice that if 9 = 0 were allowed in the formula, 
then we deduce the four colour theorem. 

PROOF. Let 

c = r 7 + J~ + 48g l. 
If X has at most c vertices, we are done. So suppose that v > c. If we 
can show that every simple graph of genus 9 has a vertex of degree at 
most c-l, then we can use an induction argument as before to complete 
the proof. Notice that 

c2 -7c+ (12 -12g) 2: 0 

so that 
12(g - 1) 

c-1>6+ . - c 
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Thus, from the remark before the statement of the theorem, we have 
that X has a vertex of degree at most 

6 + 12(g - 1) < 6 + 12(g - 1) ::; c _ 1 
v - c 

as desired .• 

REMARK 10.3.4. Notice that 9 2: 1 is used in a crucial way in the 
'inequalities at the end of the proof. 

For a long time, it was an outstanding problem to determine the 
genus of the complete graph. The complete graph conjecture, proved 
in 1968 by Gerhard Ringel and J.W.T. Youngs, states that the genus of 
Kn is 

10.4. Exercises 

EXERCISE 10.4.1. The girth of a graph is the length of its shortest 
cycle (that is, closed path). Use Euler's formula to show that if X is a 
planar graph with girth" and v vertices, then the number of edges e 
of X satisfies the inequality 

e::; -'-(v - 2). 
,-2 

EXERCISE 10.4.2. Determine the girth of the Petersen graph (Figure 
10.2) and use the previous question to deduce that it is not a planar 
graph. 

EXERCISE 10.4.3. Let X be a graph with chromatic number X(X) > 
3. Show that the genus g(X) of a graph X satisfies the inequality 

1 
g(X) 2: 12 (X(X)2 - 7X(X) + 12) . 

Deduce that for n 2: 5, the genus of the complete graph Kn is at least 

,(n - 3i;n -4)l. 
EXERCISE 10.4.4. Determine all r, s such that Kr,s is a planar graph. 

EXERCISE 10.4.5. Show that K5 \ e is planar for any edge e of K 5. 

EXERCISE 10.4.6. Show that K 3,3 \ f is planar for any edge f of 

K3,3 \ f· 
EXERCISE 10.4.7. Let G be the graph obtained from K 4,4 by deleting 

a perfect matching. Is G planar ? 
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EXERCISE lO.4.S. Let S be a set of n points in the plane such that 
the distance between any two of them is at least 1. Show that there are 
at most 3n - 6 pairs x, y such that the distance between x and y is 1. 

EXERCISE 10.4.9. The crossing number of a graph X is the min­
imum number of crossings in a drawing of X in the plane. What are 
the crossing numbers of K5 and K 3,3 ? 

EXERCISE 10.4.10. Let X be a graph with n vertices and e edges. 
If k is the maximum number of edges in a planar subgraph of X, show 
that the crossing number of X is at least e - k. Prove that the crossing 
number of X is at least e - 3n + 6. If X has no triangles, then the 
crossing number is at least e - 2n + 4. 

EXERCISE 10.4.11. Show that the crossing number of K6 is 3. 

EXERCISE 10.4.12. A planar graph X is outerplanar if it has a 
drawing with every vertex on the boundary of the unbounded face. 
Show that any cycle is outerplanar. Show that K4 is planar, but not 
outerplanar. 

EXERCISE 10.4.13. Show that K2,3 is planar, but not outerplanar. 

EXERCISE 10.4.14. Any outerplanar graph is 3-colourable. 

EXERCISE 10.4.15. An art gallery is represented by a polygon with n 
sides. Show that it is possible to place l J J guards such that every point 
interior to the polygon is visible to some guard. Construct a polygon 
that can be guarded by precisely l J J guards. 

EXERCISE 10.4.16. What is the crossing number of the Petersen 
graph? 

EXERCISE 10.4.17. Prove that every outerplanar graph has a vertex 
of degree at most 2. 

EXERCISE 10.4.18. Show that every planar graph decomposes into 
two bipartite graphs. 

EXERCISE 10.4.19. For any n :::::: 4, construct a planar graph with n 
vertices and chromatic number 4. 

EXERCISE 10.4.20. Let X be a planar graph with a Hamiltonian 
cycle C. If X has iI faces of length i inside C and II' faces of length i 
outside C, then 

L(i - 2)UI - in = O. 
i 



CHAPTER 11 

Edges and Cycles 

11.1. Edge Colourings 

In the previous chapters, we have been considering vertex colour­
ings. Now we will look at edge colourings of a graph. We will say that 
two edges are adjacent if they have a common vertex. We would like 
to colour the edges "properly" in the sense that no two adjacent edges 
receive the same colour. Given a graph X, we define the edge chro­
matic number denoted Xe(X) to be the minimum number of colours 
needed to properly colour the edges. 

The question of edge colourings occurs in many contexts. Sup­
pose that in a school we have n teachers T I , ... , Tn to teach m classes 
GI , . .. , em and teacher Ti must teach class ej for Pij class periods. Is 
it possible to schedule this in such a way that a minimum number of 
time slots are used? To study this question, we would construct a bi­
partite graph whose vertices consist of vertices Ti and the classes ej . 

We will join Ti to ej with Pij edges and an edge colouring of this graph 
corresponds to a timetabling for the school. It will turn out that the 
edge chromatic number for this graph is P which is the maximum of the 
values of Pij. 

Clearly, if X is a graph whose maximal vertex degree is .6.(X), then 
we will need at least .6.(X) colours to properly edge colour X. It is a 
remarkable theorem proved independently by Gupta and Vizing, that in 
fact Xe(X) ::; .6. (X) + 1. Thus, the edge chromatic number of a graph is 
either .6.(X) or .6. (X) + 1 and at present, there is no convenient criterion 
to determine which one occurs. 

In some cases, it is possible to determine which one of these occurs 
as the edge chromatic number. For instance, we have the following: 

THEOREM 11.1.1. Let X be a graph with an odd number of vertices 
n. Suppose further that X is k-regular, that is, the degree of each vertex 
is k. Then, Xe(X) > k. 

REMARK 11.1.2. By the theorem of Gupta-Vizing, we can conclude 
that Xe(X) = k + 1. 



128 11. EDGES AND CYCLES 

PROOF. In any proper edge colouring, no two edges meeting at the 
same vertex can be coloured the same colour. Thus, if we partition 
the edges according to colour, each vertex is incident with at most one 
element from each class. Thus, the number of vertices gives an upper 
bound for the number of edges in each colour class. But taking into 
account that an edge joins two vertices, we see that the number of edges 
in a colour class is at most n / 2. Since n is odd, this can be sharpened to 
(n - 1)/2. As our graph is regular, it has a total of kn/2 edges. Hence, 
the number of colours is at least 

kn/2 k 
(n - 1)/ 2 > . 

This completes the proof .• 

We can apply this result to determine the edge chromatic number 
of the complete graph. 

THEOREM 11.1.3. The edge chromatic number of Kn is n - 1 if n 
is even and n if n is odd. 

PROOF. First suppose n is odd. As Kn is (n - I)-regular, we can 
apply the previous theorem, to deduce that we will need at least n 
colours. We can represent Kn as follows. Draw the regular n-gon in 
the plane and use the vertices of the n-gon as the vertices of Kn. This 
is best visualized in the complex plane where we identify the vertices 
of the n-gon with the n roots of unity. If 0 denotes the interior angle 
subtended at each vertex, then one can easily determine 0 as follows. By 
connecting that particular vertex to every other vertex, we decompose 
the n-gon into n - 2 triangles. Each triangle contributes 7r radians, and 
so nO = (n - 2)7r implying () = (n - 2)7r In. To form the complete graph, 
we simply rotate by 7r /n the line determined by the edge at the vertex 
of the n-gon. This shows that each of the edges of the complete graph 
is parallel to one of the sides of the n-gon. Now, draw in the edges as 
indicated above. First colour each of the edges of the n-gon a different 
colour. It is not difficult to see that any remaining edge is parallel to 
one of the outer edges. Then colour the remaining edges the colour of 
the edge of the n-gon which is parallel to it. This gives the desired 
colouring. In the case n is even, observe that Kn = Kl V K n- 1 . As 
n - 1 is odd, we can properly edge colour K n - 1 using n - 1 colours. In 
this colouring, one colour is missing at each vertex of K n - 1. Use that 
colour to colour the edge joining it to K 1. This completes the proof .• 

Thus, Kn with n odd requires one more colour than the maximal 
degree. Another class of graphs with this property is the cycle graph 
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Cn whose edge chromatic number is easily seen to be 3 if n is odd and 
2 if n is even. 

The edge colouring problem can be transformed into a vertex colour­
ing problem in the following way. Given a graph X, we consider the 
line graph of X, denoted L(X) whose vertices represent the edges of X. 
Two vertices of L(X) are adjacent if the corresponding edges in X meet 
in a vertex. The edge chromatic number of X is then the chromatic 
number of L(X). We can therefore apply some of our earlier results 
to the question of edge colouring. For example, what is the maximal 
degree of a vertex in L(X)? This boils down to asking how many edges 
are adjacent to a given edge in X. Since an edge has two endpoints, 
we easily find that the maximal degree is ::; 2(~(X) - 1). Thus, by the 
theorem of Brooks on the chromatic number of a graph, we obtain 

THEOREM 11.1.4. The edge chromatic number satisfies the inequal­
ities: 

~(X) ::; Xe(X) ::; 2~(X) - 1. 

If ~(X) ~ 3, then the upper bound can be sharpened to 2~(X) - 2 by 
the theorem of Brooks. 

PROOF. We only need to explain the last statement. The theorem 
of Brooks tells us that the chromatic number is bounded by the maximal 
degree unless the graph is Cn with n odd or the complete graph Kn. If 
~(X) ~ 3, the first case cannot arise. In the second case, the result is 
true since the previous theorem determined the edge chromatic number 
of the complete graph .• 

We can determine the edge chromatic number of bipartite graphs 
by a celebrated theorem of Konig. The method of proof resembles the 
five colour theorem. 

THEOREM 11.1.5. Let X be a bipartite graph with maximal degree 
~. Then, Xe(X) = ~. 

PROOF. We will induct on the number of edges of X. Let U and V 
be the partite sets of X. Remove an edge e that joins u E U and v E V 
(say) from X. The resulting graph X' is still bipartite. The highest 
vertex degree in X' is still ~ or less. By induction, we can edge colour 
X' using ~ colours or less. If we used at most ~ - 1 colours, then we can 
use the remaining colour for the edge e. So assume we used ~ colours 
to colour the edges of X'. If one of the colours is missing from both the 
edges incident to u and the edges incident to v, then we can use that 
colour to colour e. So assume otherwise. Since the degree of u in X' is 
less than ~, there is a colour c (say) missing at u which is used at v and 
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similarly, a colour d is missing at v which is used at u. Now consider 
the subgraph of X' which is coloured with either c or c'. In particular, 
consider the component which contains u. This component consists of a 
path of alternating colours, between c' and c. This path cannot end at 
v for that would be a path of odd length and the last edge would have 
colour c' which is not used at v. Now we can perform a colour reversal 
in this component and still have a proper edge colouring of X' with now 
c used at u which frees up c'. As c' is missing from v, we can use that 
colour to colour the edge e. This completes the proof. • 

COROLLARY 11.1.6. Xe(Kr,s) = max(r,s). 

A decomposition of a graph is a list of subgraphs such that each 
edge appears in exactly one subgraph in the list. An edge colouring of 
the graph gives rise to a decomposition of the edges into colour classes. 
A k-factor of a graph is a spanning subgraph which is a k-regular graph. 
Thus, a I-factor is a matching. If we edge colour a k-regular graph using 
only k colours, then the colour classes give us a decomposition of the· 
graph into I-factors. Thus, for instance, if the Petersen graph were 3-
colour able , removing a colour class leaves us a 2-regular graph which 
consists of odd cycles and cannot be decomposed as I-factors. 

An important application of Theorem 11.1.5 is to the problem of 
scheduling. Suppose that members of a hiring committee are to in­
terview a number of candidates for a job. If each member interviews 
at most m candidates and each candidate is interviewed by at most n 
members individually, then Theorem 11.1.5 tells us that max(m, n) time 
slots are needed for this purpose. The precise timetabling of the can­
didates corresponds to matchings, which we can effectively determine 
using the Hungarian algorithm. 

11.2. Hamiltonian Cycles 

A Hamiltonian cycle in a graph is a closed path that visits each 
vertex exactly once (apart from the initial point and the end point). 
This is reminiscent of the Euler cycle discussed in Chapter 2. However, 
no simple criterion is known that characterizes graphs that contain a 
Hamiltonian cycle. In a practical context, this arises as the famous 
traveling salesman problem. The question is to visit each of the cities 
in a circuit exactly once and minimizing the cost of such a tour. No 
algorithm is known for finding such a tour and it represents one of the 
major unsolved problems in graph theory. 

Despite being studied first by Kirkman, Hamilton cycles are named 
for Sir William Rowan Hamilton (1805-1865). In 1856, Kirkman asked 
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if given the graph of a polyhedron, does there exist a cycle passing 
through every vertex? In 1857, Hamilton invented the Icosian game 
which is the problem of finding a Hamilton cycle in a dodecahedron 
(seen in the Figure below). The game was actually sold as a pegboard 
with holes at the nodes of the dodecahedron. In 1859, Hamilton sold 
the game to a London game dealer for 25 pounds who marketed under 
the name A round the world. 

FIGURE 11.1. The dodecahedron graph 

There is also the famous problem of the 'knight's tour' which asks if 
the knight on the chessboard can visit each of the squares exactly once 
and return to the starting point. This problem was first solved by Euler 
in 1759. 

There are many theorems which provide sufficient conditions for 
the existence of a Hamiltonian cycle. We give one such theorem, due to 
Oystein Ore (1899-1968), below. 

THEOREM 11.2.1. Let X be a simple graph with v vertices. Suppose 
that v 2:: 3 and that deg (x) + deg (y) 2:: v for any pair of non-adjacent 
vertices x and y. Then X has a Hamiltonian cycle. 

PROOF. Suppose that the theorem is false for some graph with v 2:: 3 
vertices. Add as many edges as possible to this graph without producing 
a Hamiltonian cycle. Call this new graph X'. X' cannot be the complete 
graph and so there is a pair of non-adjacent vertices x, y (say). By the 
construction of X', any addition of an edge will create a Hamiltonian 
cycle. In particular, adding the edge xy will create a Hamiltonian cycle. 



132 11. EDGES AND CYCLES 

Thus, X' has a path from x to y which visits all the vertices. Of these 
vertices, put a circle around the ones which are adjacent to x and put a 
square around the vertices before the adjacent ones in the Hamiltonian 
path. A number of deg (x) of the v - 1 vertices are circled and deg (x) 
of the v - 1 vertices are also squared. Thus, v - 1 - deg (x) are not 
squared. Since deg (y) .~ v - deg (x) > v - 1 - deg (x), there is a vertex 
z (say) adjacent (see Figure 11.2) to y which has been squared. Thus, 
we have a Hamiltonian cycle from x to the vertex "next" to z and then 
moving to y and then to z and back to x. This is a contradiction that 
X' has a Hamiltonian cycle. • 

x z y 

FIGURE 11.2 

We have the following theorem due to Gabriel Andrew Dirac (1925-
1984). 

COROLLARY 11.2.2. If X is a graph with v vertices such that every 
vertex has degree ~ v/2, then X has a Hamiltonian cycle. 

The Petersen graph is a 3-regular graph with edge chromatic number 
4 (see Exercise 11.4.3). One can show that any 3-regular graph with 
a Hamiltonian cycle has edge chromatic number 3 and therefore, we 
conclude that the Petersen graph is not Hamiltonian (see Exercise 11.4.2 
and Exercise 11.4.4). 

The following is a necessary condition for a graph to have a Hamil­
tonian cycle. 

THEOREM 11.2.3. If X has a Hamiltonian cycle, then for each 8 C 

V(X), the graph X \ 8 has at most 181 components. 

PROOF. Let C be a Hamiltonian cycle in X and 8 c V(X) be a 
subset of vertices of X. When C leaves a component of X \ 8, it must 
return to 8. These returns to 8 must use different vertices of 8. This 
proves the theorem .• 

This result can be useful when trying to show that a graph is not 
Hamiltonian. The graph below is such an example. The reader can 
easily construct examples which show that the above condition is not 
sufficient for the existence of a Hamiltonian cycle. 
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FIGURE 11.3. A graph that has no Hamiltonian cycle 

A directed complete graph is called a tournament since it can be 
used to record the outcome of a round robin tournament (where every 
contestant is matched against every other contestant). The arrows on 
the edges would indicate the win-loss record. 

THEOREM 11.2.4. A directed complete graph always contains a Hamil­
tonian path. 

PROOF. Take a path of longest length in which each of the vertices 
are visited exactly once. The claim is that all the vertices of the graph 
are included. Suppose that (Xl, ... , xm) is our path and say that Xo is 
not included in this. If (xo, Xl) is an edge, then we can add this to or 
path and get a longer path in which all the vertices are distinct. Thus, 
(Xl, xo) is in the graph. If (xo, X2) were in the graph, we can create 
the longer path (Xl,XO,X2, ... ) contrary to our choice. In this way, we 
deduce that (xm, xo) is in the graph which means we could have added 
it at the end of the path, which is again a contradiction .• 

Theorem 11.2.4 has applications to the job-sequencing problem where 
we must arrange jobs to be performed in a sequence so as no time is 
wasted. For instance, suppose n books are to be printed and then 
bound. There is one printing machine and one binding machine. Let 
Pi denote the printing time of the i-th book and bi the binding time 
for the i-th book. For any two books, i and j, we know that either 
Pi ~ bj or Pj ~ bi· Theorem 11.2.4 tells us that it is possible to specify 
the order in which the books are printed and then bound so that the 
binding machine will be kept busy until all the books are bound once 
the first book is printed. Thus, the total time for completing the task 
is 

n 

Pk + Lbi 

i=l 

for some k. Indeed, we construct a directed complete graph on n ver­
tices; there is a directed edge from i to j if and only if bi 2:: Pj. A 
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Hamiltonian path is an ordering of the books satisfying the above con­
dition. 

11.3. Ramsey Theory 

The pigeonhole principle is a fundamental tool in mathematics. It 
basically says that if we have n pigeonholes and n + 1 objects are placed 
in these pigeonholes, then there is at least one pigeonhole with two ob­
jects. Though this sounds like a simple principle, its mode of application 
can be very ingenious at times leading to striking results. For instance, 
in any simple graph, there are two vertices of the same degree. To see 
this, suppose there are n vertices. Then, the degrees are elements of the 
set {O, 1, ... , n - 1}. If no' two vertices have the same degree, then the 
vertex degrees must hit every value in this set. In particular, one must 
have degree n - 1. But then, this means there is no vertex of degree O. 
This is an instance of the pigeonhole principle. To give another exam­
ple, in any n + 1 numbers chosen from the natural numbers less than or 
equal to 2n, two of them must be consecutive. By the same principle, 
one can deduce that there are two numbers, one which divides the other. 

A generalization of the pigeonhole principle is the averaging argu­
ment. This says that given any numbers Xl, ... , X n , one of these numbers 
is at least as large as the average (Xl + ... + xn)ln. Again, this simple 
principle has surprising consequences. For one thing, it generalizes the 
pigeonhole principle in the following way. If we put kn+ 1 objects into n 
pigeonholes, then one of the pigeonholes contains at least k + 1 objects. 
Indeed, if Xi denotes the number of objects in the i-th pigeonhole, then 
the average of the Xi'S is k + lin and so at least one Xi is greater than 
k + lin. But as Xi is an integer, this must be at least k + 1. 

A vast generalization of the pigeonhole principle falls under the name 
of Ramsey theory. Frank Plumpton Ramsey (1906-1930) wrote on logic, 
mathematics and philosophy. The basic idea of Ramsey theory can be 
summarized by the words of Theodore Samuel Motzkin (1908-1970): 
"Complete disorder is impossible". 

It can be illustrated by the following amusing fact. In any group 
of six people, there are either three mutual friends or three mutual 
strangers. This can be stated in graph-theoretic terms as follows. Take 
the complete graph K6 whose vertices represent the six people. Colour 
the edge red if the two people know each other, otherwise, colour it 
blue. We claim that there must be a monochromatic triangle. To see 
this, note that each vertex has degree 5 and so there must be three 
edges of the same colour emanating from every vertex. Select one, and 
suppose without loss of generality, these edges are red connecting these 
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vertices. If anyone of the edges connecting these three vertices is red, 
we are done. If not, then we have a blue triangle and we are done. It 
is not hard to see that such a result cannot be inferred if we had K 5 . 

Thus, 6 is the minimal number which ensures a monochromatic triangle 
from any random colouring of its edges. 

Ramsey's generalization of this fact can be stated as follows: 

THEOREM 11.3.1 (Ramsey, 1930). Let a, b ~ 2 be integers and let 

n=(a:~~2). 
Then, any edge colouring of Kn with red and blue contains a red Ka or 
a blue Kb . 

REMARK 11.3.2. The case discussed above is a = b = 3 and n = 6. 

PROOF. The proof proceeds by induction on a + b. The case a = 
b = 2 is trivial. So assume a > 2 and b > 2 and that we have established 
the theorem for lower a + b. In particular, if 

n1 = (a + (b - 1) - 2) a-I 
and the edges of Knl are coloured using red and blue, then there is 
bound to be a red Ka or a blue Kb-1. Again, by induction, if 

n2 = ((a - 1) + b - 2) 
(a - 1) - 1 

then, there is bound to be a red K a- 1 or a blue Kb. Now, to deduce the 
result for a, b, let n be as stated in the theorem and suppose we have 
randomly coloured the edges of Kn with red and blue. Consider one 
vertex v and look at its incident edges. There are n - 1 of them. By 
the recurrence for the binomial coefficients, 

n _ 1 = (a + b -2) _ 1 = (a + b -3) + (a + b -3) _ 1 a-I a-I a-2 
= n1 + n2 - 1 > (n1 - 1) + (n2 - 1). 

Thus, these n - 1 edges incident at v must contain at least n1 blue edges 
or n2 red edges (for otherwise, we would have :s: n1 - 1 blue edges and 
:s: n2 - 1 red edges which give us a total of < n - 1 edges incident at 
v). We consider only the first case since the other case is similar. In 
this case, the complete graph Knl vertices formed by the n1 vertices 
incident with the above blue edges, contains a red Ka or a blue K b- 1. 
If the former is the case, we are done. If the latter, then together with 
the vertex v, we have the required K b. This completes the proof .• 
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If we define the Ramsey number R( a, b) to be the smallest value 
of n such that any 2-colouring of Kn contains a monochromatic Ka or 
Kb, then our remark above shows that R(3, 3) :::; 6. It is not difficult to 
see that K5 can be 2-coloured in such a way there is no monochromatic 
triangle. Simply colour the 'outer' edges of K5 one colour and the 'inner' 
edges another colour. Thus, R(3, 3) = 6. Our theorem above shows that 
in general 

R(a, b) :::; (a + b - 2) . 
a-I 

The precise determination of these numbers is still a major unsolved 
problem in this area. 

There are several ways in which the theorem has been generalized. 
One way is to extend it to more colourings than just 2 colours. Thus, 
if Kn is edge coloured using r colours, and we specify positive integers 
aI, ... , ar, then how large must n be so that we are sure to have a sub­
graph Kai with the i-th colour. Does such an n even exist. This is 
established by the following: 

THEOREM 11.3.3. Let positive integers aI, ... , ar be given. Then, 
there exists an n such that if Kn is edge coloured using r colours, then 
there is some Kai with the i-th colour. 

PROOF. We induct on r. We have already proved the case r = 2. 
Suppose then r > 2. By induction, there is an no such that if we 
edge colour Kno using r - 1 colours, then there is some Kai with the 
i-th colour. Thus, we have applied the induction process with r - 1 and 
a2, ... , ar-l· Now let n = R(al' no). By Theorem 11.3.1, any 2-colouring 
of Kn contains either Kal with the first colour or a Kno with the other 
colour. If the former, we are done. If the latter, by induction, the proof 
is complete. • 

As can be seen, Ramsey theory is a merging of the induction tech­
nique with the pigeonhole principle. Its application in many problems 
can sometimes be quite subtle. 

Here are two applications. In any sequence al, ... ,am of m = R(n+ 
1, n + 1) distinct numbers, there is a monotonic subsequence of length 
n + 1. Paul Erdos (1913-1996) and George Szekeres (1911-2005) proved 
this to hold for any sequence of n 2 + 1 numbers. See also Exercise 11.4.8. 
We take m = R(n + 1, n + 1) and represent the numbers by the vertices 
of Km. If ai < aj, we colour the edge i, j red; otherwise we colour it 
blue. Then, the result follows from Ramsey's theorem. 

A famous theorem of Robert Palmer Dilworth (1914-1993) from 1955 
says that any partial ordering of ab + 1 elements contains a chain of 
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length a + 1 or an antichain of length b + 1 (where by an antichain, we 
mean a subset no two of which are comparable). For example, if we 
have n + 1 natural numbers partially ordered by divisibility, then either 
there are two elements, one which divides the other, or all the numbers 
are incomparable. If we replace ab + 1 by R(a + 1, b + 1), then this 
is an immediate consequence of Ramsey's theorem since again, we can 
represent the vertices of Kn with n = R(a + 1, b + 1) by the elements. 
We colour a pair x, y red if x and yare comparable and blue otherwise. 
Ramsey's theorem yields a red Ka+1 or a blue Kb+1 from which we 
deduce the result. See also Exercise 11.4.20. 

In 1916, Issai Schur (1875-1941) applied Theorem to show that for 
any prime p sufficiently large, the "Fermat equation" mod p always has 
a solution. That is, am + bm == em (mod p) can be solved provided 
p > f(m) for some number f(m). Schur shows that f(m) = m!e + 1 
works. 

In fact, Schur's theorem is based on the following result. 

THEOREM 11.3.4. Suppose m is a positive integer. Then there is an 
M such that if the positive integers {I, 2, ... , M - I} are partitioned into 
m sets, the equation x + y = z has a solution in at least one of the sets. 

PROOF. By Ramsey's Theorem 11.3.3, there is an M such that if 
the edges of KM are coloured using m colours, then there is a monochro­
matic triangle. Let us assign a colour to each block of the given par­
tition of {1,2, ... ,M - I}. Now colour the edge (i,j) with the colour 
assigned to the block in which Ii - j I appears. Since there is a monochro­
matic triangle, there are elements 1 :::; i < j < k :::; M such that 
Ii - jl = j ~ i, Ij - kl = k - j and Ii - kl = k - i have the same colour, 
that is, lie in the same block. Then x = j - i, Y = k - j, z = k - i lie in 
the same block and we have x + y = z. • 

COROLLARY 11.3.5. There is an f(m) such that for any prime 
p > f(m), the equation am + bm == em (mod p) always has a non-zero 
solution. 

PROOF. Let f(m) = M as in Theorem 11.3.4. For any prime p > 
M, we consider the cosets of F;m := {um : u E F p \ {O}} in F p. There 
are m such cosets. Pick m distinct colours corresponding to each of 
the cosets. We now colour the elements of {I, 2, ... , M - I} with the m 
colours according as the coset they lie in. By Theorem 11.3.4, we can 
solve x + y = z in one of the cosets. Since the cosets are of the form 
uF;m for some u =I 0, we may write x = uam, y = ubm, z = ucm and the 
theorem is now clear after canceling the u, which we can do since u =I O. 
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Moreover, a, b, c are all non-zero since they lie in F;. This completes 
the proof. • 

"Ve conclude our discussion of Ramsey theory with an exponential 
lower bound for the Ramsey number R( a, a). The next theorem uses 
the probabilistic method, a very powerful tool in combinatorics. 

THEOREM 11.3.6 (Erdos, 1947). The Ramsey number R(a,a) satis­
fies the inequalities 

2a/2 ::::; R( a, a) ::::; 22a . 

PROOF. The second inequality follows from Theorem 11.3.1 because 

( 2a - 2) ::::; 22a-2 < 22a. 
a -- 1 

For the lower bound, we apply a "probabilistic" method as follows. Let 
us count the number of colourings on n vertices which contain a "red" 
Ka or a "blue" Ka. From the n vertices, we choose a vertices and make a 
"red" complete graph on a vertices. The number of ways of completing 
this graph is clearly 

Since we can do this construction for either of the two colours, the 
number of graphs on n vertices which contain a red Ka or a blue Ka is 
at most 

2 (:) 2(~) - (~). 

If this quantity is strictly less than 2( ~) then there are graphs on n 
vertices whose 2-colouring of the edges do not contain a monochromatic 
Ka. Thus, we can conclude R(a, a) > n. Now we estimate n. Notice 
that we have 

Since 

(:) < :~ 
we can ensure this condition if 

2na (a) 
-, <22. 
a. 

Taking logarithms, w,e find upon using the trivial inequality log a! < 
a log a, we get 

a-I log 2 
logn < --log2 + log a ---

2 a 
which is satisfied if n = 2a/2 .• 
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11.4. Exercises 

EXERCISE 11.4.1. Draw the line graph of K 3,3 and determine its 
chromatic number. 

EXERCISE 11.4.2. Show that the Petersen graph (Figure 10.2) has 
no Hamiltonian cycles. 

EXERCISE 11.4.3. Show that the edge-chromatic number of the Pe­
tersen graph is 4. 

EXERCISE 11.4.4. If X is a 3-regular graph with a Hamiltonian cycle, 
show that Xe(X) = 3. 

EXERCISE 11.4.5. Show that K r ,8 has no Hamiltonian cycle unless 
r = s. 

EXERCISE 11.4.6. Show that Ks,s contains 81(S;-1)1 Hamiltonian cy­
cles. 

EXERCISE 11.4.7. Show that every path of 5 vertices lies in the 
dodecahedron lies in a Hamiltonian cycle. 

EXERCISE 11.4.8. If X has a Hamiltonian path, then for each S c 
V(X), the number of components of X \ S is at most lSI + 1. 

EXERCISE 11.4.9. Every set of n integers contains a nonempty sub­
set whose sum is divisible by n. Show that there are sets of n-1 integers 
with no such subset. 

EXERCISE 11.4.10. Show that every sequence of mn+ 1 real numbers 
contains either an increasing subsequence of length at least m + 1 or a 
decreasing subsequence of length at least n + 1. Show that there are 
sequences of mn real numbers for which the above conclusion fails. 

EXERCISE 11.4.11. Let a1, ... , an be nonnegative integers whose 
sum is k . If k :S 2n + 1, show that for any m E [kJ, there exists 
Ie [n] such that 

Lai =m. 
iEI 

For k = 2n + 2, describe a set of n nonnegative integers for which the 
statement above fails. 

EXERCISE 11.4.12. Let S be a subset of the set of natural numbers 
:S 2n. If lSI = n + 1, show that 

(1) there are two elements in S which are coprime. 
(2) there are two elements in S, one of which divides the other. 
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Describe a subset of n natural numbers less than 2n where each of the 
previous conclusions does not hold. 

EXERCISE 11.4.13. Show that for any red-blue colouring of the edges 
of K 6 , there exists a monochromatic cycle on 4 vertices. Show that this 
is not true for K 5 . 

EXERCISE 11.4.14. Show that the maximum number of edges in a 
non-Hamiltonian graph on n vertices is (n;-l) + 1. 

EXERCISE 11.4.15. Among five points in plane with no three collinear, 
show there are four that determine a convex quadrilateral. 

EXERCISE 11.4.16. Among nine points in plane with no three collinear, 
show there are five that determine a convex pentagon. 

EXERCISE 11.4.17. Let n 2': 3 be an integer number. Show that every 
set of (2:"::-24) + 1 points in the plane with no three collinear contains an 
n-subset forming a convex polygon. 

EXERCISE 11.4.18. Consider a cycle on 8 vertices in which we join 
the opposite vertices. Show that the 3-regular graph obtained contains 
no triangles and its independence number is at most 4. 

EXERCISE 11.4.19. Show that R(3, 4) = 9. 

EXERCISE 11.4.20. Recall that a poset P is a set P and a binary 
relation ~ that is reflexive, transitive and antisymmetric. A chain is 
a sequence al < a2 < ... < ak. An anti-chain is a subset of pairwise 
incomparable elements. If P is a finite poset, show that the minimum 
number of chains that cover P equals the maximum size of an antichain. 



CHAPTER 12 

Regular Graphs 

12.1. Eigenvalues of Regular Graphs 

Recall that a k-regular graph is one in which every vertex has degree 
k. Thus, every row sum (and hence every column sum) of its adjacency 
matrix A is k. We have seen (see Exercise 4.5.1) that k is an eigenvalue 
of A. Moreover, it is easy to see that all the eigenvalues). satisfy 1).1 ::; k. 
Indeed, let v = (Xl, ... ,xn)t be an eigenvector with eigenvalue ).. Then 

implies that 

).v = Av 

).Xi = L Xj. 

(i,j)EE 

Without loss of generality, we may suppose IXII = maxi IXil. Then, 

I).IIXII ::; klxll, 

from which we infer 1).1 ::; k. A similar argument shows that if X is 
connected, then the multiplicity of ).0 = k is one. In fact, the same ar­
gument shows that the multiplicity of ).0 = k is the number of connected 
components of X. To see this, let v = (Xl, ... , xn)t be an eigenvector cor­
responding to the eigenvalue k and without loss of generality, suppose 
IXII is maximal as before. We may also suppose Xl > O. Then, 

kXI = L Xj::; kXI 

(l,j)EE 

which means that there is no cancelation in the sum and all the xj's are 
equal to Xl. 

Thus, if X is a connected k-regular graph, we may arrange the 
eigenvalues as 

It is not difficult to show that -k is an eigenvalue of X if and only 
if X is bipartite, in which case, its multiplicity is again equal to the 
number of connected components. 
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Indeed, we have already observed (see Theorem 4.3.1) that the eigen­
values of the adjacency matrix of a bipartite graph occur in pairs Ai, Aj 
with Ai = -Aj. To show that if -k is an eigenvalue of a connected 
k-regular graph X, that X must be bipartite, we let (Xl, ... , xn) be an 
eigenvector corresponding to -k. Then, 

implies 

n 

-kXi = L aijXj 
j=l 

n 

klxil ::; Laijlxjl ::; klxil 
j=l 

if i is an index such that IXi I is maximal among the absolute values of the 
components of (Xl, ... , xn). The above inequality implies that we must 
have 'IXil = IXjl for any j adjacent to i. Since the graph is connected, 
this must be true of every component. Since the eigenvector is non-zero, 
each component must be strictly positive or strictly negative. Now let 
A be the vertices i such that Xi > 0 and B the vertices where Xi < O. 
We can now show that A and B are independent sets. Indeed, if Xi > 0, 
then the relation 

n 

-kXi = L aijXj 
j=l 

shows that if we let ai be the number of vertices in A adjacent to i and 
bi the number of vertices adjacent to i in B, then 

ai - bi = -k. 

But ai + bi = k so we deduce 2ai = O. Hence, if -k is an eigenvalue of 
a k-regular graph, then X is bipartite. 

Any eigenvalue Ai =I- ±k is referred to as a non-trivial eigenvalue. 
We denote by A(X) the maximum of the absolute values of all the non­
trivial eigenvalues. We will see in the next sections that A(X) has closed 
connections with the structure of X. 

12.2. Diameter of Regular Graphs 

Recall that we defined a metric on a connected graph by defining 
the distance d(x, y) for X, y E V as the minimal length amongst all 
the paths from X to y. The diameter of a connected graph was then 
the maximum value of the distance function. We begin by deriving an 
estimate for the diameter involving A(X) due to Fan Chung. If A is the 
adjacency matrix, then the (x, y)-th entry of AT is the number of paths 
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from x to y of length r. Hence, if m is the diameter of X, then every 
entry of Am is strictly positive. 

Let n = IVI and Uo, U1, ... , Un-1 be an orthonormal basis of eigenvec­
tors of A with corresponding eigenvalues >'0, ... , >'n-1 respectively. We 
may take Uo = u/ v'n where u = (1,1, ... , 1) as defined earlier. We can 
write 

n-1 
A = L >'iUiU~. 

i=O 

More generally, 
n-1 

Ar = L >'iu(u~. 
i=O 

In particular, we see that the (x, y )-th entry of Am is 

= L >'i(UiU~)x,y 
which is 

km 
2: --:;;: -I L >'i(ui)x(ui)yl· 

i?1 

Let us assume that X is not bipartite (so that -k is not an eigenvalue. 
Then, by the Cauchy-Schwarz inequality, 

which is easily seen to be 

~ >.(x)m(l - (uO);)1/2(1 - (uO)~)1/2 ~ >.f(l - l/n). 

Thus, (x, y)-th entry of Am is always positive if 

km 

>.(x)m > n - 1. 

If X is bipartite, it is easy to see that we get 

2km 
--->n-1. 
>.(x)m 

In other words, we have proved 

THEOREM 12.2.1. Let X be a k-regular graph with n vertices and 
diameter m. If X is not bipartite, then 

log(n - 1) 
m < log(k/>.(X)). 
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If X is bipartite, then we have the sharper inequality 

log[(n - 1)/2] 
m < log(k/ A(X)) . 

This inequality also shows that regular graphs with small A(X), have 
small diameter. In communication theory, one requires the network to 
have small diameter for efficient operation. Note that the diameter of a 
connected, k-regular graph X on n vertices is always at least log(~~~)-2 
(see Exercise 5.5.20). The best upper bound obtained from the previous 
result is about twice as large as this lower bound. 

At this point, a natural question is how small can A(X) be? The 
following elementary observation about the eigenvalue A(X) is worth 
making. Observe that the eigenvalues of A2 are simply the squares of 
the eigenvalues of A. On the other hand, the trace of A 2 is simply kn 
for a k-regular graph X. Thus, if X is not bipartite, 

k 2 + (n - 1)A(X)2 ~ kn 

which gives the inequality 

If X is bipartite, then 

in which case 

A(X) ~ (n -k) 1/2 Vk. 
n-1 

2k2 + (n - 2)A(X)2 ~ nk, 

A(X) ~ (n -2k) 1/2 Vk. 
n-2 

If we think of k as fixed and n---.oo, then we see that 

lim A(X) ~ Vk. 
n->oo 

An asymptotic version of a theorem of Alon and Bopanna from 1986 
asserts that 

(12.2.1) 

where the limit is taken over k-regular graphs with n going to infinity. 
Several proofs of this result exist in the literature. A sharper version 
was derived by Nilli in 1991. 

THEOREM 12.2.2. Suppose that X is a k-regular graph. Assume that 
the diameter of X is ~ 2b + 2 ~ 4. Then 

2Jk'=l-1 
A1(X) ~ 2Jk=l- b . 
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Let us make the following observation. If m = d( u, v) is the diameter 
of X, then the number of paths from u of length m is ::; km and as each 
such path has m + 1 vertices, we deduce that the number of vertices n 
satisfies the inequality 

n::; (m + l)km. 

Thus, if k is fixed and n-+oo, then the diameter also tends to infinity. 
In particular, Theorem 12.2.2 implies inequality (12.2.1) since A(X) 2': 
Al (X). 

We preface our proof of Theorem 12.2.2 by recalling the Rayleigh­
Ritz Theorem from Chapter 6, Section 6.S. Let A be a symmetric matrix 
(a similar analysis applies to Hermitian matrices). Let Amax and Amin 
be the largest and smallest eigenvalues of A respectively. Then, we have 

and 

Amax = max (Av, v) 
#0 (v, v) 

. (Av,v) 
Amin = mm ( ). 

voiO v,v 

Now let L(X) denote the space of real-valued functions on X. We 
can equip the vector space L(X) with an inner product by defining 

(j, g) = I: f(x)g(x). 
xEX 

We can view the adjacency matrix as acting on L(X) via the formula 

(Af)(x) = L f(y)· 
(x,Y)EE(X) 

For a connected k-regular graph, AO = k is an eigenvalue of multiplicity 
1 and the corresponding eigenspace is the set of constant functions. 
Hence, we can decompose our space as 

L(X) = Rfo E9 Lo(X) 

where fa = 1 and Lo(X) is the space of functions orthogonal to fa. 
Thus, we can consider A as operating on Lo(X). By the Rayleigh-Ritz 
theorem, 

(Af,!) 
Al (X) = rr;;t (j, f) . 

U.!O)=O 

Since we want a lower bound for Al(X), it is natural to consider the 
matrix ~ = kI - A whose eigenvalues are easily seen to be k - Ai 
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(0 :S i :S n - 1). (~is a discrete analogue of the classical Laplace 
operator.) Thus, 

k \ (X) . (~f, f) 
- /\1 = rrJ~ (f, f) . 

(f,Jo)=O 

The strategy now is to find an appropriate function f, obtain an upper 
bound for (f, f) and a lower bound for (~f, f). We can now prove 
Theorem 12.2.2. 

PROOF. Let u, v E G be such that d( u, v) 2: 2b + 2. For i 2: 0, define 
sets 

Ui={xEG: d(x,u)=i} 

Vi={XEG: d(x,v)=i}. 

Then, the sets Uo, Ul, ... , Ub, Va, VI, ... , Vb are disjoint, for otherwise, by 
the triangle inequality we get d( u, v) :S 2b which is a contradiction. 
Moreover, no vertex of 

is adjacent to 

V = U~=oVi 
for otherwise d( u, v) :S 2b + 1 which is a contradiction. For each vertex 
in Ui, at least one lies in Ui-l and at most q = k - 1 lie in Ui+ 1 (for 
i 2: 1). Thus, 

IUi+ll :S qlUil· 
By the same logic, I Vi +1 I :S qlViI· By induction, we see that IUbl :S 
q(b-i)IUil and IVbI :S q(b-i)IViI· We will set f(x) = Ii for x E Ui, 
f(x) = gi for x E Vi and zero otherwise, with the fi and gi to be chosen 
later. Now, 

(f,f) = A+B 

where 
b 

A = :LfllUil 
i=O 

and 

i=O 

By the inequalities derived above, we get 

b b 

(f, f) 2: :L flq-(b-i) IUbl + :L g;q-(b-i) IVbI· 
i=O i=O 
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We now choose fa = 0:, go = (3, Ii = o:q-(i-l)/2 and gi = (3q-(i-l)/2 for 
i :::: 1. Thus, 

(f, f) :::: (0:2 + (32) (1 + b ~~l ) . 
We choose 0: and (3 so that (f, fa) = O. 

Now we derive an upper bound for (!:l.f, f). Note that 

~ L (f(x) - f(y))2 = k(f, f) - (Af, f) = (!:l.f, f) 
(x,y)EE 

by an easy calculation. Let Au denote the sum 

~ L (f(x) - f(y))2 
(x,Y)EE 
x or y EU 

and let Av be defined similarly. If we partition according to the con­
tribution from each Ui and keep in mind that each x E Ui has at most 
q = k - 1 neighbours in Ui+l, we obtain 

b-1 
Au ::; L IUilq (q-(i-1)/2 - q-i/2f 0:2 + IUblq. q-(b-1)0:2. 

i=l 

This is easily computed to be 

= (Jq _1)2 (lUll + IU21q-l + ... + IUb_llq-(b-2) + IUblq-(b-1)) 0:2 

+0:2(2Jq -l)IUblq-(b-l). 

Consequently, 

A 0:2 
Au ::; (Jq - 1)2(A - 0:2 ) + (2Jq - 1) ~ 

which is less than 

Similarly, 

Av < (1 + q - 2Jq + 2~ -1) B. 

Combining these inequalities gives 

2y7i - 1 
k - A1(X) < 1 + q - 2Jq + b 

which proves the theorem .• 
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12.3. Ramanujan Graphs 

The previous theorem motivates the definition of a Ramanujan 
graph. A k-regular graph is said to be Ramanujan if 

'\(X) :::; 2Jk=l. 
This notion was introduced by Lubotzky, Phillips and Sarnak in a fun­
damental paper from 1986 in which they constructed infinite families 
of k-regular Ramanujan graphs whenever k - 1 is a prime power. The 
graphs were named after Srinivasan Ramanujan (1887-1920) because 
the construction obtained by Lubotzky, Phillips and Sarnak and inde­
pendently by Margulis, used deep number theoretic results related a 
conjecture of Ramanujan. 

In view of the Alon-Bopanna theorem, these graphs are extremal 
with respect to the property of trying to minimize '\(X) in the class of 
all k-regular graphs. Given k ::::: 3, the explicit construction of an infinite 
family of k-regular Ramanujan graphs is still a major unsolved problem 
for any given k. So far, such constructions have been possible using deep 
results from algebraic geometry and number theory and only when k-l 
is a prime power. For example, no one has been able to construct an 
infinite family of 7-regular Ramanujan graphs. 

The complete graph Kn is an (n - I)-regular Ramanujan graph. 
Also, the cycle graph en is a 2-regular Ramanujan graph. 

In section 4, we will construct a family of regular graphs using group 
theory and determine explicitly the eigenvalues of the adjacency matrix 
in terms of group characters. This will allow us to construct some 
explicit examples of Ramanujan graphs. 

12.4. Basic Facts about Groups and Characters 

A group G is a set together with a binary operation * (say) satisfying 
the following axioms: 

(1) a, bEG implies a * bEG (closure); 
(2) a, b, c E G implies (a * b) * c = a * (b * c) (associativity); 
(3) there is an element called the identity e E G such that a * e = 

e * a = a for all a E G (identity element); 
( 4) for any a E G, there is abE G so that a * b = b * a = e 

(inverses); we write a-I to denote the inverse of a. 

If in addition to this, a * b = b * a for all a, bEG, we say that G 
is abelian or commutative. When G is finite, we call the size of G the 
order of G. Note also that in a group, we have the cancelation law: 
a * b = a * c implies b = c since we can multiply both sides on the left by 
a-I. Warning: if a*b = c*a, we cannot necessarily conclude that b = c. 
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See example 6 below. The cancelation law also shows that the identity 
element is unique because if there were two e, e' say, then a = ae = ae' 
and we deduce e = e'. 

The reason for studying groups in the abstract is that many scien­
tific discoveries can be formulated in the language of group theory. In 
addition, the fundamental particles in the heart of the atom seem to 
know everything about non-abelian groups! In fact, the character the­
ory of certain subgroups of the group GL2(C) (see example 6 below) led 
to the discovery of new sub-atomic particles in the early 20th century. 

Here are some examples of groups. 

(1) Z under addition. 
(2) Z under multiplication is not a group since there are no in-

verses. 
(3) R *, non-zero reals under multiplication. 
(4) C*, non-zero complex numbers under multiplication. 
(5) C and R under addition. 

All of these are examples of infinite abelian groups. 
(6) GL2(R), or GL2(C) the collection of 2 x 2 invertible matrices 

with entries in R or C is a group under multiplication. 
These are infinite non-abelian groups. Notice that 

(0 -1) (a b) = (-C -d) = ( d -c) (0 -1). 
1 0 C dab -b a 1 0 

We cannot cancel the matrix 

from both sides of the equation! 
(7) Z/nZ under addition consists of residue classes modulo n. This 

is a finite abelian group of order n. 
(8) Z/6Z with multiplication is not a group since the residue class 

2 does not have an inverse. 
(9) (Z/pZ)* is the set of coprime residue classes mod p, with p 

prime. This is a finite abelian group of order p - 1. 
To indicate a * b we sometimes drop the * and simply write 

ab with no cause for confusion. There is a general tendency 
to use the multiplicative notation for writing the group law 
although there is non universal convention about this. Part 
of the reason for this is to emphasize that the groups we are 
dealing with need not be abelian. There is also a tendency to 
use the symbol 1 to denote the identity element (and 0 when 
we write the group additively). 
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(10) The symmetries of the equilateral triangle, namely rotation by 
60 degrees denoted r and a flip about the vertical axis f gener­
ates a non-abelian group of order 6. This group is isomorphic 
to the group of permutations on 3 letters. 

THEOREM 12.4.1. If G is a finite abelian group of order n, then 
gn = 1 for any element 9 E G. 

PROOF. Let gl, "., gn be the distinct elements of G. The elements 

ggl, gg2, .'" ggn 

are also distinct and therefore must be all of the elements of the group. 
Thus, 

gl ... gn = ggl ... ggn = gn(gl ... gn) 

and canceling by (gl ... gn), we deduce the result .• 

This theorem can be thought of as a generalization of Fermat's little 
theorem which says that if p is prime and a is coprime to p, then 

aP- 1 == 1( mod p). 

Theorem 1 is true for non-abelian groups also and is due to Lagrange. 
A group is called cyclic if there is an element go such that every 

element of the group is of the form g'O for some integer m. For instance, 
Z is a cyclic group under addition with generator 1. As any cyclic group 
is countable, the group of non-zero reals under multiplication and the 
group of additive reals are not cyclic groups. The group of residue 
classes mod n under addition, is a cyclic group with generator being the 
residue class 1. Any coprime residue class will also serve as a generator. 

A character X of a group G is a map 

x: G---+C* 

such that x(ab) = x(a)x(b). It is an example of a homomorphism. 
The character that sends every element to the element 1 is called the 
trivial character. Notice that any character of a group must take 
the identity element to 1 because X(12) = X(l) = x(1? and the only 
non-zero complex number z satisfying z2 = z is z = 1. Another thing 
to notice is that x(a-1) = x(a)-1 since 1 = x(aa-1) = x(a)x(a-1) from 
which the result is immediate. By Theorem 1, we deduce that if G is 
a finite group of order n,then X(g) must be an n-th root of unity since 
1 = X(gn) = X(g)n. 

The basic idea of character theory is that to understand the abstract 
group G, we map into something concrete like the multiplicative group 
of complex numbers and see how the image looks like to deduce what G 
looks like. It turns out that if G is a finite abelian group of order n, then 
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there are exactly n distinct characters that one can construct. The set 
of characters in turn forms a group under multiplication of charactfTs. 
Indeed, we define for two characters X and 'ljJ, the product character 

(x'ljJ)(a) := x(a)'ljJ(a). 

We call this the character group of G and denote it by G. The identity 
element of G is the trivial character. The character inverse to X is X-I 
defined by 

x-l(a) = x(a)-I. 
In the case of the additive group of residue classes mod n, all of the 
characters are given by 

Xj(a) = e27rija/n, j = 0,1,2, ... , (n - 1). 

Notice that XO is the trivial character. 

12.5. Cayley Graphs 

There is a simple procedure to constructing k-regular graphs using 
group theory. This can be described as follows. Let G be a finite group 
and S a k-element subset of G. We suppose that S is symmetric in the 
sense that s E S implies s-1 E S. Now construct the graph X(G, S) by 
having the vertex set to be the elements of G the (x, y) is an edge if and 
only if xy-l E S. 

The eigenvalues of the Cayley graph are easily determined as follows. 
The cognoscenti will recognize that it is the classical calculation of the 
Dedekind determinant in number theory. 

THEOREM 12.5.1. Let G be a finite abelian group and S a symmetric 
subset of G of size k. Then the eigenvalues of the adjacency matrix of 
X(G, S) are given by 

AX = LX(s) 
sES 

as X ranges over all the irreducible characters of G. 

REMARK 12.5.2. Notice that for the trivial character, we have Al = 
k. If we have for all X#- 1 

.LX(s) < k 
sES 

then the graph is connected by our earlier remarks. Thus, to construct 
Ramanujan graphs, we require 

.LX(s) ~ 2Jk=l 
sES 
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for every non-trivial irreducible character X of G. This is the strategy 
employed in many of the explicit construction of Ramanujan graphs. 

PROOF. For each irreducible character X, let Vx denote the vector 
(X(g) : 9 E G). Let 8s(g) equal 1 if 9 E S and zero otherwise and denote 
by A the adjacency matrix,of X(G, S). Then, 

(Avx)x = 2: 8s(xg-1 )X(g)· 
gES 

By replacing xg-1 by s, and using the fact that S is symmetric, we 
obtain 

(Avx)x = X(x) (2: X(S)) 
sES 

which shows that Vx is an eigenvector with eigenvalue 

2:X(s) 
sES 

which completes the proof .• 

As mentioned above, this calculation is reminiscent of the Dedekind 
determinant formula in number theory. Recall that this formula com­
putes det A where A is the matrix whose (i, j)-th entry is f( ij-l) for 
any function f defined on the finite abelian group G of order n. The 
determinant is 

II (2: f(9)X(g)) . 
x gEG 

The proof is analogous to the calculation in the proof of Theorem 3 and 
we leave it to the reader. As an application, it allows us to compute 
the determinant of a circulant matrix. For instance, we can compute 
the characteristic polynomial of the complete graph. Indeed, it is not 
hard to see that by taking the additive cyclic group of order nand 
setting f(O) = -A, f(a) = 1 for a =1= 0, we obtain that the characteristic 
polynomial is 

(-It(A - (n - I))(A - I)n-l 

by the Dedekind determinant formula. As the complete graph of or­
der n is an (n - I)-regular graph, we see immediately from the above 
calculation that it is a Ramanujan graph. 

If G is an abelian group and S is a subset of G, we can define another 
set of graphs Y(G, S) called sum graphs as follows. The vertices consist 
of elements of G and (x, y) is an edge if xy E S. Arguing as before, we 
can show 
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THEOREM 12.5.3. Let G be an abelian group. For each character X 
ofG, the eigenvalues ofY(G,S) are given as follows. Define 

ex = LX(s). 
sES 

If ex = 0, then Vx and vx1 are both eigenvectors with eigenvalues zero. 
If ex i- 0, then 

lexlvx ± exvx-l 

are two eigenvectors with eigenvalues ± lex I· 

Using this theorem, Winnie Li constructed Ramanujan graphs in the 
following way. Let F q denote the finite field of q elements. Let G = F q2 

and take for S the elements of G of norm 1. This is a symmetric subset 
of G and the Cayley graph X(G, S) turns out to be Ramanujan. The 
latter is a consequence of a theorem of Deligne estimating Kloosterman 
sums. 

These results allow us to construct Ramanujan graphs by estimating 
character sums. 

There is a generalization of these results to the non-abelian context. 
This is essentially contained in a paper by Diaconis and Shahshahani. 
Using their results, one can easily generalize the Dedekind determinant 
formula as follows (and which does not seem to be widely known). Let 
G be a finite group and f a class function on G. Then the determinant 
of the matrix A whose rows (and columns) are indexed by the elements 
of G and whose (i,j)-th entry is f(ij-1) is given by 

II ( tl) L f(9)X(g)) X(1) 

x X gEG 

with the product over the distinct irreducible characters of G. 
The following theorem is due to Diaconis and Shahshahani. 

THEOREM 12.5.4. Let G be a finite group and S a subset which is 
stable under conjugation. Let A be the adjacency matrix of the graph 
X(G,S) (where u,v E G are adjacent if and only ifuv-1 E S). Then 
the eigenvalues of A are given by 

1 
Ax = X(I) 2: X(s) 

sES 

as X ranges over all irreducible characters of G. Moreover, the multi­
plicity of Ax is X(I)2. 
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We remark that the Ax in the above theorem need not be all distinct. 
For example, if there is a non-trivial character X which is trivial on S, 
then the multiplicity of the eigenvalue lSI is at least 1 + X(1)2. 

PROOF. We essentially modify the proof of Diaconis and Shahsha­
hani to suit our context. We consider the group algebra C[G] with basis 
vectors eg with g E G and multiplication defined as usual by egeh = egh. 

We define the linear operator Q by 

Q = Les = L O"s(g)eg 

sES gEG 

which acts on C[G] by left multiplication. The matrix representation 
of Q with respect to the basis vectors eg with g EGis precisely the 
adjacency matrix of X(G, S) as is easily checked. If r denotes the left 
regular representation of G on C [G], we find that the action of 

r(A) = L r(s) 
sES 

on C[G] is identical to Q. Moreover, C[G] decomposes as 

e[G] = EBpVp 

where the direct sum is over non-equivalent irreducible representations 
of G and the subspace Vp is a direct sum of deg p copies of the subspace 
Wp corresponding to the irreducible representation p. The result is now 
clear from basic facts of linear algebra .• 

12.6. Expanders 

For any subset A of the vertex set of a graph X, we may define the 
edge-boundary of A, denoted 8A by 

8A={XYEE(X) :XEA,yttA}. 

That is, the edge-boundary of A consists of the edges which are incident 
to precisely one vertex of A. The edge-expansion h(X) of X equals 

the minimum of If~l, where the minimum is taken over all subsets A 

of the vertex set of X of order at most 11/~X)I. As many combinatorial 
invariants, the edge-expansion of a graph is hard to compute. 

Let c be positive real number. A k-regular graph X with n vertices 
is called a c-expander if 

(12.6.1) h(X) 2: c. 

A very important problem is constructing infinite families of k-regular 
c-expanders for fixed k 2: 3 and some c > O. Expander graphs play an 
important role in computer science and the theory of communication 
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networks. These graphs arise in questions about designing networks 
that connect many users while using only a small number of switches. 
Our interest in them lies in the fact the theory of c-expanders can be 
related to the eigenvalue questions of the previous section. This is done 
in the next theorem. 

THEOREM 12.6.1 (Alon-Milman, Dodziuk). Let X be a k-regular 
graph. Then 

PROOF. We prove only the first inequality, the second inequality is 
slightly more complicated. 

The idea is to apply the Rayleigh-Ritz ratio·in the following way. As 
observed in the previous section, let f be a function defined on V(X) 
that is orthogonal to the constant function fo. If L = kI - A is the 
Laplacian matrix of X, then 

(Lf,f) > k - A (X) 
(f,f) - 1 

by Rayleigh-Ritz inequality. 
Let A be a subset of V(X) of size at most IV~X)I. If we set 

f( ) - { IV(X) \ AI if x E A 
x - -IAI if x 9f A 

then it is easily seen that (f, fo) = O. On the other hand, a direct 
calculation shows that 

(f, f) = IV(X)IIAIIV(X)\AI· 

By using the formula 

(Lf, f) = ~ L (f(x) - f(y))2 
(x ,y)EE 

we easily check that 

(Lf , f) = IXI2 10AI 
so that by the previous we obtain 

loAI > (k _ A (X)) IV(X) \ AI > k - Al(X). 
IAI - 1 IAI - 2 

Since this inequality holds for each A c V(X) of size at most IV~X)I, it 

follows that h(X) ::::: k-)'~(X) .• 
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The previous theorem shows that making Al as small as possible 
gives us good expander graphs. By the Alon-Bopanna theorem, we 
cannot do better than 

A(X) :S 2Vk=l. 
Thus, Ramanujan graphs make excellent expanders. 

In 1973, Margulis gave the first explicit construction of an infinite 
family of 8-regular graphs. Given an nonnegative integer m, consider 
the graph em whose vertex set is 2m X 2m. Each vertex (x, y) of em 
is adjacent exactly to (x + y, y), (x - y, y), (x, y + x), (x, y - x), (x + y + 
1, y), (x - y + 1, y), (x, y + X + 1), (x, y - x + 1) where all the operations 
are done modulo m. Varying m produces an infinite family of 8-regular 
graphs. Margulis showed these graphs are expanders by using results 
from group representations. In 1981, Gabber and Galil used harmonic 
analysis to show that any non-trivial eigenvalue of em has absolute 
value at most 5J2 :::::i 7.05 < 8. 

12.7. Counting Paths in Regular Graphs 

If A is the adjacency matrix of X, it is clear that the (x,y)-th co­
ordinate of Ar enumerates the number of paths of length r from x to 
y. We will be interested in proper paths, that is paths which do not 
have back-tracking. We are interested in counting the number of proper 
paths of length r in a k-regular graph. Let Ar denote the matrix whose 
(x, y)-th entry will be the number of proper paths from x to y. Then, 
Ao = I and Al = A and clearly 

A2 = A2 + kI 

since A2 encodes the number of proper paths of length 2. 
Inductively, it is clear that 

AlAr = Ar+! + (k - 1)Ar-1' 

since the left hand side enumerates paths of length r + 1 which are 
extended from proper paths of length r and the right side enumerates 
first the proper paths of length r + 1 and proper paths of length r - 1 
which are extended to 'improper' paths of length r. 

This recursion allows us to deduce the following identity of formal 
power series: 

PROPOSITION 12.7.1. 

(~Act') (I - At + (k - l)t2 ) = (1- t2 )I. 
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12.8. The Ihara Zeta Function of a Graph 

Let X be a k-regular graph and set q = k - 1. Motivated by the 
theory of the Selberg zeta function, Ihara was led to make the following 
definitions and construct the graph-theoretic analogue of it as follows. 
A proper path whose endpoints are equal is called a closed geodesic. If 
, is a closed geodesic, we denote by ,r the closed geodesic obtained by 
repeating the path, r times. A closed geodesic which is not the power 
of another one is called a prime geodesic. We define an equivalence 
relation on the closed geodesics (xo, ... , xn) and (Yo, ... , Ym) if and only if 
m = n and there is a d such that Yi = Xi+d for all i (and the subscripts 
are interpreted modulo n. An equivalence class of a prime geodesic is 
called a prime geodesic cycle. Ihara then defines the zeta function 

Zx(s) = II (1 _ q_SI'(p))-l 

P 

where the product is over all prime geodesic cycles and £(p) is the length 
of p. 

Ihara proves the following theorem: 

THEOREM 12.8.1. For g = (q - 1)IXI/2, we have 

Zx(s) = (1 - u 2 )-g det(I - Au + qu2 )-1, u = q-s. 

Moreover, Z x (s) satisfies the "Riemann hypothesis" (that is, all the 
singular points lie on Re(s) = 1/2 ) if and only if X is a Ramanujan 
graph. 

PROOF. (Sketch) We assume that the zeta function has the shape 
given and show that it satisfies the Riemann hypothesis if and only if X 
is Ramanujan. Let <fy(z) = det(zI - A) be the characteristic polynomial 
of A. If we set z = (1 + qu2 )/u, then the singular points of the Zx(s) 
arise from the zeros of <fy( z ). Since 

z ± J z2 - 4q 
u = -----'------=. 

2q 

and any zero of <fy is real (because A is symmetric), we deduce that 

zu (1 + qu2 )u u + qlul 2u 

U uu lul 2 

is also real. Thus, the numerator is real and so, we must have 

qlul2 = 1, 

which is equivalent to the assertion of the theorem .• 
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12.9. Exercises 

EXERCISE 12.9.1. If X is a k-regular graph with eigenvalues k = 
AO 2:: Al 2:: ... 2:: An-I, determine the eigenvalues of the complement of 
X. 

EXERCISE 12.9.2. A graph X is regular and connected if and only 
if J is a linear combination of powers of the adjacency matrix A of X. 

EXERCISE 12.9.3. Let k = AO > Al > ... > A8-1 be the distinct 
eigenvalues of the adjacency matrix A of a k-regular connected graph 
X with n vertices. Show that 

8-1 

n IT J= . A-A.] TI~-I(k _ A') . ( ~ n). 
~=1 ~ t=1 

EXERCISE 12.9.4. A graph X is strongly regular with parame­
ters (n, k, a, c) if it is k-regular, every pair of adjacent vertices has a 
common neighbours and every pair of non-adjacent vertices has c com­
mon neighbours. Show that the adjacency matrix A of a strongly regular 
graph X with parameters (n, k, a, c) satisfies the equation 

A2 - (a - c)A - (k - c)J = cJ. 

EXERCISE 12.9.5. Calculate the eigenvalues of a strongly regular 
graph X with parameters (n, k, a, c). 

EXERCISE 12.9.6. Let q == 1 (mod 4) be a power of a prime. The 
Paley graph JPl q has vertices the elements of the field IF q with x adjacent 
to y if x - y is a square in IF q' Show that JPl5 = C5 and that JPl q is a 

strongly regular graph with parameters (q,~, 9, q~I). 
EXERCISE 12.9.7. Calculate the eigenvalues of the line graph L(Kn) 

of the complete graph Kn. 

EXERCISE 12.9.8. Calculate the eigenvalues of the complement of 
the line graph of Kn. 

EXERCISE 12.9.9. An n X n matrix C is called a circulant matrix 
if row i of C is obtained from the first row of C by a cyclic shift of i - 1 
steps for each i E [n j. Let Z be the n x n circulant matrix whose first row 
is [0,1,0, ... ,OJ. Show that the eigenvalues of Z are 1,w,w2 , ... ,wn-l, 
where w = cos (2:) + i sin (2:) . 

EXERCISE 12.9.10. Show that the Petersen graph is isomorphic to 
the complement of the line graph of K5. 

EXERCISE 12.9.11. Calculate the eigenvalues of the Petersen graph. 
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EXERCISE 12.9.12. Let C be an n x n circulant matrix whose first 
row is [C1' C2, ... ,cn ]. Show that 

i=l 

where Z is the n x n circulant matrix whose first row is [0,1,0, ... ,0]. 

EXERCISE 12.9.13. A circulant graph is a graph X whose ad­
jacency matrix is a circulant matrix. Show that a circulant graph is 
regular. 

EXERCISE 12.9.14. If [0, C2,' .. ,cn ] is the first row of the adjacency 
matrix C of a circulant graph X, show that the eigenvalues of Care 

n 

As = L aiw(i-1)s, 

i=2 

for S E {O, 1, ... , n - I} and w = cos (2:) + i sin (2:). 

EXERCISE 12.9.15. Show that the cycle en with n vertices is a cir­
culant graph. 

EXERCISE 12.9.16. Calculate the eigenvalues of the cycle Cn. 

EXERCISE 12.9.17. The Mobius ladder M2n is the 3-regular graph 
on 2n vertices which is obtained from the cycle C2n by joining each pair 
of opposite vertices. Show that the Mobius ladder is a circulant graph. 

EXERCISE 12.9.18. Show that the eigenvalues of the Mobius ladder 
M2n are 

As = 2 cos (:;) + (_l)S, 

for S E {O, 1, ... , 2n - I}. 

EXERCISE 12.9.19. Determine which of the graphs L(Kn), L(Kn) 
and M 2n are Ramanujan. 

EXERCISE 12.9.20. Let X be a graph with n vertices and let Wi,j(r) 
denote the number of walks of length r between the vertices i and j of 
X. If W is the matrix whose (i,j)-th entry is 

00 

Wi,j = L Wi,j(r)xr 

r=l 

show that 
W(In - xA) = In, 

where A is the adjacency matrix of X. 
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Hints 

Chapter 1. Basic Notions of Graph Theory 

1.6.1 Use Corollary 1.2.2. 
1.6.2 Use Theorem 1.5.2. 
1.6.3 The degree of a vertex in a connected graph with n vertices is 

between 1 and n - 1. 
1.6.4 Use induction on n . 
1.6.5 Use the idea from Theorem 1.5.2. 
1.6.6 Consider a path of maximum length. 
1.6.7 Modify the proof of Theorem 1.4.1. 
1.6.8 The endpoints of each edge have different colours. 
1.6.9 Find the maximum number of edges in Ka,b , when a + b = n. 
1.6.10 Each C4 must have two vertices of each colour. 
1.6.11 If x, y E {a, 1}n, show that the distance between x and y 

equals the number of positions in which x and y differ. For x E {a, 1}n, 
let w(x) denote the number of 1's in x. Partition the vertices of Qn 
according to the parity of w(x). 

1.6.12 Use induction on n to calculate the number of vertices. For 
a vertex x E {a, 1}n, calculate its degree. 

1.6.13 Use induction on n or for each x i= y E {a, 1}n, count the 
common neighbours of x and y. 

1.6.14 Use the previous hint. 
1.6.15 Start with an arbitrary bipartite subgraph with two non­

empty colour classes. For each vertex x, if the number of neighbors of 
x which are contained in its colour class is greater than the number of 
neighbors of x which are contained in the other colour class, then move 
x to the other colour class. 

1.6.16 Use Theorem 1.4.1. 
1.6.17 Prove by contradiction. 
1.6.18 Prove by contradiction. 

1.6.19 Show first that L (d(u) + d(v)) = L d2(x) and use 
uvEE(X) 

Cauchy-Schwarz inequality. 
uEV(X) 
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1.6.20 Use 1.6.19 to show that if a graph has n vertices and at least 
l ~2 J edges, then it contains a K 3 . 

Chapter 2. Recurrence Relations 

2.7.1 Calculate ((~)). 
2.7.2 Count the subsets containing n and the ones not containing n 

separately. 
2.7.3 Use the relation (k + I)! - k! = k! . k 
2.7.4 Use the formula (~) = k!(:~k)! or count the number of pairs 

{(K, L) : K c [n], IKI = k, L c K, ILl = I} in two ways. 
2.7.5 Use the formula (~) = k!(:~k)! or count the number of k-subsets 

of [nJ depending on whether or not they contain n. 
2.7.6 Use 2.7.5. 
2.7.7 Count the number of k-subsets of [m + nJ in two ways. 

2.7.8 Use the formula e:) = ~~i and Stirling's formula for n! and 
(2n)!. 

2.7.9 With binomial coefficients, if IAI = k, then there are 2n - k 

subsets B with A n B = 0. Combinatorially, consider the matrix whose 
rows are the characteristic vectors of A and B. 

2.7.10 The number of even subsets is (~) + G) + ... and the number 
of odd subsets is G) + G) + .... Use Newton's binomial formula. For a 
bijective proof, if n is odd, consider the function A --+ AC. If n is even, 
use the fact that n - 1 is odd. 

2.7.11 If w = cos 2; + i sin 2;, calculate (1 + w) n in two different 
ways. 

2.7.12 Use Fn = Fn- 1 + Fn- 2 . 

2.7.13 Label n -1 sides of a convex n-gon with distinct labels. Con­
struct a bijective function between to the triangulations of the convex 
n-gon by n - 2 nonintersecting diagonals and the ways of bracketing the 
sum of n - 1 terms corresponding to the labeled sides. 

2.7.14 Write n = 1 + 1 + ... + 1 and construct a bijection between 
the solutions of the given equation and the (k - I)-subsets of a set with 
n - 1 elements. 

2.7.15 Use the formula of G) for the first inequality. Use induction 
on n for the second inequality. 

2.7.16 Use binomial formula or count in two ways the number of 
triples (A,x,y) where A c [nJ and x,y E A. 

2.7.17 Use Stirling's formula. 
2.7.18 Let Xk = max{x : (%) :::; n}. 
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2.7.19 Use the recurrence relation for the Bell numbers. 
2.7.20 Find a recurrence formula using the fact the last term of the 

sum can be 1 or 2. 

Chapter 3. The Principle of Inclusion and Exclusion 

3.6.1 Use Theorem 3.1.1. 
3.6.2 For k :::; pq, if gcd(k,pq) #- 1, then gcd(k,p) #- 1 or 

gcd(k, q) #- 1. 
3.6.3 For i E [r], let Ai = {x : x :::; n,pilx}. Then use Theorem 

3.1.1. 
3.6.4 Use Theorem 3.1.1. 
3.6.5 Use Theorem 3.1.1. 
3.6.6 Use induction on n. 
3.6.7 Use Theorem 3.2.1. 
3.6.8 Use Theorem 3.3.1. 
3.6.9 Use Theorem 3.4.2. 
3.6.10 The number of permutations with an even number of cycles 

is Is(n, 2)1 + Is(n, 4)1 + .... The number of permutations with an odd 
number of cycles is Is(n, 1)1 + Is(n, 3)1 + .... 

3.6.11 Use the counting idea from the proof of Theorem 3.5.3. 
3.6.12 Use inclusion and exclusion. If you have m red cards and n 

blue cards, how many k-elements subsets are there consisting only of 
red cards. 

3.6.13 Is(n, 1) 1 equals the number of permutations with exactly one 
cycle or use the recurrence relation. 

3.6.14 Use the definition of S(n, k). 
3.6.15 Use the definition of S(n, k). 
3.6.16 Consider f'(t) and use the recurrence relation 

s(n) = s(n - 1) + (n - 1)s(n - 2). 
3.6.17 Calculate (e t - 1)g(t). 
3.6.18 Use 3.6.17. 
3.6.19 Use 3.6.17 and 3.6.18. 
3.6.20 Calculate eX f(X). 

Chapter 4. Matrices and Graphs 

4.5.1 Determine the characteristic polynomials of P4 and C5 . 

4.5.2 Recall that Af,j equals the number of walks of length k from i 
to j and use the binomial theorem. 

4.5.3 Use Theorem 4.1.1. 
4.5.4 Use Theorem 4.1.1. 



13. HINTS 

4.5.5 Use Exercise 4.5.3 and the Cauchy-Schwarz inequality. 
4.5.6 Consider the rows corresponding to the two vertices. 
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4.5.7 For any three vertices i,j,k, d(i,k) :S d(i,j) +d(j,k), where 
d( x, y) is the length of a shortest path from x to y. 

4.5.8 Use the directed version of Theorem 1.4.1 to prove the result 
for matrices having all entries equal to 0 except one entry which equals 
1. 

4.5.9 Use induction on n. 
4.5.10 Use the definition of M and A. 
4.5.11 Use the definition of Nand A. 
4.5.12 Multiply the Laplacian matrix by the all one vector and use 

4.5.11. 
4.5.13 Use the definition of the Laplacian matrix. 
4.5.14 Look at the coefficient of ,\3. 

4.5 .15 Calculate the eigenvalues of C4 . 

4.5.16 Consider the adjacency matrix of Y. 
4.5.17 If the odd girth of X is 2r + 1, then calculate in two ways the 

number of closed cycles of length 28 + 1 for 8 :S r - 1. 
4.5.18 For any two edges e, f of X, calculate the (e, f)-entry of the 

matrix NtN. 
4.5.19 If J.t is an eigenvalue of NNt, then J.t is an eigenvalue of NtN. 
4.5.20 Show that any eigenvalue of N Nt is positive. 

Chapter 5. Trees 

5.5.1 A tree has no cycles. 
5.5.2 A connected graph has no cycles if and only if it has n - 1 

edges. 
5.5.3 Use induction on n. 
5.5.4 Use induction on n. 
5.5.5 Use 5.5.1. 
5.5.6 Use 5.5.1. 
5.5.7 Use 5.5.6. 
5.5.8 Use 5.5.7. 
5.5.9 Use the principle of inclusion and exclusion. 
5.5.10 Use 5.5.9. 
5.5.11 Use the matrix-tree theorem. 
5.5.12 Use induction on n. 
5.5.13 Use Kruskal's algorithm. 
5.5.14 If i has degree d and j is adjacent to i, consider the furthest 

point k from j such that d(i, k) = d(j, k) + 1. 
5.5.15 Show that the maximum degree is 2. 
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5.5.16 Consider a spanning tree of X. 
5.5.17 Use the matrix-tree theorem. 
5.5.18 Use the matrix-tree theorem. 
5.5.19 The number of vertices is less than the number of vertices of 

a k-regular tree of height D. 
5.5.20 Consider a path of maximum length in the tree. 

Chapter 6. Mobius Inversion and Graph Colouring 

6.9.1 Use the definition of a poset. 
6.9.2 Use the definition of the Hasse diagram. 
6.9.3 Use Theorem 6.1.1. 
6.9.4 Use 6.9.1. 
6.9.5 Use the definition of the Mobius function. 
6.9.6 Use the definition of a linear ordering. 
6.9.7 Construct a graph whose vertices are stations with two stations 

adjacent if their distance is less than 150 miles. 
6.9.8 The sum of the coefficients is related to the value of the chro-

matic polynomial at 1. Use induction for the second part. 
6.9.9 Use the definition of the chromatic polynomial. 
6.9.10 Colour X V Y using the colourings of X and Y. 
6.9.11 Use induction on n and Theorem 6.5.1. 
6.9.12 Every connected graph has a spanning tree. 
6.9.13 The vertex of degree 3 can be coloured in ), ways, then the 

vertex of degree 1 can be coloured with), - 1 colours. 
6.9.14 Use the definition of the chromatic polynomial. 
6.9.15 Use the Rayleigh-Ritz theorem. 
6.9.16 Use ideas from the proof of Theorem 6.5.1. 
6.9.17 Partition the vertex set into X(X) independent sets and count 

the edges between them. 

is i. 

6.9.18 Use the definition of the chromatic number. 
6.9.19 Let Ai denote the family of k-subsets whose smallest element 

6.9.20 Use the principle of inclusion and exclusion. 

Chapter 7. Enumeration under Group Action 

7.4.1 Use the definition of a group action. 
7.4.2 Use the definition of a group action. 
7.4.3 Use the definition of a group homomorphism. 
7.4.4 Use the definition of a group action. 
7.4.5 Use P6lya's Theorem. 
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7.4.6 Use P6lya's Theorem. 
7.4.7 Use the definition of the cycle index polynomial. 
7.4.8 Use P6lya's Theorem. 
7.4.9 A graph on n vertices has at most G) edges. 
7.4.10 Use the definition of the cycle index polynomial. 
7.4.11 Use the results in the last section. 
7.4.12 Use the results in the last section. 
7.4.13 Use the definition of the cycle index polynomial. 
7.4.14 Use the results in the last section. 
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7.4.15 Remember that an automorphism of Pn is a bijection function 
f : V(Pn ) --. V(Pn ) such that xy E E(Pn ) if and only if f(x)f(y) E 

E(Pn ). 

7.4.16 Use the definition of the cycle index polynomial. 
7.4.17 Use P6lya's Theorem. 
7.4.18 Remember that an automorphism of a graph X is a bijec­

tion function f : V(X) --. V(X) such that xy E E(X) if and only if 
f(x)f(y) E E(X). 

7.4.19 Use the definition of the cycle index polynomial. 
7.4.20 Use P6lya's Theorem. 

Chapter 8. Matching Theory 

8.8.1 Use Hall's Theorem 8.1.1. 
8.8.2 Use Hall's Theorem 8.1.1. 
8.8.3 Use Hall's Theorem 8.1.1. 
8.8.4 Use induction on t. 
8.8.5 Use Exercise 8.8.4 and induction on n. 
8.8.6 Use Theorem 8.3.1. 
8.8.7 Use the Hungarian algorithm. 
8.8.8 Use Tutte's Theorem 8.6.1. 
8.8.9 Use Tutte's Theorem 8.6.1. 
8.8.10 Use induction on n 
8.8.11 Use Birkhoff-von Neumann Theorem 8.4.1. 
8.8.12 Add a proper number of vertices to A , join them to Band 

use Hall's Theorem 8.1.1. 
8.8.13 Replace each vertex in A by an independent set of proper size 

and use Hall's Theorem 8.1.1. 
8.8.14 Use Hall's Theorem 8.1.1. 
8.8.15 If X\ C is not a disjoint union of clique, then there are vertices 

x, y, Z, w such that xy, xz are edges and yz and xw are not edges of X. 
Use the perfect matchings of X U yz and Xu xw to construct a perfect 
matching for X. 
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8.8.16 Use Tutte's Theorem 8.6.1. 
8.8.17 Consider the symmetric difference of two perfect matchings. 
8.8.18 Use Tutte's Theorem 8.6.1. 
8.8.19 Use Hall's Theorem 8.1.1. 
8.8.20 Follow the proof of Hall's Theorem 8.1.1. 

Chapter 9. Block Designs 

9.7.1 Use the results in the first section. 
9.7.2 Use the results in the first section. 
9.7.3 Use the results in the first section. 
9.7.4 Use the definition of the Mobius function. 
9.7.5 Consider a design whose points are the students. 
9.7.6 Generalize the construction from the second section. 
9.7.7 The rank is the maximum number of independent rows or 

columns. 
9.7.8 Use Theorem 9.3.1. 
9.7.9 Use Theorem 9.4.1. 
9.7.10 Use Theorem 9.3.4. 
9.7.11 Use Theorem 9.6.1. 
9.7.12 Remove the last d - 1 entries from each codeword. 
9.7.13 Use the definition of the Fano plane and Figure 9.1. 
9.7.14 Use the definition of a Steiner triple system. 
9.7.15 Use the definition of d(x, z). 
9.7.16 Use Theorem 9.2.1. 
9.7.17 Use the definition of a 2 - (v,k,>..) design. 
9.7.18 Use double counting. 
9.7.19 Any two distinct blocks have at most t -1 points in common. 
9.7.20 Prove by contradiction. 

Chapter 10. Planar Graphs 

10.4.1 If Ii is the number of faces of length i, then 
2e = L:i i fi 2: If. 

10.4.2 The girth is the length of the shortest cycle. 
10.4.3 Use Heawood's Theorem 10.3.2. 
10.4.4 Use Exercise 10.4.1 or Kuratowski's Theorem. 
10.4.5 Find a plane drawing of K3,3 \ e without any crossings. 
10.4.6 Find a plane drawing of K5 \ I without any crossings. 
10.4.7 Show that K 4,4 without a perfect matching is isomorphic to 

the 3-dimensional cube graph Q3. 
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10.4.8 Join any two points by an edge if and only if their distance 
in the plane is 1. Show this graph is planar. 

10.4.9 A nonplanar graph has crossing at least 1. 
10.4.10 Use Exercises 10.4.9 and 10.4.1. 
10.4.11 Use Exercise 10.4.10 and find a drawing of K6 with 3 cross­

ings. 
10.4.12 Use the definition of outerplanar graphs. For K 4 , assume it 

is outerplanar and derive a contradiction. 
10.4.13 Assume K 2,3 is outerplanar and derive a contradiction. Find 

a plane drawing of K 2,3 . 

10.4.14 Use a greedy colouring. 
10.4.15 Decompose the polygon into triangles using its diagonals 

and use Exercise 10.4.14. 
10.4.16 Use Exercises 10.4.1 and 10.4.9. 
10.4.17 Use induction or the four colour theorem. 
10.4.18 The chromatic number of a planar graph is at most 4. 
10.4.19 Use induction on n. 
10.4.20 Use induction on the number of inside edges to show that 

Li(i - 2)1: = n - 2 and a similar result for the outside edges. 

Chapter 11. Edges and Cycles 

11.4.1 Use the definition of the line graph. 
11.4.2 Show that the Petersen graph without any of its perfect 

matchings is formed by two cycles of length 5. 
11.4.3 Use Exercise 11.4.2. 
11.4.4 Use the greedy colouring. 
11.4.5 Use the definition of a Hamiltonian cycle. 
11.4.6 Use the definition of a Hamiltonian cycle. 
11.4.7 Use the definition of a Hamiltonian cycle. 
11.4.8 Follow the proof of Theorem 11.2.3. 
11.4.9 Use the pigeonhole principle. 
11.4.10 Use the pigeonhole principle. 
11.4.11 Use induction and the pigeonhole principle. 
11.4.12 Use the pigeonhole principle. 
11.4.13 Modify the argument which shows that any red-blue edge­

colouring of K6 results in a monochromatic triangle. 
11.4.14 Use induction. 
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11.4.15 Consider the polygon whose vertices are among the five 
points and which contains all of them inside it. 

11.4.16 Use 11.4.16. 
11.4.17 Use induction. 
11.4.18 The vertex set can be partitioned into 4 cliques. 
11.4.19 Use 11.4.18 and the pigeonhole principle. 
11.4.20 Use induction. 

Chapter 12. Regular Graphs 

12.9.1 If A is the adjacency matrix of X, then the adjacency matrix 
of X is J - I-A. 

12.9.2 If J is a linear combination of powers of A, then AJ = J A. 
Compare the ij-th entry of AJ and J A. If X is k-regular and connected, 
then the minimal polynomial of A has the form (,X - k)p(,X). This 
means each column of p(A) is an eigenvector of A corresponding to the 
eigenvalue k . 

12.9.3 Use 12.9.2. 
12.9.4 Calculate A2 in terms of I, A and J. 
12.9.5 If x is an eigenvector of an eigenvalue ,X # k, then Jx = O. 
12.9.6 If a is a non-square in IF q, then x f--t ax is a bijection between 

squares and non-squares in lFq . 

12.9.7 Use 4.5.19. 
12.9.8 Use 12.9.1 and 12.9.7 . 
12.9.9 Multiply the matrix C by the column vector 

[1,wj , w 2j , . . . , w(n-1)j]t, for j E {O, 1, ... , n -I}. 
12.9.10 Find an isomorphism between L(K5) and the Petersen graph. 
12.9.11 Use 12.9.7, 12.9.8 and 12.9.9. 
12.9.12 The matrix C can be written as the sum of n circulant 

matrices. 
12.9.13 Calculate the sum of the elements in each row of the adja-

cency matrix. 
12.9.14 Use 12.9.11 and 12.9.12. 
12.9.15 Consider the adjacency matrix of Cn. 
12.9.16 Use 12.9.14. 
12.9.17 Consider the adjacency matrix of M2n . 

12.9.18 Use 12.9.14. 
12.9.19 Use the definition of a Ramanujan graph. 
12.9.20 Use the definition of W. 
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